Networks and gelation




Random branching and
gelation

6.1 Introduction

Everyday life encounters many materials in transition from liquid to solid,
examples are preparing Jello® gelatin or mixing Epoxy glue. This fascin-
ating phenomenon is called gelation and it is caused by the formation of
crosslinks between polymer chains. In the above examples, these crosslinks
are induced either by microcrystallization upon cooling (Jello®) or by
covalent bonds formed on mixing (Epoxy). The final state after crosslinking
consists of linear polymer strands connected by crosslinks.

Linking chains together leads to progressively larger branched polymers
[see Fig. 6.1(a)]. The polydisperse mixture of branched polymers obtained
as the result of such a process is called the sol (since the molecules are
soluble). As the linking process continues, still larger branched polymers
are obtained [Fig. 6.1(b}]. At a certain extent of reaction a molecule span-
ning the whole system appears. Such a huge molecule will not dissolve in a
solvent, but may only swell in it. This ‘infinite polymer’ is called the gel or
network and is permeated with finite branched polymers [Fig. 6.1(c)]. The
transition from a system with only finite branched polymers (exclusively
sol) to a system containing also an infinite molecule (gel) is called the sol-
gel transition (or gelation) and the critical point where gel first appears is
called the gel point.

The early studies of the sol-gel transition date back to the dawn of
polymer science. The first quantitative theories of gelation—the mean-field
theories—were formulated in the 1940s by Flory and Stockmayer. Critical
percolation theory was successfully applied to gelation in the 1970s. A
number of growth models (diffusion limited aggregation, cluster—cluster
aggregation, kinetic gelation) have been developed in the 1980s to describe
the kinetic aspects of aggregation and gelation.

Different types of gelation transitions are summarized in Fig. 6.2.
Gelation can occur either by physical linking (as in the Jello® gelatin
example above) or by chemical crosslinking (as in the Epoxy glue example).
The first type is called physical gelation, while the second type is called
chemical gelation.

It is convenient to distinguish between strong and weak physical gels.
Strong physical gels have strong physical bonds between polymer chains
that are effectively permanent at a given set of experimental conditions.
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Fig. 6.1

Crosslinking of linear chains: (a) four
crosslinks: (b) eight crosslinks;

(c) 10 crossiinks. The largest branched
polymer is highlighted and the 10th
crosslink (dark) formed an incipient gel.
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Fig. 6.2
Classification of gelation transitions
{and the models describing them).

Fig. 6.3

Examples of strong physical gels
with crosslinks that are: (a) lamellar
microcrystals; (b} glassy nodules;
(c) double helices.
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Examples of strong physical bonds are glassy and microcrystalline nodules,
or double and triple helixes (see Fig. 6.3). The strong physical gels formed
by these bonds are solids and can only melt and fiow when the external
conditions change (such as changing temperature for thermoreversible gels
like Jello®). Hence, strong physical gels are analogous to chemical gels
(discussed below).

The difference between strong physical gels and chemical gels has
important industrial applications. Thermoplastic elastomers are examples
of strong physical gels. Triblock copolymers of styrene-isoprene-styrene
flow like liquids at high temperature (far above the polystyrene glass
transition temperature of 100°C). However, at room temperature the
polystyrene blocks are immobilized in glassy nodules [Fig. 6.3(b)] that act
as effective crosslinks for polyisoprene, whose glass transition temperature
is —60°C. These elastomers are reformable by simply heating above
100°C, and hence are called thermoplastic.

Waeak physical gels have reversible links formed from temporary asso-
ciations between chains. These associations have finite I}etimes, breaking
and reforming continuously. Examples of weak physical bonds are
hydrogen bonds, block copolymer micelles above their glass transition, and
ionic associations (Fig. 6.4). Such reversible gels are never truly solids butif
the association lifetime is sufficiently long they can appear to be solids on
certain time scales. Hence, whether a reversible gel is weak or strong
depends on the time scale over which it is observed. Paint is a good example
of a reversible gel. The weak hydrophobic associations in a water-based
paint give it properties of a weak network at short time scales, but these
associations have short lifetime and allow paint to flow at long times. These
weak associations can also be easily broken by stirring, spraying, or
brushing.

In contrast, chemical gelation involves formation of covalent bonds and
always results in a strong gel. There are three main chemical gelation
processes: condensation, vulcanization, and addition polymerization.

Condensation reactions typically start from a melt or solution of
monomers that are capable of reacting with each other. If all monomers are
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bifunctional {able to react with at most two other monomers) then only
linear chains result and no network can be formed. Condensation of
bifunctional monomers and the molar mass distribution of the resulting
linear chains are discussed in Section 1.6.2. If at least some of the starting
monomets have functionality three or higher, so that they can form bonds
with three or more other monomers, then branched polymers are formed
and a sol-gel transition is possible. An example is a condensation reaction
of a difunctional acid (any molecule with two acid groups, A,) with a tri-
functional alcohol (any molecule with three alcohol groups, By).! Each
trifunctional alcohol can become a branch point leading to randomly
branched polyesters and ultimately networks. Condensation of monomers
with functionality greater than two, like the A, + B system, in the melt
(meaning that there is no non-reactive diluent present} is well described by
the critical percolation model. This model is discussed in Section 6.5. Con-
densation polymerization of monomers with one acid group and f—1
alcohol groups, AB; ;| with functionality / higher than 2 produces ran-
domly branched polymers that are hyperbranched, but does not lead to
gelation, as will be discussed in Section 6.2.1.

Vuleanization refers to crosslinking of long linear chains that start out
strongly overlapping each other. This process is well described by the mean-
field percolation model, discussed in Section 6.4. Condensation and vulca-
nization are two closely related processes. By increasing the fraction of
bifunctional alcohol monomers in the first process (i.e., increasing the
fraction of Byin an A, 4+ B, 4 B1system) or by decreasing the molar mass of
linear chains in vulcanization it is possible to study the crossover between
them. In vulcanization, one usually distinguishes end-linking [multi-
functional units crosslinking the ends of the chains—see Fig. 6.5(a)] from
random crosslinking with bonds formed between monomers along the
chains fsee Fig. 6.5(b)]. This random crosslinking vulcanization process
was invented by Goodyear in 1839 to crosslink natural rubber (cis-
polyisoprene) using sulphur. In Section 6.5.4, we will learn that the overlap
of the branched polymers diminishes as the vulcanization proceeds,
and consequently vulcanization crosses over to critical percolation suffi-
ciently close to the gel point.

In oddition polymerization, a free radical transfers from ome vinyl
monomer to another, leaving behind a trail of chemical bonds (Fig. 6.6).
The distinction of addition polymerization, compared with condensation
polymerization, is the high correlation of the formed bonds along the path
of a free radical. Certain monomers (with two double bonds, such as
divinylbenzene) can be visited twice by free radicals and become crosslinks
{black circles in Fig. 6.6). As the neighbouring trails of formed bonds begin
o overlap, the system approaches its gel point. The model describing
branching and network formation via addition polymerization is called
kinetic gelation.

' {n this notation, A groups only react with B groups.
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Fig. 6.4

Weak physical bonds: (a) hydrogen
bonds; (b) block copolymer micelles;
(c) ioni¢ associations.
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Fig. 6.5

Examples of vulcanization: (a) end-
linking: (b random crosslinking.
Different lines represent different
chains.
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Fig. 6.6

Addition polymerization with
branching. Free radicals are denoted by
open circles and crosslinks by black
circles.

Fig. 6.7
Cluster—cluster aggregation leading to
gelation.

)

Fig. 6.8
Percolation transition from a continent
with lakes to an ocean with islands.
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The condensation reaction in solution can, at early stages, be diffusion-
controlled, meaning that the time it takes for molecules to diffuse towards
each other in order to react controls the reaction time. This diffusion-
limited process is described by kinetic models such as diffusion-limited
aggregation and cluster—cluster aggregation. During aggregation, highly
ramified clusters are formed that are fractals with fractal dimension D < 3,
as depicted in Fig. 6.7. At first, only small clusters are formed and the
monomer density inside each cluster is higher than the overall monomer
density in solution, Since D < 3, as the clusters grow by coalescing with
other clusters, the monomer density inside them decreases and finally
reaches the overall solution density. At this point the clusters overlap and
their growth at later stages and the sol-gel transition itself is described by
the critical percolation model. Examples are aggregation of colloidal gold
and silica, the latter being a low-temperature method of making glasses.

It is very important to distinguish the equilibrium gelation models (such
as mean-field gelation and critical percolation) where kinetics only affect
reaction rates but not the structures formed, from the growth models (such
as cluster—cluster aggregation and kinetic gelation) in which rate processes
strongly influence the structures formed. All of these processes have at least
a small region near the gel point (called the critical region) where the
reacting structures are just at ovetlap, which is described by the critical
percolation model. However, in many cases this region is too small to be
experimentally accessible. In Section 6.5.4, the size of this small critical
region in vulcanization is estimated using the Ginzburg criterion.

6.1.1 Percolation around us

Before considering the details of the gelation process, it is useful to mention
the broad spectrum of other systems undergoing similar connectivity
transitions and therefore described by mathematically similar percolation
models. Familar examples are water percolating through sand and coffee
percolating through ground coffee beans.

6.1.1.1 Deluge

The first written reference to a percolation-related process can be found in
the Old Testament (Genesis 7-10). It describes a continent, different parts
of which are at different heights above the sea level. Rain begins to fall and
the sea level rises, submerging the low-lying parts of the continent under
water. At the early stages of the deluge it is still possible to walk across the
continent, travelling around numerous puddles, lakes, and perturbing bays
[Fig. 6.8(a)]. As the water level rises above some critical point called the
percolation threshold, the continent ceases to exist as it is broken into an
archipelago of islands [Fig. 6.8(b)]. At the later stages of the deluge it is no
longer possible to travel large distances over land and it becomes necessary
to sail between the islands by boat. This transition from a continent con-
taining lakes and bays [Fig. 6.8(a)] to an ocean containing islands
[Fig. 6.8(b)] is an example of a percolation transition. When the deluge
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stops and the sea level lowers, an opposite transition takes place from an
ocean with islands to a continent with lakes.

6.1.1.2 Forest fires

Another example of a percolation-related process is the spreading of a fire
in a forest without wind. Consider a forest represented by a set of trees, as
sketched in Fig. 6.9. Smokey the Bear goes into hibernation, leaving an
unextinguished campfire under one of the trees and the tree catches fire. A
burning tree can ignite a neighbouring tree with some probability p. A very
important question is whether the fire will propagate and burn most of the
forest or stop after burning only a small copse of trees.

The ignition probability p depends on the distance between the trees,
the size of the trees, and on how dry the season is. Depending on these
conditions, there are two possible outcomes resulting from Smokey’s
carelessness:

(1) Anaccident—If the trees are small and grow far apart and the season is
relatively wet, the ignition probability p is low and the fire would stop
after burning*only a small cluster of trees.

(2) A major disaster—If the trees are large, grow close together and the
season is dry, the ignition probability p is large and the fire would
spread across the forest burning a significant fraction of the trees.

The transition between these two possible outcomes—an ‘island’ and a
‘continent’ of burned trees—is another example of a percolation transition.
In the present example of a forest fire we have described percolation on a
discrete set of trees, while in the example of a deluge we dealt with a con-
tinuously varying water level on a constant terrain. The two problems are
quite different, but both are described by percolation models.

6.1.1.3 Spreading of a contagious disease

Another problem related to percolation and analogous to forest fires is the
spreading of a disease in an apple orchard. In an orchard, the trees grow on
a regular lattice [Fig. 6.10(a)]. A sick tree can contaminate its neighbour
with probability p. JTust as in the above example, for small values of p the
disease remains contained and will only strike a finite cluster {island) of
trees. For higher values of the disease transmission probability p above the
percolation threshold, p,., the disease will spread through the whole orch-
ard, affecting a large fraction of its trees [Fig. 6.10(b}]. This problem is an
example of bond percolation that was described by Hammersley in 1956. In
a bond percolation model, all sites are occupied (in the present example, all
lattice sites are occupied by trees). The percolation process is determined by
the presence or absence of bonds between two neighbouring sites (in the
present example, a bond corresponds to the spreading of the disease
between two neighbouring trees). The island of sick trees corresponds to a
cluster of sites connected by bonds. The spreading of a disease in an orchard
is an example of bond percolation on a regular two-dimensional lattice. For
a triangular lattice, the percolation threshold is p.220.34729 and for the
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Fig. 6.9
Spreading of a fire in a forest.

Fig. 6.10
Spreading of a discase in an orchard.
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Fig. 6.11
A random three-dimensional
substitutional alloy A, _B,.

Table 6.1 Values of site and bond
percolation thresholds on selected
lattices

Lattice d f G De
(site}  (bond)

Honeycomb 2 3 0696 0.652
Square 2 4 03592 05
Triangular 2 6 0.5 0.347
Diamond 3 4 043 0.388
Simple cubic 3 6 0312 0249
BCC 3 8 0246 0.180
FCC 3 12 0198 0119

The dimension of space is 4 and the
coordination number of the lattice is f.
BCC is body-centred cubic and FCC is
face-centred cubic.
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square lattice it is p. = 1/2. In contrast, the forest fire is an example of two-
dimensional bond percolation on a random set of points (trees in a forest).

6.1.1.4 Substitutional alloy

Consider a substitutional alloy A, _,B, with A and B atoms randomly
occupying sites of a regular lattice (see Fig. 6.11). A B cluster is defined asa
set of neighbouring B atoms. For low values of the fraction ¢ of B atoms in
the A, _ B, alloy, the B clusters are small. With increasing fraction ¢4 of B
atoms, B clusters become progressively larger and above some critical value
g a macroscopic B cluster spanning the whole crystal appears. This trans-
ition from a set of finite B elusters (for ¢ < g.) to a crystal with a macroscopic
B cluster in addition to finite clusters (for g > g.) is an example of site
percolation on a lattice. In site percolation, only some sites of the lattice are
occupied (in the present example—by B atoms). The neighbouring occu-
pied sites are always connected into a cluster (in the language of the bond
percolation model, the bond between neighbouring occupied sites is always
present with probability p = 1). If B atoms are ferromagnetic, the B clusters
would form magnetic domains, In this case, the percolation model gives a
necessary condition for a transition from a paramagnet with only small
magnetic domains to a ferromagnet with a macroscopic domain and
finite spontaneous magnetization.

Note that for g < g. only A percolates, for g. <.g <1 — g, both A and B
percolate, and for g> 1 — g, only B percolates. Copper and gold form
substitutional alloys on a face-centred cubic lattice (Cu,_ Au,). For
g < 0.2, there are 1solated gold islands in an ocean of copper. Conversely,
for ¢ > 0.8, there are isolated copper islands in an ocean of gold. For
0.2 < ¢ < 0.8 both copper and gold are co-continuous. There are still isol-
ated islands of each metal but there are also continuous pathways across the
macroscopic material consisting only of each individual metal.

6.1.1.5 Classes of percolation models

We have given four examples of connectivity transitions described by
percolation models. Other examples include the conductor-insulator
transition for a random resistor network, oil recovery through a porous
rock, and communication networks (the world wide web).

The percolation transition can be defined on a continuous manifold
(deluge) or on a discrete set of objects. This discrete set can be either random
(such as trees in a forest) or regular (such as rows of trees in an orchard). Two
types of percolation models have been distinguished: bond percolation
(spreading of a disease) and site percolation (substitutional alloy). These can
also be combined into a site-bond percolation model, where only some sites
are occupied and bonds may only be placed between occupied adjacent sites.
For example, if a fraction | — g of the trees in the orchard are randomly cut
down, the spreading of a disease between the trees of the remaining fraction ¢
with the spreading probability p could be studied using site-bond percolation.

The value of the percolation threshold depends on many details of the
model, including the type of lattice. Table 6.1 compares site and bond
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percolation thresholds for three two-dimensional lattices and four
three-dimensional lattices. In each dimension, as the coordination number
of the lattice increases, the percolation threshold decreases.

46.1.2 Percolation in one dimension

The percolation transition can be described in space of any dimension,
Examples of two-dimensional percolation are deluge, forest fire, spreading
of a contagious disease in an orchard, and gelation of a polymer at an
air-water interface. Examples of three-dimensional percolation are
substitutional alloys and bulk polymer gelation. A problem analogous to
one-dimensional percolation is the condensation polymerization of
bifunctional monomers described in Section 1.6.2.

Consider the condensation polymerization of bifunctional monomers,
each with two different reactive groups A and B, where A is only allowed to
react with B in an intermolecular fashion. For example, if group A were
~OH and group B were -COOH, the resulting polymers would be polye-
sters with the link B-A denoting -COO-. For simplicity of notation, we call
the unreacted monomer AB. The bonds allowed between groups A and B
can be formulated as bond percolation on a one-dimensional lattice by
simply placing the unreacted monomers on every site of the lattice and
randomly connecting (or reacting) them with probability p.

AB-AB AB-AB-AB AB AB-AB—AB-AB AB—AB AB

There is exactly one unreacted A group (and one unreacted B group) per
molecule, The number density of molecules r.,(p} (number of molecules
per monomer) is therefore equal to the fraction 1 — p of unreacted groups:

Ao p) =1 =p. (6.1)

The number-average degree of polymerization (the number of monomers
per molecule) is [see Eq. (1.55)] the reciprocal of the number density of
molecules:

1 1
Nl'l(p) ntot(P) *P. (62)
A linear polymer (N-mer) is a cluster of N monomers (sites) connected by
N — 1 bonds and containing one unreacted A group and one unreacted B
group. The number fraction distribution (mole fraction of N-mers) is given by
the probability that a chosen unreacted A group is part of an N-mer. This
number fraction of N-mers is the probability of ¥ — 1 formed bonds (p" ™)
and one unreacted B group (1 — p} [Eq. (1.52)]:

an(p)=p"""(1 - p). (6.3)

For one-dimensional percolation, the system can either be below the
percolation threshold (p < p. = 1} with finite polymers or at the threshold
(p=p.=1) with one infinite polymer, but not above the threshold.
States above the threshold exist only for percolation in dimensions higher
than one,
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Fig. 6.12

A hyperbranched polymer. Darker
lines correspond to bonds between
Monomers.

Random branching and gelation

In a real polymerization reaction, monomers are distributed in three-
dimensional space rather than on a one-dimensional lattice. An important
consequence is that cyclic structures of various numbers of monomers can
be created. Unlike their linear counterparts, these ring polymers have no
reactive ends and never grow longer as reaction proceeds. They are not
accounted for in the simple theory presented here.

6.2 Branching without gelation
6.2.1 Hyperbranched polymers

Another reaction that does not lead to gelation 1s the polymerization of
hyperbranched polymers from AB,., monomers (each with a single
functional group of type A and f— 1 functional groups of type B) in which
A can only react with B. For functionality /=2, this reduces to the
condensation polymerization of linear chains, described above. For
f =2, such a process leads to formation of highly branched molecules.
Let p be the fraction of reacted B groups. The fraction of reacted A
groups is p(f — 1) (the same number of reacted A and B groups, but /— |
times smaller total number of A groups in AB,_ ; molecules). Therefore, the
fraction of unreacted A groups is 1 — p(f— 1}. There is one unreacted A
group per molecule, giving the total number of molecules per monomer:

moe(p)=1-p(f—1}. (6.4)

The number-average degree of polymerization {the average number of
monomers per molecule} is the reciprocal of #,(p):

I
1—p(f—1)

This number-average degree of polymerization divergesat p.=1/(f— 1}.
This maximum possible fraction of reacted B groups corresponds to
complete reaction of all A groups (f— }p.=1.

Each N-mer in a condensation polymerization of AB,_; monomers
consists of N — 1 reacted A-B bonds and exactly one unreacted A group, as
shown in Fig. 6.12. There are (f— 1}V total B groups, of which & — 1 have
reacted, so there are (f— 2)¥ + | unreacted B groups in each ¥-mer. The
probability that an unreacted A group is a part of an N-mer is proportional
to the probability that N—1 B groups have reacted (p" 1), while
{(f—2)N+1 B groups have not (1 — p) =2¥*! The number fraction of
N-mers is given by a product of probabilities:

nN{P) —_ aNpN—l(l Ap)(fWZ)NJrl. (66)

The degeneracy ay is the number of unique ways of arranging ¥ monomers
AB,_ | into an N-mer. The number of ways of selecting the first B to form a
bond out of {f— 1) possible B groups of the N-mer is (f— 1)N. The
number of ways of selecting the second B group for the second bond out of

Nn(P) = (65)
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the remaining B groups is (f— 1)N — 1. Each successive reaction has one
less B group to choose from, all the way up to the last bond of an N-mer,
leading to the total number of structurally different arrangements for all
N -1 bonds:

= DN DN = o= - 2] = LS 6

Since all monomers of the N-mer are indistinguishable, the number of
structurally different arrangements has to be reduced by N! permutations
of monomers leading to the number of unique A-mers:

__ =1

Using this degeneracy in Eq. (6.6) gives the number fraction of A-mers at
any exlent of reaction p for hyperbranched polymers:

[{f= )N ~2)N+]

nn{p} = Wp (1 —P)(f L (6.9)
Comparing Egs (6.3) and (6.9), we see that for (>3, hyperbranched
polymers have a quite different form for their number fraction distribution
than linear polymers. The large number of unreacted B groups (Fig. 6.12)
on large hyperbranched AN-mers broadens the distribution because
the larger molecules have a higher probability of growing than smaller
melecules do.

In order to evaluate different moments, this number fraction distribu-
tion is rewritten as

M@_Mtfﬂ (6.10)

using the following definition of x:

=p(1-p)". (6.11)
The number fraction is a normalized distribution:
o0 1 —
ZnN(p) aNxN =1 (6.12)
Aol o N=1

The k-moment of the number fraction distribution is related to the
k-moment of the sum 33;:

mk=ZNan(p):_;pZNkaNxN:1—pEk. {6.13)
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The consecutive moments of the sum
s )

Y = ZNkaNxN (6.14)
N=l

are related to each other through the derivative with respect to the
variable x:
Oy BEk 1 9p

= — = 15
Ty =x Ox dp ax’ (6.13)

The rate of change of extent of reaction p with variable x can be evaluated
from Eq. (6.11):

2 1
Ox =~ dx/0p (1 —py' —p(f - (1~ )
_ p(l-p) _ 1 -p)
p(l=p) ' =p2(r=2)(1 - py*  x[(1 —p) —pf=2)]
_ p-p)
M- p(f - O] (616

From Eq. (6.12}, we find the zeroth moment of the sum:

To=11—. (6.17)

All higher moments of the sum, X, can be evaluated from the zeroth
moment, using the recurrence relation [Eq. (6.135)]. The first moment of the
sum is
O%gop 1 p{1-p)
Op Ox (11— p)all - p(f 1)
14
= , {(6.18)
(1= p)[l = p(f—1)]

leading to the number-average degree of polymerization in agreement with
Eg. (6.5)

Yi=x

—p = 1
Ny Nn —3 -
p) = Z ~p) = TR R
|
for p < p. =T (6.19)
The second moment of the sum is determined similarly:
5, 91 0p 1-p/=1) p(l-p)
1= =X ) )
Yo ox T (1 pPll - p(f— DP A~ U= 1)
(- (6201

TU=pll-p(f- 1
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The weight-average degree of polymerization is the ratio of the second and
the first moments

S NMnwlp)
N=1 _

_AS T % 1= !
D Nawp) D LU
N=1

forp < pe =——

Nolp) —

(6.21)

This weight-average degree of polymerization N, (p) diverges at p. more
rapidly than the number-average N,(p). The polydispersity index of this
distribution

Nolp) _1-p*f— 1) 1
Nlp) Toplo ) TP SRS (6.22)
also diverges at p.=1/(f— 1. All of the above results reduce for f=2 to
those for condensation polymerization of linear chains (Section 1.6.2) and
for f> 2 correspond to the random branching that creates hyperbranched
polymers. Like the linear condensation of Section 1.6.2, this branched
condensation can, in principle, reach the gel point (where all monomers are
connected into a single enormous hyperbranched polymer) but the reaction
cannot proceed beyond the gel point, since there are no more unreacted A
groups. In practice, it is difficult to achieve complete reaction.

Of particular interest is the molar mass distribution of high molar mass
hyperbranched polymers that are produced when the reaction of AB;_;
monomers is driven close to completion. The number traction of molecules
[Eq. (6.9)] can be approximated for large N, using Stirling’s formula:

N = V2rNN¥ exp(—N). (6.23)
The degeneracy ay [Eq. (6.8)] is approximated for /> 2 as
o1 ly-ua
N U =2 N+ INI[(f - 2)A)!

1 V2= TN - Ly

= U=V~ 1 2NN 2n(f — NI — N 7

~ 1 -1 (- ])(f—l)N
B (f—2)N\ 2n(f - Z)N(f‘_ 2)(/*2)3\7' {(6.24)

Let us define the relative extent of reaction:

¢ EP;‘DC ={-1)p-1 (6.25)

(o

The limit of interest to us here is small negative values of . The fraction p
of reacted B groups can be expressed in terms of this relative extent of
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reaction £
l1+¢
6.26
=77 (6.26)
as can the fraction of unreacted B groups:
f=2-¢ f-12 £
- 1- . 6.27
l-p= =11 73 (6.27)

Consider the p-dependence of Eq. (6.9):

(L gy _ 1+e N-1 r-2 (F-2)N+1 e (F-2)N+1
-1 -1 f-2
...Jf__z 1— £
T l+e f=2
- Pk
G—b—s)(f 2y? ( £ ) . (6.28)
_ 1}’

The small negative values of € can be neglected outside the square bracket
in Eq. (6.28), 1 +c=1 and 1 —¢/(f— 2)= 1. Since the square bracket in
Eq. (6.28) is taken to a large power N it dominates the e-dependence.

Expanding [1 —£/(f— 2¥ "?=21—¢ to the lowest power in ¢ we find a
simple form:

_ f-2
p”‘(l—p)“m”ﬁ(f—Z)[(fj))f_ 1+e)(1-;§-§) J

{f’_
= (- )QL{UH)(I—e)]

N

-1
(f 2)N+1 .
_ =N+
E%]’WCXPWW)- (6.29) |

The number fraction of N-mers [Eq. (6.6)] can be approximated by com-
bining Egs (6.24) and (6.29):

nn(p) = anp "' (1 - p)ANH

Sl _2 T
zﬂ(f_z)N exp(—e°N) for |g| =1 —-p{f—1) < 1. (6.30)

This number fraction distribution has a form of a power law with an
exponential cutoff at the characteristic degree of polymerization N* = e

an(p) s N2 exp(— N/N*). (6.31)
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It is interesting to note that both in linear condensation polymerization
(AB) and in condensation polymerization of AB,_, a similar asymptotic
behaviour is predicied for the number-average degree of polymerization

Ny = —¢™! (6.32)
and the weight-average degree of polymerization
Ny = &2 {6.33)

for small negative relative extents of reaction ¢ ={(f— 1)p — 1. The weight-
average, z-average, and all higher-order average degrees of polymerization
are proportional to the characteristic degree of polymerization N*:

Nym N, Nop ™ N¥=¢72, (6.34)

Just as for linear condensation polymers, the simple statistics presented
above assume there are no intramolecular reactions. This assumption is
never really correct. For linear polymers, the assumption gets progressively
better for longes chains. However, for hyperbranched polymers it gets
worse for species with large degrees of polymerization, since most of the
unreacted B groups near an unreacted A will be on the same polymer.
Properly including intramolecular reactions is a difficult and important
problem. The molar mass distributions of hyperbranched polymers do
not follow the simple statistics presented here because of intramolecular
reactions.

6.2.2 Regular dendrimers

Another means of preparing branched polymers using condensation
chemistry is to systermnatically grow a very regular structure, called a den-
drimer. Dendrimers are typically grown from a B, monomer core by
reacting this core with AB;_; monomers that temporarily have their B
groups protected from further reaction. If done properly, this reaction will
link each B, core with n AB,_ | monomers, resulting in a first-generation
dendrimer. By deprotecting the B groups, this first-generation dendrimer
becomes a B, 1) core that can react with n(f— 1) AB;_, monomers to
create a second-generation dendrimer. In principle, this process can be
repeated indefinitely, with each subsequent generation having another
layer of monomers incorporated, which are connected to the central B, core
by the intermediate generations. For the special case of f=n, the dendrimer
is a Cayley tree, shown in Fig. 6.13 for f=n=3. Since the dendrimer is
created one generalion al a time, in principle each new generation could
utilize different monomers with different functionalities and functional
groups. However, in practice if /> 3 for all generations, real dendrimers
cannot exceed a certain largest possible size and remain perfect because
they eventually become too congested. To understand this congestion, we
count the number of monomers in each generation of the dendrimer in
Table 6.2.

