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Ideal chains

In this chapter, we consider the conformations of chains with no interac-
tions between monomers that are far apart along the chain, even if they
approach each other in space. Such chains are called ideal chains. This
situation is never completely realized for real chains, but there are several
types of polymeric systems with nearly ideal chains. Real chains interact
with both their solvent and themselves. The relative strength of these
interactions determines whether the monomers effectively attract or repel
one another. In Chapter 3, we will learn that real chains in a solvent at low
temperatures can be found in a collapsed conformation due to a dom-
inance of attractive over repulsive interactions between monomers. At high
temperatures, chains swell due to dominance of repulsive interactions. Ata
special intermediate temperature, called the f-temperature, chains are in
nearly ideal conformations because the attractive and repulsive parts of
monomer—-monomer interactions cancel each other. This §-temperature is
analogous to the Boyle temperature of a gas, where the ideal gas law
happens to work at low pressures. Even more importantly, linear polymer
melts and concentrated solutions have practically ideal chain conforma-
tions because the interactions between monomers are almost completely
screened by surrounding chains.

The conformation of an ideal chain, with no interactions between
monomers, is the essential starting point of most models in polymer
physics. In this sense, the role of the ideal chain is similar to the role of the
harmonic oscillater or the hydrogen atom in other branches of physics.

2.1 Flexibility mechanisms

In order to understand the multitude of conformations available for a
polymer chain, consider an example of a polyethylene molecule. The dist-
ance between carbon atoms in the molecule is almost constant /=1. 54A.
The fluctuations in the bond length (typically +0.05 A} do not affect chain
conformations. The angle between neighbouring bonds, called the tetra-
hedral angle #=68° 15 also almost constant.

The main source of polymer flexibility is the variation of torsion angles
[see Fig. 2.1(a)]. In order to describe these variations, consider a plane
defined by three neighbouring carbon atoms C; _,, C;_, and C,. The bond
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Fig. 2.1
(a) Torsion angle ; for a sequence of

three main-chain bonds. (b) Trans state.

(¢) Gauche-plus state. (d) Torsion angle
dependence of encrgy.
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All-rrans (zig-zag) conformation of a
short polymer with # = 10 main-chain
bonds.
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vector 7; between atoms C;_; and C; defines the axis of rotation for the
bond vector 7y between atoms C; and C;; at constant bond angle 4,
The zero value of the torsion angle ; corresponds to the bond vector Fiy
being colinear to the bond vector 7;-; and is called the frans state () of the
torsion angle ; [Fig. 2.1(b}].

The trans state of the torsion angle ; is the lowest energy conformation
of the four consecutive CH, groups. The changes of the torsion angle g;
lead to the energy variations shown in Fig. 2.1{d). These energy variations
are due to changes in distances and therefore interactions between carbon
atoms and hydrogen atoms of this sequence of four CH, groups. The two
secondary minima corresponding to torsion angles ¢, = £120° are called
gauche-plus (g+) [Fig. 2.1(c)] and gouche-minus (g —). The energy differ-
ence between gauche and trans minima Ae determines the relative prob-
ability of a torsion angle being in a gauche state in thermalequilibrium, In
general, this probability is also influenced by the values of torsion angles of
neighbouring monomers, These correlations are included in the rotational
isomeric state model (Section 2.3.4). The value of Ac for polyethylene at
room temperature is Ae 0.8k T. The energy barrier AE between trans and
gauche states determines the dynamics of conformational rearrangements.

Any section of the chain with consecutive frans states of torsion angles is
in a rod-like zig-zag conformation (see Fig. 2.2). If all torsion angles of the
whole chain are in the trans state (Fig. 2.2), the chain has the largest pos-
sible value of its end-to-end distance Ry, Thislargest end-to-end distance
is determined by the product of the number of skeleton bonds » and their
projected length Zcos(9/2) along the contour, and is referred to as the
contour length of the chain:

g
Roax = rl cos 5 (2.1)

Gauche states of torsion angles lead to flexibility in the chain conformation
since each gauche state alters the conformation from the all-trans zig-zag of
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Fig. 2.2. In general, there will be a variable number of consecutive torsion
angles in the rrans state. Each of these all-trans rod-like sections will be
broken up by a gauche. The chain is rod-like on scales smaller than these
all-frans sections, but is flexible on larger length scales. Typically, all-trans
sections comprise fewer than ten main-chain bonds and most synthetic
polymers are quite flexible.

A qualitatively different mechanism of flexibility of many polymers,
such as double-helix DNA is uniform flexibility over the whole polymer
length. These chains are well described by the worm-like chain model (see
Section 2.3.2).

2.2 Conformations of an ideal chain

Consider a flexible polymer of # + 1 backbone atoms A, (with 0 <i < n) as
sketched in Fig. 2.3. The bond vector F; goes from atom A, ) to atom A;
The backbone atoms A, may all be identical (such as polyethylene) or may
be of two or more atoms [Si and O for poly(dimethyl siloxane)]. The
polymer is in its ideal state if there are no net interactions between atoms A;
and A; that are separated by a sufficient number of bonds along the chain
so that i —j] = 1.
The end-ta-end vector is the sum of all n bond vectors in the chain:
R.=Y 7. (2.2)
=1
Different individual chains will have different bond vectors and hence
different end-to-end vectors. The distribution of end-to-end vectors shall
be discussed in Section 2.5. It is useful to talk about average properties of

this distribution. The average end-to-end vector of an isotropic collection
of chains of » backbone atoms is zero:

—

(R,)) = 0. (2.3)

The ensemble average {) denotes an average over all possible states of
the system (accessed either by considering many chains or many
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Fig. 2.3
One conformation of a flexible polymer.
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different conformations of the same chain). In this particular case the
ensemble average corresponds to averaging over an ensemble of chains
of » bonds with all possible bond orientations. Since there is no pre-
ferred direction in this ensemble, the average end-to-end vector is zero
[Eq. (2.3)]. The simplest non-zero average is the mean-square end-to-end

distance:
<R2> = ( *3) - (ﬁn : ﬁn) = <(zn:ﬁ) . (iﬁ‘)>
i=1 =1
= <ﬁ.f}.>_ (2.4)

If all bond vectors have the same length /= ||, the scalar product
can be represented in terms of the angle 8; between bond vectors 7} and 7
as shown in Fig. 2.3

7 v; = I cos . (2.5)

The mean-square end-to-end distance becomes a double sum of average
cosines:

(R = ii(ﬁ- Fy=2 Z i(cos B;). (2.6)

i=1 j=1 i=l j=1

One of the simplest models of an ideal polymer is the freely jointed
chain model with a constant bond length /= |#j| and no correlations
between the directions of different bond vectors, {cos#;) =0 for i#].
There are only # non-zero terms in the double sum (cos #;= 1 for i=/). The
mean-square end-to-end distance of a freely jointed chain is then quite
simple: *

(R*y =nl". (2.7)

In a typical polymer chain, there are correlations between bond vectors
{especially between neighbouring ones) and {(cos f;) #0. But in an ideal
chain there is no interaction between monomers separated by a great
distance along the chain contour. This implies that there are ne correla-
tions between the directions of distant bond vectors.

lim {cosfy) =0 (2.8)

lé--fl—o0

It can be shown (see Section 2.3.1) that for any bond vector i, the sum over
all other bond vectors j converges to a finite number, denoted by Cj:

Ci = i(cosé);j). (2.9)
=1
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Therefore, Eq. (2.6) reduces to

non LU
(R =YY (costy) =) Ci= Cunl’, (2.10)
=1

=1 j=1

where the coefficient C,, called Flory's characteristic ratio, is the average
value of the constant C; over all main-chain bonds of the polymer:

1<
c,,=g;c,.. (2.11)

The main property of ideal chains is that {R?) is proportional to the pro-
duct of the number of bonds » and the square of the bond length P
[Eqg. (2.10)].

An infinite chain has a C’ value for all i given by C.. A real chain has a
cutoff in the sum [Eq. (2.9)] at finite j that results in a smaller C}. This effect
is more pronounced near chain ends.

The characteristic ratio is larger than unity (C, > 1) for all polymers. The
physical origins*of these local correlations between bond vectors are
restricted bond angles and steric hindrance. All models of ideal polymers
ignore steric hindrance between monomers separated by many bonds and
result in characteristic ratios saturating at a finite value C,, for large
numbers of main-chain bonds (n— oo} (see Fig. 2.4}, Thus, the mean-
square end-to-end distance [Eq. (2.10)] can be approximated for long
chains:

(R*) = Coonl. (2.12)

The numerical value of Flory’s characteristic ratio depends on the local
stiffness of the polymer chain with typical numbers of 7-9 for many flexible
polymers. The values of the characteristic ratios of some common poly-
mers are listed in Table 2.1. There is a tendency for polymers with bulkier
side groups to have higher C., owing to the side groups sterically
hindering bond rotation (as in polystyrene), but there are many exceptions
to this general tendency (such as polyethylene).

Flexible polymers have many universal properties that are independent
of local chemical structure. A simple unified description of all ideal
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Flory’s characteristic ratio C,, saturates

at C,, for long chains.

Table 2.1 Characteristic ratios, Kuhn lengths, and molar masses of Kuhn monomers for common polymers

Polymer Structure Cx b (A) p{gem ™Y My (gmol ")
1.4-Polyisoprene (PI) —(CH,CH=CHCH{CH3))- 46 8.2 0.830 113
1,4-Polybutadienc (PB) —(CH,CH=CHCH3)- 53 9.6 0.826 105
Polypropylene (PF) —~(CH>CH»(CH3))- 59 11 0.791 180
Poly{ethylene oxide) (PEO) ~(CH,CH,0)- 6.7 11 1.064 137
Poly(dimethyl siloxane) (PDMS) —~OSi(CH3)2)- 6.8 13 0.895 381
Polyethylene (PE) —(CH,CHy)- 7.4 14 0.784 150
Poly(methyl methacrylate} (PMMA) —(CHC(CH;)(COOCH ) $.0 17 1.13 653
Atactic polystyrene (PS) —(CH;CHC¢Hs)- 9.5 18 0.969 720
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polymers is provided by an equivalent freely jointed chain. The equivalent
chain has the same mean-square end-to-end distance (R?} and the same
maximum end-to-end distance R, ,, as the actual polymer, but has N freely-
jointed effective bonds of length 4. This effective bond length 4 is called the
Kvhn length. The contour length of this equivalent freely jointed chain is

Nb = Ruax, (2.13)

and its mean-square end-to-end distance is
{RY = Nb* = bRpyax = Coonl. (2.14)
Therefore, the equivalent freely jointed chain has

_ R
N=m (2.15)

equivalent bonds (Kuhn monomers) of length

(R Cynl?
hax hax

Example: Calculate the Kuhn length 6 of a polyethylene chain with
C., = 7.4, main-chain bond length /=1.54 A, and bond angle §— 68°.

Substituting the maximum end-to-end distance from Eq. (2.1) into
Eq. (2.16) determines the Kuhn length:

2
_ Cooln _ Cool . (2.17)
nicos(8/2)  cos{6/2)
For polyethylene b2 1.54 A x 7.4/0.83 ~ 14 A.

The values of the Kuhn length # and corresponding molar mass of a
Kuhn monomer M, for various polymers are listed in Table 2.1.
Throughout this book, we will use the equivalent freely jointed chain to
describe all flexible polymers and will call A the ‘degree of polymerization’
or number of *‘monomers’ (short for Kuhn monomers) and call b the
monomer length (instead of the Kuhn monomer length) and

Ry = +/(R?) = bN'/2, (2.18)

the root-mean-square end-to-end distance (the subscript 0 refers to the
ideal state). This is not to be confused with the chemical definitions of
the degree of polymerization and of monomer size. By renormalizing the
monomer, Eq. (2.18) holds for a/f flexible linear polymers in the ideal state
with & » 1, with all chemical-specific characteristics contained within that
monomer size (Kuhn length).

2.3 Ideal chain models

Below we describe several models of ideal chains. Each model makes dif-
ferent assumptions about the allowed values of torsion and bond angles.
However, every model ignores interactions between monomers separated
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by large distance along the chain and is therefore a model of an ideal
polymer. The chemical structure of polymers determines the populations
of torsion and bond angles. Some polymers (like 1,4-polyisoprene} are very
flexible chains while others (like double-stranded DNA) are locally very
rigid, becoming random walks only on quite large length scales.

2.3.1 Freely rotating chain model

As the name suggests, this model ignores differences between the prob-
abilities of different torsion angles and assumes all torsion angles
— 7 < ;<7 to be equally probable. Thus, the freely rotating chain model
ignores the variations of the potential U(iz;). This model assumes all bond
lengths and bond angles are fixed (constant) and all torsion angles are
equally likely and independent of each other.

To calculate the mean-square end-to-end distance [Eq. (2.4)]

(RY) = (Ry - Ry = D _(7i-7), (219)

the correlation between bond vectors 7; and r; must be determined. This
correlation is passed along through the chain of bonds connecting bonds 7;
and 7;. For the freely rotating chain, the component of r; normal to vector
Fi_| averages out to zero due to free rotations of the torsion angle ; (see
Fig. 2.5). The only correlation between the bond vectors that is transmitted
down the chain is the component of vector 7; along the bond vector 7.
The value of this component is /cos 8. Bond vector 7;_; passes this corre-
lation down to vector 7;_», but again only the component along 7 sur-
vives due to free rotations of torsion angle ¢;_; . The leftover memory of the
vector 7; at this stage is K(cos )%, The correlations from bond vector 7 at
bond vector 7; are reduced by the factor {cos 8)/ ™ due to independent free
rotations of |f — i torsion angles between these two vectors. Therefore, the
correlation between bond vectors 7; and 7; is

(7 7)) = Plcosg)V . (2.20)

-

F:+1 g \
]

° 7 cos 1
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Fig. 2.5
All torison angles are equally likely in a
freely rotating chain.
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The mean-square end-to-end distance of the freely rotating chain can now
be written in terms of cosines:

ZZ Z(§<ﬂ-a>+<ﬂ2>+i<rz-ﬁ>)

=1 j=1 =l \ j=1 J=il

_ Z (FHY + IZZ (Z(cos 67 + Xn: (cos Q}H)

i=l \ j=1 =i+l

= m’2+122(z cOs 9+Zcosk9) (2.21)

Note that (cos §) =4 decays rapidly as the number of bonds between bond
vectors 7; and 7; is increased.

{cos 9)“‘_"‘ = expl|j — /| In(cos §)] = exp [ U;l] . (2.22)

P

The final relation defines s, as the number of main-chain bonds in a per-
sistence segment, which is the scale at which local correlations between
bond vectors decay:

1
=—-— 2.2
% In{cos f) (223)

Since the decay is so rapid, the summation in Eq. (2.21) can be replaced by
an infinite series over &

n i—1 —f
Z(Zcosk9+icosk8) ~2ZZCOS g = 2anos g
i=1 \k=1 k=1 i=1 k=

cose .

=on———— . 2.24
"T—cosb ( )
The mean-square end-to-end distance of the freely rotating chain is a
simple function of the number of bonds in the chain backbone n, the length
of each backbone bond / and the bond angle #:

cosd _n21+0059
1-—cos6  1—cosé’

(R* = nl* + 2nl* (2.25)

Polymers with carbon single bonds making up their backbone have a bond
angle of 6 = 68°.

1 +cosé

Coc 1 _cosd

=2 and s, =1. {2.26)

Polymer chains are never as flexible as the freely rotating chain
model predicts, since the most flexible polymers with 8 = 63° have C,. >4
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(see Table 2.1). This is because there is steric hindrance to bond rotation
in all polymers.

2.3.2 Worm-like chain model

The worm-like chain model (sometimes called the Kratky—Porod model) is
a special case of the freely rotating chain model for very small values of the
bond angle. This is a good model for very stiff polymers, such as double-
stranded DNA for which the flexibility is due to fluctuations of the contour
of the chain from a straight line rather than to trans-gauche bond rota-
tions. For small values of the bond angle (4 < 1), the cos #in Eq. (2.23) can
be expanded about its value of unity at §=0:

2

cosf=~1-— % (2.27)

For small x, In{l — x)= —x.

2

8
In{cos§) = — > {2.28)

Since # is small, the persistence segment of the chain [Eq. (2.23)] contains a
large number of main-chain bonds.

1 2

The persistence length is the length of this persistence segment:

2
Ih=sl= l@' (2.30)

The Flory characteristic ratio of the worm-like chain is very large:
1+cosé 2 (6/2)
I—cosé  (/2)

4
Cyx= ok (2.31)
The corresponding Kuhn length [see Eq. (2.16)] is twice the persistence
length:
Cx 4

For example, the persistence length of a double-helical DNA /, = 50nm
and the Kuhn length is & = 100 nm.

The combination of parameters //8° enters in the expressions of the
persistence length /, and the Kuhn length 5. The worm-like chain is defined

as the imit/ — 0 and # — 0 at constant persistence length /, (constant 1107
and constant chain contour length R, = nfcos(8/2) = nl.
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The mean-square end-to-end distance of the worm-like chain can be
evaluated using the exponential decay of correlations between tangent
vectors along the chain [Eq. (2.22)]:

(R%) —IZZZ cos ) = P ZZ (cos g)~

=1 j=1 =l j=1

= PZZexp( ) (2.33)

i=l j=1

The summation over bonds can be changed into integration over the
contour of the worm-like chain:

Rma

IZ f du and 12 / (2.34)

Rmax Rmax
w - | [ / exp
0 0

R
= 2 Runay — 215 (1 —exp (— ;“)) (2.35)

There are two simple limits of this expression. The ideal chain limit is for
worm-like chains much longer than their persistence length.

<R2> = leanax =bRmax for Ry > lp- (2.36)

The rod-like limit is for worm-like chains much shorter than their persist-
ence length. The exponential in Eq. (2.35) can be expanded in this limit:

R a Rmax 1 Rmx 2
eXp( ;”‘)g] / +2( la) 4o for Rpaex < 1,y (2.37)
P p p
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(R?) = R

max

for Roax < Iy. (2.38)

The mean-square end-to-end distance of the worm-like chain [Eq. (2.35)]is
a smooth crossover between these two simple limits.

The important difference between freely jointed chains and worm-like
chains is that each bond of Kuhn length 4 of the freely jointed chain is
assumed to be completely rigid. Worm-like chains are also stiff on length
scales shorter than the Kuhn length, but are not completely rigid and can
fluctuate and bend. These bending modes lead to a qualitatively different
dependence of extensional force on elongation near maximum extension,
as will be discussed in Section 2.6.2.

2.3.3 Hindered rotation model

The hindered rotation mode! also assumes bond lengths and bond angles
are constant and torsion angles are independent of each other, As its name
suggests, the torsion angle rotation js taken to be hindered by a potential
U(p;) [see Fig. 2.1(d)]. The probability of any value of the torsion angle ¢ is
taken to be propdrtional to the Boltzmann factor exp { — U{w)/kT]. Most of
the torsion angles are in low energy states [near the minima in Fig. 2.1(d)]
but for ordinary temperatures there are some torsion angles corresponding
to high energy states as well. The Boltzmann factor ensures that states with
higher energy are progressively less likely to be populated.

The hindered rotation model assumes independent but hindered rota-
tions of torsion angles at constant bond lengths and bond angles with
different potential profiles U(i;) corresponding to different polymers, The
hindered rotation model predicts the mean-square end-to-end distance

{R?) = Cooln, (2.39)
with the characteristic ratio (see problem 2.9)
1 +cos@ {1+ {cosy}
Coo = . 4
(} —0059) (1 — {cos @) (240)

where {cos ) is the average value of the cosine of the torsion angle with
probabilities determined by Boltzmann factors, exp[—U(w)/kT]:

_ Jy cospexp(-Ulp)/kT)dp
" exp(=U(9)/kT)dg

2.3.4 Rotational isomeric state model

{cos ) (2.41)

This is the most successful ideal chain model used to calculate the details of
conformations of different polymers. In this model, bond lengths 7 and
bond angles & are fixed (constant).

For a relatively high barrier between trans and gauche states AE > kT
the values of the torsion angles ¢; are close to the minima (¢, g, g_) [see
Fig. 2.1(d)]. In the rotational isomeric state model each molecule is assumed
to exist only in discrete torsional states corresponding to the potential
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energy minima. The fluctuations about these minima are ignored. A con-
formation of a chain with » main-chain bonds is thus represented by a
sequence of » — 2 torsion angles:

cetg_trgotgotig_t---, (2.42)
Each of these n — 2 torsion angles can be in one of three states (£, 2, , 2_)
and therefore the whole chain has 3" ~? rotational isomeric states. For

example, n-pentane, with # =4 main-chain bonds and # — 2 =2 torsion
angles, has 32 =9 rotational isomeric states:!

1, 1g., 1§, 84+l, 8-, 848+, 8+8-, 8-84» -8 {2.43)

In the rotational isomeric state model, these states are nor equally
probable. Correlations between neighbouring torsional states are included
in the model. For example, a consecutive sequence of g, and g _ has high
energy due to overlap between atoms and therefore is taken to have very
low probability in the rotational isomeric state model. The relative prob-
abilities of the states of neighboring torsional angles are used to calculate
the mean-square end-to-end distance and C, [Eq. (2.12)].

Table 2.2 summarizes the assumptions of the ideal chain models. The
worm-like chain model is a special case of the freely rotating chain with a
small value of the bond angle 8. Moving from left to right in Table 2.2, the
models become progressively more specific (and more realistic). As more
constraints are adopted, the chain becomes stiffer, reflected in larger C,..

