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Thermodynamics of mixing

Mixtures are systems consisting of two or more different chemical species.
Binary mixtures consist of only two different species. An example of a
binary mixture is a blend of polystyrene and polybutadiene. Mixtures with
three components are called ternary. An example of a ternary mixture is a
solution of polystyrene and polybutadiene in toluene. If the mixture is
uniform and all gomponents of the mixture are intermixed on a molecular
scale, the mixture is called homogeneous. An example of a homogeneous
mixture is a polymer solution in a good solvent. If the mixture consists of
several different phases (regions with different compositions), it is called
heterogeneous. An example of a heterogeneous mixture is that of oil and
water. Whether an equilibrium state of a given mixture is homogeneous or
heterogeneousis determined by the composition dependence of the entropy
and energy changes on mixing. Entropy always favours mixing, but
energetic interactions between species can either promote or inhibit mixing.

4.1 Entropy of binary mixing

Consider the mixing of two species A and B. For the moment, assume that
the two mix together to form a single-phase homogeneous liquid (criteria
for such mixing will be determined later in this chapter). For purposes of
illustration, the mixing is shown on a two-dimensional square lattice in Fig.
4.1. More generally, it is assumed that there is no volume change
on mixing: volume ¥4 of species A is mixed with volume Vg of species B
to make a mixture of volume V4 + V. The mixture is macroscopically
uniform and the two components are randomly mixed to fill the entire
lattice. The volume fractions of the two components in the binary mixture

are ¢, and ¢p:

VA VB

=72 and gp=- B =1-ga. 41
Vit Vs and ¢p Vot 7 Pa (4.1

da

While Fig. 4.1 shows the mixing of two small molecules of equal mole-
cular volumes, similar mixing is possible if one or both of the species are
polymers. In the more general case, the lattice site volume v is defined by
the smallest units (solvent molecules or monomers), and larger molecules

Fig. 4.1
Mixing two species with no volume
change.
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Table 4.1 The number of lattice sites
occupied per molecule

Na Ny
Regular solutions 1 1
Polymer solutions N 1
Polymer blends Na Ng

Thermodynamics of mixing

occupy multiple connected lattice sites. A molecule of species A has
molecular volume

VA — NAVU (42)
and a molecule of species B has molecular volume
VB — NBVO, (43)

where N, and Ny are the numbers of lattice sites occupied by each
respective molecule.! There are three cases of interest that are summarized
in Table 4.1.

Regulor solutions are mixtures of low molar mass species with N, =
Ng = 1. Polymer solutions are mixtures of macromolecules (N =N 1)
with the low molar mass solvent defining the lattice {Np=1). Polymer
blends are mixtures of macromolecules of different chemical species
{No> | and N 1),

The combined system of volume ¥4 + Vg occupies

Va+ Vg
n=

VO (4.4)

lattice sites, while all molecules of species 4 occupy Va /vy =rniga sites.

The entropy S is determined as the product of the Boltzmann constant &
and the natural logarithm of the number of ways () to arrange molecules
on the lattice (the number of states).

S=klnQ. (4.5)

The number of translational states of a given single molecule is simply the
number of independent positions that a molecule can have on the lattice,
which is equal to the number of lattice sites. In a homogeneous mixture of
A and B, each molecule has

-

QAB =n (46)

possible states, where # is the total number of lattice sites of the combined
system [Eq. (4.4)]. The number of states {5 of each molecule of species A
before mixing {in a pure A state) is equal to the number of lattice sites
occupied by species A.

s = nga. (4.7)
For a single molecule of species A, the entropy change on mixing is
Q
ASa =k In ap —k In Qa :kln(—A—B)
{24
(4.8)

1
=kln (Qﬁ) =—-kn ¢A-

A

! The lattice sites are of the order of monomer sizes, but do not necessarily correspond
precisely to either the chemical monomer or the Kuhn monomer.
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Since the volume fraction is less than unity {¢4 < 1), the entropy change
upon mixing is always positive ASa= —k& In ¢4 >0. Equation (4.8)
holds for the entropy contribution of each molecule of species A, with a
similar relation for species B. To calculate the total entropy of mixing, the
entropy contributions from each molecule in the system are summed:

ASuix = #aASA +rASE = —k{(na In ¢4 + 25 In ¢p). (4.9)
There are ny = nga/Na molecules of species A and ng = ndp/Ny molecules
of species B. The entropy of mixing per lattice site ASx = ASyix/n s an
intrinsic thermodynamic quantity:

ASmix = —k %i In ¢a +%‘; In ¢B}_

(4.10)
The entropy of mixing per unit volume 18 ASpix /o, where vg is the volume
per lattice site.

A regular solution has N4 = N =1 and a large entropy of mixing:

for regular solutions.  (4.11)

ASnix = —k [pa In ga + ¢ In o]

A polymer solution has Ny =N and Ng=1:

ASmix = —k % In ¢a + ¢p In ¢g| for polymer solutions.  (4.12}

Equations (4.10)~(4.12) predict enormous differences between the
entropies of mixing for regular solutions, polymer solutions, and polymer
blends. Consider the 10 x 10 square lattice of Fig. 4.2 with three different
mixtures that each have ¢,=o¢r—0.5. A regular solution of small
molecules is shown in Fig. 4.2(a), using 50 black balls and 50 white balls.
A polymer solution with five 10-ball black chains and 50 white balls is
shown in Fig. 4.2(b) and a polymer blend with ten 10-ball chains (five
black and five white) is shown in Fig. 4.2(c). The entropies of mixing per
site for these mixtures are summarized in Table 4.2.

Typically N is large, making the first term in Eq. (4.12) negligible com-
pared to the second term. For solutions with ¢ = ¢g=0.5, as in Fig. 4.2
and Table 4.2, the entropy of mixing for the polymer solution is roughly
half of that for the regular solution. For polymer blends, both N4 and Ng

)y
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Table 4.2 The mixing entropy per site
for the three situations depicted in
Fig. 4.2

Mixture Al fk

50 black balls and 0.69
50 white balls

Five 10-ball black chains 0.38

and 50 white balls
Five 10-ball black chains and  0.06%
five 10-ball white chains

Fig. 4.2

Binary mixtures of (a) a regular solution
of 50 white balls and 50 black balls,

(b) a polymer solution of five black
10-ball chains, and (c) a polymer blend
of five white 10-ball chains and five black
10-ball chains.
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Fig. 4.3

The mixing free energy of an ideal
mixture is always favourable and all
compositions are stable, The bottom
curve is a regular solution with
Na=Ng=1,The middle curveis a
polymer solution with ¥4 =10 and
Ng=1.The top curve isa polymer blend
with Ny =Ng=10.

Thermodynamics of mixing

are typically large, making the entropy of mixing [Eq. (4.10)] very small.
For this reason, polymers have strvmied entropy. Connecting monomers
into chains drastically reduces the number of possible states of the system.
To illustrate this point, simply try to recreate Fig. 4.2(c) with molecules in
a different state.

Despite the fact that the mixing entropy is small for polymer blends, it is
always positive and hence promotes mixing, Mixtures with no difference m
interaction energy between components are called ideal mixtures. Let us
denote the volume fraction of component 4 by ¢4 =¢ and the corre-
sponding volume fraction of component B becomes ¢p =1 — ¢. The free
energy of mixing per site for ideal mixtures is purely entropic:

¢ 1-¢

AFpy = —TASpix = kT|— 1
hY Na n ¢+ N

In{l — @} |. (4.13)
Ideal mixtures are always homogeneous as a result of the mixing entropy
always being positive. Figure 4.3 shows the mixing free energy of an ideal
regular solution, an ideal polymer solution, and an ideal polymer blend.

The mixing entropy calculated above includes only the translational
entropy that results from the many possible locations for the centre of
mass of each component. The calculation assumes that the conformational
entropy of a polymer is identical in the mixed and pure states. This
assumption is very good for polymer blends, where each chain is nearly
ideal in the mixed and pure states. However, many polymer solutions have
excluded volume that changes the conformation of the polymer in solu-
tion, as discussed in Chapter 3. Another important assumption in the
entropy of mixing calculation is no volume change on mixing. Real poly-
mer blends and solutions have very small, but measurable, volume changes
when mixed.

4,2 Energy of binary mixing *

Interactions between species can be either attractive or repulsive. In most
experimental situations, mixing occurs at constant pressure and the
enthalpic interactions between species must be analysed to find a minimum
of the Gibbs free energy of mixing. In the simplified lattice model {Flory—
Huggins theory) discussed in the present chapter, components are mixed at
constant volume and therefore we will be studying the energy of interac-
tions between components and the change in the Helmholtz free energy of
mixing.

The energy of mixing can be either negative (promoting mixing) or
positive (opposing mixing). Regular solution theory allows for both
possibilities, using the lattice model. To estimate the energy of mixing this
theory places species into lattice sites randomly, ignoring any correlations.
Thus, for all mixtures, favourable or unfavourable interactions between
monomers are assumed to be small enough that they do not affect the
random placement. Worse still, the regular solution approach effectively
cuts the polymer chain into pieces that are the size of the solvent molecules
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tthe lattice size) and distributes these pieces randomly. Such a mean-field
approach ignores the correlations between monomers along the chain (the
chain connectivity). Here, for simplicity, it is assumed that in polymer
blends the monomer volumes of species A and B are identical.

Regular solution theory writes the energy of mixing in terms of three
pairwise interaction energies (uas, ¥ap, and upp) between adjacent
lattice sites occupied by the two species. A mean field is used to determine
the average pairwise interaction U, of a monomer of species A occupying
one lattice site with a neighbouring monomer on one of the adjacent sites.
The probability of this neighbour being a monomer of species A is
assumed Lo be the volume fraction ¢4 of these molecules {ignoring the
effect of interactions on this probability). The probability of this neigh-
bour being a monomer of species B is ¢p=1 — ¢a. The average pairwise
interaction of an A-monomer with one of its neighbouring monomers is a
volume fraction wetghted sum of interaction energies:

UA = HAA(?BA + UAB¢B. (414)

The corresponlling energy of a B-monomer with one of its neighbours is
similar to Eq. (4.14):

Up = uspda + uBnoB- (4.15)

Each lattice site of a regular lattice has z nearest neighbours, where z is
the coordination number of the lattice. For example, z=4 for a square
lattice and z=6 for a cubic lattice. Therefore, the average interaction
energy of an A monomer with all of its z neighbours is zUA. The average
energy per monomer is half of this energy (zU4/2) due to the fact that every
pairwise interaction is counted twice (once for the monomer in question
and once for its neighbour). The corresponding energy per site occupied by
species B is zUg/2. The number of sites occupied by species A (the number
of monomers of species A) is n¢a, where nis the total number of sites in the
combined system. The number of sites occupied by monomers of species B
is ngp. Summing all the interactions gives the total interaction energy of
the mixture:

U= % [Undpa + Undnl. (4.16}

Denoting the volume fraction of species A by ¢=¢a=1- ¢g,
Egs (4.14)—(4.16) are combined to get the total interaction energy of a
binary mixture with » lattice sites:

U= %{[thﬁ +aan(l — §)|6 + [uand + ups(1 — #)])(1 — &)}
= %[uquz + 2upgp(l — @) + upr(1l — ¢)2}- (4.17)

The interaction energy per site in a pure A component before mixing
is zuaa/2, because each monomer of species A before mixing is only
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surrounded by species A. We ignore the boundary effects because of the
very small surface-to-volume ratio for most macroscopic systems. The
total number of monomers of species A is #¢) and therefore the total energy
of species A before mixing is

zn
3 UAAD
and the total energy of species B before mixing is

zn

—j_uBB(l - gb)

The total energy of both species before mixing is the sum of the energies of
the two pure components:

Uy =§§[uAA¢+uBB(1 - o). (4.18)

The energy change on mixing is

U= o =5 luard’ + 2und(l — 9) = usp(1 = 9)" = uand — vmn(1 = )]
= D lunn(6” — 6) + 2uand(l — §) + (1 = 26+ 6 = 1 + 6]
= % [uand(¢ — 1) + 2uapd(l — §) + uppd(¢p — 1)]
=251 - 6)(2uan — wan — usn) (4.19)

Itis convenient to study the intensive property, which is the energy change
on mixing per site:

-

-t gfﬁ(l — ¢)(2uan — tiaa — tun). (4.20)

n

A Umix =

The Flory interaction parameter y is defined to characterize the difference
of interaction energies in the mixture:

{(2uap — uas — UBB) . (4.21)

:E
X=3 kT

Defined in this fashion, y is a dimensionless measure of the differences in
the strength of pairwise interaction energies between species in a mixture
{compared with the same species in their pure component states). Using
this definition, we write the energy of mixing per lattice site as

Almis = x(1 ~ )T, (4.22)

This energy equation is a mean-field description of all binary regular
mixtures: regular solutions, polymer solutions, and polymer blends.
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Combining with Eq. (4.10) for the entropy of mixing, we arrive atl the
Helmholtz free energy of mixing per lattice site:
All_;'mix - &Umix - TASIIID(
¢ 1-¢ (4.23)

=kTN—A]n¢+ e In(1 — @) + xo(1 — ¢)|.

The free energy of mixing per unit volume is AFyx/vo. Equation (4.23)
was first calculated by Huggins and later independently derived by Flory,
and is commonly referred to as the Flory—Huggins equation.

For non-polymeric mixiures with Ny = Ng=1, this equation was
developed earlier by Hildebrand and is called regular solution theory:

Afpx =kT[p In ¢+ (1 — ¢} In{l — ¢) + x¢(1 = ¢)]. (4.24)

For polymer solutions, ¥, =N and Ng= 1, reducing Eq. (4.23) to the
Flory—Huggins equation for polymer solutions:

Afp =kT %ln o+ (1 —¢) In{l — @) + xo(1 — ¢}]. (4.25)

The first two terms in the free energy of mixing [Eq. {4.23)] have entropic
origin and always act to promote mixing, although with blends of long-
chain polymers these terms are quite small. The last term has energetic
origin, and can be positive (opposing mixing), zero [ideal mixtures—
Eq. (4.13)], or negative (promoting mixing) depending on the sign of the
interaction parameter x.

If there is a net attraction between species (i.e. they like each other better
than they like themselves), y < 0 and a single-phase mixture is favourable
for all compositions. More often there is a net repulsion between species
(they like themselves more than each other) and the Flory interaction
parameter is positive x > 0. In Section 4.4, we will show that in this case
the equilibrium state of the mixture depends not on the sign of the free
energy of mixing AFy,;, at the particular composition of interest, but on
the functional dependence of this free energy on the composition ¢ for the
whole range of compositions. This functional dependence AFmix(gb)
depends on the value of the Flory interaction parameter x as well as on the
degrees of polymerization of both molecules N4 and Ng.

It is very important to know the value of the Flory interaction para-
meter y for a given mixture. Methods of measuring this parameter are
discussed in Section 4.6 and tables of y parameters are listed in many
reference books (see the 1996 review by Balsara).

For non-polar mixtures with species interacting mainly by dispersion
forces, the interaction parameter y can be estimated by the method
developed by Hildebrand and Scott. It is based on the solubility porameter
& related to the energy of vapourization AE of a molecule. For example,
for a molecule of species A the solubility parameter is defined as

ba = =23 (4.26)
Va
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where v, is the volume of molecule A [Eq. (4.2)]. The energy of vapour-
1zation AE, of a molecule A is the energy of all the mteractions between
the molecule and its neighbours that have to be disrupted to remove the
molecule from the pure A state. The ratio AE/v, is called the cohesive
energy density and is the interaction energy per unit volume between the
molecules in the pure A state. The interaction energy per site in the pure A
state zus 5/2 [see the paragraph below Eq. {4.17)] is therefore related to the
solubility parameter 6 5.

ZUAAN = AEA

2 VA

= voba, (4.27)

where v is the volume per site. Note that the minus sign is due to the fact
that the interaction energy is negative ua <0, while the energy of
vapourization is defined to be positive. Similarly, the interaction energy
per site in the pure B state is

zuse _ A8 _ o (4.28)
VB

where vg is the volume of molecule B [Eq. (4.3)]. The cohesive energy
density of interaction between molecules A and B is estimated from the
geometric mean approximation

ZUAR

2

Substituting Eqs (4.27)—(4.29} into the definition of the Flory interaction
parameter [Eq. (4.21)] allows it to be written in terms of solubility para-
meter difference.’

= V0(5A5B. (4.29}

oo A = 26at] _ w0

o = o lba = 53.)2. (4.30)

Since y is related to the square of the difference in solubility parameters it
is clear why the Flory interaction parameter is usually positive x > 0. The
above approach works reasonably well for non-polar interactions, which
only have van der Waals forces between species, and does not work in
mixtures with strong polar or specific interactions, such as hydrogen
bonds.

