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Unentangled polymer
dynamics

A small colloidal particle in any liquid diffuses due to the fluctuations of
the number of molecules hitting it randomly from different directions.
Colloidal particles are significantly larger than the molecules in the liquid,
but small enough that collisions with molecules noticeably move the
particle.! The trajectory of the particle, shown in Fig. 8.1, is another
example of a random walk. The three-dimensional mean-square dis-
placement of the colloidal particle during time ¢ is proportional to ¢, with
the coefficient of proportionality related to the diffusion coeFficient D:

A = O = 6Dt (8.1)

The average distance the particle has moved is proportional to the square
root of time:

{6y = FOHY* = (6D)!°. (8.2)

Whereas the motion of the particle obeys Eq. (8.1) at all times, we shall see
that the motion of monomers in a polymer is not always described by
Eq. (8.1} [or Eq. (8.2)]. When the motion of a molecule obeys Eq. (8.1), it is
called a simple diffusive motion. The random motion of small particles in a
liquid was observed long ago using a microscope by a biologist named
Brown and is often referred to as Brownian motion.

If a constant force £is applied to a small particle, pulling it through a
liquid, the particle will achieve a constant velocity v in the same direction
as the applied force. For a given particle and a given liquid, the coefficient
relating force and velocity is the friction coefficient (:

f=¢ (8.3)

Since the constant force acting on the particle results in a constant velo-
city, there must be an equal and opposite viscous drag force of the liquid
acting on the particle with magnitude {v. The diffusion coefficient D and
the friction coefficient ¢ are related through the Einstein relation:

kT

! Colloidal particles have sizes between 1 nm and 10 pm.

Fig. 8.1

Motion of a particle in a liquidisa
random walk that results from random
collisions with molecules in the liquid.
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The physics behind this relation is the fluctuation—dissipation theorem: the
same random kicks of the surrounding molecules cause both Brownian
diffusion and the viscous dissipation leading to the frictional force. It is
instructive to calculate the time scale r required for the particle to move a
distance of order of its own size R:

R* R¥
The time scale for diffusive motion is proporticnal to the friction
coefficient.

The mechanical properties of a liquid are fundamentally different from
the solids discussed in Chapter 7. Solids have stress proportional to
deformation (for small deformations). However, the stress in liquids
depends only on the rate of deformation, not the total amount of defor-
mation. If we pour waler from one bucket into another bucket, there is
only resistance during the flow, but there is no shear stress in the water in
either bucket at rest. We describe the deformation rate of a liquid in shear
by the shear rate 4 = dvy/dz [Eq. (7.99)]. For the steady simple shear flow
of Fig. 7.23, the shear rate is the same everywhere, equal to the way in
which velocity changes with vertical position. The stress o in a Newtonian
liquid is proportional to this shear rate [Newton’s law of viscosity
Eq. (7.100), o =nY], with the viscosity # being the coefficient of
proportionality.

If a sphere of radius R moves in a Newtonian liquid of viscosity 0, a
simple dimensional argument can determine the friction coefficient of the
sphere. The friction should depend only on the viscosity of the surround-
ing liqumid and the sphere size:

((n, R). (8.6)

The friction coefficient is the ratio of force and velocity, with units of
kgs ! The viscosity is the ratio of stress and shear rate, with units
of kgm ~'s ! and the sphere radius has units of length (m). The only

functional form that is dimensionally correct gives a very simple relation:
{=nR. (8.7)

The full calculation of the slow flow of a Newtonian liquid past a sphere
was published by Stokes in 1880, yielding the numerical prefactor of 6w
that results in Stokes law:

¢ =6mnR. (8.8)

Combining Stokes law with the Einstein relation [Eq. (8.4)] gives a simple
equation for the diffusion coefficient of a spherical particle in a liquid,
known as the Stokes—Einstein relation:

kT
D= .
6mnR

(8.9)



Rouss model

This important relation is used to determine coil size from measured
diffusion coefficient (for example, by dynamic light scattering—see
Section 8.9, or by pulsed-field gradient NMRY}. The size determined from a
measurement of diffusion coefficient is the hydrodynamic radius:

kT

8.1 Rouse model

The first successful molecular model of polymer dynamics was developed
by Rouse. The chain in the Rouse model is represented as ¥ beads con-
nected by springs of root-mean-square size b, as shown in Fig. 8.2. The
beads in the Rouse model only interact with each other through the con-
necting springs. Each bead is characterized by its own independent friction
with friction coefficient ¢. Solvent is assumed to be freely draining through
the chain as it moves.

The total friction coefficient of the whole Rouse chain is the sum of the
contributions of gach of the N beads:

{r = NC. (8.11)

The viscous frictional force the chain experiences if it is pulled with velo-
city Vis f = —N¢¥. The diffusion coefficient of the Rouse chain is obtained
from the Einstein relation [Eq. (8.4)].

_KT_AT
(R NC
The polymer diffuses a distance of the order of its size during a char-

acteristic time, called the Rouse time, Tg:

R (8.12)

R? R? S
& A ——— = - N R”. .
R PR kT/(NG) kT R (8:13)

The Rouse time has special significance. On time scales shorter than the
Rouse time, the chain exhibits viscoelastic modes that shall be described in
Scetion 8.4, However, on time scales longer than the Rouse time, the
motion of the chain is simply diffusive.

Polymers are fractal objects, with size related to the number of mono-
mers in the chain® by a power law:

R =~ bN (8.14)

The reciprocal of the fractal dimension of the polymer (see Section 1.4)
is v. For an ideal linear chain = 1/2 and the fractal dimension is 1/v=2.
The Rouse time of such a fractal chain can be written as the product of

! Thereare N—1 springs in the Rouse model and, for long chains, the number of springs 1s
approximated by N.

Fig. 8.2

In the Rouse model, a chain of N
monomers is mapped onto a
bead-spring chain of N beads
connected by springs.

amn
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the time scale for motion of individual beads, the Kuhn monomer
relaxation time

¢h?
Ry 2 — 815
To T’ ( )
and a power law in the number of monomers in the chain:
~ C 2 _ Cbz 142 1+2v
TR & kTNR = kTN =g T, (8.16)

For an ideal linear chain, » = 1/2 and the Rouse time is proportional to the
square of the number of monomers in the chain:

TR ~ ToN-. (8.17)

The full calculation of the relaxation time of an ideal chain was published
by Rouse in 1953, with a coefficient of 1/(67°):

N
IR = 67T2kTN . (818)
This Rouse stress relaxation time is half of the end-to-end vector correla-
tion time because stress relaxation is determined from a quadratic function
of the amplitudes of normal modes (see Problem 8.36).

The time scale for motion of individual monomers ty, is the time scaje at
which a monomer would diffuse a distance of order of its size b if it were
not attached to the chain. In a polymer solution with solvent viscosity n,
each monomer’s friction coefficient is given by Stokes law [Eq. (8.8)]:

¢ = nsh. (8.19)

The monomer relaxation time 1, and the chain relaxation time of the
Rouse model Ty can be rewritten in terms of the solvent viscosity #;:

b3

7o z—TET , . (8.20)
B

TR 1—TN2. (8.21)

‘When probed on time scales smaller than t,, the polymer essentially does
not move and exhibits elastic response. On time scales longer than 7y, the
polymer moves diffusively and exhibits the response of a simple liquid. For
intermediate time scales tg < f < tg, the chain exhibits interesting visco-
elasticity discussed in Section 8.4.1,

8.2 Zimm model

The viscous resistance imparted by the solvent when a particle moves
through it arises from the fact that the particle must drag some of the
surrounding solvent with it. The force acting on a solvent molecule
at distance r from the particle becomes smaller as » increases, but only
slowly (decaying roughly as 1/r). This long-range force acting on solvent
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(and other particles) that arises from motion of one particle is called
hydrodynamic interaction. In the case of the bead-spring model of a
polymer chain, when one bead moves, there are hydrodynamic interaction
forces acting on the other beads of the chain. The Rouse model ignores
hydrodynamic interaction forces, and assumes the beads only interact
through the springs that connect them. We shall see later that this
assumption is reasonable for polymer melts, but is not correct for a
polymer in a dilute solution.

In dilute solutions, hydrodynamic interactions between the monomers
in the polymer chain are strong. These hydrodynamic interactions also are
strong between the monomers and the solvent within the pervaded volume
of the chain. When the polymer moves, it effectively drags the solvent
within its pervaded volume with it. For this reason, the best model of
polymer dynamics in a dilute solution is the Zimm model, which effectively
treats the pervaded volume of the chain as a solid object moving through
the surrounding solvent.