Table 2.2 Assumptions and predictions of ideal chain models: FIC, freely jointed chajn;
FRC, freely rotating chain; HR, hindered rotation; RIS, rotational isomeric state

Models FiC FRC HR RIS
Bond length 7 Fixed Fixed Fixed Fixed
Bond angle ¢ Free Fixed Fixed Fixed
Torsion angle Free Free Centrolled by U(p) tLg+.,g—
Next ¢ independent? Yes ?(es 0 Y]es N (cos‘ 5 No

+cos + cos ;
Coo 1 —Cosf ( — COS ) (l ~ {cos (p}) Specific

2.4 Radius of gyration

The size of linear chains can be characterized by their mean-square end-to-
end distance. However, for branched or ring polymers this quantity is not
well defined, because they either have too many ends or no ends at all. Since
all objects possess a radius of gyration, it can characterize the size of poly-
mers of any architecture. Consider, for example, the branched polymer
sketched in Fig. 2.6. The square radius of gyration is defined as the average
square distance between monomers in a given conformation (position
vector R;) and the polymer’s centre of mass (position vector Rep):

| &

LS (R = Ren)? (244

2
RgN

f

=1

! Six of the nine rotational isomers are distinguishable.
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The position vector of the centre of mass of the polymer is the number-
average of all monomer position vectors

m= NZR (2.45)

Substituting the definition of the position vector of the centre of mass
[Eq. (2.45)] into Eq. (2.44) gives an expression for the square radius of
gyration as a double sum of squares over all inter-monomer distances:

1 & - .
Rl= ;\‘rZ(ﬁ? — 2R R+ R)

i

| J=1

11 & 1. (1)

= R.—-—E —2R;— z —E ; . 2.4
N — JNJ,_ 1 N RJ+ (N RI) ( 6)
m

The last term in the sum can be rewritten as

PSR PEAAG LA WA .
Sv5A) - (358) - (GEA) G2

=1

—

L

Therefore, the expressicm for the square radius of gyration takes the form
sz;z —2RR + RR) = NZZZR - RR).
1= j— 1= =

2 In general, the mass of the monomers M, should be included in the definitions of the
radius of gyration and of the centre of mass. Forcxamplc the proper centre of mass definition s

ZMR
=

>,
=

We assume that all the monomers have the same mass M;= M, for all /.

Ao =
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Fig. 2.6

One conformation of a randomly
branched polymer and its centre of mass,
denoted by cm.
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This expression does not depend on the choice of summation indices and
¢an be rewritten in a symmetric form:

=l j=1 =1l i=1
] NN , .
LR ok R
i=l j=1
1 N N . L
:WZZ(R,»— 2, (247)

Each pair of monomers enters twice in the double sum of Eq. (2.47).
Alternatively, this expression for the square radius of gyration can be
written with each pair of monomers entering only once in the double sum:

1 N

Rl = s S (Ri- R (2.48)

=1 je=i

~
L

For polymers and other fluctuating objects, the square radius of gyration is
usually averaged over the ensemble of allowed conformations giving the
mean-square radius of gyration;

—

271N u 27_1_NN 5 @2
(Rg) = NZ((Rr Rem)") = NZZZ«R‘ R)%). (2.49)

i
ey
1

-

For non-fluctuating (solid} objects such averaging is unnecessary. The
expression with the centre of mass is useful only if the position of the centre
of mass Ry of the object is known or is easy to evaluate. Otherwise the
expression for the radius of gyration in terms of the average square dis-
tances between all pairs of monomers 1s used.

2.4 Radius of gyration of an ideal linear chain

To illustrate the use of Eq. (2.48), we now calculate the mean-square radius
of gyration for an ideal linear chain. For the linear chain, the summations
over the monomers can be changed into integrations over the contour of
the chain, by replacing monomer indices 7 and j with continuous coordin-
ates ¥ and v along the contour of the chain;

N N N N
Z—’/ du and ZH/ dv. (2.50)
i=1 0 =i u
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This transformation results in the integral form for the mean-square
radius of gyration

(R sz/ ((R(u) — R(v))*ydvdu, (2.51)

where ﬁ(u) is the position vector corresponding to the contour coordinate
u. The mean-square distance between points # and v along the contour of
the chain can be obtained by treating each section of v — » monomers as a
shorter ideal chain. The outer sections of # and of N — v monomers do not
affect the conformations of this inner section. The mean-square end-to-end
distance for an ideal chain of v — ¥ monomers is given by Eq. (2.18):

(R(u) — Rv)"y = (v — u)b”. (2.52)

The mean-square radius of gyration is then calculated by a simple
integration using the change of variables v/ =v -uand u'=N —

N—u
R; //v—udvduj\p// v dv' du

2 2 2 AP 2

u) b ¥ N° Nb

_—d ! e = (2.
NZ 5 = 27, (u ) du (2.53)
Comparing this result with Eq. (2.18), we obtain the classic Debye result
relating the mean-square radius of gyration and the mean-square end-to-
end distance of an ideal linear chain:
BN (RY
2

=—=—" 2.54
The radius of gyration of other shapes of flexible ideal chains can be cal-
culated in a similar way and examples of the results are given in Table 2.3.

Toble 2.3 Mean-square radii of gyration of ideal polymers with ¥ Kuhn monomers of
length &: linear chain, ring, f-arm star with each arm containing Njf Kubn monomers, and
H-polymer with ail linear sections containing #/5 Kuhn monomers

Ideal chains Linear Ring f-arm star H-polymer

(R Nb 6 Nb(12 [(N1IBHE] (3—24) (NB16) 89/625

2.4.2 Radius of gyration of a rod polymer

Consider a rod polymer of N monomers of length b, with end-to-end
distance 1. — Nb. It is convenient to calculate the radius of gyration of a rod
polymer using the original definition, Eq. (2.44), written in integral form:

R = %,/ON {(R‘(u) - ﬁcm)z] du, (2.55)
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A rigid rod polymer has only one conformation with the distance between
coordinate u along the chain and its centre of mass (coordinate N/2):
N|

- —

2

—

|R(u) — Row| = b, (2.56)

Therefore, no averaging is needed for calculation of the radius of gyration
of arod. The square radius of gyration of the rod polymer is calculated by a
simple integration

2
bz N( N) bz Nf2 5 _ N2b2

Wo u—j duy = — xdx

R = R
8 NJ np 12

(2.57)

where the change of variables x =u — N/2 has been used. Note that the
relation between the end-to-end distance and the radius of gyration for a
rod polymer is different from that for an ideal linear chain [Eq. (2.54)]:

N2b2 LZ
2_tY =
Ry = 12 12°

Examples of the radii of gyration of other rigid objects are listed in
Tabie 2.4.

(2.58)

Table 2.4 Square radii of gyration of rigid objects: uniform thin disc of radivs R, uniform
sphere of radius R, thin rod of lengtt: L, and uniform right cylinder of radius R and length L

Rigid objects Disk Sphere Rod Cylinder

R R*2 AR5 L412 (R¥2) +{L*12)

2.4.3 Radius of gyration of an ideal branched polymer
(Kramers theorem)

Consider an ideal molecule that contains an arbitrary nurhber of branches,
but no loops. This molecule consists of N freely jointed segments (Kuhn
monomers) of length 5. The mean-square radius of gyration of this
molecule is calculated using Eq. (2.48):

(B =5 3D (R - B, 2.59

The vector R'J — R, between monomers i and j can be represented by the
sum over the bond vectors 7 of a linear strand connecting these two
MONOMmers:

Z
R-FR=)> n. (2.60)

k=it
Since we have assumed freely jointed chain statistics with no correlations
between different segments,

(P =0 ifk £k, (2.61)
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the mean-square distance between monomers i and j can be rewritten:

i J J
(R— Ry =3 3 @y = (7. (2.62)

k=it k'=i+1 k=i+1

Each segment of a linear strand connecting monomers i and j contributes
(Fk)zz 2 to the double sum in Eq. (2.59). There is only one such strand
connecting cach pair of monomers because the molecule is assumed to have
no loops. Therefore, the contribution of each segment of the molecule to
the double sum in Eq. (2.59) is equal to b? times the number of strands
between different monomers i and j that pass through this segment. Con-
sider, for example, segment & in Fig. 2.7. It divides the molecule into two
tree-like parts. The lower part contains N| monomers and the upper part
contains N — N; monomers. Monomer i could be any one of N— N,
monomers of the upper part, while monomer j could be any one of Ny
monomers of the lower part of the molecule. Therefore, there are
N1(N — Ny) different strands between all pairs of monomers i and j passing
through segment %. Thus, the segment k contributes N, (KIN-N l(k)]b2 to
the double sum in Eq. (2.59).

The radius of gyration can be expressed as the sum over all ¥ molecular
bonds, of the product of the number of monomers of the two branches
N (k) and N — N,{k) that each bond & divides the molecule into:

5 bZ N
(Ry) = ‘"NQ“ZM (k)N — Ny (k)] (2.63)
k=1

The average value of this product is:

N
NN = ND) = 3 MBIV = Mk, (2.64)
k=1

The Kramers theorem is expressed in terms of this average over all possible
ways of dividing the molecule into two parts:

bZ
(RY) = 7 M- N1} {2.65)
This expression is valid for a linear polymer with the average evaluated

by integration.

1 N
(N (N = N))) =Krf0 N (N — N)) AN

N 1 N 5
= | NdN, - N
/0 1 AN, NA AN

N2 N AP
-5 3= (2.66)
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Fig. 2.7

The Kramers theorem effectively cuts
a randomly branched polymer with
N monomers into two parts, with &y
and N — Ny menomers.
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Fig. 2.8

A two-dimensional random walk on a
square lattice. The direction of each step
is randomly chosen from four possible
diagonals.

e N\

Fig.2.9

A one-dimensional random walk of a
drunk in an alley, showing all possible
trajectories up to N =4 steps.

Table 2.5 The number of trajectories
W(N,x) for one-dimensional random
walks of & steps that start at the origin
and end at position x

N=1 N=2 N=3 N=4

x=-—4 0 0 0 1
x=-3 0 0 1 0
x=-2 0 1 0 4
x=-1 1 0 3 0
x=0 0 2 0 6
x=1 1 0 3 0
x=2 0 1 1] 4
x=3 0 0 1 0
x=4 0 1] 0 1

Ideal chains

Substituting this average [Eq. (2.66)] into the Kramers theorem [Eq. (2.65)]
recovers the classical result for the radius of gyration of an ideal linear
chain [Eq. (2.54)}. In Section 6.4.6, we apply the Kramers theorem
[Eq. (2.65)] to ideal randomly branched polymers. In this case the average
is not only over different ways of dividing a molecule into two parts, but
also over different branched molecules with the same degree of poly-
merization N.

2.5 Distribution of end-to-end vectors

A polydisperse collection of polymers can be described by an average
moiar mass {such as the number-average or weight-average discussed in
Chapter 1). Much more information is contained in the whole molar mass
distribution than in any of its moments or averages. Similarly, the average
polymer conformation can be described by the mean-square end-to-end
distance (or mean-square radius of gyration). Much more information is
contained in the distribution of end-to-end vectors than in the mean-square
end-to-end vector. In this section, we derive the distribution of end-to-end
vectors for an ideal chain.

Every possible conformation of an ideal chain can be mapped onto a
random walk. A particle making random steps defines a random walk. If the
length of each step is constant and the direction of each step is independent
of all previous steps, the trajectory of this random walk is one conforma-
tion of a freely jointed chain. Henee, random walk statistics and ideal chain
statistics are similar.

Consider a particular random walk on a lattice with each step having
independent Cartesian coordinates of either +1 or —1. The projection of
this three-dimensional random walk onto each of the Cartesian coordinate
axes is an independent one-dimensional random walk of unit step length
(see Fig. 2.8 for an example of a two-dimensional projection). The fact that
the one-dimensional components are independent of egch other is an
important property of any random walk (as well asany ideal polymer chain).

An example of a one-dimensional random walk is a drunk in a dark
narrow alley. Let the drunk start at the doors of the pub at the origin of the
one-dimensional coordinate system and make unit steps randomly up and
down the ailey. Figure 2.9 represents random wandering of the drunk up
and down the alley as a function of the number of steps taken. Let (N, x)
be the number of different possible trajectories for a drunk to get from the
pub to the position x in N steps. For example, after the first step he could
have reached either position x=+1 or x=-1, making W1, 1)=
(1, —1)=1. The numbers of different trajectories W{N, x} for the first
four steps of the drunk are shown in Table 2.5.

A general expression for W(N, x) can be obtained in the following way.
Any trajectory of our drunk consists of N, steps up the alley and N_ steps
down the alley. The total number of steps made by the drunkis N=N, +
N_ and his final position is x =N, — N_. The numbers of steps up N, and
down N_ the alley uniquely specify both the total number of steps & and
the final position x. Therefore, the total namber of trajectories W(N, x) is
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equal to the number of combinations of ¥, steps up and N _ steps down,
that reach x in a total of N steps, which is a binomial coefficient:
(N, + N_)! M

WN.X) =7 N

(2.67)

The factorial is defined as N1=1-2-3-4-.- N.

The total number of N-step walks is 2" because on each step the drunk
has two possibilities, which are independent from step to step. All of these
2% walks are equally likely (if there is no wind or stairway in the alley) and
therefore, the probability to find the drunk at position x after N steps is
W (N, x} divided by 2™:

W(N,x) 1 NI
2% 2NN+ x)/2](N - x)/2Y

(2.68)

This is an exact probability distribution for a one-dimensional random
walk. However, it is not convenient to use for large N because of the dif-
ficulty of calculating factorials for large N (try your calculator for
N =100). For an¥ N, the probability of finding the drunk is highest at the
pub (at x =0 foreven N and at x = = for odd N'}. This probability falls off
very fast for large x| and it is therefore convenient to use the Gaussian
approximation of the distribution function, valid for x < N, derived next.

First, take the natural logarithm of the distribution function:

1n(W(N’x)) — _Nln2+ (M) wln(N;x)! “In (Nzx)z. (2.69)

2N

Each of the last two terms can be rewritten using the definition of the
factorial function:

(3 m(G)Ge) (G2) - (3]

/2
N N
ES ! _
1n(2).+£§1 ln(2 +s), (2.70)
x/2

ln(N;x)!:ln(%F)!;ln(g-ﬁ-lés). (2.71)

The logarithm of the probability distribution ¢can now be rewritten as

W(N, X\ LAY SN
ln( N )_*N1n2+1n(N.) ln(E).;:]ln 5+
x/2
N N
—mnf{=M EF = -

ln(z).+xlln(2+1 s)

= —Nln 2+ In(N) —Zln(%r)!—i%ln((—;r/]\%%)

s=1
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The logarithm in the last term can be expanded for s < N/2 up to a linear
term (In (1 +y)=y for |y < 1). This expansion is the essence of the
Gaussian approximation.

(i 11 2s) = (e am)
_ln(l +2—;) —ln(l —%-&-;)

~d 2 (2.72)

The logarithm of the probability distribution can be simplified using this
approximation.

W(N, x) L
ln( Sx )——Nln2+ln 2ln(N)‘—Z(——~—~)
x/2 xf2
> Nln2+ In(N) — 21n(N)’——Zs+ Zl

{x/2)( x/2+l)+£

~ N \ r__
n2+ In(N!) —21n N) 3 ~

x2

T (2.73)

N1n2+1n(N‘)—21n( )

This gives the Gaussian approximation of the probability distribution:

WiN.x) 1 N X
ST i ) 279
Using Stirling’s approximation of A! for large N
MY ‘
NI e ‘/2”N(E) , (2.75)

the coefficient in front of the exponential can be rewritten:

1 NI 1 V2rNNY exp(-
IVIN/DNN/2N T 2N (\/_ (N/2)"7% exp( N/2 \/T\f (2.76)

IIZ

The final expression for the Gaussian approximation of the probability
distribution is quite simple:

W(N,x) _ |2 e

Recall from Table 2.5 that W{(¥, x)is non-zero only either for even or odd x
{depending on whether ¥ is even or odd). Therefore, the spacing between
non-zero values of W{(¥, x) is equal to 2 along the x axis. The probability
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distribution function P14(N, x) is defined as the probability P(¥, x}dx that
the drunk will be found in the interval dx along the x axis. Thus, the
probability distribution function differs from Eq. (2.77) by a factor of 2:

PN, x) = (2.78)

o xz)
VarN P\ 2Ny
The square of the typical distance of the drunk from the pub after N steps is
determined from the mean-square displacement averaged over all the
walks the drunk makes day after day:

(— %) dx=N. (2.79)

Therefore, the probability distribution function can be rewritten in terms
of this mean-square displacement:

= 2_?1{36_56){13(%;))-

This function has a maximum at x = 0 and decays fast for distances larger
than the root-mean-square displacement x > /{x?} as can be seen from
Fig. 2.10.

This probability distribution function for the displacement of a one-
dimensional random walk can be easily generalized to three-dimensional
random walks. The probability of a walk, starting at the origin of the
coordinate system, to end after N steps, each of size b, within a volume
dR,dR,dR. of the point with displacement vector R is Py(N, R)
dR, dR dR, (see Fig. 2.11). Since the three components of a three-
dlmensmnal random walk along the three Cartesian coordinates are
independent of each other, the three-dimensional probability distribution
function is a product of the three one-dimensional distribution functions:

(x*) = /OC X PN, x)dx =

Pia(N, x) (2.80)

Pi(N, R)dR AR, dR, = P1a(N, R,)dRP1a(N, R,) dR,P1a(N, R:) dR..
(2.81)

The mean-square displacement of a random walk from the origin is
equa) to the mean-square end-to-end vector of a freely jointed chain with
the number of monomers N equal to the number of steps of the walk and
the monomer length b equal to the step size {R?) = Nb?. This mean-square
displacement is composed of three mean-square displacements of the three
independent one-dimensional walks:

(R = (RS) +1

Since each of the three Cartesian axes are equivalent, the mean-square
displacement along each of them must be one-third of the total:

R%) 4 (RZ) = Nb*. (2.82)

Ni?
(B) =5

: (2.83)

(Rey = (R}) =
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Fig. 2.10

Normalized one-dimensional Gaussian
probability distribution function for
occupying position x after random ¥
steps from the origin (x =0).

o
£

Fig. 2.1

One conformation of an ideal chain
with one end at the origin and the other
end within volume dR, dR, dR; of
position R,



70

—_
T

Pyy(N, R) 4zR*bN"2

o o o o
=
T

05 1 15 2 25
RABNY

(=1

Fig. 2.12

Normalized distribution function of
end-to-end distances for an ideal linear
chain.

Ideal chains

The one-dimensional probability distribution function for the components
of a random walk along each of these three axes can be obtained by sub-
stituting these mean-square displacements into Eq. (2.80)

] R;
Pg(N,Ry) = iRy P (_ ETR”?T)

3 3R
=\ 2rnm e"p(stz)- (284)

The probability distribution function for the end-to-end vector R of an
ideal linear chain of N monomers is the product of the three independent
distribution functions {Eq. (2.81)]:

. 3 \¥? 3R+ R+ R
PN R = 5wz) &Pl ~— 22

3\ 3R?
= (—27rNb2) exp (— 2Nb2)' (2.85)

As a function of each Cartesian component R; of the end-to-end vector R,
this probability distribution function looks the same as sketched in
Fig. 2.10. The average of each component is {R;} = 0. As a function of the
end-to-end distance R = | R| this probability distribution can be rewritten
in the spherical coordinate system:

2

R™\ )
—W)R dR.  (2.86)

32

P3a(N, R)47R*dR = 4x (ﬁ) Bxp(
The probability distribution for the end-to-end distance R is the prob-
ability for the end-to-end vector R to be in the spherical shell with radius
between R and R+dR. This probability of the end-to-end distance
[Eq. (2.86)}1s shown in Fig. 2.12. The Gaussian approximation is valid only
for end-to-end vectors much shorter than the maximum extension of
the chain (for |R| < Ryax = Nb). For \R'| > Nb, Eq. (2.85) predicts finite
{though exponentially small) probability, which is physically unreason-
able. For real chains Psq(N, R) = O0for R > Nb and this strong stretching is
treated properly in Section 2.6.2.

2.6 Free energy of an ideal chain

The entropy Sis the product of the Boltzmann constant & and the logarithm
of the number of states £2;

S=kIng. (2.87)

Denote (N, ]_?‘) as the number of conformations of a freely jointed chain
of N monomers with end-to-end vector R, The entropy is then a function
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of N and R
S(N, R‘) - kan(N, R‘). (2.88)

The probability distribution function is the fractlon of all conformations
that actually have an end-to-end vector R between R and R + dR:

0 (N, E)

Psa(W. R) - W. (2.89)

The entropy of an ideal chain with N monomers and end-to-end vector Ris
thus related to the probability distribution function:

S(N, R) = kln Pgd(N, R‘) +kln [ / Q(N, R')df{‘] : (2.90)

Equation (2.85) for the probability distribution function determines the
entropy:

S(¥.R)= ;k;;bz#-;kl (2w?vb2)+kln[/ﬂ(N,ﬁ)dﬁ}. (2.91)

The last two terms of Eq. (2.91) depend only on the number of monomers
N, but not on the end-to-end vector R and can be denoted by S(N,0):

=

N 3 R
S(N, R) = = Sk + S(N,0), (2.92)

The Helmholiz free energy of the chain F is the energy U minus the
product of absolute temperature T and entropy S:

F(N. R) = u(w, R‘) — TS(¥, ﬁ). (2.93)

The energy of an ideal chain U(N, R) is independent of the end-to- end
vector R, since the monomers of the ideal chain have nointeraction energy.’
The free energy can be written as
N 3 R
F(N.R) =5kT 5 +
where F(N,0)= U(N,0) — TS(N, 0) is the free energy of the chain with both
ends at the same point. As was demonstrated above, the largest number of
chain conformations correspond to zero end-to-end vector. The number of
conformations decreases with increasing end-to-end vector, leading to the
decrease of polymer entropy and increase of its free energy. The free energy
of an ideal chain F(A, R) increases quadratically with the magnitude of the
end-to-end vector R. This implies that the entropic elasticity of an ideal

+ F(N,0), (2.94)

3 The ideal chain never has long-range interactions, but short-range interactions are
possible, and their consequences are discussed in problem 7.19.
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Fig. 213

An elongated chain is oniy stretched on
its largest length scales. Inside the
tension blob, the conformation of the
chain is essentially unperturbed by the
stretch.