One of the major assumptions of the Flory-Huggins theory is that there
is no volume change on mixing and that monomers of both species can fit
on the sites of the same lattice. In most real polymer blends, the volume
per monomer changes upon mixing. Some monomers may pack together
better with certain other monomers. The volume change on mixing and
local packing effects lead to a temperature-independent additive constant
in the expression of the Flory interaction parameter. In practice, these

2 Note that since the Flory x parameter is defined in terms of energies per site, it is
proportional to the site volume vo. The site volume, therefore, must be specified whenever x is
discussed.
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effects are not fully understood and all deviations from the lattice model
are lumped into the interaction parameter x, which can display non-trivial
dependences on composition, chain length, and temperature. Empirically,
the temperature dependence of the Flory interaction parameter is often
written as the sum of two terms:

X(T)’:VA+§ (4.31)
The temperature-independent term A is referred to as the ‘entropic part’ of
\. while B/T is called the ‘enthalpic part’. The parameters 4 and B have
been tabulated for many polymer blends and we list representative
examples in Table 4.3. Isotopic blends typically have small positive x
parameters {deuterated polystyrene blended with ordinary polystyrene
dPS/PS is an example) making them only phase separate at very high
molar masses. PS/PMMA has four entries in Table 4.3, which reflect the
differences encountered by labelling various species with deuterium. PS/
PMMA is typical of many polymer pairs, for which the x parameter is
positive and of order 0.01, making only low molar mass polymers form
miscible blends. PVME/PS, PS/PPO, and PS/TMPC have a strongly
negative x parameter over a wide range of temperatures (of order —0.01)
but since A4 >0 and B <0, these blends phase separate on heating. PEO/
PMMA, PP/hhPP and PIB/hhPP, all represent blends with very weak
interactions between components (y == 0).

Additionally, the parameters 4 and B are often found to depend weakly
on chain lengths and composition. Shortcomings of the Flory-Huggins
theory are usnally lumped into the interaction parameter x. The Flory—
Huggins equation {with all the corrections combined in x) contains all
of the thermodynamic information needed to decide the equilibrium

Table4.3 Temperature dependence of the Flory interaction parameters of polymer blends
{Eq. (4.31)] with vo=100 A’

Polymer blend A B (X) T range (°C)
dPS/PS —0.00017 0.117 150-220
dPS/PMMA 00174 2.39 120180
PS dPMMA 0.0180 1.96 170-210
PS'PMMA 0.0129 1.96 100-200
dPS/dPMMA 0.0154 1.96 130-210
PVME/PS 0.103 —43.0 60-150
dPS/PPO 0.059 =325 180-330
dPS/TMPC 0.157 -81.3 190-250
PEO/dPMMA —0.0021 - 80-160
PP/hhPP —0.00364 1.84 30-130
PIB/dhhPP 0.0180 —7.74 30-170

dPS—deuterated polystyrene; PS—polystyrene; PMMA—poly(methyl methacrylate); dPMMA—
denterated poly(methyl methacrylate); PYME—poly(vinyl methyl ether), PPO—poly(2,6-
dimethyl 1.4-phenylene oxide); TMPC—tetramethylpolycarbonate; PEO—poly(ethylene oxide);
PP—polypropylene; hh PP—head-to-head polypropylene: PIB—polyisobutylene; dhhPP—deuter-
jum labelled head-to-head polypropylene (after N. P. Balsara, Physical Properties of Polymers
Handbook, AIP Press, 1996, Chapter 19).
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Fig. 4.4

The states of a brick.

Fig. 4.5

Composition dependence of free energy,
with examples of systems that are

(a) unstable and (b) locally stable. Local
stability is determined by the sign of the
second derivative of free energy with
respect to composition.

Thermodynamics of mixing

state of a mixture and whether any metastable states are possible, as
discussed next.

4.3 Equilibrium and stability

The definition of thermodynamic equilibrium is the state of the system with
minimum free energy. Consider the states of a brick, shown in Fig. 4.4. The
angle that the long side of the brick makes with the ground is 6, as defined in
state A. The stable equilibrium state, or ground state of the brick, is shown
as state B in Fig. 4.4, with the brick lying on the ground. This state is
stable because any perturbations in the angle that the brick makes with the
ground lead to its centre-of-mass being higher above the ground than
the ground state, thereby increasing its potential energy. If the brick is
balanced on its edge (state A in Fig. 4.4), any small fluctuations would lead
toits fall and state A is called unstable. When standing on one end (state C),
the brick has its centre-of-mass at half of the height of the brick. Any small
change in # from state C will increase the potential energy by raising the
centre-of-mass of the brick. Thus, state C is metastable: small perturbations
do not allow the brick to move from state C to state B, even though state B
has lower energy and thus is the equilibrium state of the brick. Indeed, the
brick in state C would stand until an earthquake causes it to move to state B.
Hence, a long time duration of a given state is insufficient information
to conclude that the state is the equilibrium state. The graph in Fig. 4.4
summarizes the free energy of the brick as a function of angle .

Consider the local stability of a homogeneous mixture of composition
o with free energy Froic{¢o) that is either locally concave or convex, shown
in Fig. 4.5. Stability is determined by whether the free energy of the mixed
state Foi(co) is higher or lower than that of a phase separated state.
F.p{o). If the system with overall composition ¢y is in a state with two
phases, with volume fraction of A species in the o phase ¢, and the fraction
of A component in the P phase ¢p (see Fig. 4.5), the relative amounts of
cach phase are determined from the lever rule. With the fraction f, of the
volume of the material having composition ¢, (and fraction fa=1-/,
having composition ¢g), the total volume fraction of A component in the
system is the sum of contributions from the two phases:

dJO zfu¢a +f[3¢|3- (4°32}
@ F ®» F
L .
Fmix TR E
Fop |-
F, b
@50. éb() ‘Flap = d} iy ¢,
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This equation can be solved for the fractions of the material that will have
cach composition (since fg=1—fy):

Cbﬁ - CbO ¢0 — Py
— and fp=1—f = —2. 4.33
¢B = ¢ P * ¢B — ¢y ( )
The free energy of the demixed state is the weighted average of the free

energies of the material in each of the two states (F, and Fg), neglecting the
interfacial energy (surface tension) between the two phases:

(¢p — d0) Fu + (b0 — D=} Fp
¢|3 - ';bu .

This linear composition dependence of the free energy of the demixed state
F,p(¢bo) results in the straight lines in Fig. 4.5 that connect the free energies
F, and Fp of the two compositions ¢, and ¢p. The local curvature of
the free energy determines local stability, as demonstrated in Fig. 4.5. If
the composition dependence of the free energy 1s concave [Fig. 4.5(a)], the
svstem can spontaneously lower its free energy by phase separating into
two phases, since Fp(¢do) < Fmix{¢o).

On the other hand, when the compuosition dependence of the free energy
is convex, as shown in Fig. 4.5{b), any mixed state has lower free energy
than any state the blend could phase separate into Fnido) < Fopleo)
making the mixed state locally stable. The criterion for local stability is
written in terms of the second derivative of the free energy:

aszix

f

Fupido) = fuFu + foFp = (4.34)

2 < 0 unstable, (4.35)
2
Fai
9 3¢21x >0 locally stable. (4.36)

Ideal mixtures with AU,z =0 have their free energy of mixing
[Eq. (4.13)] convex over the entire composition range, as can be seen in
Fig. 4.3. To understand why it is convex, we differentiate Eq. {4.13) with
respect to composition

INAF iy OAS i ng 1 In{l-¢)
__T _ype, L _Wil-d) 1 4;
A o , Na +NA Ng Ng (437

Notice that this purely entropic contribution diverges at both extremes of
composition (JAF /0 — —oo as ¢—0 and IAFL /O — oo as
o— 1). This divergence means that a small amount of either species will
always dissolve even if there are strong unfavourable energetic interac-
tions. Differentiating the free energy of mixing a second time determines
the stability of the mixed state for ideal mixtures

Py PASin T 1]
ap? g2 " |[Na¢  Np(l— o)

0. (4.38)
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Fig. 4.6

At T=0 K, the mixing free energy is
determined by the energy of mixing. If
B> 0, mixing is unfavourable and all
blend compositions are unstable. If

B < 0, mixing is favourable and all blend
compositions are stable.

Thermodynamics of mixing

Homogeneous ideal mixtures are stable for all compositions because
entropy always acts to promote mixing, and the ideal mixture does not have
any energetic contribution to its free energy.

The opposite case where the energy dominates is found at 7=10 K.
because the entropic contribution vanishes, The free energy only has an
energetic part given, for example, by Eq. (4.22) for regular mixtures.
Differentiating Eq. (4.22) twice with respect to composition determines
whether the blend is locally stable at 0 K

aZAFmix _ 62A[7mix
d¢? - A’

The stability criterion at 7=0 K can be determined from either Eq. (4.21)
or Eq. {(4.31)

= kT (4.39)

azﬁpmix
Ag?

The parameter B describes the temperature dependence of x in Eq. (4.31).
If the components of the mixture like themselves more than each other

= —z(2uAB — HaA — uBB) = —2kB (440)

Uas T U
HAB>AA—2BE or B>0

the free energy of mixing is concave {Fig. 4.6, top curve) and homogeneous
mixtures are unstable for all compositions at T=0 K because the second
derivative of the free energy of mixing is negative [Eq. (4.35)]. Any mixture
phase separates into the two pure components at T=0 K since entropy
makes no contribution at this special temperature. This case corresponds
to positive Flory interaction parameter y > 0.

If the components like each other better than themselves

Upan + U
uAB<M42m3~ or B<0

the free energy of mixing is convex (Fig. 4.6, bottom curve) and homo-
geneous mixtures of any composition are stable at T=0 K. This case
corresponds to negative Flory interaction parameter y < 0.

Real mixtures have both energetic and entropic contributions to their
free energy of mixing. The local stability of the mixture is determined
by the sign of the second derivative of the free energy with respect to
composition:

82'&'F‘mix - 82& Umix - Tazﬁgmix
op* o’ of*
1 + l
Nag¢  Np(1 —¢)
At finite temperatures, AF;, is convex at both ends of the composition

range because its second derivative is positive due to the diverging slope of
the entropy of mixing ASp..

kT — OykT. (4.41,
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For example, consider a polvmer blend with ¥4 =200 and Ng = 100, for
which y7 =5 K. At high temperatures the entropic term of the mixing free
energy dominates, and all blend compositions are stable, as shown in Fig.
4.7 at 350 K.

As temperature is lowered the entropic term diminishes, allowing the
repulsive energetic term to start to be important at intermediate com-
positions. Entropy always dominates the extremes of composition {due to
the divergent first derivative) making those extremes stable. Below some
critical temperature T, (defined in detail in Section 4.4), a composition
range with concave free energy appears, which makes intermediate com-
positions unstable. Below T, there is a range of compositions for which
there are phase separated states with lower free energy than the homo-
geneous state. Many demixed states have lower free energy than the
homogeneous state, but the lowest free energy state defines the equilibrium
state. Straight lines connecting the two phase compositions determine
the free energy of the phase separated state. In order to minimize the
free energy, the system chooses the compositions that have the lowest
possible straight Jine, which is a common tangent. The phases present are
thus determined by the common tangent rule. This common tangent mini-
mization of the free energy of mixing effectively requires that the chemical
potential of each species in both phases are balanced at equilibrium. The
two equilibrium compositions ¢’ and ¢” at 250 K correspond to a common
tangent line in Fig. 4.7. For any overall composition in the miscibility gap
between ¢’ and ¢, the system can minimize its free energy by phase
separating into two phases of composition ¢’ and ¢”. The amounts of each
phase are determined by the lever rule outlined above [Eq. (4.33)]. The
compaosition ranges 0 < ¢ < ¢’ or ¢” < ¢ < 1 are outside the miscibility gap
and the homogeneously mixed state is the stable equilibrium state for these
blend compositions.

Within the miscibility gap there are unstable and metastable regions,
separated by inflection points at which the second derivative of the free
energy is zero (FPAF,ix/04* =0). Between the inflection points, the
second derivative of the free energy is negative and the homogeneously
mixed state is unstable. Even the smallest fluctuations in composition
lower the free energy, leading to spontaneous phase separation {called
spinodal decomposition). Between the infection points and the equilibrium
phase separated compositions, there are two regions that have positive
second derivative of the free energy of mixing. Even though the free energy
of the homogeneous state is larger than that of the phase-separated state
(on the common tangent line) the mixed state is locally stable to small
composition fluctuations. Such states are metastable because large fluctu-
ations are required for the system to reach thermodynamic equilibrium.
Phase separation in this metastable regime occurs by nucleation and growth,
The nuclei of the more stable phase must be larger than some critical size in
order to grow in the metastable region because of the surface tension
between phases (see Problem 4.15). The new phase can grow only when a
sufficiently large fluctuation creates a domain larger than the critical size.
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Composition dependence of the free
energy of mixing at three temperatures
for a hypothetical blend with &, =200
and Ng =100, for which ¥ = (5 X)/T.
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4.4 Phase diagrams

By considering the temperature dependence of the free energy of mixing.
a phase diagram can be constructed to summarize the phase behaviour of
the mixture, showing regions of stability, instability, and metastability.
Recall the free energy of mixing for a polymer blend

AFn = kT[ ¢ In ¢+ lN ¢ In{l — &) + x¢(1 - c,b)] (4.42)

The phase boundary is determined by the common tangent of the free
energy at the compositions ¢’ and ¢” corresponding to the two equili-

brium phases
(aAFm,-x) _ (&ﬁFmix) (4.43)
0 ] ooy 0 ) sy

This derivative of the free energy of mixing per site with respect to volume
fraction of component A is

(‘M\FmIx In ¢ In(l-¢) 1
= ”kT[NA NAMN—B+X(1—2¢)] (4.44)

For the simple example of a symmetric polymer blend with ¥y =Ng=N.
the common tangent line 1s horizontal.

(8AFm1x) o (8AFmix)
8¢ o=0 a¢' ="

- kr[“}f ln(—lﬁ}‘ﬁ) +x(1— 2¢)] —0. (445

The above equation can be solved for the interaction parameter corres-
ponding to the phase boundary—the binodal (solid line in the bottom part
of Fig. 4.8) of a symmetric blend:

I f[lné In{l1-9¢)] In{¢/(1-¢))
55“1_1[__ = ] ST (44

Using the phenomenological temperature dependence of the mteraction
parameter [Eq. (4.31)], this relation can be transformed to the binoedal of
the phase diagram in the space of temperature and composition:

B
In[p/(1 - ¢)]/[(2¢ — 1)V —

The binodal for binary mixtures coincides with the coexistence curve, since
for a given lemperature (or Ny) with overall composition in the two-phase
region, the two compositions that coexist at equilibrium can be read
off the binodal. Any overall composition at temperature T within the
miscibility gap defined by the binodal has its minimum free energy in a

Xb =

T, = {(4.47)
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phase-separated state with the compositions given by the two coexistence
curve compositions ¢’ and ¢”.

Returning to the general case of an asymmetric blend, the inflection
points in AFy(¢) can be found by equating the second derivative of the
free energy [Eq. (4.41)] to zero:

1 1

aZAFmix +
Nagp  Ng(l -

B

= kT{ 5 2x] = 0. (4.48)

The curve corresponding to the inflection point is the boundary between
unstable and metastable regions and is called the spinodal (the dashed
line in the bottom part of Fig. 4.8):

1)1 1
=3 ms" M -al] @

This spinodal can also be transformed to a phase diagram in the
temperature-composition plane by using the experimentally determined
x(T) via Eq. (4.31):
T — B
T3/ (Nag) + 1/ (Ne(1—g))] - 4

(4.50)

In a binary blend the lowest pomnt on the spinodal curve corresponds to
the critical point:

11 1
¢ 21 Nag?  Ng(l — @)

=0. (4.51)
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Fig. 4.8

Composition dependence of the free
energy of mixing for a symmetric
polymer blend with the product

¥ N =27 (top figure) and the
corresponding phase diagram {bottom
figure). Binodal (solid curve) and
spinodal (dashed curve) are shown on
the phase diagram.
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The solution of this equation gives the crtical composition:

YL
%= TNy 4 (*2)

Substituting this critical composition back into the equation of the spi-
nodal [Eq. (4.49)] determines the critical interaction parameter:

AR R G B TS
e e ey o R

Equation (4.31) can again be utilized to determine the critical temperature
from y.

B B
Xe— A L(1/VNA+1/yNg) -4

For a symmetric polymer blend (Ns= Ng=N), the whole phase
diagram is symmetric (see Fig. 4.8) with the critical composition

T, =

(4.54)

g 4.55
b =3 (455)
and very small critical interaction parameter
2
==, 4.56
Xe =y (4.56)

Since this critical interaction parameter is very small for blends of long
chains, most polymer blends have x > x. and thus are phase separated
over some composition range (within the miscibility gap). Only blends
with either very weak repulsion (0 < x < x.}, or a net attraction between
components of the mixture {x < 0) form homogeneous (single-phase)
blends over the whole composition range.