Assume that the chain (and any section of the chain) drags with it the
solvent in its pervaded volume. Thus the chain moves as a solid object of
size R=~bN". The friction coefficient of the chain of size R being pulled
through a solvent of viscosity n, is given by Stokes law:

CZ =~ nsR- (822)

There is a coefficient 67 in Stokes law [Eq. (3.8)] for a spherical
object ¢ = 6mn,R, but chains are not spheres and we drop all numerical
coefficients.

From the Einstein relation [Eq. (8.4)] the diffusion coefficient of a chain
in the Zimm model is reciprocally proportional to its size R:

kT kT kT

Dy o SR b (8.23)
This is simply the Stokes—Einstein relation [Eq. (8.9)] for a polymer in
dilute solution. The Zimm medel predicts that the chain diffuses as a
particle with volume proportional to the chain’s pervaded volume in
solution. In 1956, Zimm published a full calculation, where he preaveraged
the hydrodynamic interactions to obtain this result with an extra coeffi-
cient of 8/(3v67*) for an ideal chain:

8 kT”:”O.l%kT

B 3V6TF37]SR nsR‘

In the Zimm model, the chain diffuses a distance of order of its own size
during the Zimm time 77!
77553

LN R L (8.25)
D, kT kT

Dz (8.24)

Tz

The coefficient relating the relaxation time to a power of the number
of monomers in the chain is once again the monomer relaxation time 7y

313



314

Unentangled polymer dynamics

[Eq. (8.20)]. Zimm’s full calculation of the chain relaxation time provides
an extra coefficient of 1/+/3 for an ideal chain:

L 1 3 s
= — R =0.163 =R 8.26
R i T 520

This Zimm stress relaxation time is half of the Zimm end-to-end vector
correlation time.

The Zimm time is proportional to the pervaded volume of the chain.
Note that the Zimm time 7z has a weaker dependence on chain length than
the Rouse time tg [Eq. (8.16)].

Jv< 2+l forv<l. (8.27)

Comparison of Eqs (8.16) and (8.25) reveals that the Zimm time is
shorter than the Rouse time in dilute solution. In principle, a chain in
dilute solution could move a distance of order of its size by Rouse motion,
by Zimm moticon, or some combination of the two. The chain could simply
move its monomers by Rouse motion through the solvent without drag-
ging any of the solvent molecules with it, or it could drag all of the solvent
in its pervaded volume with it, thereby moving by Zimm motion. In dilute
solution, Zimm motion has less frictional resistance than Rouse motion,
and therefore, the faster process is Zimm motion. The chain effectively
moves as though it were a solid particle with volume of order of its per-
vaded volume (with linear size R). The solvent within the pervaded volume
of the chain is hydrodynamically coupled to the chain.” When the chain
moves in response to its monomers being randomly hit by solvent from
different directions, it effectively drags the surrounding solvent with it.

Using Eq. (3.77) for the size of the chain in a good solvent with inter-
mediate excluded volume v in Eq. (8.25), and combining with the #-solvent
result of Eq. (8.25) with v = 1/2, yields a general expression for the Zimm
time in dilute polymer solutions: :

T 3 T N3/2 N < b /v?
~— R 8.28
2T { To(v/B TN N > O (8:28)

Using »=0.588, the Zimm relaxation time for long chains is
7o (v/b3)0.53N1.76'

8.3 Intrinsic viscosity

In solution, a confusing plethora of viscosities have been defined over the
years. The ratio of solution viscosity i to solvent viscosity 7, 1s the relative
viscosity:

n
=1, 8.29
fr s { )

* While some solvent does move with the chain, solvent molecules diffuse into and out of
the pervaded volume on a faster time scale than the diffusion of the polymer (see Problem 8.5).
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The relative viscosity is the simplest dimensionless measure of solution
viscosity. The difference of the relative viscosity from unity is the specific
viscosity:

o = = 1= (8.30)
5

The numerator ( — 7)) is the polymer contribution to the solution visc-
osity, so the specific viscosity is a dimensionless measure of the polymer
contribution to the solution viscosity.

The ratio of specific viscosity to polymer concentration is the reduced
viscosity, 7/, which has units of reciprocal concentration. In the limit of
very low concentrations (far below the overlap concentration) the reduced
viscosity becomes a very important material property called the intrinsic
viscosity (see Section 1.7.3, and in particular Fig. 1.24):

ERRTIN
] = lim 2. (8.31)
The intrinsic viscosity is the initial slope of specific viscosity as a function
of concentration, and has units of reciprocal concentration [see Eq. (1 97
The value of the stress relaxation modulus at the relaxation time G{r) is
of the order of kT per chain in either the Rouse or Zimm models, just as
the strands of a network in Chapter 7 stored of order kT of elastic energy:

P

G(T) =~ kTW‘

(8.32)
The polymer contribution to the viscosity in either the Rouse or the
Zimm model is proportional to G(r)t [Eq. (7.120}]:

@
71 = kTW T. (8.33)
The typical experimental concentration used in defining intrinsic viscosity
is the polymer mass per unit volume of solution, ¢ = pMy/ (b3N av) Where
M, is the molar mass of a Kuhn monomer [see Eq. (1.18)]. The intrinsic
viscosity then follows:
N kTN ay

[n] = N (8.34)

The expression for the relaxation time in the Rouse model of an ideal
chain g & 16 N>k T) [Eq. (8.21)] leads to the Rouse prediction for the
intrinsic viscosity:

bSNAv

(] == N Rouse model. (8.35)

The Rouse model predicts that the intrinsic viscosity in a f-solvent is
proportional to molar mass. However, the Rouse model assumes no

315
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hvdrodynamic interactions and is not expected to be valid in dilute solu-
tions where intrinsic viscosity 1s defined.

Substituting the prediction for the relaxation time of the Zimm model
1z =0 R/(kT) [Eq. (8.25)] into the expression for intrinsic viscosity
[Eq. (8.34)] leads to the Zimm prediction for intrinsic viscosity:

- R3NAV - b3NAV Jv—1 .
[n] = N M N Zimm model. (8.36)
The Zimm model assumes that as the polymer moves it drags the solvent
inside its pervaded volume with it. The Zimm model has the correct phy-
sics for the intrinsic viscosity. Equation (8.36) is more commonly written
in terms of the molar mass M = MyN,
R3
=25 (837)
where @& = 0.425N 4, = 2.5 x 102 mol~! is a universal constant for all
pelymer—solvent systems. This famous relation between intrinsic viscosity,
coil size and molar mass is known as the Fox-Flory equation.

Equation (8.36) predicts that the intrinsic viscosity obeys a power law in
molar mass. This power law was empirically recognized long ago, and is
known as the Mark-Houwink equation [Eq. (1.100}]:

[n] = KM™. (8.38)

From the derivation of the Fox-Flory equation, based on the Zimm
model, the Mark-Houwink exponent ¢ is related to the exponent
describing the molar mass dependence of coil size in solution v
a=3v—1. (8.39)
The Mark-Houwink equation provides an indirect estimate of
molar mass from a measurement of intrinsic viscosity [5], if the two
Mark-Houwink constants K and g, are known. The predictions of
Mark—Houwink constants are summarized in Table 8.1. Comparison with
Table 1.4 shows that the Zimm model agrees reasonably well with
experimental results, as @ = 0.50 is observed in d-solvent and 0.7 <a < 0.8
is usually observed in good solvents,
Using the Zimm time [Eq. (8.28)] in Eq. (8.34), yields a general expres-
sion for the intrinsic viscosity, valid for any solvent with 7> 6

o KN A RN,
N MoN 2T TMoN
BN 4 | N2 N < bS/V?
T My | /BN N s B (8.40)

Table 8.1 Predictions of Mark-Houwink constants

K a
Rouse model in #-solvent BNy /M !
Zimm model in #-solvent PN a /My 3v-1=1/2

Zimm model in good solvent B3N Ay /M™% 3w -1=0.76
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For long chains in good solvent, »=0.588 and the intrinsic viscosity
universally scales as v P N6,

This relation is tested with experimental data in Fig. 8.3.*Itisimportant
to point out the fact that the intrinsic viscosity of polystyrene in toluene
(filled squares in Fig. 8.3) crosses over to the f-solvent result at M = 30000
gmol™ ! This provides a direct measure of the number of Kuhn mono-
mers in a thermal blob g7 (30000 gmol ™ ")/(720 gmol ™ ')~ 40 for
polystyrene in toluene. The crossover between the #-solvent and good
solvent cases of Eq. {(8.40) is at N= gr=(b*/v)’ [Eq. (3.75)], so gr=40
means that the excluded volume is estimated to be va0.165° for poly-
styrene in toluene. Hence, although toluene is a quite good solvent for
polystyrene, it is nowhere near the athermal solvent limit, which would
have even higher intrinsic viscosity that would maintain the power law
with 0.76 slope to even lower molar masses. Polystyrene in methyl ethyl
ketone (open circles in Fig. 8.3) has even smaller excluded volume, as
g7 (100000 gmol ~')/(720 gmol ~ ')~ 140 and v = 0.085°.