Fig. 6.13
Cavley tree or Bethe lattice with
functionality f'=3.
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Table 6.2 The number of monomers in each generation layer of a dendrimer and the total
number of monomers in the dendrimer at cach generation

Generation Number of Cumulative
MONOIMErs number of monomers
0 1 1
1 n T+n
2 nf—1) I+n+n(f—1}
3 n(f -1y 1+ n+n(f— 1)+ nif - 1F
g a(f— 1 141+ n(f— 1 +na(f—1y
+oonlf = 1

The number of monomers in generation g (the last generation) of the
dendrimer is n(f— 1" ', while the total number of monomers in the
dendrimer (from the core to generation g) is

Ny =14nta(f— 1) alf =174 n(f= 1)
Tnll = D+ =1+ + (1P
_ 1y _
—1+n[(fflut)21], (6.35)

where the last step in the derivation used the sum of a geometric series
l+x+ x>+ 4+ x5 ' =(x%— 1}/(x — 1). The number of monomers in the
rest of the polymer (from the core to generation g — 1) is

—1
Ny =1 +n[(f—j})_g2—_1] (6.36)

The ratio of the number of monomers in the last generdtion of a very large
dendrimer n( f— 1Y* ! to the number of monomers in the rest of the den-
drimer N, is

n(f— ¥
L+al(f=DF - 1)/(f-2)

Thus, for f=3 approximately half of the monomers are in the last gen-
eration of the dendrimer! For higher functionalities (f> 3), an even larger
fraction of monomers are in the last generation of the dendrimer.

The volume occupied by the polymer is voN,, where vg is the monomer
volume and the maximum accessible volume for a fully stretched dendrimer
is (47/3)(gly*, where { is the monomer size. The occupied volume cannot
exceed the maximum accessible volume, leading to the maximum possible
generation gmax for a perfect dendrimer:

=f_2 forg» 1 (6.37)

voN, (gmaxl)’. (6.38

o
Emax —

4y
3



Gelation: concepts and definitions

Using Fq. (6.35) relates the maximum generation for a perfect dendrimer to
geometric properties of a monomer:

13 _n Ur_ I)gmdx

vo S—2047/3)gh
To make a large generation dendrimer, monomers with large aspect ratio
are needed,2 so that P = v,. For example, to make a perfect tetrafunctional
(n=f=4) seventh generation dendrimer requires Prve>3.

The regular lattice constructed in this way is called a Bethe lattice (see Fig.
6.13). The mean-field model of gelation corresponds to percolation on a
Bethe lattice (see Section 6.4). The infinite Bethe lattice does not fit into the
space of any finite dimension. Construction of progressively larger ran-
domly branched polymers on such a lattice would eventually lead to a
congestion crisis in three-dimensional space similar to the one encountered
here for dendrimers.

6.3 Gelation: concepts and definitions

Gelation is a connectivity transition that can be described by a bond
percolation model. Imagine that we start with a container full of mono-
mers, which occupy the sites of a lattice (as sketched in Fig. 6.14). In a
simple bond percolation model, all sites of the lattice are assumed to be
occupied by monomers. The chemical reaction between monomers is
modetled by randomly connecting monomers on neighbouring sites by
bonds. The fraction of all possible bonds that are formed at any point in the
reaction is called the extent of reaction p, which increases from zero to unity
as the reaction proceeds. A polymer in this model is represented by a cluster
of monomers (sites) connected by bonds. When all possible bonds are
formed (all monomers are connected into one macroscopic polymer) the
reaction is completed ( p= 1) and the polymer is a fully developed network.
Such fully developed networks will be the subject of Chapter 7, while in this
chapter we focus on the gelation transition.

At the percolation threshold or gel point p., the system undergoes a
connectivity transition. Slightly below the gel point, the system is a poly-
disperse mixture of branched polymers shown in Fig. 6.14(a). Slightly
beyond the gel point, the system is still mostly a polydisperse mixture of
branched polymers, but one structure percolates through the entire system
[Fig. 6.14(b)]. This structure is called the incipient gel, which is a tenuous
structure quite different from the fully developed network that exists far
above p.. This connectivity transition from a sol below p. to a gel permeated
with sol above p. is called the gelation transition.

Atany specified extent of reaction p, the dimensionless number density of
molecules with & monomers is #(p, N), defined as the number of N-mers
divided by the total number of monomers. This number density is pro-
portional to the probability that a randomly selected polymer has N

2 Alternatively, short linear chains can be introduced between the ffunctional branch
points.
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Fig. 6.14

Gelation is a bond percolation
transition. The percolation cluster is
indicated by darker shading.
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monomers, which is the number fraction of N-mers aa(p) (the number
fraction distribution function of Sections 1.6.2 and 6.1.2). The two func-
tions are simply normalized differently [Eq. (1.45)]. The number density
a(p, N) is the number of N-mers per monomer. In contrast, the number
fraction distribution np{p) is normalized by the total number of molecules.

The sol fraction is defined as the fraction of all monomers that are either
unreacted or belong to finite-size polymers (the sol):

Paip) = 3" Nalp, Ny = S wip. ). (6.39)

N=1 N=1

The sum in Eg. (6.39) is only made over the finite-size species, meaning that
above the gel point the gel is excluded. The last equality employs the def-
inition of the dimensionless weight density of N-mers:

w(p, N) = Nu(p, N). (6.40)

Analogous to the weight fraction distribution function wy(p) of
Section 1.6.2, the weight density w(p, N) is the probability that a randomly
chosen monomer is part of a polymer with N monomers, but the two
functions are normalized differently. The weight density w(p, V) is nor-
malized by the total number of monomers in the system, while the weight
fraction wa{p) is normalized only by the monomers belonging to finite-size
polymers [see Eq. (1.23)]. The sum of weight densities w(p, N} of all finite
size polymers is the sol fraction [Eq. (6.39)], while the sum of weight frac-
tions wp{p) is always unity. Therefore, the weight density w(p, N)is equal to
the weight fraction wa{p) times the sol fraction Py, (p).

The gel fraction is defined as the fraction of all monomers belonging to
the gel. Every monomer must be either part of the sol or part of the gel, so
the sumn of the sol and gel fractions is unity:

Pealp) + Psa(p) = 1. (6.41)

Below the gel point, all monomers are either unreacted or belong to finite
sized polymers and therefore the sol fraction is unity and the gel fraction is
zero:

Polp) =1, Pulp)=0  forp<p; (6.42)

above the gel point, the gel fraction is non-zero and the sol fraction is less
than unity.

Poi(p) <1, Pgylpy>0  forp>p. (6.43)

The gel fraction is the probability that a randomly selected monomer
belongs 1o the gel. The gel fraction is the order parameter for gelation. The
order parameter tells us whether the reaction has passed the gel point and if
above the gel point, it indicates the gel fraction. The growth of the gel
fraction is accompanied by a simultaneous decay of the sol fraction, beyond
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the gel point p, as shown in Fig. 6.15. The fact that the order parameter is
continuous through the transition means that gelation is analogous to a
continuous phase transition. Familiar examples of continuous phase transi-
tions are the paramagnetic—ferromagnetic transition of iron at the Curie
temperature (where the magnetization changes continuously) and the
vapor-liquid transition with increasing pressure at the critical temperature
(where the density changes continuously). A great deal is known about
continuous phase transitions and the application of those ideas to gelation
is discussed in Section 6.3,

The total number density of molecules is the sum of number densities of
all finite-size polymers and unreacted monomers. The number density of all
finite molecules #o(p) is the zeroth moment of the number density dis-
tribution function:

00
mop) = 3 nlp, N). (6.44)
~=l
The number-average degree of polymerization [see Eq. (1.27)]is theaverage
number of monomers per finite-size polymer:

52 Nu(p, N)
_ N=L _ Psol(p)
o= S n(p, V) or(p) o
N=1

The weight-average degree of polymerization is the ratio of second and first
moments [recall Eq. (1.31)]:

S Na(p,N) > Nw(p Ny 3. Nwlp.)
N=1 _ N=L _ N=l

Nulp) = (6.46)

N=1

S M) Swipm ol
N=1

Note that the sums are understood to run only over finite-size molecules.
Beyond the gel point, the gel fraction is excluded from such sums.

6.4 Mean-field model of gelation

A convenient way of presenting the mean-field model (though it is not the
way it was originally defined) is by placing monomers at the sites of an
infinite Bethe lattice, a small part of which is shown in Fig. 6.13. The Bethe
lattice has the advantage of directly taking into account the functionality of
the monomers f by adopting this functionality for the lattice. For trifunc-
tional monomers (the f = 3 Bethe lattice of Fig. 6.13) therc are three possible
bouds emanating from each lattice site.

In a bond percolation model on a Bethe lattice, we assume that all
lattice sites are occupied by monomers and the possible bonds between
neighbouring monomers are either formed with probability p or left
unreacted with probability 1 — p. In the simplest version, called the random
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Gel point calculation on a Bethe lattice.
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Random branching and gelation

bond percolation model, the probability p of forming each bond is assumed
to be independent of any other bonds in the system.

The basic assumptions of the mean-field model are implicit in the
topology of the Bethe lattice. The most apparent assumption is the absence
of closed loops. Nointramolecular crosslinking is allowed-—bonds can only
be formed between monomers belonging to different polymers. This
assumption significantly simplifies the analytical treatment of the model,
but limits its practical utility.

6.4.1 Gel point

To calculate the gel point for bond percolation on an f~functional Bethe
lattice, let us choose a single site and work progressively outwards from it,
analysing the structure of the polymer obtained by forming bonds. Which
site is chosen as the starting point of this procedure makes no difference
because they are ali statistically identical for an infinite Bethe lattice,

Let us assume that our starting (‘parent’) site has already formed a bond
with one of its neighbours (the ‘grandparent’ site) as sketched in Fig. 6.16.
We would like to calculate the average number of additional bonds
the *parent” site forms with its f— | remaining neighbours (potential ‘chil-
dren’). The probability of each of these bonds being formed is p and is
independent of other bonds. Therefore, the average number of bonds
between a “parent’ site and its ‘children’ is p(f— 1). Similarly, the average
number of bonds between each of its ‘children’ and their corresponding
‘grandchildren’ is also p(f— 1).

If this probability p(f— 1) is less than unity (p < 1/(f— 1)), each new
generation has, on average, fewer members and the dynasty does not
survive for long (only finite-size branched polymers exist in the system). If
this probability p(f— 1) is greater than unity (p> 1/(f— 1)}, each new
generation has, on average, more members and the descendants of some
parents multiply indefinitely, forming an infinite genealogical branched
family tree.

The transition between these two cases is the gel point:

1
Pe :f—:- (6.47)

Below the gel point (for p < p.) there are only finite-size branched polvmers,
while above the gel point (for p > p.} there is also at least one infinite
polymer (the gel) in addition to many finite-size branched polymers. The
distribution of polymer sizes changes with the fraction of formed bonds p.
For small extents of reaction p < p. there are only small polymers, while
near the gel point some large branched polymers are present.

A unique feature of percolation on a Bethe lattice is that there are many
infinite polymers present in the same system above the gel point. The easiest
way to understand this result is to start with a single infinite network
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polymer on a fully reacted Bethe lattice at p = 1. If a single bond is cut, the
infinite polymer breaks into two infinite polymers. As bonds are randomly
cut, progressively more infinite polymers are created, as well as many finite-
size branched polymers. The reason for the existence of many infinite
polymers on the Bethe lattice above the gel point is the absence of intra-
molecular bonds. This is due to the fact that loops are prohibited for a Bethe
lattice. In contrast, on a regular lattice (such as a simple cubic lattice) loops
are allowed and there is only one infinite polymer above the gel point. Large
overlapping polymers on a regular three-dimensional lattice have many
possibilities for potential bonding and therefore high probability of being
connected into one larger polymer.

6.4.2 Sol and gel fractions

Each site of the f-functional Bethe lattice has f possible paths to other sites
(see Fig. 6.13). Wee define Q as the probability that a randomly selected site
(A in Fig. 6.17) is not connected to the gel through a certain randomly
selected path (the path from site A to neighbouring site B in Fig. 6.17).
There are immediately two possibilities. The bond between sites A and B
could be unreacted with probability 1 — p, and if so this path cannot con-
nect site A to the gel. The second possibility is that the bond between A and
B is reacted with probability p. If this bond is formed, there are f—1
remaining paths from site B that could connect to the gel. The probability
that none of the f— 1 paths connect to the gel is @’ ! and the probability
that the bond between A and B is reacted and does not lead to the gel is
p0O/ ' Hence, there is a recurrence relation for the probability that a ran-
domly selected site is not connected to the gel through a randomly selected
potential bond (see Fig. 6.17):

Q=1-p+pQ™" (6.48)

The fraction of monomers in the sol (sol fraction) Py, is the probability
that a randomly selected site is not connected to the gel along any of its f°
paths (Fig. 6.18):

Psol - Qf (649)
Solving Eq. (6.49) for Q,

1
Q- P/ (6.50)
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the gel through a given bond.
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and substituting into the recurrence relation for @ [Eq. (6.48)] gives a
relation between sol fraction and extent of reaction that is valid for any
functionality f:

P —1—p4pPL . (6.51)

sol sol

There is always one solution of this equation [Eq. (6.42)] with zero
gel fraction below gel point {Pyo = 1). A second solution exists above the gel
point for any f > 3. For /= 3 this second solution of Eq. (6.51) can be easily
found because it becomes a quadratic equation for P

3
Pt = (lpp) for f= 3 and p > pe. (6.52)

The gel fraction above the gel point for /=3 is calculated from the sol
fraction:

3
Pgr=1— Py =1- (%) for f=3 and p > p. (6.53)

The sol and gel fractions for functionality f=3 are plotted in Fig. 6.15
as functions of extent of reaction p. For p > p.=1/2, the f=13 system is
bevond the gel point and the gel fraction grows steadily as the reaction
proceeds.

6.4.3 Number-average molar mass below the gel point

Before any bonds are formed (at extent of reaction p=0) there are only
monomers present and the total number of molecules per site is #,5,(0) =1
{every site is occupied by an unreacted monomer). Each bond reduces the
number of molecules by one because there are no intra-molecular bonds.
The maximum number of bonds per site on a Bethe lattice with function-
ality fis /2. The total number of formed bonds per site at exient of reac-

tion p is pfi2:

i (p) =1 —%f for p < pe. (6.54)
The number-average degree of polymerization (the average number
of sites per molecule) is the reciprocal of the average number of molecules

per site.

1 1
Nalt) =) ~ T2

At the gel point p.= 1/(f— 1), the number-average degree of polymeriza-
tion exhibits no unusual behaviour for £> 2 (it is just a finite number):
1 201
U=1) (6.56)

Molpe) = T 1y = f=2

for p < pe. (6.55)
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For /=3, N,(pc) = 4 meaning that a randomly selected molecule at the gel
point has an average degree of polymerization of four. The fact that N, does
not diverge at p, is our first evidence that random branching in gelation
leads to very different molar mass distribution than hyperbranched poly-
mers (for which N, does diverge at p), see Eg. (6.5).

6.4.4 Weight-average molar mass below the gel point

The weight-average molar mass at any extent of reaction below the gel
point p < p. can be calculated in a fashion similar to the sol and gel
fraction calculations of Section 6.4.2 (see Fig. 6.19). Let T be the mean
number of monomers connected to a randomly selected site A through
one of its f randomly chosen possible bonds (with neighbour B).
For Y >0, the bond connecting A and B must be reacted with proba-
bility p and site B contributes one monomer to T. Then, each of the
remaining paths through f— 1 remaining potential bonds of B contri-
butes a mean number of monomers Y, giving the following recurrence
relation: .

T = pll+(f~ DY) (6.57)

This recurrence relation can be easily solved for Tt

_ 14
T (655

The weight-average number of monomers per polymer Ay, below the gel
point is the average number of monomers in a polymer belonging to a
randomly selected site. This number can be written as 1 for the site itself
and T for each of the f paths emanating from that site (Fig. 6.20):

fp 1+p
Noy=14+fT=1+ =
4 I-(f-1Lp 1-(/-1)p
1+p
- for p < pe. 6.59
o p<p (6.59)

The weight-average degree of polymerization diverges at the gel point,
since the denominator of Eq. (6.59) is zero when p=p.. Since the
number-average degree of polymerization stays finite at p. [Eq. (6.56}],
the polydispersity index

diverges at the gel point p.=1/(f—1) for /> 2.
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Table 6.3 The number of unreacted A
groups in an N-mer for A, condensation
on a Bethe lattice

N Number of unreacted A groups

L s
2 2”2
3 3-4
4

4 -6

N Nf-2N12=(f-2N+2

Random branching and gelation

6.4.5 Molar mass distribution

The structure of the branched polymers produced by any random
branching process is the same. Any individual hyperbranched polymer
structure made from reacting AB; ; monomers can also be made by
reacting A, monomers. The difference between these branching processes
is the molar mass distriburion—the relative amounts of each structure
produced.

The molar mass distributions resulting from AB,_, and Asreactions are
related in a very simple way. Table 6.3 shows the unique relation between
the number of monomers in an N-mer and the number of unreacted
A groups in the N-mer. The property of the Bethe lattice not allowing any
loops makes this unique relation possible.

Regardless of how they are connected, each new monomer brings
J more A groups to the molecule, but also reacts two A groups in the
process.’ Each N-mer has exactly { f— 2)N + 2 unreacted A groups.

If any branched structure made from A;condensation is held by one of
its unreacted A groups, it is identical to a structure produced by AB,_;
condensation. For the AB, | reaction, the probability that an unreacted A
group is part of an A-mer is given by the number fraction #x{(p) of N-mers
because there is only a single unreacted A group per molecule for AB,_ .
For A, condensation, the probability ux(p) that a randomly selected
unreacted A group is part of an N-mer is identical to the number fraction
np{p) of N-mers in the condensation polymerization of AB;_ | [Eq. (6.9)]:

_ly=-nat N-1 (- 2N+

tm@)_AﬂU—MN+H¢J (1-p) : (6.61)
The difference between Ay and AB,_, arises from the degeneracy of
A, condensation, since there are N(f—2)+2 unreacted A groups on
each N-mer (see Table 6.3). The number of N-mers per unreacted A group
is obtained by dividing uy(p) by this degeneracy, since there are
N(f— 2)+ 2 different ways to select the same N-mer by randomly choosing
an unreacted A:

un(p)

F-2N+2

To obtain the number of N-mers per monomer, #(p, N}, we simply multiply
this number of N-mers per unreacted A group by the average number of
unreacted A groups per monomer f{1 — p):

nQLN%=U{g&;12uN@% (6.62)
(= DNE wergy _pyim2me2 (663

n(p, N) :fmp

3 Formation of a bond converts two unreacted A groups to two reacted A groups. Since
cach site has fA groups, there are /2 poténtial bonds per site.
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This number density distribution function is more convenient than the
previously used number fraction, when dealing with systems like A
condensation that can form gels. The reason is that number fraction applies
to the randomly branched polymers present but not to the gel, which makes
this quantity awkwardly normalized beyond the gel point. The number
density »(p, N) avoids this complication since the total number of mono-
mers is independent of extent of reaction.

Simply multiplying n(p, N) by N gives the weight density distribution
function, which is the probability of a randomly chosen monomer
belonging to an N-mer:

W(p,N):Nn(p N) AL
~I _1[)({[(} )2]N+2}'p (1 = )2, (6.64)

The weight density distribution functions are plotted in Fig. 6.21 for
functionality f= 3 and extents of reaction p =0.4, 0.48, and 0.49.

From these didtribution functions, their moments related to sol and gel
fractions and to various averages of the degree of polymerization [Eqs (6.45)
and (6.46)] may be calculated. Results for functionality f=3 are presented
here. The sol fraction is defined as the fraction of all sites belonging to finite
molecules

ol 3
Pa(p) =) wip,N) = (LT%’C—') for f=3, (6.65)

N—1

where | x| denotes the absolute value of x. As expected, the sol fraction is
equal to unity below the gel point [Eq. (6.42)]. Above the gel point the sol
fraction decreases as the reaction proceeds (see Section 6.4.2 and Fig. 6.15)
and Eq. (6.65) reduces to Eq. (6.52) for p> p.=1/2.

The number of molecules per site can be calculated from Eq. (6.63):

Meep) = zoo:n(p,N) = Po(p) (%-&—%ll p/pc) for f=3. (6.66)

N=1
It decreases linearly below the gel point [recall Eq. (6.54)]:
3p 1
motipy=1——+ forp<p. =5 forf=3 (6.67)

and non-linearly above the gel point

3p— 1 1
ncm(p) ( . ) pz f‘orprC:5 forf=3 (6_68)

as plotted in Fig. 6.22.

221

123450678910
N

Fig. 6.21

Weight density distribution functions
for functionality /=3 at three different
extents of reaction.
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The relative extent of reaction  is defined as a measure of the proximity
to the gel point [Eq. (6.25)]. In the mean-field theory, the critical extent of
the reaction is given by Eq. (6.47), p.= 1/(f — 1}, and the relative extent of
the reaction is determined by f and p:

A e AT
E_Pc l=((-1p-1 (6.69)

Using /=3 gives the relative extent of reaction for the trifunctional Bethe
lattice.

e=2p—1 forf=3. (6.70)

The number-average degree of polymerization

> Nn(p, )

Nolp) =21 _ Palp) 4 for /=13 (6.71)
Z n(p,N) ntot(p) 1 + 3|E|
N=1

grows below the gel point from N,(0) =1 to Ny(1/2) =4 [see Eq. (6.55} for
a more general expression] and decreases above the gel point, with
Ny(1) =1 (see Fig. 6.23).

The second moment of the number density distribution [Eq. (6.63)] is

i N*n(p, N) = Psolgp)tlg"‘ for f = 3. (6.72)
N=1

The weight-average degree of polymerization is the ratio of the second and
the first moments and diverges at the gel point (see Fig. 6.23):

3. Na(p, N) 2 .
Nw@):ﬁi=@f§ for f= 3. (6.73)
2 Nnlp.N)

The third moment of the number density distribution

3+ 9e] — 962 + |e|”
4el’

f:NS"(Ps N) = Pui(p) for f=3 (6.74)
N=1

gives the z-average degree of polymerization at any extent of reaction p:

C’CN3rc ,
2NN 3 g g e

N S e 0
N=1

for f= 3. (6.75)

It diverges at the gel point faster than the weight-average degree of poly-
merization {se¢ Fig. 6.23).
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Close to the gel point (for le| < 1) the number density of polymers
reaches an asymptotic form for large polymers that can be obtained from
the similar expression for condensation polymerization of AB, | [Eqs
{6.30) and (6.61)]:

1
un(p} = mN-3/2exp(—52N)an(p) for AB; |  (6.76)
using the relation between the two distribution functions [Eq. (6.62)]:
) -2
) = ) T gy T
= / N2 exp(fazN). (6.77)

2n{f-1)(/-2)

In this conversion we made use of the fact that p = p, = 1/(f — 1) near the gel

point, so (1 — p),was replaced with (f— 2)/(f— 1). The polymer number

density near the gel point on the Bethe lattice decays as a power of the
number of monomers in a polymer:

n(p, N) s2 N52FL(N/N%). (6.78)
The cutoff function fL(N/N*) is an exponential
[r(N/N*) =~ exp(—N/N*) (6.79)
with the cutoff at the characteristic degree of polymerization:
N* 72, (6.80)

The number density of polymers is plotted in Fig. 6.24 for several different
extents of reaction p.

n(p, N}

223

Fig. 6.24

Number density distribution function
nip, N) for trifunctional randomly
branched polymers at three different
extents of reaction below the gel point

(pc=0.5).
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It is important to point out that this characteristic degree of poly-
merization is proportional to the z-average degree of polymerization near
the gel point for any functionality f:

N*=2N. for |g| < 1 and /=3, (6.81)

The characteristic degree of polymerization diverges at the gel point, so
the number density distribution becomes a power law with no cutoff:

A(pe, N} ~ N73/2, (6.82)

Similar relations with different coefficients and different exponents hold in
all percolating systems near the transition point, not just in the mean-field
case of percolation on a Bethe lattice, as will be shown in Section 6.5.

6.4.6 Size of ideal randomly branched polymers

So far we have discussed the distribution of degrees of polymerization of
molecules both below and above the gel point. In the present section, we will
describe their spacial sizes in the polymerization reactor. The Bethe lattice
introduced above for the mean-field gelation model properly describes the
connectivity of monomers into tree-like branched molecules, but is not
designed to describe the location of these monomers in space. Indeed, the
Bethe lattice has infinite fractal dimension because the number of sites
grows exponentially with the number of generations [see Eq. (6.35) and
Table 6.2] and would not fit into space with any finite dimension without
significant overlap between different sites.

Here we calculate the size of ideal randomly branched polymers, ignoring
excluded volume interactions and allowing each molgcule to achieve
the state of maximum entropy (recall the discussion of ideal chains in
Chapter 2), Since branched molecules have many ends, the mean-square
end-to-end distance used to characterize the size of linear chains is not
appropriate for them. The simplest quantity describing the size of branched
molecules is their mean-square radius of gyration R, [see Eq. (2.44) for the
definition].

In Chapter 2 we have presented a proof of the Kramers theorem for
branched molecules containing N monomers of size 5, but no loops
(Eq. 2.65). The mean-square radius of gyration of these molecules is

NN - N
R = 132{(—NB, (6.83)
where the average is taken over all possible ways of cutting these
molecules into two parts containing &, and N — N} monomers, respectively
(see Fig. 2.7).
The Kramers theorem relates the ideal size of molecules to a purely
structural property—the number of ways of dividing a molecule into two
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branches. The probability that a given bond is connected to a branch of ¥,
monomers through a chosen one of the two ends of the bond is the same as
the probability uy, (p) that a given unreacted A group is a part of an Ny-mer
[Eq. (6.61)]:

e, (p) = 1[[((f—21)]f::]ﬂ N pN]—l(l _ pyUBm (6.84)

The probability that a chosen bond divides a molecule into two bran-
ches—the first one with &, monomers and the second one with ¥ — N,
monomers is un, (p}un_n, (p). Therefore, the Kramers theorem can be
rewritten:

E: Z N(N = N )up, (p)ux—n, ()
RZ

e N N-1

> un (pYun-n ()

- 1=

(6.85)

The denominator of this equation is the probability that an occupied bond
is a part of an N-mer. Itis related to the number density of N-mers n(p, N) by
the ratio of sites to bonds on the Bethe lattice 2/f, the number of occupied
bonds per N-mer (N —1) and the probability of the chosen bond to be
formed p. The number of N-mers per bond is (2/f )n(p, N), while the number
of N-mers per occupied bond is larger by the factor 1/p and is equal to
(2/f)n( p, N)/p. The probability that an occupied bond is a part of an N-mer
is the number of bonds of all N-mers per occupied bond, which is larger
than the number of N-mers per occupied bond by the number of bonds per
N-mer (N —1):

N-1

Z”Nl(p)“i\’ mPp) = ‘}N n(p, N}
_ 2N - DIF- DM AN
CON[(f-2N+2)! VL= (6.86)

In the second relation, we used Egq. (6.63) for »(p, N). Close to the gel
point [for e =(f— 1)p — 1 < 1] this probability can be rewritten for large
degree of polymerization (N1} using Stirling’s approximation
[Eq. (6.23)]:

™ 20-1) sp
3" (P (p) = || eV P exp(-eIN), (6.87)

M=t

Each individual branch probability can be approximated in a similar way
[recall Eq. (6.76}].
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Fig. 6.25

The branched polymer is smaller than
the linear polymer with the same number
of monomers.

Random branching and gelation

The summation in the numerator of Eq. (6.85) is dominated by the
middle of the interval and can be evaluated by replacing the summation by
integration using the asymptotic expression for uy(p) [Eq. (6.70)]:

i N](N— Nl)uM (P)UN—M (P)

M=l
N-1
& Ni(N = Ni)uy, (p)uy-n, (p) dN,
1
YU NN - N AN
- expl— N)/ 1 1)dN
zﬁ(f 2) 3/2N N
S 2 /
ex
“sigeeem [ s
/-1 2
exp({—c-N), 6.88
where we have introduced a new variable of integration x = — 1 + 2N /N,

and the integral over x is .
Substituting Eqs (6.87) and (6.88) into the Kramers theorem expression
fEq. (6.85)] gives the mean-square radius of gyration for an ideal randomly

branched N-mer:
[ if 1)
R o m{f 22
{ g) 8= 2)b N

A similar relation was derived by Zimm and Stockmayer in 1949.*

As expected, the radius of gyration of an ideal randomly branched
polymer is much smaller than that of an ideal linear chain with the same
number and size of monomers (see Fig. 6.25). Itisimpoertant to note that the
dependence of the size on the degree of polymerization for randomly
branched polymers

(6.89)

R, = ANY*  for ideal randomly branched (6.90)
is weaker than for ideal linear polymers [Eq. (2.54)]:
R, = bN'Y?  for ideal linear. (6.91)

The fractal dimension of an ideal randomly branched polymeris D =4
(because its degree of polymerization is proportional to its size to the fourth
power N ~ R‘;). In spaces with dimension d< 4 (in two-dimensional and
three-dimensional spaces), ideal randomly branched polymers have

4 The difference is that in Eq. (6.89) ¥ is the number of monomers (occupied sites of an
N-mer), while in the treatment of Zimm and Stockmayer Ay, is the number of linear segments
per N-mer. Their asymptotic values are related to each other by ¥ = Ny /(f— 1). Therefore,

the Zimm-Stockmayer prediction is {R7} & 5 Ny /7 /[B(f = 1)(f — 21 M.
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monomer volume fractions inside them increasing with degree of poly-
merization, as reflected in the overlap parameter:
Nb' N

- ~ ~ 4—d)/4
P_EE~EWNN[W. (6.92)

Animportant difference between randomly branched and linear polymers
is that the fractal dimension of branched polymers is larger than the
dimension of space (d=3). This severely limits the applicability of the
mean-field theory to the crosslinking of long linear chains, called vulcani-
zation. Long chains in the melt have a fractal dimension of D = 2, which
leaves lots of room inside the pervaded volume of the chain (i.e., filled by
other chainsinapolymermelt). Theextraroomcreated by thelinear sections
between crosslinks allows the fractal dimension of D = 4 to exist in three-
dimensional space on a certain range of length scales (see Section 6.5.4).