Ideal chains

chain satisfies Hooke’s law. To hold the chain at a fixed end-to-end vector
R, would require equal and opposite forces acting on the chain ends that
are proportional to K. For example, to separate the chain ends by distance
R, in x direction, requires force f,:

E)F(N, R) uT

S = R (2.95)

fe=
The force to hold chain ends separated by a general vector Rislinearin R,
like a simple elastic spring:

2 3T 4

The coefficient of proportionality 3k 7/(Nb?} is the entropic spring constant
of an ideal chain. It is easier to stretch polymers with larger numbers of
monoemers N, larger monomer size b, and at Jower temperature T. The fact
that the spring constant is proportional to temperature is a signature of
entropic elasticity. The entropic nature of elasticity in polymers distin-
guishes them from other materials. Metals and ceramics become softer as
temperature is raised because their deformation requires displacing atoms
from their preferred positions (energetic instead of entropic elasticity).

The force increases as the chain is stretched because there are fewer
possible conformations for larger end-to-end distances. The linear entropic
spring result for the stretching of an ideal chain [Eq. (2.96)] is extremely
important for our subsequent discussions of rubber elasticity and polymer
dynamics. This linear dependence [Hooke’s law for an ideal chain,
Eq. (2.96)] is due to the Gaussian approximation, valid only for |R| <
Riax = Nb. If the chain is stretched to the point where its end-to-end vector
approaches the maximum chain extension |R| < Rny., the dependence
becomes strongly non-linear, with the force diverging at \fﬂ = Ropax, as will
be discussed in Section 2.6.2. .

2.6.1 Scaling argument for chain stretching

The linear relation between force and end-to-end distance can also be
obtained by a very simple scaling argument, The key to understanding the
scaling description is to recognize that most of the conformational entropy
of the chain arises from local conformational freedom on the smallest
length scales. For this reason, the random walks that happen to have end-
to-end distance R > hN'/? can be visualized as a sequential array of smaller
sections of size £ that are essentially unperturbed by the stretch, as shown
in Fig. 2.13.

The stretched polymer is subdivided into sections of g monomers each.
We assume that these sections are almost undeformed so that the mean-
square projection of the end-to-end vector of these sections of g monomers
onto any of the coordinate axes obeys ideal chain statistics [Eq. (2.83)]:

& = by (2.97)
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There are Njg such sections and in the direction of elongation they are
assumed to be arranged sequentially:
N _N¥?
Rymf—m——. 298
Pl (2.98)
This can be solved for the size £ of the unperturbed sections and the number
of monomers g in each section:

Nb?
¢ = (2.99)
N2B?
gR . 2.100)
R (

The number of monomers g and the size ¢ of these sections were specially
chosen so that the polymer conformation changes from that of a random
walk on smaller size scales to that of an elongated chain on larger length
scales. Such sections of stretched polymers are called tension blobs. Being
extended on only its largest length scales allows the chain to maximize its
conformational entropy.

The physical meaning of a tension blob is the length scale § at which
external tension changes the chain conformation from almost undeformed
on length scales smaller than ¢ to extended on length scales larger than £.
The trajectory of the stretched chain (Fig. 2.13) shows that each tension
blob is forced to go in a particular direction along the x axis (rather than in
a random direction as in an unperturbed chain). Therefore one degree of
freedom is restricted per tension blob and the free energy of the chain
increases by &7 per blob:*

RZ

X
oL (2.101)

kaTgka

In comparing Eqs (2.94) and (2.101), we see that the scaling method gets
the correct result within a prefactor of order unity. This is the character of
all scaling calculations: they provide a simple means to extract the essential
physics but do not properly determine numerical coefficients.

Equation (2.101) is the first of many instances where the free energy
stored in the chain is of the order of kT per blob, because the blobs gen-
erally describe a length scale at which the conformation of the chain
changes and is the elementary unit of deformation. In the case of stretch-
ing, the free encrgy is F/N per monomer. On len gth scales smaller than the
tension blob, the thermal energy k7 that randomizes the conformation is
larger than the cumulative stretching energy, and the conformation is
essentially unperturbed, On length scales larger than the tension blob, the
cumulative stretching energy is larger than &7, and the ideal chain gets
strongly stretched (see Fig. 2.13). Similar arguments apply to other prob-
Jems involving conformational changes beyond a particular length scale,
making the free encrgy of order kT per blob quite general.

4 This is the consequence of the equipartition theorem,
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The force needed to stretch the chain is given by the derivative of the free
energy:

OF R, kT

R~ (2.102)

fr=

The tension blobs provide a simple framework for visualizing the chain
stretching (Fig. 2.13) and provide simple relations for calculating the
stretching force and free energy. They define the length scale at which
elastic energy is of order k7. Since the force has dimensions of energy
divided by length, Eq. (2.102) immediately follows from a dimensional
analysis with length scale of tension blob £ corresponding to kT of stored
elastic energy.

The stretching along the x axis, shown in Fig. 2.13, makes the stretched
conformation of an ideal chain a directed random walk of tension blobs.
This conformation is sequential in the x direction, but the y and z directions
have the usual random walk statistics that are unaffected by the stretching,
The mean-square components of the end-lo-end vector orthogonal to the
siretching direction are obtained from one-dimensional random walks of
N/g sections of step length &:

(R =(Rl) ~ gzgm Nb*. (2.103)

The linear relation between foree f, and end-to-end distance R,
(Hooke’s law) is valid as long as there are many Kuhn monomers in each
tension blob. As the end-to-end distance R, approaches a significant
fraction of its maximal value R, a deviation from Hooke's law is
expected. Note that the Gaussian approximation assumes R, < Ryax and
always leads to Hooke's Law. Below we derive the non-linear relation
between force and elongation for strongly stretched chains. The limit of the
linear regime corresponds to a force of the order of

kT 138 x 1072JK™! x 295K s
= TS ~4x 072N (2.104)

for a chain with Kuhn length A = | nm at room temperature. Stiffer chains
with larger Kuhn length get nearly fully stretched at weaker extension
forces. For double-helical DNA with Kuhn length b 2 100 nm (persistence
length /, = 50 nm) the force corresponding to the linear response limit is
100 times smaller (4 x 10~'* N).

2.6.2 langevin dependence of elongation on force

Consider a freely jointed chain of N bonds subject to a constant elonga-
tional force fapplied to its ends along the z axis, An example could be a
chain with two opposite charges +¢ and —g atits ends in a constant electric
field £ applied along the z axis as sketched in Fig. 2.14. If the direct
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Coulomb interagtion between the charges is ignored, there is a constant
force f = qE acting along the z axis on the positive charge and an opposite
force —7 acting on the negative charge. Different chain conformations are
no longer equally likely, because they correspond to different energy of the
chain in the external electric field. The energy of the chain is proportional
to the projection of the end-to-end vector on the direction of the field:

U= —qF-R=-f R=—fR.. (2.105)

This energy is equal to the work done by the chain upon separation of the
charges by vector R in an external electric field £. The direction of the end-
to-end vector R of the chain is chosen from the negative to the positive
charge at its ends. Displacement of the positive charge down the field with
respect to the negative charge, lowers the electrostatic energy of the chain
and corresponds to a more favorable conformation. Thus, different chain
conformations have different statistical Boltzmann factors exp(—U/kT)
that depend on their corresponding energy U [Eq. (2.109)].

The sum of the Boltzmann factors over all possible conformations of the
chain is called the partition function:

Z= z exp(%) = Z exp (fki;) (2.106)

states stales

The partition function is useful because we will calculate the free energy
from it in Eq. (2.111). States with higher energy make a smaller con-
tribution to the partition function because their Boltzmann factor deter-
mines that those states are less likely.

Different conformations in the freely jointed chain model correspond to
different sets of orientations of bond vectors 7, in space [see Fig. 2.14(a)}.
The orientation of each bond vector F; can be defined by the two angles of
the spherical coordinate system 8; and ¢; [Fig. 2.14(b}]. Therefore, the sum

Fig. 2.4

{a) Freely jointed chain elongated

by a pair of forces applied to its ends.
(b) Spherical coordinate system for
orientation of a bond.
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Average end-to-end distance as a
function of stretching force for a
Gaussian chain [Eq. {2.95), thin line],

a freely jointed chain [Langevin
function, Eq. (2.112), dashed line], and a
worm-like chain [Eq. {2.119), thick line].

Ideal chains

over all possible conformations of a freely jointed chain corresponds to the
integral over all possible orientations of all bond vectors of the chain:

£ = Z exp(%) = /exp(’;ﬁf

states

N
) [Isin:d6:dg;. (2.107)
=1

N
The notation [] denotes the product of ¥ terms. The z component of the

=1
end-to-end vector can be represented as the sum of the projections of all
bond vectors onto the z axis:

N
R.="bcosd,. (2.108)
i=l

Therefore, the partition function [Eq. (2.107)] becomes a product of ¥
identical integrals:

N N
Z(T,f,N)= /cxp (i?Zcos 9,-) H sin 6; dé; dy;
i=1 i=1
T N
= [ /0 27 sin f; exp (f—}cos 6,) da;

[afioB) B e

. w

_ {47r smh(ﬂ;/(kT))] . (2.110)
fb/(kT)

The Gibbs free energy G can be directly calculated from the partition

function:’

G(T.f,N) = —kT In Z(T f, N)

= kTN [m (47r sinh (%)) ~1In (kﬁ;,) } (2.111)

The average end-to-end distance corresponding to a given force can be
obtained as the derivative of the free energy:
1
oG coth (vfé) - ] . (2.112)

W=y =) e

The expression in the square brackets of Eq. (2.112) is called the Langevin
function:

£(8) = coth(3) ; (2.113)

The Langevin function relates average chain elongation {R}/Rmax
and normalized extensional force 3= fb/(kT) for a freely jointed chain, as
sketched in Fig. 2.15.

® The Gibbs free energy is used here because the ensemble of chains corresponds to
constant force £, not constant end-to-end distance R {analogous to the isothermal-isobaric
ensemble, which has constant pressure instead of constant volume).
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For small relative elongations ({R) << Rmyax = bN) the dependence is
approximately linear,

L@ == forg<l, (2.114)

W

and follows Hooke’s law derived above [Eq. (2.96)] {R}/(bN) = fb/(3kT).
For larger relative elongations, the Langevin function significantly devi-
ates from linear dependence and saturates at unity (see Fig. 2.15). For large
extensional force >3 kT/b, the Langevin function has another simple limit:

1
LG =1- i for 8 1. (2.115)
This means that the extension for strong stretching has a simple form
R AT
Rmax - .fb ’

where Rmax = Nb, The extensional force of the equivalent freely jointed
chain diverges reciprocally proportional to Ry.x — {R):

fb Ruax {R)
e for ] — . 2.116
kT anax - <R> or Rmax < : ( )

In the case of the worm-like chain model! (Section 2.3.2), the extensional
force diverges reciprocally proportional to the square of Rypax — {R):

fo 1{ Row (R)
T3 (Rmax — {R)) for 1 R < 1. (2.117)
The differences between divergences of force near maximum extension
[Egs (2.116) and {2.117)] are due to bending modes on length scales shorter
than Kuhn length 4. These modes do not exist in freely jointed chains
because sections of length b are assumed to be absolutely rigid. In the
worm-like chain model these bending modes with wavelength £ < b lead to
much stronger divergence of the force [Eq. (2.117)).

At small relative extensions ({R} < Rpax) Worm-like chains behave as
Hookean springs:

o 3R
= anax- .
WS R for (R} < (2.118)

There is no simple analytical solution for the worm-like chain model at all
extensions, but there is an approximate expression valid both for small and
for large relative extensions:

AR L[ Rmm )1
KT Rawx | 2 \Romn — (R}) 2 @119)

¢ J.F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
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Fig. 2.16

Comparison of experimental force for
97 kilobase A-DNA dimers with the
worm-like chain mode! [solid curve is
Eq. (2.119) with Rpyax = 33 pm and
b= 100 nm). The dotted curve
corresponds to the Langevin function of
the freely jointed chain model

[Eq. (2.112)]. Data are from

R. H. Austin ef al., Phys. Today, Feb.
1997, p. 32.

Fig. 2.7

A monomer can only reach other
monomers with its CB radio if they are
within the range of the radio.

Ideal chains

Strong dewviations from linear elasticity have been measured in polymer
networks at large elongation (see Chapter 7). Optical tweezers and atomic
foree microscopy have been used to measure the dependence of the force
applied to the ends of isolated chains on their elongation. In the optical
tweezer experiments, beads were attached to the ends of long DNA seg-
ments. DNA is a biopolymer that exists as a double-stranded helix. Such
stiff chains are best described by the worm-like chain model. The chain
length of DNA 1s typically described in terms of the number of base pairs
along the helix. The positions of the beads at the ends of DNA chains were
manipulated by a focused laser beam (hence the name ‘optical tweezers'}.
The force exerted on the chain ends was measured by the calibrated relative
displacement of the beads with respect to the optical traps. In another type
of nano-manipulation experiment a 97 kilobase A-DNA dimer was chem-
ically attached by one of its ends to a glass slide and by the other end to a
small (3 pm) magnetic bead. The DNA was stretched by applying a known
magnetic and hydrodynamic force to the bead. The stretching was
measured by observing the position of the bead in an optical microscope.
The extension of DNA as a function of applied force is compared
with predictions of freely jointed and worm-like chain models in Fig. 2.16.
The worm-like chain model is in excellent agreement with the expeni-
mental data.

2.7 Pair correlations of an ideal chain

Consider a monomer of an ideal polymer trying to reach fellow monomers
of the same chain via a CB radio (see Fig. 2.17). The number of monomers
it can call depends on the range r of its transmitter. It can contact any
monomer within the sphere of radius r of itself. The number of monomers
m that can be reached via a CB radio with range r is given by random walk

statistics:
N2
mee |+ .
()

The number density of these monomers within the volume #* is m/r>. The
probability of finding a monomer in a unit volume at a distance r from a
given monomer is called the pair correlation function g(r). It can be

approximated by the average number density within the volume #’;

»

(2.120)

m |
3(’)~r—3~rﬁ-

The exact calculation of the pair correlation function of an ideal chain
leads to an additional factor 3/

(2.121)

3

Note that the pair correlation function decreases with increasing distance r.
It is less likely to find a monomer belonging to the chain further away from
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a given monomer because the average number density of monomers within
the sphere of radius r decreases. Large polymer coils are almost empty.

To illustrate this concept, divide the cube of size R, containing an ideal
polymer with N monomers of size b and end-to-end distance R=5N""
into smaller cubes of size » (Fig. 2.18), There will be (R/r)’ such smaller
cubes. But only (R/F¥ of these smaller cubes contain monomers of the
chain. The average number of monomers in each of these occupied smaller
cubesis m=~ (r/b)z. The remaining (R/r}® — (R/r)* smaller cubes are empty.
The local density of monomers strongly fluctuates from cell to cell. There
are holes of all sizes inside a polymer chain.

This description is a manifestation of the self-similarity (fractal nature)
of polymers, discussed in Section 1.4. The fractal nature of ideal chains
leads to the power law dependence of the pair correlation function g(r) on
distance r. This treatment for the ideal chain can be casily generalized to a
linear chain with any fractal dimension D. The number of monomers
within range r is m ~ rC. We use the proportionality sign ‘~’ if the
dimensional coefficient (in the particular case above ~ 1/b") is dropped
from the relation. The pair correlation function is still proportional to
the ratio of m and #*:

gr) m 2 P2, (2.123)

Hence, Eq. (2.121) is a special case of this result, with 2 = 2 for an ideal
chain. The fractal dimension of a rod polymer is D = | and the pair cor-
relation function is g{r} ~ P

2.8 Measurement of size by scattering

Polymer conformations are studied by various scaltering experiments
(light, small-angle X-ray and neutron scattering). These techniques are
based on the contrast between the polymer and the surrounding media
(solvent in the case of polymer solutions and other polymers in the case of
polymer melts or blends). The contrast in light scattering arises from dif-
ferences in refractive index between polymer and solvent, and the scattered
intensity is proportional to the square of the refractive index increment
dn/de [see Eq. (1.86)}.

While neutron sources are not available in most laboratories, small-
angle neutron scattering (SANS) has become a routine characterization
method for polymer research using large-scale national and multinational
facilities. To obtain the contrast needed for neutron scattering, some of the
chains in a polymer melt have their hydrogen atoms replaced by deuterium.
In a polymer solution, the solvent is often deuterated. This deuterium
labelling appears to not alter the conformations of polymers.

2.8.1 Scattering wavevector

Consider an incident laser beam with wavelength A illuminating a polymer
sample, represented by the large circle in Fig. 2.19, along the direction with
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Fig. 2.18
Fractal nature of an ideal chain.
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Fig. 2.19
Radiation scattered through angle 6
from two distinct parts of the sample.

Ideal chains

—_
N AR N
i 6
- C
R;
.
I
Lo B """"""""""""""" D
=
WK
o
i
W,
g s o
- = =
— q=g;—d;
s

unit vector #. This incident beam can be characterized by the incident
wavevaclor:

2
Gi=""g, (2.129)
A
where ris the refractive index of the solution. The incident light 1s scattered
through angle # and leaves the sample along the direction with unit vector

it;. The scattered beam is characterized by the scattered wavevector:

2%”;1;. (2.125)

The incident beam is coherent, meaning that all photons are in-phase.
When the incident beam enters the sample, monomers absorb the radiation
and re-emit it in all directions. The difference in optical paths between the
light scattered by different monomers makes the scattered beam inco-
herent, meaning that the scattered photons are no longer in-phase.” In
the example sketched in Fig. 2.19, the difference in optical paths of the
radiation scattered by the monomer f at position R:,- (at point C) and by the
monomer at the origin O is easily calculated:

AC + CD - OD' = AC - OB. (2.126)
The section AC is the projection of the vector R} onto the incident direction
and haslength & - R;. The section OB is the projection of the vector R; onto

the scattered direction and has length i - Rj Thus, the difference in the
optical paths can be written in terms of these vectors:

AC-OB=14-R~i - R=(@-a)- K. (2.127)
This difference in optical paths results in the phase difference ¢;, which is

27n/) times the optical path difference [see Eq. (1.77} with A replaced by the
wavelength in the dielectric medium A /x).

7s

2am,, . = L = o=
o=l —&)- R =(q ~ G) R =7 R (2.128)

7 1t is assumed that there is no multiple scattering, although this is not always a valid
assumption.



Measurement of size by scattering

The scattering wavevector § is defined as the difference of the incident
and scattered wavevectors:

7=a —q. (2.129)

From their definitions in Egs (2.124) and (2.125), the magnitudes of the
incident and scattered wavevectors are the same:

. . 2mn

@il = 13| =— (2.130)
The isosceles triangle of wavevectors in Fig. 2.19 shows that half of the
magnitude of the scattering wavevector is equal to the magnitude of
wavevectors g, or §; times the sine of half the angle 4 between them:

- L. (8 dxn . [0
9= = 2|qilsm(5) _TS‘“(E)' (2.131)

2.8.2 Form factor

We concentrate Here on light scattering, but similar results are valid for
small-angle X-ray and neutron scattering. We describe scattering from a
single molecule, assuming that the solution is dilute, which is the relevant
regime for determining the size and shape of individual coils.

The electric field of light scattered by the jth segment is

E; = EA cos{2mvt — @j), (2.132)

where ¢, is the phase difference [(Eq. (2.128)], » is the frequency, £; is the
amplitude of the incident electric field [Eqg. (1.77)] and the coefficient 4
contains the factors such as polarizability «, the distance r to the detector,
the wavelength of light A, ete. [see Eq. (1.81)]. Summing over the ¥
monomers gives the electric field scattered by an isolated polymer coil:

N
E;=FE Y Acos(2mvt — ). (2.133)
J=1
The intensity of scattered light is the energy of radiation that falls onto a

unit area per unit time. It is proportional to the square of the electric field
averaged over one oscillation period 1/v:

T 2
L= 21iA2U/ [ZCOS(Z’M/f - LP}') de
0 N

j=l1

1iv[ N N
= 2L A%y / lz > " cos(2mut — ) cos(2avi — e,o;(_)l dr
\]

ljv[ N N
= AA%//O [Z Z(cos(47ru! — @ — @) + cos{gr — np,))] dt.

=1 k=1

(2.134)
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The final result used the equation for the product of cosines:

cos{a + 3) + cos(a — f) _

; (2.135)

cosq cos 3 =

The first term in Eq. (2.134) oscillates exactly two full periods (4r) and
its integral over the time interval 0 <r< 1/ is thus equal to zero. The
second term (cosine of the phase difference) is time independent and
determines the intensity of light scattered by the molecule

N N
= 14*) " cos(ee — @), (2.136)

k=1 j=1

where the phases ; are determined by the positions R’j of the corres-
ponding monomers and the scattering wavevector § [Eq. (2.128)].

The dependence of the scattered intensity on the size and the shape
of the polymer is usually described by the form factor defined as the ratio
of intensity scattered at angle § (scattering wavevector §) to that extra-
polated to zero angle (6 — 0) and therefore, zero scattering wavevector

(g1 — 0):

P(§) = %. (2.137)

All optical paths are the same at zero scattering angle (g =0) and there is
no phase shift {(¢;=0 for all j) because the scattering wavevector g=10
[Eq. (2.131)]. The intensity of light scattered by the molecule at zero angle,

N N
0) =LA S "1 = RN, (2.138)

k=1 j=I1

leads directly to the form factor, defined by Eq. (2.137):

™=

>

LA

P(g) =

N
cos{g; — ;)

-

—s —

cos[7 - (R; — R}}]. (2.139)

™=

-3

=

%i—

1

S,
il

It is important to stress that only the relative position of monomers

—

R;=R - K (2.140)

enters into the form factor.