Figure 8.3 also shows clearly that caution is needed when using Mark-
Houwink equatians from the literature that have intermediate exponents
in the range 0.5 < a < 0.76. Such intermediate exponents correspond to the
crossover between regimes and are only valid for the range of molar
masses they were measured in.

The fact that the intrinsic viscosity measurement is simultaneously
simple and precise makes it an extremely popular molecular character-
ization tool. Intrinsic viscosity can easily be measured to 10.1% precision,
which is far superior to osmotic pressure and light scattering, which have
precisions of +£5% under the best of circumstances. Furthermore, if
intrinsic viscosity and absolute molar mass are measured over a suffi-
ciently wide range, the thermodynamic nature of the polymer solvent
interaction, reflected in the excluded volume v, can be estimated using
Eq. (8.40).

The temperature dependence of intrinsic viscosity enters Eg. (8.40)
through the excluded volume v =~ b* (T — @)/ T. For chains that are smaller
than the thermal blob, the short chain branch of Eq. (8.40) (with N < Bevh)
applies. For such short chains, the intrinsic viscosity is independent of
temperature and [5)/N 12 reduces data for different lengths of short chains
to a commeon temperature-independent line, demonstrated in Fig. 8.4(a)
for polyisobutylene in toluene with M < 11000 gmol ™ ! On the other
hand, chains with size far exceeding the thermal blob size have important
excluded volume effects. The long chain branch of Eg. (8.40) (with
N> b%/v?) applies to long chains and [1)/N*7** reduces data for different
lengths of long chains to a common curve, as shown in Fig. 8.4(b) for
polyisobutylene in toluene with M > 400 000 gmol ™~ ! The curve in Fig.
8.4(b) is determined by the temperature dependence of excluded volume
(v/b*)° B e (1 — /1) with §=245 K2 — 28°C determined from the fit.
Intermediate molar masses (not shown) with M =48 000 gmol ™" and

“ The customary units for intrinsic viscosity are dL g~ ! where 1dL.=0.1L.

37

100

10+

7] @L g™

0.1

Fig. 8.3

Intrinsic viscositics of polystyrenes

in three solvents. Cyclohexane is a
#-solvent {v =0, filled circles, from

Y. Einaga et al., J. Polym. Sci., Polym.
Phys. 17, 2103, 1979}, with Mark-
Houwink expenent ¢ = /2. Methyl
ethyl ketone is a better solvent

(v~ 0.085°, open circles, from R. Okada
et al., Makromol. Chem. 59, 137, 1963)
and toluepeis a good solvent (v~ 0.1 b,
filled squares, from R. Kniewske and

W .-M. Kulicke, Makromel. Chem. 184,
2173, 1983) with a = 0.76.
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Fig. 8.4

Temperature dependence of intrinsic viscosity for polyisobutylene fractions in toluene.

(a) data for the three lowest molar masses (open triangles are M = 7080 g mel ~ ', filled squares
are M =9550 gmol ~ ! and open circles are M = 10 200 g mol ~ 1 that all are smaller than the
thermal bleb and hence have unperturbed size. The short chain branch of Eq. (8.40) reduces
these data to a common temperature-independent line. (b} data for the two highest molar
masses (open squares are M = 463 000 gmol ~ " and filled triangles are M = 1 260000 g mol ~*
that obey the long chain branch of Eq. (8.40). The curve is fitted to the data using Eq. (8.40)
and the temperature dependence of excluded volume with # = — 28°C determined from the
fit. The data are from T. G. Fox and P. J. Flory, J. Phys. Chem. 53, 197 (1949).

M = 110000 gmol ~ ' fall in the crossover between the two limiting cases of
Eq. (8.40) and do not obey the scaling of either clean limit. Unfortunately,
the molar mass range of 20000 < M < 200000gmol ' is the important
range for commercial polymers, and it corresponds to the crossover for
most good solvent/polymer solutions. .

The R’ in Eq. (8.37) comes from the relaxation time in Eq. (8.34). This
Zimm time really has two size scales within it. The hydrodynamic radius
Ry, enters through the diffusion coefficient [Eq. (8.10)] and the radius of
gyration R, enters through the length scale that the molecule moves in its
relaxation time:

RT _RT R, NaRRy

[7] oM 2 5D, o (8.41)

Using data for polystyrene in two good soivents® (ethylbenzene and
tetrahydrofuran) Eq. (8.41} is found to apply reasonably with

[ M.
NavRgR,

112

7, (8.42)
in the range 93000 gmol ' < M, < 4800000 gmol™'.

* K. Venkataswamy e1 al., Macromolecuies 19, 124 (1986).
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8.4 Relaxation modes

In Sections 8.1 and 8.2, we calculated the longest relaxation time of
unentangled polymers using molecular models. The linear viscoelastic
response of polymeric liquids, discussed in Section 7.6, measures the full
spectrum of relaxation times. Since polymer chains are self-similar objects,
they also exhibit dynamic self-similarity. Smaller sections of a polymer
chain with g monomers relax just like a whole polymer chain that has g
monomers. In all unentangled molecular models for polymer dynamics
(both Rouse and Zimm and combinations thereof) the relaxations are
described by N different relaxation modes. The modes are numbered by
mode indexp=1,2,3,..., N. These modes are analogous to the modes of a
vibrating guitar string. Mode p involves coherent motion of sections of the
whole chain with N/p monomers, and the corresponding relaxation time of
this mode 7, is similar to the longest relaxation time of a chain with N/p
monomers. For all unentangled molecular models of flexible polymer
dynarnics, the shortest mode has mode index p = N with relaxation time 7o,
the relaxation time of a monomer [Eq. (8.20)]. The longer modes depend
on whether hydrodynamic interactions are important or not, as discussed
below.

Consider a polymer liquid subjected to a unit step strain at time ¢ =0.
The equipartition principle states that £7/2 of free energy is associated with
each degree of freedom at f:quilibrium.6 Immediately following the unit
step strain, the entire chain stores of order NkT of elastic energy, since
there are N independent modes that each store of order £7. To determine
the time dependent viscoelastic response, we simply need to determine the
relaxation time of each mode.

8.4.1 Rouse modes

In the Rouse model, the (longest) relaxation time of the ideal chain is given
by Eq. (8.17):

TR =~ 'E[]Nz. (8.43)

Since the pth mode involves relaxation on the scale of chain sections with
N/p monomers, the relaxation time of the pth mode has a similar form to
the longest mode:

A2
T, 7 1| — forp=1,2,...,N. 8.44
i P

The relaxation time of a monomer, 14 [Eq. (8.15)] is the shortest relaxation
time of the Rouse model, with mode index p= N, making 15 = 1. The
mode with index p=1 is the longest relaxation mode of the chain with
relaxation time equal to the Rouse time 7, =tg, and corresponds
to relaxation on the scale of the entire chain. The mode with index p=2
corresponds to the two halves of the chain with N/2 monomers, each

6 In three-dimensional space, each mode has three degrees of freedom.
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relaxing independently. The mode with index p breaks the chain into
p sections of N/p monomers, and sach of these sections relax as indepen-
dent chains of N/p monomers on the time scale ,,.

As expected, higher index modes, involving fewer monomers, relax
faster than lower index modes. Therefore, at time 7, after a step strain, all
modes with index higher than p have mostly relaxed, but modes with index
lower than p have not yet relaxed.

The number of unrelaxed modes per chain at time ¢ = 1, is equal to the
mode index p. Each unrelaxed mede contributes energy of order &7 to the
stress relaxation modulus. The stress relaxation modulus at time =1, is
proportional to the thermal energy &7 and the number density of sections
with N/p monomers, ¢/(5°N/p):

kT ¢
G(tp) = e (8.45)
The time dependence of the mode index p for the mode that relaxes at time

t=r1,can be found from Eq. (8.44).