6.5 Scaling model of gelation
6.5.1 Molar mass distribution and gel fraction

It is possible to generalize the results, derived in Section 6.4 for the Bethe
lattice, to any percolation problem. Of particular interest is gelation (per-
colation) in two-dimensional and three-dimensional spaces. Unlike mean-
field percolation (on a Bethe lattice} there is no simple relation between the
number of unreacted groups on a branched polymer and its degree of poly-
merization. Consequently, general percolation problems have no simple
analytical solution, but have been solved by computer sirnulations and by
analytical approximations. Forexample, polymerization of multifunctional
monomers can be modeled on a three-dimensional lattice, while polymer-
ization at a surface can be simulated on a two-dimensional lattice. In this
section, we follow the scaling approach developed for treating continuous
phase transitions, first applied to gelation by Stauffer and de Gennes.
Near the gel point, the system consists of a highly polydisperse dis-
tribution of polymers. One of the most important features of gelation is that
the number density of polymers near the gel point has a power law
dependence on the degree of polymerization, as was found for the Bethe
lattice [Eq. (6.78)]. However, the cutoff function is more complicated than
the simple exponential of the mean-field theory. In fact, it is asymmetric,
having different form below and above the gel point. Therefore, we define
the cutoff function f, (N/N*) above the gel point and the cutoff function
f_(N/N*) below the gel point. These cutoff functions have the property of
truncating the power law at the characteristic branched polymer with ¥*
monomers. In addition, f (N/N*) assures that the first moment of the
distribution fthe sol fraction, Eq. (6.39)] is unity below the gel point:

nip, N) = N f(N/N*} fot p < pe, (6.93)
np, Ny = N[ (N/N*)for p > p.. (6.94)
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The critical exponent t is the same above and below the gel point and is
called the Fisher exponent. The number of monomers N* in the character-
istic branched polymer increases as the gel point is approached (from either
side) and diverges as a power of the distance from the gel point, char-
acterized by the relative extent of reaction ¢ [Eq. (6.25)]:

N* = )Y (6.95)

The values of the critical exponents t and o and the cutoff functions
Fo(N/N*yand /' (N/N*) depend only on the dimension of space in which
gelation takes place. The percolation model has been solved analytically in
one dimension (d= 1, see Sections 1.6.2 and 6.1.2) and critical exponents
have been derived for two dimensions (d=2). The mean-field model of
gelation corresponds Lo percolation in spaces with dimension above the
upper critical dimension (d >>6). The cutoff function in the mean-field
model [see Eq. (6.77)] is approximately a simple exponential function [Eq.
(6.79)]. The exponents characterizing mean-field gelation are ¢ =1/2 and
7= 5/2 (see Section 6.4). The exact values of the critical exponents and the
exact functional form of the cutoff functions for three-dimensional per-
colation are not known, but good estimates exist from computer simula-
tions (see Table 6.4 for the values of critical exponents). In three-
dimensional percolation, o 22 0.45 and == 2.18. Both computer simulations
and experiments have also verified that the cutoff function is sharp.

Together, Eqgs (6.93){6.95) predict that plotting n(p, N} (N*)" against
N/N* constructs a universal scaling curve that reduces all molar mass dis-
tributions at different extents of reaction below the gel point to a single
curve. Two such scaling curves are shown in Fig. 6.26.

The moments of the molar mass distribution n(p, N) were defined in
Section 1.6:

my = iNkn(p,N) o~ flm NETTF(N/N*}dN, {6.96)
N=1

where f(N/N*) refers to f_(N/N*) below the gel point and f, (N/N*)
above the gel point. It is important to note that, while the sum and integral
in Eq. (6.96) extend to infinity, they enly include the sol molecules. Above the
gel point, the gel is not included in a(p, N) and hence does not affect the
calculation of the moments.

Table 6.4 Summary of exponents for percolation in d-dimensions

Exponent d=1 d=2 d=3 d=4 d=5 d>6
a 0 5/36 0.4] 0.64 0.84 I
7y 1 43/18 1.82 1.44 1.18 1
o 1 36/91 0.45 0.48 0.49 1/2
T 2 187/91 2.18 231 2.41 5/2
v i 43 0.88 0.63 0.57 1/2
2l 1 91/48 2.53 3.06 3.54 4
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Since the Fisher exponent 7 for percolation in any dimension is limited to
the interval 2 < 1 < 5/2, the first two moments of the distribution my and m,
do not diverge atthe gel point. These two moments are dominated by the
smaller polymers with a small contribution from the larger ones. Below
the gel point, the sol fraction is unity [Poi(p) =m = 1, see Eq. (6.42)] and
the gel fraction is zero [Ppa(p) = 1 — Psoi(p) = 0]. Above the gel point, we can
approximate the cutoff function as a step function that goes to zero
abruptly at N*:

2 n*
m; & f NYTf(N/N®) AN = f N'TdN. (6.97)
1 1
The integral of a power law is easily evaluated,
N*
Py = my & / NTTdN=1- C(N*)Z’r, (6.98)
1

where C is a constant. The gel fraction increases with extent of reaction
beyond the gel point:
Pa(p) = | = Prai(p) = 1 —my = C(N*)"™".

Since 2 — £ < 0, the gel fraction is zero right at the gel point (where N*
diverges) and grows steadily with extent of reaction above the gel point:

Pg ~ (N¥) "~ % for p > pe. (6.99)

The exponent 3, defined for the growth of the gel fraction, is related to the
two exponents T and o by a scaling relation, obtained by combining
Eqs (6.95) and (6.99):

8= : (6.100)
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Fig. 6.26

Universal scaling curves for the molar
mass distribution of randomly branched
polyesters with many different samples
in each class. The filled symbols have
Ny =2 monomers between branch
points and correspond to critical
percolation in three dimensions. The
open symbols have Ny =900 monomers
between branch points and obey the
mean-field percolation model. Data of
C.P. Lusignan e @/., Phys. Rev. E52,
6271 (1995); 60, 5657 (1999).
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Fig. 6.27
Correlation of weight-average molar
mass and relative extent of reaction for

trifunctionally branched polyurcthanes.

Data from M. Adam et al., J. Phys.
France 48, 1809 (1987).

Random branching and gelation

The absolute value of ¢ is not needed when discussing the gel fraction
because the growth of Py only occurs above the gel point, where < > 0. The
mean-field value of this exponent is S=1, since T=35/2 and o= 1/2.
However, in three-dimensional percolation this exponent is 5220.41.

The number-average degree of polymerization is given by the ratio of the
first to the zeroth moments of the number density distribution (N, = b1, /my)
and does not diverge (stays finite) at the gel point.

Making the change of variables x = N/N* in the integral for the moments
of the distribution function [Eq. (6.96)] allows us to extract the diverging
part from the integral:

x

my /e (N / A (x) dx. (6.101)
1/n*

The cutoff function f4(x) assures that the integral in the above equation

converges to a number. This approach therefore determines the way in

which the moments of the distribution function scale with the proximity to

the gel point without specifving the details of the cutoff function f.(X):

my, ~ NV e TETU for s v 1, (6.102)

The weight-average degree of polymerization of the finite-size branched
polymers is the ratio of the second and first moments. Since the first
moment is finite and almost constant near the gel point, the weight-average
degree of polymerization is proportional to the second moment of the
distribution [Eq. (6.102) with &£ =2]:

Nu = 22 (N#Y™7 o] (6.1031
m

Combining Egs (6.95) and (6.103) leads to a scaling relation for the
exponent -y, defined from the divergence of the weight-average degree of
polymerization:

v = {(6.104)
a

The mean-field value of this exponent is v =1 [see Eq. (6.59) or substitute
r=5/2and o = 1/2in the above equation] and - = 1.82in three dimensions.
Experimental data on weight-average molar mass of branched poly-
urethanes in Fig. 6.27 clearly demonstrate that the experimental value
of y=1.740.1 is in reasonable agreement with the expectation of three-
dimensional percolation.

Moments of the distribution with % > 2 diverge at the gel point (because
2 <7< 5/2and o >0 always). The z-average degree of polymerization of
the finite-size branched polymers is the ratio of the third and second
moments:

No="B LN~ (6.105}
m
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Equation (6.80) gives the identical relation for the mean-field model
(with o =1/2). Higher-order averages of the distribution are ratios of
higher moments (i, 1/my with k> 3). These higher-order averages are
all proportional to the degree of polymerization of the character-
istic branched polymer N* and diverge at the gel point with the same
exponent —1/c.

Note that whenever a new exponent is defined, there is also a scaling
relation that calculates this exponent from 1 and . There are only two
independent exponents that describe the distribution of molar masses near
the gelation transition, with the other exponents determined from scaling
relations. Table 6.4 summarizes the exponents in different dimensions that
have been determined numerically, along with the exact results for d=1,
d=2, and 4> 6. It turns out that 4=6 is the upper critical dimension
for percolation, and the mean-field theory applies for all dimensions d > 6.

Each set of exponents corresponds to the universality class for percola-
tion in space of a particular dimension. These exponents do not depend on
the type of lattice (square vs. hexagonal) type of percolation (site vs. bond)
and even whethar it is on a lattice or not, as long as there are no long-range
correlations. Of course, the value of the gel point p. depends on all the
above-mentioned details.

The cutoff functions /., (V/N*} and f (N/N*) are expected to only
depend on space dimension. In dimensions 1 < d < 6, the cutofT functions
are different above and below the gel point. This asymmetry makes the
values of diverging quantities above and below the gel point differ. The
ratio of a given quantity below and above the gel point defines an amplitude
ratio. For example, the ratio of the weight-average degree of polymeriza-
tion below and above the gel point by the same small extent x,

Ny(pe — x)

lim-—————~* 6.106

20 Ny (pe + %) (6.106)
is believed to be universal. In the mean-field theory (and dimensions 4 > 6},
the transition is symmetric and the amplitude ratios are equal to unity. In
general, the percolation transition is not symmetric and the amplitude ratio
defined by Eq. (6.106) is of order 10 in three dimensions and even larger (of

order 200} in two dimensions.

6.5.2 Cutoff functions

The cutoff functions f_ (N/N*) and f, (N/N*) defined in Eqs (6.93) and
(6.94) are both simple exponentials in the mean-field gelation theory
[Eq. (6.79)]:

J-(N/N*) = [, (N/N*) == exp[- N/N*] = exp| -’ N]
~ exp[—(eN'?Y). (6.107)
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Let us define a scaling parameter z,
z=eN", (6.108)

that combines the two cutoff functions f_ (N/N*) and [, {(N/N*)into a
single general cutoff function f{z). Positive values of z correspond to the
system above the gel point, while negative values apply to the system below
the gel point. At the gel point, z=0. The absolute value of the scaling
parameter z is proportional to (N/A*)°. The cutoff function in the mean-
field theory is a Gaussian function of z with its maximum at the gel point:

fizy ~ exp(—27). (6.109)

The scaling variable z can be used to construct universal plots of molar
mass distributions. There are two approaches to making these universal
plots. To study the cutoff function itself, multiply both sides of Eqs (6.93)
and (6.94) by N".

N‘n(p,N)=f(z)-{f(N/N*) for p < pe. (6.110)

S(N/N*) forp > pe.

To study the universal properties of the distribution of molar masses.
multiply both sides of Eqgs (6.93) and (6.94) by (N*)":

(N n(p,N) = 2 "°f(z) = (;;;) {ﬁ%iﬁ% I:glfﬁ ;ﬁ: (6.111)

The analytical form of the cutoff function in three-dimensional critical
percolation is not known. However, experimental and numerical universal
plots have been constructed using the methods described above and con-
stitute a convineing proof of the validity of the scaling ansatz (see Fig. 6.26).

Similar methods can be used to construct universal plots for molar mass
distributions of linear and hyperbranched condensation polymers. The
number distribution function n(p, N} for linear condensation polymers is
obtained from the number fraction distribution f{Eq. (1.66}]:

n(p,N):n}(p)—%exp<Af). (6.112)

Identifying the characteristic degree of polymerization for linear con-
densation (with c=1 and p.=1)

(6.113

%
il
=
]
Il
o ] —

the distribution function n(p, &) can be rewritten in the scaling ansatz form:

n(p,N) = N’ (—]G—;)Zexp (%) (6.114t
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Comparing this expression with Eq. (6.93} identifies =2 and the one-
dimensional percolation cutoff function

flz) = Fexp(z) (6.115)
for scaling variable
N

that is never positive for linear condensation because p < p.= 1. The scaled
molar mass distribution for linear condensation is a simple exponential

n{p, N)N? _exp<jvv) (6.117)
that does not have any power law features, even though the Fisher exponent
for this case is t=2. This is different from the scaled molar mass dis-
tribution in gelation that decays as a power law with exponent equal to the
Fisher exponent. The fact that the cutoff function in linear condensation
[Eq. (6.115)] is a’ power law itself at small z accounts for this difference.

An even more striking example 15 the universal molar mass distribution
of hyperbranched polymers. This distribution [Eq. (6.31)] can also be
written in the scaling ansatz form with r=2:

—3/2 —3/2
nip.N) = %(f_) ~ NNn exp(—N/N*) ~ # exp(—N/N¥)
172
~ N (%) exp(—N/N¥). (6.118)

The characteristic degree of polymerization N* is related to N, by
Eqgs (6.32) and (6.34):

1
N¥ =N = (6.119)
" -pire)

The cutoff function for hyperbranched polymers is

A2y =~z exp(=2), (6.120)
where the scaling parameter
N2

Z:(N"‘) . (6.121)

Alternatively, the universal molar mass distribution [Eq. (6.111)] for
hyperbranched polymers can be constructed:

-3/2
n(p, N)(N*)* = (%) exp(— N/N*). (6.122)
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Fig. 6.28

Cutoff functions for critical gelation
{thick curve), mean-field gelation
(dotted curve), and linear and
hyperbranched condensation (thin
curves).

Random branching and gelation

Three-dimensional
critical gelation

Linear
condensation

N

Hyperbranched
condensation

Using the proportionality between the characteristic degree of poly-
merization N* and N, a universal distribution function for hyperbranched
polymers can be constructed by plotting n(p, N)N2, against N/N,,. The fact
that the cutoff function contains the power law in z makes the apparent
power law exponent 3/2 in the molar mass distribution ditferent from r = 2.
The cutoff function for gelation has no power law so the apparent exponent
is equal to 1.

The cutefT functions are plotted in Fig. 6.28. For critical gelation in three
dimensions (and in the more general case of | < d < 6) the cutoft function is
asymmetric with the maximum shifted to the negative values of z. In con-
trast, the cutoff function for mean-field gelation is perfectly symmetric.
Linear and hyperbranched condensation are defined only for negative
scaling parameter z (for p< p.). The cutoff function for both of these
reactions vanishes at z =0 because there is only one macromolecule at
complete reaction (p = p.=1). For small negative values of the parameter
z, the cutoff function grows as a power law of z (~ —z for hyperbranched
and ~z° for linear condensation). Both of these cutoff functions have a
maximum and decay at large negative values of z.

A very important caveat with the universal molar mass distributions and
cutofT functions is that calculated molar mass distributions of linear con-
densation, hyperbranched condensation and mean-field percolation all
assume no intramolecular reactions occur. Intramolecular reactions are
hard to avoid in real polymerization experiments.

6.5.3 Size and overlap of randomly branched polymers

The correlation length £ for percolation (and gelation) is the size of the
characteristic branched polymer with N* monomers. Randomly branched
polymers are {ractals, so the size R and the number of monomers N in a
polymer are related by the fractal dimension T

N~ RP. (6.123)
The same relation is valid for the characteristic branched polymer:

N* o~ £8P (6.124)
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Since A* diverges at the gel point with exponent 1/o [see Eq. (6.95}], the
correlation length must also diverge:

£~ (NP e (6.125)
The exponentt v describing the divergence of the correlation length is
related to ¢ and the fractal dimension D by combining Eqs (6.95) and
(6.125):
_
" Do’
In mean field, o =1/2 and D = 4 (see Section 6.4) so »=1/2. For three-
dimensional percolation, this critical exponent is »=0.88 and the fractal

dimension of randomly branched polymersin the polymerization reactor is
D =2.53.

(6.126)

v

6.5.3.1 Hyperscaling

For critical percolation, the exponent v and the fractal dimension D are
related to the critical exponents discussed in Section 6.5.2 by the hyper-
scaling relation in dimensions | < d< 6. The idea of hyperscaling is that
polymers with a given number of monomers N are at the overlap con-
centration with themselves and with similar sized parts of larger polymers
(see Fig. 6.29). Polymers of a given size cannot strongly overlap because
they would have many contact points and would have already reacted to
make a larger polymer. The pervaded volume for a randomly branched
polymer with N monomers in d-dimensional space is proportional to
RY ~ N4/P [see Eq. (6.123)]. Molecules with K monomers (for K > Njcanbe
divided into K/N parts, each containing N monomers. Since the molecules
are fractal, these smaller parts have the same size as individual molecules
with N monomers. The number of molecules with K monomers is pro-
portional to their number density a(p, K). Therefore, the total volume
pervaded by molecules with ¥ monomers as well as smaller parts
{containing & monomers) of larger molecules is proportional to

oc o 20
/ Rﬂ’fn(p,K)dKNR—/ Kn(p, K} dK. (6.127)
N N N N

The integral on the right-hand side of the above equation is the weight
fraction of all molecules larger than N. This integral is dominated by the
lower limit for critical exponent 7 > 2 and is proportional to N

oC
/ Kn(p, K)dK ~ N7
N
In order for the fragments of molecules containing N monomers to be at

overlap (for all M), the combined pervaded volume has to be independent of
N (and equal to the total volume of the system):

/ Rd%n(p,K)de RINI=F n NUTHID L AD, (6.128)
N
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Fig. 6.29

Hyperscaling—polymers are at overlap
with other chains of the same size and
with similar sized parts of larger chains.
Polymers of different size are denoted by
lines of different thicknesses.
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This condition leads to the hyperscaling relation between critical
exponents;

%::-1. (6.129)

Hyperscaling relates the fractal dimension of randomly branched mole-
cules in the gelation reaction with the Fisher exponent and the space
dimension (see Table 6.4):

for 1 <d<6. (6.130)

The mean-field value of the Fisher exponent is t=5/2. The fractal
dimension of ideal randomly branched polymers is D = 4 [see Eq. {6.90)].
Equation (6.130) gives D=4 for t=25/2 in dimension d= 6, which is
the upper critical dimension for percolation. For dimensions larger than 6,
the mean-field theory works and the hyperscaling relation does not (poly-
mers strongly overlap). For three-dimensional percolation, r=>2.18
and D 22 2.53. Experimental measures of fractal dimension by Adam and
coworkers using small-angle neutron scattering experiments report
D =250+ 0.06.

6.5.3.2 Flory—de Gennes theory

The fractal dimension of randomly branched polymers in the poly-
merization reaction can be estimated using Flory theory (see Section 3.1.2).
The free energy of the characteristic branched polymer consists of entropic
and interaction parts:

£ v(var

Fe kT 4+ —
{b(N*)l,M]Z NW é‘a'

(6.131)

The first term is the entropic penalty for swelling the branched polymer
from its ideal size B(N*}'* [Eq. (6.90)] to its size in the reactor & The second
term is the estintate of the excluded volume repulsion between (¥ #)? pairs of
monomers spread over the pervaded volume of the polymer £ with
excluded volume interactions screened by the polydisperse mix of smaller
branched polymers inside the pervaded volume of this characteristic
branched polymer. In Section 4.5.2, the screening of excluded volume
interactions by overlapping chains was discussed for the case of a melt of
linear chains [Eq. (4.73)]. Analogous screening occurs in the case of a
polydisperse sample with the excluded volume reduced by the weight-
average degree of polymerization of the polymers inside the pervaded
volume of a given polymer (see Problem 4.19). In the case of the
characteristic branched polymer, the excluded volume is reduced by the
weight-average degree of polymerization of all finite-size branched poly-
mers v/ Ny.
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The size of the characteristic branched polymer £ is obtained by mini-
mizing the free energy [Eq. (6.131)] with respect to its size:

sy Ld+2)
£ e b(" (V) ) . (6.132)

b Ny

Substituting the mean-field relation between the weight-average and
characteristic degrees of polymerization,

Ny ~ £ ~ (N¥)17 s (4)1 (6.133)

provides the de Gennes prediction for the correlation length in gelation
based on Flory theory.

1/id42)
o) e, (6.134)

£~ b(y

Hence, the fractal dimension of the branched polymers is predicted in every
dimension of spgce:

Dgf“'§—2 for 2< d < 6. (6.135)

Note that this prediction is quite close to the values reported in Table 6.4.

6.5.4 Vulcanization universality class

Consider the crosslinking of long linear precursor chains with degree of
polymerization N, and functionality fin the melt. This class of gelation is
called vulcanization, named after Goodyear’s famous process to crosslink
natural rubber using sulphur. Vulcanization is one type of gelation for
which the mean-field theory, described in Section 6.4, works well in a
wide range of relative extents of reaction € = (p — p.)/pc [Eq. (6.25)]. The
effective functionality of a long chain with Ny crosslinkable monomers
is /== N,. The mean-field prediction for the gel point is [Eq. (6.47)]
1

1
e = ——r— for Ng 1 6.136
P 17N, r No > ( )
and corresponds to an average of one crosslink per chain. The gel fraction is
proportional to this relative extent of reaction [see Eq. (6.99) with mean-

field value of exponent 8= 1]:

Po=e forQ<e<l. (6.137)

At relative extent of reaction £ = 1, the gel fraction is of order unity Ppe = 1,
and most of the chains are attached to the gel. The percolation transition is
almost complete, with very small sol fraction left Py, <1 at extent of
reaction p ~ 2p. (where ¢ = 1), Since the gel point corresponds to an average
of one crosslink per chain, the end of the gelation regime corresponds to an
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average of two crosslinks per chain. In some cases of vulcanization, the
functionality is very large {f= Ny>» 1) leading to a small percolation
threshold (p. < 1). An example of such vulcanization is the Goodyear
original process, where large values of the relative extent of reaction £ > 1
are possible. Such highly vulcanized networks (with many crosslinks per
chain) are considered in the next chapter.

The correlation length £ and the number of monomers in a characteristic
branched polymer A* have simple predictions for vulcanization. These
predictions can be casily obtained from the mean-field percolation theory
[Egs (6.105) and (6.125) with exponents o=v=1/2] by replacing the
mounomer in the previous treatment by the precursor linear chain’ of size
bN(],/ : containing Ny monomers.

¢~ bNY el 2, (6.138)

N* = Noe™2, (6.139)

The number of monomers in the characteristic branched polymer A* and
its size £ are symmetric around the gel point (¢ =0}. The molar mass dis-
tribution is in fact similar for the same & above and below the gel point
(within the framework of mean-field scaling).

Beyond the gel point, the correlation length £ also describes the size of the
‘holes’ in the network and N* is the average number of monomers in a
network strand. Each network strand is a branched polymer. The number
of overlapping network strands P plays a vital role in our understanding of
gelation. The volume fraction of a single network strand inside its pervaded
volume is N*b3/§3. The number of network strands with ¥* monomers,
sharing the same volume £* (which is the overlap parameter for the network
strands) is given by the ratio of the volume fraction of all network strands
(the gel fraction Pg.) and the volume fraction of a single strand:

Pa Pe (8N’ ap
PR e =W (E) o Ny Jel . (6.140)

The final result was obtained using Eqs (6.137)+6.139). For long chains
between branch points (large Np), P can be large, meaning that network
strands overlap each other extensively. This is hardly surprising, since we
know that before any crosslinking takes place (at £=— 1) the long pre-
cursor chains will have Néf ? other chains within their pervaded volume [see
Eq. (5.11)]. The highly overlapping and interpenetrating precursor chains
guarantee that there will be considerable overlap over most of the cross-
linking reaction.

However, Eq. (6.140) shows that the overlap of the largest polymers
diminishes as the gel point is approached. For any precursor chain length

% Although it decreases gradually as the reaction proceeds, the chain length between
branch points in the gelation regime is of order N,
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there is always a region very close to the gel point where the largest finite
polymers (and network strands above the gel point) no longer overlap and
the mean-field theory breaks down. As with other transitions that we have
discussed, the mean-field theory only applies sufficiently far from the cri-
tical point. Closer to the critical point (near £ =90) the mean-field theory
must be replaced by the critical theory (discussed in detail in Section 6.5.1).
The crossover point between the regions where each theory applies is given
by the Ginzburg criterion. For percolation, the relative extent of reaction
g corresponding to the Ginzburg criterion is the point where the char-
acteristic polymers (and network strands above the gel point) no longer
overlap. Setting P=1 in Eq. (6.140) determines the Ginzburg relative
extent of reaction:

£ = Ny 12 (6.141)

For |¢| > &g, the mean-field theory describes the crosslinking reaction. For
|e] < £q, (sufficiently close to the gel point), critical percolation describes
the actual transition. For very long precursor chains, £¢ is extremely small
and the entire experimentally accessible region of crosslinking is described
by mean-field percolation (in practice N, = 100 is sufficient). The limit of
Ny =1 is polymerization of monomers with functionality greater than 2,
and all extents of reaction in the range — 1 <& < 1 are described by critical
percolation.

The dependence of the overlap parameter on relative extent of reaction is
sketched in Fig. 6.30. Equation (6.140) describes the decrease in overlap as
the gel point is approached until =1 at the Ginzburg point. The char-
acteristic polymers and the network strands above the gel point are just at
their overlap concentration inside the critical region (where 2 =1). Beyond
the Ginzburg point on the gel side of the gel point, the overlap of network
strands starts to increase again at £ and builds as the correlation length
(and hence the network strand length} decreases. Notice that the overlap
parameter is symmetric around the gel point.

Before the vulcanization reaction, long linear chains with degree of
polymerization N, and size bN(l)/ * overlap with each other strongly (recall
from Problem 1.22 and Section 4.5.2 that there are N(l,/ 2 other chains in the
pervaded volume of any linear chain in the melt). Crosslinking these chains
creates branched polymers with fractal dimension D = 4 on scales larger
than the linear chains. The size of these branched polymers with degree of
polymerization N is

NN LA
RgmbNéfz(Fo) ~e b{NoNY'™, (6.142)

The intramolecular pair correlation function g(r} is the number of mono-
mers per unit volume of a section of chain with section size » inside its
pervaded volume #°, plotted in Fig. 6.31. The linear subscctions of the
randomly branched polymer have approximately Ny monomers connected
in a linear chain (D = 2). The intramolecular pair correlation function g(r)
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Fig. 6.30
Dependence of the overlap parameter P
on relative extent of reaction &,
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Fig. 6.31

Intramolecular pair correlation function
¢t r) of directly connected monomers
within a sphere of radius r of a given
monomer, for randomly branched
polymers with ¥ monomers made from
vulcanizing linear chains with degree of
polymenzation Ny, Both axes have
logarithmic scales.
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decreases for r smaller than bN(l)/ ? (the size of the linear chain sections}), Eq.
(2.121y:

n_ 1 172
z(r) =l for r < BN,

(6.143)
This simple scaling results because a volume of size r contains n= (r/b)2
monomers from that chain section. Equation (6.143) describes the minus
one slope region of F1g 6.31 on scales smaller than the size of the linear
chains (with r < bN ) When r reaches the size scale of the linear chain
sections bNO/ ,Eq. (6 143) gives the expected result for the volume fractlon
of a linear chain inside its own pervaded volume in a melt, ¢ == N_ . On
scales larger than the linear chains, the fractal dimension D = 4 apphes to
chain sections of size r that are directly connected within the volume 1 [see
Eq. (6.142) and Fig. 6.31]:

r s b(Nom)". (6.144)

The intramolecular pair correlation function grows with increasing r
because the fractal dimension is larger than the space dimension:
1] F
g(r) zﬁm% for bN(l)/2 <r< Ry .
The volume fraction of monomers inside the pervadcd volume of the ran-
domly branched polymeris #°g(R,) ~ N l/“N_ , obtained by substituting
R, from Eq. (6.142)} for r in Eq. (6.145). ThlS approach is only valid in
the vulcanization regime, with £ > &g. The number of monomers in a
characteristic polymer at the Ginzburg point is N*= Noegh = NO/ !
[see Egs (6. 139) and (6.141)]. The volume fraction of monomers
b g(R,) ~ ]\f 3 « 1, so the polymers with fractal dimension P = 4 fit in
three—dlmensmnal space.
The polymerization reactor contains a highly polydisperse distribution
of molecules. The size of the characteristic polymer (with N* monomers)
defines the correlation length £ [see Eq. (6.142)]:

€~ b(NeN*)/ = BN 1) 2 (6.146)

This equation used Eq. (6.139) for the degree of polymerization of the
characteristic polymer in the mean-ficld theory. The correlation length
diverges as the gel point is approached for |¢| > £ with mean-field
exponent v =1/2.