In polymer solutions (No=N and Ng=1), the, phase diagram is
strongly asymmetric with low critical composition

1 1
= = 457
= TNT1IN 437
and critical interaction parameter close to 1/2
11 1 1 1
Xe + e Ti—t (4.58)

T2TYN INT2 N
Note that the spinodal and binodal for any binary mixture meet at the
critical point (Fig. 4.8). For interaction parameters x below the critical one -
(for y <x.) the homogeneous mixture is stable at any composition -
0 < ¢ < 1. For higher values of the interaction parameter (for x > x.) there -
is a miscibility gap between the two branches of the binodal in Fig. 4.8. For
any composition in a miscibility gap, the equilibrium state corresponds to
two phases with compositions ¢’ and ¢” located on the two branches of
the coexistence curve at the same value of y.



Phase diagrams

Experimentally, the interaction parameter is most conveniently changed
by varying temperature 7" [see Eq. (4.31)]. Phase diagrams are typically
plotted in the temperature — composition plane. Examples of phase dia-
grams for a polymer blend and a polymer solution are shown in
Fig. 4.9. The binodal line separates the phase diagrams into a single-phase
region and a two-phase region.

If B>0 in Eq. (4.31), then y decreases as temperature is raised. This
situation is depicted in Fig. 4.10. The highest temperature of the two-phase
region is the upper critical solution temperature {UCST) T... For all T> T,
the homogeneous mixtures are stable. On the other hand, if B<0 in
Eq. (4.31), then y decreases as temperature is lowered. The lowest tem-
perature of the two-phase region is the lower critical solution temperature
(LCST), and this case is shown in Fig. 4.11. While the case of 8> 0 is more
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Fig. 4.9

Phase diagrams of polymer blends and solutions (open symbols are binodals and filled
svmbols are spinodals). (a) Polymer blends of poly(vinyl methyl ether) (M = 51 500 g mol™!)
and various molar masses of polystyrene (circles have M = 10 000 g mol™', squares have

A =20400 g mol™', hexagons have M =51 (00 g mol ™', diamonds have M = 200000 g
mol™'), data from T. K. Kwei and T. T. Wang, in: Polymer Blends, Vol. 1 (D. R. Paul

and S. Newman, editors), Academic Press, 1978. (b) Polyisoprene solutions in dioxane
(upside-down triangles have M = 53300 g mol ™', triangles have M =133 000 g mol™"),
data from N. Takano er al., Polym. J. 17, 1123 (1983).
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Fig. 4.10

Temperature dependence of x for
mixtures of hydrogenated polybutadiene
(88% vinyl) and deuterated
polybutadiene (78% vinyl) and the
calculated phase diagram from Flory-
Huggins theory with N = Np = 2000
and vg = 100 A*, The binodal is the solid
curve and the spinodal is dashed.
Adapted from N, P, Balsara, Physical
Properties of Polymers Handbook

(J. E. Mark, edstor), AIP Press, 1996,
Chapter 19.
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Fig. 4.11

Temperature dependence of x for
mixtures of polyisobutylene and
deuterated head-to-head polypropylene
and the calculated phase diagram from
Flory-THuggins theory with

Na = Ng =6000 and vy =100 A*, The
binodal is the solid curve and the
spinodal is dashed. Adapted from N. P.
Balsara, Physical Properties of Polymers
Handbook (J. E. Mark, editor), AIP
Press, 1996, Chapter 19.
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common and better understood, there are many examples of polymer
blends that phase separate when temperature is raised, such as poly-
styrene/poly(vinyl methyl ether). There are also examples where B varies
with temperature, changing sign as temperature is changed and resulting
in both UCST and LCST, as seen for the polymer solution polystyrene.
cyclopentane.

Consider a sudden temperature jump that brings a homogeneous mix-
ture at the critical composition ¢ into the two-phase region. The system
will spontaneously phase separate into two phases with compositions
given by the values on the coexistence curve at that new temperature. This
spontaneous phase separation, called spinodal decomposition, occurs
because the mixture is locally unstable. Any small composition fluctuation
is sufficient to initiate the phase separation process. At any point inside the
spinodal curve, the mixture is locally unstable and spontaneously phase
separates by the spinodal decomposition process.

The points of the phase diagram between the spinodal and binodal
curves correspond to metastable mixtures. The metastable homogeneous
state is stable against small composition fluctuations and requires a larger
nucleation event to initiate phase separation into the equilibrium phases
given by the coexistence curve. This phase separation process is called
nucleation and growth.

4.5 Mixtures at low compositions

Consider adding a small amount of A molecules to a liquid of B molecules
(¢ < 1). The free energy of mixing per site
o] 1

- —é _ B
AFyy = kT NA]D¢+ e In (1-¢)+x¢ (1 —9)

(4.59)

can be expanded into a power series in composition ¢ of the A-molecules.
For small values of composition ¢ < 1, the expansion of the logarithm is
In(1 — p)= — ¢ — ¢*/2 - ¢*/3—--- The second term in the free energy of
mixing [Eq. (4.59)] becomes a power series for small ¢ (written here up to
the third order in ¢):

(4.60)

(1-¢) 1 P9
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The free energy of mixing per site can then be rewritten for small ¢:

E ¢ 1 ¢ (1 &
—\Fmix—kT[N—Aln ¢+¢(X1VB) +2(FB2X) +m+:|
(4.61)

4.51 Osmotic pressure

Imagine a semipermeable membrane that prevents passage of A mol-
ecules, but allows passage of B molecules. The difference of pressure
across this membrane is called the osmotic pressure of A molecules (see
Section 1.7.1). The osmotic pressure is defined as the rate of change of
the total free energy of the system AF,, = nAFyix with respect to volume
at constant number of A molecules:

OAF i
n=_2o m (4.62)
v |,

The volume fraction ¢ of n, molecules each with N, monomers is the ratio
of their volume to the volume V of the system:

b3ﬂANA

- (4.63)

¢ =
The derivative with respect to volume ¥ can be expressed in terms of
the derivative with respect to composition ¢ al constant number of
A-molecules #4:

1

3
av = (b3nANA)8(—) — _b HANA

¢2

. .
p & {4.64)

Note that the number of lattice sites » can be expressed in terms of
the number of A molecules 7, asn=naNa/¢. The osmotic pressure is then
calculated from the derivative of AFqy;, /¢ with respect to composition:

M= a(f’lﬁFmix) B ¢2 8("ANAAFmiX/¢)
N oV |, bnaNa o na
2 o AFmix
_ % ( - /¢) (4.65)

Differentiating the ratio of free energy of mixing A Fyx and composition ¢
with respect to composition gives the mean-field expression for osmetic
pressure, valid for small ¢:

_kT[¢ 41 ¢’
H_fﬁ[ﬁ+?(f—v—];—2x>+ﬁ+-‘.:|l (4.66)
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This expression of osmotic pressure can be written in the form of the
virial expansion in terms of number density of A monomers en =G/
[see Eq. (3.8)]

2 &
n_kr[’:“Jr (L—zx b36n+—b—c,{+---]
Np

Na 2 3Ny
=kT{;—‘;+%ci+wcﬂ+---], (4.67)
where
v = (i - zx) b (4.68)
Np

is the measure of two-body interactions called excluded volume [see
Eq. (3.8)] and

bt’)

YT 3Ng

(4.69)
is the three-body interaction coefficient (see Section 3.3.2.2).

The first term of this virial expansion [Eq. (4.67)] is linear in composi-
tion and is called the van't Hoff Law [Eq. (1.72)], which is valid for very
dilute solutions:

kT ¢ Cn

= N, kTNA =kTv. (4.70)
The concentration ¢, = ¢/b3 is the number density of A monomers and
v =cn/Na is the number density of A molecules. The last relation of the
above equation is a general statement of the van’t Hoff Law, as each solute
molecule contributes k7T to the osmotic pressure in verydilute solutions.
The membrane allows the B molecules to pass freely, but restricts all
A molecules to stay on one side. This restriction leads to a pressure which
is analogous to the ideal gas law (the osmotic pressure is K7 per restricted
molecule II = £ Tv). This pressure is due to the translational entropy loss
cansed by the confinement of the A molecules.

In polymer solutions No=N and Ng=1, so the osmotic pressure
[Eq. (4.66)] at low polymer concentrations has the virial expansion form

LT 2 3
=5 %+(1—2x)%+%+“- : (4.71)

At the §-temperature, the interaction parameter x = 1/2 and the energetic
part of two-body interactions exactly cancels the entropic part, making the
net two-body interaction zero {v=(1—121x) b*=0). For x<1/2, the
two-body interactions increase the osmotic pressure of dilute polymer
solutions. Hence, measurement of the osmotic pressure in dilute solutions
provides a direct way of determining the Flory interaction parameter x.
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Near the f-temperature, the second virial coefficient A4, is related to x and
v by comparing Eqs (1.74) and {4.71), remembering that mass concentra-
tion ¢ = Myd/ (PN ay) and molar mass M = MN:

2M3 T -
V 70,42%172;(::79. (4.72)

B_j - b3NAv

As y is lowered, the polyvmer likes the solvent more, increasing the osmotic
pressure. However, the mean-field theory that is the basis of Eq. (4.71) is
only valid close to the f-temperature, where chains interpenetrate each
other freely [Eq. (3.102)]. Far above the #-temperature {in good solvent),
the second virial coefficient 4, is related to chain volume [Eq. {3.104)]
rather than monomer excluded volume v. Recall that the second virial
coefficient can also be determined from the concentration dependence of
scattering intensity [Eq. (1.913].

4.52 Polymer melts

Constder a bina}y blend of chemically identical chains with a small con-
centration of chains with N, monomers in a melt of chains with Ny
monomers. For such a blend there is no energetic contribution to mixing
{y = 0) and the excluded volume contains only a small entropic part:

b3

- (4.73)

v

This parameter describes the excluded volume interactions of an A mol-
ecule with itself, mediated by the melt of B molecules. This excluded
volume is small for polymer melts because each chain has difficulty dis-
tinguishing contacts with itself from contacts with surrounding chains.
This very important result was first pointed out by Flory: melts of long
polymers have v == O and adopt nearly ideal chain conformations.

The effect of this interaction on the conformations of an A chain can be
analysed using the scaling approach described in detail in Chapter 3. On
small length scales (smaller than the thermal bleb size £7), the excluded
volume interactions barely affect the Gaussian statistics of the chain
Er~e bg;f 2, where g7 is the number of monomers in a thermal blob. The
thermal blob is defined as the section of the chain with excluded volume
interactions of order of the thermal energy:

2
81 .. v g%— o
ki‘"\/’g—3 =y kTﬁﬁ ~ kT (4.74)
T gr

The number of monomers in a thermal blob is very large when the
excluded volume 1s small:

gr~— = Ng. (4.75)
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The thermal blob has random walk statistics:
£ b’ = bNy. (4.76)

Ifan A chain is smaller than the thermal blob (Na < Né), its conformation
is almost ideal. In a monodisperse melt with Ny= Np, or in a weakly
polydisperse melt, all chains have ideal statistics. On the other hand,
strongly asymmetric binary blends of dilute long chains in a melt of short
chains with N, > N} have swollen long chains. The size of these swollen
long chains can be estimated as a self-avoiding walk of thermal blobs (as
described in Chapter 3):

Na\" Na\”
Ry = — ) = bNpl|—
" €T(8T> B(N%a)
v—1/2
_—_N;_be() : (4.77)

The swelling coefficient (Na/Ng )0083 (Na/gr)*™ for v==0.588
increases as the number of monomers in the long chains N, mcreases
beyond that in a thermal blob gr = N%. The size of the A chain Ry
is plotted as a function of N in Fig. 4.12(a) and as a function of Ng in
Fig. 4.12(b). When Np =1, the thermal blob is one monomer and the
athermal solvent chain size is recovered [Eq. (3.130)]. Figure 4.12(b) shows
how the long chain deswells and eventually crosses over to the ideal chain
size at Ng ~= /N, as the length of the short chains increases.

Three-dimensional polymer melts are strongly interpenetrating. To
demonstrate this point, consider a monodisperse melt with Ny = Ng=N.
The average number of other chains that are inside the pervaded volume of
a given polymer {(the overlap parameter P, defined in Chapter 1) is the
product of this volume R’ = N *p* and polymer number density 1/nb°
and is equal to P=+/N. Since N is large, chains are strongly inter-
penetrated in three-dimensional polymer melts. The presence of so many
other chains means that each chain has difficulty distinguishing the intra-
molecular contacts, that give rise to the excluded volume interaction, from
intermolecular contacts. The surrounding chains in the melt have effec-
tively screened the excluded volume interaction, with v=hN=0. For
this reason, Flory’s insightful conjecture that chains in the melt are nearly
ideal is correct.

Two-dimensional melts are quite different. The thermal blob for a dilute
A polymer in a two-dimensional melt of chemically identical B polymers

1 N2 Ny . with excluded area a=5?/Ny can be estimated in a similar way. The
excluded area interactions of a thermal blob with gy monomers and size
Fig. 4.12 fr~ bg;r/2 is written by analogy with Eq. (3.74):
The size of the long A chain as functions
of (a) the number of monomers in the gZ ﬁ k .
Achain and (b) the number of monomers kTa T ~ kT for two-dimensional melts. (4.78)

bgr

in the B chain, on logarithmic scales. T
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The number of monomers in a two-dimensional thermal bleb is smaller
than in the three-dimensional thermal blob.
bl
gre—= Np for two-dimensional melts. (4.79)

The chains in a monodisperse two-dimensional melt are roughly the size of
a thermal blob and are therefore barely ideal. The number of the other
chains in a pervaded area of a given chain is the product of this area
R~ Nb® and the two-dimensional number density of chains 1/Nb” and is
of the order of unity (P = 1). Thus, chains do not significantly interpene-
trate each other in two dimensions. This is the expected result whenever the
fractal dimension of the object and the dimension of space are the same.

4.6 Experimental investigations of binary mixtures

The Flory interaction parameter y can be determined in homogeneous
single-phase blends by measuring composition fluctuations using scatter-
ing. Consider a’homogeneous blend at equilibrium with average compo-
sition of A monomers ¢. In a small volume containing » total monomers
with ny =¢n A monomers, a small fluctuation in composition 8¢ can
occur spontaneously at equilibrium:

56 = ¢ — ¢ (4.80)

This fluctuation corresponds to a transfer of éns A monomers from the
rest of the blend into the small volume with a concurrent transfer of the
same number of B monomers out of the small volume (an effective
exchange of A and B monomers):

bnp = nbe. (4.81)

The free energy of mixing in this small volume AF,;, can be expanded in
powers of this fluctuation d¢:

n aﬁszx

18 AF i
le ¢) &lex (?5) =

0t g 607 4 (48

The term linear in é¢ can be rewrilten in terms of the number of monomers
exchanged:

6AFmgx _ (‘M.Fmix - 8AFmix
26 = olng) "~ “omy

The derivative of the free energy of mixing with respect to the number of
A monomers is the exchange chemical potential, the change in free energy
of mixing arising from the exchange of one A monomer for one B mono-
mer. The exchange changes the free energy in the rest of the blend by the
exchange chemical potential multiplied by the change in number of

Sria. (4.83)

159



160

Thermodynamics of mixing

A monomers {—én,) in the rest of the blend:

8&Fmix

anA (76‘”3\) :

The free energy change in the system §F arising from this fluctuation is
the sum of the free energy change in the small volume containing # mono-
mers and the free energy change in the rest of the blend:

In 8AFmix
&F = AFmix(¢) - AFmix(¢) — aﬂA (5!’!9,
1P AFais 2
=554 (6)7 + - (4.84)

Note that the rest of the blend is considered very large and exchange of é#15
A monomers does not change its composition significantly. The typical
free energy change is of the order of the thermal energy, 6F= kT, giving a
simple relation for the mean-square composition fluctuation:®

<(5¢)2> = kr(azaaém"‘)l_ ’%T (82’2;“‘“>_1. (4.85)

The final relation involves the free energy of mixing per site, AFp;, an
intensive quantity. Hence, Eq. (4.85) clearly shows that thermally-driven
composition fluctuations diminish as the volume considered (reflected in
the number of sites #) increases. Small volumes with only a few monomers
(small 7) can have large fluctuations, but any macroscopic volume {large »)
has a composition that is indistinguishable from the mean blend compo-
sition. The mean-square fluctuation is related to the low wavevector limit
of the scattering function [Eq. (3.126}]

n 2
S(4) —<(6n—”>:n<(é¢)2>, ‘ (4.86)

where the number of monomers in the small volume is n={gb) . Since

(6@3)2 ~ 1/n, S(¢g) saturates at small values of the wavevector. The
scattering function at zero wavevector S{0) is thus related to the second
derivative of the free energy of mixing;

DAL N
FAF, “‘”‘) (4.87)

S(0) = n<(§¢3)2> - kT( o

This is an example of a much more general thermodynamic relationship
between S(0) and osmotic compressibility [see Eq. (1.91)].