The form factor in Eq. (2.139) is defined for a specific orientation of the
molecule with respect to the scattering wavevector §. Often (but not
always!), the system is isolropic with equal probabilities of all molecular
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orientations in space. In this case, Eq. (2.139) can be averaged over all these
orientations. This averaging can be carried out in the spherical coordinate
system with the z axis along the scattering wavevector § and the angle
between § and R,-i denoted by «. The polar angle in this spherical coord-
inate system is denoted by 4. The scalar product of wavevector § and
the relative vector between monomers § and j is

i (Ri- R)) = qRycosa, (2.141)

where R is the distance between monomers ¢ and j. Averaging the cosine
of this scalar product over all orientations of the molecule leads to

27
{cos[g- (Ri— R)]) = L [/ cos(gR;;cos ) sin ader{df3
41 0 0 °
1t __sin(gRy)
= Ef_l cos(gRyx) dx = W, (2.142)

where the integral was taken by the change of variables x = cos . Thus, the
form factor for any isotropic system is quite simple:
1 N N

P(g) :MZZMQ. (2.143)

=1 j=1 gR;

2.83 Measuring Rg by scattering at small angles

One important property of the form factor in dilute solutions is that at low
scattering angle (g R, < 1) it becomes independent of any assumption about
the shape of the molecule. Using the Taylor series expansion,

sinx . x* &

R (2.144)

the form factor at low angles can be rewritten, as

N Y
P(‘?):}\"}ﬁ. Z{l_@+...]
=1Q_ZXN:R2+--- for gR, < 1, (2.145)

Plg) =1~ RS+ for qRy < 1. (2.146)

In the final relation, Eq. (2.47) was used for Ré and the average {-- .} is over
different polymer conformations contributing to scattering.

Substituting the relation (2.131) between scattering wavevector ¢ and
scattering angle ¢ provides the low-angle expression of the form factor in
light scattering;

1.2
Plg)=1— ITT;’ {R%} sin’® (g) +--- (2.147)
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Recall from Chapter | that it is convenient to plot the reciprocal
Rayleigh ratio times concentration and optical constant K [Eq. (1.96)] to
determine the weight-average molar mass from the zero concentration
limit. In Chapter 1, we considered the Rayleigh ratio in the zero wavevector
limit, and since the Rayleigh ratio is a normalized intensity [Eq. (1.87)] it
has the same ¢ dependence as the form factor [see Eq. (2.137)].

Ke 1 1 16720 1 o\ . o (8

(Re)HoA TR Ta [1 +W<Rg>sm (2) 4. } . (2.148)
Note that the plus sign in front of the (Ré) term arises because
(1 —x)7'22 1 + x for small values of x. Thus, extrapolation of the ratio
Kc/Ry to zero concentration plotted as a function of sin’(8/2) allows
determination of the radius of gyration of the polymer {or any other
scattering ohject) from the slope for low scattering angles (¢ R, < 1) and the
mass of the object from the y-intercept. For polydisperse samples, this
method leads to the weight-average molar mass M, and the z-average
square radius of gyration {Rﬁ}z. In order to understand this, we write the
Rayleigh ratio for a mixture of different species with molar mass My,
mean-square radius of gyration {Rfv}, and concentration ¢y:

2
RG_K[ZCNM A%ZCNMNCR%\J + -
N

N
%:CNMN qzzh;CNMN(R?v}
=K ey "o ||l - "———+---
; NS 3 S cnMy
N N
q 2
—KcMw[l —?{Rg)__Jr---]. (2.149)
The z-average mean-square radius of gyration is defined as
%'CNMN<R2N}
Ry =~ .
{R;). S enMy (2.150)
N

and the low-concentration limit of the scattering expansion for a poly-
disperse solution takes a form similar to Eq. (2.148):

ke 1 16m2n® o . {0
(R_S)cﬁou-ﬁof_w [1 +—3/\2 {RE)_~ sin (2) +] (2.151)

An expansion similar to Eq. (2.151) for non-zero concentrations is the basis
for the Zimm plot (see Problem 2.47).

The coil size of chains in dilute solution is typically measured by light
scattering, using a laser. Visible light has a wavelength of order X = 500 nm,
which is much longer than the wavelength of neutrons (A~ 0.3 nm). This
means that much smaller scattering wavevectors g are realized in light
scattering than in neutron scattering. The limit ¢ R, < I, required for the
expansion of the form factor in Eq. (2.146), is satisfied for all but the
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highest molar mass chains in small-angle light scattering. At low scattering
angles (for gR, < 1), the form factor can also be approximated by an
exponential:

2R2
P(g) = exp ( 1 : g) for qR, < 1. (2.152)

This last result is known as the Guinier function and is the basis for deter-
mining the radius of gyration from small-angle scattering experiments
for objects with unknown form factor.,

2.8.4 Debye function

Debye first calculated the form factor for scattering from an ideal chain in
1947. This form factor will be useful in interpretation of a wide variety of
scattering experiments on polymers. The form factor for an ideal linear
chain is obtained by averaging the form factor of isotropic scatterers
[Eqg. (2.143)] over the probability distribution for distances R, between
monomers  and j on the ideal chain:

sin{gR;
P(q):* / ” ’)P3d| —jl, Ry)4R% dRy.  (2.153)

I-] =1

The probability distribution function Psq {|i — j|, R;;} is given by Eq. (2.86):

2 3\ 3R2 .

(2.154)

The integral over Rj; can be evaluated by converting it into a Gaussian
integral (by writing the complex representation of sine and completing the
square in the exponent):

o R 1/2 4372 2
/ Ry sin{gRy) exp (# _‘f)dej — %exp (_ q_f) (2.155)
0 X 4 4

The variable

B 2li — jlb*

3 (2.136)

was defined for convenience and the form factor for an ideal linear chain
becomes a double sum of exponentials:

N i —
=R%ZZexp( bli j') (2.157)

=1 j=I1
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Replacing the summations over monomer indices by integrations provides
the integral form of the form factor of an ideal chain;

) Plg) = M/ [/ exp(——féb—z}u—ﬂ)du]dv (2.158)

Next, we change the variables of integration s=u/N and t=v/N and
denote the coefficient in the exponent by @ = ¢*h*N/6 = ¢*(R}) [we have
used Eq. (2.54) for the radius of gyration of an ideal linear chain].

Ip gl
P{q) :/ / exp(—Qls — 1) ds} dt
0 LJo

= /Ol :/Olexp[—Q(t —s)]ds+ /!1 exp[—Q (s — t)]cls] ds

1

=/01 :exp(Qz)/otexp(gs)dwexp(gz)/ exp(—QS)ds]dI

H

= é/ [exp(—Q!) (GXD(QI)—I)— exp(Qt) (exp(fQ)f exp(—Qr))] dt
0

= 22/0 2 — exp(—0t) — exp(—Q) exp(Q1)] dt

L[ ep(=@)—1_exp(Q)-1
-5 PG w0 MG
=é [exp{-0) =1+ 2], (2.159)

This form factor of an ideal linear polymer is called the Debye function
and can be rewritten in terms of the product of the squaye of scattering
wavevector ¢” and the mean-square radius of gyration of the chain (Ré}:

P(g) = exp{—g*(RD)) — 1 + ¢{R2)]. (2.160)

2
(¢*(RD))’
The Debye function is plotted in Fig. 2.20.

In the limit of small scattering angles, where ¢ Ry < 1, the exponential can
be expanded to simplify the Debye function:

[T

Pg) = —
(R
:'_'9: g*z:\e funetion is the form factor of (g*(R2) )2 (¢° (RZ))3
-7 :32al linear chain. X [1 - q2<R;) + 2g 6g +--—1+q (RZ}
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Note that we recover Eq. (2.146) for a general form factor for small values
of g,/{R2}.

At large scattering angles, the form factor describes the conformations
of smaller sections of the chain on length scales 1/g < /{R2):

Plg) = (71?)2 [exn (- tR) - 1+ (R3]
KA
= t??'(?Ré} for g,/ {R2) > 1. (2.162)

This power law character of the form factor is related to the power law
decay of the pair correlation function of an ideal chain [Eq. (2.121)]. Quite
generally, the form factor is related to the Fourier transform of the intra-
molecular pair correlation function g(r):

1

D=5 [1 + /g(?) explig - ) d3r] (2.163)

Equation (2.162) is a special case for a form factor of a fractal (with fractal
dimension D = 2). For any fractal, the wavevector dependence of the form
factor gives a direct measure of the fractal dimension D:

)
P(q)w(q (Rg)) for ¢(/(R2) > 1. (2.164)

The reciprocal form factor 1/ P(g) for a ideal linear chain [Eq. (2.160)] is
shown in Fig. 2.21 as a function of ¢*{R2) (medium line} and is compared
with the reciprocal form factors for a rigid rod (thin line) and for a solid
sphere (thick line). The form factors of a rod,

qu . . 2
Plg) = —— / sint g, (V3R (2.165)
\/§ng 0 t \/—qug

1iP(q)

L= o BV I = e I =]

12

<
o
=
=Y
0
=
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Fig. 2.21

Reciprocal form factors for simple
objects: a solid sphere [Eq. (2.166), thick
curve], an ideal linear chain [reciprocal
Debye function, Eq. (2.160), medium
line], and a rigid rod [Eq. {2.165), thin
curve].
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Fig. 2.22

Small-angle neutron scatiering data fit
to the Debye function multiplied by a
zero wavevector scattering. Data are for
0.31% (circles), 0.63% (squares), 0.93%
(triangles), and 1.19% (upside down
triangles) PMMA with

M, =250000gmol ' in a melt of
perdeuterated PMMA, from R. Kirste
et al., Polymer 16, 120 (1975).

Ideal chains

and a sphere,

2
sin(y/5/3gR,) (qug)COS(qug)}),

(2.166)

Fao= (x/_qg

are derived in Problems 2.44 and 2.45. Since all curves are plotted in
Fig. 2.21 as functions of ¢*(RZ}, the initial slope of all of them is the same
and is equal to 1/3 [see Eq. (2.146)].

The Debye function describes the ¢ dependence of scattering data from
dilute solutions of ideal chains. Such dilute solutions can either be obtained
in a f-solvent or by having a dilute sclution of ordinary chains in a melt
of perdeuterated chains. Small-angle neutron scattering data for four dilute
concentrations of poly(methyl methacrylate) (PMMA with M, =
250000 g/mol ~ "yin perdeuterated PMMA are shown to be fit by the Debye
function in Fig. 2.22. Two parameters are used in the fits, R, =13.3nm and
a multiplicative intensity scale factor.

29 Summary of ideal chains

Polymers with no interactions between monomers separated by many
bonds along the chain are called ideal chains. Chains are nearly ideal
in pelymer solutions at a special compensation temperature (the
6-temperature) as well as in polymer melts.

The mean-square end-to-end distance for an ideal chain with » main-
chain bonds of length /! is (Rz} = C,n, where C, is called Flory’s char-
acteristic ratio. For long chains, this characteristic ratio converges to
C.., leading to a simple expression for the mean-square end-to-end dis-
tance of any long ideal linear chain:

*

(R*) = Conl®. (2.167)

It is convenient to define the Kuhn monomer of length b and the number of
Kuhn monomers N such that the mean-square end-to-end distance of an
ideal linear chain 1s a freely jointed chain of Kuhn monomers:

(R%) = NB*. (2.168)

The mean-square radius of gyration is defined as the averaged square
distance from all monomers to the center of mass of the polymer [Eq. (2.44)]
and is related to the averaged square distance between all pairs of mono-
mers [Eq. (2.48)]. The mean-square radius of gyration of an ideal linear
polymer is one-sixth of its mean-square end-to-end distance:

(R2) = Nb*/6. (2.169)

The radius of gyration of ideal branched polymers can be calculated using
the Kramers theorem [Eq. (2.65)].



Summary of ideal chains

The probability distribution of the end-to-end vector of an ideal chain is
well described by the Gaussian function:

. 3\ 3R -
Pia(N,R) = (m) exp ( 21\4’[)2) for |R| < Rmax = Nb.
(2.170)
The free energy of an ideal chain is purely entropic and changes quad-

ratically with the end-to-end vector:

Rl

R
kT

2 N
The quadratic form of the free energy implies a linear relationship between

force and the end-to-end vector, that is valid for small extensions:

- T
f="yp & for |R| < Nb. (2.172)

for | R| < Nb. (2.171)

Thus, the ideal chain can be thought of as an entropic spring and obeys
Hooke’s law for elongations much smaller than the maximum elongation
(|R| < Rumax = BN). For stronger deformations, the Langevin function
[Eq. (2.112)] for freely jointed chains or Eq. (2.119) for worm-like
chains can be used to describe the non-linear relation between force and
elongation,

The probability to find a monomer within a distance r of a given mono-
mer is called the pair correlation function g(r). For ideal linear chains, g{(r)
is reciprocally proportional to the distance r:

g(r) = % (2.173)

The radius of gyration of any polymer can be determined from the wave-
vector ¢ dependence of the scattering intensity at low angles (g R, < 1)in the
limit of zero concentration;

P(g) =1 —%q2<R§>+--- for ¢,/ (R2) < 1. (2.174)

Distributions of monomers and correlations between them inside the chain
can be determined from the angular dependence of scatteringintensity in the
range of higher wavevectors g,/ (RZ) > I:

P(q)fv(q (R2) " forg (R2) > 1, (2.175)

where P is the fractal dimension of the polymer (D = 2 for ideal chains).
The Debye function is the form factor for scattering from an ideal linear
chain:

2 2 2
Plg) = W lexp(—~g*(R3)) — | + ¢*{R})]. (2.176)
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Problems
Section 2.2

2.1

2.2

2.3

Prove that {cos ;) = 0 for the angle #; between two bonds iand jif there are
no correlations between bond vectors (see Fig. 2.3).

Calculate the mean-square end-to-end distance of atactic potystyrene with
degree of polymerization 100 assuming that it is an ideal chain with char-
acteristic ratio C..=9.5. (Note that the characteristic ratio is defined in
terms of the main-chain bonds of length /= 1.54 A rather than monomers.)
Calculate the root-mean-square end-to-end distance for polyethylene with
M=10"gmol ™! in an ideal conformation with Co, = 7.4, Compare the
end-to-end distance with the contour length of this polymer.

Section 2.3

24

25

2.6

2.7

2.8*

2.9%
2.10

Calculate Flory’s characteristic ratio C,, for a freely rotating chain con-
sisting of n bonds of length / with bond angle 8. Plot C,/C,, as a function of
n for bond angles # = 68° and 10°.

Calculate the Kuhn monomer length b and number of Kuhn monomers N
of a freely rotating chain consisting of n bonds of length / with angle 4.
Consider a restricted random walk on a square lattice. Let us assume that a
walker is not allowed to step back (but can go forward, turn right, or turn
left with equal probability). Calculate the mean-square end-to-end distance
for such a restricted #-step random walk. What is the characteristic ratio
C.. for this walk? The lattice constant is equal to /.

Consider a restricted random walk on a 3D cubic lattice. Let us assume
that a walker is not allowed step back (but can go forward, turn up, down,
right, or left with equal probability). The lattice constant is equal to /.

(i} Calculate the mean-square end-to-end distance for such a restricted #-
step random walk.
(ii) What is the C, for this walk?

Hinr: Recall for a freely rotating chain C., = (1 + cos#)/(1 — cos ).
Demonstrate that the mean-square end-to-end distance of a worm-like
chain with contour length R,;,, and persistence length [, is

(R®) = 2Ruauy — 28 (1 —exp (— R}““)) . (2.177)
P

and the mean-fourth end-to-end distance is

20 208 8 3R
Ay T p2 Z_WRmaxf',i — _ limax
(R =3 Ry = 5 =gkl 1 o T

Rmax 3 Rmax
+ 324’2(1 - exp(— I )) — 8 Rmax/, exp fT .

Derive the characteristic ratio of the hindered rotation model [Eq. (2.40)].
What are the common features of all models for ideal linear chains?

(2.178)

Section 2.4

2.11

212

The radius of gyration of a polystyrene molecule (M, =3x 107 gmol ~ 1)
was found to be R, =1010 A. Estimate the overlap concentration ¢* in
gem 7, assuming that the pervaded volume of the chain is a sphere of
radius R,.

Consider a polymter containing N Kuhn monomers (of length b) in a dilute
solution at the #-temperature, where ideal chain statistics apply.



2.13

2.14

215
2.16

2.17
2.18

2.19

2.20

2.21

2.22

2.23

Problems

Answer questions (i}{(vi) symbolically before substituting numerical
values.

(i) What is the mean-square end-to-end distance R of the polymer?
(i) What is its fully extended length Rpay?
(i) What is the mean-square radius of gyration Rﬁ of this polymer?

The molar mass of the polymer is M

(iv) Estimate the overlap concentration ¢* for this polymer, assuming that
the pervaded volume of the chain is a sphere of radius R,. (Hint: Itis of
the order of the concentration inside the coil.)

(v) How does this overlap concentration depend on the degree of
polymerization?

(vi) What is the ratio of its fully extended length to the average (root-mean-
square) end-to-end distance Ry,.x/Ro?

(vi) Consider an example of a potymer with molar mass M = 10° gmol ™
consisting of ¥=100 Kuhn monomers (of length b=10A) and
determine Ry, Ry, Riax, ¢* and R/ Ry.

One property of an ideal chain is that its subsections are also ideal. Derive
the general relation between the end-to-end distance of the chain R, the end-
to-end distapce of the section £, the number of monomers in the chain ¥ and
the number of monomers in the section g.

The previous problemt showed that the equivalent freely jointed chain fol-
lows random walk statistics even if the effective monomer is renormalized to
be larger than &, What is the smallest effective monomer size for which this
renormalization works?

Calculate the radius of gyration of a rod polymer with N monomers of
length b using Eq. (2.51).

Calculate the radius of gyration of a uniform disc of radius R and negligible
thickness.

Calculate the radius of gyration of a uniform sphere of radius R.

Calculate the radius of gyration of a uniform right cylinder of radius K and
length L.

Consider a fractal line with fractal dimension D. The mean-square distance
between monomers # and v along this line is

(B — R = B (v - w)*P, (2.179)

Calculate the mean-square end-to-end distance R* and radius of gyration R}
for this fractal line. Determine the ratio R?/R} symbolically and then cal-
culate this ratio for fractal dimensions D=1, 1.7 and 2.

Show that the mean-square radius of gyration of a worm-like chain is

1 27 Yo R
RY = < Rygudo — £+ —L rw’#(lfex (f ‘““)). 2.180
(R3) 3 Rmaxlp =T p-— TR p I, ( )

max

Verify that in the two simple limits (ideal chains Ry, 3>/, and rigid rods
Rmax € l,) the correct limiting expressions for the radius of gyration are
recovered.

Calculate the radius of gyration of an ideal symmetric f~arm star polymer
with N monomers of length b. Hinr: Each arm of a symmetric star polymer
can be treated as an ideal chain of /f monomers.

Calculate the radius of gyration of an ideal H-polymer with all five sections
containing equal number (N/5) of Kuhn monomers with length b.

(i) Calculate the radius of gyration of an asymmetric three arm star poly-
mer with a short arm consisting of #= /4 Kuhn monomers of length b
and two equal long arms containing 3¥/8 Kuhn monomers each.

9
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2.24

2.28%

2.26*

2.27

(ii) Evaluate R, of this asymmetric star for ¥ = 1000, #=250,and b =3 A.
(iii) What length of the asymmetric arm n corresponds to the largest and
smallest radii of gyration of a star polymer for constant ¥ and 5?

Consider an ideal f~arm star with #; Kuhn monomers in the jth arm
(j=12,...,/) and with Kuhn length 5. The total number of Kuhn

monomers in a molecule is N = Z n;. Show that the mean-square radius of
gyration of this star is =l

< | 4
2y 2 § 2 3
{Rg}‘-Nb (W lnj *W. IHJ). (2181)
j= J=

Consider a tree polymer consisting of f branches (but no loops). Each of
these branches contains &/f Kuhn monomers with Kuhn length 4. Let v, be
the number of branches along the linear chain connecting branch / and
branch ;. Demonstrate that the mean-square radivs of gyration of this
polymer is

(R2) = NB? (Zf_ 7 +f3 Z Z vy) (2.182)

i=1 j=i+]

Calculate the radius of gyration of an ideal ring polymer with ¥ Kuhn
monomers of length b, and compare it to the radius of gyration of a linear
chain with the same number of monomers.

The radius of gyration of a spherical globule containing a single polymer
and some solvent is 450 A. Calculate the polymer densny inside this globule
if the molar mass of the polymer is M = 2.6 x 10" gmol ™',

Section 2.5

2.28

2.29

2.30

2.31

2.32
2.33

2.34*

Derive Stirling's approximation for large N:

NV 22 2r NNY exp(—N). (2.183)

Demonstrate that the Gaussian probability distribution function of a one-
dimensional random walk is normalized to unity:

f:P,d( }dx—m/ ( )dx— (2.184)

Show that the mean-square displacement of a one-dimensional random
walker is

e X2
2 =
'/wa PN, x)dx = m/ X exp( ZN) dx = (2.185}

Suppose a person walks from the origin in one dimension forward or
backward. The probability for a step in each direction is 1/2. What is the
probability of finding the person five steps (x = 5) forward from the origin
after N =25 steps.

Calculate the location of the maximum of the distribution of end-to-end
distances (Fig. 2.12) of an ideal chain with N Kuhn monomers of tength b.
Calculate the average end-to-end distance of an ideal linear chain with ¥
Kuhn monomers of length b.