AN
P . (8.46)

To

Combining Eqs (8.45) and (8.46) approximates the stress relaxation
modulus for the Rouse model at intermediate time scales:

“12
Gl1) ~ ';—qu(é) for 7o < t < ). (8.47)

This expression effectively interpolates between a modulus level of order
kT per monomer at the shortest Rouse mode (¢ & 14) to a modulus level of
order kT per chain at the longest Rouse mode (I={thDN2) using a
power law. We already know that the stress relaxation modulus has an
exponential decay beyond its longest relaxation time [Eq, (7.112)].
Therefore, an approximate description of the stress relaxation modulus of
the Rouse model is the product of [Eq. (8.47)] and an exponential cutoff:

T -172
G(1) = l;—sgb(r—to) exp(—t/tr) for t > 1. (8.48)

The Rouse time g is the longest stress relaxation time [Eq. (8.18)].

For oscillatory shear, Eqs (7.149) and (7.150} allow calculation of
the storage and loss moduli of a solution of linear Rouse chains (see
Problem 8.14):

kT er)2
BN
\/[1 (wre)] [/ 1+ (er) + l]

G'(w) forw< 1/7g, (8.49)




Relaxation modes

2
kT 1+ (wrr) + 1
G'w) =~ ——uwrt for w < 1/7o0. 8.30
W= BN T T () o (830

In the frequency range, 1/Tg < w < 1/7q, the storage and loss moduli of
the Rouse model are equal to each other and scale as the square root of

frequency:

G(w) 2 G"(w) ~ ' for l/r € w < 1/m. (8.51)
For high frequencies w > 1/, there are no relaxation modes in the Rouse
model, The storage modulus becomes independent of frequency, and
equal to the short time stress relaxation modulus, which is k7" per mono-
mer G'(w)~ kT /&*. This high-frequency saturation is not included in
Eqs (8.49) and (8.50). At low frequencies w < 1/7g, the storage modulus is
proportional to the square of frequency and the loss modulus is pro-
portional to frequency, as is the case for the terminal response of any
viscoelastic liquid.

Figure 8.5 shows that experimental data on unentangled polyelectrolyte
solutions are described quite well by the Rouse model. Polyelectrolytes are
charged polymers that have a wide range of concentrations where
dynamics obey the Rouse model.

The viscosity of the Rouse model is obtained by integrating G(t)

[Eq. (7.117D):

o5 kT (e V2
n:/ﬂ G(t)dtzggqﬁ/ﬂ (T_o) exp{—t/r)d¢

kT e kT kT ,
a2 o /TOTR / x 172 exp{—x)dx = _de)‘/rOrR ~ i ToN r= %N@.
0
(8.52)

Equation (8.52) made use of the variable transformation x=t/tg, and
the integral involving x is simply a numerical coelficient. Notice that the
final relation is identical to that expected by Eq. (7.120), the product of
G{rr) [Eq. (8.32)] and 7 [Eq. (8.17)]. The Rouse model applies to melts
of short unentangled chains (for which hydrodynamic interactions are
screened). The Rouse viscosity has a very simple form for an unentangled

polymer melt:
.y %N. (8.53)

The viscosity of the Rouse model is proportional to the number of
monomers in the chain. The Rouse model has been solved exactly (by
Rouse), and the full calculation gives an extra coefficient of 1/36:

nz—C—N. (8.54)
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Oscillatory shear data for solutions of
poly(2-vinyl pyridine) in 0.0023 M HCl
in water. Open symbols are the storage
modulus G* and filled symbols are the
loss modulus G”. Squares have
c=0.5gL™". triangles have
c=1.0gL” ! and circles have
¢=2.0gL"". The curves are the
predictions of the Rouse model [Eqs
{8.49) and (8.50)]. Data from D. F.
Hodgsen and E. J. Amis, J. Chem. Phys.
94, 4581 (1991).
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Unentangled polymer dynamics

Rouse also derived an exact relation for the stress relaxation modulus,

¢ N
G(1) = kTWZlexp(—t/rp), (8.55)
=
with
(bR
Y = G R TR (8.56)

The stress relaxation times 7, of the Rouse model are haif of the correla-
tion times of normal modes (see Problem 8.36).

This exact form demonstrates that each mode (p=1,2,..., N) relaxes
as a Maxwell element [Eq. (7.111)]. The exact [Eq. (8.55)] and approximate
[Eq. (8.48)] Rouse predictions of the stress relaxation modulus of an
unentangled polymer melt are compared in Fig. 8.6. This figure clearly
shows that Eq. (8.48) is an excellent approximation of the exact Rouse
result for long chains (¥ » 1).

Chain sections containing N/p monomers maove a distance of order of
their size A(N/p)"” during the mode relaxation time 7, The position vector
of monomer j at time ¢ is 7;{#). The mean-square displacement of monomer
J during time 7, is of the order of the mean-square size of the sections
involved in coherent motion on this time scale:

N 212

ey -0 =2 =2 (7) (8.57)
P To

In the final relation we used the time dependence of the mode index p

[Eq. (8.46)]. The mean-square displacement of a monomer on intermediate

time scales thus increases as the square root of time:

172

(Fit) — Oy = B2 (;) for 7o < £ < k. (8.58)

0

For the motion to be diffusive, the mean-square displacement must be
linear in time [see Eq. (8.1)]. Since the mean-square displacement on
intermediate time scales is a weaker-than-linear power of time, the motion
is referred to as subdiffusive motion. Individual monomers are not ‘aware’
that they belong to an N-mer on times shorter than the Rouse time of the
chain. At each moment of time ¢ < Tg, sections of a chain containing g('t)
monomers move coherently. Thus monomers only ‘realize’ that their chain
contains at least gft) monomers at time scale ¢ < rp. The diffusion coef-
ficient of these coherent sections is D(tj~kT/({g). The number of
monomers in sections that coherently participate in Rouse motion
increases proportional to the square root of time g(7) = (/1) % [Eq. (8.46)
with g = N/p] and their effective diffusion coefficient decreases with time:

KT kT (e
D(I) -~ @ ~ T (I—O) fOI‘ To <0< TR. (8.59)
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At longer times, monomers participate in collective motion of larger sec-
tions with smaller effective diffusion coefficient (7). Therefore the mean-
square displacement of monomers is not a linear function of time, but
instead subdiffusive:

{File) — FJ(O)]Z> r= D(1)t ~ 1172 for 1y <t < TR. (8.60)

Only on time scales longer than the Rouse time of the chain, is the motion
of the chain diffusive, with mean-square displacement proportional to
time [Eq. (8.1)].

8.4.2 Zimm modes

Similar scaling analysis of the mode structure can be applied to the Zimm
model. The relaxation time of the pth mode is of the order of the Zimm
relaxation time of the chain containing N/p monomers [Eq. (8.25)}:

- N 3y
T, % Ty (E) . (8.61)

The index p of the mode relaxing at time 7 =7, after a step strain imposed
at time 7 = 0 is obtained by solving the above equation for p:

- —1/(3¢} ' -1/(3v)
DR N(—‘E> = N( ) . (8.62)

Ty Tg

The number of unrelaxed modes per chain at time 7 = 7, is p. The stress
relaxation modulus is proportional to the number density of chain sections
with N/p monomers:

~1/{3v)

~ ’;_i"%p ~ gqs(rio) for o < 1 < Tz- (8.63)
In O-solvents (= 1/2), the stress relaxation modulus decays as the — 2/3
power of time, while in good solvents (v 0.588) G(t) decays approxi-
mately as the — 0.57 power of time. Like the stress relaxation modulus of
the Rouse model [Eq. (8.47)], Eq. (8.63) crosses over from kT per mono-
mer at the monomer relaxation time tp to k7 per chain at the relaxation
time of the chain tz=~7,N"" [Eq. (8.25)]. Once again, an excellent
approximation to the stress relaxation modulus predicted by the Zimm
model is the product of the power law of Eq. (8.63) and an exponential
cutoft:

kT { =1/{3v)
G(t) ~ b?'qﬁ(r_o) exp(—t/tz) fort> 1. (8.64)
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Oscillatory shear data on dilute
solutions of polystyrene with

M = 860000 gmol ~ ! in two f-solvents
(circles are in decalin at 16°C and
squares are in di-2-cthylhexyl phthalate
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dimensionless storage modulus and
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moedulus, both extrapolated to zero
concentration. The curves are the
predictions of the Zimm model

{Eqgs (8.67) and (8.68)]. Data from

R. M. Johnson et af., Polvm. J. 1,

742 (1970).