(6.145)



Characterization of branching and gelation

Below the gel point, the system is self-similar on length scales smaller
than the correlation length &, with a power law distribution of molar masses
with Fisher exponent v=25/2 [Eq. (6.78)]. Each branched molecule is a
self-similar fractal with fractal dimension D = 4 for ideal branched mole-
cules in the mean-field theory. The lower limit of this critical behaviour is
the average distance between branch points (= lel)/ 2). There are very few
finite molecules larger than the characteristic branched polymer (with
N > N*} with size larger than the correlation length, because the distribu-
tion [Eq. (6.78)] has a sharp cutoff.

Above the gel point there is a macroscopic molecule (the gel). The
structure of the gel is also self-similar (fractal} in the same range of length
scales between the average distance between crosslinks (the linear chain
size) and the correlation length:

BNy <r <t (6.147)
The correlation length £ is the average distance between branch points that
are connected to several branches leading to ‘infinity’ (the boundary of the
gel). At p= 2p, (al £ = 1) the gelation regime ends and most of the network
strands are then simply linear chains. Chapter 7 shall discuss the properties
of such well-developed networks.

6.6 Characterization of branching
and gelation

Below the gel point, all species are soluble (in the appropriate solvent)
allowing the standard dilute solution characterization methods to be util-
ized. Above the gel point, there is an insoluble gel fraction and a seluble sol
fraction. When immersed in an excess of the appropriate solvent, the gel
fraction will swell, and the sol fraction will slowly diffuse out of the swollen
gel into the excess solvent. A convenient technique for such separation
is Soxhlet extraction, shown in Fig. 6.32. Solvent is boiled in the bottom
flask and condenses at the very top, dripping down onto the swollen gel.
The gel is inside a carefully weighed glass thimble with a fritted filter at the
bottom. As the thimble fills with solvent, the solvent flows through the
filter, carrying with it the sol fraction. When the solvent outside the thimble
reaches a certain level, it automatically siphons down into the lower boiling
solvent. The Soxhlet extractor is designed to run continuously for many
days virtually unattended. However, in practice a solvent with a very low
boiling peint is used to minimize degradation of the sol, and the high vapor
pressure means that pure solvent must be added periodically. If the filter
does not plug, the Soxhlet extractor eventually has all of the sol fraction in
the boiling solvent and all of the gel fraction in the thimble. The gel fraction
is characterized by its swelling (discussed in detail in Chapter 7). After
allowing the excess soivent to flow through the filter, the thimble and
swollen gel are weighed to determine the swollen mass. Then, the solvent is
removed under vacuum and the thimble is weighed again to determine the
gel fraction. The sol fraction can be characterized with the same dilute
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Fig. 6.32
Soxhlet extraction apparatus for
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Refractive index (ling) and 15° light
scattering (points) detector outputs as
functions of elution volume for size
exclusion chromatography on a
randomly branched polyester sample
dissolved in tetrahydrofuran. Data from
C. P. Lusignan, Doctoral Dissertation,
University of Rochester, 1996,
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solution techniques used below the gel point. The fractal dimension of the
swollen branched polymers is smaller than in their melt state.

Owing to the very broad molar mass distributions associated with
random branching, the primary characterization tool is size exclusion
chromatography, introduced in Section 1.7.4. For branched polymers, a
low-angle light scattering detector is used together with a concentration-
sensitive detector to determine the weight-average molar mass of each small
volume of solution eluting from the columns. This experiment provides a
wealth of information about the molecular charactenstics of randomly
branched polymers.

Depending on the chemical details of the polymer, a variety of con-
centration detectors can be used. The most common ones measure either
refractive index or ultraviolet absorption. Figure 6.33 shows the meas-
urements of refractive index and light scattering intensity at a scattering
angle of 15° as functions of elution volume for a randomly branched
polyester. Recall from Section 1.7.4 that the SEC separates polymers by
size. The largest species access the smallest amount of column volume and
thereby elute first (smaller elution volume V). Notice in Fig. 6.33 that there
is a very small amount of the largest species, but they dominate the light
scattering. This is because at low concentrations the intensity of scattered
light is proportional to the product ¢,M; [see Eq. (1.90)]. The scattering
intensity has two local maxima. Experimentally, it is verified that the
maximum intensity (at ¥;= 19.9 mL in Fig. 6.33) corresponds to branched
polymers with degree of polymerization proportional to N*, The second
peak at lower elution volume is an artefact of the exclusion limit of the
columns. Close to the gel point, some branched polymers are so large that
they do not fit into any of the pores in the columns. Such very large
molecules are not separated by the SEC, and elute together (at ¥;=17mL
in Fig. 6.33). These imperfectly separated species must be removed before
constructing universal molar mass distribution plots, such as Fig. 6.26.

Knowledge of the concentration ¢; and weight-average molar mass M,
of each elution volume enables calculation of the weight-average and
z-average molar masses:

ZCiMwl
M, = ;q , (6.148)
Z w;)
=t 14
M, E (6.149)

Comparison with Bgs (1.31) and (1.32) shows that Eq. (6.148) is exact, but
Eq. (6.149) is exact only if each elution volume i is monodisperse (see
Problem 6.40). Particularly since this chromatography separates molecules
by size and not mass, the different elution volumes are not truly mono-
disperse. In practice, however, Eq. (6.149) is used to calculate M,.
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The universality class of the randomly branched polymers can be
determined by constructing a universal molar mass distribution plot, like
the ones shown in Fig, 6.26. First, the number density distribution function
n(p, N) is determined from the concentration and weight-average molar
mass of each elution volume. The concentration detector directly deter-
mines the weight fraction of polymer in each elution volume wa(F;):

WV = . 6.150
w(V) = (6.150)

This weight fraction must first be converted to a function of molar mass,
using the calibration curve® for the columns used (Fig. 1.26). The two
weight fraction distributions are related to each other as

wa( M) dM; = —wx(V) dV; (6.151)

where the minus sign comes from the fact that larger molar masses elute at
smaller elution volumes:

dV,' ~ —; dV,‘

wa(Mi) = (Vi) g = 2303M, 3 ¢;dlog M;’
i

(6.152)

The final relation uses a derivative with respect to the base ten logarithm
of molar mass, as is customary for the calibration curve (see Fig. 1.26).
The number density distribution function a(p, N) is related to wy in a
simple way:
nlp, Ny = =2 ~ Moty |
2.303(M;)" 3 ¢;dlog M,
J

1%

(6.153)

The characteristic degree of polymerization N* is chosen for each
sample so that the n(p, N) data for that sample can be superimposed onto
the universal curve. For both of the curves in Fig. 6.26, more than
10 samples with different extents of reaction were superimposed in this
fashion. Although the Fisher exponent 7 is not very different for the two
classes of percolation, ¢ is sufficiently different not to allow the data from
one class to be superimposed with the wrong exponent.

The system in Fig. 6.26 corresponding to critical percolation (with
7 =2.18) has an average of Ny 2 monomers between branch points. The
system corresponding to mean-field percolation (with v =35/2) has long
linear chains between branch points, with an average degree of poly-
merization of Ny=900. Most random branching reactions create chain
lengths between branch points that are between these two clean limits. Such
systems will exhibit the crossover anticipated by the Ginzburg criterion,
between critical percolation close to the gel point and mean-field percola-
tion further away. The critical and mean-field predictions can be simply

 With branched polymers the simplest procedure is to measure the concentration, intrinsic
viscosity, and weight-average molar mass of each elution volume using appropriate detectors,
see Section 1.7.4.
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Fig. 6.34
Correlation of the characteristic degree
of polymerization and the weight-
average degree of polymerization for
randomly branched polyesters below the
gel point, using the scaling form
suggested by Eqs (6.154) and (6.155)
(lines with slope 1/(o=~) for each class).
Three different polyester chemistries are
utilized, with average degree of
polymerization between branch points
of Ny= 12 (filled circles}, Ny =20 (open
squares), and A, =900 (filled triangles).
No =2 data from C. P. Lusignan e! a/.,
Phys. Rev. E52, 6271 (1995). Ny=20
data from E. V. Patton et af.,
Macromolecules 22, 1946 (1989).

=900 data from C. P. Lusignan ez al.,
Phys. Rev. E 60, 5657 (1999).
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matched at the Ginzburg extent of reaction £¢.

. /3 (5/50)77 £ < Eg, 6.154
Nwng {(E/EG)1 E > EG, (6.134)
N NS/S{ (s/26)™7 € <ea, (6.155)

0 (5/56)—2 £ > £G.

This scaling-level matching expects a plot of N* /Ng/ ¥ against N, /Ngf 3 to
be universal for all polymer gelation reactions. Such a plot is shown in
Fig. 6,34 for three randomly branched polyester systems with Np=2, 20,
and 900. Figure 6.26 already showed that the system with Ny =900 cor-
responds to mean-field percolanon and the triangles in Fig. 6.34 show that
those samples have & / o/ )°. Furthermore, all samples with

Ng =900 have N, /NA < 1 and N /NS/3 < 1, which means that £ > &g,
based on Eqs (6.154) and (6.155). Similarly, all samples with N = 2 belong
to the critical percolation universality class (circles in Fig. 6.26) and
demonstrate the scaling expected from Eqgs (6. 154) and (6.155) in Fig. 6.34.
The slope for ¢ < zg (Nw/Ng >1 and N*/N, >3 > 1) in Fig. 6.34 is
1/(cv)=1.2. The Ny=20 system falls in the crossover between the two
universality classes. For samples with N,=20 that are far from the gel
point, £ > £ and the mean-field exponents apply, while for Ny = 20 samples
close to the gel point, £ < &g and critical percolation exponents apply.
However, it is important to notice that if the Ny =20 datain Fig. 6.34 were
considered on their own, an apparent exponent intermediate between those
of critical and mean-field theories would be observed. Figure 6.34 shows
that such apparent exponents must not be used to extrapolate beyond the
range of the data!

The extent of reaction p can, in principle, be measured by molecular
spectroscopy methods such as FTIR and NMR. Howevex, these methods
always have some small relative error (typically of order a few percent).
Since the same error has to apply to any determination of the extent of
reaction at the gel poeint p, the relative error in the relative extent of reaction
£ =(p— p)ip. diverges at the gel point. As a result, plots such as Fig. 6.34,
where two quantities with finite relative errors (N, and N*) are plotted
against each other, are more useful for determining exponent values and
hence universality class. It is important to recognize that these plots always
give information about combinations of exponents. For example, the slope
in Fig. 6.34 15 1/{ov) = 1/(3 — 1), as required by Eq. (6.104).

6.7 Summary of branching and gelation

A wide variety of linking processes can lead to the transformation from a
liquid to a solid known as gelation. This transition occurs at a particular
extent of reaction, p., called the gel point. A rough estimate of the gel point
for linking precursor molecules (or monomers) with functionality f is
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po=1/(f—1). As the reaction proceeds, a highly polydisperse mix of
molecules is formed with a power law distribution of molar masses. The
probability thata randomly chosen polymer at extent of reaction p will have
molar mass M is

n(p, M) ~ MM/ M*), (6.156)

where T is the Fisher exponent and the cutoff function f{M/M*} sharply
truncates the distribution at the molar mass of the (largest) characteristic
molecule M*. This characteristic molar mass diverges as the gel point is
approached.

_ -1/
M* ~ ‘p——& (6.157)

Pe

This molar mass distribution applies to all polymers below the gel point and
above the gel point it applies to the sol fraction. The weight-average molar
mass of this distribution also diverges as the gel point is approached from
either side:

-

-

PP withq:Tr. (6.158)

Pe

The number-average molar mass stays finite at the gel point and therefore
the polydispersity index of the sol diverges at the gel point proportional to
M,

At the gel point, the distribution of molar masses is a power law, since M*
diverges. Above the gel point the system consists of a macroscopic gel,
permeated by a polydisperse soup of microscopic molecules (the sol)
described by the same self-similar distribution of molar masses. The dis-
tribution of molar masses in the sol gets progressively narrower as the
reaction proceeds further beyond the gel point, since the characteristic
molar mass M* decreases. The fraction of the material that is a part of the
gel, called the gel fraction P, grows steadily above the gel point:

Mo~ |

5

Poet ~ (P ”"°) with g =22 (6.159)
Pe c

Once the extent of reaction reaches approximately twice the gel point,

nearly all monomers are attached to the gel and there is essentially no sol

fraction remaining. Such well-developed networks are the subject of

Chapter 7.

The numerical values of the critical exponents z, o, 3, 7, ... and the
functional form of the cutoff function f(M/M*) of gelation depend on the
amount of overlap of the linking species. If the linking species have sig-
nificant overlap, mean-ficld gelation theory provides a good description of
the process with exponents t=5/2 and o = 1/2, and an exponential cutoff
function f{M/M*) ~exp( — M/M*) over a significant range of the relative
extent of reaction. Sufficiently close to the gel point, all gelation transitions
are believed to be described by the critical percolation model. The exponent
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values and the cutoff function in critical percolation models depend on the
dimension of space in which the linking process takes place. In three-
dimensional critical percolation the exponents are 722 2.18 and 022 0.45,

The precise point where critical percolation starts to apply is determined
by the overlap parameter of the linking species. Long linear chains in a melt
are strongly overlapping before any crosslinking occurs. Vulcamzation of
these linear chains creates branched structures with fractal dimension
D = 4, which makes the branched structures overlap each other less as they
grow. Once the largest branched polymers are just at their overlap con-
centration, critical percolation begins to apply. In critical percolation,
molecules of a given molar mass are just at overlap between themselves and
with similar molar mass pieces of larger molecules. This condition is called
hyperscaling and leads to a fractal dimension of D =253 in three-
dimensional percolation.

In the polymerization of a melt of multifunctional monomers A, with
functionality f greater than two, the critical percolation model applies over
the entire range of possible extents of reaction. However, such densely
branched polymers are often not very useful because they are typically
brittle, since the chain sections between branch points are not long enough
to entangle. One interesting use of such materials is as electrophotographic
toners. Electrophotography is the process by which copiers work. The
toner is usually a polymer material that contains the appropriate dye for
colour copiers or carbon black for black-and-white copiers. The image
resolution in electrophotography is deternmned in part by how small the
toner particles can be made. Hence, the brittle nature of densely branched
gels near their gel point make them ideal toner materials, as they are easily
broken down to a very small particle size.

Randomly branched polymers are of enormous importance for certain
polymer processing operations, such as blow moulding and film blowing.
The molar mass distribution of all randomly branched polymers is
described by percolation models, For commercial randbmly branched
polymers, the critical percolation model applies only very close to the gel
point. The branching chemistry used in commercial randomly branched
polymers is usually stopped far short of the critical region. While critical
percolation does not apply to these polymers, the mean-field percolation
model does a superb job of describing the molar mass distribution of ran-
domly branched commercial polymers.

Gelation processes, such as crosslinking linear chains or condensation of
J-functional monomers A; (where A reacts with A) with /> 2 are quite
different from either linear condensation polymers or hyperbranched
polymers. Linear condensation polymers (made from AB monomers,
where A only reacts with B) and hyperbranched polymers (made from
AB;_ | monomers, where A only reacts with B) have both their number-
average and weight-average molar masses diverge as their reaction nears
completion and they never make network polymers. The hyperbranching
reaction makes the same structure of randomly branched polymers as
gelation, but with a very different distribution of molar masses.
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Problems

Section 6.1

6.1

6.2

6.3

6.4

6.5

6.6

Ergodicity refers to a system’s ability to access all allowed states. Which of the
following gels can access all possible states and are hence ergodic:

(i) weak physical gels;

{ii) strong physical gels;
(iti) condensation polymerized gels;
(iv) addition polymerized gels.

Prove that for any two-dimensional lattice that is constructed as a slice of a
three-dimensional lattice, the percolation threshold is larger in two dimen-
sions than in three dimensions.

Identify the class and dimension of percolation model that describes the fol-
lowing cases:

{i) addition polymerization in aqueous solution;

(ii) linear condensation polymerization at the air—water interface;
(i) branched condensation polymerization at the air-water interface;
(iv) branched condensation pelymerization in solution.

Calculate the*number-average degree of polymerization N, and weight-
average degree of polymerization N,, for one-dimensional percolation with
extent of reaction p=0.99. What is the polydispersity index of the molecules
at this extent of reaction?

In the process of developing a communication network, a start-up company
CheepieCom decided to save money on cables and connected each new cus-
tomer to the nearest existing one by a single cable,

(i) How many connecting cables did they run between N customers? What is
the structure of the CheepieCom network?

(i) What happens to this network if a storm breaks one cable? How can this
network be made more robust against catastrophic failure?

Consider propagation of a forest fire in the presence of a strong wind.

(i) How would you modify the percolation model to take into account strong
blowing in one direction.

(ii) Is the percolation threshold (critical probability of ignition of a neigh-
bouring tree) the same, higher, or lower than in the absence of the wind?

Section 6.2

6.7

6.8

6.9

Prove that the number fraction distribution for hyperbranched polymers is
properly normalized [i.e., show that Eq. (6.9) satisties Eq. (6.12)].

Derive the following result for the z-average degree of polymerization of
hyperbranched polymers assuming no intramolecular reactions:

::[1—p2(ffl)]2t2p(f‘— il —P)Z_ (6.160)
1 - p(f = DFIL - p2if = 1)

Demonstrate that near complete reaction (for p—p.) the ratio NN,
asymptotically approaches 3 for all functionalitics /.

Calculate the radius of gyration for an ideal regular dendrimer of generation
g with n=f=3, where each generation has linear sections between branch
points with one Kuhn monomer of length . Hint: Use Kramers theorem.
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6.10*

Use Flory theory to determine the end-to-end distance of a linear strand
that runs from the core to any end at generation g of the regular dendrimer
in Problem 6.9 with excluded volume v > 0 (in good solvent).

Section 6.4

6.11

6.12

6.13

6.14

6.15*

6.16*

Calculate and plot sol and gel fractions for gelation of tetrafunctional
monomers within mean-field theory, as functions of extent of reaction p.
Hinr: Note that one of the solutions of Eq. (6.51) is Py = 1.

Demonstrate that the mean-field gelation prediction of the polydispersity
index below the gel point is

Ny 1-(f-1)p

How does this polyvdispersity index depend on functionality f at a given
relative extent of reaction ¢ ={p — p.)/p.?

Draw all different possible structures of a trifunctional randomly branched
4-mer. Count and compare the number of unreacted groups in each 4-mer,
Explain the significance of your results.

Evaluate the mean-field estimate of the gel point p. for bond percolation on
the following lattices:

(i) Honeycomb ( f=23).
(i) Square ( f=4).
(iit) Triangular ( f=6).
(iv) Diamond ( f=4).
(v) Simple cubic { f=6).

(vi) Compare your results with the values reported in Table 6.1. What is the
origin of disagreement?

(vil) Compare your results with the values reported in Table 6.1 for
lattices with the same functionalities but with different dimensions.
Which dimensions (¢ =2 or d=3) are closer to your prediction?
Explain why?

-

Demonstrate that the weight fraction wy, 5, of randomly branched poly-
mers of Np f-functional and Ny bifunctional monomers (N = Np+ Np) is

e S L —p)m] Npon(1 — 52| Il - P

[NL + (f— 1)NB]I
NB‘.[(f— )N + 1]! ’

where ¢y is the mole fraction of branched units.
The complexity of a molecule is defined as the number Np of /~functional
units in a molecule. The complexity distribution is therefore >~ wu, n, .

N
Show that the complexity distribution is similar to the simple f-Fuantional
case in the absence of bifunctional units (derived in Section 6.4).
Calculate the distribution function for ¢a,, da.. ., ¢a, moles of reac-
tants with functionalities £, /5, ....f; of A groups which are allowed to
react with ¢p,¢n,, ..., moles of reactants with functionalities
81,82 ..., g of B groups where condensation occurs only between A and
B groups.



Problems

6.17 Calculate the weight-average degree of polymerization N,, above the gel
point in the mean-feld theory for functionality f=3 using the recurrence
relation approach.

6.18 Calculate the number-average degree of polymerization ¥, and the number
of finite molecules per site 1, above the gel point in the mean-field theory
for functionality f=3.

6.19 Compare the asymptotic distribution function for mean-field gelation of
tetrafunctional monomers [Eq. (6.77) with f=4] with the exact result
[Eq. (6.63)] at the gel point. How large does N need to be for the two dis-
tributions to agree within 1% for p=0.330?

6.20 (i) Derive the general relation between the fraction of monomers that are

crosslinked p and the gel fraction Py for random crosslinking of long
linear chains of N monomers:

I~ Pt = (1 = pPyen)”. (6.162)

Hint: p(1 — P,y) is the probability that a given monomer is crosslinked
but not part of the gel.

(i) Show thatin the large N limit, this equation becomes the relation known
in the literature as the gel curve:

1 = Pyt = exp(=NpPya)- (6.163)

Section 6.5

6.21 Power law distribution of molar masses.
Consider a polymer system (with either linear or branched polymers) with a
power law number density of molecules:

n(N)= N

(i) For what values of the Fisher exponent t is the number-average degree
of polymerization finite for all extents of reaction?
(i) For what values of 7 Is the polydispersity index of these polymers finite
for all extents of reaction?
(ifi) For what values of 7 is the z-average degree of polymerization finite for
all extents of reaction?

6.22 Size of randomly branched polymers.
Consider a gelation process stopped at relative extent of reaction

c=P"_ oL
Do

(i) What is the characteristic degree of polymerization N* at this extent of

reaction, assuming that starting molecules were monomers (Ny=1)?

(i) What is the ideal size of the characteristic randomly branched molecule,
if the monomer size is & =3 A?

(iiiy What is the size of the characteristic molecule in the polymerization
reactor?

(iv) What is the size of the characteristic molecule in dilute solution in an
athermal solvent?

Hint: Use Flory theory to estimate the swelling of a randomly branched
polymer in an athermal solvent.
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6.23

6.24

6.25

6.26
6.27

6.28

6.29

Ginzburg criterion

(1) Estimate the size of the critical zone s for vulcanization of precursor

chains with degree of polymerization Ny = 1000.

(i1) What is the characteristic degree of polymerization Ng of the branched
polymers at the crossover extent of reaction eg?

{liiy What is the size £ of the characteristic branched polymer at £ if the
monomer size is b= 3 A?

(iv) What is the volume fraction of the characteristic branched polymer
mnside its pervaded volume at £5?

(v) What is the ge] fraction at £ above gel point?

(vi) Compare the answers to (iv) and (v).

The number density of molecules in the mean-field theory for a general
functionality is given by Eq. (6.63). Use Stirling’s approximation to ¢stimate
this distribution near the gel point in the form

nip, N) = N""fa (NJN).

Show that T =5/2, find ¥* and evaluate the cutoff function /o (N/N*¥) for a
general functionality f.
What is the analogue of the scaling form of molar mass distribution

n{p, N) = N“Y/_(NjN¥)

for one-dimensional percolation?

How do the number- and weight-average molar masses diverge as the
extent of reaction approaches unity (complete reaction)?
Show that Eq. (6.99) is consistent with Eq. (6.53).
Consider random crosslinking of monodisperse primary molecules with
degree of polymerization N,. Let p be the number of crosslinking units per
primary molecule. Show that the weight fraction of molecules containing
N/N, primary molecules is

A N/ No—1
wy{p) = % exXp{—pN/Ny). (6.164)

£y

If the extent of reaction is defined as the number of bonds per monomer
p = p/No show that the gel point corresponds to p=1/Ny or {p =1).
Calculate the size of an ideal randomly branched polymer with precursor
chains made of Ny Kuhn monomers with Kuhn length 5=5A and total
number N = 10* monomers. Estimate this size for

(i) Neg=100.

(ii) Np=10.

(iii) Estimate the volume fraction of Kuhn monomers belonging to this
molecule inside its pervaded volume for cases (i) and (ii). Explain your
results.

State whether the following combinations of parameters are constants of
order unity, or diverge, or vanish at the gel point for

(i) mean-field percolation,
(if) critical percolation,

— — — Ny Poel.



6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

Problems

Which combinations provide information about universality class and
thereby can determine the Ginzburg extent of reaction £5?

Which combinations are independent of universality class and hence useful
for checking consistency of measurements?

Consider the total number of monomers per site in a sol (the first moment of
the number density distribution function):

/m@wwN=/MmeN
(i) Show that for negative values of z

[ -soan =0

(iiy Use the relation between the scaling variable z and & to show that

/ 2|1 ) — o)) dz = 0.

(iii) Can f(z) be a monotonic function for negative values of z? What is the
shape &f the simplest cutoff function that satisfies this equation.

Plot the cutoff function N°n(p, N) as a function of N/N* for mean-field
gelation using the exact expression Eq. (6.63) for f=13 and extents of reac-
tion p=0.45, 0.49, and 0.499. What happens with the maximum of the cut-
off function in mean field as p — p.?

Calculate the prefactors for critical percolation predictions of gel fraction,
correlation length, and characieristic degree of polymerization for cross-
linking short chains with degree of polymerization Ny. Hint: These predic-
tions are required to match the mean-field predictions at the Ginzburg point.
Use hyperscaling to derive the following relation for the correlation length
exponent v in terms of 3, v and the dimension of space d:

28+
d

. (6.164)

Use hyperscaling and the Flory—de Gennes calculation of fractal dimension
to derive the following approximate refation for the Fisher exponent tin any
space dimension and compare with the results in Table 6.4 for d=2,3,4,5
and 6:

3d+2

Derive equations for the exponents t and o in terms of the exponents 3
and .

What is the largest possible volume fraction ¥ ¢(r) of a randomly branched
polymer inside its own pervaded volume in the vulcanization of precursor
Ng-mers below the gel point?

Hint: Use Eq. (6.145).

What distinguishes a hyperbranched polymer at complete reaction from a
gel formed by random branching?

Compare random crosslinking of linear precursor No-mers (with /= Ng) and
end-linking of linear precursor Ng-mers with tetrafunctional crosslinkers,

(i) What is the qualitative difference between gel points of these two gelation
processes?
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6.39*

(i) How different are the resulting networks at the completion of all
possible reactions? A

(iii) Do they have Ginzburg zones of similar size e =~ N} g Explain your
answer.

How can symmetric amplitude ratios below and above the gel point in the
mean-field zone outside the critical gelation regime |e| 3> £ match with
asymmeltric amplitude ratios in the critical region? Here, ¢ = (p — p.)/p. is
the relative extent of the reaction and &g is its value at the Ginzburg point
(the boundary of the critical regime). Consider, for example, the weight-
average number of monomers in the branched molecules:

-
£

Ny =2 A|l—
£G

The amplitude A4 is the same below and above the gel point in'the mean-
field regime |} 3 leg|, while the values below and above gel point are quite
different in the critical gelation regime. Propose a way of matching these
differences at the Ginzburg point £g.

Section 6.6

6.40

Equations {6.148) and (6.149) provide a way of obtaining weight- and
z-average molar masses from size exclusion chromatography. Are they
approximate or exact methods? If the concentration ¢; and weight-average
molar mass M, of each elution volume are accurately measured, would the
correct M, and M, of the whole sample be known?
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Networks and gels

When the crosslinking reactions of Chapter 6 are driven far beyond the gel
point, nearly all species are attached to the gel in a single MAacroscopic
network polymer. Such networks, with either chemical or strong physical
bonds, are important soft solids. If the glass transition and melting tem-
peratures are below room temperature, the material is a rubber. Rubbers
are an important class of materials with many practical uses. Common
examples are rubber bands, gaskets, adhesives, and automobile tires.
Rubber bands can be stretched enormous amounts without breaking or
even losing their elasticity. In this chapter, the physics that allow for such
marvellous properties will be considered in detail. The entropic nature of
elasticity in rubbers is the origin of their remarkable mechanical properties.