Demonstrate that the higher moments of the end-to-end vector of an ideal
chain with & Kuhn monomers of length & is

(R = (2"6:”, ! gy (2.186)

within the GGaussian approximation [with probability distribution Eq. (2.83)].



2.35%

2.36*

2.37+

Problems

Show that the mean-square distance of the jth monomer from the centre of
mass of an ideal chain with N Kuhn monomers of length b is

(R - Rom)) :%[-’i [1 —W} (2.187)

within the Gaussian approximation. What are the maximum and mini-
mum values of this mean-square distance?

The mean-square radius of gyration is the second moment of the dis-
tribution of monomers around the centre of mass of the chain [Eq. (2.44)].
The mean-square radius of gyration of an ideal linear chain with ¥ Kuhn
monomers of length b is related to its mean-square end-to-end vector
[Eq- (2.59)]:

{R%. (2.188)

[= ]

2 1 - o IR
(B =5 D (R — Rem)') =
i=1

(i) Show that higher moments of the distribution of monomers around the
centre of mass are related to the corresponding higher moments of the
end-to-end vector:

) I 3 n 5 oy 1 2 1 -
N;«Rt‘_&m} )_E(sz) =5 -0} (2.189)
1 ; vd 5\ 29 1 29
ﬁ;«&f&"’) )= 573 (V) = g (K- (2.190)

(i) Demonstrate that higher moments of the radius of gyration are

N 2
< [jlvz(ﬁ- ~ Em)z] > = g% (Np?) :i—imgf, (2.191)

i=1

3
< [Alri(ﬁ" - Em)z] > = 6—;3)715(1\’52)3 = % (R%Y. (2.192)

Consider an ideal linear chain with ¥ Kuhn monomers of length & and
fixed end-to-end vector K directed along the x axis. Demonstrate that the
mean-squatre projection of the radius of gyration onto the direction of its
end-to-end vector is

g R - R 2)*1szl R 2.193
Ng{(' )l =35 T Np ) 193)

while the mean-square projection of the radius of gyration onto the per-
pendicular direction is independent of the magnitude of the end-to-end
vector

N N
LS - Ry = LS N Rty = e N (2094)
i=l i=l1

Note that for ‘f{l =0 the mean-square radius of gyration of a ring
polymer (R2) = Nb*/12 is recovered, for |R| = bN'/? the mean-square
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2.38*

2.39

Section 2.6

240

241

radius of gyration of an ideal linear chain (RY) = N#? /6 is recovered, and
for \R\ = bN the mean-square radius of gyration of a rod {Ré} = (Nb)2/12
is recovered. It is interesting to point out that the asymmetry of the ideal

linear chain,
1+ LS
NBtJ®

is quite large and a typical shape is better represented by an clongated
ellipsoid than by a sphere.

Show that the one-dimensional probability of finding a monomer of an
ideal chain whose ends are fixed at positions X, and X- is the following
Gaussian function.

3 3(x —x,)?
Prals, X) = 4 Xm exp (_ (Mmbz) (2.195)

Written in this way, the position of the monomer that is s monomers from
the end of the chain at X is described as though that monomer was the end
monomer of a single ‘effective chain’ of

1 s(N—3s)

Re=Tssyn—y= W (2.196)

monomers, whose other end is at position

N-—y5 £

~ +X2N. (2.197)
Consider a linear chain consisting of m + N monomers, The ends of this
chain are fixed in space. The x coordinates of the ends are
X} and X%, while the junction point fluctuates with x coordinate
R’. What is the mean-square x coordinate gf the end-to-end vector of the
section containing N monomers {(R' — X3}°}?

X.Y=X|

Consider an ideal chain with N Kuhn monomers of length 4. The chain is
carrying a positive charge + e at one end and a negative charge — e at the
other end. What will be its average end-to-end distance R, in an electric
field £=10° Vcrrg’] acting along the x axis at room temperature, if
N=10%and b= 6 A7 What is the ratio of this average distance R, and root-
mean-square projection R,q of the end-to-end vector along the x axis in the
absence of the field? Ignore the direct Coulomb interaction between the
charges.

Consider an ideal chain with N Kuhn monomers of length b. The chain
has two multivalent positive charges +Ze at both of its ends (it is called a
telechelic polymer). These two charges repel each other and stretch the
polymer,

(i) Whatisthe expression for the average distance R between the chain ends
in a polar solvent with dielectric constant e at temperature T (in terms of
Z,e, N,b, T, e ctc)?

(i) What is the ratio of this average distance R and the root-mean-square
projection of the end-to-end vector along the x axis R, in the absence of
Coulomb interaction for the chain with N =100 Kuhn monomers



2.42*

Problems

of tength =3 A in water (dielectric constant e = 80) at room temperature
(20°C) for charges of valency Z =107

Hint: The Coulomb force between two charges + Ze separated by distance
R in a solution with dielectric constant e is (Ze)*/ (eRz}

In order to avoid complicated conversions of units note that a combi-

nation of variables, called the Bjerrum length, is lp=¢ J(ekT)= 7A in
water at room temperature.
Demonstrate that the probability distribution function of the end-to-end
distance R of a freely jointed chain can be expressed in terms of the inverse
Langevin function E’l(x) of the ratio x= R/Rp,.x of the end-to-end dis-
tance R to its maximum value Ry, = Nb:

£ =)
P(R) = v 3,2 q NI
(2aNb2) x{l — [C7 (xyeseh L7 (%))}
soho ') |
X — = . (2.198)
L7 (x) exp[xL™ (x)]
Compare this distribution function with the Gaussian approximation
[Eq. (2_.85)]. . o .
243 What is the difference between the probability distribution function and
the pair correlation function?
Section 2.8
2.44 Calculate the form factor of a uniform sphere of radius R.
2.45 Calculate the form factor of a long thin rod of length L.
246 (i) Use the tabulated small-angte neutron scattering data® for a 1%

solution of M =254000gmol ' deuterium-labelled polystyrene in
M=110000gmol ™' ordinary polystyrene to determine the radius of
gyration by fitting the data to the Debye function [Eq. (2.160)].

(i) Why is the Guinier limit [Eq. (2.146) or (2.152)} not useful for
determining R, for these data?

(iii) If Eq.(2.146) were used to estimate R, from the five lowest g data points,
is R, overestimated or underestimated? Why?

g (/A)  0.00980 00128 00158 00188 00218 00248 00278

() 443 337 255 205 1.58 123 0.966
g (JA) 00308 00333 00368 00399 00429 00459  0.0504
() 0804 0758 0392 0509 0445 0370 0.275

g (I/A) 00564 00624 00684 00744 00804 00864 0.0940
O 0246 0197 0175 0139 0128  0.107  0.081

g (1JA)  0.1060
1) 0.077

* Data from M. R. Landry.
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247

2.48

In Chapter 1, we learned how to determine weight-average molar mass My,
and second viral coefficient A4, from the concentration dependence of light
scattered at a very small angle from a polymer solution. In this chapter, we
learned that the angular dependence of light scattering gives information
about the radius of gyration R, of the polymer coil. In practice, these
analyses are often combined to obtain M., 4,, and R, using a Zimm plot.
The following equation is the basis of the Zimm plot and was obtained by
combining the concentration expansion of Eq. (1.96) with the angular
expansion of Eq. (2.147):

ke 1 16720 _, . 58

Use the following table of data for K¢/ Ry of a polystyrene in benzene at four
concentrations and five angles, to construct a Zimm plot by plotting Kc/Ry
against 100¢ + sin’(#/2) with ¢ in gmL~" and extrapolating to ¢ —0 and
§— 0 to determine M, 45, and R,.

Table of 10°K¢/R, (in molg™") for a polystyrene in benzene:

cqmgmL™Y  0=30° §=45 =60° 8=75 §=90°

0.5 1.92 1.98 2.16 2.33 2.51
1.0 229 2.37 2.53 2.66 2.85
1.5 2,73 2.81 2.94 3.08 3.27
2.0 318 3.25 3.45 3.56 3.72

For the laser used, A=546nm and the refractive index for light of this
wavelength travelling though benzene is »=1.5014. After plotting the 20
data points, the data at each angle must be extrapolated to zero con-
centration, making a ¢=0 line of five points (corresponding to the five
angles) whose slope determines R,. The data at each concentration must be
extrapolated to zero angle, making a #=0 line of four points (corre-
sponding to the four concentrations) whose slope determines 4,. Both the
¢=0 line and the #=0 line should have the same intercept, which is the
weight-average molar mass M,,.

Calculate the radius of gyration and the mean-square end-to-end distance
of an ideal linear diblock copolymer consisting of &, Kuhn monomers of
length b, connected at one end to N, Kuhn monomers of length b,.
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Real chains

In Chapter 2, we studied the conformations of an ideal chain that ignore
interactions between monomers separated by many bonds along the chain,
In this chapter we study the effect of these interactions on polymer con-
formations. To understand why these interactions are often important, we
need to estimate the number of monomer-monomer contacts within a
single coil. This gumber depends on the probability for a given monomer to
encounter any other monomer that is separated from it by many bonds
along the polymer.

A mean-field estimate of this probability can be made for the general
case of an ideal chain in d-dimensional space by replacing a chain with an
ideal gas of N monomers in the pervaded volume of a coil ~R% The
probability of a given monomer to contact any other monomer within this
mean-field approximation is simply the overlap volume fraction ¢*, of a
chain inside its pervaded volume, determined as the product of the
monomer ‘volume’ 7 and the number density of monomers in the per-
vaded volume of the coil N/R%

N
¢*mbdﬁ. (3.1)

Ideal chains obey Gaussian statistics in any dimension with R=5NY 2
leading to the overlap volume fraction:

N
as p? ay N174/2
¢* = b (bNI/Z)d s N (3.2)

The overlap concentration of long ideal coils is very low in spaces with
dimension d greater than 2:

¢* N9 1 ford>2and N> 1. (3.3)

In particular, in three-dimensional space the probability of a
given monomer contacting another monomer on the same chain is
d* = N~ 1,

The number of monomer—-monomer conlacts belween pairs of mono-
mers that are far away from each other along the chain, but get close
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Fig. 3.1

Effective interaction potential between
two monomers in a solution of other
molecules.

Fig. 3.2
The hard-core potential prevents
monomers {rom overlapping.

Real chains

together in space, is the product of the number of monomers in the chain
and the volume fraction of chains in the pervaded volume of the coil;

Ng* = N2, (3.4)

In spaces with dimension above 4, this number is small and monomer—
monomer contacts are rare. Therefore, linear polymers are always ideal in
spaces with dimension &> 4. In spaces with dimension less than 4 (in
particular, in three-dimensional space relevant to most experiments), the
number of monomer—monomer contacts for a long ideal chain is very large:

No* = NV %1 ford=3and N 1. (3.5)

It is important to understand how the energy arising from these
numerous contacts affects the conformations of a real polymer chain. The
effective interaction between a pair of monomers depends on the difference
between a monomer’s direct interaction with another monomer and with
other surrounding molecules. An attractive effective interaction means
that the direct monomer-monomer energy is lower and monomers would
rather be near each other than in contact with surrounding molecules. In
the opposite case of repulsive effective interactions, monemers ‘do not like’
to be near each other and prefer to be surrounded by other molecules. In
the intermediate case, with zero net interaction, monomers ‘do not care’
whether they are in contact with other monomers or with surrounding
molecules, In this case there is no energetic penalty for monomer—
monomer contact and the chain conformation is nearly ideal. In the next
section, this qualitative description of the monomer-monomer interaction
is quantified.

3.1 Excluded volume and self-avoiding walks
311 Mayer f-function and excluded volume

Consider the energy cost U(r) of bringing two monomers from oo to within
distance r of each other in a solvent. A typical profile of this function is
sketched in Fig. 3.1. It contains a repulsive hard-core barrier that corres-
ponds to the energy cost of steric repulsion of two overlapping monomers,
Typical monomers ‘like’ each other more than they ‘like’ solvent and
therefore there is usually an attractive well corresponding to this energy
difference. On the other hand, if monomers are chemically identical to the
solvent and there is no energy difference between their interactions, the
energy U(r) will contain only the hard-core repulsion (see Fig. 3.2). For
reasons that become clear later, in this case the solvent is called athermal,
On the other hand, if monomers ‘like’ each other less than surrounding
solvent (for example, similarly charged monomers) there is no attractive
well in U(r) but instead, extra repulsion.

The probability of finding two monomers separated by a distance r
in a solvent at temperature 7' is proportional to the Boltzmann factor



Excluded volume and self-avoiding walks

exp [ U(r)/(,xT)] which is plotted in Fig. 3.3 for the potential of [ig. 3.1.
The relative probability is zero at short distances, corresponding to the
hard-core repulsion (it is impossible to find two overlapping monomers).
The probability is large in the attractive well (it is energetically more
favourable and therefore more likely to find the two monomers at these
distances), The Boltzmann factor is equal to one at large distances if there
are no long-range interactions.

The Mayer f-function is defined as the difference between the Boltzmann
factor for two monomers at distance r and that for the case of no inter-
action (or al infinite distance):

fir) =exp [-U(R)/(kT)] - 1.

At short distances, the energy Ulr} is large because of the hard-core
repulsion, making the Mayer f-function negative. The probability of
finding monomers at these distances is significantly reduced relative to the
non-interacting case (see Fig. 3.3). The Mayer f~function is positive in the
attractive well and the probability of finding a second monomer there is
enhanced compared to the non-interacting case.

The excluded volume v is defined as minus the integral of the Mayer
f-function over the whole space:

(3.6)

v= —/f(r)d3r: /(1 —exp [~ U(r)/ (kD)) d’r. (3.7)

This single parameter summarizes the net two-body interaction between
monomers. As shown in Fig. 3.4, the hard-core repulsion (r < 1) makes a
negative contribution to the integration of the Mayer ffunction and a
positive contribution to excluded volume. The example in FFig. 3.4 also has
an effective attraction between monomers (r > 1) that makes a positive
contribution to the integration of the Mayer f~function and a negative
contribution to excluded volume. The attraction and repulsion largely
offset each other for this example, making the net excluded volume quite
small. A net attraction has a negative excluded volume v < 0 and a net
repulsion has v > 0.

3111

The simple calculation of excluded volume in Eq. (3.7) is only valid for
spherical monomers. Particularly because of the ‘monomer’ being defined
as a Kuhn monomer, the monomer is better described as a cylinder of
length equal to the Kuhn length b, but smaller diameter 4, as depicted in
Fig. 3.5. Polymers without bulky side groups, such as polyethylene and
poly(ethylene oxide), have effective diameter d=5A. Polystyrene has
d=8 A, and the diameter of the cylindrical Kuhn monomer steadily
increases as side groups increase in size. Most flexible polymers have aspect
ratio b/d in the range 2-3, but this ratio is larger for stiffer polymers.
Exeluded volume describes the two-body (pairwise) monomer—-monomer
interaction in solution. At low polymer concentrations, the interaction

Non-spherical monomers
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Fig- 3.3

The relative probability of finding a
second monomer at distance » from a
given monomer is given by the
Boltzmann factor.

Fig. 3.4
The Mayer f/~function and its integration
{shaded regions) to determine excluded
volume.

Fig. 3.5

(a) Chain with symmetric monomers.
(b} Chain with strongly asymmetric
cylindrical Kuhn segments of length
b and diameter d.
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part of the free energy density Fip,/V can be written as a virial expansion
in powers of the monomer number density c,. The coefficient of the ¢
term is proportional to the excluded volume v and the coefficient of the
¢ term is related to the three-body interaction coefficient w:

2 3

F‘—;[=E§(vcﬁ+wci+---)sz(v%+w%+---). (3.8)
This virial expansion 1s analogous to that used for the osmotic pressure in
Chapter 1 [Eq. (1.74)] and we will see in Section 3.3.4, how the excluded
volume is related to the second virial coefficient.

For athermal spherical monomers of diameter d, v~ 4" and w=d°®. The
interaction energy must not change if we redefine what is meant by a
monomer, The chain in Fig, 3.5 can be thought of as a chain of # spheres of
diameter 4 or a chain of N = nd/b cylinders of length 4 and diameter &. Each
term in the virial expansion must be unchanged by these choices, which
requires;

Vit = Ve N wen? = we N7 (3.9)

Using the renormalization of N = nd/b and the spherical results v, = d° and
w2 d®, the cylindrical Kuhn monomer has

ny2 n*?

vcmvs(uﬁ) zvs(a) s B, (3.10)
A N’ 33

Wcmws(ﬁ) %ws(d = b'd (3.11}

as coefficients in Eq. (3.8). The excluded volume of strongly asymmetric
objects (long rods) v~ b°d is much larger than their occupied volume
vy 7= bd?, since b 3> d. The ratio of excluded volume and occupied volume is
the aspect ratio v./vo = b/d. If the aspect ratio of the rod polymer is Jarge
enough, excluded volume creates nematic liquid crystalline ordering in
solutions of rods, originally derived by Onsager, Once the excluded
volumes of neighbouring rods overlap, these rods strongly interact and
prefer to orient predominantly parallel to neighbouring rods. Similar
nematic ordering is seen with polymers as well if the rigidity of the
monomers is large enough (making the aspect ratio b/d large). Further
discussion of strongly asymmetric monomers is beyond the scope of this
book, Here, we focus on flexible polymers, which typically have aspect
ratios in the range 2-3. For this reason, we write results below in terms of
cylindrical monomers, which reduce to the results for a spherical monomer
when b == d. The spherical monomer results are often used in the rest of this
book, owing to the simplicity of a single length scale to describe the
monomer. The excluded volume discussed in this book always refers to
the excluded volume of a Kuhn monomer. The transformation rules of
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Eq. (3.9) can be used to recast the excluded volume in terms of any part of
the chain, including the chemical monomer.

(A) Athermal solvents. In the high-temperature limit, the Mayer
f-function has a contribution only from hard-core repulsion. The excluded
volume becomes independent of temperature at high temperatures,
making the solvent athermal. An example is polystyrene in ethyl benzene
(essentially polystyrene’s repeat unit). The excluded volume in athermal
solvent was derived in Eq. (3.10)%:

v b2, (3.12)

(B) Good solvents. In the athermal limit, the monomer makes no ener-
getic distinction between other monomers and solvent. In a typical solvent,
the monomer-monomer gitraction is slightly stronger than the monomer—
solvent attraction because dispersion forces usually favor identical species.
Benzene 1s an example of a good solvent for polystyrene, The net attraction
creates a small attractive well U(r) <0 that leads to a lower excluded
volume than the athermal value:

0<v<bd (3.13)

As temperature is lowered, the Mayer f~function increases in the region of
the attractive well, reducing the excluded volume.

(C) Thera solvents. Atsome special temperature, called the §-temperature,
the contribution to the excluded volume from the attractive well exactly
cancels the contribution from the hard-core repulsion, resulting in a net
zero excluded volume:

v=0. (3.14)

The chains have nearly ideal conformations at the #-temperature’ because
there is no net penalty for monomer—monomer contact. Polystyrene in
cyclohexane at 22 34.5°C is an example of a polymer—solvent pair at the
f-temperature.

(D) Poor solvents. At temperatures below 8, the attractive well dominates
the interactions and 1t is more likely to find monomers close together. In
such poor solvents the excluded volume is negative signifying an effective
atlraction:

~bd<v<. (3.15)

Ethanol is a poor solvent for polystyrene.

(E} Non-solvents. The limiting case of the poor solvent is called non-
solvent:

v —bid. (3.16)

In this imit of strong attraction, the polymer’s strong preference for its
own monomers compared to solvent nearly excludes all solvent from being

! There are actually logarithmic corrections at the §-temperature that make the chain
conformation not quite ideal.
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within the coil. Water is a non-solvent for pelystyrene, which is why
styrofoam coffee cups are made from polystyrene.

In a typical case of the Mayer f-function with an attractive well, repul-
sion dominates at higher temperatures and attraction dominates at lower
temperatures. In athermal solvents with no attractive well there is no
temperature dependence of the excluded volume. It is possible to have
monomer—solvent attraction stronger than the monomer-monomer
attraction. In this case, there is a soft barrier in addition to the hard-core
repulsion and the excluded volume v > b’d decreases to the athermal
value v = b°d at high temperatures,

3.).2 Flory theory of a polymer in a good solvent

The conformations of a real chain in an athermal or good solvent are
determined by the balance of the effective repulsion energy between
monomers that tends to swell the chain and the entropy loss due to such
deformation. One of the most successful simple models that captures the
essence of this balance is the Flory theory, which makes rough estimates of
both the energetic and the entropic contributions to the free energy.
Consider a polymer with N monomers, swollen to size R > Ry = BN,
Flory theory assumes that monomers are uniformly distributed within the
volume R® with no correlations between them. The probability of a second
monomer being within the excluded volume v of a given monomer is the
product of excluded volume v and the number density of monomers in the
pervaded volume of the chain N/R?. The energetic cost of being excluded
from this volume (the energy of excluded volume interaction} is k7" per
exclusion or kTvN/R® per monomer. For all N monomers in the chain, this
energy is N times larger [sce the first term of Eq. (3.8) with V= R

N2 .
ﬂmwkﬁi? (3.17)

The Flory estimate of the entropic contribution to the frec energy of a real
chain is the energy required to stretch an ideal chain to end-te-end distance
R[Eq. (2.101)]:

RZ

Foy =2 kT—.
KT

(3.18)

The total free energy of a real chain in the Flory approximation is the sum
of the energetic interaction and the entropic contributions:

Nt R
F—]‘—’vim‘FFem%kT(VRB‘I*W). (319)

The minimum free energy of the chain (obtained by setting
OF/OR =0) gives the optimum size of the real chain in the Flory
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theory, R= Rg:
AF A?
= 2
3R =0= kT( Iv—r RE + sz)
R}~ vbN?,
Ry = V!N, (3.20)

The size of iong real chains is much larger than that of ideal chains with the
same number of monomers, as reflected in the swelling ratio:

RF — v 1/2 /3 v 1/2
R (EN/) for 7 N'2 > 1. (3.21)

If the total interaction energy of a chain in its 1deal conformation
Fie(Ro} [Eq. (3.17) for R= Ry = bN'"] is less than kT, the chain will not
swell. In this case, N"?v/b* <1 and the chain’s conformation remains

nearly ideal. Excluded volume interactions only swell the chain when the
chain interaction parameter,

o3 3/2V 1/2 Enl(RO) N2 1/2
z=($r) AR VR b3N/ (3.22)

becomes sufficiently large. Equation (3.20) is therefore only valid for chain
interaction parameters that are larger than some number of order unity.
The precise value of this number is discussed in Section 3.3.4.