Unentangled polymer dynamics

The polymer contribution to the solution viscosity is obtained by inte-
grating Gt} [Eq. (7.117)]:

< kT x T
1= [ Gnar=i5e [ (;) exp(—1/tz) dt

KT (Ve kT .
"ﬁﬁgﬂbrz(r—i) A x713 exp(—x)dﬁczb—jgérgN3 !

~ NN (8.65)
The variable transformation x = t/t, was used, and the integral involving x
is simply a numerical coefficient. The second-to-last relation was obtained
using 7z~ 7oN"" [Eq. (8.25)] and the final relation used Eq. (8.20). The
final relation is identical to that expected by Eq. (7.120), the product of
G(1z) |Eq. (8.32)] and 1z |Eq. (8.25)]. The Zimm model applies to the
relaxation of the entire chain in dilute solution (where hydrodynamic
interactions dominate). The intrinsic viscosity is calculated from
the polymer contribution to the solution viscosity using Eq. (8.31) and
the relation between mass concentration and wvolume fraction
¢ = ¢pMo/ (BN ay) [(see Eq. (1.18)]:
NN OV A "N Ay
L ki VA TTM
This result is identical to Eqgs (8.36) and (8.37), derived previously.
Using Eqgs (7.149) and (7.150) with the approximate Zimm model pre-
diction for the stress relaxation modulus [Eq. (8.64)] provides predictions
of the storage and loss moduli that are valid for dilute solutions of linear
chains (see Problem 8.16):

(8.66)

_ ¢kTwry sin [(1 — 1/(3v)) arctan (wrz))]

BN L+ (w0 V002 4 (8.67)

G'w)

dkTwrz cos [(1 — 1/(3v)) arctan (wrz)]

BN (1 1 (wez )]V (8.68)

Gﬂ‘.’ (w) )

These predictions of the Zimm model are compared with experimental
data on dilute polystyrene solutions in two f#-solvents in Fig. 8.7. The
Zimm model gives an excellent description of the viscoelasticity of dilute
solutions of linear polymers.

As in the Rouse model, the mean-square displacement of monomer ;
during time T, is of the order of the mean-square size of the section con-
taining N/p monomers involved in a coherent motion at this time:

(i) =0y = (3) e (2) 2

The time dependence of mode index p [Eq. (8.62)] was used to get the final
result. Notice that this final result has an exponent that does not depend on

(8.69)
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solvent quality. The mean-square displacement of a monomer in the Zimm
model is subdiffusive on intermediate time scales:

2/3
0 -roR =8 (L) frn<r<n. @

T

Consistent with the fact that the longest relaxation time of the Zimm
model is shorter than the Rouse model, the subdiffusive monomer motion
of the Zimm model [(Eq. (8.70)] is always faster than in the Rouse model
[Eq. (8.58)] with the same monomer relaxation time 7o. This is demon-
strated in Fig. 8.8, where the mean-square monomer displacements pre-
dicted by the Rouse and Zimm models are compared. Each model exhibits
subdiffusive motion on length scales smaller than the size of the chain, but
motion becomes diffusive on larger scales, corresponding to times longer
than the longest relaxation time.

8.5 Semidilute unentangled solutions
There are two limits for unentangled polymer dynamics:

(1) The Zimm limit applies to dilute solutions, where the solvent within
the pervaded volume of the polymer is hydrodynamically coupled to the
polymer. Polymer dynamics are described by the Zimm model in dilute
solutions.

(2) The Rouse limit applies to unentangled polymer melts because
hydrodynamic interactions are screened in melts (just as excluded volume
interactions are screened in melts). Polymer dynamics in the melt state
(with no solvent) are described by the Rouse model, for short chains that
are not entangled.

In semidilute solutions there is a length scale, called the hydrodynamic
screening length £, separating these two types of dynamics. On length
scales shorter than the hydrodynamic screening length (for r< &), the
hydrodynamic interactions dominate and dynamics are described by the
Zimm model. On length scales larger than the screening length (for r > &)
the hydrodynamic interactions are screened by surrounding chains and the
dynamics are described by the Rouse model.

Tn Section 5.3, the static correlation length £ was defined for semidilute
solutions. This correlation length separates single-chain (dilute-like) con-
formations at shorter length scales (r < £} from many-chain (melt-like)
statistics at longer length scales (for » > £&). The concentration correlation
blob of size £ contains g monomers of a chain, with conformation similar
to dilute solutions:

£~ by (8.71)

The exponent =172 in §-solvents and v~ 0.588 in good solvents. The
correlation volumes are densely packed, so the volume fraction within
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each correlation volume (gh*/¢%) must be the same as the overall volume
fraction of the solution ¢:

gb’
gb;u?f (8.72)
The correlation length decreases with increasing concentration
[Eq. (5.23)]:

£ a2 by v/, (8.73)

The scaling exponent v/(3v—1)=1 in f-solvents (v=1/2) and
v/(3r — 1)220.76 in good solvents (»=20.388).

The hydrodynamic screening length &, in semidilute solutions is expec-
ted to be proportional to the static correlation length’ &

En= € (8.74)

This proportionality makes sense in both limits. In the melt (¢ = 1), both
excluded volume and hydrodynamic interactions are fuily screened to the
level of individual monomers, so £, & £ = . At the overlap concentration
(¢ =¢*), both excluded volume and hydrodynamic interactions apply
over length scales comparable to the size of the entire chain, with
She b= R,

The hydrodynamic screening length can neither be much larger nor
much smaller that the static correlation length. Each of the N modes of a
chain can, in principle, relax by either Rouse or Zimm motion. On small
length scales, Zimm modes are faster than Rouse modes (see Fig. 8.8)
because only solvent and other monomers on the same chain are hydro-
dynamically coupled. However, this situation changes beyond the corre-
lation length, because Zimm motion would couple the motion of
monomers from different chains. This extra coupling makes Rouse motion
faster than Zimm motion for sections of chain that ate larger than the
static correlation length, so Rouse dynamics apply on larger length scales.

In semidilute solutions, both statics and dynamics are similar to dilute
solutions on length scales shorter than the screening length. For short
distances from a given monomer {r < £), essentially all other monomers
are from the same chain (see Fig. 5.4}. The chain conformation is similar
to dilute solution and the dynamics are controlled by strong hydro-
dynamic interactions. Therefore, the relaxation time 7, of a chain section
of size £ is described by the Zimm model and proportional to the corre-
lation volume £*

/s 3~775b3

CERTY T kT
On length scales larger than the screening length £ the dynamics are many-
chain-like, with both excluded volume and hydrodynamic interactions

¢—3u/(3y—l)l (875)

T Experimental results appear to be consisient with the expectation that hydredynamic
interactions and excluded volume interactions are screened on similar length scales.
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screened. The Rouse model applies to the random walk chain of N/g
correlation blobs. The relaxation time of the whole chain teyaq 1s given by
Eq. (8.17), with 1 the effective ‘monomer’ relaxation time, N/g the effec-
tive number of ‘monomers’:

N 2 2
Tchain ™ T¢ (g) = ]?—ST ; (%f) . (8.76)

The number of monomers in a correlation blob is determined by com-
bining Eqs (8.72) and (8.73) [as was done previously in deriving Eq. (5.24)]:

6 3
g~ cﬁ(b) /0N, (8.77)

From Egs (8.76) and (8.77), the concentration dependence of the relaxa-
tion time of the chain in semidilute solution is obtained:

- nsb3 2 (230 (3v—1)
Tchain ~~ E:N ¢' . (8.78)

The concentration dependence of the polymer’s relaxation time is a power
law with exponent

2 -3 .
1 1 in & —solvents (v =1/2), (8.79)
and
2—3v .
1 =~ 0.31 in good solvents (v = 0.588). (8.80)

Note that if the polymer in dilute solution were highly extended with
exponent v > 2/3, the relaxation time in unentangled semidilute solutions
would be predicted to decrease with increasing concentration. This is
actually observed for semidilute unentangled solutions of charged poly-
mers, called polyelectrolytes, which have v = 1 in dilute solutions because
of charge repulsion. However, for the neutral flexible polymers discussed
here, the relaxation time of the chain always increases with concentration.