7.1 Thermodynamics of rubbers

The first law of thermodynamics states that the change in internal energy of
a system, such as a polymeric network, is the sum of all the energy changes:
heat added to the system TdS, work done to change the network volume
—pd¥V and work done upon network deformation fd/:

dU=TdS — pdV +fdL. (7.1}

The differential T/ represents the change in internal energy that arises if
there is an entropy change dS, a volume change dV, or sample length
change dL. The internal energy U is a thermodynamic state function of
variables S, V, and L. The Helmholtz free energy F is defined as internal
energy minus the product of temperature and entropy:

F=U-TS (7.2)
The change in the Helmholtz free energy is written in differential form:

dF = dU — d(TS) =dU — 7dS — §dT
~ _§dT — pdV 1 fdL. (7.3)

The Helmholtz free energy is a thermodynamic state function of variables
T, v, and L. The change in the Helmholtz free energy can be written as a
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complete differential:

oF oF OF
dF=1{ - AT+ { — dV+ | — dL. 7.4
(8T) VL N (aV)T,L N (aL)T.V 04
Comparing Egs (7.3) and (7.4), we identify the partial derivatives of the
Helmholtz free energy:
aF
(or) .= 7
OF
(W) T‘L_ =P, (76)
oF
oz, o

A second derivative of the Helmholtz free energy does not depend on the
order of differentiation:

PF OF

9TOL ~ OLOT (7.8}

Using Eqs (7.5} and (7.7), Eq. (7.8) can be rewritten as one of the Maxwell

relations:
35 of
@L;@%g (19)

The force f, applied to deform a network, consists of two contributions:

-0, (), ), o

The first term describes how the internal energy changes with the sample
length and the second contribution is the product of absolute temperature
and the rate of change of entropy with sample length. The second term can
be rewritten using the Maxwell relation above [Eq. (7.9)]:

The two contributions to the force are an energetic term that is the change
of internal energy with sample length

fe= (g%) . (7.12)
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and an entropic term that is the product of temperature and the change of
entropy with sample length:

Js= T(%) v T(g—i) v )

In typical crystalline solids, such as metals, the energetic contribution
dominates the force because the internal energy increases when the crys-
talline lattice spacings are distorted from their equilibrinm positions. In
rubbers, the entropic contribution to the force is more important than the
encrgetic one. In ‘ideal networks’ there is no energetic contribution to
elasticity, so fg=0.

The dominance of the entropic part of Eq. (7.11) bestows a peculiar
temperature dependence to the force at constant extension. While crys-
talline solids have the force decrease weakly with increasing temperature,
rubbers show the opposite behaviour. The network strands
lose conformational entropy when stretched (see Section 2.6) making
8S/6L < 0 and the force increases with increasing temperature [Eq. (7.13)].

7.1.1  Flory construction

A simple way to separate energetic from entropic contributions to the
clastic force was developed by Flory. Consider a typical temperature
dependence of a retraction force f for a network of constant volume V at
constant elongation L, as shown in Fig, 7.1. The slope of the curve at
temperature T'is

slope = (%) L (7.14)

and the change in the ordinate from the point on the curve to the inter-
cept of the tangent with the faxis is the entropic contribution to the force
[Eq. (7.13})]. Therefore, the value at the intercept of the tangent to the
curve with the f axis is the energetic contribution to the force [Eq. (7.12)].
Figure 7.1 is schematic, but shows the typical relative importance of the
energetic /r and entropic f5 parts of the force in a stretched polymer net-
work. Note that the entropic component fg accounts for more than 90%
of total force in the rubbery state. Rubber elasticity has primarily entropic
origins. In the rest of this chapter, we ignore the energetic contribution and
concentrate exclusively on the entropic one.

7.2 Unentangled rubber elasticity
7.2.1 AHine network model

Polymer networks are unique in their ability to reversibly deform to several
times their size. The enormous deformability of networks arises from
the entropic elasticity of the polymer chains that make up the network
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Fig. 7.1
A schematic representation of the Flory
construction for a polymer network,



256

Fig. 7.2

Affine deformation requires each
network strand to adopt the relative
deformation of the macroscopic
network.

Networks and gels

(the network strands). The simplest model that captures this idea of rub-
ber elasticity is the affine network model originally proposed by Kuhn. The
main assumption of the affine network model is an affine deformation:
the relative deformation of each network strand is the same as the macro-
scopic relative deformation imposed on the whole network.

Consider a rubber network with undeformed dimensions L., L,q,
and Ly (Fig. 7.2). If the network experiences relative deformations in
the x, y, and z directions by the factors A,, A,, and A, then the dimensions
of the deformed network are

Lx = )\XL_Yo, Ly = )\yLyO and Lz = /\szl]- (715)

Assume that each network strand has ¥ monomers. One network strand,
shown in Fig. 7.2, has end-to-end vector &) with projections along the x, y,
and z directions of R.q, Ry, and R, in the undeformed state. In the affine
network model, the positions of the junction peints (the ends of the
strands} are always {ixed at particular points in space by the deformation
and not allowed to fluctuate. For affine deformation, the end-to-end vector
of the same chain in the deformed state is R (see Fig. 7.2) with projections
along the x, y, and z directions of

Re=ARw, R,=XMRo and R.=A.Ry. (7.16)

Recall the entropy of a chain of ¥ Kuhn monomers of length b with
end-to-end vector R [Eq. (2.92)]:

2
_ 3 R 3 RI+ R+ R
S(N.R) = -3 N—H+S(N,0)z—§k$+sw,0). (7.17)

The entropy change of this chain upon deformation is the difference in
entropy of the final and initial states:

_ . 3 RR+RI+R: 3 RLU+RY+R,
S(N,R) — S(N,Ry) = —5k szz 3 Niﬂ

302 - DR+ (X2 — RE, + (M2 — R
2 Nb?
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The entropy change of the whole network is the sum of all the entropy
changes of the network’s » strands:

A

1Y (Rl + (02— 1) (R’

i=! i=1

Ik

B = "3

FOI- 1) fj(Rzo)f} (7.19
=1

If the network is formed by crosslinking chains in their ideal state (in a
melt) the components of the mean-square end-to-end distance in the
undeformed state are given by Eq. (2.83):

I & NB?
()= 3 (Rl =5~ = (Rah = (). (7:20)
=1
Therefore, the sums of the squares of the components of the end-to-end
vectors of all # strands can be written quite simply:

SRl = SRl = S (Rl < TR (120

The entropy change upon deformation of the network is the central feature
of rubber elasticity:

AS . — _Ek()@; — D{(n/3)NE> + (A2 — 1){n/3)NB? + (X - 1)(n/3) Nb*
net 2 sz
= —”Z—k()\i + A+ AL -3 (7.22)

The main contribution to the free energy of the network comes from the
changes in entropy, as discussed in Section 7.1.1. Ignoring any enthalpic
contribution, the free energy required to deform a network is minus tem-
perature times the entropy change:

kT
A‘}?net - 7TASncl = T ()\i + /\\-’2 -+ Ag - 3) (723)

Dry networks are typically incompressible, which means that their
volume does not change appreciably when they are deformed:
V= Lylyolo = LiLL: = M LA Lyod Lo = AA AV (7.24)

If the volume of the network remains constant, the product of the deform-
ation factors is unity:

M =1 (7.25)

In practice, the volume change that occurs when a network is deformed is
measurable, but extremely small (see Problem 7.7).
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7.2.1.1 Uniaxial deformation

If the network is either stretched or compressed in a single direction (along
the x axis), the deformation is termed uniaxial. For uniaxial deformations
at constant volume, the other two dimensions of the network adjust to
keep the volume constant:

|
VA
The free energy change for a uniaxial deformation at constant volume

is obtained by simply substituting the deformation factors [Eq. {7.26)]
into Eq. (7.23):

A=A A=A = (7.26)

AFpe = nkTT ()\2 + % - 3) for uniaxial deformation. (7.27)

The force required to deform a network is the rate of change of its free
energy with respect to its size along the axis of deformation. For example,
the x component of the force is the derivative of the free energy with respect
to length along the x axis [see Eq. (7.7)]:

_ 8&Fnet _ 8AFnet 1 aﬁlFn':l

== = O\Lw) Lxp OX
L ()\ - i) for uniaxial deformation. (7.28)
Lo A2

If the cross-sectional area L,L. of the macroscopic network is doubled,
then twice as large a force is required to obtain the same deformation. This
leads naturally to a definition of stress as the ratio of force and cross-
sectional area. Both the force and the cross-sectional are2 have direction
and magnitude (the direction of the cross-sectional area being described
by the unit vector normal to its surface), making the stress a tensor. The
ij-component of the stress tensor is the force applied in the ; direction per
unit cross-sectional area of a network perpendicular to the j axis. For
example, the xx-component o,, is the force applied in the x direction
S divided by the area L, L. perpendicular to the x axis:

fe wkT 1 nkT 1
w=-2t 2 B8y L T -
T T Lol L \" 3] T LoLoLo PE

= nkTT ()\2 - )1\) = Oyme for uniaxial deformation in x.  (7.29)

This 1s the true stress in the network and it is therefore denoted by ayue.
Since it is often not easy to measure the cross-sectional area of the
deformed network, an engineering stress is also defined. In the engineering
stress the original cross-sectional area L,ol.o is used instead of the
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deformed cross-sectional area L[

1% = f;{ = nkT A_i —nki-' /‘\_i _atrue
eng L){leU B LxOLyOLZO A - vV pe Tox

The coefficient relating the stress and the deformation is the shear modulus
G, as will be shown in Problem 7.43:

(7.30)

nkT oRT
G = vkT = .
v M

(7.31)

The number of network strands per unit volume (number density of
strands) is ¥ =n/ V. In the last equality, p is the network density (mass per
unit volume), M, is the number-average molar mass of a network strand,
and R is the gas constant. The network modulus increases with temperat-
ure because its origin is entropic, analogous to the pressure of an ideal gas

= nkT/V. The modulus also increases linearly with the number density of
network strands v = n/V = pN a¢/M,. Equation (7.31) states that the
modulus of any fetwork polymer is k7 per strand.

The affine predictions for both true and engineering stresses in uniaxial
deformation at constant network volume can be rewritten using the shear

modulus:
i
Otrue — G (Az - :\')a

1
Teng :G()\ _xi)‘

By writing these equations in terms of the shear modulus, the form of the
stress—elongation relation becomes quite general. Many other network
elasticity models also predict stress—elongation relations of this form, with
different predictions for the shear modulus. For this reason, we refer to
Eqs (7.32) and (7.33) as the classical stress—elongation forms. As demon-
strated in Fig. 7.3, this classical form describes the small deformation
uniaxial data on polymer networks quite well. The main physics behind
such classical models is the entropic elasticity of polymer chains.

(7.32)

(7.33)

7.2.2 Phantom network model

The main assumption of the affine network model is that the ends of net-
work strands (the crosslink junctions) are fixed in space and are displaced
affinely with the whole network, as if they were permanently attached to
some elastic background [see Fig. 7.4(a)]. In real networks, the ends of
network strands are attached to other strands at crosslinks [see Fig. 7.4(b)].
These crosslinks are not fixed in space—they can fluctuate around their
average positions. These fluctuations lead to a net lowering of the free
energy of the system by reducing the cumulative stretching of the network
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Fig. 7.3

Engineering stress in uniaxial
compression (A < 1 and #g,, < 0} and
tension (A > 1 and gqpg > 0) fora
poly(dimethyl siloxane) network
prepared by end-linking chains with
M, = 18400 g mol~'. The curve is the
classical prediction of Eg. (7.33}, with
G =0.28 MPa, Data are from

W. Oppermann and N. Rennar, Prog.
Colloid Polym. Sci. 75, 49 (1987).
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Fig. 7.4

(a) In the affine network model, the ends
of each petwork strand are pinned 1o an
¢lastic background. (b) In the phaniom
network model, the ends of network
strands are joined at crosslink junctions
that can fluctuate. Circles are crosslink
junctions and arrows denote
attachments to the rest of the
macroscopic network.
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Fig.7.5

Recurrence relation diagrams for the
effective chains of phantom networks,
shown here for tetrafunctional networks
(f=4). In each sketch the leftmost ends
of the effective chains are pinned to the
macroscopic boundary of the network.

Networks and gels

strands. The simplest model that incorporates these fluctuations is called
the phantom network model. In a phantom network, the strands are
ideal chains with ends joined at crossiinks. The ends of the strands at
the surface of the network are attached to the elastic non-fluctuating
boundary of the network. This attachment fixes the volume of the phan-
tom network and prevents its collapse that would have been inevitable
because such simple models ignore excluded volume interactions between
monomers.

Recall from Problem 2.38 that the fluctuations of a single monomer in an
ideal chain with fixed ends are identical to the fluctuations of an end
monomer of asingle effective chain of K monomers. For the particular case
of the center monomer of an ideal chain with 2V monomers, the effective
chain has K= N/2 monomers. Hence, the constraining effect of the two
strands of N monomers is identical to the constraining effect of a single
effective chain of K= N/2 monomers. More generally, if there are / chains
of N monomers connected to a given monomer (such as in the case of the
branch point of an f~arm star polymer) the fluctuations of this branch point
are the same as the fluctuations of an effective chain of K = N/f monomers.

The fluctuations of junction points in a network are quite similar to
those of the branch point of an f~arm star polymer. In order to calculate the
amplitude of these fluctuations, start with /' — 1 strands that are attached at
one end to the surface of the network and joined at the other end by a
junction point connecting them to a single strand [see the left-most part of
Fig, 7.5(a)]. The strands attached to the elastic non-fluctuating network
surface are called seniority-zero strands. Each of these f— 1 seniority-
zero strands are attached to a single seniority-one strand by a f~functional
crosslink [see the left-most part of Fig. 7.5(a)]. The seniority of a particular
strand is defined by the number of other network strands along the shortest
path between it and the network surface. The f— 1 seniority-zero strands

{0
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are connected in parallel and can be replaced by a single effective chain
containing N, monomers with the same constraining effect as the /-1
original chains together [see Fig. 7.5(a)}:
Ny = N 7.34

(= (734)
This single effective chain containing ¥y monomers is connected in series
with a single seniority-one N-mer and together with it can be described by
an effective chain of K,=N-+ N, monomers. In this way, Fig. 7.5(a)
sketches how f/— | zero-seniority strands together with one seniority-one
network strand can be replaced by an effective strand with X, menomers:

Kl—N+N1:N+%—N(1+j%). (7.35)
As can be seen from the left-most part of Fig. 7.5(b), f—1 of the
seniority-one network strands are connected at a single crosslink junction
to one seniority~{wo strand. Each of these seniority-one strands together
with the corresponding /' — | seniority-zero strands can be replaced by one
effective chain with K, monomers [central part of Fig. 7.5(b)]. A parallel
combination of f—1 of these effective chains can be replaced by one
effective chain with N> monomers:

KN |
M= =50, (1+f_1). (7.36)

Combining this effective chain with the real seniority-two chain connected
to it in series, gives an effective chain representing the combined effect of a
tree of strands from seniority-zero through seniority-two [Fig. 7.5(b)]:

KQ:N+N2:N(1 +f_lT+(f4lﬁ) (737)

Continuing this procedure gives a geometric series for the number of
monomers in an effective chain representing a combined effect of a tree of
strands from seniority-zero through an arbitrarily large seniority. This
series rapidly converges and each junction point in the bulk of a phantom
network can be thought of as connected to the elastic non-fluctuating
surface of the network through feffective chains with K monomers in each.

| 1 ]
KzN(l NSRS 1)”"')
B N S
TG

This means that each of the original f— 1 chains, connecting any net-
work strand to the macroscopic network through a very long tree-like

N. (7.38)
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Fig. 7.6
The combined chain of a phantom
network.

Networks and gels

Ncnmb

sequence of junction points, can be replaced by an effective chain with
Kmonomers. That effective chain connects one end of each network strand
to the elastic background. There are f'— 1 of these effective chains at each
end of every network strand and they can be replaced by another effective
chain with

S (7.39

S=1 f=2
monomers (see Fig. 7.6). Every network strand has one of these effective
chains at each of its ends. Effective chains represent the way elasticity is
transmitted from macroscopic scales down to individual chains. The net-
work strand with N monomers together with the two effective chains with
N/( f— 2) monomers each, can be considered as one combined chain with

N
Neoms = N +2,7 = fsz (7.40)

monomers (Fig. 7.6). The ends of this combined chain are not fluctuating
and can be assumed to be attached to an elastic non-fluctuating back-
ground just as the ends of the network strand in the affine network model.
Thus, a phantom network model with fluctuating junttion points is
equivalent to an affine network model with a combined chain containing
Niomb MONOMETS.

The shear modulus of the phantom network is obtained from the
modulus of the affine network [Eq. (7.31)] by replacing N with Nfi(f—2):

kaf2 pﬁf(l?). (7.41)

For any functionality f, the phantom network modulus is lower than the
affine network modulus [Eq. {7.31)}] because allowing the crosslinks to
fluctuate in space makes the network softer. The phantom network has the
same number density of strands as the affine network but only the fraction
(f— 2)/f of the combined chain is the real strand [Eq. (7.40)] and only this
fraction supports stress. The phantom network modulus approaches the
affine prediction in the limit of high functionality of crosslinks. Crosslinks
in phantom networks with high functionality fdo not fluctuate much and
are almost fixed in space as in the affine network model. Networks typically
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have functionalities of 3 or 4. For f= 3, the phantom prediction is one third
of the affine network modulus and for /=4, the phantom modulus is half
of the affine prediction.

These predictions need to be modified because real networks have
defects. As shown in Fig. 7.7, some of the network strands are only
attached to the network at one end. These dangling ends cannot bear stress
and hence do not contribute to the modulus. Similarly, other structures in
the network (such as dangling loops) are also not elastically effective. The
phantom network prediction can be recast in terms of the number density
of elastically effective strands v and the number density of elastically
effective crosslinks p. For a perfect network without defects, the phantom
network modulus is proportional to the difference of the number densities
of network strands v and crosslinks u=2v/f, since there are f/2 network
strands per crosslink:

G =kT(v — ). (7.42)
This equation applies to networks with defects as well, and hence is more
general than Eq. (7.41), but care must be taken to only include clastically
effective strands and crosslinks. Flastically effective strands are the ones
that deform and store elastic energy upon network deformation. Elastic-
ally effective crosslinks are those that connect at least two elastically
effective strands.

Experimental estimates of » and  usually must rely on a model for the
crosslinking chemistry, making quantitative tests of the phantom model
difficult. Network defects preclude the use of Eqs (7.31) and (7.41), written
in terms of the molar mass of a network strand M. Indeed, since M, is not
known for real networks and the affine and phantom models predict the
same classical form of the stress—elongation curve [Eqs (7.32) and (7.33)]
there is no practical means of determining which (if either) model is correct
for small deformations of unentangled networks. For these reasons, we
henceforth describe the modulus of all classical models G, as a network of
strands with apparent molar mass M,

RT

Gy = .
M,

(7.43)

For the affine network model, M, is the actual strand molar mass
(M, = M) whereas the phantom network model requires a longer com-
bined strand length A, = /M /( - 2) [Eq. (7.40)].

7.2.3

Both the affine and phantom network models predict the same (classical}
dependence of stress on deformation [Eqs (7.32) and (7.33)]. Detailed
quantitative comparison of the classical form with experiments indicates
two major disagreements (see Fig. 7.8). Experiments demonstrate softening
at intermediate deformations and hardening at higher deformations. In

Finite extensibility
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Dangling
loop
*

Fig. 7.7

Defects in a rapdomly crosslinked
network are dangling ends and loops,
denoted by thin lines. Circles are
crosslink junctions and arrows denote
attachments to the macroscopic
network.

Fig. 7.8

Engineering stress in tension for a
crosslinked rubber (data from

L. R. G. Treloar, The Physics of Rubber
Elasticity, 3rd edition, Clarendon Press,
Oxford, 1975). The solid curve is the
classicai form [Eq. (7.33)] fit to the small
deformation data.
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order to understand the origins of these disagreements, the assumptions
made in the classical theories must be re-examined. Here the strain hard-
ening is discussed and in Section 7.3.3 the softening at intermediate
deformations will be treated.

Strain hardening at high deformations A can be explained by the non-
Gaussian statistics of strongly deformed chains. Recall that the Gaussian
approximation for a freely jointed chain model is valid for end-to-end
distances much shorter than that for a fully stretched state R < Ry, =bN.
In Section 2.6.2, the Langevin functional dependence of normalized end-
to-end distance R/Nb on the normalized force fb/(kT) for a freely jointed
chain [Eq. (2.112)] was derived:

% =L (%) = coth (f_}) - % . (7.44)

The force frequired to stretch a single chain to an end-to-end distance R
can be expressed through the inverse Langevin function;

/= "%E‘l (N%) (7.45)

This dependence of the force f on chain elongation R deviates from the
Gaussian approximation (Hooke’s law) at large elongations, as shown in
Fig. 2.15. Owing to the finite extensibility of chains, the force diverges at
the maximum end-to-end distance Rp.x=5hN [Eq. (2.116)]. A different
relation with an even stronger divergence [Eq. (2.117)] has been used for
the worm-like chain model.

Finite chain extensibility is the major reason for strain hardening at
high elongations (Fig. 7.8). Another source of hardening in some networks
is stress-induced crystallization. For example, vulcanized natural rubber
(cis-polyisoprene) does not crystallize in the unstretched’ state at room
temperature, but crystallizes rapidly when stretched by a factor of 3 or
more. The extent of crystallization increases as the network is stretched
more. The amorphous state is fully recovered when the stress is removed.
Since the crystals invariably have larger modulus than the surrounding
amorphous network, the effective modulus increases with crystallization,
which makes the stress increase more rapidly with elongation.

7.3 Entangled rubber elasticity
7.3.1 Chain entanglements and the Edwards tube model

In the 1540s, it was recognized that the classical predictions of network
modulus were bounded. A real network could certainly not be expected to
have lower modulus than the phantom prediction, since it is based on
unrestricted fluctuations of ideal strands that are allowed to pass through
each other. At the other extreme, the classical models have no means to
attain a higher modulus than the affine prediction, based on junctions that
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are not allowed to fluctuate at all. However, the modulus of many real
networks is considerably larger than the predictions of either classical
model!

In both the affine and phantom network models, chains are only aware
that they are strands of a network because their ends are constrained by
crosslinks. Strand ends are either fixed in space, as in the affine network
model, or allowed to fluctuate by a certain amplitude around some fixed
position in space, as in the phantom network model. Monomers other than
chain ends do not ‘feel’ any constraining potential in these simple network
models.

In real networks made of long linear polymers, network chains impose
topological constraints on each other because they cannot cross (see
Fig. 7.9). The importance of these topological constraints, called entan-
glements, in polymer networks was discussed by Treloar as early as 1940.
Since then a great many models of entanglement effects in polymers have
been proposed. Indeed, the focus of Chapter 9 js the consequences of
entanglement in polymer liquids. However, a clearer picture of what an
entanglement reglly is remains elusive and the sketch in Fig. 7.9 is a very
crude representation of an entanglement' between two chains.

Despite this rather vague notion of individual entanglements, Edwards
showed that the essence of entanglements can be treated using a tube
model. The collective effect of all surrounding chains on a given strand is
represented in the Edwards tube model by a quadratic constraining
potential acting on every monomer of each network strand. The minima of
these constraining potentials lic along the dashed line of Fig. 7.10, called
the primitive path. Every network strand is effectively confined by con-
straining potentials to a tube-like region with the primitive path at its
centre (see Fig. 7.10}.

Each monomer is constrained to stay fairly close to the primitive path,
but fluctuations driven by the thermal energy kT are allowed. Strand
excursions in the quadratic potential are not likely to have free energies
much more than k7 above the minimum. Strand excursions that have free
energy kT above the minimum at the primitive path define the width of the
confining tube, called the tube diameter a (Fig. 7.10). In the classical affine
and phantom network models, the amplitude of the fluctuations of a
typical network monomer, that is not adjacent to the crosslinks, is of the
order of the unperturbed strand size. In entangled polymer networks, the
topological interactions of neighbouring chains restrict the transverse
fluctuations of a network strand to the confining tube of diameter a.

This tube diameter can be interpreted as the end-to-end distance of an
entanglement strand of N, monomers:

a=bN/. (7.46)

! Entanglement appears to be caused by a collective topological restriction of many
neighbouring chains (see Section 9.1).
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Fig. 7.9

The fact that two chains cannot pass
through one another creates topological
interactions known as entanglements
that raise the network modulus.
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Fig. 710

A chain or network strand (thick curve)
is topologically constrained to a
tube-like region by surrounding chains.
The primitive path is shown as the
dashed curve. The roughly quadratic
potential defining the mbe is also
sketched.
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Fig. 7.11

Computer simulations of network
modulus for networks with three
different strand lengths (filled circles
with number of monomers per strand
N=12, 26, and 44). The open squares
are the same networks but the modulus
is measured when the strands are
allowed to pass through each other asin
a true phantom network. Data from

R. Everaers, New J. Phys. 1, 12.1-12.54
(1999), see http://www.njp.org. ¢ is the
energy scale in the Lennard—Jones
potential [Eq. (3.96)].
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The entanglement strand has entanglement molar mass M. =NM,.
The entanglement strand effectively replaces the network strand in the
determination of the modulus for networks made from long strands, and
also determines the rubbery plateau modulus of high molar mass polymer
melts:

(7.47)

The importance of entanglements in network elasticity is proven beyond
any doubt by three experimental observations.

(1} Computer simulations of polymer networks demonstrate that allowing
chains to pass through each other (forming a true phantom network
with no entanglements possible) lowers the shear modulus greatly, as
demonstrated in Fig. 7.11. Computer simulations have the enormous
advantage of knowing the number of monomers in a strand N a priori.
The modulus of three such networks was measured at constant
monomer density and plotted against {/N (filled circles in Fig. 7.11).
Since 1/N is proporticnal to the number density of strands, both the
affine and phantom models predict a straight line going through the
origin. However, in contrast to the prediction of either classical model.
the straight line has a non-zero intercept! Another advantage of
computer simulations, is that the rules of the simulation can be changed
to be quite unrealistic. By allowing the chains to artificially pass
through each other in the simulation, the open squares in Fig. 7.11 are
obtained for the modulus. The straight line describing these phantom
networks has an intercept of zero within numerical uncertainties, and
agrees with the predictions of the phantom network model. Figure 7.11
proves that topological interactions between network strands raise the
network modulus. The simplest idea that accounts for interactions of
these strands is the notion of entanglements embodied in the Edwards
tube model.

{(2) Instantaneously deformed high molar mass polymer melts (long
polymer chains in their liquid state} behave at intermediate times as
networks with well-defined values of shear modulus, called the plateau
modulus G, which is independent of molar mass for long-chain
polymers, This rubbery plateau is seen for all polymer melts with
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molar mass significantly above the molar mass of an entanglement
strand M., as will be discussed in detail in Chapter 9. Experiments on
polymer melts suggest that chains form some sort of temporary
entanglement network due to the topological constraints they impose
on each other. Only on very long time scales do they “find out” that they
are not permanently crosslinked and the melt begins to flow as a liquid.
When such long chains are crosslinked to form a network, there is no
reason to expect these entanglements to disappear

(3) The modulus of well-developed networks (having sol fraction near
zero) with molar mass of network strands considerably larger than the
molar mass of an entanglement strand (M, > M.)is always significantly
larger than either of the classical predictions. Figure 7.12 shows
experimental data for networks prepared by end-linking linear poly
(dimethyl siloxane) (PDMS) telechelic chains (meaning that there is a
reactive group at each end of the chain, but none along the chains).
Both of the classical models expect a zero intercept, and hence would
allow for fully reacted networks of arbitrarily low modulus, provided
that the molay mass of the starting chains is sufficiently large. However,
the data suggest instead a non-zero intercept, that is consistent with
the plateau modulus of high molar mass linear PDMS melts
(Ge/RT = 80molm™=3).

Therefore, it is well established that topological entanglements dominate
and control the modulus of polymer networks with long network strands.
The Edwards tube model explains the non-zero intercept in plots of
network modulus against number density of strands (see Figs 7.11 and
7.12). The modulus of networks with very long strands between cross-
links approaches the plateau modulus of the linear polymer melt. The
modulus of the entangled polymer network can be approximated as a
simple sum.

1 1
G=Gy+Ge & ,O’R,T(E + E) (748)

The modulus is controlled by crosslinks for low molar mass strands
between crosslinks (G 2 G, for M, < M.} and by entanglements for high
molar mass strands between crosslinks (G 2 G, for M, > M,). The modulus
becomes nearly independent of the molar mass of the network strands
between crosslinks in the limit of very long strands. The straight lines with
non-zero intercept in Figs 7.11 and 7.12 are Eq. (7.48).

Equation (7.48)is applicable to well-developed networks with essentially
no sol fraction. The effective modulus is of order kT per network strand
without entanglements and k7 per entanglement strand when entangle-
ments dominate. Equation (7.48) allows no possibility of making a fully
developed network with a modulus smaller than the plateau modulus of the
corresponding melt of linear chains. However, networks with smaller
modulus can of course be made if the crosslinking reaction is kept close to
the gel point. The modulus of gels in the gelation regime is discussed in
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Modulus of end-linked PDMS petworks
withf=4at30°Cfrom . X. Pateler al.,
Macromolecules 25. 5241 (1992). The
line has an intercept determined by the
plateau modulus of a melt of highmolar
mass PDMS linear polymers
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Section 7.5. Networks with modulus lower than the plateau modulus can
also be prepared by crosslinking chains in solution and then removing the
solvent, because fewer entanglements are trapped by crosslinking in
solution,

The deformation dependence of the stress in the Edwards tube model is
the same as in the classical models [Eqs (7.32) and (7.33)] because each
entanglement effectively acts as another crosslink junction in the network.
Therefore, the Edwards tube model 1s unable to explain the stress softening
at intermediate deformations, demonstrated in Fig. 7.8. The reason for the
classical functional form of the stress—strain dependence is that the con-
fining potential is assumed to be independent of deformation.

7.3.2 The Mooney—Rivlin model

As an alternative to the molecular approach of the three models described
above, a phenomenological model of elasticity may be used. In such a
model, a general expression for the free energy is written without asking
any questions about the molecular interpretation of the terms of this free
ENErgy.