The predictions of the Flory theory are in good agreement with both
experiments and with more sophisticated theories (renormalization group
theory, exact enumerations and computer simulations). However, the
success of the Flory theory 1s due to a fortuitous cancellation of errors.
The repulsion energy is overestimated because the correlations between
monomers along the chain are omitted. The number of contacts per chain
is estimated to be H*N?/R* = N'”°. Computer simulations of random walks
with excluded volume show that the number of contacts between mono-
mers that are far apart along the chain does not grow with N. Hence, Flory
overestimated the interaction energy. The elastic energy is also over-
estimated in the Flory theory because the ideal chain conformational
entropy is assumed. The conformations of real chains are qualitatively
different from the ideal chains as will be demonstrated in the remainder
of this chapter. Simple modifications of the Flory theory that take into
account only some of these ¢ffects usually fail. However, Flory theory is
useful because it is simple and provides a reasonable answer. We will make
calculations in a similar spirit throughout this book. Mean-field estimates
of the energetic part of the free energy, ignoring correlations between
monomers, are used with entropy estimates based on ideal chain statistics.
We will refer to such simple calculations as ‘Flory theory’ and will hope
that the errors will cancel again.

Itis important to realize that Flory theory leads to a universal power law
dependence of polymer size R on the number of monomers N:

R~ N (3.23)
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Fig. 3.6

Molar mass dependence of the radius of
gyration from light scattering in dilute
solutions for polystyrenes in a f-solvent
{cyclohexane at § =34.5°C, circles) and
in a good solvent (benzene at 25°C,
squares). Data are compiled in L. J.
Fetters, et ai., J. Phys. Chem. Ref. Data,
23,619 (1994).

Fig. 3.7

A two-dimensional self-avoiding walk
on a square lattice. The direction of each
step is randomly chosen from four
possible directions (up, down, right or
left) with the requirement that
previously visited sites cannot be
visited again.

Real chains

The quality of solvent, reflected in the excluded volume v, enters only in
the prefactor, but does not change the value of the scaling exponent v
for any v > 0. The Flory approximation of the scaling exponent is v = 3/5
for a swollen linear polymer. For the ideal linear chain the exponent
v =1/2. In the language of fractal objects, the fractal dimension of an ideal
polymer is D = 1/ = 2, while for a swollen chain it is lower D= 1/v =
5/3. More sophisticated theories lead to a more accurate estimate of the
scaling exponent of the swollen linear chain in three dimensions;

v 2 0,588, (3.24)

Comparison of Eq. (3.23) with experimental data for polystyrenes in
cyclohexane at the f-temperature (a 6-solvent} and in toluene (a good
solvent) is shown in Fig. 3.6. Both data sets obey Eq. (3.23), with v =1/2
in §-solvent and r220.59 in good solvent.

While the ideal chain discussed in Chapter 2 has a random walk
conformation, the real chain has additional correlations because two
monomers ¢cannol occupy the same position in space. The real chain’s
conformation is similar to that of a self-avoiding walk, which is a random
walk on a lattice that never visits the same site more than once. An example
of a self-avoiding walk is shown in Fig. 3.7, on a two-dimensional square
lattice.

3.2 Deforming real and ideal chains
3.21

In order 1o emphasize the difference between ideal and real chains, we
compare their behaviour under tension. Consider a polymer containing
N monomers of size b, under tension in two different solvents: a #-solvent
with nearly ideal chain statistics and an athermal solvent with excluded
volume vaz4’. An ideal chain under tension was already discussed in
Section 2.6.1 and is repeated for comparison with that of a swollen chain.
The major difference between ideal and real chains is that in the latter there
are excluded volume interactions between monomers that are far apart
along the chain when they approach each other in space.

The end-to-end distances of the chains in the unperturbed state (with
no applied external force) are given by Egs (2.18) and (3.20) with v b

Polymer under tension

Ro =~ bN'?  ideal, (3.25)

Rr =~ bN*/®  real. (3.26)

Since both ideal and real chains are self-similar fractals, the same scaling
applies to subsections of the chains of size r containing » monomers:
rabn'l?

ideal, (3.27)

r= bn’® real.

(3.28)
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Note that there are fewer monomers within the same distance r in the
real chain case compared with the ideal chain because the real chain is
swollen.

Let us now emaploy Maxwell demons to put both chains under tension
with force of magnitude f applied at both ends of each chain, stretching
them out as sketched in Fig. 3.8. As in Section 2.6.1, we subdivide each
chain into tension blobs of size £ containing g monomers each, such that on
length scales smaller than these tension blobs the chain statistics are
unperturbed,

£~ bg'? ideal, (3.29)

£ b’ real, (3.30)

while on larger length scales both chains are fully extended arrays of ten-
sion blobs.

Since each chain is a stretched array of tension blobs, their end-to-end

distance Rrin an extended state is the product of the tension blob size £ and
the number of these blobs N/g per chain;

N NF R
Rt a0 ideal, 3.31
R TE R (3
N NBYORW
Rims§—m——— e =1 real. (3.3}

These equations can be solved for the size of the tension blobs in terms of
the normal size (R or Rp) and stretched size (Ry) of the chains:

2
£~ ﬁi ideal, (3.33)
R
£ ﬁ real. (3.34)

s

Fig- 3.8
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Maxwell demons stretching ideal and
real chains of the same contour length

with the same force /.
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Fig. 3.9

Extensional force f as a function of
end-to-end distance Ryon logarithmic
scales. Comparison between ideal chains
(upper ling) and real chains (lower line).

Real chains

As discussed in Section 2.6.1, the free energy cost for stretching the
chains is of the order kT per tension blob (we are neglecting coefficients of
order unity):

_ 2
FNR) ~ kT e kr B kr(fi) ideal, (3.35)
£ £ Ry
N 52
PN, R ~ kT e kTR kr(&) real. (3.36)
g £ Rr

The force necessary to stretch the chain to end-to-end distance Ry is of
the order of the thermal energy kT per tension blob of size £

KT KT kTR ideal, (3.37)

IR RN R R

KT _ kT _sp kT (RN

The same result (up to numerical prefactors of order unity) can be obtained
by differentiation of the free energy with respect to end-to-end distance:

FIN, Ry)

oR (3.39)

f:

It is very important to notice the difference between the results for ideal and
real chains under tension. Ideal chains satisfy Hooke’s law with force f
linearly proportional to elongation Ry. For real chains the dependence of
force f on chain elongation Ryis non-linear with the exponent equal to 3/2
for the Flory value of v=3/5. This non-linear dependence of force on
elongation for real chains was first derived by Pincus and tension blobs are
often called Pincus blobs. The differences between real and ideal chains can
be clearly seen when we consider the dimensionless stretching force:

R

kﬁ} ~ rﬁé ideal for R < Nb, (3.40)
R M2

%z (Ef;) real for Ry < Nb. (3.41)

The stretching energy is of order k7 per monomer when either chain is
nearly fully stretched ( Ry~ Nb) resulting in £~ kT/b. The force required to
stretch the real chain increases more rapidly with Ry, but is always smaller
than the force required to stretch the ideal chain to the same end-to-end
distance Ry, as shown in Fig. 3.9. Both chains have fewer possible con-
formations when they are stretched, but the real chain has fewer possible
conformations to lose, resulting in a smaller stretching force.
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A similar scaling caleulation can be carried out for stretching a linear
chain with fractal dimension l/v. The free energy cost of stretching a
chain from its original size bN” to end-to-end distance R is (derived in
Problem 3.15)

R\

The fractal dimension of an ideal chain is 1/v =2 and Eq. (3.42) reduces to
free energy of stretching an ideal chain [Eq. (3.35)]. The Flory estimate of
the fractal dimension of a real chain is 1/ = 5/3 and Eq. (3.42) reduces to
Eq.(3.36). A more accurate estimate of the fractal dimension of a real chain
is 1/v>1/0.588 = 1.7 with corresponding free energy of stretching
[Eq. (3.42)] F = kT (R/Rp)**.

The divergence of the force near maximal extension {f — oo as Ry —
Riux) 1s not described by this scaling approach and is not shown in
Fig. 3.9. This divergence is discussed in Section 2.6.2 for freely jointed
and worm-like chain models.

3.2.2 Polymer under compression

Two simple examples comparing the properties of ideal and real chains are
discussed in this section: uniaxial and biaxial compression. A related
example of triaxial confinement shall be discussed in Section 3.3.2 for the
case where polymers collapse into globules due to attraction between
monomers.

3.2.2.1 Biaxial compression

We consider first biaxial compression corresponding to squeezing of a
chain into a cylindrical pore of diameter D. The diameter of the pore
defines a natural compression blob size. On length scales smaller than D,
sections of the chain do not ‘know’ that it is compressed and their statistics
are still the same as the statistics of an undeformed chain;

D= bg'’? ideal, (3.43)
D bg*”  real. (3.44)

These equations can be solved for the number of monomers g in a
compression blob of size D:

2
g = (?) ideal, (3.45)

5/3
g~ (3) real. {3.46)

The above relations are identical to the corresponding equations for ten-
sion blobs (Section 3.2.1) because in both examples the conformational
statistics are unperturbed on the shortest scales,
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Fig. 3.0
Ideal and real chains of the same length,
confined in a cylinder of diameter D,

Real chains

The length of a tube Ry occupied by an ideal chain can be estimated as a
random walk of N/g compression blobs along the contour of the tube:

A2
RImD(E) ~ bN'?  ideal. (3.47)

As expected, the size of the ideal chain along the contour of the tube is not
alfected by the confinement. This is an important property of an ideal
chain. Deformation of the ideal chain in one direction does not affect its
properties in the other directions because each coordinate’s random walk
is independent.

In the case of confinement of a real chain, the compression blobs repel
each other and fill the pore in a sequential array. Therefore, the length of
the tube R occupied by a real chain is the size of one compression blob
D times the number N/g of these blobs:

N AN
R = D(—) = (B) Nh  real in a cylinder, (3.48)
g

Note that in the case of a real chain confined to a tube, the occupied length
of the tube R is linearly proportional to the number of monomers ¥ inthe
chain. The occupied length increases as the tube diameter D decreases.
Ideal and real chains of the same length, confined in a cylinder of diameter
D, are shown schematically in Fig. 3.10. There is no penalty to overlap the
compression blobs of an ideal chain, whereas the compression blobs of the
real chain have strong excluded volume interactions that prevent overlap.

The free energy of confinement is of the order of kT per compression
blob for either chain;

N b\’ R\’ .
Feont = kTE = kTN (5) = kT (30) ideal, (3.49)

*

573 53
Fogug kTg ~ kTN(Ib)) ~ kT(%) real.  (3.50)

U )b

U AR )k
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Ry and Rp are the end-to-end distances of unconfined ideal and real
chains, respectively. These calculations can be generalized to confinement
a polymer with fractal dimension 1/ from its original size &N to a
cylinder with diameter D. The confinement free energy in this case is
(derived in Problem 3.16}

bNV lf!)
>) (3.51)
with Eq. (3.49) corresponding to an ideal chain with 1/=2 and Eq. (3.50)
being the result for a real chain with the Flory estimate of fractal dimension
1 v=35/3. For a more accurate estimate of the fractal dimension of real

chains 1/¢= 1.70 the confinement frec energy is Fons~ kT (Rg/D)""°.

Foont & kT(

3.2.2.2 Uniaxial compression

The free energy of confinement of a chain between parallel plates in a slit of
spacing D is the same as in the cylindrical pore {up te numerical prefactors
of order unity [Eqs (3.49}) and (3.50)]. The longitudinal size R of an ideal
chain confined hetween parallel plates is still the same as for an unper-
turbed ideal chain [Eq. (3.47)] because the different x, y, z components of
an ideal chain’s random walk are not coupled. In the case of a real chain
confined between parallel plates, the compression blobs repel each other,
leading to a two-dimensional swollen conformation (see Fig. 3.11). The
size of a two-dimensional swollen chain of compression blobs can be
estimated from the Flory theory (Section 3,1.2}. The ‘excluded area’ of
each compression blob is ~ D?, making the two-dimensional analogue of
Eq. (3.17) for the repulsive interaction energy of the chain of N/g com-
pression blobs kTD?*(N, /g)z/Rﬁ, where Rj is the area of the chain. The
entropic part of the free energy that resists increasing the area of the chain
of Njg compression blobs of size D is kTRﬁ [(N/g)D*] for a real chain
confined between two parallel plates:

(V/g) R
& WD)

Minimizing this free energy with respect to R gives the size of a real chain
between plates of spacing D

L b 174
R~ D() =~ N*/*p (E) real between plates (3.53)
g

2
I

Fr kT(DZ (3.52)

The size of the real chain confined between plates is again much larger
than that of an ideal chain (where R =~ bN 12y because the compression
blobs of the real chain repel each other. The maximum confinement cor-
responds to thickness D of the order of the Kuhn monomer size b. In this
case the chain becomes effectively two-dimensional with size

Ry ~ N3*p  real two-dimensional. (3.54)

The exponent v = 3/4 is universal for two-dimensional linear chains with
excluded volume repulsion.
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Uniaxial compression—areal chainina
slit of spacing D between two parallel
plates.
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Fig. 3.12
A chain adsorbed to a weakly attractive
surface.

Real chains

3.2.3 Adsorption of asingle chain

For the final example comparing the properties of ideal and real chains,
consider a polymer in dilute solution near a weakly adsorbing surface. Let
the energy gain for a monomer in contact with the surface be -6k T, where
we assume that 0 <8< 1 (weak adsorption). The chain would like to
increase the number of monomers in contact with the surface in order
to gain adsorption energy. In order to do that, however, it would have to
confine itself to a layer of thickness smaller than its unperturbed polymer
size (€445 < R), thereby losing conformational entropy.

3.2.3.1 Scaling calculation

The thickness £,4, of the adsorbed layer defines the adsorption hlicb size
(see Fig. 3.12). This adsorption blob size is the length scale on which the
cumulative interaction energy of a small section of the chain with the sur-
face is of the order of the thermal encrgy £7. On smaller length scales, the
interaction energy is weaker than the thermal energy and the chain remains
in an unperturbed conformation, which is Gaussian for ideal chains [Eq.
(3.45)] and swollen for real chains [Eq. (3.46)]. On scales larger than the
adsorption blob, the interaction energy of the chain with the surface is
larger than £T and the consecutive adsorption blobs are forced to be in
contact with the surface. Therefore, the conformation of an adsorbed chain
is a two-dimensional array of adsorption blobs and is similar to that
for a chain confined between two parallel plates, discussed in the previous
section.

In order to calculate the size of the adsorption blob £,4,, we need to
calculate the number of monomers in contact with the surface for a chain
section of size £,4,. The average volume fraction in a chain section of size
€aas CONLAINING ga45 MONOMETS 1S ¢

bsgad b . .
¢ S ey 5 ideal, (3.55)
ads ads
3 4/3
ot Bads (i) real. (3.56)
ads gads

The number of monomers in each adsorption blob that are in direct con-
tact with the surface (within a layer of thickness b from it) is estimated as
the product of the mean-field number density of monomers in the blob ¢/’
and the volume of this layer within distance A of the surface, gfdsb:

2,622 ideal, (3.57)

2/3
fgﬁdsb s (éﬂdf’) real. (3.58)
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The energy gain per monomer in conlact with the surface is 8kT.
Therefore, the energy gain per adsorption blob is

6kT% ~ kT ideal, (3.59)
gads i
&kT b ~ kT real, (3.60)

leading to the adsorption blob size:

o

Eads = 5 ideal, (3.61)
h
Eads ~ s real. (3.62)

The free energy of an adsorbed chain can be estimated as the thermal
energy kT per adsorption blob:

N

Fogs =~ —kT ~ —kTNE  ideal, (3.63)
Laads
N s/2
Fogs = —kTg ~ —kTNé real. (3.64)
ads

The adsorbed layer is thicker and bound less strongly for the real chain
(since for weak adsorption 0 < § < 1) because it pays a higher confinement
penalty than the ideal chain. The excluded volume interaction of real
chains make them more difficuit to compress or adsorb than ideal chains.
These scaling calculations can be generalized to adsorption of a polymer
with general fractal dimension 1/v:

Fogs = kTNSY 1), (3.65)

The same result can be obtained using the Flory theory, as demonstrated
below,

3.2.3.2 Flory theory of an adsorbed chain

A mean-field estimate of the free energy of adsorption and the thickness of
the adsorbed chain can be made by assuming the monomers are uniformly
distributed at different distances from the surface up to thickness £,4,.
Then the fraction of monomers in direct contact with the surface (within
distance b from the surface) is b/¢,q5. The number of adsorbed monomers
Nb€,qs i1s multiplied by the adsorption energy per monomer—surface
contact (—8kT) to calculate the energetic gain from the surface interaction:

b

Fipy = —8kTN .
‘Eads

(3.66)
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The thickness £,4; of an adsorbed ideal
chain decreases rapidly as the
adsorption energy E is increased above
the adsorption transition Eg.

Real chains

In order to gain this energy, the chain must pay the entropic confinement
free energy I,,q, derived in the example above [Egs (3.49) and (3.50)].
Therefore, the total free energy of a weakly adsorbing chain is

b 2
F = Fenp + Fiog kTN( ) CkTNS-L ideal, (3.67)
gads ads
B\ b
F = Foon + Figy = kTN(—) _KTN6 2~ real, (3.68)
gads Eads

The minimum of the free energy corresponds to the optimal thickness
of the adsorbed layer, determined from GF/0€,4; =0:

Eads = % ideal, (3.69)
b
Eags = 5 real. (3.70)

These estimates are identical to the scaling results [Eqs (3.61) and (3.62)).
Substituting Eqs (3.69) and (3.70) into each individual term” in Eqs (3.67)
and (3.68) shows that each term is actually of order the free energy of
adsorption [Egs (3.63) and (3.64)].

The adsorbed laver thickness for a polymer with general fractal
dimension 1/ is derived in Problem 3.18:

fags = b6V, (3.71)

Substituting this adsorbed layer thickness into the confinement free energy
[Eq. (3.51)] orinto the interaction free energy [Eq. (3.66)] gives the expected
result for the free energy of adsorption [Eq. (3.65)].

3.2.3.3 Proximity effects

Both theories of single-chain adsorption, described above, ignore a very
important effect—the loss of conformational entropy of a gtrand due to its
proximity to the impenetrable surface. Each adsorption blob has 1/6
contacts with the surface and each strand of the chain near these contacts
loses conformational entropy due to the proximity effect. In order to
overcome this entropic penalty, the chain must gain finite energy Eo
per contact between a monomer and the surface. This critical energy E;
corresponds Lo the adsorplion transition. For ideal chains Eg ~kT. The
small additional free energy gain per contact £ 7% should be considered in
excess of the critical value E,

E= Ecr + 6kT. (3.72)

Polymer adsorption is, therefore, a sharp transition with chain thickness
changing rapidly in the small interval 54 T of monomer—surface interaction
energy E above E,, (Fig. 3.13). Strictly speaking, this correction [Eq. (3.72)]

2 Notice that if Egs (3.69) and (3.70) are blindly substituted into Bqs (3.67} and (3.68), the
conclusion would be that the adsorption free energy is zero for both ideal and real chains. This
exemplifies the disadvantage of scaling calculations. There are unspecified prefactors of order
unity in both terms of Eqs (3.67) and (3.68), which invalidates the blind substitution.
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for the proximity effect is valid only for ideal chains. It is much harder to
take into account the proximity effect for real chains due to strong cor-
relation effects in these polymers. However, qualitatively there is still a
threshold value of energy needed for the real chain to adsorb, as depicted in
Fig. 3.13. For adsorption of real chains, the actual concentration inside
each adsorption blob decays as a power law in distance from the surface.
This power law decay modifies the exponent in Eqs (3.62) and (3.70) (see
Problem 3.22).

3.3 Temperature effects on real chains
3.3.1 Scaling model of real chains

Several examples of scaling with different types of scaling blobs have
already been introduced for tension, compression, and adsorption. The
main idea in all scaling approaches is a separation of length scales. The
blob in each case corresponds to the length scale at which the interaction
energy is of the order of the thermal energy A7. On smaller scales the
interaction is nof important and smaller sections of the chain follow the
unperturbed statistics (either ideal or swollen). On length scales larger
than the blob size, the interaction energy is larger than £T and polymer
conformations are controlled by interactions.

In this section, we will consider the excluded volume interaction follow-
ing a similarscalingapproach. The main idea is that of a thermal length scale
{the thermal blob). On length scales smaller than the thermal blob size &1,
the excluded volume interactions are weaker than the thermal energy kT
and the conformations of these small sections of the chain are nearly ideal.
The thermal blob contains g monomers in a random walk conformation:

fr = by’ (3.73)

The thermal blob size can be estimated by equating the Flory excluded
vojume interaction energy [Eq. (3.17)] for a single thermal blob and the
thermal energy kT.

gz
kT\v|£—§" ~ kT (3.74)
T

In this section, we discuss both good (v = 0) and poor (v < 0) solvents and
therefore, use i{v| in the definition of the thermal blob. The above two
equations are combined to estimate the number of monomers in a
thermal blob

b6
8T 5 {(3.75)
and the size of the thermal blob
b4
r= m (3.76)

in terms of the monomer size b and the excluded volume v.
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Fig. 3.14

The conformation of a single chainina
good solvent (left side) is a self-avoiding
walk of thermal blobs while the
conformation in a poor solvent (right
side) is a collapsed globule of thermal

blobs.