Polymers diffuse a distance of the order of their size R during their
relaxation time Ty, Recall the size of a linear polymer chain in a semi-
dilute solution [Eq. (5.26) with v = 4’]:

N 172
R =~ g(_> s BNV 2 (2= (60=2) (8.81)
g
The exponent
2w —1
Y~ _0 in#-solvents (v = 1/2), (8.82)

6y —2
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Concentration dependence of diffusion
coefficient in good soivent. Filled
symbols are four molar masses of
polystyrene in benzene spanning the
range 78 000-750 000 gmeol ~ ', from

L. Legerand]. L. Viovy, Contermp. Phys.
29, 579 (1988). Open symbols are three
molar masses of poly(ethylene oxide) in
witer spanning the range 73 000—

660 000 gmol ', from W. Brown,
Polymer 25, 680 (1984). To facilitate
compariscn, ¢* was taken as the volume
fraction at which D= Dy for each data
set. The Jow concentration line is

Eq. (8.85) and the high concentration
line has the slope expected for entangled
solutions in good solvent [Eq. (9.43)].

Unentangled polymer dynamics

because the chain maintains a nearly ideal conformation at all con-

centrations and
2v—1
6y —2

=~ (.12 in good solvents (v = 0.588). (8.83)

The diffusion coefficient D in semidilute solutions decreases as a power
law in concentration:

R kT o (1-9)/(3u-1)
D= %—¢

Ry 8.84
Tchain nsb N ( )

The semidilute diffusion coefficient can be written in terms of the Zimm
diffusion coefficient of the chain Dz [Eq. (8.23) valid for diffusion in dilute
solutions] and the overlap concentration ¢* ~ N =V [Eq. (5.19)]:

Qj —(l=t}/(3—1)
D~ Dy (—*) . (R.85)
¢
The scaling exponent
1-v .
——=1 in#—solvents (v = 1/2), (8.86)
Jv—1
and
1—v

=] =~0.54 in good solvents (1 = 0.588).
The concentration dependence of the diffusion coefficient is plotted in
Fig. 8.91in the scaling form suggested by Eq. (8.85) for polymer solutions in
good solvents. The expected exponent is observed over a limited range of
approximately one decade above the overlap concedtration ¢* and a
stronger concentration dependence is seen at higher concentrations, where
entanglements become important.

[n semidilute solutions, hydrodynamic interactions are not screened on
length scales smaller than the correlation length £. Each mode involves
coherent motion of N/p monomers. If N/p is smaller than the g monomers
in a correlation blob, motion associated with that mode is described by the
Zimm model. On larger length scales, hydrodynamic interactions are
screened and modes with index p < N/g are described by the Rouse model.
The number of monomers in a correlation blob is given by Eq. (8.77). The
crossover mode index for hydrodynamic interaction is
N

pe == No'/Ov1,
‘g

(8.87)

There are three time scales important for the stress relaxation modulus
in semnidilute unentangled solutions. The shortest time scale is the relaxa-
tion time of a monomer [Eq. (8.20)]. The intermediate time scale is the
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Zimm relaxation time corresponding to the correlation blob [Eq. (8.75)].
The longest time scale is the Rouse relaxation time of the chain of corre-
lation blabs [Eq. (8.78)].

The stress relaxation modulus follows the Zimm dependence on time
scales shorter than 1, corresponding to motion of chain sections smaller
than the correlation length:

& -1/(3v)
Gl1) = %@(I—l) for o <71 < 1¢. (8.88)

At the crossover time t = ¢ [Eq. (8.75)] the stress relaxation modulus is of
the order of the osmotic pressure:
e kT
Gite) = E&“U e%u (8.89)
At longer times, the stress relaxation modulus follows the Rouse depen-
dence:

I

G( ) b3 ¢)3U/ S (ﬁ

-1/2
) for ¢ < t < Tepain- (8.90;
Te
The value of the stress relaxation modulus at the relaxation time of the
chain can be determined from Eq. (8.90):

W\ kT kT
3v/(3u—-1) Tchain 3u/(3v-1) e

G(fchain) ~ '_Qf’ /" ( Te ) b3 ¢ 7l N bB_JV(p (891)
Equations (8.76) and (8.77) were used to simplify this expression for
G(Tepain)- The terminal modulus is of order &7 per chain, as it must be for
any unentangled flexible chain [see Eq. (8.32)]. The stress relaxation
modulus at long times is approximated well by the product of the power
law and an exponential cutoff:

kT t /2
Glt) =~ ¢l — exp(—#/Tenain) for £ > 1o 8.92
(1) bBNcb(Tchain) XP(—1/Tenain) {0 54 ( )
The time dependence of the stress relaxation modulus in semidilute
unentangled solution is sketched in Fig. 8.10. Experimental verification of
Rouse dynamics for frequencies smaller than 1/t was shown in Fig. 8.5,
for a semidilute unentangled polyelectrolyte solution.

The polymer contribution to viscosity in semidilute unentangled solu-
tions is obtained by integrating the stress relaxation modulus over time
[Eq. (7.117)].

o kT
=1 = / G(t) dt ~ ey ? 7 Pehain 7= WsNﬁt’l/ Be=1) (8.93)
0 N

In Problem 8.21, the integration is shown to be controlled by the longest
relaxation time Tepain.
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Concentration dependence of specific
viscosity for linear poly(ethylene oxide)
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Fig. 8.12

Bending of a rod by angle 4. Insert: the
elongation along a surface thatis a
distance y above the undeformed middle
surfaceis yd {and y < 0 below the middle
surface, in compression).

Unentangled polymer dynamics

This result can alternatively be obtained from a de Gennes scaling
argument. At the overlap concentration ¢*~N =32 the polymer con-
tribution to viscosity is of the order of the solvent viscosity, and grows as a
power law in concentration in semidilute solution:

AN
7?735””7?5(&5_*) -

The exponent x can be determined from the condition that the long-time
modes are Rouse-like, and therefore the polymer contribution to solution
viscosity should be linearly proportional to polymer molar mass:

(8.94)

n—ns 8N (8.95)

Bv—1ix=1= x= (8.96)

3v—-1'

In @-solvents (v = 1/2), the exponent 1/(3v — 1)=2, and the viscosity is
predicted to grow as the square of polymer concentration in unentangled

semidilute #-solutions;
5 2
Nep N¢2 o (;5—*) .

This concentration dependence is demonstrated in Fig. 8.11. In good sol-
vents (v 2 0.588), the exponent 1/(3 — 1)= 1.3, and the viscosity is pre-
dicted to grow as a weaker power of concentration:

1.3
775 = N¢1.3 ~ (i*) '
’ é

8.6 Modes of a semiflexible chain

(8.97)

(8.98)

Polymer dynamics discussed in the previous sections of this chapter cor-
respond to completely flexible chains and are related to modes on length
scales larger than the Kuhn length. The relaxation mode structure on
length scales shorter than the Kuhn length is significantly different. Many
chains, in particular biopolymers, are locally quite stiff. A large part of the
relaxation spectrum of such semiflexible chains corresponds to modes with
wavelengths shorter than their Kuhn length. In this section, the mode
spectrum of semiflexible chains without any intrinsic curvature or twist is
described.

8.6.1

Consider an elastic beam of length L, thickness L, and width L, with
Young’s modulus E£. It is instructive to calculate the elastic energy of
bending this beam by a small angle # (see Fig. 8.12):

stin(}%) w%

Bending energy and dynamics

(8.99)
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The central part of the beam (dashed line in Fig. 8.12) is undeformed, the
upper half of the beam (AB) is under tension, while the lower half (A’B’) is
under compression. The deformation along the plane of the bent beam a
distance y away from the undeformed central surface is AL = y# (see insert
in Fig. 8.12). The corresponding extensional strain is e(v) = AL/L=y6/L.
The elastic energy density is the work done by deformation per unit
volume. Stress is force per unit cross-sectional area and strain is the
deformation per unit length, so elastic energy density is proportional to
the product of stress and strain g = Eg?, where £is Young's modulus. The
elastic energy of a thin slice of the beam of thickness dy and cross-sectional
area LL, is E(y0/LY LL.dy. The total elastic energy of a bent beam is
obtained by integrating the contribution from each slice over the thickness
of the beam:

L2 nt @ L
UL(9) ~ f E(J’Z) LL dy~EL. f #dy
—L.f2 —L, /2

92
. = EL—L}.