The model developed by Mooney and Rivlin starts from three strain
invariants:”

L=X+A+A, (749
_ 3242 242 242

L= XA+ A0 + AL\, (7.50,

I= XN (7.51:

The free energy density of the network F/)V is written as a power series in
the difference of these invariants from their values in the undeformed
network (A, =A, = A, =1):

F
r—/=C0+C1(11—3)+C2(Iz—3)+C3(13—l)+--- (7.52
The second term in this series is analogous to the free energy of the classical
models [Eq. (7.23)]

Cilli —3) = Ci(X; + A + AL = 3) (7.53

-

with the identification C, = /2. The third term in Eq. (7.52) describes the
deviations from the classical dependence. For incompressible networks.
the third invariant does not change with deformation,

1% 2
5= AN = (7) -, (7.54
0

making the fourth term of Eq. (7.52) zero.

% They are called invariants because they are independent of the choice of coordinate
system.
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For uniaxial deformation of an incompressible network,
1

VA

the Mooney-Rivlin free energy density is written in terms of the stretching

factor A:

ME=A A=A = (7.55)

=]y

2 1
:C0+C1()\2+X—3)+C2(2/\+p——3)+--- (7.56)

The true stress in the Mooney-Rivlin model can be obtained from the free
energy density:

| 8F  O(F/V) , | 1
= —_— el S 2 _— -
Ttrue L}-Lz oL, A I\ 2C [ A 3 +2C A 2 +

= (2(?1 +%) (A2 —%) - (7.57)

»

The engineering stress can be calculated from the true stress [Eq. (7.30)]:

2 1
Oeng = ff/% = (2c, + —%) ()\ - p) . (7.58)

This leads to the famous Mooney=Rivlin equation:

Cirue . Teng &
P e Vi S (7.59)

For classical models, the Mooney-Rivlin coefficients are 2C, =G and
C, = 0. However, experimental data plotted in Fig. 7.13, in the form sug-
gested by Eq. (7.59), show that C;> 0. In this Mooney-Rivlin plot, the
stress divided by the prediction of the classical models is plotted as a
function of the reciprocal deformation 1/A. The predictions of the affine,
phantom, and Edwards tube network models correspond to horizontal
lines on the Mooney—Rivlin plot (C; = 0). Experimental data on uniaxial
extension of networks are described well by the Mooney-Rivlin equation
with C, > 0, indicating strain softening as deformation increases (as 1/A
decreases). Molecular interpretation of this phenomenological result is
considered next.

73.3 Constrained fluctuations models

The phantom network model assumes there are no interactions between
network strands other than their connectivity at the junction points. It has
iong been recognized that this is an oversimplification. Chains surrounding
a given strand restrict its fluctuations, raising the network modulus. This is
a very complicated effect involving interactions of many polymer chains,
and hence, is most easily accounted for using a mean-field theory. In the
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Fig. 713

Mooney—Rivlin plots for uniaxial
tension data on three networks prepared
from radiation-crosslinking a linear
polybutadiene melt with

M, = 344000 gmol !, with four
different doses, making four different
crosslink densities. The lines are fits

of Eq. (7.59) to each data set. Data of
L. M. Dossin and W. W, Graessley,
Macromolecules 12, 123 (1979).
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Fig. 714

The constrained junction model has
virtual chains (thin lines) connecting
each network junction (circles) to the
elastic background (at the crosses).

Networks and gels

mean-field theory, the constraining effect of many surrounding chains is
replaced by an effective constraining field acting on a given network strand.
The mean-field approximation is reasonable as long as the overlap para-
meter (the number of chains overlapping with a given chain) is large.
Mean-field models of constrained fluctuations are now briefly reviewed.

In the 1970s Ronca, Allegra, Flory, and Erman proposed to take
into account the additional interaction between chains by constraining
junctions of network strands. The constrained-junction model can be
represented by a phantom network with an additional harmonic con-
straining potential acting on network junctions (see Fig. 7.14). This con-
straining potential can be represented by ‘virtual’ chains® connecting
junction points to the elastic non-fluctuating background. The points of
attachment of the virtual chains to the elastic background are chosen in
such a way to maintain the Gaussian statistics of network strands in their
preparation condition.

The constraining potential represented by virtual chains must be set up
so that the fluctuations of junction points are restricted, but the virtual
chains must not store any stress. 1f the number of monomers in each virtual
chain is independent of network deformation, these virtual chains would
act as real chains and would store elastic energy when the network is
deformed. A principal assumption of the constrained-junction model is
that the constraining potential acting on junction points changes with
network deformation. In the virtual chain representation of this con-
straining potential, this important assumption means that the number of
monomniers in the virtual chains changes with deformation. In the case of
anisotropic deformation, the constraining potential becomes anisotropic
and can be represented by virtual chains with different number of mono-
mers n; constraining fluctuations of junction points in the direction
i(i=x,y,0rz)

(7.60)

where # is the number of monomers in virtual chains constraining junction
fluctuations in a given direction in an undeformed network and A; is the
deformation parameter in the direction /. In Problem 7.21, it is demon-
strated that Eq. (7.60) is the only possible assumption leading to no con-
tribution to stress from virtual chains and all elastic energy being stored
only in real chains. The physical reason for the deformation dependence of
the constraining potential is that strands move further apart from each
other in the elongation direction (A > 1} and have a weaker constraining
effect on strand fuctuationsin that direction. In contrast, the strands move
closer together in the compressing direction (A < 1) where the constraining
effect is strengthened. The decrease of constraining potential upon net-
work elongation leads to increased fluctuations and to a non-classical
dependence of stress on elongation with strain softening qualitatively
similar to that observed in experiments (see Fig. 7.8).

2
Hi = Ao,

EY

3 Virtual chains represent topological interactions between strands, as opposed to effective
chains that model the effects of strand connections.
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The constrained-junction model relies on an additional parameter that
determines the strength of the constraining potential, and can be thought
of as the ratio of the number of menomers in real network strands and in
virtual chains N/ny. If this ratio is small, the virtual chain is relatively long
{no>> N), and surrounding chains have very little effect on the fluctuations
of the junction points. If the ratio N/ny is large, the virtual chain is relatively
short (rg << N) and fluctuations of the junction points are strongly sup-
pressed, practically pinning them to the elastic non-fluctuating back-
ground. Hence, the constrained-junction model continuously crosses over
from the phantom network model to the affine network model with
increasing strength of the constraining potential (as N/ng increases from
0 to oo).

The interactions between long overlapping network strands suppress
fluctuations not only of the network junctions, but of all monomers in
every network strand. In an attempt to capture this effect, Kloczkowski,
Mark, and Erman proposed a diffused-constraints model. Instead of the
constraining potential acting on network junctions, a constraining poten-
tial was applied tq a single monomer on each network strand. The location
along the strand of this constrained monomer is different in different
network strands. The constraining potential of this diffused-constraints
model can also be represented by a virtual chain with its number of
monomers changing with deformation, as given by Eq. (7.60). This con-
straint reduces fluctuations of the particular monomer the virtual chain is
attached to and its immediate neighbours, but it does not have a significant
effect on fluctuations of monomers of the network strand that are far from
the virtual chain. Constraining only one monomer per network strand
is not enough to represent the extent of topological constraints imposed
on a given strand by the surrounding network chains. In the limit of very
strong confining potential (N/my— oo} the diffused-constraints model
also reduces to the affine network model.

7.3.3.1 Tube models of constrained fluctuations
Topological entanglements imposed by surrounding chains upon a given
network strand reduce fluctuations of all monomers of this strand.
Therefore, the constraining potential providing a mean-field representa-
tion of these topological interactions should be applied to a/l monomers of
the chain. This is the basic assumption of the Edwards tube model, dis-
cussed in Section 7.3.1. The parabolic constraining potential acting on
all monomers reduces their fluctuations to the confining tube of width «
[Eq. (7.46)]. This constraining potential can be described by virtual chains
that connect each monomer of the network strand to the elastic non-
fluctuating background. The collective effect of these virtual chains is
to restrict the fluctuations of each network strand to a confining tube
(Fig. 7.10).

The same confinement of monomer fluctuations can be achieved by
attaching shorter virtual chains with n(p) ‘virtual’ monomers to every pth
monomer of the network strand as long as the product pn(p) is the same

271



272

Networks and gels

and p < n{p). In Problem 7.22, it is shown that for a comb polymer with
side branches containing # monomers attached to every pth monomer
of backbone at one end and to the elastic non-fluctuating background at
the other end, the mean-square fluctuations of backbone monomers are

@ = B2/ pnip), (7.61)

as long as p < n. Thus, virtual chains with #» & N? can be attached to every
monomer on the network strand (with p = 1) or shorter virtual chains with
n=s N, can be attached to monomers separated by p ~ N, monomers along
the strand (one per entanglement strand). In both cases the fluctuations of
network monomers will be constrained to the same confining tube with
diameter g ~ bNé/ 2 The condition p S nassures that all monomers of the
network strand have similar amplitude of fluctuations independent of how
far they are from the points of attachment to virtual chains. This avoids the
problem of inhomogeneous fluctuations of monomers seen in the diffused-
constraints model.

One of the main assumptions of the Edwards tube model is that the
number #n of monomers in the virtual chains (the strength of the con-
straining potential) is independent of network deformation. This
assumption implies that the amplitude of monomer fluctuations (the tube
diameter a) does not change upon network deformation [Eq. (7.61)]. As
mentioned in Section 7.3.1, this assumption of deformation-independent
confining potential in the Edwards tube model leads to the classical
dependence of stress on deformation.

Non-affine tube model. Rubinstein and Panyukov combined the main
ideas of the constrained junction model and the Edwards tube model into a
non-affine tube model. As in the Edwards tube model, the constraining
effect of surrounding network strands on a given strand is represented by a
confining potential, modelled by virtual chains. The virtual chain attach-
ments to the elastic non-fluctuating background are snot forced to be
located along the primitive path line as in the Edwards tube model, but
rather are placed randomly in space in such a way to make the primitive
path a random walk in the preparation state. This random placement of
attachment points represents the randomness of the network crosslinking
process and assures that the tube has random walk statistics.

The number of monomers in virtual chains is assumed to change with
deformation according to Eq. (7.60), similar to the constrained-junction
and diffused-constraints models, If one virtual chain is attached to every
entanglement strand of N, monomers, it contains of order N, virtual
monomers in the undeformed state of the network. The number of
monomers in each virtual chain changes as the network is deformed
[see Eq. (7.60}).

1 22 AN (7.62)
For anisotropic deformation, it is important to realize that the virtual
chains in component directions i=x,y,z have different numbers of
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monomers because the A; are different. As with the constrained-junction
model, the constraining potential in the non-affine tube model is chosen so
that no stress will be supported by virtual chains when the network is
deformed, to be consistent with the microscopic definition of the stress
tensor. Combining Egs (7.61) and (7.62), we discover that the tube
diameter changes non-affinely with network deformation:

ar = BN w0 a)N?, (7.63)

where a is the tube diameter of the network in the undeformed state. This
means that fluctuations of monomers increase along the elongation
direction and decrease along the compression direction. The physical
picture of the confining tube is that entanglements suppress fluctuations
of monomers. As the distance between entanglements changes upon net-
work deformation, so should the amplitude of monomer fluctuations. In
fact, the amplitude of these fluctuations in the non-affine tube model
coincides with the distance between entanglements in the corresponding
direction, which is equal to the size of an entanglement strand of
N, monomers (se‘e Problem 7.20).

The deformation dependence of the confining potential [Eq. (7.62)]
results in a non-classical stress—strain dependence of the non-affine tube
model. The prediction of this model for the stress-elongation relation in
tension is qualitatively similar to the Mooney-Rivlin equation [Eq. (7.59)]
and is also in excellent agreement with experiments on uniaxial deforma-
tion of networks in tension:

Tirue Teng Ge

= G
N TN A

(7.64)

However, this form still overpredicts the stress required to compress a
network.

Non-affine slip-tuhe model. In the non-affine slip-tube model, the stored
length of network chains is allowed to redistribute along the contour of
the tube (Fig. 7.15). Upen asymmetric (uniaxial or biaxial} deformation,
the network is stretched in some directions and compressed in others.
Stored length from compressed directions of the tube can redistribute
itself into the stretched directions, balancing the tension in all directions
and lowering the free energy and the stress in the network, The resulting
dependence of stress on the deformation in the non-affine slip-tube model
does not have a simple analytical form. However, the model has been
solved numerically and its solution in the experimentally relevant range of
0.1 < A < 10 can be approximated in a form similar to Eq. (7.64):

Ctrue Teng Ge

e .
T 0.74A + 0.61A-1/% = 0.35

Mo1/A T A-1/AT (7.65)

Both Egs (7.64) and (7.65) reduce to Eq. (7.48) in the small deformation
limit (A — 1). This simple additivity separates the crosslink and entangle-
ment contributions to the stress and hence allows them to be determined
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Fig. 715

In the non-affine slip-tube model,
entanglements are represented by
slip-rings that are attached to the elastic
background through virtual chains

that represent the potential of the
confining tube.
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Comparison of the non-affine slip-tube
model [Eq. (7.65) using Gy and G, as
adjustable parameters] with
experiments, see M. Rubinstein and

S. Panyukov, Macromolecules 35, 6670
(2002). Filled squares and diamonds are
data on vulcanized natural rubber from
R. S. Rivlin and D, W. Saunders, Philos.
Trans. R. Soc. London 4243, 251 (1951).
Filled and open circles are PDMS
network data of H. Pak and P. J. Flory,
J. Polym. Sci., Polym. Phys. 17, 1845
(1979). Triangles and inverted triangles
are PDMS network data of P. Xu and J.
E. Mark, Rubber Chem. Technol. 63,276
(1990). Part (b) demonstrates the
universal form of Eq. (7.65) and also
includes simulation data on end-linked
networks with N, =135 (open squares),
N,=100{+)and N;=350( x ) from
G. 8. Grest et al., J. Non-Cryst. Solids
274, 139 (2000).
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from experiment. Experimental data for different networks are plotted in
the Mooney-Rivlin form in Fig. 7.16(a). Using G, and G, as fitting para-
meters, Eq. (7.65) provides a reasonable description of the data. Note the
maximum on the Mooney-Rivlin plot for uniaxially compressed networks.
The simple Mooney-Rivlin expression [Eq. (7.59)] predicts a straight line
and does not agree with network compression data. Figure 7.16(b) reduces
all data from both experiments and simulations to a common curve in
the form suggested by Eq. (7.65).

7.4 Swelling of polymer gels

Another amazing property of polymer networks is their ability to change
volume manyfold when exposed to an appropriate solvent. When a net-
work polymer is swollen in a solvent it is called a gel. In this section, the
swelling of unentangled gels is treated. At the level of the Edwards tube
model, swelling of entangled gels is identical, with the number of mono-
mers in a strand ¥ replaced by the number of monomers in an entangle-
ment strand A, in the preparation state. However, as the previous section
indicates, deformation of entangled networks (including swelling) is more
complicated than the affine treatment of the Edwards tube model, with the
topological confinement significantly diminished upon swelling.

The volume fraction ¢ of polymer in a swollen (or partly swollen)
state can be easily determined experimentally by measuring the volume ¥
of the gel (including the solvent within it) and its volume in the dry
state Vypy

_ 1'/vc]ry

= (7.66)

¢

Let ¢ be the polymer volume fraction in the preparation state where
crosslinking was performed, with the gel volume V. The total amount of
polymer in a well-developed gel (with no sol fraction) does not change
upon swelling or deswelling. The change of the volume is due entirely to the
change in the amount of solvent within the gel:

Vado = V= Vary. (7.67)
When an unconstrained macroscopic network polymer is swollen in a
solvent, it undergoes uniform swelling by the same amount in all direc-
tions. In this case, the linear deformation X in each direction is simply the
1/3 power of the ratio of final and initial volumes ¥/Vj, or the 1/3 power
of the initial and final volume fractions ¢o/¢:

A e\
A= |— =1— .
(Vo) (¢)

On swelling, each network strand is stretched as the crosslink junctions
move further apart. The stretching of an ideal chain was treated in

(7.68)
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Section 2.6.1. The free energy required to stretch the ideal chain is quad-
ratic in its end-to-end distance R [see Eqs (2.94) and (2.101)}:

(7.69)

This equation is the Flory form of the elastic part of the free energy of
a network. The mean-square end-to-end distance of network strands in
their preparation state is R. Assuming affine deformation on the length
scales of a network strand, the mean-square end-to-end distance in the
final state is R2 = (ARy)*. Modern treatments of network swelling and
elasticity utilize a more general form of Eq. (7.69) for the elastic energy of a
swollen or deformed network strand, known as the Panyukov form

ARy)?
R ®

Tef

Fa = kT( (7.70)

where R2; is the mean-square fluctuation of the end-to-end distance of the
network strand. In many cases, R’ is equal to the mean-square end-to-end
distance of a free chain with the same number of monomers as the strand in
the same solution. As the network swells (or the quality of the solvent is
changed) the strand elasticity changes because R, changes. The modulus
G(¢) of the gelin the swollen (or partly swollen) state is proportional to the
chain number density v = ¢/(Nb’) times the elastic free energy per chain
[Eq. (7.70)] (see Problem 7.29):

(ARo) KT 9 (ARo)

G T—"
((ﬁ) vk chf b3 N R‘lz‘ef

(7.71)

At swelling equilibrium, the elasticity is balanced by the osmotic pres-
sure I1 of a semidilute solution of uncrosslinked chains at the same con-
centration.? Since the modulus is proportional to the elastic free energy per
unit volume, any gel swells until the modulus and osmotic pressure are
balanced. The equilibrium swelling ratio Q is the ratio of the volume in the
fully swollen state Foq and the volume in the dry state Vg

0= e when G = IL (7.72)
Vdr‘y

[tis important to emphasize the fact that the osmotic pressurein Eq. (7.72)
is the osmotic pressure of a semidilute solution of linear chains at the same
volume fraction as the gel. This is not to be confused with the osmotic
pressure of the gel calculated from its definition in Eq. (4.62), which
includes efTects from the elasticity of the gel.

4 Equilibrium is really attained by mipimizing the free encrgy (3F/3V =0) but if both
dominant terms of the free energy are power laws in concentration, then the scaling method
used here is correct up to a numerical prefactor.
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7.41 Swelling in f-solvents

The mean-square end-to-end distance of a free chain in a f-solvent
is independent of concentration, with Rj = #*N. The fluctuations of a
network strand that control its elasticity are also independent of con-
centration:

R%. = R~ b*N. (7.73)

Hence, the more general Panyukov form [Eq. (7.70}] reduces to the Flory
form [Eq. (7.69)] for swelling in 8-solvents. The gel modulus in a §-solvent is
then proportional to the 1/3 power of concentration:

kT kT ok
o~ T n(§) 2t o

Originally derived by James and Guth, this weak concentration depend-
ence of the network modulus comes from two competing effects. As con-
centration is lowered, the number density of strands naturally decreases.
However, the strands also stretch as concentration is lowered, and this
stretching raises the modulus somewhat through the proportionality to
A% (see Problem 7.29). The net effect is the weak decrease of the gel
modulus upon swelling, given by Eq. (7.74).

The osmotic pressure of a semidilute solution in a #-solvent was dis-
cussed in Section 5.4.2 [Eq. (5.57)]:

ng

3 ¢°. (7.75)

From the condition of swelling equilibrium [Eq. (7.72)] using Eqs (7.74)
and (7.73) for §-solvents, the equilibrium swelling ratio is obtained:
N3/8
0
If the network was prepared in the dry state ¢p =1, the volume fraction
of polymer in the equilibrium swollen state in a #-solvent provides a direct
measure of the average number of monomers N in a network strand:

N= Q%3 (7.77)

For networks prepared at other preparation concentrations (at the
#-temperature) Eq. (7.76) can be selved for NV to estimate the average num-
ber of menomers in a network strand from the volume fraction of polymer
in the preparation state ¢, and the equilibrium swelling . However,
extreme caution must be used in estimating & from Eq. (7.77) because of
trapped entanglements. For densely crosslinked networks with ¥ < N,
entanglements are not important and Eq. (7.77) will provide an excellent
estimate of V. On the other hand, for entangled networks with N> N,,
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Eq. (7.77) would only serve to estimate the entanglement strand in the
preparation state assuming the Edwards tube model is correct (N, = 083,

The modulus of the network in the dry state is obtained from Eq. (7.74)
with o= 1:

KT op KT
Gl sy 5 07 (7.78)

The last relation is valid for any preparation concentration, and was
obtained using Eq. (7.76). Such universal relations that are independent of
the details of the preparation state are useful for predicting the equilibrium
swelling in a #-solvent from a measurement of the modulus of the network
in the dry state (and vice versa). Equation (7.78) has not been tested in a
#-solvent, but it does describe swelling in concentrated solution, where
ideal chain statistics apply (see the small swelling part of Fig. 7.17).

74.2  Swelling in athermal solvents

The end-to-end*distance of a network strand in the preparation state
at initial concentration ¢y in an athermal solvent is given by Eq. {5.26)
with v b,

Ry~ bN1/2¢SE(""/2m3”‘”, (7.79)

As shown in Section 5.3.1, the size of semidilute polymer chains in an
athermal solvent decreases weakly with concentration as R~ ¢~ %', since
the exponent »220.588. The end-to-end distance of a free chain at con-
centration ¢ in an athermal solvent is alse the fluctuation of the strand
that determines its elasticity in the swollen (or partly swollen) state:

Ruer 2 BNV~ -1/ 2 B0 (7.80)

In contrast, the Flory form [Eq. (7.69)] underestimates the fluctuation size
by assuming that Ree is the ideal size bN'/2.

The gel modulus in an athermal solvent has a stronger concentration
dependence than in a 8-solvent:

oy n KT O (AR KT (90)777 g\ P10
(¢5) T BN (-Rref> Nb_3N(¢) ((;50)

kT v= v— v
MW%;’D@ Dl g0v—4)/33v—1)}, (7.81)

Since »220.588, the modulus of a gel swollen in an athermal solvent is
predicted to decrease as solvent is added as G{¢) ~ 44",

The osmotic pressure in an athermal solvent was considered in
Section 5.3.2 [Eq. (5.48) with v == 4]:

kT v/ (3v—
nmﬁ& fGr=1), (7.82)
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The prediction of IT~ ¢*>* [Eq. (7.82) with »220.588] was shown to be
consistent with experiments in Fig. 5.7. The equilibrium swelling ratio is
determined using Eqs (7.81) and (7.82) in Eq. (7.72):

N3(3V—I)/4
0~ (7.83)
0

Comparing Eqs (7.76) and (7.83) shows the expected result that any net-
work swells much more in an athermal solvent than in a #-solvent.

If the network was prepared in the dry state (¢9 = 1) the average number
of monomers in a network strand can be determined by measurement of
the equilibrium swelling in an athermal solvent (with v =20.588).

N QU7 (7.84)

However, in practice Eq. (7.84) is not as useful as Eq. (7.77). Most good
solvents are not in the athermal limit (with v = 5*) meaning that the exact
value of the exciuded volume (or y) must be known to calculate N from
equilibrium swelling measurements in a good solvent, as discussed in the
next section. As in a #-solvent, the modulus in the dry state G(1} is uni-
versally related to the equilibrium swelling ratio € in an athermal solvent:

KT et KT _apaen
G =% ~or ¢ /3=, (7.85)

Since v =2 0.588, the dry modulus is related to the equilibrium swelling in an
athermal solvent as G(1) ~ Q~'7°. This dependence is considerably weaker
than in a #-solvent, simply because the same network will not swell nearly
asmuch in a #-solvent. Equation (7.85) applies to networks that are swollen
into the semidilute regime in a good solvent, as shown in the large swelling
part of Fig. 7.17. .

7.4.3 Swelling in good solvents

In a good solvent that is not in the athermal limit {0 <v < 5%, Eq. (5.48)
must be used for the osmotic pressure:

320 1)/ (3u—1
I~ 12—5 (E%) . )¢3V/(3”_” for ¢ < ¢¥* == % (7.86)
Recall from Chapter 5 that the crossover concentration ¢** ~v/b
[Eq. (5.36)] denotes the boundary between semidilute and concentrated
solutions. For ¢ > ¢** chains are nearly ideal in concentrated solutions,
whereas for ¢ < ¢** chains are swollen on intermediate scales. Network
modulus and equilibrium swelling depend on the relative value of pre-
paration and fully swollen concentrations (¢ and 1/Q) with respect to
the crossover concentration ¢**. Since the swollen concentration is
always lower than the preparation concentration (1/Q < ¢) there are three
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possible cases:

(i) good solvent regime with 1/Q < ¢ < ¢**;
(i) intermediate regime with 1/Q < ¢** < ¢,
(iil) B-regime with ¢** < 1/0 < .

In the good solvent regime (i}, the lower excluded volume [see Eq. (5.37)]
reduces Ry and R, relative to the athermal case [Eqs (7.79) and (7.80}].
However, the modulus in the good solvent regime (with ¢ < ¢y < ¢**)
predicted by Eq. (7.81)is independent of the excluded volume, since Ry and
Rier only enter into Eq. (7.81) as the ratio Rg/Ryer. Using Eqs (7.81) and
(7.86) in equating modulus and osmotic pressure, gives the equilibrium
swelling ratio for ¢g < ¢**:

N34\ K2 1)/4
~ ¢ll]f4 (E)
In the intermediate regime (i1), the chain is ideal in the preparation state

Ry~bN' but is swollen in the final state [Eq. (5.37)]. The modulus of the
swollen gel is calculated from Eq. (7.71):

kT & (ARq 2 kT & {0 2/3 P 2u-1)/t3-1}
o=z (we) ~w5(3) (%)
kT (b:;)(zv—l)mu-l}

for 1/Q < ¢y < p**. (7.87)

o il 213 4 (90=4)/[3(3=1)]
N‘W v ¢0 ¢y 4 for¢<¢**<¢0o

(7.88)

Since v 220.588, the modulus of a gel in the intermediate regime decreases
as good solvent is added as G{(g) ~ v-023¢2 ¢ Increasing the excluded
volume at constant ¢, ¢y and T, lowers the modulus because the larger
excluded volume only increases R.r.

Balancing this network elastic moduius in the intermediate regime
[Eq. (7.83)] with the osmotic pressure [Eq. (7.86}] produces the expression
for equilibrium swelling in the intermediate regime:

AIGv=1H4 o 321y o
The general relation for the equilibrium swelling in any solvent has three
branches that correspond to the good solvent case [Eq. (7.87)], the inter-
mediate case [Eq. (7.89)], and the #-solvent case [Eq. (7.76)].

(/BN 10 < gy < g
Q =~ (V/b3)0-53N0.57¢60,38 1/Q < ¢** < ¢y (7.90)
N7t 9** < 1/Q < ¢u.
The swelling increases steadily as the excluded volume increases. If the

network is prepared in the bulk {¢g=1), the general relation between the
dry network modulus and the equilibrium swelling depends upon whether
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Fig. 717
Dry nework modulus G(1) correlated
with equilibrium swelling Q in toluene
for PDMS networks. The open circles
are for model networks made from
end-linking linear chains with two
reactive ends. The filled symbols are
networks with dangling end defects
made by end-linking mixtures of chains
with one and two reactive ends.

Data from S. K. Patel ef af.,
Mucromolecules 25, 5241 (1992).
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Fully swollen modulus of end-linked
PDMS networks swollen to equilibrium
in toluene at 25°C. The starting
telechelic chains had A, = 4400 gmol ™!
and they were crosslinked at various
preparation concentrations in the
range 0.3 < $y < 1. The line is the
prediction of Eq. (7.92) with = 1/¢**.
Data from K. Urayama et af.,

J. Chem. Phys. 105, 4833 (1996).

Networks and gels

the concentration of the swollen state 1/Q is above or below the crossover
concentration ¢**:

Gy~ KT LQ 1 P(e)T 0> 1o
) = b3 Q78/3 0 < 1/¢**

In Fig. 7.17, the dry modulus of various PDMS networks is plotted as a
function of their equilibrium swelling in toluene. A single curve results for
both ‘model’ networks (open symbols) made by end-linking linear chains
with two reactive ends and networks with intentionally introduced defects
in the form of dangling ends (filled symbols} made by end-linking mixtures
of chains with one and two reactive ends. The data are fit to Eq. (7.91) as
the solid lines in Fig. 7.17 and their intersection determines the crossover
concentration ¢** 2 0.2, which is typical for good solvents.

A similar ‘universal’ relation exists (for networks prepared in either melt
or concentrated solution with ¢, > ¢**) between the modulus of the
equilibrium fully swollen state G{1/0Q) and the equilibrium swelling:

{ Q2 (p**)"” Q> 1/g*
Q- Q < 1/¢**.

This relation is of particular importance for estimating the modulus
of a fully swollen gel (which can be challenging to measure) from the
equilibrium swelling. Figure 7.18 demonstrates that Eq. (7.92) describes
experimental data quite well.

The resulis in this section were all derived for unentangled networks. The
Edwards tube model for entangled networks gives identical results with &
replaced by ¥, the number of Kuhn monomers in an entanglement strand
in the preparation state, because both entanglement strands and network
strands are assumed to deform affinely in the Edwards tube model. If the
Edwards tube model were correct, the universal relations [Eqgs (7.91) and
(7.92)] would still apply for entangled networks, since tHey are independent
of N. However, the non-affine tube models predict that entangled networks
will swell considerably more than the Edwards tube model predicts.

