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Preface

This book introduces the reader to the fascinating field of polymer
physics. It is intended to be utilized as a textbook for teaching upper
level undergraduates and first year graduate students about polymers.
Any student with a working knowledge of calculus, chemistry, and physics
should be able to read this book. The essential tools of the polymer
physical chemist or engineer are derived in this book without skipping
any steps. Hence, the book is a self-contained treatise that should also
serve as a useful reference for scientists and engineers working with
polymers.

While the book assumes no prior knowledge of polymers, it goes far
beyond introductory polymer texts in the scope of what is covered. The
fundamental concepts required to fully understand polymer melts, solu-
tions and gels in terms of both static structure and dynamics are explained
in detail. Problems at the end of each chapter provide the reader with the
opportunity to apply what has been learned to practice. More challenging
problems are denoted by an asterisk.

The book is divided into four parts. After an introduction in Chapter 1,
where the necessary concepts from a first course on polymers are sum-
marized, the conformations of single polymer chains are treated in Part 1.
Part 2 deals with the thermodynamics of polymer solutions and melts,
including the conformations of chains in those states. Part 3 applies the
concepts of Part 2 to the formation and properties of polymer networks.
Finally, Part 4 explains the essential aspects of how polymers move in both
melt and solution states. In all cases, attention is restricted to concepts that
are firmly entrenched in the field, with less established uses of those con-
cepts relegated to the problems.

The motivation for our writing this book comes from the fact
that its primary antecedent, written by Paul Flory, is now 50 years old.
Many of the same concepts are re-introduced in modern language. Other
concepts introduced by eminent scientists over the past half-century are
derived in simpler ways, with the intention of making them accessible to a
broader audience. These include many of the important concepts discussed
in the excellent monographs by de Gennes and by Doi and Edwards.

The book is titled Polymer Physics largely because the authors share the
viewpoint of Lord Ernest Rutherford:

‘Science is divided into two categories, physics and stamp-collecting.’

The foundations of this book arose from debates between the authors
while they were employed for 10 glorious years at the Eastman Kodak
Company. While the authors continue to debate many aspects of science,
the contents of this book have emerged as the essence of what they claim to



Preface

understand in polymer physics, bearing in mind the wisdom of Werner
Heisenberg:

‘Science progresses not only because it helps to explain newly discovered
facts, but also because it teaches us over and over again what the word
understanding may mean.’

The authors thank Jack Chang, Dennis Massa, Glen Pearson, and John
Pochan for giving the authors the freedom to ponder polymer physics. The
authors also thank David Boris, Andrey Dobrynin, Mark Henrichs,
Christine Landry, Mike Landry, Charlie Lusignan, Don Olbris, Ravi
Sharma, Yitzhak Shnidman, and Jeff Wesson for their participation in our
arguments during informal weekly meetings during the Kodak years. The
readers of this book are indebted to Mireille Adam, Peter Bermel, Andrey
Dobrynin, Randy Duran, Brian Erwin, Liang Guo, Alexander Grosberg,
Jean-Francois Joanny, Sanat Kumar, Eugenia Kumacheva, Tom Mourey,
Katherine Qates, Jai Pathak, Nopparat Plucktaveesak, Jennifer Polley,
Ed Samulski, Sergei Panyukov, Jay Schieber, and Sergei Sheiko for com-
ments on the text that greatly improved the clarity of the presentation. We
thank the Institute for Theoretical Physics for hospitality during the
completion of the book.
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