R
&r| -
Bl--
1 8r N
Fig. 3.15

End-to-end distance of dilute polymers
in various types of solvents, sketched on
logarithmic scales. In a #-solvent the
thermal blob size is infinite. For
athermal solvent and non-solvent the
thermal blob is the size of a single
monomer, Good and poor selvents have
intermediate thermal blob size (shown
here for the specific example of
equivalent thermal blobs in good and
poor solvent.

Real chains

The thermal blob size is the length scale at which excluded volume
becomes important. For v & b°, the thermal blob is the size of a monomer
(&7 == b) and the chain is fully swollen in an athermal solvent [Eq. (3.12)}.
For v = —b%, the thermal blob is again the size of a monomer ({7 ~ &) and
the chain is fully collapsed in a non-solvent [Eq. (3.16)]. For |v| < 8N71/72,
the thermal blob is larger than the chain size ({7 > Ryp) and the chain is
nearly ideal. For #N~'% < |v| < #* the thermal blob is between the
monomer size and the chain size, with either intermediate swelling in a
good solvent [v > 0, Eq. (3.13)] or intermediate collapse in a poor solvent
[v <0, Eq. (3.15)]

3.3.1.1 Excluded volume repulsion (v > 0)

On length scales larger than the thermal blob size £, in athermal and good
solvents, the excluded volume repulsion energy is larger than the thermal
energy kT and the polymer is a swollen chain of N/gr thermal blobs
(Fig. 3.14). The end-to-end distance of this chain is determined as a seif-
avoiding walk of thermal blobs with fractal dimension D= 1/v=1.7:

N\Y vy 2ol
R~ — ) = bl N,
i (gr) b(bg)
For the swelling exponent v 2{.588 the expression for the chain size is

Rz b (vib** 18N8 Note that this scaling result reduces to the prediction
of the Flory theory [Eq. (3.20)] for exponent v = 3/5.

(3.77)

3.3.1.2 Excluded volume attraction (v < 0)

In poor solvents on length scales larger than the thermal blob size &7, the
excluded volume attraction energy is larger than the thermal energy k7.
This causes the thermal blobs to adhere to each other, forming a dense
globule (Fig. 3.14). The size of the globule is calculated by assuming a dense
packing of thermal blobs:

-

1/3 2
N) ~ 2N, (3.78)

Ry =~ 5?‘(5 = |V\1/3
Thermal blobs in a poor solvent attract each other like molecules in a liquid
droplet. The shape of the globule is roughly spherical to reduce the area of
the unfavourable interface between it and the pure solvent, The volume
fraction inside the globule is independent of the number of monomers N

and is the same as inside a thermal blob:
N Nb? v

¢~R—él~5§. (3.79)

The dependence of the size R of the chain on the number of monomers N.
for solvents of different quality, is sketched in Fig, 3.15. In athermal solvent
(v=4"), in g-solvent (v =0) and in non-solvent (v=—5") the dependence
of size R on number of monomers N is a single power law R~ 6N for
N 1. The scaling exponent v adopts three values: »223/5 in an athermal
solvent, v =1/2 in a #-solvent, and v=1/3 in a non-soivent. In good and
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poor solvents the dependence follows the ideal chain scaling for polymers
{or sections of polymers) smaller than the thermal blob £7. On larger scales,
the chain follows the corresponding limiting scaling, with good solvent
exponent v = 3/5 for v > 0 and with collapsed globule exponent v = 1/3 for
v< 0. Fig. 3.15 shows that finite length chains have essentially ideal con-
formations for small values of the excluded volume, Chains have
approximately ideal conformations as long as ¥ < gr= 5%/v? because the
net excluded volume interaction in the whole chain 1s still of smaller
magnitude than the thermal energy. Note that Fig. 3.15 suggests the
crossover at the thermal blob size is abrupt, while in reality the crossover
will be smooth with intermediate effective slopes observed over limited
ranges of data.

3.3.2 Flory theory of a polymer in a poor solvent

The scaling result for a polymer in a poor solvent can also be found using
Flory theory. The Flory freeenergy for a polymer chain is given by Eq. 3.19:
R N 2)

»

(3.80)

In poor solvent, the excluded volume is negative, indicating a net attraction
and the minimum of the free energy of Eq. (3.80) corresponds to R=0.
Both entropic and energetic contributions decrease with decreasing R.
Such strong collapse of a polymer into a point is unphysical and we need
to add a stabilizing term to this free energy.

3.3.2.1 Entropy of confinement

Earlier in this chapter, we have discussed the entropic cost due to con-
finement of an ideal chain into a cylindrical tube or in a slit between two
parallel walls. A similar entropic penalty has to be paid if a chain is con-
fined within a spherical cavity of size R < AN"2. Each compression blob
corresponds to a random walk that fills the cavity. Thus, the number of
monomers il each compression blob is determined by ideal chain statistics

within the blob:
R\?2
== . Bl
g (b) (3.81)

The N/g compression blobs of the ideal chain fully overlap for a chain
confined in a spherical pore. The free energy cost of confinement within the
spherical cavity is of the order of the thermal energy &7 per compression
blob:

Nb?

= (3.82)

N
Fonr m kT—~ kT
g

The entropic part of the free energy, that includes both the penalty for
stretching and one for confinement, and is valid for both R > bN'? and for
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R < bN'Y2_is a simple sum of the stretching and confinement terms;
R? sz)

Nt R (3.83)

Frony 7 kT(
Note that this entropic free energy alone has a minimum at R = Nb*, which
is the conformation of an ideal chain,
Adding the excluded volume interaction term, we obtain a total free
energy of the chain with three terms:
R: N Nz)

Fa kT(+F+VF .

P (3.84)

This free energy still has a minimum at R=0. The confinement entropy
term is not strong enough to stabilize the collapse of the chain due to
excluded volume attraction because Nb%/R> < |v|N*/R’ for R —0.

3.3.2.2 Three-body repuision

The stabilization of the collapsing coil comes from other terms of the
interaction part of the free energy. The interaction energy per unit volume
is an intrinsic property of any mixture, that is often expressed as a virial
expansion in powers of the number density of monomers ¢, [Eq. (3.8)]. The
relevant volume of interest here is the pervaded coil volume R®. The
excluded volume term is the first term in the virial series and counts two-
body interactions as ve2. The next term in the expansion counts three-body
interactions as wci, where w is the three-body interaction coefficient:

% 2 kT(VCi + wci + ) (3.85)
At low concentration, the two-body term dominates the interaction. The
three-body term becomes important at higher concentrations and can
stabilize the collapse of the globule (since w > 0). The interaction free
energy within the coil is estimated using the monomer concentration inside
the coil ¢, = N/R™:

N2 N3
The total free energy of the chain is dominated by the interaction terms at
higher densities (smaller chain sizes R):
R2 NbZ N2 3
Fe kT(W+ﬁ+Vﬁ+wF)
(3.87}

N? N3
sz(vﬁ+wR6) for R <« Ry.

The globule seeks to minimize this free energy, by balancing the two-body
attraction (v < 0} and three-body repulsion (w > 0) terms:

WA 3
Ry =~ (% : (3.88)
* vl
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A typical value of the three-body interaction coefficient for almost sym-
melric monomers is w~ b® leading to the prediction of the globule size
identical to that of the scaling approach [Eq. (3.78}]. For the cylindrical
Kuhn monomer of length b and diameter d, Eq. (3.11) gives w = (bd)’,
making the globule size

1/3
Ry~ bd(N) , (3.89)

vl

and the volume fraction within this globule is proportional to the magni-
tude of the excluded volume:

Nk v

R (3.90)
R, bd

In a non-solvent, va—b°d [Eq. (3.16)] and the globule is fully collapsed
with volume fraction ¢= 1 and size Ry~ (bdzN)” 3, This state is the result
of a dense packing of N monomers, since the volume of the cylindrical
Kuhn monomer is bd”.

*

3.3.3 Temperature dependence of the chain size

All results for chain size are now written in terms of the excluded volume.
To understand how the chain size changes with temperature, we simply
need the temperature dependence of the excluded volume. There are two
important parts of the Mayer f-function, from which the excluded volume
is calculated [Eq. (3.7)]. The first part is the hard-core repulsion, encoun-
tered when two monomers try to overlap each other (monomer separation
r<b). In the hard-core repulsion, the interaction energy is enormous
compared to the thermal energy, so the Mayer ffunction for r < b is — 1

flr) =exp [— []i(;)] — 12 -1 forr<b, where U(r) » kT. (3.91)
The second part is for monomer separations larger than their size (¥ > b),
where the magnitude of the interaction potential is small compared to the
thermal energy. In this regime, the exponential can be expanded and the
Mayer f-function is approximated by the ratio of the interaction energy
and the thermal energy:

fir) = exp [— iﬂ S 7%) for r > b, where [U(r)| < kT. (3.92)

The excluded volume v can be estimated using Eq. (3.7) with these two
parts of the Mayer f~function:

20 h oc
v = ~47r/ firy dr = 4#] r? dr+4ﬁ/ Uryr*dr
0 0 kT J,

9 3
(-0

(3.93)
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Temperature dependence of radius of
gvration in universal form. Upper plot
shows Monte-Carlo simulation data on
i ennard-Jones chains, with the filled
squares from W. W._ Graessley ¢t al.,
Mucromolecules 32, 3510 (1999) and the
tilled circles are courtesy of I Withers.
Lower plot shows experimental data on
polystarene in decalin: open circles have
A =3300000 gmol ™", open squares
rave M, = 1560000 gmol ', open
mangles have My, = 1050 0600 gmol ™!
=4 open upside-down triangles have
V. =622000 gmol ™', from G. C. Berry,
T Crem. Phys. 44, 4550 (1966).

Real chains

The first term is the contribution of the hard-core repulsion, and is of
the order of the monomer volume 4°. The second term contains the
temperature dependence, and the coefficient of 1/T defines an effective
temperature called the 6-temperature:

I 2
&~ fmﬁ U(r)r*dr. (3.94)

Since U(r) < 0 in the attractive well, the 6-temperature is positive. This
results in a very simple approximate temperature dependence of the
excluded volume [Eqg. (3.93)]:

v —b (3.95)

For T<# the excluded volume is negative, indicating a net attraction
between monomers (poor solvent). For temperatures far below ¢, the chain
collapses into a dry globule that excludes nearly all solvent (with v~ — b%)
at #— T=T and Eq. (3.95) does not apply below this temperature. For
T =@ the net excluded volume is zero and the chain adopts a nearly ideal
conformation (#-solvent). T 4 has a positive excluded volume, resuiting
in swelling of the coil (good solvent). For T3 4, excluded volume becomes
independent of temperature (v ~ b*) and such solvents are termed athermal.

The temperature dependence of the radius of gyration, reduced by
the radius of gyration at the §-temperature Ry = »N'"?, is shown in Fig, 3.16
for both experimental data and Monte-Carlo simulations of chains made
of N freely jointed monomers interacting via a Lennard-Jones potential:

LKr)—A4e[(g)lz—(%)6] (3.96)

The abscissa of Fig. 3.16is proportional to the chain interaction parameter
[Eq. (3.22)]:

v o, T8
— N Y e
b? T
Note that the square of the chain interaction parameter z is equal to the
number of thermal blobs in a chain z% =~ N/gr-

N T\

The data reduction for R,/ Ry as a function of chain interaction parameter =
in Fig. 3.16 is remarkable for both simulation and experiment. Notice in
Fig. 3.16 that the #-temperature is a compensation point where the excluded
volume happens to be zero. Below the #-temperature, the chains are col-
lapsed in poor solvent (v < 0), while above the #-temperature, the coils are
swollen in good solvent (v > 0).

The relative contraction of chains in poor solvents can be expressed in
terms of the chain interaction parameter z [Eqs. (3.78) and (3.97)}:

R . b e |Z‘_1/3
le/Q !V‘1/3N]/‘6

N2 . (3.97)

]

for T < 6. (3.99)
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The relative swelling in good solvents can also be written as a function of
the chain interaction parameter z [Eq. (3.21}].
R -1
sz for T > 6. (3100)
The relative swelling is proportional to z*'* for » = 0,588,

3.3.4 Second virial coefficient

The second virial coefficient A, is determined from the concentration
dependence of osmotic pressure [Eq. (1.76)] or scattered light intensity
[Eq. (1.91)] from dilute polymer solutions. 4, is a direct measure of
excluded volume interactions between pairs of chains.

In solvents near the #-temperature, the thermal blob is larger than the
chain (gr> N meaning |z]<1 or |[T—8|/< N~} and the excluded
volume interactions are weak. The interaction energy of two overlapping
chains is less than the thermal energy T, so chains can easily inter-
penetrate each other. In this limit, monomers interact directly and A, is
proportional to the excluded volume v of a Kuhn monomer. The second
virial coefficient of Eqs (1.76) and (1.91) has units of m* mol kg *, making
the relation

Aa for

2 T4
v= M —’ < N2, (3.101)

NAV T

as will be derived in Chapter 4 [see Eq. (4.72)]. Using Eq. (3.97), 4; can be

written in terms of the chain interaction parameter z:

NAVV —~ NAvb3 z
T2 A2

M2 MO/ MU/

A = for |z] < L. (3.102)

0

For good solvents (z > 1), chains repel each other strongly and do not
interpenetrate. The volume excluded by a chain is of the order of its per-
vaded volume R> and the molar mass of the chain is M:

A M? T-4
NAV
Using Eq. (3.100) for the chain size R allows the second virial coefficient in
good solvent to be determined:
NAV R3 N NAvaS Zﬁufli
A M(s)fz M2

~ R for > N~V2 (3.103)

As w3 forz > 1. (3.104)

The second virial coefficient is proportional to 233 for exponent 1 2 0.588.
Combining Eqs (3.102) and (3.104), we see that both #-solvent and
good solvent should have 4,M 12 4 function of chain interaction para-

meter z alone;
A MM z 7 <1
W =flz) = PO B } (3.105)

The success of this functional form is demonstrated in Fig. 3.17 for poly-
styrene of various molar masses in decalin from slightly below 4 to
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Universal plot of second virial coefficient for linear polystyrenes in decalin {filled circles have
M., =4400000 gmol ', open circles have My, = 1 560000 gmol ", filled squares have
M= 1050000 gmol ™", open squares have M, =622 000 g mol ™', filled triangles have

M, = 186000 gmol ™!, open triangles have M,, = 125000 g mol ! and filled inverted triangles
have M, =48 200 gmol~'. Data from G. C. Berry, J. Chem. Phys. 44, 4550 (1966).

7+ 100 K. The collapse of the data is superb. The solid curve 1s the large
z branch of Eq. (3.103), 0.29 [N'/2(1 — 8/ T)]*” 3. The slope of the dashed
line drawn in Fig. 3.17 is 0.39. The crossover between these two branches
occurs when there is a single thermal blob per chain (N=g7). Using
Eq. (3.98) allows the second virial coefficient to be written in terms of the
number of thermal blobs per chain N/gr.

3/2
A0 ol sl N<sr)
(

N avh?® N/gr)™ ™™ N>gr
This identifies the prefactors in Eq. (3.98) .
T \2
and in Eq. (3.95)
v r—6 039
=207 ——. 3.108

Examples of excluded volume and numbers of Kuhn monomers per
thermal blob are given in Table 3.1.

Indeed, data on the temperature dependence of second virial coefficient
for a variety of polymer—solvent combinations and from computer simul-
ation show that Eq. (3.106) can be written as a simple crossover function:

AZMI/ZMS/2 T o
w_o.zo[(N) +(F) ] . (3.109)
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Table 3.1 Number of Kuhn monomers per thermal blob and excluded volume of a Kuhn
monemer for polystyrene in various solvents

Polymer/solvent T¢0) T—8(K) gr v/b v (A}
Polystyrene/cyclohexane 50 15 120 0.036 210
Polystyrene/cyclohexane G 33 24 0.079 460
Polystyrene/decalin 115 100 4 0.21 1200
Polystyrene/benzene 25 ~ 200° 0.6 0.5 3000

“For benzene (and most other good solvents) the 8-temperature is far below all measurement
temperatures and use of Eq. (3.107) to extrapolate to the 8-temperature has considerable error.

Measurement of the temperature dependence of second virial coefficient
4, for polymers with known molar mass M and Kuhn length 4 allows
estimation of the number of thermal blobs per chain N/grusing Eq. (3.109).

3.4 Distribution of end-to-end distances

We have seen numerous examples of the qualitative difference in properties
between ideal and real chains with excluded volume interactions. It is
therefore not surprising that the distribution of end-to-end vectors of real
chains is significantly different from the Gaussian distribution function of
ideal chains [Eq. (2.86)].

Relative probabilities to find chain ends at distances much larger than
the average end-to-end distance are related to the free energy penalty due
to chain elongation [see Problem 3.15 and Eq. (3.42):

&
kar(%) : (3.110)

where the exponent § = 1/(1 — v) is related to the exponent v of the root-
mean-square end-to-end distance of the chain:

(R2) ~ BNV (3.111)

For ideal chains, » =12 and =2 [see Eq. (3.35)], while for real chains
in a good solvent 220,588 and 622.43 [see Eq. (3.36)]. The tail of the
probability distribution function for end-to-end distances is determined by
the Boltzmann factor arising from this free energy penalty {Eq. (3.110)]

8
P(N,R) ~ exp (— —;7,) ~ eXp a( fRz}) for R > 1/ (R?),

(3.112)

where « is a numerical coefficient of order unity. For ideal chains (6§ =2}
this leads to the Gaussian distribution function [Eq. (2.86)]. For real
chains, a faster decay of the distribution function is expected due to the
higher power § 2 2.43 in the exponential:

2.43
P(N.R) ~exp|—a (%) for R > /{R%). (3.113)
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Distribution function P(x) of
normalized end-to-end distances

x = Rf+/(R%}. Thin curve, ideal chain;
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Real chains

Another major difference between ideal and real chains is the reduced
probability of two ends of a real chain to be near each other due to
excluded volume repulsion of these and neighboring monomers. Recall
from Section 2.5 that the probability of finding one end of an ideal chain
within a small spherical shell of volume 47R? dR around the other end is
proportional to the volume of this shell [see Eq. (2.86) for R < 5N"?|. This
probability is significantly reduced for real chains by an additional factor

£
P(N,R) ~ (L) for R < {/(R?), (3.114)
{R?)

due to excluded volume repulsion between sections of the polymer, as they
approach each other, The exponent g =0 for ideal chains because there is
no reduction of probabilities for small end-to-end distances. For real
chains, the exponent g2 0.28 in three dimensions and g=11/24 in two
dimensions.

By combining the two limits [Eqs. (3.113) and (3.114}], the distribution
function of normalized end-to-end distances can be constructed:

P(x) ~ x% exp (—ax®), (3.115)

where

=R (3.116)

V(R
An approximate expression for the three-dimensional distribution func-
tion for real chains results:

P(x) 2 0.278x%% exp (—1.206x*%3) real. (3.117)
For ideal chains, the corresponding function is Gaussian:
3332
P(x)—(%) exp (—1.5x%) ideal. (3.118)

The two functions are compared in Fig. 3.18. Note the dramatic difference
between them. Real chains in an athermal solvent rarely have ends in close
proximity. The probability to find chain ends within relative distance dx of
x is 47x*P(x) dx. The coefficients of the distributions of end-to-end dis-
tances are chosen so that they are normalized:

/P(x) d’x = / P(x)dnxtdx = 1. (3.119)
0
Their second moment is also equal to unity
/ XP(x)d’x = / ¥ P(x)dnx’ dx =1, (3.120)
0

due (o the definition of the relative distance x [Eq. (3.116)].

3.5 Scattering from dilute solutions

The size and shape of a polymer chain in dilute solution is best studied
using scattering methods. Each monomer absorbs the incident radiation
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Guinier Fractal
regime regime

5

1/R 1/p

and re-emits it in all directions. If there is contrast between monomers and
solvent they can be distinguished. The scattered intensity at a given scat-
tering wavevector is determined by this contrast and by the coherence
of the re-emitted radiation from pairs of monomers. The scattering
function S(7) is defined as a sum over all pairs of # monomers in the scat-
tering volume,

S@) =30 Y lexpli7- (7~ 7)), (3.121)

=1 k=1

where 4 is the scattering wavevector [Eq. (2.131)] and 7, is the position
vector of jth monomer. This scattering function is simply a dimensionless
version of the ratio of scattering intensity at wavevector § and con-
centration. The isotropic scattering function from dilute solution is sket-
ched in Fig. 3.19. At large wavevectors q 3> 1/R for each monomer j the
sum over k has contribution of order unity from each of the n, monomers
within distance 1/g from monomer / since for 7 - (F; — Fk) < | the expo-
nential is close to one. On the other hand, the contribution from monomers
further away from monomer j averages to zero. The scattering function at
large wavevectors is
} n
S(q)wnj:Zlnq—nq for ¢ > 1/R (3.122)

where n, is the number of monomers in the volume 1 /q°. The number of
monomers #, is related to the size of the chain segment 1/g through the
fractal dimension of the chain D

S(q) = n, = (gh) © for 1/R< g < 1/b. (3.123)

This power law extends from the monomer size b to the size of the chain R,
provided that the entire chain has the same fractal dimension D. Scattering
on such small scales is dominated by intra-molecutar scattering from

123

Fig. 3.19
Scattering function for a dilute solution
on logarithmic scales.