(7.91)

G1/Q) ~ T (7.92)

b3

7.5 Networks in the gelation regime

For the gels in the gelation regime of Chapter 6, percolation theory predicts
the modulus of unentangled gels in their preparation state using the same
physics as presented in Section 7.2 {either the phantom or affine network
models predict that modulus is proportional to k7 per strand). The number
density of network strands is determined from the correlation volume ¢
(the pervaded volume of a network strand in the gelation regime) and the
overlap parameter P [Eq. (6.140), the number of overlapping strands per
cotrelation volume]. The number density of strands inside the correlation
volume (P/€%} is the same as the overall number density of strands:

EkT% KT P

szkTm§3 N

(7.93)
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The final relation was obtained using Eq. (6.140), where Py is the gel
fraction and N* is the number of monomers in each highly branched
network strand in the gelation regime.

The Soxhlet extraction method discussed in Section 6.6 can be used to
separate the sol and gel fractions of a gel in the gelation regime, allowing
direct determination of the gel fraction Pge . Percolation theory expects the
molar mass of a network strand M* to be the same as the characteristic
molar mass in the sol fraction. Hence, M* can be determined by the size
exclusion chromatography methods of Section 6.6, applied to the soi
fraction. Equation (7.93) is tested in Fig, 7.19, where the shear modulus is
shown to be proportional to Py /™.

Recall from Chapter 6, the relative extent of reaction e, which describes
the proximity to the gel point for gels in the gelation regime, At the gel
point £ =0 and the gelation regime ends at £== |, where the gel fraction
is approximately unity. The gel fraction grows above the gel point
with exponent 3 [Py ~e? see Eq. (6.99)]. The number of monomers in
the characteristic branched polymer decreases beyond the gel point with
exponent — /o [N* ~ 71 see Eq. (6.95)]. Hence, Eq. (7.93) expects the
modulus in their preparation state to grow beyond the gel point with
exponent 3+ 1/o:

G ~ P10 (7.94)

For critical percolation, 3= 0.4] and o =0.45 (see Table 6.4), so Eq. (7.94)
predicts G ~ 2% close to the gel point. Mean-field percolation has 5=1
and = 1/2, and predicts G ~&* may apply further from the gel point.
These predictions are in reasonable agreement with data on gels in the
gelation regime that do not have entanglement effects.
A simple way to think about the effect of entanglements is written in the
spirit of Eq. (7.48):
G %+ TeGe. (7.95)
The entanglement trapping factor 7. changes from zero at the gel point to
unity for fully developed networks that have very few defects (formed by
end-linking telechelic chains). If long entangled chains are randomly
crosslinked in the melt, a fraction T, of the entanglements will be perman-
ently trapped in the network, and hence, have a similar effect on the
modulus as an actual network junction would have. This trapping of
entanglements starts in the gelation regime, but since there are many dang-
ling ends and loops in randomly crosslinked networks, they often have
many entanglements that are not trapped. Entanglements that involve
dangling ends are only temporary and do not contribute to the equilibrium
modulus of the network. The details of how 7, grows beyond the gel
point are not yet fully established, although some simple ideas exist (see
Problem 7.33). Equation (7.95) clearly indicates how to make networks
with lower modulus than the plateau modulus of the polymer melt G..
Either crosslinking chains just barely beyond the gel point or crosslinking
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Fig. 7.19

Shear modulus of polyester gels in the
gelation regime as a function of the ratio
of gel fraction and the characteristic
molar mass of the sol. The ling has the
slope of unity expected by Eq. (7.93).
Data of R. H. Colby et ai., Phys. Rev. E
48, 3712 (1993).
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Fig. 7.20

Deformation in simple shear requires
application of equal and opposite forces
to the two plates. The shear strain is

v = Ax/h. The figureis a
two-dimensional representation.

Networks and gels

in solution and removing the solvent can keep 7, small and result in low
modulus networks.

7.6 Linear viscoelasticity

Linear mechanical properties of the networks and gels discussed in this
chapter are measured with the same methods of linear viscoelasticity as the
polymer liquids (melts and solutions) discussed in Chapters 8 and 9. The
various methods are described here, with examples pertaining to each class
of materials.

Consider the deformation geometry of simple shear, sketched in
Fig. 7.20. The material being sheared is between two flat rigid surfaces. The
adhesion between the material and the surfaces is assumed to be strong
enough that there is no slippage at either surface. The bottom surface is
held so that it does not move, and the upper surface is free to move, apart
from the fact that the material between the surfaces may resist that motion.
If a force fis applied to the top surface in the x direction, the force will
be transmitted through the material to the bottom surface (even if the
material is a liquid!). Since the bottom surface is held so that it does not
move, this ‘holding” must be done so as to apply an equal-and-opposite
force —f to the bottom surface. Otherwise, the entire assembly would
need to accelerate in the x direction in response to force f. The sheor
stress o, (called here ¢ for short) in this simple shear is defined as the ratio
of the applied force and the cross-sectional area of the surfaces A, which is
also the area of any plane perpendicular to the y direction within the
material being sheared:

_/

The shear strain is defined as the displacement of the top plate Ax
relative to the thickness of the sample A (see Fig. 7.20).

_ A

- (7.97)

By defining the stress and strain in this fashion, each part of the entire
sample being sheared has identical shear stress ¢ and shear strain 7 in
simple shear, as fong as the material shears uniformiy.

If the material between the surfaces is a perfectly elastic solid, the shear
stress o and shear strain ~ are proportional, with the constant of pro-
portionality defining the shear modulus (7

=2 (7.98)
v

Since the stress has units of force/area and the strain is dimensionless, the
modulus has units of force/area. Equation (7.98) is Hooke's law of elasticity
and it is valid for all solids at sufficiently small strains.
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On the other hand, if the material between the surfaces is a simple
liquid, the stress is identically zero at any constant strain «. In liquids, the
stress is determined by deformation rafe. The rate of change of shear
strain with time is called the shear rate:

dvy
¥ = 7.99
=y, (7.99)
If the top plate moves with a constant velocity v, the shear rateis v = v/h.
For simple liquids, the shear stress ¢ is linearly proportional to shear
rate +, with the constant of proportionality defining the shear viscosity n:

2 (7.100}

0
This relation is Newtons law of viscosity and liquids that obey it are
referred to as Newtonian liquids. Since the stress has units of force/area
and the shear rate has units of reciprocal time, the viscosity has units of
force - timefarea. The SI unit of stress is the Pascal (Pa=kg m~'s™%) and
the SI viscosity unit is Pas =kg m's”

Polymers are viscoelastic, meaning that they have intermediate prop-
erties between Newtonian liquids and Hookean solids. The simplest model
of viscoelasticity is the Maxwell model, which combines a perfectly elastic
element with a perfectly viscous element in series, as shown in Fig. 7.21.
Since the elements are in series, the total shear strain + is the sum of the
shear strains in each element:

It

n

V=Y + e (7.101)
The shear strain in the elastic element is -, and the shear strain in the
viscous element is ~, (see Fig. 7.21). Since the elements are in series, they
must each bear the same stress:
dy
d¢
The ratio of the viscosity my of the viscous element and the modulus Gy of
the elastic element defines a time scale with special significance, called the
relaxation time:

o= GMY = M (7.102)

™
= 1
™ GM (7 03)

Newtonian liquid with viscosity my

4—?\,}1 — yeh —
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Fig. 7221

The Maxwell model is a Hookean solid
and a Newtonian liquid in series. The
shear stress is identical at all points in
both the solid and the liquid. The total
shear strain is the sum of the strains in
the solid and liquid clements. Each
element must have the same vertical gap
h between the rigid plates that the real
sample has.
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Liquid

Time

Fig. 7.22

Stress relaxation in step strain
experiments on a viscoelastic solid
(upper curve) and a viscoelastic liquid
(lower curve). The dashed lines show the
value of the stress at the relaxation time t
of the liquid. The solid has the same
relaxation time.

Networks and gels

In the next few sections, we will see that the Maxwell model responds like a
solid on time scales that are short compared with the relaxation time. In
contrast, on time scales that are longer than the relaxation time, the
Maxwell model flows like a liquid.

7.6.1 Stress relaxation after a step strain

Consider imposing a step strain of magnitude -~ at time ¢ =0 (see Fig. 7.20).
If the material between the plates is a perfectly elastic solid, the stress
will jump up to its equilibrium value G~ given by Hooke's law [Eq. (7.98)}
and stay there as long as the strain is applied. On the other hand, if the
material is a Newtonian liquid, the transient stress response from the
jump in strain will be a spike that instantaneously decays to zero. For
viscoelastic materials, the stress after such a step strain can have some
general time dependence (7). The stress relaxation medulus G{?) is defined
as the ratio of the stress remaining at time / (after a step strain was applied
at time ¢ = 0) and the magnitude of this step strain ~:

o =21, (7.104)

Notice that the above equation is simply a time-dependent generalization
of Hooke’s law [Eq. (7.98)]. For viscoelastic solids, G{r} relaxes to a finite
value, called the equilibrium shear modulus G.q (see Fig. 7.22, top curve):
Geq = tlLrg G(1). (7.105)
For viscoelastic liquids, the Maxwell model can be used to qualitatively
understand the stress relaxation modulus. In the step strain experiment,
the total strain ~y is constant and Eqs (7.101)«7.103} can be combined to
give a first order differential equation for the time-dependent strain in
the viscous element: *

dy (1
W, (7.106)
[4
Combined with the initial condition of no strain in the viscous element
when the strain is first applied [v,{0) =0] allows integration of this differ-
ential equation:

dy(r  dr
Y- FYV(I) ™ ’ (7107)
Iy - y(0)] = ;—Nf +C (7.108)

The constant of integration in evaluated from the initial condition, giving
C=In~:

Ye(t) = ¥~ w(f) = yexp(—i/Tm}. (7.109)
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The stress relaxes exponentially towards zero on the time scale 7y, evalu-
ated using Eq. (7.102):

a(f) = Gmve(t) = Gmyexp{—t/tm). (7.110)

In the Maxwell model, the stress relaxation modulus has a simple expo-
nential decay.

G(1) :?: Guexp(—1/tm). (7.111)

Beyond their relaxation time, the stress or the relaxation modulus of
most viscoelastic liquids has a nearly exponential time decay to zero,
sketched as the bottom curve in Fig. 7.22:

G(t) = # = G(r)exp(—t/1) fort>r1 (7.112)

The relaxation time 7 is a fundamentai dynamic property of all
viscoelastic liquids. Polymer liquids have multiple relaxation modes, each
with its own relaxation time. Any stress relaxation modulus can be
described by a series combination of Maxwell elements,

All materials have a region of linear response at sufficiently small values
of applied strain, where the relaxation modulus is independent of strain.
Thus, doubling the strain in the linear response regime merely doubles
the value of the stress at all times, making the stress relaxation modulus
G (1) independent of strain at smali values of the applied strain.

7.6.2 The Boltzmann superposition principle

Another manifestation of linear response is the Boltzmann superposition
principle. The stress from any combination of small step strains is simply
the linear combination of the stresses resulting from each individual step
d~; applied at time 1;:

o(t) =D Gt —1:)8y. (7.113)

This equation simply states that, for linear response, the stress resulting
from each step is independent of all the other steps. The system remembers
the deformations that were imposed on it earlier, and continues to relax
from each earlier deformation as new ones are applied. The stress relaxa-
tion modulus tells how much stress remains at time ¢ from each past
deformation é+; through the elapsed time 7 — ¢; that has passed since that
deformation was applied at time ¢;.

Using the definition of the shear rate [Eq. (7.99)] the summation incre-
ment can be transformed into time, since &, = ¥;6¢;.

o(t) = > Gt — )43, (7.114)
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Fig. 7.23

Steady simple shear of a liquid is
accomplished by confining the liquid
between a moving top plate and a
statiopary bottom plate, The velocity in
the liquid is in the x direction and
changes linearly in the y direction,
making the shear rate the same
everywhere.

Networks and gels

The stress from any smooth strain history can be written as an integral
over the strain history, by replacing the above summation with an
integration:

(1) = f_! G(t — 1)4(r) dr. (7.115)

e}

The lower integration limit is = — co because we must integrate over all
past times (not just those starting at some arbitrarily defined zero point) to
ensure that all past deformations are accounted for. Equation (7.115) can
be used to relate many different linear response experiments.

The stress in any material is the result of all past deformations.
The memory of each past deformation only decays as the relaxation
modulus decays over the elapsed time ¢ — ¢’ from the application of that
deformation.

7.6.3 Steady shear

In steady simple shear, the top plate in Fig. 7.23 is moved at a constant
velocity ¥. The shear rate 4 = |# /4 is a time-independent constant that can
be pulled out of the Boltzmann superposition integral:

a(s) ="y/:, Gt — 1) dr :»’yfooc G(s) ds. (7.116)

20

The last relation was obtained using the variable transformation s=7—t’,
which implies ds= —d¢’. The integration limits change with this trans-
formation because when ' =— o0, s=00, and at =1, s=0. For any
liquid, the relaxation modulus G{r) eventually decays to zero fast enough
that the integral in the above equation is simply a number with units of
stress - time. Thus, the stress at long times in the s‘teady simple shear
experiment is constant, and proportional to the shear rate . Newton’s law
of viscosity [Eq. (7.100}] already defined the viscosity in steady shear as the
ratio of shear stress and shear rate. Therefore, the viscosity of any liquid is
the time integral of its stress relaxation modulus:

n=/ Glr) dr. (7.117)
0
The Maxwell model [Eq. (7.111)] has a particularly simple viscosity:
7 =0nm / exp(—r/tM)dt = GMTM = OM- (7.1 18)
0

For viscoelastic solids (Fig. 7.22, top curve) the modulus does not decay to
zero, meaning that the viscosity of any solid is infinite. For most visco-
elastic liquids (Fig. 7.22, bottom curve) the stress decays to zero in a nearly
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exponential fashion on time scales longer than their longest relaxation
time [Eq. (7.112)];

o0

n =~ G(1) /UOC exp(—t/T)dt = G(r)r/o exp(—s)ds = G(t)r.  (7.119)

The second integral is simply a number (in this case unity) because it
is written in terms of the dimensionless integration variable s=1t/t, so
ds —dt/t. The viscosity is proportional to the product of the relaxation
time and the value of the modulus at that relaxation time:

n=G()T. (7.120)

This relation will be used many times in the remainder of this book to
estimate the viscosity from scaling models. It is essentially stating that the
area under the bottom curve in Fig. 7.22 is proportional to the area of
the rectangle defined by the dashed lines.

In practice, it is more precise to evaluate the viscosity from a step strain
experiment by transforming the integration of Eq. (7.117) to a logarithmic
time scale using the identity ¢ d In # = d¢, and the lower limit of integration
changes because when 1 =0, Int=— 00!

n= /_OC G dlne. (7.121)

o

The improved precision of Eq. (7.121) as compared to Eq. (7.117), for
determining the viscosity from the step strain experiment, arises from the
fact that ¢G{r) is a function with a well-defined peak, and the relaxation
modulus can decay over many decades of time for viscoelastic materials,
such as polymers.

If the applied shear rate is too large for linear response, Boltzmann
superposition no longer holds in steady shear. An apparent viscosity is still
operationally defined as the ratio of shear stress and shear rate, but that
apparent viscosity should not be confused with the zero shear rate viscosity
n of the liquid. Most polymeric liquids exhibit shear thinning of the
apparent viscosity at large shear rates, meaning that the viscosity prog-
ressively decreases as shear rate is raised. The apparent viscosity has also
been ohserved to increase with shear rate for some materials and such
response is called shear thickening. The zero shear rate viscosity of the
liquid is only measured at low shear rates where v < 1/7. In this book we
will enly consider the linear response of viscoelastic liquids, and hence our
use of the term ‘viscosity’ always signifies the zero shear rate viscosity.

On some time scale, all liquids display viscoelasticity. Newtonian liquids
like water have viscosity independent of shear rate over ordinary ranges of
measurement {107°s™! < 4 < 10°s™"). Dielectric spectroscopy reveals
that water molecules respond to an osciliating electric field at a frequency
of 17 GHz at room temperature. Hence, at shear rates of order 10'0s1
water would be expected to be viscoelastic, and have a shear thinning
apparent viscosity.
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Strain from a creep experiment with
constant applied stress ¢ for a
viscoelastic solid (lower curve) and a
viscoelastic liquid (upper curve). The
slope at long times is the steady shear
rate 4, from which the viscosity is
calculated as n = o/ (the viscosity of
any solid is infinite, corresponding to
zero slepe). The extrapolation of this
straight line to zero time (dotted line)
gives the elastic part of the strain, from
which the recoverable compliance Joq is
determined.

Networks and gels

7.6.4 Creep and creep recovery

Thus far we have imposed a constant strain (the step strain experiment)
and constant shear rate (the steady shear experiment). Another simple
viscoelastic experiment is accomplished by applying a constant shear stress
to the sample. In a creep (step stress) experiment, a constant stress o is
applied to an initially relaxed sample, and the strain is monitored as a
function of time v{f). The shear creep compliance J(r) is defined as the ratio
of the time dependent strain and the applied stress:

s =" (7.122)

(o2

The Maxwell model has a particularly simple response in creep, because
for constant stress, Eq. (7.102) requires the strain in the elastic element
to be constant

g
= — 123
Ye G s (7 )

and the strain in the viscous element is simply linear in time:

dw() o

[v2
PR ) == (7.124)
The creep compliance of the Maxwell model is linear in time,
i t
sy =2t 1, (7.125)

a GM ™ ’
with the value at 7 =0 determining the elastic response (Gyy) and the slope
determining the viscosity (7).

The strain of a viscoelastic liquid in creep is shown as the top curve in
Fig. 7.24. The slope in Fig. 7.24 at long times is the shear rate ¥ and
the viscosity is therefore determined using Newton’s law of viscosity
[Eq. (7.100)]. For liquids, the Jong-time creep compliance is linear in time
and its form is reminiscent of the Maxwell model [Eq. (7.125)]:

J(1) = Jeg +% for 13 1. (7.126)

The { =0 intercept of the long-time creep compliance is a measure of the
stored elastic energy in flow, and is called the steady state compliance J .

The time-dependent strain of a viscoelastic solid in creep is sketched as
the bottom curve in Fig. 7.24. The long-time creep compliance of any solid
is simply a time-independent compliance J., that is the reciprocal of its
equilibrium modulus G,

Joq = lim J(1) = ! lim ~(f) = (7.127)

=0 O =0

i
Geq



Linear viscoelasticity

The final result was obtained using Hooke’s law [Eq. (7.98)], which does
not discriminate between application of stress with measurement of
strain (creep) or application of strain and measurement of stress (step
strain).

The Boltzmann superposition principle can be used to relate the steady
state compliance to the stress relaxation modulus (see Problem 7.44):

l o
o= /0 1G(1) dr. (7.128)

This integral is dominated by the long-time behaviour of G(1), given by
Eq. (7.112):

G oo}
Jog » &0 / texp(—t/7) dt. (7.129)
" Jo
This integral is evaluated via integration by parts; u =1, making du=4ds,
and dv=exp( - /1) dr, making v=— rexp( — t/1)%

Jeq 72 Gé;) ([_rw:exp(—t/r)}gC + ‘I/OOCEXP(—I/T)CI{). (7.130)

The term in square brackets is zero and the integral is evaluated by making
the variable transformation s= t/t, so ds=d/t:

e ~ G(;)rz /Ooc exp(—s) ds = G(;z)rz . (7.131)

Combining with Eq. (7.120) provides a very important relation for the
relaxation time:

T & nleg. (7.132)

Furthermore, substitution of this relaxation time into Eq. (7.131) shows
the significance of the steady state compliance:

1

¥ G0

(7.133)

Using Eq. (7.132) for the relaxation time, the long-time behaviour of a

liquid in creep can be rewritten:

T+
U

J(l)=Jeq+%% fort»t. (7.134)
Creep has special intuitive appeal for understanding viscoelasticity because
the elastic part J.q=rt/n and the viscous part t/n are simply additive in
creep.

To evaluate the steady state compliance from a step strain experiment, it
is useful to transform the integration of Eq. (7.128) to a logarithmic time
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Strain from a creep experiment with
constant applied stress o followed by a
creep recovery experiment (starting at
1 = 0) with zero applied stress, for a
viscoelastic solid (lower curves) and a
viscoelastic liquid (upper curves). The
recoverable compliance can be
determined from either creep or
recovery. All deformation is recovered
for solids but only the elastic part of the
deformation is recovered for liquids.

Networks and gels

scale using the identity 7dIns=ds, and the lower limit of integration
changes because when t =0, Inr=— oo

[0}
Je :%f AG(HdInt.

Combining Eqgs (7.117), (7.128), and (7.132) allows us to recognize that
the relaxation time is a number average on a linear time scale and a
weigh( average on a log time scale, with the distribution in both cases
being the stress relaxation modulus G(¢):
 Gnde 7 PG(dine
T X Gndr  [% G(rdlnt
Two steady states are recognized for the long-time creep compliance of
materials. Either the sample is a solid and the compliance becomes time
independent or the sample is a liquid and the compliance becomes linear in
time. Once steady state has been achieved in creep, the stress can be
removed (o = 0) and the elastic recoil, called creep recovery, can be meas-
ured. Recovery strain is defined as yg(#) =v(0) — (¢} for ¢ > 0, where ¢ is
defined to be zero at the start of recovery. The recoverable compliance is
defined as the ratio of the time-dependent recovery strain ~g(f) and the
initially applied stress ¢, where both ~¢ and r are now defined to be zero at
the start of recovery:

(7.135)

(7.136)

g0}

Jrif) = (7.137)
Boltzmann superposition relates the recoverable compliance after steady
state has been achieved in creep to the creep compliance:’

(7.138)

For a solid, the viscosity is infinite, and Jg(¢) = J(¢), sQ all deformation in
creep is subsequently recovered in creep recovery, with precisely the same
time dependence, as shown in the lower curves in Fig. 7.25. In contrast,
only the elastic part of the compliance of a liquid is recovered, as shown in
the upper curves of Fig. 7.25:

. . t
lim Jg(¢) = lim [J(z) ~ 5] = Jog. (7.139)

7.6.5 Oscillatory shear

A simple linear viscoelastic measurement that has become very easy to
implement with the advent of modern electronics is oscillatory shear. A
sinusoidal strain with angular frequency w is applied to a sample in simple
shear:

¥(t) = o sin{w?). (7.140)

* Note that 1 =0 in the left hand side of Eq. (7.138) corresponds to the start of recovery,
while ¢ =0 on the right hand side corresponds to the start of creep.
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The principal advantage of this technique is that the viscoelastic response
of any material can be probed directly on different time scales (1/w) of
interest by simply varying the angular frequency w. If the material studied
is a perfectly elastic solid, then the stress in the sample will be related to the
strain through Hooke’s law [Eq. (7.98)]:

a(1) = Gy(t) = Gy sin(we). (7.141)
The stress is perfectly in-phase with the strain for a Hockean solid,
as shown in Fig. 7.26. At times f = 7/(2w), 57/(2w), 97/(2w), ... the strain
has a maximum and the stress also has a maximum, Similarly, at times
=0, m/w, 2n/w,... both the strain and the stress are simultaneously
ZET0.

On the other hand, if the material being studied is a Newtonian liquid,
the stress in the liquid will be related to the shear rare through Newton’s law
[Eq. (7.100}]:

dy(r _
U(f) = PS—(I) S T)’Y[]MCDS({JJ{) - Tf’}’ouSln(wt +g)

(7.142)
The stress in a Newtonian liquid still oscillates with the same angular
frequency w, but is out-of-phase with the strain by #/2, as shown in
Fig. 7.27. At times ¢ = #/(2w), 57/(2w), 97/(2w), ... the strain has a max-
imum, but both the shear rate and the stress are zero at these points.
Conversely, at times t =0, 7w, 27/w, ... the strain is zero, but both the
shear rate and the stress are either at their maximum or minimum values.

More generally, the linear response of a viscoelastic material always
has the stress oscillate at the same frequency as the applied strain, but
the stress leads the strain by a phase angle &.

al{t) = og sin{wt + §&). (7.143)
In general, é can be frequency dependent, with any value in the range
0 < 6 < w/2. The two simple cases already treated correspond to the limits
allowed for the phase angle. Solids that obey Hooke’s law have 6 =0 at all
frequencies, while liquids that obey Newton’s law have é =m/2 at all fre-
quencies. Since the stress is always a sinusoidal function with the same
frequency as the strain, we can separate the stress into two orthogonal
functions that oscillate with the same frequency, one in-phase with the
strain and the other out-of-phase with the strain by w/2;

alt) = |G (w) sin{wr) + G" (w) cos(wr)]. (7.144)
Equation (7.144) defines G'(w) as the storage modulus and G”(w) as the
loss modulus. Equation (7.144) can be related to the previous equation
for the stress in oscillatory shear using the trigonometric identity for the

sine of a sum:

sin{wr -+ &) = cos &sin{wr} + sin & cos(wr). (7.145)
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Oscillatory strain (solid curve and left
axis) and oscillatory stress (dashed curve
and right axis) are in-phase for a
Hookean solid.
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Oscillatory strain (solid curve and left
axis}and oscillatory stress (dashed curve
and right axis) are out-of-phase for a
Newtonian liquid. The stress leads the
strain by phase angle é = /2.
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This suggests that the storage and loss moduli can be related to the phase
angle and the modulus amplitude ay/~, at each frequency w:

G = ?cos 8, (7.146)
0

G = ‘;isin 8. (7.147)
0

The ratio of loss and storage moduli is the tangent of the phase angle,
called the loss tangent:

i1
tand = —.

G.’
The storage and loss moduli are the real and imaginary parts of the
complex modulus G*(w):

G*(w) = G'(w) +1G"(w). (7.148)

The Boltzmann superposition principle can be used to show that the
storage modulus is related to the sine transform of G(7),

G'(w) = Geg +w / 160 - Geg] sin(wrt) dt, (7.149)
0

and the loss modulus is obtained from the cosine transform (see
Problem 7.41):

GMw) = w /0 16(0) = Geg] cos(en) dr. (7.150)

In these equations, G, is the equilibrium modulus of the solid at long
times {or low frequencies). For a hiquid, Geq=0.

Figure 7.22 showed that the relaxation modulus distinguishes visco-
elastic solids from viscoelastic liquids via the long-time behaviour of G(7).
Since low [requencies correspond to long times, the oscillatory shear
experiment makes this distinction in the low frequency response of the
material. The terminal {low frequency) response of any solid is dominated
by the storage modulus because the stress is very nearly in-phase with the
strain, The viscoelastic solid has G'>» G” at low frequencies, and G’
becomes independent of frequency in the low frequency limit, with a value
equal to the equilibrium modulus G.q:

Geqg = lin‘(l)G’(u). (7.151)

The viscoelastic response of a liquid in oscillatory shear is markedly dif-
ferent. The terminal response (at low frequency) of any liquid is dominated
by the loss modulus because the stress is very nearly in-phase with the
shear rate. The viscoelastic liquid has G” > G’ at low frequencies. " is
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proportional to frequency in the low-frequency limit, and the pro-
portionality constant is the viscosity [compare Eqs (7.142) and (7. 14}

1"
n= limm.

w—0 W

(7.152)

The storage modulus of a viscoelastic liquid is not zerp, but instead is
proportional to the square of frequency, and provides a measure of the
stored elastic energy. Traditionally, this is written in terms of the steady
state compliance Jeg:
! I
Jeg = L 1im W _ iy G
7 w0 W w—0 [GH(WH

(7.153)

An example of the linear viscoelastic response in oscillatory shear for a
nearly monodisperse linear polybutadiene melt is shown in Fig. 7.28.
Extrapolation of the limiting power laws of G ~ w” and G” ~ w (the dashed
lines in Fig. 7.28) to the point where they cross has special significance. The
intersection of the power laws G/ :Jeqnzm2 and G" = nw using the above
two equations allows us to solve for the frequency where they cross w=
1/(n/cq), which is the reciprocal of the relaxation time” 1 [Eq. (7.132)]. The
modulus level where the two extrapolations cross, obtained by setting
w= 1/t = 1/(nJe,) in either equation, is simply the reciprocal of the steady
state recoverable compliance 1/J.,.

The viscoelastic responses of two polymer networks are shown in
Fig. 7.29. One is a nearly perfect network (circles) made by end-linking
linear chains with two reactive ends. The storage modulus for this network
(filled circles) is independent of frequency and much larger than the loss
modulus (open circles). For comparison, an imperfect network made by
linking a mixture of chains with one and (wo reactive ends is also shown,
While G’ >G” for the imperfect network, the storage modulus (filled
squares) has a weak frequency dependence and the loss modulus (open
squares) is significantly larger than for the perfect network. Both of these
observations are caused by the gradual relaxation of dangling structures in
the imperfect network (see Problem 9.43). The loss tangent tan ¢ = G"/G is
much larger for the imperfect network than for the nearly perfect one.