L (8.100)

The Kuhn length b determines the crossover between stiff and flexible
length scales. For rods or beams with length L of the order of the Kuhn
length &, the angle of thermally induced fluctuations is of the order of
unity 6= 1:

3
L3L,

~ kT (8.101)

This equation can be solved for the Kuhn length:

3
LL,

b= E T

(8.102)

The bending energy of a bent beam [Eq. (8.100)] then can be rewritten in
terms of the Kuhn length:

b b (RN
UL(G)NkTLG NkTL (E) . (8.103}
The last relation was obtained using Eq. (8.99) for the deformation angle 6.
By writing Eq. (8.103) in terms of the Kuhn length, it becomes much
more general and applies to beams with cross-sections that are not rec-
tangular (such as the bending of a cylindrical rod).

Since the beam or rod is a solid, it has natural modes of bending with
wavelengths that allow the ends of the beam to be stationary. The first
(longest wavelength) mode has wavelength A =2L, the second mode has
A= L, the third mode has A = 2L/3, etc. The fourth mode (with A=L/2) is
illustrated in Fig. 8.13. Spontaneous thermally induced vibration modes of
the beam will form at these wavelengths, and the amplitude of each mode

331



332 Unentangled polymer dynamics

A4 —"h;

Fig. 8.13

Schematic of the fourth vibration mode (with wavelength A = L/2) of a rigid rod of length L.
The transverse oscillation with amplitude 4, reduces the projected rod length along the x-axis.
The amount that the rod length is reduced, per wavelength A, oscillates with longitudinal
amplitude ..

is determined by setting the bending energy from Eq. (8.103) at length
scale A equal to the thermal energy kT

72
U, szb)T-‘asz. (8.104)

This equation can be solved for the mean-square amplitude of these modes
in the transverse direction:
2 N

h, R (8.105)

To understand the dynamics of the bending fluctuations associated with

these natural modes, a force balance per unit length is required. The force

per unit length associated with the bending mode of wavelength X is cal-

culated by differentiating the energy U, and it is resisted by the frictional
dissipation:

LTyt Sdh

X dh, SLELSTIaly ¥R

To understand the frictional dissipation term, recall.that the friction

coefficient ¢ of a Kuhn segment of length b is the ratio of force and velocity

in a liquid. Hence, (/b is the ratio of force per unit length and the

velocity dh,/dr. This equation can be solved by separation of variables

and integration:
dh,  kT¥
> 8.10
o [ 4 (8.107)
The solution is exponentially decaying in time h,~exp (- /1) with

relaxation time t proportional to the fourth power of the wavelength A of
the mode:

(8.106)

¢
" krp
Alternatively, the wavelength of a bending mode is proportional to the 1/4
power of its relaxation time:

kTe? N kT N4 A
A~<Tt) ”b(cbz) ~b(r0) . (8.109)

X (8.108)
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The final relation uses the relaxation time of a Kuhn monomer of length b
[Eq. (8.108) with A= 4]:

To R (8.110)

This longest bending mode matches the shortest relaxation time in the
Rouse and Zimm models [the relaxation time of a monomer o, Eq. (8.15)].

8.6.2 Tensile modulus and stress relaxation

The two similar triangles in Fig. 8.13 can be used to relate the transverse
amplitude 4, and the longitudinal amplitude A:

hy kb

YTy (8.111)

The longitudinal amplitude of each mode can then be written in terms of
the mode wavelength and the Kuhn length:
a2
R S 112

e dng (8.112)
The final relation made use of Eq. (8.105). The spring constant &, (units of
force/length) arising from the mode with wavelength A can be estimated
from the fact that the energy of each mode /22 is of the order of KT+

kT 3
K gh_zszﬁ' (8.113)
X

The tensile force /3 from the mode with wavelength A arising from appli-
cation of a small stretch 8L is the product of the spring constant and the
stretch:

b’ b* 3L b

2
5 Sen (8.114)

A
The last relation introduces the extensional strain £, =8L/A.

The stress borne by a liquid of semiflexible chains from the mode
with wavelength X is the product of the tensile force /3 in a chain and
the line density of the chains in the liquid. The line density can be esti-
mated from the number density of chains ¢,/N, where ¢, is the monomer
number density (the number density of Kuhn segments). The contour
length of each chain is Nb and therefore the line density of chains in the
liquid is ¢,b:

b 3
oY %f/\(,‘nb =z kTCn (/\) €. (8115)
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Fig. 8.14

Oscillatory shear data on dilute
soiutions of the stiff biopolymer
myosin, from R. W. Rosser ez al.,
Macromolecules 11, 1239 (1978). Open
circles are the dimensionless storage
modulus and filled circles are the
dimensioniess ioss modulus, both
extrapolated to zero concentration,

Unentangled polymer dynamics

Young’s modulus due to the mode with wavelength A is the ratio of
stress and strain;

c \’
E\ =2 = kTe, (‘)I) . (8.116)

5
Substituting the relation between relaxation time and mode wavelength
[Eq. (B.109)] into the expression for modulus [Eq. (8.116)] leads to the
time-dependent stress relaxation modulus that decays as the — 3/4 power
of time:
N P\
E(t) =~ kTc, (A) ~ kTcy () for v, <t < 1.

To

(8.117)

The short time limit t, corresponds to the fastest stiff mode, with shortest
wavelength determined by the smallest physical length scale using
Eq. (8.108). For polymer chains this smallest length is of the order of the

bond length I
RGN AN
e e olE)

Note that the stress decay is faster than that of the Rouse and Zimm
models. Figure 8.14 compares the prediction of Eq. (8.117) with oscilla-
tory shear data on the stiff biopolymer myosin in dilute solution. Myosin
clearly exhibits a stronger frequency dependence than the flexible chain
models predict, and is reasonably consistent with the 3/4 slope expected
from Eq. (8.117).

(8.118)

8.7 Temperature dependence of dynamics
8.7.1 Time—temperature superposition

Both the Rouse and Zimim models, as well as other molecular models to be
discussed in Chapter 9, tacitly assume that the relaxation time associated
with each mode has the same temperature dependence. Each mode’s
relaxation time is the product of temperature-independent factors® and the
monomer relaxation time 7o [see Egs (8.44) and (8.61)]. This has two
important consequences for polymer melts and solutions.

First of all, the temperature dependence of all relaxation times is
controlled by the ratio of friction coefficient and absolute temperature [see
Eq. (B.13)]:

rN% (8.119)

The temperature dependence of the modulus at any relaxation time 1 is
proportional to the product of the polymer mass density p and absolute

8 These factors include the coil size, which can have a weak temperature dependence that is
ignored in this discussion.
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temperature T [see Eq. (8.45)]:
G(t) ~ pT. (8.120)

Viscosity is the product of relaxation time and the modulus at the
relaxation time [Eq. (7.120)]. The temperature dependence of viscosity is
proportional to the product of liquid density and friction coefficient:

1= 1G(1) ~ pC. (8.121)

The ratio of viscosity and density is the kinematic viscosity, which is directly
measured in gravity-driven flows. The kinematic viscosity has the same
temperature dependence as the friction coefficient. The density of polymer
melts weakly decreases as temperature is raised,” imparting a weak tem-
perature dependence to the modulus at any relaxation time . The tem-
perature dependence of the viscosity of polymer melts is dominated by the
strong temperature dependence of the friction coefficient. Near the glass
transition temperature 7, the friction coefficient changes by roughly a
factor of 10 whepn temperature is changed by 1 K, while far above 7 (at
T> Ty+ 100K) approximately 25K temperature change is needed to
change the friction coefficient by a factor of 10.