124

Real chains

monomers inside individual coils and is related to the pair correlation
function within the coil [Eq. (2.123}):
g(r) mgw o (3.124)

1.7 and

For real chains in an athermal solvent, D = 1/ 22 1.7, s0 S{q) ~ g~
g(r) ~ "2 within the coil.

For smaller wavevectors ¢ < 1/R, the number of monomers n, within
distance 1/ from monomer j saturates at the number of monomers in the
chain #. The exact form of the scattering function in this Guinier regime
enables calculation of the radius of gyration R, [Eq. (2.152)]. In both the
Guinier and fractal regimes, the scattering comes from pairs of monomers
on the same chain and the scattering function is proportional to the form

factor:

Cr

S(q) = NP(q) for q > (Tv) 7 (3.125)

The inter-molecular scattering dominates the scattering function at wave-
vectors g smaller than the reciprocal distance between chains (c,/N)'",
where ¢, is the number density of monomers in solutton. The inter-mole-
cular regime is controlled by concentration fluctuations arising from the
difference in the number of chains in volumes 1/¢°. Assuming there are no
interactions between chains (strictly valid only in very dilute solutions), the
mean-square fluctuation in the number of chains in the volume 1/¢° is of
the order of the average number n,/N = ¢,/(Ng®). The fluctuation in the

number of monomers in volumes of size 1/¢° is \/{(6nq)2) = N\/Cn/(Nq3).
The scattering function is the mean-square fluctuation in the number of
monomers in the volume 1/¢° normalized by the number of monomers n,in
this volume:

() N (N
S = Ve N

173
~N forg< (‘;—V} . (3.126)

Note that this value matches the low-g end of the fractal regime. 1t is hardly
surprising that the scattering function contains information about the
chain length, since in Chapter 1 we demonstrated how light scattering can
be used to determine molar mass from the low concentration limit of
Ry/(Kc), where Ry is Rayleigh ratio [Eq. (1.87)], X is the optical constant
[Eq. (1.89)], and ¢ is mass concentration. The scattering function for light
scattering is related to the Rayleigh ratio as

Ry

@) = an
where M, is the molar mass of a monomer, We give this relation for light
scattering for completeness, but scattering inside the polymer coils is
usually measured using neutrons and X-rays, which extend the range of
wavevectors to 1 nm ™', The scattering function from all of these scattering
experiments is the same, with the prefactor relating the scattering function
to scattered intensity being specific to the type of radiation used.

(3.127)
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3.6 Summary of real chains

Real chains have interactions between monomers. If the atiraction
between monomers just balances the effect of the hard core repulsion, the
net excluded volume is zero (v =0) and the chain will adopt a nearly ideal
conformation (see Chapter 2):

Ro = bN'?  for @-solvent. (3.128)

Such a situation with zero net exciuded volume 1s called the f-condition,
corresponding to a particular 6-temperature for a given solvent.

If the afttraction between monomers is weaker than the hard-core
repulsion, the excluded volume is positive and the chain swells. This cor-
responds to a good solvent at a temperature above the -temperature, and
the coil size is larger than the ideal size:

2p— )

Rp ~ b(b—‘;) Vs b%)o "N for s0od solvent,  (3.129)
The chain conformation is a self-avoiding walk of thermal blobs, whose
size decreases as temperature is raised.

In an athermal solvent, the monomer—solvent energetic interaction is
identical to the monomer monomer interaction. This makes the net
interaction between monomers zero, leaving only the hard core repulsion
between monomers. The excluded volume is independent of temperature

(vasb*), and the chain is a self-avoiding walk of monomers:
R = bN” = bN"®  for athermal solvent, (3.130)

If the attraction between monomers is stronger than the hard-core
repulsion, the excluded volume is negative and the chain collapses. This
occurs below the #-temperature, and corresponds to a poor solvent. In a
poor solvent, the polymer is in a collapsed globular conformation corre-
sponding to a dense packing of thermal blobs. The size of a globule is
smaller than the ideal size:

Ry = |vt71/3b2Nl/3 for poor solvent. (3.131)

A chain in a poor solvent collapses into a globule with significant amounts
of solvent inside. Most chains agglomerate with other chains and pre-
cipitate from solution. Only a very small number of polymers remain in the
solvent-rich phase of a poor solvent in a globular conformation described
by Eq. (3.131). Far below the @-temperature, the attraction dominates
completely and the excluded volume v~ — 5. This limit is called a non-
solvent, and an individual chain in that solvent would have a fully col-
lapsed conformation:

R = bN'7  for non-solvent. (3.132)
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In this case, most chains precipitate from solution into a melt excluding
nearly all solvent, and the chains then adopt ideal conformations to
maximize their entropy.

The good solvent and poor solvent results only apply to chains that are
sufficiently long. Short chains with degree of polymerization less than the
number of monomers i a thermal blob remain ideal, as depicted in
Fig. 3.15.

Several examples were given of scaling models that utilize blobs to
separate regimes of chain conformation. The common idea in these scaling
maodels is that, on the smallest length scales (inside the blobs), there is not
enough cumulative interaction to alter the chain conformation, On length
scales larger than the blob size, the cumulative interactions become larger
than the thermal energy, and can then modify the conformation of the
chain of blobs. Since the cumulative interaction energy of each blob is
roughly the thermal energy 4T, the total interaction energy can be con-
veniently estimated as kT per blob.

The free energy of stretching a real linear chain in a good solvent has
a stronger dependence on size R than the quadratic dependence of the
ideal chain:

R -0 R\
Peir(X) aa(B)

The stretching force for a real chain increases non-linearly with elongation:

_fb B b aFN R U/(l*!/]w R 1.43

The free energy of confining a real linear chain in a good solvent
either into a slit of spacing D or to a cylindrical pore of diameter D is
larger than for an ideal chain because the real chain has repulsive
interactions:

RF 1/v RF 1.7
kaT(D) NkT(D) . (3.135)

Excluded volume changes with temperature in the vicinity of the
g-temperature:

T-9

v b (T) (3.136)

Good solvents typically have T3 6, and their f-temperature is not
accessible because the solvent crystallizes at much higher temperatures.
Similarly, f-solvents cannot usually be heated far enough above the
f-temperature to reach the athermal limit because the solvent will boil at a
lower temperature.
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Problems
Section 3.1

3.1 (i) Taking the volume of a cylindrical Kuhn monomer to be bd?, derive an
expression for the eylindrical monomer diameter & in terms of the
characteristic ratio, molar mass per backbone bond, melt density, Kuhn
length 4 and bond angle 8.

(iiy Using the melt density of polyethylene p=0.784 gem and the melt
density of polystyrene p=0.784 gem—, along with the data of Table 2.1
for €, and b, calculate the diameter of the Kuhn eylindrical monomer for
these two polymers.

3.2 Consider the excluded volume interaction between hard spheres of radius R.

(i) What is the shortest possible distance between their centres?
(i) What is the interaction potential between these spheres?
(iti) Demonstrate that the excluded volume of hard spheres is eight times
larger than the volume v, a sphere:

v = %—“ﬁ = 8.

-

3.3 Consider the excluded volume interaction between spherical particles with
effective pairwise interaction potential

oo for r <2R
Ulry =< —kTo(2—r/(2R)) for 2R<r <4R ),
0 for »r > 4R

where kT is the strength of the attractive potential with 7= 100 K.

(i) Caiculate the excluded volume of these particles.
(i1) Plot the dimensionless excluded volume v/ R’ as a function of temperature
and determine the #-temperature of these particles.

3.4 Consider two cylindrical rods of length b and diameter d with 5> d. Fix the
centre of one of the rods at the origin of the coordinate system, pointing in the
x direction.

{i} Estimate the volume excluded for the second rod if it is fixed to always
point in the y direction (perpendicular rods).
(ii) Estimate the volume excluded for the second rod if it is fixed to always
point in the x direction (parallel rods).
(iiiy How do you expect the excluded volume to change at different fixed
angles between the two rods?

3.5 Consider a linear polymer chain with N monomers of length b, restricted to
the air-water interface (two-dimensional conformations). Repeat the
Flory theory calculation and demonstrate that the size R of the chain as a
function of the ‘excluded area’ a per monomer (two-dimensional analogue of
excluded volume v} is

R = a2 N4, {3.137)

Compare the size of this chain at the interface to that in the bulk for para-
meters N=1000, 5=3A, a=72A% v=216A".

3.6 Consider a randomly branched polymer in a dilute solution. Let us assume
that the radius of gyration for this polymer in an ideal state (in the absence of
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excluded volume interactions) is
Ry = bN'/4,

where & is the Kuhn monomer size and N is the number of Kuhn monomers.
Use a Flory theory to determine the size R of this randomly branched polymer
in a good solvent with excluded volume v. What is the size R of a randomly
branched polymer with N= 1000, =3 A, v=21.6 A Compare this size to
the size of a linear chain with the same degree of polymerization in the same
good solvent and in §-solvent.

3.7 Using the results of Problem 3.6, calculate the overlap volume fraction for the
three cases:

(i) randomly branched monodisperse polymer in good solvent.
(i) linear chain in good solvent.
(iii} linear chain in 8-solvent.

3.8 Consider a randomly branched polymer with & monomers of length &. The
polymer is restricted to the air—water interface and thus assumes a two-
dimensional conformation. The ideal size of this polymer Ry in the absence of
excluded volume interactions is

Ry = bNVY,

(i) Repeat the Flory theory calculation to determine the size R of the
branched polymer at the interface as a function of the ‘excluded area’ a
per monomer (two-dimensional analogue of the excluded volume v).
degree of polymerization N and monomer length b.

(ii) Calculate the size of the branched polymer with N=1000, b= 3A.
a=7.2 A? at the air-water interface.

(iii} Calculate the surface coverage (number of monomers per square
Angstrom} at overlap for this randomly branched polymer at the air-
water interface in good solvent.

(iv) How much higher is the surface coverage at the overlap of randomly
branched chains with ¥=100, 6=3A, a=7.2A at the air-water
interface, compared with ¥ = 10007

3.9 Consider a linear polymer chain with ¥ =400 Kuhn monomers of Kuhn
length #=4A in a solvent with ¢-temperature of 27°C. The mean-field
approximation of the interaction part of the free energy for a chain of size Ris

(%) +w@;):..],

where the excluded volume of a monomer is

e 4 3
V& (l"'T)b,

and w== 6% is the three-body interaction coefficient.

Fin % kTR

(i} Use Flory theory to estimate the size of the chain swollen at the
g-temperature due to three-body repulsion.

(ii) For what values of the excluded volume v does the two-body repulsion
dominate over the three-body repulsion? Is the chain almost ideal or
swollen if the two interactions are of the same order of magnitude?

(i} For what values of temperature T does the two-body repulsion
dominate over the three-body repulsion?
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(iv) Use Flory theory to estimate the size of the chain swollen at 60 °C due to
excluded volume repulsion (ignore the three-body repulsion).

(v) Estimate the overlap volume fraction ¢* of the chain at 60°C.

(vi) What is the number of Kuhn monomers in the largest chain that stays
ideal at 60°C?

Consider an oligomer with ¥ = 3 bonds occupying four lattice sites on a two-
dimensional square lattice with lattice constant &. One end of the oligomer is
fixed at the origin of the lattice.

(i} How many different conformations would such an oligomer have
if it can occupy the same lattice site many times (simple random
walk)?

(ii) How many different conformations would such an oligomer have if it
cannot occupy the same lattice site (self-avoiding walk)?

(iii} Find the root-mean-square end-to-end distance of the oligomer for the
first case.

(iv} Find the root-mean-square end-to-end distance of the oligomer for the
second case.

Why is there no temperature dependence of the excluded volume in an
athermal solvent?

1f the monomer—solvent interaction potential is identical to the monomer—
monomer interaction potential, the solvent is called:

(i) good,

(ii) 8,

(1ii) athermal.

Explain your answer.

(i) Construct a Flory theory for the free energy of a polyelectrolyte
chain consisting of ¥ monomers of length 5 and net charge of the
chain Q =efN, where £ is the fraction of Kuhn monomers bearing a
charge.

Hint: The electrostatic energy of the chain is 0%/(¢R), where ¢ is the diefectric
constant of the solvent and R is the size of the chain.

(i) Show that the size of the chain at temperature T'is

1/3
R~ Nbf/3 (%B) ,
where the Bjerrum length is defined as /g = &/(ek 7).

(i) What is the relation of the fourth virial coefficients of spherical (vy,)
and cylindrical (v4 ) monomers if there are 6/d spheres per cylinder?

(i) What is the relation of the kth virial coefticients of spherical (v, ;) and
cylindrical (v; o) monomers?

Section 3.2

3.15

316

Calculate the free energy F(N, Ry) and the force ffor stretching a chain with
an arbitrary scaling exponent v in the dependence of the end-to-end distance
on the number of monomers R=bN",

Calculate the free energy for compressing a real chain into a cylindrical
tube with diameter D. Assume an arbitrary scaling exponment v in the
dependence of end-to-end distance of the chain on the number of monomers
R=5bN".
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317

3.18

3.19

3.20

u

322

Calculate the free energy for squeezing a real chain between parallel plates
into a slit of width D. Assume an arbitrary scaling exponent w in the
dependence of the end-to-end distance of the chain on the number of
monomers R =4N".

Calculate the thickness £,4; of the adsorbed layer for a polymer with N
monomers of size b. The interaction energy of a monomer in contact with the
(planar) surface is —6KT. Assume an arbitrary scaling exponent » in the
dependence of end-to-end distance of the chain on the number of monomers
R=bHN".

Scaling theory of two-dimensional adsorption.

Consider a linear chain confined to an air—water interface. The attraction of
each monomer at the contact line between the edge of the interface and the
walls of the container is —0&T.

(i) Estimate the thickness and length of the ideal adsorbed chain of N Kuhn
monomers with Kuhn length 5.

(i) Calculate the energy of adsorption of the ideal polymer of part {i) to the
contact line.

(iii) Estimate the thickness and length of the real adsorbed chain of A
Kuhn monomers with Kuhn length 5. Recall that the unperturbed size of
the real chain confined to the air-water interface in good solvent is
R~ bN>* [Eg. (3.54)].

(iv) Calculate the energy of adsorption of the real polymer of part (iii) to the
contact line.

Flory theory of adsorption from a two-dimensional interface onto a one-
dimensional line.

Consider a real linear chain confined to an air—water interface. The
attraction of a monomer at the contact line between the edge of the interface
and the walls of the container is —8kT.

Calculate the thickness £,4, of the adsorbed real chain and the energy of
adsorptionusingFlory theory. Recallthat theunperturbedsize of therealchaim
confined to the air—water interface in good solvent is given by Eq. (3.54).
Consider a polymer chain consisting of ¥ Kuhn monomers of length 5.
adsorbed from a good solvent onto a solid substrate. A monomer in contact
with the surface has interaction energy —d8kT.

(i} What is the thickness &u4; of the adsorbed chain?
{ii} What is the size of the adsorption blobif N=1000, =3 A, and §=0.4"

Suppose that one of the ends of the adsorbed chain is attached to the tip of an
atomic foree microscope and is pulled away from the surface (still in a good
solvent) with force f.

(iii) What is the minimal force f required to pull the chain away from the
surface at room temperature?

(ivy What would be the minimal force f required to pull the chain away
from the surface if the tip of the atomic force microscope were
attached to a middle monomer rather than to the end monomer?

(v} Would the minimal force required to pull the chain away from the
surface in a f-solvent be smaller or larger (as compared to a good
solvent) for the same attractive energy —0kT? Explain your answer.

Consider a real chain adsorbed at a surface with an excess free energy gain

per monomer k7. Assume that the monomer concentration decreases as a

power law of the distance z from the surface
b o
e{z) = €(0) (;) for 0 < z < Las,

where exponent 0 < a < 1 and £,4; is the thickness of the adsorbed chain.
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(i) Calculate the fraction of monomers within distance b of the surface.
These are the monomers that lower their energy by favourable contacts
with the surface.

(ii) Construct a modified Flory theory for the adsorption of a real chain and
estimate the thickness £,4; of the adsorbed chain as a function of the
excess [Tee energy gain per monomer 8k T. Ignore the effects of the density
profile ¢(z) on the confinement free energy penalty.

3.23 Theeffective interaction between each monomer and an adsorbing surface is

b3
Wiz) = —kT—A

where 4 is the Hamaker constant of the polymer-surface interaction.
Consider an ideal chain adsorbed at the surface. Find the relation between
the free energy gain per contact — 6k Tand the effective Hamaker constant 4.

Section 3.3

3.24 Calculate the force needed to stretch a chain, of ¥ = 1000 Kuhn monomers
with Kuhn length b=3 A in a good solvent with excluded volume
v=37.5A% by a factor of 4 from its unperturbed root-mean-square end-to-
end dlstance at room temperature.

3.25 Consider a chain of N Kuhn monomers with Kuhn length 4 in a good solvent
with excluded volume v confined between parallel plates in a slit of width D.

(i} What is the size of a thermal blob and the number of monomers in a
thermal blob?
(i) What is the size of a compression blob?
(iii} What is the number of monomers in a compression blob? Note: Be
careful with respect to relative sizes of compression and thermal blobs,
(iv} What is the free energy of confinement of the chain in a slit?
(v) Atwhat thickness of the slit [ does the free energy change form between
real and ideal chain expressions?
(vi} Estimate the value of this crossover thickness D for a chain with
= 1000 Kuhn monomers w1th Kuhn length b=5 A in a good solvent
w1th excluded volume v =20 A’.

3.26 Consider a randomly branched polymer in a dilute solution. The ideal size of
this polymer, Ry, in the absence of excluded volume interactions is

Ry = BN/,
where b is the monomer size and N is the degree of polymerization.

(i} Use the scaling theory to determine the size R of this randomly
branched polymer in a good solvent with excluded volume v.

(ii) What is the number of monomers in a thermal blob for this randomly
branched polymer as a function of excluded volume v and monomer size
4. How does it compare to the similar expression for the number of
monomers in a thermal blob in linear polymers?

(iiiy What is the size. £5, of a thermal blob for a randomly branched
polymer? How does it compare to the similar expression for the size of
the thermal blob in linear polymers.

Hint: Recall that the cumulative energy of all excluded volume interactions
inside a thermal blob is equal to kT
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3.27

3.28

3.29

3.30

(iv) What is the size of a randomly branched polymer with N = 1000,
b=3A,in a good solvent with v =2. 7A%

(v) What is the size of a linear chain for the same set of parameters?

(vi) What are the size and the number of monomers in the largest randomly
branched polymer that stays ideal for monomer length b= 3A, and
excluded volume v=2.7A% (Hint: Thermal biob.)

(vii} What are the size and the number of monomers in the largest linear
polymer that sta;ys ideal for monomer length =3 A, and excluded
volume v=2.7 A”? (Hint: Thermal blob.)

Assume the simple approximation for a temperature dependence of the

excluded volume:
v= (l - E) B
T

Consider a chain with degree of polymerization N = 1000 and monomer size
b =3 A in a solvent with #-temperature of 30°C.

(i) What would be the chain size at temperatures: T= 10, 30, and 60°C?
(ii) Sketch the temperature dependence of the size of this polymer.
(iii) Whatis the degree of polymerization of the largest chain that stays ideal
at T=60°C (Hins: Thermal blob)?
(iv) Estimate the degree of polymerization of the largest chain that dissolves
in the solvent at T=10°C (Hins: Thermal blob)?

Use the following light scattering data for the temperature dependence
of the second virial coefficient of a linear poly(methyl methacrylate) with
M, =2380000g mol~' in a water/-butyl alcohol mixture to determine the
temperature dependence of excluded volume, assuming the Kuhn length of
PMMA is |7 A:

T(°C) 37.0 38.0 40.0 43.8 50,0 55.8
10° 45 (em’molg™?) -64 —34 —04 0.5 3.5 4.1

*
(i) Estimate the excluded volume at each of the six temperatures.
(i} Estimate the #-temperature from these data.
(ili} To measure the excluded volume of this polymer/solvent system at lower
temperature, should a higher or lower molar mass sample be studied?

Data from M. Nakata, Phys. Rev. E 51, 5770 (1995).

Derive an equation for the second virial coefficient in a solution of collapsed
globules below their #-temperature, in terms of the number of Kuhn
monomers per chain », the Kuhn monomer size # and the reduced
temperature (8 — T)/T. Can this second virial coefficient be related to the
chain interaction parameter of Eq. (3.97)?

Determine the relation between the chain interaction parameter z [defined in

Eq. (3.22)] and the number of thermal blobs per chain N/gr.

Section 3.4
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Polymerization of ring polymers.
Ring polymers are synthesized by linking two reactive ends of linear
polymers in dilute solution. The cyclization probability can be defined as the
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probabhility of two ends of a chain being found within monomeric distance &
of each other.

(i) What are the cyclization probabilities of N-mers in §-solvent and in good
solvent? What is the ratio of these probabilities for ¥ = 100?

(i) Are the resulting ring polymers obtained by cyclization in §-solvent and
zood solvent statistically equivalent? In other words will these rings have
the same size if they are placed in the same solvent? If they are different,
which one is larger? Explain your answer.

Section 3.5

3.32  Apair correlation function g{7) was defined in Section 2.7 as the probability
of finding a menomer in a unit volume at distance 7 away from a given
monomer (labeled by j=1). Note that j=1 is not necessanly the end
monomer of any chain. The pair correlation function g(¥") can be wr:tten in
terms of the delta function summed over allmonomersexcept for theoneat 7

g(7) = <Zé(? (?j—?’.))> (3.138)

A

(i) Show that the Fourier transform of the pair correlation function is

(91 = [ 8P (7 o P =3 el 17 (7= 7)) -
(3.139)

(i) Recognize that the choice of the j = 1 monomer was arbitrary and use
the definition of the scattering function (Eq. 3.121) to show that

S(qy=1+g(q) = 1+/g(?)exp(—f7. 7)dr (3.140)
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