3 The real derivation of the mean-square fluctuation is obtained from an average over all
magnitudes of the composition fluctuation with the corresponding Boltzmann factor

exp( — SF/kT)
o\ _ S (86 exp (=8F/KT) d(3¢) _ (0P AFmy\
<w’)>* [ exp (—8F/KT) d(&¢) ‘kT( ag? ) '
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Using Eq. (4.48), the Flory-Huggins theory predicts
| 1 &*AFpy 1 1

S(0) kT 9¢°  Nad T

— 2 (4.88)

This means that the Flory interaction parameter yy can be determined from
the low wavevector limit of the scattering function of a single-phase blend
of A chains (with Ny monomers) and B chains (with Ay monomers), where
o is the volume fraction of A chains. In practice, the concentration fluc-
tuations in the blend provide sufficient scattering contrast for neutron
scattering, as long as one of the components is at least partially labelled
with deuterium.

The standard assumption, called the rondoem-phase approximation,
extends Eq. (4.88) to non-zero wavevectors ¢ using the form factor of an
ideal chain P{g, N):

1 | 1
= +
S{(q)  Na¢P(q,Na) Np(l —¢)P(q, N
Recall from Section 2.2.4 that the form factor for an ideal chain is the
Debye function [Eq. (2.160)]. The high g limit of the Debye function is

2
P(g, N} = ———— 12 for g » 1/R,, (4.90)

- v
#(x) 1

where we used the standard radius of gyration for an ideal chain
(RZy = Nb*/6 [Eq. (2.54)]. The low g limit of any form factor is
P(g, N)=1, and a simple crossover expression emerges for the reciprocal
of the Debye function:”

- 2y. (4.89)

1 2 2
_ +q Nb
P(q, N} 12

(4.91)

Substituting this result into Eq. (4.89) {twice) gives a simple result for the
reciprocal scattering function:

1 1 ¢ I 7'b

ORI R T
—_ 1 + 1 _2 +ﬁ(l+_ﬁl )
Nab Np(l-9) T2\ 14

i q2b2

= + . 4.92
SO * 12601 - 0) 452
The final result made use of Eq. (4.88).
This form for scattering is actually far more general, valid for many
systems with scattering arising from random fluctuations. Small angle

4 This crossover expression is never more than 15% different from the Debye function
over all g. For small g R, a better expression is Eq. (2.146) or (2.161).
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Fig. 4.13

SANS intensity for a ¢ = 0.5 miscible
blend of polyisobutylene (M, =
160000 g mol 1) and a random
copolymer of ethylene and butene

(665 w1% butene, M,, = 114000 gmol ")
al three temperatures with fits to

Eq. {(4.93) (curves). Open circles are at
27°C, where [(0)= 1180 m ™' and £ =
3.3 nm. Filled squares are at 51°C,
where f(0)=2180 m ' and £ = 4.5 nm.
Ovpen diamonds are at 83 °C, where
J(0)=8850 m~' and £=9.1 nm. Data
from R. Krishnamoorti et a!.,
Macromolecules 28, 1252 (1995).

Thermodynamics of mixing

neutron scattering data on miscible polymer blends are customarily fit
to the Ornstein—Zernike scottering function:

5(0)
Slg) =— "3
L+ {g¢)
Comparing Egs (4.92) and (4.93) reveals the correlation length for the
mean-field theory of binary mixtures:

E— [ b25(0)
SV 12601 - ¢)

The correlation length effectively divides the form of the scattering into
two regions. For g<<1/£, the scattering function approaches its zero
wavevector limit $(0). For ¢ 33 1/£, the scattering function decreases as a
power law S(q)mq‘z. Ideally, experiments would extend to sufficiently
low g at which the zero wavevector limit would be nearly realized. How-
ever, in practice this is often not the case, with g of order 1/£ for most
small-angle neutron scattering (SANS) data on single-phase blends. SANS
data at three temperatures for a blend of a polyisobutylene with a
deuterium-labelled ethylene-butene random copolymer are shown in
Fig. 4.13. This blend phase separates on heating at 954 5 °C. The scat-
tering intensity increases as temperature is raised, which means that con-
centration fluctuations are getting stronger. The data at all three
temperatures are reasonably fit by the Ornstein—-Zernike equation [curves
are fits to Eq. (4.93)]. The scattering intensity is independent of tempera-
ture at high g >» 1/¢ because

SO) 1261 - §)
S = —
D= e = (@)

(4.93)

(4.94)

for g 1/¢ {4.95)

in this limit.

Like S(0), the correlation length ¢ has important physical significance
and is related to concentration fluctuations. On length scales smaller than
the correlation length, correlated chain sections of (gb) 2 monomers
fluctuate in and out of the volume ¢~ . Mean-square fluctuations in the
number of A and B chain sections is proportional to (gb) ~ !, the number of
these sections in the volume ¢ ~>. Mean-square fluctuations in the number
of A and B monomers in this small volume is the product of the mean-
square fluctuations in the number of chain sections and the square of the
number of monomers in cach chain section {(6n,4)*) ~ (gb) ~°. From Eq.
(4.86) we find that coherent fluctuations of chain sections on length scales
smaller than the correlation length (g~ ' <€) lead to S(q)~ ((on A m
~(qb)*2 [Eq. (4.95)] independent of ¢ or x. This makes the scattered
intensity at high ¢ in Fig. 4.13 independent of temperature [Eq. (4.95)].
Concentration fluctuations in different correlation volumes are inco-
herent, so on length scales larger than the correlation length, mean-square
fluctuations in the number of A4 and B monomers in the large volume g
is proportional to the product of the mean-square fluctuations within a
correlation volume (£/)° and (£¢) °, the number of correlation volumes
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in the volume g ~*. From Eq. (4.86), it follows that the structure factor
saturates at low g < &' with 5(0) ~ (¢/b)* [Eq. (4.94)]. Both S(0) and £
contain the same information about the Flory interaction parameter x and
it is important to realize that this information is only obtained at low 4.
Since SANS has a limited g-range, in practice §(0) and £ are determined by
fitting data to Eq. {(4.93), as shown in Fig. 4.13.

The astute reader will recognize that the scattering function for polymer
blends [Eq. (4.86)] is defined in a subtly different manner than for polymer
solutions [Eq. (3.126))]. In both cases, the scattering function is normalized
by the number of monomers in the system. In Section 3.5, monomers
occupy volume fraction ¢ of the total volume, while in the blend the
combined volume fraction of monomers of type A and B is unity. The
scattering function of Section 3.5 1s related to that of the present section as
S(q)j¢. To facilitate comparison, we rewrite Eq. (4.88):

o v 9
50) A +NB(1 4 2xo. (4.96)

For a polymer solution ¥g=1 and ¢ < |

o 1
S0y =+ (- 20 (4.97)
which is the usual virial expansion in dilute solutions [Eq. (1.91)].

The equilibrium concentrations of two-phase blends are calculated from
the phase diagram-—a coexistence curve in the temperature-composition
plane. The phase diagram can be conveniently determined by menitoring
light scattering as a function of temperature for various overall composi-
ttons, as long as sufficient time is allowed to reach equilibrium at each
temperature, Starting at a temperature in the single-phase state, the blend
is transparent and the scattering is low. When the temperature reaches the
binodal curve, the scattering increases, as phase separation creates
domains with different refractive indices.” Simple thermodynamic con-
siderations link the phase boundary to the interaction parameter, as
described in this chapter.

4,7 Summary of thermodynamics

In this chapter, the thermodynamics of binary mixtures was discussed
in the framework of a lattice model. For simplicity, polymers were
divided into ‘monomers’ that fit onto this lattice and the free energy of
mixing was written per lattice site (AFyx). Rescaling the monomers to
more conventional definitions {such as either the chemical monomer of
Chapter 1 or the Kuhn monomer of Chapter 2} is trivial because the
volume of an A chain v, = Nav, and the volume of a B chain vg = Ngv,
must be independent of the choice of lattice site volume vy. In practice,
fitting the monomers onto the lattice is inconvenient and in this summary
results are given for the more usual case of mixing two polymers with

5 For this reason, the binodal is often referred to as the cloud point.
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different monomer volumes, in terms of the free energy per unit volume
{called the free energy density AFqix/vo).
The free energy of mixing has two parts: entropic and energetic. The
entropic part per unit volume,
TASmix TAS uix ¢ 1-¢

- S — k7| % —fma- 498
> S =KT| T g4 LI (1-9)], (498)

simply counts translational entropy of the mixed state compared with the
pure component states. Entropy always promotes mixing. Mixtures of two
small molecules have large entropy of mixing, solutions of polymers in
small molecule solvents have less entropy of mixing, and blends of two
polvmers have very little mixing entropy.

The energetic part of the free energy density

AUmix - A Umix

X k _
% v _kTV—qB(l—q&) (AT + B) ¢ (1 — &) (4.99)

0 Vo
is the difference of intermolecular interaction energies in the mixed
and pure states, and is reflected in the Flory interaction parameter x.
Equation {4.99) clearly points out the importance of specifying the refer-
ence volume vy when stating the value of the Flory y parameter.® The
energy of mixing can be etther positive (meaning that the different species
prefer to be next to themselves) favouring segregation, or negative
(meaning that the different species prefer each other) promoting mixing.
Interactions between components are often of the van der Waals type,
meaning that they are weak and repulsive. Despite this repulsion, many
simple liquid pairs form regular solutions that have entropically driven
mixing. It is somewhat less likely for a polymer to dissolve in a solvent
simply because of lower entropy of mixing for larger molecules. However,
most polymers will dissolve in a number of common solvents. On the other
hand, miscible polymer blends are very unlikely because the entropy of
mixing two long-chain polymers is extremely small. The rule of thumb is
that polymers never mix, but there are many exceptions to this rule
because interactions between components are not always repulsive.

The shape of the free energy density of mixing as a function of
composition

AFmix _ AFmix _ AUmix _ TASmix

V Vo Vo ¥o
i-—
kT[% 1n¢+f In(1 —¢)+%0¢(1 ¢)]
1-— A
_kf[% Ing + VB¢ In(1 —¢)+V—0a3(1 —c;b)]
L EB i — ). (4.100)
Vo

& All numbers for the Flory y parameter in this book use a reference volume of vp = 100 A’



Problems

determines the stability of a homogeneously mixed state. This function is
always convex near the boundaries of the composition range (for small ¢
and for ¢ near unity) because the entropic part always dominates there at
any practical (non-zero) temperature. If the composition dependence of
the free energy of mixing is convex over the whole composition range, the
mixture is homogeneous at all compositions, If the free energy is concave
in some part of the composition range, the line of common tangent to the
free energy curve determines the range of the miscibility gap (see Fig. 4.7).

The mean-field lattice model of Flory and Huggins predicts that A=0
but in practice this is not observed. If 4 <0 and B < 0, then all four terms
in Eq. (4.100) are negative and miscible mixtures are stable at all tem-
peratures. If 4 > 0 and B < 0, the blend has a LCST and phase separates at
high temperatures. If B> 0, the blend has an UCST and phase separation
occurs as temperature is lowered.

The Flory interaction parameter in miscible polymer blends is measured
using small-angle neutron scattering, usually involving deuterium label-
ling of one blend component. The y parameter is determined from the zero
wavevector limit of the scattering function S{0):

_¥
X=3

1 1 1
vao vl ¢)] 250) (100

The binodal separates the homogencous (single phase) and hetero-
geneous {two phase) regions in the phase diagram (see Figs 4.10 and 4.11).
For binary mixtures, the binodal line is also the coexistence curve, defined
by the common tangent line to the composition dependence of the free
energy of mixing curve, and gives the equilibrium compositions of the two
phases obtained when the overall composition is inside the miscibility gap.
The spinodal curve, determined by the inflection points of the composition
dependence of the free energy of mixing curve, separates unstable and
metastable regions within the miscibility gap.

Melts of long chains have nearly ideal conformations because the
excluded volume is screened by the presence of other chains (v = 0). The
excluded volume in a melt is v~ b’/N. Excluded volume therefore gradu-
ally increases as the short chains in a polymer blend are shortened. The
short B chains make the A chains swell when Ny > N%. Hence, miscible
blends of high molar mass polymers with Ny < N have nearly ideal
conformations.

Problems
Seclion 4.1

4.1 (1) Calculate the number of ways to arrange 10 identical solute molecules on a
lattice of 100 sites. Each molecule occupies one lattice site.
(ii} Calculate the number of ways of arranging an oligomer consisting of
10 repeat units on a cubic lattice of 100 sites. Each repeat unit occupies
one lattice site. Ignore long-range (along the chain) excluded volume
interactions. Assume that each site has coordination number z =6 (ignore
the boundary effects).
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4.2

Calculate the entropy of mixing per site ASpix on a three-dimensional cubic
lattice of:

{i) 100 black 50-ball chains with 100 white 50-ball chains on a lattice with
10000 sites (one ball per site).

(i) 100 black 50-ball chains with 100 identical black 50-ball chains on a lattice
with 10 000 sites (one ball per site).

Explain the difference between cases (i) and (ii).

Section 4.2

43

44

4.5

4.6

Estimate the Flory interaction parameter y between polystyrene and poly-

butadiene at room temperature if the solubility parameter of polystyrene is

Sps=1.87 x 10* (J m~*)"* and the solubility parameter of polybutadiene is

fpr=1.62 x 10* (T m~>}"2 For simplicity assume vo2 100 A*.

What is the free energy of mixing 1 mol of polystyrene of molar mass M =2 x

10° g mol, with 1 x 10* L of toluene, at 25 °C (Flory interaction parameter

v =0.37). The density of polystyrene is 1.06 g cm 2, the density of toluene is

0.87 g cm ™. Assume no volume change upon mixing.

Compare the magnitudes of the two terms in Eq. (4.31) for y using the data

for the 11 polymer blends in Table 4.3 at the lowest temperature studied

(corresponding to the largest value of B/T). Is the Flory-Huggins assumption

that |B/ T} 53 | A| correct?

() Derive the relation between 4 and B in Eq. {4.31) and the Hildebrand-
Scott solubility parameter difference.

(i) What values of 4 and Bare possible in the solubility parameter approach?

Section 4.3

4.7

4.8

At T=0K, the entropic contributions to the free energy of mixing disappear.
and only the energetic contributions remain. Substitute Eq. (4.31) into the
Flory Huggins equation to write the free energy of mixing in terms of the
parameters 4 and B. Sketch the composition dependence of the free energy
for cases where B< 0, B=0, and B >0, and discuss whether any of those
situations lead to a stable mixture at T=0 K. Does your answer depend on
whether regular solutions, polymer solutions, or polymer blends are con-
sidered?

Plot on a single graph, the composition dependence of the free energy of
mixing per site (normalized by the thermal energy)} AFiy /& T of a symmetric
polymer blend with A = Ng= 100 using five different choices for the para-
meter x =90, 0.01, 0.02, 0.03, 0.04. Which choices of x make the blends
miscible in all proportions (i.e. over the whole composition rangs 0 < ¢ < 1)
and why?

Section4.4

49

The free energy of mixing (per mole of lattice sites) for the regular solution
theory can be written as

RT[p Ing+ (1 —¢) ln (1—¢)+xo(l - o),

where R is the gas constant and the interaction parameter is x = B/T.
where B=600K. Construct the binodal and spinodal curves in the
temperature—composition phase diagram.



4.10

4.11

4.12

4.13

Problems

The free energy of mixing (per mole of lattice sites) of a polymer solution
(according to the Flory-Huggins model) is

RT| % g+ (1 ) n(1 - 4) 1+ xol1 - 8},

where R is the gas constant and the interaction parameter is y = B/T where
B =300 K. Plot the critical parameters (¢, ¥, and 7;) for the solution as a
function of the degree of polymerization N.
Calculate the free energy density AFyix/V of mixing polystyrene of molar
mass 20 000 g mol ~ ! with cyclohexane at 34 °C, to make up a 5% by volume
solution? Assume no volume change upon mixing.

Note that 34 °C is the #-temperature for a polystyrene solution in cyclo-
hexane (Flory interaction parameter x = 1/2):

the density of polystyrene is 1.06 gem ™ >;

the density of cyclohexane is 0.78 g cm >,
the molar mass of cyclohexane (CgH o} is 84 g mol ™.

(i) What is the free energy of mixing 1 g of polystyrene of molar mass
M =18 gmol !, with ] mol of cyclohexane at 34 °C? Note that 34 °C s
the 8-temperature for a polystyrene solution incyclohexane (Flory inter-
action parameter y = 1/2}. The molar volume of polystyrene is vps=
9.5 x 10* em® mol ~ L, the molar volume of cyclohexane is Voye= 108cm
mol~'. Assume no volume change upon mixing and assume that the
volume of one solvent molecule is the lattice site volume vp.