The various experimental methods of linear viscoelasticity are sum-
marized in Table 7.1. All information for linear viscoelastic response can,
in principle, be obtained from each method. The oscillatory methods are
particularly useful because they directly probe the response of the system
on the time scale of the imposed frequency of oscillation | /w. Commercial
rheometers can accomplish this with either applied stress or applied strain,
and the two methods are both listed in Table 7.1.

* This relaxation time for the Maxwell model is an average relaxation time [see Eq. 7.136]
whenever a material has multiple relaxation modes.
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Oscillatory shear response of a

linear pelybutadiene at 25°C,

with My, = 925000 gmol ' and

M/ M, < 1.1, Filled symbols are the
storage modulus &’ and open symbols
are the loss modulus . The crossing of
the terminal slopes of 1 and 2 (dashed
lines) determines the relaxation time and
the steady state recoverable compliance.
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Fig. 7.29

Oscillatory shear response of two PDMS
networks at 30 °C. Filled symbols are the
storage modulus G' and open symbols
are the loss modulus G”. The circles are
nearly perfect networks made by
end-linking linear chains of

M, =20000 gmol ™" with two reactive
ends. The squares are imperfect
networks made by reacting 48 mol%
linear chains of M,, = 71 000 g mol ™+
with one reactive end and 52 mol%
linear chains of M., = 58 000 g mol *
with two reactive ends. Notice that the
storage modulus is lower and the loss
modulus is higher for the imperfect
networks. The increased noise in G at
low frequencies is caused by thedifficulty
in precise determination of a phase angle
very close to zero.
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Table 7.1 Comparison of lincar viscoelastic experimental methods

Technique Apply Measure Determine

Step strain Constant strain Stress a(f) Relaxation modulus G{r) = e()/y
Steady shear Constant shear rate 4 Steady stress ¢ Viscosity = o/4

Step stress (creep)  Constant stress o Strain ~(1) Compliance J(5) =+(0)/fo

Oscillatory strain =~ ~4(#) ="yn sinw/ a(f)=ogsinwt + &)  G'(w) = (oo/vo)cos & G"(w) = (gy/yo)sin d
Oscillatory stress a(1) = ggsinwi WO = vygsin(wr — 8} G'(wy=(oo/vo)cos &, G (W)= (go/yo)sin b

7.7 Summary of networks and gels

Polymer networks are very important soft solids. As such, they find
applications ranging from adhesives to automobile tires. The mechanical
properties of network polymers arise primarily from the changes in
entropy of the network strands when the network is macroscopically
deformed. One direct consequence of entropic elasticity is that the modulus
increases as temperature is raised (whereas conventional solids get softer).
Network polymers are thus quite different from other solids, such as
crystalline metals, where mechanical properties have energetic origins,
coming from the change in internal energy when lattice spacings are dis-
torted from their equilibrium values. The modulus G of network polymers
in their preparation state is proportional to kT per elastically effective
network strand, plus any contribution from trapped entanglements:

G = Gy + G, (7.154)

The number density of network strands determines Gy and the plateau
modulus caused by inter-chain entanglements is G.. This plateau modulus
is understood on a molecular level by imagining surrounding chains con-
fining each network strand to an effective tube,

Many models lead to a classical form for the variatipn of the true stress
with uniaxial elongation:

Oerue = G()@ - /1\) (7.155)

For large stretching ratios, finite extensibility of the network strands
becomes important and this strong stretching is better described by finite
extensibility models such as the inverse Langevin function for freely jointed
chains. Classical theory [Eq. (7.155)] is not applicable for entangled net-
works because entanglements are qualitatively different than crosslinks,
when the network is deformed. This qualitative difference leads to non-
affine deformation of the confining tube and a non-classical stress-strain
relation [Eq. (7.63)].

Polymer gels are diluted polymer networks. The diluent can be other
polymer chains or solvent. The modulus of gels decreases on dilution, in
ways that depend on the details of the polymer-solvent interaction. When
immersed in an excess of an appropriate solvent, polymer networks can
often swell considerably. The swelling is driven by the favorable free energy
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of mixing with solvent (osmotic pressure) and is resisted by the energy
required to stretch network strands (modulus). The swelling reaches an
equilibrium state when the osmotic and elastic parts of the free energy
balance. The equilibrium swelling of an unentangled network in a f-solvent
can be used to estimate the average number of monomers in a network
strand:

N~ Q% (7.156)

However, such relations only apply to networks that do not have entan-
glements. Real networks usually have important effects from entangle-
ments and their swelling is not yvet quantitatively understood. However,
some qualitative features apply to both entangled and unentangled swollen
networks. At a constant extent of crosslinking, the modulus always
increases with both the preparation state concentration and the con-
centration of use. Furthermore, fewer entanglements exist in networks
prepared at lower concentrations and deswelling such networks to the melt
state can make networks with a modulus befow the plateau modulus of
the melt. .

Dynamics in polymer networks and also in polymer liquids can be
studied by a variety of viscoelasticity experiments. For networks and gels,
these methods determine the modulus from the long time {(or low fre-
quency) viscoelastic response and directly measure the relaxation of
dangling structures and sol fraction at higher frequencies. For polymer
liquids in solution or melt states, the viscosity and relaxation time are
determined from the long time {(or low frequency) viscoelastic response,
with higher frequencies providing information about other relaxation
modes. The linear viscoelastic response of polymer liquids will be discussed
in Chapters 8 and 9.

Problems
Section 7.1

7.1 Equation (7.9) is an example of a Maxwell relation. Derive the other two
Maxwell relations associated with the Helmholtz free energy of a rubber.

7.2 Estimate the fraction of the tensile force at 300 K that has energetic origins by
using a Flory construction on the following data for the temperature
dependence of tensile force for a crosslinked rubber with | cm? cross-sectional
area held at constant elongation.

T (K) 219 253 293 335
Force (N} 113 x 10 1.28 x 10 1.45 % 10* 1.64 % 10°

7.3 If a crosslinked rubber is rapidly stretched at constant volume, does it get
warmer or cooler? Explain your answer.

Section 7.2

7.4 Consider an affine model of an incompressible network with polydisperse
strands between crosslinks. Prove that the stress ¢ in this network due to
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7.5

7.6

.7

7.8

79

uniaxial extension still follows the classical dependence on deformation X
[Eqgs (7.32) and (7.33)]. Which average molar mass of network strands enters
mnto Eq. (7.31) for the network modulus?

What would be the size of a phantom network. made from strands with N
monomers of size b and with functionality f of crosskinks, if it were not
attached to the macroscopic boundaries of the network?

For any isotropic selid stretched in the x direction, the longitudinal tensile
strain e+, is the change in length divided by the initial length. Similarly, the
transverse lensile strains ¢, and ¢ are the changes in width and height
divided by the initial values,

(i) Write the longitudinal and transverse strains in terms of the deformation
factor A.

Poisson’s ratio v is defined from the ratio of transverse and longitudinal
strains in tension:

v=—%, {7.157)
Exx
(ii) Write Poisson's ratio in terms of A, and show that for small deformations
(A — 1) at constant volume, Poisson’s ratio is 1/2. What happens to
Poisson’s ratio at larger deformations?

The bulk modulus K is defined as the reciprocal of the isothermal compres-
sibility, and Young's modulus E is defined as the ratio of longitudinal tensile
stress and longitudinal tensile strain:

0P| poTw (7.158)
av | Exx

Poisson’s ratio relates Young’s modulus to either the shear modulus G or the
butk modulus K:

K=~V

E=2(1 +1)G = 3(1 — 23K. (7.159)

A vulcanized natural rubber (cis-polyisoprene} has bulk modulus
K=2x 10°Pa and Young’s modulus £=1.3 x 10°Pa.

(i) What is Poisson’s ratio for this vulcanized natural rubber?

(ii} What is the shear modulus of this vuicanized natural rubber?

(iii} Show that in the timit where the bulk modulus is much larger than the
shear modulus, Poisson’s ratio is 1/2. This limit is also achieved for most
liquids (inctuding polymer melts and solutions) which is why they are
termed incompressible.

(iv) Relate the deviation of Poisson’s ratio from its incompressible limit
{r=1/2) to the ratio of moduli £/K.

Heating up a strip of natural rubber from 7 = 300K to T; = 350 K increases
the stress at constant elongation A=2 from o =43x 105Pa to
5,=15x 10°Pa. Assuming a linear dependence of stress on temperature at
constant elongation, estimate the energetic oy and entropic o contributions
to the stress at 7 =300K.

A crosglinked polybutadiene ball of mass 100 g is dropped at 300K from a
height of 1 m and bounces back 92cem.

(i} Assuming that the floor does not deform and all energy lost in this
collision goes into heating up the ball, how much did the ball’s
temperature increase? The heat capacity of polybutadiene at 300K is
C,=22klkg 'K\,

(i) By how much does this temperature change alter the elastic modulus of
the ball?



7.10

7.11

7.12

7.13

7.14

7.15

Problems

The rubber in an inflated balloon is stretched biaxially, with initiat
diameter o, and initial thickness of its walls #;. This incompressible rubber
contains v elastic strands per unit volume,

(i} Derive the tensile stress o in either of the two stretching directions in the
rubber in terms of the relative change of balloon size A = d/d, during
subsequent inflation or deflation. Assume that the rubber obeys the
affine network model.

(i) Relate the internal pressure (p) and the degree of expansion (A = d/dp).
Assume that the ideal gas law (pV = #RT) is valid for the helium inside
the balloon.

(iii) Atwhat value of A is the helium pressure maximum?

This problem was adapted from U. W. Gedde, Polymer Physics, Chapman
and Hall, London (1995}
A steel ball is attached to a rubber band of size 0.2cm x 0.2ecm x 10ecm
and stretches itin the z direction to a 40 cm length, developing an engineering
stress 2 x 107 dyn em~? in the rubber at the temperature 20 °C. Assume that
the rubber band obeys the affine model.

(i} What is the relative elongation ) of the rubber band?

(iiy How many moles of network chains ~ are there per cubic centimeter?

(i} What i3 the number-average mo]ar mass M, between crosslinks, if the
density of rubber is p= 1 gem™?

(iv) What is the mass m of the steel ball?

{v} What engincering stress o is required to stretch the rubber to a length
30cm at 20°C?

(vi} What mass m; do we need to attach (o the rubber band to develop
this stress ¢ at 50 °C?

A strip of elastomer 1 mm x | mm x 10¢m that obeys the affine network
model is stretched to 40 cm length at T=300K at the engmeermg stress
1 x 107 Pa. The volume occupied by each monomer is b*= 80 Al

(iy What is the relative elongation A?

(iiy Find the shear modulus G.
(i) How many moles of network strands are in this rubber strip?
(iv) Estimate the number of monomers between crosslinks.

Two identical 10cm long rubber bands, 4 and B, are tied together at their
ends, stretched to a total length of 80c¢m and held in this stretched state,
Rubber bands A and B are held at different temperatures Ty and 7.

(i) Is the true stress .. the same for the two bands? Explain.
(ii} Is the engineering stress oe,, the same for the two bands? Explain.
(iii) What is the temperature T of band B if the length of rubber band B
is Ly=238cm and the temperature of band A is 10°C. Assume the
classical form for the stress-elongation relation of the rubber band.

To stretch a rubber band by the factor of A=2 reqmrcs stress
a1 =1.5x10"dynem? at 0°C and stress o, = 1.65 x 107 dynem ™ at 30°C.
Assume that the rubber band obeys the affine model.

(i} Estimate the entropic and energetic components of the stress at 30 °C.
(ii} What is the entropic part of the modulus of the rubber band at 30°C?
(ili} What is the number-average molar mass of chains between crosslinks,

if the elastomer density is p= 1.1 gem™?

A rubber band with molar mass between crosslinks M, =3000gmol !
is uniaxially stretched to three times its original length. After achieving
equilibrium at 21°C it is allowed to contract adiabatically back to the
unstretched state.
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7.16

7.17

(i) Is the final temperature higher or lower than 21°C? Why?

(1) Estimate the temperature change of this rubber band if its heat capacity
is C,=1700Jkg 'K, Assume the classical form for the stress-
elongation relation of the rubber band.

What is the molecular origin of strain hardening at large elongations of

polymeric networks that do not crystallize on stretching?

Demonstrate that the true stress in uniaxially deformed incompressible

networks is the derivative of the free energy per unit volume F/} with

respect of the logarithm of deformation A

_O(F/V)
o= B |, (7.160)

Section 7.3

7.18

7.19

7.20%

Demonstrate that [, [, and I are invariants by changing the coordinate
system and proving that the quantities are not affected by this change.
Consider the Pincus blob picture of stretching an ideal chain, discussed in
Section 2.6.1. For each Pincus blob there is of order kT of entropic free
energy stored in the stretched chain. The chain is a sequence of trans,
gauche ., and gauche _ states (see Fig. 2.1) with the energy difference
between trans and gauche states of order kT. Can the stretching free energy
per Pincus blob be thought of as forcing the chain to make one extra trans
state (going forward between neighbouring Pincus blobs)? Indeed, at
maximum extension, the chain is in the all-rrans conformation (Fig. 2.2},
Why is there no significant energetic contribution to stretching an ideal
chain comparable to the entropic contribution (of order &7 per Pincus
blob)?

Consider a non-affine tube model, with the number of monomers in the
virtual chains changing with network deformation as r; = A2np, whete ny is
the number of monomers in virtual chains constraining fluctuations in the
i direction in the undeformed state.

(i} Start with virtual chains with ng= N, virtual monomers in the
undeformed state, with the points of attachments to the network
chains separated by N, real monomers. Demonstrate that after
elongation by a factor A, >} in the x direction, the affine strand in
the x direction contains AN, real monomers. The affine strand is
defined as the smallest section of a network strand that deforms
affinely, The entire network deforms affinely on length scales larger
than the affine strand. Sections of network chain that are smaller than
the affine strand are deformed non-affinely.

Hint. Use the invariance of confinement upon appropriate simulta-
neouschange of the length and the number of virtuat chains [Eq. (7.61}].

(iiy Derive the following result for the size of the affine strand in the
elongation direction:

Rup(Ay) 22 b/ NV for Ac > 1

(iii) Provethat thedistance between entanglements thatareseparated by N,
monomers along the deformed affine strand is

ay & b\/Ne)\i/Z.
Compare this distance between entanglements with the root-mean-
square fluctuations of the affine strand. Explain this result.

Hint: Assume that the affine strand is uniformly stretched.
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(iv) Show that the contribution to the free energy density from the
elongation direction is linear in deformation;
Fe pRT
SR
Voo M,

Hint: Consider the contribution from an affine strand.

(v} Derive the following result for the size of the affine strand in the
compression (¥} direction (A, < 1):

Rye{A)) = ba/f\fe)\)'_/2 for Ay < 1.

Show that the affine strand has N./A, monomers.

Hint: Use the invariance of confinement upon appropriate simulta-
neous change of the length and the number of virtual chains [Eq.
(7.61)].

(vi} Show that the free energy density contribution from the direction of
confinement is

(vii) Assume that the free energy density cost for each component can be
approximated by the expression

F. pRT I
— M4 — 7.161
v M, ( +A,)’ (7.161)

and the total free energy density of the network can be approximated
by the sum of the phantom and entanglement contributions

T
F “’RT ”R (Aj+l). (7.162)

A

Demonstrate that for uniaxial deformation of an incompressible
network, the stress is given by Eq. (7.64) where the crosslink and
entanglement moduli G, and G,, respectively, are defined in Egs (7.43)
and (7.47).

7.21* Consider a combined linear chain consisting of a *real’ N-mer and a *virtual®
m-mer. The ends of this combined chain are attached to an elastic non-
fluctuating background. The x coordinate of the attachment points in the
undeformed state is X, at the virtual chain end and X at the real chainend
of the combined chain. The ends of the combined chain deform affinety with
the elastic background X, = AX, and X] = AX,.

(i} Show that if the stress were supported exclusively by the real chain it
would be equal to

3kT

sz ((

(1) Derive the expression of mean-square end-to-end distance of the N-mer
part of the combined chain.

N? b Nm
R.'_Xrl :__XfAsz )
1 51 (N+m)2( 2 1) +N+m

R - x3)%) -

g =
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(iii} Show that the stress supported exclusively by the real chain is

N (- x)’
=kT —1].
7 N+m (b2(N +m)
(iv) Assume that the number of monomers in the virtual chain changes as a
power law of the deformation:

m = mgA".

Show that the contribution of this combined chain to the stress is

X — X1y’ N a
=kT - (1 - = i
o (bZ(N+m0,\‘*) et (1 2) (7.163)

Determine the exponent o for which the virtual chain does not contribute to
the stress and all of the stress is supported by the real chain.

7.22 Consider a comb polymer with p Kuhn monomers of length b between
neighbouring points of attachment of n-mer side branches. Assume the
number of side branches is targe and that the end of each side branch is
randomly attached to the elastic non-fluctuating background Show that the
mean-square fluctuation of the junction points is Nz

Section 7.4

7.23 Consider a network formed by end-linking chains_ w1th degree of poly-
merization =100 and monomer volume »*=30A% in a dry melt state

(¢0=1).

(i) What is the modutus G(1) of the network at preparation (dry) conditions

at room temperature?

(i) What is the equilibtium swelling ratio of this network at the
§-temperature (0 = 35°C)?

(iii) What is the equilibrium swelling ratio of this network in an athermal
(good) solvent? -

(ivy What would be the modulus G(1/Q) of the network in a fully swollen
state in the athermal solvent?

7.24 (i) Calculate the concentration dependence of the osmotic pressure of a gel
in an athermal solvent, being sure to include both mixing and strand
elasticity parts of the free energy.

(i) Plot the osmotic pressure of a gel prepared in the melt state (¢ = 1) with
N =100 monomers between crosslinks and the osmotic pressure of a
solution of very long linear chains as functions of volume fraction of
polymer. Why is the osmotic pressure of the gel smatler than that of the
solution?

(iii) Atwhatconcentration is the osmotic pressure of the gel zero? What is the
physicat meaning of this concentration?

7.25 Swelling a thin film network.

The photoactive elements in photographic film are dispersed in a cross-
linked gelatin network. During processing, this network is swolten to altow
the developer solution to enter the gel. Since the network is strongly bonded
to a solid substrate, it is constrained to only swell in one dimension (per-
pendicular to the substrate) with the other two dimensions unchanged by
swelling.



7.26

7.27

7.28

7.29

7.30

7.31

7.32

Problems

(i} Derive the expression below for the concentration dependence of the
modulus of the swollen gel, assuming the developer solution is an
athermal solvent and that the network is also prepared in an athermal
sotvent:

L KT o
(‘f’) T BN ¢3/4 :
(ii) Why does this modulus increase as the network is dituted?
{iii) Derive an expression for the equilibrium swelling.
(iv} For a photographic film with ¥ =100 Kuhn monomers between
crosstinks, prepared at volume fraction ¢y = 0.1, what is the equilibrium
swelling?

(7.164)

What is the true osmotic pressure of a polymer gel swollen to equilibriumin a
good solvent?

Estimate the average number of monomers in a network strand for gels
prepared in the dry state and swollen to equilibrium in a #-sofvent with

(i 0=2,
(i) =4
At room temperature, compare the equilibrium swelling, dry modulus and

modulus at dwelling equilibrium for a network with N = 10 Kuhn monomers
of length h=4 A per strand prepared in the dry state, swollen in

(i) athermal solvent,
(ii) @-solvent

The modulus of unentangled networks is kT per combined strand
[Eq. (7.43)]. Explain why the stretching caused by isotropic swelling increases
the contribution to the modulus from each combined strand. Why can the
elastic modulus be approximated by an elastic energy density?

A network with strands of number-average degree of polymerization
N=100 has equilibrium swelling ratio 0 =25 in an athermal solvent.
Assuming the network was prepared in an athermal solvent, estimate the
preparation ¢oncentration.

Consider a PDMS network prepared in the dry state that swells to an
equilibrium swelling ratio of Q =4 in the concentrated regime (#-like swel-
ling). Estimate the dry modulus of the network at room temperature.
Compare your result with Fig. 7.17 and estimate the numerical prefactor in
Eq. (7.91).

Consider a PDMS network prepared in the dry state that swells in toluene
at 25°C to an equilibrium swelling ratio of  =7. Estimate the dry and
fully swollen modulj if the boundary of the concentrated regime is
¢** = 0.2 and b =13 A for PDMS.

Section7.5

7.33

Langley used the mean-field percolation model to derive the entanglement
trapping [actor, assuming that the probability of entanglement between two
network strands is proportional to the square of their concentration. The
probability P> that a randomly chosen monomer in a network strand is
connected to the macroscopic gel along both linear chain paths emanating
from it is determined by integrating the gel curve [Eq. (6.163)] for each
direction over the entire strand:

1 N
Py = ‘-A}/O‘ [I - exp(—SPchl)M] - EXp(_[N_S]pPEEI)] ds. (7165)
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The integration variable 5 represents the contour coordinate that counts
monomers along the strand (running from 0 at one end to N at the other end)
and p is the probability that a monomer has been randomly crosstinked. This
integration assures that each monomer in the strand of N monomers is
connected in both directions to the gel.

(i) Obtain the probability 7; by integrating Eq. (7.165) and use Eq. (6.163)
to write your result as a function solely of gel fraction,

(i) For an entanglement to be permanently trapped by the crosslinking, all
four strand ends in Fig. 7.9 must be connected to the macroscopic gel,
making the entanglement trapping factor of Eq. (7.95) T, = (P2)". Ifany
of the four paths are simply a network defect (such as a dangling end or
loop, see Fig. 7.7) the entanglement will eventually be abandoned and
hence not contribute to the modulus of the network. Use the result from
part (i) to derive the Langley prediction for the entanglement trapping
factor:

2Pgy :

Tom 2= P+ —EL
¢ R TY

(7.166)

7.34 (i) Calculate the probability P, that a randomly chosen monomer in a

strand is connected to the macroscopic gel along only one of the linear
chain paths emanating from it.

(il) Calculate the probability 7, that a randomly chosen monomer in a
strand is not connected to the macroscopic gel along either of the two
linear paths emanating from it.

(iii) Show that the probabilities Py, Py, and 7 (from Problem 7.33) are
properly normalized (i.e., that Py + P, + P2 = 1)

7.35 When a lightly crosstinked gel first swells in a solvent, it jumps around. Why
does it do it?

Section 7.6
7.36  Stress relaxation. .

(i) Use the following table of data for the shear stress relaxation modulus ofa
polymer melt to determine the viscosity », the steady state compliance Joq,
and the longest relaxation time nJe,. Be sure to include any graphs that
may be relevant for these calculations.

1(s) G(7) (Pa) i(s) G(1) (Pa) #(s) G(1) (Pa)
0.0133 1.0 x 10 20.6 48 % 10° 106 1.2 x 10°
0.365 9.4 % 10° 28.6 4.1 %10 122 9.6% 10
1.00 8.8 % 10° 419 32x10° 139 7.6 % 10*
1.90 8.3 % 10° 50.0 28 % 10° 155 6.2x%10*
279 79x% 10° 55.3 26 10° 189 40x% 10*
1.69 7.5x% 10° 60.6 24%10° 238 2.2 % 10%
5.50 7.0 x 10° 68.6 2.1x10° 305 1.0x 10*
7.29 6.6 x 10° 73.9 19 % 10° 356 5.0x 10°
10.0 6.1 % 10° 81.9 1.7%10° 422 2.2 % 10°

15.3 5.4 % 10° 90.0 1.5% 10° 472 7.1 % 107




Problems

(ii) How does the longest retaxation time compare with the maxima in the
functions ¢G(f) and £2G{t)?

(i} Sketch the time dependences of the creep compliance and recoverable
compliance that you would expect to see for the polymer melt in part
(i), assuming creep and recovery were measured at the same
temperature. Indicate values of the rubbery compliance and the
steady state compliance on the plot.

7.37 Creep.
(i) Determine the viscosity 7, the steady state compliance Jq, and the

longest relaxation time ngJe from the following creep data on a polymer
solution at a shear stress of 20 Pa:

Time (sy 100 200 300 400 500 600 700 800 500 1000

Strain 031 052 074 092 110 128 146 164 182 2.00

(ii) Small-anglescafteringreveals that the polymer’s radius of gyration in this
solutionis 400 A. Individual chains in polymer liquids move randomlyin
solution by a process known as diffusion, For diffusive motion, the
square of the typical distance x moved is proportional to the time ¢
altowed for motion, with the coefficient of proportionality being the
diftusion coefficient D:

2
D= Em.
3
Use the fact that the polymer roughly diffuses a distance equal to its coil
size during a time interval equal to its longest relaxation time, to estimate
the diffusion coefficient of the polymer.
7.38 Determine the viscosity », the steady state compliance Jgq, and the longest

relaxation time 7~ nJy, from the following data for monodisperse linear
polystyrene with Af = 60 600 gmol ' at 180°C.

w (rads™") G’ (Pa} G" (Pa)

57.54 17400 49000
36.31 7550 33100
2291 3090 21900
14.45 1260 14100
9.12 525 9120
5.7% 200 5750
3.63 83.2 3720
2.9 331 2900

7.39 At low frequencies G” of a liquid contains information on viscosity #,
while ¢’ of a liquid contains information on recoverable compliance Jeq.
At low frequencies G’ of a solid contains information on its modultus Ge,.
What does G” tell us about the network at low frequency?

7.40 1If it is necessary to signal average for three full cycles, how much time was
required to obtain the lowest frequency data points of Fig. 7.28?

7.41 Boltzmann superposition in oscillatory shear.
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7.42

7.43

T.44*

745

7.46

7.47

7.48

7.49

Use the Boltzmann superposition integral to derive the storage modutus of
a viscoelastic liquid as a sine transform of the stress relaxation modulus G(1)
[Eq. (7.149) with G;q=0)]. Also derive the loss modulus as a cosine
transform of G{#} [Eq. (7.150) with G, = 0] for a viscoelastic liquid.
Oscillatory shear,

Show that the dissipated energy per unit volume in each cycle of oscillatory
shear is my3G".
Prove that, for an affine network in uniaxial tension, the ratio

True

X — 1/

is the shear modutus defined in Eq. {7.98), making use of the fact that
Young’s modulus is three times the shear modulus.

Hint: Hooke’s law in tension is o, = Ec, where E=3¢ is Young’s
modulus and £ =(L — Lg)/ Ly is the extensional strain (L and L; are the
final and initial lengths of the sample).

Use the Boltzmann superposition integral to derive Eq. (7.128} for the
recoverable compliance of a viscoelastic liquid.

Diblock copolymers with roughly equal block lengths can microphase
separate into a lamellar phase, with alternating layers of mostly A monomer
and mostly B monomer. When quenched into the lamellar phase from the
isotropic phase, these layers form roughly parallel to each other locally.
A polydomain texture is created from this quenching, with a typical grain
size of order 0.1 um. The oscillatory shear response of such a quenched
sample is observed to have G’ ~ G" ~w"? at the lowest measurable [te-
quencies. Can this observed response be the real terminal response of the
sample? s this sample a viscoelastic solid or a viscoelastic liquid?
Consider a liquid with a single relaxation mode and stress relaxation
modulus given by the Maxwell model:

G(t) = Gyexpl—t/T).

(i) Calculate the viscosity of this liquid.
(i) Estimate the viscosity of the liquid using n = G(r)t [Eq. (7.120}]. What is
the relative error of this estimate?

Find the relation between creep compliance J{¢) and recoverable com-
pliance Jg(f) using the Boltzmann superposition principle.

Dielectric spectroscopy indicates that water molecules respond to an
oscillating electric field at a frequency of 17 GHz at room temperature. Is
water still a Newtonian liquid at this high a frequency or is it viscoelastic? If
it is viscoelastic, at what time scales can viscoelasticity be observed?

The Voigt model is similar to the Maxwell model, but the elastic and viscous
elements are in paraltel instead of in series. In the Voigt model each element
has the same strain and the stress is the sum of the stresses in the two
elements.

(i} Derive the creep compliance of the Voigt model. What type of material
does the Voigt model describe? What is the behaviour of the Voigt
model during creep recovery?

(ii) Derive the stress relaxation modulus of the Voigt model. What goes
wrong with the Voigt model in describing stress refaxation?

(iii) Derive the stress relaxation modulus of a series combination of the
Voigt model {with modulus Gy and viscosity v} and an elastic element
(with modulus Gg).

(iv} Describe in words what happens to the three elements in part (iii) as a
function of time after the step strain.
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{(v) What is the relaxation time for the three-element model with constants
described in part (iii) and what is its physical significance?

7.50 Consider a series combination of two Maxwell models, whose stress
relaxation modutus is a simple sum:

G(7) = Gaexp(—t/ta) + Gpexp(—t/tn).

(i) Calculate the storage and loss moduli of this system.
(i} What is the longest relaxation time of the system if 74 > rg? What is the
average relaxation time r determined from Eq. (7.136)?
(iii} What are the viscosity and the recoverable compliance of the series
combination of two Maxwell models?
(iv) Calculate the low frequency behaviour of the storage and loss moduli.
Verify that w= 1/7 corresponds to the intersection of the extrapolations
of the low frequency power laws of G'(w)and G (w). Verify that t =nJ.
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