(ii) What does the sign of the free energy of mixing imply about the stability
of a homogeneous solution?

(i) Under what conditions does the homogeneous solution spontancously
phase separate by spinodal decomposition?
(iv) When is the homogeneous solution metastable?

Since the mean-field Flory—Huggins theory puts everything that is not
understood about thermodynamics into the x parameter, this parameter is
experimentally found to vary with composition and temperature. For
solutions of linear polystyrene in cvclohexane, the interaction parameter

90.65K
T

y = 0.2035 + +0.3092¢ + 0.1554¢7 (4.102)

was determined by R. Koningsveld ef al., J. Polym. Sci. A-2 8, 1261
(1970).

(i} What is the critical temperature for a very high molar mass polystyrene
in cyclohexane with polymer volume fraction ¢ =0.01?
(ii) Does the polystyrene/cyclohexane system have a UCST or an LCST?
(iii} Determine the f-temperature at a volume fraction ¢=0.1.

(i} Derive a general expression for the critical temperature of a mixture in
terms of the solubility parameter difference 64 — 6y and the number of
monomers in each component N, and Np.

(ii) What is the criterion for miscibility in this approach?

(i} What is the largest solubility parameter difference that allows small
molecule mixtures (with ¥4 = Np = ) to be miscible?
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4.15

4.16

(iv} What is the largest solubility parameter difference that allows polymer
solutions (with N4 = 10* and Ny = 1) to be miscible?

(v} What is the largest solubility parameter difference that aflows polymer
blends (with A4 = N = 10%) to be miscible?

Consider a nucleation process from a uniform metastable state of a polymer
solution. Denote by Ap = 1, — uz the chemical potential difference between
AN-mers in a uniform solution g, and in a phase separated solution u,. If Ag
is positive, the phase separated solution is the equilibrium state. However, a
small drop of a phase with higher concentration of molecules ¢/N formed in
the homogeneous phase could be unstable due its positive surface energy
with surface tension 7. Calculate the Gibbs free energy of a spherical drop of
concentrated phase of radius R and determine the critical radius R, for
nucleation in terms of %, Ap and the number density of chains. Nuclei
smaller than R, shrink and disappear, while larger ones grow into domains
of the dense phase.

(i) What is the critical value of x required for high molar mass polymers to
dissolve in a solvent in all proportions?

(i} In Chapter 5, we will learn that polymer solutions are not described well
by the mean-field theory because the connectivity of the chains keeps
monomers from being uniformly distributed in solution (particularly at
low polymer concentrations). An empirical form that better relates y to
the Hildebrand solubility parameters in polymer solutions is widely used
with an entropic part of y of 0.34:

x =034 +;—°T(5A — ) (4.103)

Use the following table to decide which solvents will dissolve poly

(dimethyl siloxane) (Sppas=14.9 (MPa)"’?) and which will dissolve

polystyrene (8ps = 18.7 (MPa)' ) at room temperature.

Solvent n-Heptane Cyclohexane Benzene Chloroform Acetone

Molar volume 1959 108.5 29.4 80,7 74.0
(em® mol ™) .

Solubility 15.1 16.8 18.6 19.0 20.3
parameter § (MPa)"?

(iii} Which solvent is closest to the athermal limit for each polymer?

Section4.5

4.17

4.18

Consider a melt of B chains with degree of polymerization Np =100 and
Kuhn length b = 3 A. What is the root-mean-square end-to-end distance of
isolated chemically identical A4-chains in this melt with degree of poly-
merization:

(i) Na=10" (i) No=10% (iii) Np=10%

Consider a monodisperse melt of randomly branched polymers with
N Kuhn monomers of length . Randomly branched polymers in an ideal
state (in the absence of excluded volume interactions) have fractal dimen-
sion D=4. Do these randomly branched polymers overlap in a three-
dimensional monodisperse melt?



Problems

Hint: What would be the N-dependence of density if monodisperse
randomly branched polymers overlapped in the melt?

4.19% Demonstrate that the excluded volume in a polydisperse melt is v =5/N,,

where N, is the weight-average molar mass of the melt.

Section 4.6

4.20

421

4.22

Ginzburg criterion for polymer blends

Estimate the size of the critical region near the critical point in a sym-
metric polymer blend by comparing the mean- square composition fluctua-
tions {(5¢.4)°) with the square of the difference in volume fractions of the
two phases (¢” — ¢') in the miscibility gap. Such considerations determine
the point where mean-field theory {which assumes fluctuations are small)
fails, known as the Ginzburg criterion.

(i} Expand the equation for the binodal (Eq. 4.47 with A =0} near the
critical composition ¢.=1/2 to derive the dependence of the order
parameter ¢" — ¢’ on the relative temperature difference from the
critical temperature (T — T}/ T..

. " — ¢ & TCT_T for T < T,

¢

(iiy Demonstrate that the mean-square composition fluctuations on the
scale of the correlation length are of order

<(5¢)2> ~ %TT_ T forT<T,

(ui) Estimate the size of the critical region (Ginzburg criterion) by compar-
ing the square of the order parameter (¢” — ¢y with the mean- square
composition fluctuations on the scale of correlation length ((8¢)%).

T.-T 1

7 %ﬁ forT < T.

For biends of long chain polymers (large N} the critical region is very
small and the mean-field theory applies at nearly all temperatures,
Use the data in Table 4.3 to calculate the zero wavevector hmit of the scaf-
tering function S(0) and the mean- square concentratlon fluctuation {{§4)%)
at a 50 A scale (at g=2n/50 A1=0.12 A~ 1y assuming the Ornstein—
Zernike form for S{g), for the blends listed below (with Ny = Ng=100 in
each case). For each blend, plot S(0) and {{¢)") as functions of temperature
over the temperature range of Table 4.3.

(i} 50% by volume poly(vinyl methyl ether) mixed with polystyrene;
(ii} 50% by volume polyisobutylene mixed with deuterated head-to-head
polypropylene;
(ili} 30% by volume poly(ethylene oxide) mixed with deuterated polymethyl
(methacrylate).

Identify the blends that phase separate and state whether they have an
LCST or a UCST.

(1) Use the fitting results in the captlou of Fig. 4.13 for the three different
temperatures to plot S(0) against £ to demonstrate their proportion-
ality. What is the physical significance of S(0) ~ £%
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(i) The correlation length diverges at the critical temperature 7. as a
power law:

-1/2
£~ (TT: T) . (4.105)

Use the fitting results in the caption of Fig. 4.13 for the three different
temperatures to estimate the critical temperature T.. How does this
critical temperature compare with the observed cloud point for this
blend of 95+ 5 °C?

(iii} Determine y at each of the three temperatures in Fig. 4.13 and fit those
determinations to Eq. (4.31).
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Polymer solutions

In this chapter, our understanding of ideal chain conformations
(Chapter 2), real chain conformations (Chapter 3), and thermodynamics
{Chapter 4) will be combined to describe the conformations of polymer
solutions at all concentrations and temperatures. In this chapter, the focus
is on semidilute and concentrated solutions that span the large range of
concentrations between dilute solutions and melts.

5.1 Theta solvent

The phase diagram for a polymer solution is shown i Fig. 5.1. Here the
attention is focused on the case where 4 =0and B > 01in Eq. {4.31), which
is the most common case for polymer solutions. The #-temperature sep-
arates the poor solvent {bottom) half of the diagram from the good solvent
(top) half. At this special temperature {(7=4¢) the interaction parameter
x = 1/2 and the excluded volume is zero [see Eq. (4.72)]:

T—¢

v=(1-2)b =——0" =0. (5.1)
T
Jl| &
\ " v
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RN v .-
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Fig. 5.1

Phase diagram for polymer solutions
with a UCST. The solid curve denotes
the binodal and phase separation occurs
for polymer solutions with Tand ¢
below the binodal. The dashed curve is
the low temperature boundary of the
semidilute good solvent regime.
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The net excluded volume at the #-temperature is zero because of the exact
cancelation between the constant steric repulsion between monomers
{the »%) and the solvent-mediated attraction between monomers
{the —2x5"). At the f-temperature, the chains have nearly ideal con-
formations at all concentrations:

R =bVN. (5.2)

Subtle deviations from ideal chain statistics are caused by three-body
monomer interactions (see Section 3.3.2.2) at the f-temperature, leading to
logarithmic corrections to scaling.

At very low concentrations, the polymers exist as isolated coils that
are very far apart. The concentration increases moving from left to right
in Fig. 5.1. At 7—4#, there is a special concentration that equals the con-
centration inside the pervaded volume of the coil. This is the overlap
concentration for f-solvent [see Eq. (1.21)]:

« N1
by B —r = ——=-
R N

Polymer solutions with volume fractions ¢ < #p are called dilute
#-solutions. Above gb;‘, linear chains interpenetrate each other. At volume
fractions above overlap (¢ > ¢4) at T==8, polymer solutions are called
semidilute 6. This name originates from the fact that at low volume frac-
tions ¢ < ¢ < 1 the solution consists of mostly solvent, but many solu-
tion properties are dictated by overlapping chains.

Chains are nearly ideal not only at the #-temperature, but also at tem-
peratures sufficiently close to 6. Recall that for real chains with 7'# ¢, the
conformations deviate from ideal statistics only on length scales larger
than the thermal blob size [Eq. (3.76)].

(5.3)

, b
= Tk (5.4)

The entire chain is nearly ideal if its size R=bN'? is smaller than the
thermal blob size . This condition defines the two temperature bound-
aries of the dilute #-regime.

b3
VN
Solving Eq. (5.5) for T gives the temperature at which chains begin to
either swell (above ) or collapse {below 8):

f

}b3 (5.5)

2

= 11— 2 = |1 -

Tme(lt%\]). (5.6)

Note that the ideal dilute regime is restricted to being quite close to the
f-temperature for long chains.



Poor solvent

5.2 Poor solvent

Solvent quality decreases as temperature is lowered, leading to polymer
collapse and possible phase separation (the lower part of Fig. 5.1). In
Section 4.4, the binodal curve that describes the phase boundary was
defined. The highest point on the binodal line is the critical point with
critical compeosition [Eq. (4.57)]:

< & — ) 5'7
and critical interaction parameter [Eq. {4.58)],
1
1 ] (5.8)

Xe =73 + \/_N + 3N
The critical composition ¢, and the overlap concentration ¢* at the
f-temperature nearly coincide for monodisperse pelymer solutions. The

critical temperature for a polymer solution [Eq. (4.54) with Ny =N and
Np = 1] can be written in terms of the #-temperature, since 1/2=4 + B/f

from Eq. (4.31):,

1 x.—4 1/1 1 i

T.” B E('+—'+ A)

1 1/1 1
_B+B(\/N+2N)' (5.9)

This critical temperature is close to the boundary of the ideal dilute regime
[Eq. {5.6)]. Longer chains phase separate at higher temperatures {closer to
the #-temperature). Phase diagrams of different molar mass polystyrenes
in cyclohexane are shown in Fig. 5.2(a). The Flory-Huggins prediction
[Eq. (5.9)] for the dependence of the critical temperature T, on the degree
of polymerization N is in good agreement with experiments as seen in
Fig. 5.2(b), whose intercept is 1/6 and slope is 1/B.

Below the binodal, homogeneous solutions phase separate into a dilute
supernatant of isolated globules and a concentrated sediment (assuming
that the polymer has higher density than the solvent). The overall com-
position of the dilute phase of isolated globules is the lower volume fraction
branch ¢’ of the coexistence curve for monodisperse polymer solutions.
The branch of the coexistence curve at higher compositions is the volume
fraction of polymer ¢" of the coexisting sediment for binary mixtures.

The shape of the binodal near the critical point is not predicted correctly
by the mean-field (Flory—Huggins) theory as demonstrated in Fig. 5.3(a).
The difference in the two concentrations coexisting at equilibrium in the
two-phase region is called the order porameter. This order parameter is
analogous to the order parameter of van der Waals for the liquid-vapour
phase transition, that is proportional to the density difference between the
two coexisling phases. This order parameter is predicted to vary as a
power law of the proximity to the critical point:

¢ — @ ~(x —xo)" ~ (T~ T)". (5.10)
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(a) Phase diagrams for polystyrenes in
cyclohexane, M =43 600 g mol™! (open
circles), M =89 000 gmol™" (filled
circles), M =250000 gmol ! (open
squares), M = 1270000 gmol ™' (filled
squares). (b} Chain length dependence of
the critical temperature for polystyrene
in cyclohexane (open circles) from part
(a) and for polyisobutylene in diisobutyl
ketone (filled circles). All data from

A. R. Shultz and P. J. Flory, J. Am.
Chem. Soc. 74, 4760 (1952).
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(a) Phase diagrams for polystyrene

in methylcyclohexane with

M, = 200000 gmol ™! (solid circles) and
M, = 1560000 gmol ' (open circles)
are compared with the mean-field
predictions (curves). (b) Dependence of
the order parameter on ¢ = (T, — T/ T..
Close to the critical point (at small ¢) the
order parameter is larger than expected
by mean-field theory (line with

slope = 1/2) and the slope is 8~0.3.
Data are from T. Dobashiet al., J. Chem.
Phys. 72, 6692 (1980).

Polymer solutions

The mean-field prediction for the exponent is S=1/2. As shown
in Fig. 5.3(a), the experimentally measured binoedal is wider than the
mean-field prediction. Mean-field theories of phase transitions always fail
sufficiently close to the critical point. There is a critical region near T,
where mean-field theories do not work because they ignore concentration
fluctuations. The Ginzburg criterion determines the width of the critical
region by checking the self-consistency of the mean-field theory. The
mean-field theory assumes that monomers are uniformly distributed with
no concentration fluctuations. However, in dilute solutions the monomer
concentration fluctuates enormously, from zero between coils to a higher
value within a coil. It fluctuates even within each coil (as discussed in
Section 2.7). In semidilute solutions, concentration fluctuations are con-
siderably smaller. A quantitative measure of concentration fluctuations is
provided by the overlap parameter P—the average number of other chains
inside the pervaded volume of a given chain [Eq. (1.22)]. At the critical
point for a general A-B mixture, the overlap parameter of the A-chains is
the ratio of the overall volume fraction ¢. and the volume fraction of a
single A-chain within its pervaded volume:

G RY VNaNg
Po=Z0A SN = Als 5.1
oy~ eV = e N (5.1)

To obtain this result, Eq. {4.52) has been used for the critical composition
of an A-B mixture and the ideal coil size is Ry = h/Na. For symmetric
blends, Ny = Ng= N> 1, the overlap parameter at the critical point with
¢.=1/2 is very large P, = +/N/2 > | and mean-field theory works well
for symmetric blends. For asymmetric blends with N, > Np, the overlap
parameter at the critical point is P; = +/Ng. Mean-field theory is still
applicable as long as Ng» 1. In polymer solutions Ny =1 and the mean-
field theory does not work near the critical point.

Critical theories take into account concentration fluctuations and
describe phase transitions near the critical point. The critieal theory for this
phase transition is the Ising model which also describes liquid—vapour
transitions near their critical points. The prediction of the three-
dimensional Ising model for the critical exponent 320.3 is in good
agreement with experiments as shown in Fig. 5.3(b). Mean-field and cri-
tical theories and the Ginzburg criterion for the boundary between them
for a qualitatively different transition, called percolation, will be described
in detail in Chapter 6.

Further from the critical point, the high concentration branch of the
coexistence curve ¢” {the volume fraction of the coexisting sediment} is
well described by the mean-field theory because the overlap parameter
P> 1. This concentration is determined by the balance of the second
and the third terms of the virial expansion. The second term
kT#H(1 —2x)/2 < 0 is the two-body atiraction that causes phase separa-
tion. The three-body repulsion term k7¢’/6 > 0 stabilizes the concentra-
tion. Minimizing the sum of these two terms of the free energy gives the
concentration of the sediment;

v

¢”z2X71=7E

(5.12)



Poor solvent

Recall from Section 3.3 that the balance of the same two terms of the free
energy determines the concentration inside the globules in the dilute
coexisting phase:

Nb' v

— =2y~ 1l=——=4 (5.13)

R§1 b3

The size of the globules is proportional to the one-third power of the
number of monomers in them [Eq. {3.78)]:

BNL/3 N3
@2x - 117 WP

Rgl ot (514)

The globules in dilute solution behave as little droplets. The surfoce
tension (the energy per unit area of the surface) of the droplets ensures that
they are roughly spherical. Monomers within the droplets attract each
other, but monomers at the surface of the droplet also contact the pure
solvent. The missing attraction energy for the monomers at the surface of
the droplet is the origin of the surface tension. In polymeric globules,
neighbouring thermal blobs attract each other with energy of order of the
thermal energy 4 T. Blobs along the surface of the globules have a deficit of
this attraction energy due to the absence of neighbouring thermal blobs
outside the globule. Therefore, the surface tension + of the globules is of
the order of kT per thermal blob at the surface:

v v R (2y — 1) (5.15)

The total surface energy of a globule ts the product of the surface tension v
and the globule surface area Ré:

2 473

YR ~ kT% ~ kT% N2 ke T(2x — YN, (5.16)
T

The thickness of the interface between the globules and the pure solvent is

of the order of the size of a thermal blob é7=b/(Zx — 1).

Owing to the high cost of their surface energy, globules would like to stick
together, forming larger clusters with lower surface energy per molecule.
This tendency results in the formation of the second phase—the sediment.
The equilibrium concentration of globules in the supernatant phase s very
low. Their high surface energy [Eq. (5.16)] can only be balanced by their
translational entropy £T In ¢ per molecule. Therefore, the concentration of
the dilute supernatant phase 1s lower than that in the concentrated sediment
phase by the exponential of the globule surface energy:

R 4/3
T g]] = Mexp l— ik Nzﬁ]. (5.17)

(?5, — (?5” exp kT e b3

This dependence differs significantly from the prediction of the mean-field
(F r —Huereins) theorv This is not surprisinge because mean-field theorv
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is expected to fail in dilute solutions, where the small overlap parameter
(P < 1) makes concentration fluctuations large.

Equation (5.17) allows the surface tension of globules to be determined
by measuring the very low concentration ¢’ of globules, their size Ry and
the concentration of the sediment. There is a detailed balance and
exchange of the chains between the sediment and supernatant phases. As
in any equilibrium between coexisting phases, the chemical potential of
polymer chains is the same in both phases. Chains increase the enthalpic
part of their free energy by the increase in surface energy when they leave
the sediment, but they gain translational entropy that lowers the entropic
part of their free energy.

There is also a major difference in the conformation of chains in the
supernatant globules and the condensed sediment. The chains in globules
are collapsed, with size given by Eq. (5.14), arising from a dense packing of
thermal blobs [see Fig. 3.14]. The same chains in the sediment are in their
ideal conformations with size R =bN'/?. As globules stick together form-
ing a sediment, they effectively organize into a melt of thermal blobs. Even
though thermal blobs of each chain still attract each other with the same
energy kT, they also attract blobs of other chains, just as monomers in
a melt atiract each other. The surrounding chains screen this intramole-
cular interaction and each one opens up to maximize its conformational
entropy at the same interaction energy (k7 per thermal blob). Thus, the
excluded volume attraction in the sediment is screened by overlapping
chains in a similar way to the screening of excluded volume repulsion in a
polymer melt.

5.3 Good solvent
5.3.1 Correlation length and chain size

The upper part of the phase diagram (Fig. 5.1} corresponds to good solv-
ents. At low concentrations, polymer coils are far from each other and
behave as isolated real chains (see Section 3.3.1.1). At temperatures for
which the excluded volume interaction within each chain exceeds the
thermal energy kT, they begin to swell. The Flory theory prediction for the
size of swollen real chains with excluded volume v > b3/+/N is the same as
the result for a self-avoiding walk of thermal blobs [Eq. (3.77)]:

R = b(bia)ZHAW. (5.18)

For swelling exponent 12¢0.588 the expression for chain size is
R b(v/p*)> B NP88 Chains begin to overlap when their volume fraction
¢ exceeds the volume fraction of monomers inside each isolated coil, called
the overlap concentration ¢*.

N 3 3y Gv—3
PTINELLINN (b_) N (5.19)



Good solvent

The overlap concentration decreases with chain length more rapidly than
in #-solvent, with ¢* ~ N °7 since the exponent 1»220.588. The quality of
solvent and the excluded volume increase with temperature and therefore,
the overlap concentration decreases with increasing temperature.

At higher voncentrations, chains interpenetrate and the solution
is called semidilute. The polymer volume fraction in semidilute solution is
still very low ¢* < < 1. Therefore at small distances each monomer is
surrounded by mostly solvent and a few monomers belonging to the same
chain. If a monomer tries to reach monomers on other chains by a CB
radio, the radio must have a sufficiently long range £ (see Fig. 5.4). This
length scale &, called the correlation length, is one of the most important
concepts in semidilute solutions. On length scales smaller than the corre-
lation length, each monomer is surrounded by mostly solvent and other
monomers belonging to the same cham. If the range of the CB radio r <&,
it ts unlikely that the monomer will be able to call any monomer on any
other chain. The conformations of the section of the chain of size £ con-
taining g monomers are very similar to those for a chain in a dilute solution
with a solvent of the same quality [see Eq. (5.18)].

vy vl
¢~ b(g) g (5.20)
This small section of a chain is hardly aware that the solution is semidilute
because it interacts mostly with solvent and with monomers from the same
section of its own chain. The correlation volumes are space-filling. They are
at overlap with each other and a semidilute solution can be subdivided into
a set of densely packed correlation volumes, each with the overall solution
concentration of monomers inside them:

YR (5.21)

Combining Eqs {5.20) and (5.21), provides a relation between the
volume fraction ¢ and the number of monomers g in a correlation blob of
size £

(¢ Ve i3 {(2v—=1)/v b SN 3 (2v-1)/v ¢ 1)y
=) G @=6) G en

The correlation length in a semidilute solution decreases with increasing
concentration as a power law:

b3 (2v-1)/(3v-1)
g:zb( ) ) (5.23)

v

The concentration dependence of the correlation length is £ ~ ¢~ since
the exponent v == 0.588. The number of monomers in each correlation blob
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Fig. 5.4

If the range of a monomer’s CB radio is
shorter than the correlation length £, the
monomer can only talk with monomers
on the same chain, whereas if the range
extends beyond the correlation length,
the monomer can talk with other
monomers on many different chains.
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Fig. 5.5

Schematic representation of a chain in
semidilute solution in a good solvent.
The plot shows the scaling of the
end-to-end distance r with the number of
monomers 7 in a subsection of a chain in
a good solvent on logarithmic scales.

Polymer solutions

decreases with increasing concentration as another power law:
p, 30D/ 01y
g (_) ™!/ (5.24)
v

The concentration dependence of the number of monomers in a correla-
tion blob is g~ ¢ ' since the exponent v 22(.588.

On length scales larger than the correlation length, the excluded volume
interactions are screened by the overlapping chains. The semidilute solu-
tion on these length scales behaves as a melt of chains made of correlation
blobs and the polymer conformation is a random walk of correlation blobs:

M 12
~El— . 5.25
- s

The concentration dependence of polymer size in semidilute solution is
determined by substituting the expressions for the concentration depen-
dence of the correlation length £ [Eq. {5.23)] and the number of monomers
in a corrtelation blob g [Eq. (5.24)] into Eq. (5.25):

A 172 v (r—1/2)/(3v=1)
Ree{2) =~b(— N2, 5.26
g(g) b(b%b) (5-26)

The size of polymer chains decreases weakly with concentration in semi-
dilute solution as R ~ ¢~ "'? since the exponent v = 0.588.

There are three scaling regimes for a chain in a semidilute solution.
summarized in Fig. 5.5.

Regime (/). On scales up to the thermal blob size {7, the chain is nearly
ideal because excluded volume interactions are weaker than the thermal
energy. The size of a polymer subsection grows as the square root of the
number of monomers in it up to the thermal blob sizé &7

Regime (if). On length scales larger than a thermal blob {7, but smaller
than the correlation blob &, the excluded volume interactions are strong
enough to swell the chain, but are not yet screened by the surrounding
chains. The size of polymer sections on this intermediate length scale
grows as the 0.588 power of the number of monomers in them.

F
R .
12
Ly g
,
0.588
S |
172 i
1 8T g N




Good solvent

Regime (iify. On length scales larger than the correlation length £, the
excluded volume interactions are screened and the chain is a random walk
of correlation blobs.

The concentration dependence of polymer size [Eq. {5.26)] will now
be derived using an alternative de Gennes scaling theory. The main
assumption of any scaling theory is that each quantity (such as polymer
size R) changes as a power of another quantity (such as the volume
fraction ¢). At the overlap concentration [Eq. {5.19}],

b3 6v—3
o* =~ () N (5.27)
v
the chain has its dilute solution size [Eq. (5.18)]:
v 2e—1 y
Re =~ b(ﬁ) N (5.28)

The size of a chain in a semidilute solution can be written as some power x
of concentration that matches the dilute size at ¢*:

N 2 XN i 2v—14+bux—3x 3o
R~ Ry (é*) Nb(b3) N . (5.29)

Chains in semidilute solutions are random walks on their largest length
scales and their size 1s thus proportional to the square root of the number
of monomers R ~ N'2. Therefore

y+3yx—x:% :x:_%;__l_/lg, (5.30)
leading to
—(v=1/2/(3v—1) 1y, —(=1/2)/(30-1)
R = Ry (%) S b(%) N2, (5.31)

The same de Gennes scaling approach can be applied to the correlation
length:

¥ 2v— 1461y —3y
¢~ Ry (Q%) ~ b(-b‘-;-) T gy gy (5.32)
At the overlap concentration, the correlation length is equal to the dilute
coil size because the coils are space-filling at ¢* and the correlation blobs
are always space-filling. Above the overlap concentration, the correlation
length does not depend on the number of monomers in a chain. Correlation
blobs behave as shorter chains with g monomers at overlap [compare Eqs
(5.19) and {5.21)]. A solution of longer chains (with N, > N >g) at the
same concentration ¢ can be thought of as a melt of correlation blobs with
more of these blobs per chain (with N|/g > N/g). The correlation blobs are
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Fig. 5.6

Concentration dependence of coil size
(solid line) and correlation length
(dashed line) in an intermediate good
solvent on logarithmic scales.

¢,* ¢=::* 1 ¢

Polymer solutions

the same in these two solutions, The number of monomers g in each cor-
relation blob and the size £ of each correlation blob depend only on the
volume fraction ¢ and excluded volume v, but not on the chain length N.
From the simple fact that the correlation length is independent of chain
length, the exponent y can be determined:

v

3v—1"

v43vy—py=0 = y=— (5.33)

The final expression for the correlation length is identical to Eq. (5.23):

¢ —v/(3e-1) b3 (2v-1)/(3v-1) -
§wRF(¢*) zb( ) /B (5.34)

v

The correlation length £ decreases with increasing concentration, but
the size of the thermal blob £1is independent of concentration [Eq. (5.4)].
Therefore at some concentration, ¢** they are equal to each other and the
intermediate swollen regime (ii) disappears. This concentration can be
determined from the relation £ = £ using Egs (5.4) and (5.34):

p3\ (= D7e=1) b
b(;) () O ~ (5.33)

v
o (5.36)

Note that this concentration is analogous to ¢" in poor solvent [Eq. (5.12)].
at which point the two- and three-body interactions are balanced (see
Fig. 5.1, but in good solvent, both interactions are repulsive. Notice that
in the athermal limit (v = 5°) the semidilute solution persists to high con-
centrations, since ¢** = 1. *

At and above the concentration ¢**, chains are ideal on all length scales.
On length scales smaller than the correlation length, the chains are ideal
because the excluded volume interactions are weaker than the thermal
energy (since £ < £7). On length scales larger than the correlation length.
the chains are ideal because excluded volume interactions are screened by
overlapping chains. The ¢** concentration is the crossover boundary
between the semidilute regime with some swelling on intermediate length
scales and the concentrated solution regime (Fig. 5.1) with ideal chain
statistics on all scales R = hN'/?. In the semidilute regime (¢* < ¢ < ¢**)
the coils shrink from their size [Eq. (5.18)] in dilute solutions (¢ < ¢*) to
their ideal size in the concentrated regime (¢ > ¢**) as shown in Fig. 5.6.
The concentration dependence of the polymer size in semidilute solution
R~ ¢ "2 [see Eq. (5.31)] can be rewritten with ¢** as the reference point:

—(v-1/2)/Gv=1)
R= Ry (i)

e ¢F < < P (5.37}



Good solvent

In an athermal solvent, the thermal blob is of the order of one monomer
crab and regime (iii) disappears. The relations (5.23) and (5.26) are
simplified because v~ B,

£ béfr//(h_l] g b¢—0'?6, (538)
R m BNV~ (- UB/0v-1) oy p1/2=012, (5.39)

The crossover volume fraction is of order unity (¢** 1) in an athermal
solvent, meaning that the chains are partially swollen at all concentrations.
The excluded volume in an athermal solvent is fully screened only in the
melt state (€ =bx=2Erat p=1).

53.2 Osmotic pressure

5.3.2.1 Maean-field theory
Recall the mean-field virial expansion for the osmotic pressure of polymer
solutions discussed in Section 4.5.1 [Eq. (4.67)].

ET g v, w4
] sy {ﬁ‘l‘wqﬁ +ﬁ¢’ + -], (5.40)

Cn

H=kT{ +Ecz+wc3+---

N 2T
The Flory—Huggins mean-field theory recovers the van’t Hoff Law
[Eq. (1.72)] in the dilute limit (as ¢— 0). At higher concentrations, the
mean-field theory predicts that two-body excluded volume interactions
make osmotic pressure proportional to the mean-field probability of
monomer—monomer contact (¢2):

O~ kTve: = Ig—qus? mean-field. (5.41)
The mean-field theory correctly predicts that the osmotic pressure is
independent of molar mass in semidilute solution. However, the mean-
field theory does not take into account the correlations between monomers
along the chain, but instead assumes that they are distributed uniformly as
in a solution of monomers. This is the reason why the two-body inferac-
tions [Eq. (5.41)] become important at volume fraction:

3
Prvody =2 \?tN mean-field, (5.42)

estimated by equating the first two terms in the virial series [Eq. {3.40)].
The two-body interaction concentration ¢upeay is far below the overlap
concentration (Bapody < ¢* for v/b% > 1/v/N) predicting that two-body
interactions are important in dilute solutions. This prediction of the mean-
field theory overestimates the two-body interactions in dilute solution by
distributing monomers uniformly everywhere. The two-body interactions
between chains do not dominate the osmotic pressure until the overlap
concentration ¢* is reached. In order to properly take into account chain
connectivity, de Gennes developed a scaling model of osmotic pressure.
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5.3.2.2 de Gennes scaling theory

Up to the overlap concentration ¢*, the van’t Hoff Law should approxim-
ately describe the osmotic pressure. Above ¢*, the osmotic pressure should
increase as a stronger function of concentration. This function must have
the following form, to match the van't Hoff Law when ¢ = ¢*:

_kT¢ (¢
m="50 f(¢*). (5.43)

In dilute solutions, the van’t Hoff Law should be valid and the function f
approaches unity at low values of the argument:

¢
f(ﬁ =1 for ¢ < ¢*. (5.44)
Indeed, measurement of osmotic pressure in dilute solution can determine
the chain length N, with results for a polydisperse sample providing the
number-average chain length {(see Section 1.7.1). In the semidilute regime.
a power law form for the function f'is assumed:

LANUEAY ‘
f(¢*>~(¢*) for ¢ > ¢*. (5.45)

The exponent z can be determined from the scaling form of the osmotic
pressure:

—~ kTqB Cb :N kT 1oz ¥ 32(2e-1) {3u—1)z—1
() o G s
The final relation was cobtained using Eq. (5.27) for ¢*. The osmotic pres-

sure In semidilute solution is independent of chain length. Therefore the
exponent of N in Eq. (5.46) must be zero

1

(31/—1)2—1:0 = 2=§;——1.

(5.47)
The semidilute osmotic pressure has a stronger concentration dependence
than predicted by the mean-field virial expansion [Eq. (5.41)];

kT /vy 3@v-1)/0v-1) kT v\ 069
T (Y g SEL 05 sy
The scaling approach to semidilute solutions, described above, takes
into account the correlations between monomers along the chain. Chains
begin to interact at length scales of order of the correlation length £. In
good and athermal solvents, neighbouring blobs repel each other with
energy of order kT. Therefore the scaling model prediction for the osmotic
pressure in semidilute solutions is of order kT per correlation blob.

1T

kT 3(2v-1y/(3e—1 kT
N (V) )/ )¢3;//(3u-]) o~ (549)
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Semidilute theta solutions

In the final expression, Eq. (5.23) was used for the correlation length & The
scaling prediction for osmotic pressure is significantly different from the
mean-field prediction because the exponents for the concentration
dependence differ (2.3 instead of 2}. The scaling prediction is in excellent
agreement with experiments, as demonstrated in Fig. 5.7 (the high
concentrations are described by ITjc ~ c]'3). Equation (5.49) demonstrates
that the osmotic pressure provides a direct measure of the correlation
length in semidilute solutions.

Figure 5.7(b) demonstrates that the functional form of Eq. (5.43)
reduces osmotic pressure data at various M and ¢ {or ¢) to a universal
curve. The limiting scaling laws of IL~ ¢ or I~ ¢** are only valid suffi-
ciently far from the overlap concentration. Near ¢* (and more generally
near any crossover point), a more complicated functional form than a
simple power law is needed. For osmotic pressure in a good solvent (and
many other examples) the full functional form of Eq. (5.43) is well
described by a simple sum of the two limiting behaviours:

e (8)en ()
ahr =7 (¢* T
5.4 Semidilute theta solutions

54.

In semidilute #-solutions and in concentrated solutions (¢ > ¢* = ¢ and
between ¢" and ¢** curves in Fig. 5.1), the chains are almost ideal with
R bNY?. The correlation blob of size £ is still defined as the volume in
which most of the monomers belong to the same chain. As in geod solv-
ents, the volume of the semidilute #-solution is divided into space-filling
correlation blobs {Fig. 5.4) and the correlation length £ is the scale at
which monomers from other chains are seen. However, unlike good solv-
ents, there is no change in chain conformation at the correlation length in
§-solvent, In good solvents, the excluded volume interactions are screened
by overlapping chains at the correlation length and the chain statistics
change to that of an ideal coil at larger length scales. In #-solvents, chain
statistics are nearly ideal on all length scales at all concentrations, and no
change in polymer conformation occurs at the correlation length £ In
Chapter 8, we will demonstrate that this correlation length is important for
polymer dynamics in semidilute §-solutions, In Section 5.4.2, this corre-
lation length will be related to osmotic pressure.

The correlation length is determined by recognizing that only g mono-
mers from a single chain are inside the correlation volume 53 and that these
correlation volumes are space-filling. The volume fraction of polymer in
solution is then the ratio of the occupied volume of the g monomers in the
strand #°g and the correlation volume &

(5.50)

Correlation length

Bg b/ b
¢z—m;wg. .

PR (5.51)
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Fig. 5.7

Concentration dependence of osmotic
pressure data for five poly(e—methyl
styrene)s in the good solvent toluene at
25°C. (a) Raw data—the data below ¢*
for the lowest three molar masses are
plotied on linear scales in Fig. 1.22.
(b) Data reduced in the scaling form
expected by Eq. (5.43). Filled circles
are data for M, =70800 gmol™",

open squares are data for

M, =200000gmol ", filled triangles
are data for M, = 506000 gmol™",
open diamonds are data for

M, =1190000 gmol", and filled
upside-down triangles are data for
M., =1820000gmol". (after I. Noda,
et al. Macromolecules, 14, 668, 1981).
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Fig. 5.8

Correlation length from SANS data fit
to Eq. (5.52), for polystyrene in
perdeuterated cyclohexane at the
f-temperature (38 °C). Open circles are
from J. P. Cotton et al., J. Chem. Phys.
65, 1101 (1976)and filled circles are from
E. Geissler et al., Macromolecules
23,5270 (1990).
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The concentration dependence of the correlation length in semidilute
#-solutions is stronger than that in good solvent:

Ere—. {5.52)
U
This concentration dependence can also be determined by a scaling
argument similar to the one used in semidilute good solvent. The corre-
lation length £ is equal to the ideal chain size Ry at the overlap con-
centration ¢*:

NB 1
mRy=bVN ato*=—7rm=—. 5.53
€ 0 \/_ a ¢ RS \/N ( )

In the semidilute regime, the scaling assumption is that the correlation
length decreases as a power law in concentration:

£ bN'? (%) o b NI/, (5.54)

The exponent x is once again determined from the condition that the
correlation length in semidilute solution should be independent of chain
length £ ~ N%

1
Y0 & x=—1. (5.55)

Substituting x= ~ 1 in Eq. (5.54) also vields Eq. (5.52) for the con-
centration dependence of the correlation length in f-solvent.

The correlation length has been measured using scattering experiments.
as discussed in Section 5.7. Small-angle neutron scattering (SANS) data on
polystyrene in deuterated cyclohexane at §=38.0°C are summarized in
Fig. 5.8. These data are in good agreement with the power law expected by
Eq. (5.52), shown as the line.

5.4.2 Osmotic pressure

The mean-field prediction for the osmotic pressure [Eq. (5.40)] in §-sol-
vents is the virial expansion with vanishing excluded velume (v=10):

HkT[gb w

-5 N+b6¢3+m]' (5.56)

The first term is proportional to the number density of chains [the van’t
Hoff law Eq. (1.72)] and is important in dilute solutions. The three-body
term is larger than the linear term (we®/b® > ¢/N) at concentrations above
overlap ¢ > 8 /v/wN 2= ¢*, since the three-body interaction coefficient
w = %, In semidilute #-solutions, the osmotic pressure is determined by the
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third virial term:

kT
Ny ¢ (5.57)
This mean-field prediction can be substantiated by constructing a simple
de Gennes scaling theory. A similar scaling form for the osmotic pressure
is assumed in @-solutions as was used in good solvent [Eq. (5.43)]:

Ko, (2
IIbSNhCﬁ). (5.58)

In dilute solutions ¢ < ¢*, this scaling function approaches unity
h{¢/¢*) == | and the osmotic pressure obeys the van’t Hoff law. In semi-
dilute f-solutions, a(¢/¢*) ts again assumed to be a power law:

kT YokT
HA\:F% (%) z?qﬁ]”N}/z L (5.59)

The exponent v is determined from the condition that the osmotic pressure
in semidilute solutions is independent of chain length, IT ~ N°

g_lzo = y=2. (5.60)

The scaling argument leads to the same prediction in semidilute
f-solutions as the mean-field theory [Eq. (5.57)]. The osmotic pressure in
semidilute solutions is again of the order of the thermal energy £T per
correlation volume:

kT kT
&

The correlation length in f-solution is of the order of the distance between
three-body contacts {because the excluded volume of two-body interac-
tions is v =0 in #-solvents). The density of n-body contacts is proportional
to the probability of » monomers being in the same small volume of space.
The mean-field prediction for this probability and the corresponding
contribution to osmotic pressure is proportional to ¢”. The number dens-
ity of such contacts is #"/b>. The distance between n-body contacts r,, in
three-dimensional space is of the order of

I = & (5.61)

Fp 5 bcp‘”f 3 three dimensions, (5.62)

within the mean-field theory (ignoring correlations). This distance defines
the corresponding correlation length. The mean-field predictions for the
correlation length [Eq. (5.62) with n=3] and the osmotic pressure
[Eq. (5.61)] in semidilute §-solutions are in agreement with the scaling
theory prediction and with experiments (Figs. 5.8 and 5.9).
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Fig. 5.9

QOsmotic pressure of

M, =90000 gmol~! polyisobutylene
solutions from P. J. Flory and H.,
Daoust, J. Polym. Sei. 25, 429 (1957).
Filled circles are in benzene at

0 =24.5°C, filled squares are in benzene
at 50°C, open circles are in cyclohexane
at 30°C, and open squares are in
cyclohexane at 8 °C. The lines are the
power laws expected from scaling
theory.
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Fig. 5.10

The Alexander — de Gennes brush of
chains grafted to a surface in a good
solvent and corresponding density
profiles. The solid line is the
Alexander — de Gennes step function
profile. The dashed lineis the
Semenov—Milner-Witten parabolic
profile.

Polymer solutions

Figure 5.9 compares osmotic pressure in a -solvent {filled circles) with
osmotic pressure in the same solvent 25 K above 8 (filled squares) and in an
athermal solvent {open symbols). The #-solvent data clearly exhibit the
slopes of 1 and 3 expected from Eq. (5.56). At T= 60+ 25K, the solventisa
good solvent, with the slope of 2.3 expected by Eq. (5.48) observed at high
concentrations. The fact that osmotic pressure data for polyisobutylene
solutions in cyclohexane are the same at two temperatures indicates
that cyclohexane is an athermal solvent. The factor of 2.75 relating the
coefficients of the 2.3 power laws for athermal solvent and benzene at
50°C indicates thal polyisobutyvlene in benzene at 50°C has excluded
volume smaller than cyclohexane by a factor of 27571108 .23 [see
Eq. (5.48)].

The mean-field theory does not work in good solvent because excluded
volume interactions strongly affect chain statistics and reduce the prob-
ability of inter-chain contacts. In f-solvents, the chain statistics and the
probability of the inter-chain contacts are almost unaffected by interac-
tions and well approximated by the mean-field theory.

5.5 The Alexander — de Gennes brush

The concepts of correlation length and scaling can be used to understand a
wide variety of topics in polymer physics. As an application of these ideas,
consider a simple scaling estimate of the height H of a grafted layer (called
a brush). The layer consists of o chains per unit surface area grafted to the
surface in an athermal solvent. If the grafting density « is high enough, the
attached chains form an overlapping layer that behaves like a semidilute
solution. The distance between the grafting points defines the distance
between the chains which is the correlation length in this layer:

TN . (5.63)

Vo
The correlation blobs of overlapping grafted chains repel each other
with energy of order &7, forcing them into an array perpendicular to the
surface (see Fig. 5.10). The number of monomers g in a correlation

volume in an athermal solvent is determined by the self-avoiding statistics
of the chains inside each correlation volume:

6 1/v
g (b) m g YOI (5.64)
The number of correlation blobs per chain is N/g:
N
— 7z No/ W ptiv. (5.65)

The Alexander — de Gennes approximation for a brush is that it is a
stretched array of correlation blobs. The height of the brush is the size of
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a correlation blob times the number of these blobs per chain:
N
H =~ fg 2 NG-“*V)/(ZV]bI/V_ (566)

The height H increases linearly with the number of monomers N per chain
at constant grafting density. The stretching energy per chain Echaiq in the
grafting layer is 4 T times the number of correlation blobs per chain:

Echain kTg ~s kTN /p1/Y. (5.67)

The stretching energy per unit volume in the brush is balanced by the
interchain repulsive energy per unit volume, which is proportional to the
osmotic pressure in the layer:

o kT

Echain o No
22 Eopain — = kT——= = kT~ — = IL 5.68
Vehain chanH g H ‘E 63 ( )

The Alexander — de Gennes approximation assumes that the chains
are uniformly stretched, with the free end of each chain located at the top
of the brush at height H from the surface. The density profile of the
Alexander — de Gennes brush is a step function:

. {b3g/£3 ~ (ab) >V for z < H (5.69)
0 for z > H.

A more accurate solution of this problem was developed by Semenov and
by Witten and Milner using a self-consistent field theory. It allows the free
ends of the chains to be distributed throughout the whole grafted layer and
predicts a parabolic density profile of the brush (see Fig. 5.10).

5.6 Multichain adsorption

In Section 3.2.3, a scaling picture of single-chain adsorption was pres-
ented. A chain forms a flat pancake at an adsorbing surface in order to
balance the number of contacts with the surface against the loss of entropy
due to confinement. Even though each monomer usually gains energy less
than kT upon contact with the surface, the whole chain can gain energy
much larger than kT because of many contact points. Thus, the chains in
solution are attracted to the surface and try to maximize the number of
contacts with it. This leads to a high concentration of monomers near the
surface in the realistic case of multichain adsorption.

Crowded chains near the surface repel each other, limiting other chains
from getting into this concentrated layer. The monomer concentration in
the first layer near the surface is determined by an energy balance between
attraction to the surface and repulsion from surrounding chains. The
correlation length £,4, in the first layer defines the adsorption blob
size with g,qs monomers. The chain sections of the adsorption blob size are
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Fig. 5.11

The de Gennes self-similar carpet and
corresponding concentration profile for
an adsorbed polymer layer in a good
solvent.

Polymer solutions

attracted to the surface with energy of order kT and are repelled from each
other with similar energy. The size of the adsorption blob was calculated in
Section 3.2.3 [Eq. (3.62)] where #kT is the energy gain per monomer
adsorbed:

good solvent. (5.70)

b
Eads R o)
The adsorption blob size decreases with increasing surface attraction 6 as
£,457 b6 for exponent' v=0.588.

Only the sections of the chains in this first layer gain energy due to
contact with the surface. Sections further away from the surface do not
gain attraction energy, but are relaxing the concentration from the high
value near the surface to a low value in the bulk of the solution in the most
optimal way. The correlation length £= b¢_”/(3" “Din a semidilute
athermal solution defines the distance from the surface z = £ at which the
concentration decays to a value ¢:

= (¢/b) I e (2 /b)Y

The concentration in the adsorbed layer decreases away from the surface
as ¢=(z/h)~"? for exponent v20.588. This power law concentration
profile in an adsorbed polymer layer was proposed by de Gennes and is
called the de Gennes self-similar carpet. This profile of adsorbed polymer
can be described by a set of layers of correlation blobs with their size £ of
order of their distance to the surface z (see Fig. 5.11). The self-similar
concentration profile starts at the adsorption blob £,4 in the first layer.
The self-similar profile ends either at the correlation length of the sur-
rounding solution if it is semidilute or at the chain size Rg = bN” if the
surrounding solution is dilute.

The adsorbed amount I” is the number of monomers adsorbed per unit
area of the surface, and is controlled by the densest layex with thickness of
the order of adsorption blob size £,4:

T Cfs()d b / (z/b) B0 4z
adn
b b )(ZUW v gie=1)/(1-v)
(fads a bz

The adsorbed amount increases with the adsorption energy per monomer
as ['= 60'43/b2 for exponent v 220.588. Notice that the adsorbed amount
I is independent of the chain length of the adsorbed polymers. It is pro-
portional to the number of monomers in the first layer with thickness of
the order of the size of the adsorption blob [Eq. (5.70)]:

Zads (éads)”” 1 (b )QHW 2= 1)/0-1)
é-ads B b €ads b2 gads ~ bZ ’

! The exponent was —3/2 in Eq. (3.62) because in Section 3.2.3 we used »=3/5.

(5.71)

(5.72)

(5.73)




Measuring semidilute chain conformations

There is considerable difference between the power law profile of the
adsorbed polymer layer [Eq. (5.71) and Fig. 5.11] and the step function
(or parabolic) profile of a grafted polymer brush (Fig. 5.10).

5.7 Measuring semidilute chain conformations

Semidilute solutions have an important length scale called the correlation
length £, at which neighboring chains start to interact. The correlation
length can be experimentally measured using SANS from a polymer solu-
tion in a perdeuterated solvent (all solvent hydrogen atoms are substituted
with deuterium). The scattering function for a semidilute solution of ideal
chains is given by the Ornstein—Zernike scattering function [Eq. (4.93)].

)
S0 =1 e

This equation allows the correlation length £ to be measured from SANS
on semidilute ¢-solutions.

For polymersdissolved in a good solvent, the coils are swollen on length
scales smaller than £, and SANS data from a solution in a perdeuterated
good solvent fit a slightly different function that utilizes the swollen fractal
dimension P = 1/v > 1.7:

5(09)

S(q) W

Figure 5.12 compares Eq. (5.75) (1/r221.7) with SANS data on a semi-
dilute solution of polystyrene in carbon disulphide. Since the solvent
contains no protons, no deuterium labelling is necessary for good scat-
tering contrast.” Fitting Eq. (5.75) with the good solvent value of 1/v221.7
to the data yields £=5.5nm and provides an excellent description of
the data,

The coil size in semidilute solution can also be determined using SANS,
by utilizing a mixture of deuterium-labelled and unlabelled chains in an
appropriate mixture of deuterium-labelled and unlabelled solvent with
the same average contrast as the polymer mixture (contrast matched,
see Problem 5.26). If the fraction x of the chains are labelled, the g¢-
dependent scattering intensity /() is proportional to the form factor P{g)
(see Problem 5.26)

(5.74)

IR

(5.75)

1(g) ~ x(1 — x)N*KP(q), (5.76)

where K is the number of chains in the scattering volume. In practice, the
proportionality constant is known and the radius of gyration is obtained
from P(g) by fitting to the Debye function [Eq. (2.160)] for g < 1/¢, where
random walk statistics apply.

A common measure of the thermodynamics of interchain interactions in
polymer solutions is the osmotic pressure. Osmotic pressure is the pressure

2 In most situations of interest in polymer science, neutron scattering from protons
dominates the intensity.
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Fig. 5.12

Small-angle neutron scattering data for
a semidilute solution of polystyrene
(M, =1100000 gmol™") in CS; with
¢=0.025g/ml™' =22.5¢* The curve is
Eq. (5.75) with good solvent fractal
dimension T = 1/ =2 1.7. Data from
M. Daoud et al., Macromolecules

8, 804 (1973).
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difference across a membrane that separates the polymer solution from
pure solvent. The membrane allows solvent to pass freely but prevents
polymer from crossing. In Chapters | and 4, we learned that osmotic
pressure measurements in dilute solution determine polymer molar mass,
since osmotic pressure is k7 per chain. In this chapter, we learned that the
osmotic pressure measurement in semidilute solution provides another
means of determining the correlation length because the ocsmotic pressure
is of the order of &7 per correlation volume. The correlation length can
also be determined from the osmotic compressibility measured by scat-
tering at low wavevector [Eq. (1.91)].

5.8 Summary of polymer solutions

The phase diagram of polymer solutions is shown in Fig. 5.1, assuming the
usual case of B> 01in Eq. (4.31) (with y = 4 + B/T a decreasing function of
temperature). In the poor solvent half of the diagram (at temperatures
below #) the binodal separates the two-phase region from the two single-
phase regions.

There are dilute globules with size

BN/
gl ~ IV‘—I/?' , (577)
at very low concentrations (¢ < ¢’) and concentrated solutions with
overlapping ideal chains for ¢ > ¢”.

At temperatures near @ (for |T — 6]/6 < 1/+/N) there are two regions.
Dilute #-solutions with non-overlapping chains for ¢ < ¢ = 1/v/N and
semidilute #-solutions with overlapping chains for ¢ > ¢g. Chains in both
#-regions have nearly ideal coil size:

R~ Ry = bN'/2, (5.78)

At sufficiently high temperatures, the solvent is gobd, with three
regimes. There is a dilute good solvent regime at concentrations ¢ < ¢* =
(B*)® 7 *N' 7%, with non-overlapping swollen chains whose size was
determined in Chapter 3:

R ~ b(%) P b(%)o'lgfvo-f’“. (5.79)

At concentrations ¢* < ¢ < ¢** = v/b’, there is a semidilute good solv-
ent regime. In semidilute solution, the chain conformation is similar to
dilute solutions on small length scales, while the conformation is analog-
ous to polymer melts on large length scales. The overlapping chains in
semidilute solution are swollen at intermediate length scales between the
thermal blob size and the correlation length £ < r < £ and 1deal at smaller
(r < &7} and larger (r > £) length scales. The chain size in semidilute solu-
tions in a good solvent decreases weakly as the concentration is increased:

gb —(v—1/2)/(3v-1)} ¢ -0.12
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Concentrated solutions occur above the concentration ¢** at which the
thermal blob size and the correlation length coincide (at ¢ = ¢** =~ v/b%).
Chains have nearly ideal statistics on all length scales in concentrated
solution. This regime is simply an extension of the semidilute f-solution
region to higher temperatures (see Fig. 5.1}

Semidilute and concentrated solutions are characterized by a correla-
tion length £, the scale at which a given chain starts to find out about other
chains. This correlation length is

£ mb(b—j)
v

in good solvents, and

(2e-1)/(3—=1) 3~ 0.23

¢7,}/(3V41) oy b(i) ¢70A76 (581)

~?
¢

in semidilute & and concentrated solutions. The correlation length is the
average distance between segments on neighbouring chains and is inde-
pendent of the degree of polymetization. Inside the correlation blob, dilute
chain statistics apply, whereas the large-scale conformation of the chain is
that of a melt of correlation blobs. Hence, the chain size in semidilute
solution is always determined as a random walk of correlation blobs.

The semidilute good solvent predictions have been tested using SANS
on polystyrene solutions in carbon disulphide in Fig. 5.13, showing
remarkable agreement. Carbon disulphide was chosen for the solvent
because no deuterium labelling is needed since this solvent has no protons.
Apparently, CS, is an athermal solvent for polystyrene, since the radius of
gyration continues to decrease all the way to the melt.

The correlation length also determines the osmotic pressure to be of
order kT per blob:

3 (5.82)

kT

M= (5.83)

This equation holds for theta, good, and athermal solvents. Hence,

osmotic pressure or osmotic compressibility measurements provide a con-
venient means of measuring the correlation length in semidilute solutions.

Problems
Section 5.2

5.1 Consider a dilute polymer solution with excluded volume v= —12.5 A% and
Kuhn monomer length =35A. What is the root-mean-square end-to-end
distance of this polymer if the number of Kuhn monomers is
(i) N =507 (ii) N =107 (iii) N= 103

5.2 A solution is prepared using chains having N= 10* Kuhn monomers of
length h=4A, with Flory interaction parameter x=0.35 at volume
fraction ¢ =0.01.

(i) Will this solution remain homogeneous or phase separate?
(i) What is the polymer volume fraction ¢ in the sediment?
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Correlation length £ and radius of
gyration R, for polystyrene m carbon
disulfide from M. Daoud ef ai.,
Macromolecules 8, 804 (1975). Radius of
gyration data (open squares

M=1.14 x 10° gmol '} above
¢=0.1gml™" were fit to a power law
with slope — 0.12 that agrees well with
the scaling prediction [Eq. (5.80)]. The
correlation length is independent of
molar mass (filled circles

M=2.1x10° gmol™, filled triangles
M=6.5x 10° gmol ™", open circles
M=5x10° gmol ") and the power law
slope of —0.76 for all data agrees well
with scaling prediction [Eq. (5.81)). Note
that c=1.06 gmL‘I corresponds to a
polystyrene melt.
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(iii) What is the root-mean-square end-to-end distance of the polymer in the
sediment?

(i¥) What is the polymer volume fraction ¢’ in the supernatant?

(v) What is the root-mean-square end-to-end distance of the polymer in the
supernatant?

(vi) What is the volume fraction within the globule in the supernatant?

Section 5.3

53

5.4

5.5

5.6

5.7

Consider a polymer solution with ¥ = 10*> Kuhn monomers of length b="7 A,
and Flory interaction parameter y = 0.45 at volume fraction ¢ = 0.025.

(i) Do you expect this solution to stay homogeneous or to phase separate?

Explain,

(ii)) What is the polymer volume fraction ¢ in the sediment?

(tii) What is the root-mean-square end-to-end distance of the polymer in the
sediment?

(iv) What is the polymer volume fraction ¢ in this solution?

(v) Whatis the root-mean-square end-to-end distance of the polymer in this
solution?

Consider three polymer solutions with Flory interaction parameter y = 0.49.
Kuhn length A=7A, and the number of Kuhn monomers: (a) ¥N=100:
(b) N =1000; and {c) N=10,000.

(i) How many monomers are in a thermal blob?
(ii) Find the root-mean-square size of these polymers in dilute solutions.
(i) Find the overlap volume fraction for each of these three polymers.
(iv) What is the size of each of these polymers in solutions with volume
fraction ¢=0.015?

Consider a polymer solutlon with Flory interaction parameter y = 0.4, con-
sisting of chains with N = 10° Kuhn monomers of length #=3 A.

(i) What is the overlap volume fraction ¢* of these chains?
(i) What is the ¢** volume fraction for this solution?

What is the root-mean-square end-to-end distance of the polymer at volume
fraction

(iii) ¢=0.0057

(iv) ¢=0.057
v) ¢=0.17
(vi) ¢=0.27
(vii) ¢=0.4?

Recall the two-dimensional size of an isolated real chain at the air-water
interface R=a'" b'"2N¥* where a is the excluded area parameter, b is the
monomer size, and N is the degree of polymerization [Eq. (3.137)].

(i) What is the overlap surface coverage, o*?
(ii) What is the thermal blob size, &7
(iii) What 1s the correlation length £ at surface coverage 67
(iv) What is the size of the polymer R? Describe the conformation of the
chain at surface coverages ¢ above the overlap coverage o*.
(v) What is the surface pressure (the two-dimensional analog of osmotic
pressure)?

Consider an athermal semidilute polymer solution (with excluded volume
v=125A" and the Kuhn length #=5A) at volume fraction ¢=0.01. The
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5.9

5.10

EN

5.12

Problems

degree of polymerization of chains is N = 10%. Estimate the osmotic pressire
of this solution at room temperature using

(i) mean-field theory;
(1) scaling theory.

Consider a semidilute polymer solution of chains with Ng monomers,
volume fraction ¢ and excluded volume v. A trace amount of longer
chemically identical chains with N, monomers is added to the solution.
What is the size R of these A-chains, if they are assumed not to overlap
with each other and not to change the overall volume fraction ¢?

Derive Eqs (5.23) and (5.26) for good solvents with 0<v< B from
Egs (5.38) and (5.39) for athermal solvents. Hinr: Renormalize the monomer
to the thermal blob.

Plot the size r of a labelled section of » consecutive Kuhn monomers of a
chain for different regions of the diagram in Fig. 5.1. (i) Dilute f-solvent;
(ii) semidilute #-solvent; (i) dilute poor solvent; (iv) two-phase region;
{v) concentrated poor solvent; (vi) dilute good solvent; (vii) semidilute good
solvent; {viii) concentrated good solvent.

Plot the total number of Kuhn monomers belonging to all chains within a
small sphere of radius r with the centre at one monomer for different regions
of the diagram in Fig. 5.1. (i) Dilute #-solvent; (i1) semidilute d-solvent;
(iii) dilute pdor solvent; (iv) two-phase region; (v) concentrated poor sol-
vent; (vi) dilute good solvent; (vii) semidilute good solvent; (viii) concen-
trated good solvent,

Stretching a chain in semidilute solution.

Consider a semidilute solution with volume fraction ¢ of chains with ¥
Kuhn monomers of length b and excluded volume v, Calculate the free
energy cost to steetch a chain to end-to-end distance R for the following
cases:

(i) Consider the case of relatively weak stretching, with the Pincus blob larger
than the correlation length.
(i) Consider the case of intermediate stretching, with the Pincus blob smaller
than the correlation length but larger than the thermal blob.
(i) Consider the case of strong stretching, with the Pincus blob smaller than
the thermal blob.
(iv) Over what range of end-to-end distance does each case apply?

Section 5.4

513

5.14

Consider a semidilute polymer solution at room temperature with Flory
interaction parameter x = 0.4, having N= 10* Kuhn monomers of length
b=3A,

(i) Calculate the size of a thermal blob £7.

(ii) Calculate the size of a correlation blob £ as a function of polymer
volume fraction ¢. Note: separately consider two cases: £> £ and
§<Lr

{iii) What is the concentration dependence of osmotic pressure T1(¢) at room
temperature?

In order to better understand why the distance between three-body contacts
is of the order of the distance between monomers on neighbouring chains,
the problem can be generalized to ideal chains in 4 dimensions.

{i) Calculate the distance r, between n-body contacts in ¢ dimensions.

193
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(ii) Calculate the average distance £ between monomers on neighbouring
chains in 4 dimensions at ‘volume’ fraction ¢.

(iii) What is the relation between » and d that is needed for the distance r,
between n-body contacts to be proportional to the average distance £
between monomers in d dimensions at any volume fraction ¢?

{(iv) Does this condition work for three-body contacts in three dimensions?
For which interactions does this condition work in four dimensions?

Section 5.5

5.15

5.16

517

5.18

5.19*

5.20

5.21

5.22%

C0n51der a wet Alexander — de Gennes brush formed by chains with

=10* Kuln MOnOmers of length h= 3A attached to a surface with
dcn51ty c=1x10"*A"? (chains per unit area) in a solvent with Flory
interaction parameter y = 0.43.

(i) What is the correlation length £ for this brush?
(ii) What is the size of a thermal blob £, within the brush?
(iii) How many monomers of a chain are there inside a thermal blob (g7)
and inside a correlation blob (g)?
(iv) How many correlation blobs does each chain have?
(v) What is the thickness of the brush?

Calculate the thickness of a wet Alexander — de Genne$ brush formed by
chains with N =107 Kuhn monomers of length &= SA attached to the
surface with density o =1 nm Zina good solvent with Flory interaction
parameter ¥y =0.3.

Calculate the density profile in an f~arm star polymer in a #-solvent as a
function of the distance from the branch point. How does the size of
the polymer depend on the number of arms f, the degree of polymerization
N, and monomer size b.

Calculate the density profile in an f~arm star polymer in an athermal sol-
vent as a function of the distance from the branch point. How does the size
of the polymer depend on the number of arms f, the degree of poly-
merization N, and monomer size .

Calculate the density profile in an f~arm star polymer in a good solventas a
function of the distance from the branch point. How does the size of
the polymer depend on the number of arms f, the degree of polymerization
N, monomer size b, and the excluded volume v >0?

Calculate the density profile in an f-arm star polymer restricted to the
air-water interface in an athermal good solvent {two-dimensional stars) as
a function of the distance from the branch point. How does the size of the
polymer depend on the number of arms f, the degree of polymerization M.
and monomer size b.

Calculate the density profile of a cylindrical brush in an athermal solvent as
a function of the distance from the axis of a cylinder. How does the dia-
meter of the brush R depend on the line density of arms o, the degree of
polymerization N, and monomer size b.

Consider a spherical micelle made out of f diblock copolymers. The insol-
uble block consists of N, monomers of size b4 and its Flory interaction
parameter with the solvent is ya.

(1) Calculate the size R.qp of the core of the micelle.
(if) Calculate the surface energy of the core (per chain).
(iii) Calculate the size of the micelle R ;.. in an athermal good solvent
for the outer block (xg=0). Calculate the free energy of the corona
{(per chain).
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{iv) Calculate the size of the micelle Ryjcene in a 6-solvent for the outer block
{xg=1/2). Calculate the free energy of the corona (per chain).
(v) Calculate the size of the micelle Rigicano in 2 good solvent for the outer
block (yy = 0.1). Calculate the free energy of the corona (per chain).
(vi) Optimize the aggregation number f by balancing the core and corona
parts of the free energy per chain.

Section 5.6
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5.25

Consider multichain adsorption in a f-solvent, of dilute chains with ¥ mono-
mers of size b, and with monomer—surface interaction of 6k T. Calculate the
density profile of the de Gennes self-similar carpet. Calculate the thickness
£.ds of the adsorbed layer and the coverage [.

Consider multichain adsorption in a good solvent, of dilute chains with ¥
monomers of size b, excluded volume v =0.01 b* and with monomer-surface
interaction of kT =0.1 kT. Calculate the density profile of the de Gennes
self-similar carpet. Calculate the thickness £,4; of the adsorbed layer and the
coverage [,

Consider dilute chains with § monomers of size & restricted to the air—water
interface in an athermal good solvent (two-dimensional polymers). These
chains are @dsorbed to a contact line with monomer-surface interaction of
§kT=0.1 kT. Calculate the density profile of the de Gennes self-similar
carpet. Calculate the thickness £,4; of the adsorbed layer and the linear
coverage [ (the total number of monomers in the adsorbed layer per unit
length of the contact line).

Section 5.7

5.26

Contrast matching in small-angle neutron scattering

(i) Separate the scattering function (Eq. 3.121) for a system of K polymers
each containing ¥ monomers into intramolecular and intermolecular
contributions. Describe each scattering unit (monomer) by two indices.
The first index {labeled by # or p) ranging from 1 to K indicates which
molecule the monomer belongs to. The second index (labeled by j or k)
varying from 1 to N describes the monomer number along the polymer.
Express the sums over all monomers as sums over all monomers on each
polymer summed over the number of polymers.

() = 3o 3 3D (ewpl-d(hs 7))

Demonstrate that the scattering function S(7) can be separated into a
form factor P(g) and an intermolecular contribution Q(J)

S(§) = NP(q) + NKOQ(§)
where the form factor {Eq. 2.139) is the intramolecular contribution

N N

P = 3 ) Yo7 )]

J=l k=
The intermolecular contribution to the scattering function is defined as
NN

0@ = 35 Y Y- texp[-id(ri, - 7))

=1 k=1
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Polymer solutions

(iiy Consider a solution of N-mers with fraction x of chains having each
monomer labelled with deuterium. This solution has xk deuterium-
labelled and (1 — x) K unlabelled chains. The scattering intensity consists
of contributions from unlabelled pairs of monomers Sgyu(7), labelled
pairs of monomers Spp(4) and the cross-term Spp(§) arising from pairs
consisting of one labelled and one unlabelled monomer. The contrast in
neutron scattering arises from scattering length differences. Let /5y and /p
be the coherent scattering lengths of hydrogenated and deuterated
monomers, while / is the scattering length of the solvent. The scattering
intensity per monomer is the sum of three contributions

19 In—L)S Ip—)’S
N = {ly = b)* Sun(@) + Up — )’ Spp(@)

+2{g — lo)ilp — 10)Sup (@)

The two polymers {labelled and unlabelled) are identical, except for their
coherent scattering lengths. Therefore they are characterized by the same
intramolecular (P(g)) and intermolecular ((2(7)) parts of the scattering
function. The corresponding scattering functions are

Sunl@) = {1 = X)NP(@) + (1 - x)"NKQ(q)
Spp{§) = xNP{§) + X' NKQ(§)
Sunl(q) = {1 — x)NKQ(G)
Show that the intensity per monomer can be rewritten as
149
= U = oY x(1 = X)NP@)
+ [xlp + (1 = x)lg — bl [NP(G) + NKO(J)]
(iii) Define the average scattering contrast between solvent and polymers as

(h=xlp+{l -x)lg—h

and find the fraction x of labelled chains at which the intensity is
directly proportional to the single chain form factor

1) = iy — lo)*x(1 — x)KN"P(§) ) (5.84)
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