The second important consequence of the relaxation times of all modes
having the same temperature dependence is the expectation that it should
be possible to superimpose linear viscoelastic data taken at different
temperatures. This is commonly known as the time—temperature super-
position principle. Stress relaxation modulus data at any given temperature
T can be superimposed on data at a reference temperature Tp using a time
scale multiplicative shift factor ar and a much smaller modulus scale
multiplicative shift factor by

Gt T) = bTG(-a—IT, Tg). (8.122)

The reference temperature Ty can be chosen to be any convenient tem-
perature, such as a temperature where the liquid is used or the glass
transition temperature of the liquid. Equation (8.119) determines the time
scale shift factor,

_h

- ’ 8. 23
ol (8.123)

ar

where (g is the friction coefficient at the reference temperature Tp. This
time scale shift factor describes the (model independent) temperature
dependence of diffusion coefficient:

D(To) (To _
DTy  GT

ar. (8]24)

? The density of a liquid changes by about 10% when temperature is changed by 100 K.
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The modulus scale shift factor is determined from Eq. (8.120),

pT

br oTo’ (8.125
where pg is the density at the reference temperature. Often, Egs (8.123) and
(8.125) do not work perfectly, and the shift factors are treated as adjus-
table parameters. The temperature dependence of the various dynamic
properties can be calculated in terms of the shift factors ar and by, For
example, the temperature dependence of viscosity is given by their product
{(n¢ 1s the viscosity at the reference temperature):

n o pg
—_— = — = b . 8.126
mw mb T ( )

Time—temperature superposition also applies to other linear viscoelastic
data, with the same shift factors. Two examples are the complex modulus
in oscillatory shear,

G*(w, T) = er*(waT, To), (8127)
and the creep compliance:

oy - AT, w2

Using data on logarithmic scales, Eqs (8.122), (8.127), and (8.128} allow
simple shifting of data at different temperatures to obtain superposition.
The strong temperature dependence of the time (or frequency) scale shift
factor a7 makes time—temperature superposition a valuable tool for
extending the time (or frequency) range of data at a given temperature.
The resulting superimposed curve is a master curve for that particular
polymer at the chosen reference temperature.

An example of time—temperature superposition is shown in Fig. 8.15 for
a poly(vinyl methyl ether) (PVME) melt at a reference temperature of
Ty =-24°C. Data for &' and G" were measured as a function of fre-
quency roughly in the range 10 *rads '<w< 10%rads " at six tem-
peratures (shown in the right-hand side of Fig. 8.14). T, =T,= —24°C
was selected as the reference temperature and the data at the five other
temperatures were superimposed to make the master curve on the left-
hand side of Fig. 8.15. In practice, this shifting is first applied to the tem-
peratures closest to Ty, and data sets at temperatures further from 7, are
subsequently added to build up the master curve, The master curve on the
left-hand side of Fig. 8.15 has the rheological response at the reference
temperature for over 11 decades in frequency! These data extend from the
glassy modulus {, at high frequencies all the way to the terminal response
(with G’ ~w* and G ~w) at low frequencies, thereby characterizing the
full linear viscoelastic response of this polymer melt. The longest relaxation
time is estimated as the reciprocal of the lowest frequency where G' =G”.
Figure 8.15 shows that this relaxation time is =2 x 10”s. To directly
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probe this frequency at the reference temperature of Ty=T,= —24°C,
one complete oscillation period would take 27 =10%s =4 years! Even
graduate students are not so patient. Experiments in the frequency range
10 %rads ! <w < 10%rads ' can be donein 2 h (allowing time for thermal
equilibration) so the six temperatures studied in Fig. .15 can easily be
measured in one day by a properly motivated graduate student.

The temperature dependence of the friction coefficient is not very
well understood. The simplest model is a thermally activated Arrhenius

equation:
exp 2

The activation energy for flow E, is a constant at sufficiently high
temperatures (typically more than 100K above the glass transition). At
these high temperatures where Eq. (8.129) applies, the activation energy is
usually in the range 2k7T < E, < 20k T. At lower temperatures, the density
of the liquid becomes high enough that monomers get in each others
way when they try to move,

One simple way to account for this crowding is based on the concept of
free volume. The molecules in the liquid ‘occupy’ the vast majority of the
liquid’s volume V. partly as the atoms that make up the molecules and
partly as inaccessible volume that is blocked from access by steric factors.
The remaining small fraction of the volume f7° is ‘free’ to be used for
molecular motion. As the liquid is cooled, the density increases and the
free volume decreases. This slows molecular motion and increases
the effective activation energy for flow. The Doolittle equation relates the
viscosity to the fraction f of the liquid’s volume that is free,

B
el

(8.129)

(8.130)
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Fig. 8.15

Demonstration of the time—temperature
superposition principle, using
oscillatory shear data {(G”, filled circles
and G, open diamonds) on a PYME
meit with M, = 124000 gmol ™ '. The
right-hand piot shows the data that were
acquired at the six temperatures
indicated, with Tz = —24°C chosen as
the reference temperature. All data were
shifted empirically on the modulus and
frequency scales to superimpose,
constructing master curves for G’ and
G* in the lefi-hand plot. Data and

plot courtesy of J. A. Pathak.
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Fig. 8.16

Vogel plot used to determine the
coefficients of the WLF equation, using
duta for high molar mass linear PVME
melts. Open squares are data of R. M.
Kannan and T. P. Lodge,
Macromolecules 30, 3694 (1997) and
filled circlesarc data of J. A. Pathak eral.,
Macromolecules 32, 2553 (1999). The
Vogel temperature T, is adjusted to
make this plot linear and B/f, is
determined from the siope.

Unentangled polymer dynamics

where B is an empirical constant of order unity. The Doolittle equation
effectively assumes that the activation energy for flow is reciprocally
related to the fractional free volume f. The simplest assumption is that the
free volume should have a linear temperature dependence,

f=o (T Ty). (8.131)
where ayis the thermal expansion coefficient of the free volume (a constant
with dimensions of reciprocal temperature) and T, is the Vogel
temperature where the free volume is zero. The Vogel temperature is
typically about 50K below the glass transition (see Table 8.3). At the
glass transition, most polymers have roughly the same free volume:

fa= 0025 at T, (8.132)

The Doalittle equation [Eq. (8.130)] can be combined with the assumed
linear temperature dependence of free volume [Eq. (8.131)] to get the WLF
equation, so-named for Williams, Landel, and Ferry, who first applied it to
polymer melts in 1955:

() e
eyt
P (o% [(T Tf)(Tj Toe)D
— exp (}%gﬁ_ll%) (8.134)

The final result used Eq. (8.131) for the free volume fy at the reference
temperature Ty, This ‘derivation’ relies on several unsubstantiated
assumptions [most notably Eqgs (8.130) and (8.131)] and hence the WLF
equation is a phenomenological description of the temperature depen-
dence of viscosity.

In practice, the small modulus scale shift is often ignored and the time
(or frequency) scale shift factor a7 is directly fit to Eq. (8.134) instead of
the viscosity ratio [effectively assuming br=1 in Eq. (8.126)]. A plot of
log ar (or log [n/noe]) against (T — Ty)/(T — T} is prepared using the Vogel
temperature T, to linearize the plot and the constant B/f; is determined
from the slope. An example of a linearized Vogel plot is shown in Fig. 8.16
for high molar mass linear chain melts of poly(vinyl methyl ether). The
WLF equation provides a good description of the temperature dependence
of dynamics for non-crystalline polymers in the temperature range
Ty <T<Ty+ 100K. The choice of reference temperature is completely
arbitrary, but often it is chosen to be T, and then the free volume in
Eq. (8.134) is £,
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8.7.2 Transition zone of polymer melts

The transition zone is the range of frequency (or time) over which the
storage modulus (or stress relaxation modulus) changes from the glassy
modulus to the modulus at the terminal relaxation time for unentangied
polymer liquids. For entangled polymer liquids, such as the PVME melt
in Fig. 8.15, the transition zone is the range over which the modulus
changes from the rubbery plateau modulus to the glassy modulus
(0.003rads ! < aqw < 100rads™ " in Fig. 8.15).

The low-frequency end of the transition zone is qualitatively described
by the Rouse model of Section 8.4.1 with G(z)~7~ " and G'(w)~w'?,
and relaxation modes corresponding to coherent motion of many Kuhn
monomers. The higher frequency part of the transition zone has a stronger
frequency dependence of the storage modulus G'(w) ~«* with o > 1/2. ht
is tempting to associate the part of the transition zone chracterized by the
3/4 power law frequency dependence of the storage modulus G'(w) ~ Wt
with the modes described by the semiflexible chain model of Section 8.6.
Indeed, the G'(w) data in the frequency range 0.003rad s '<aw<
0.03 rads™ ! apprdximately obey the Rouse scaling and the G'(w) data in
the frequency range 0.03rad s\ <amw<1rads™' roughly show the
semiflexible chain scaling.

However, the crossover between these two limiting regimes is not well
understood, so there is no quantitative description of viscoelasticity for the
entire transition zone. Quile generally, the crossover between various
scaling regimes is fairly broad and caution must be used when trying to
apply power laws in a crossover between regimes. The transition zone is
even worse than most crossovers because dynamics of flexible polymers at
small length scales (shorter than Kuhn monomer size 5) start to be influ-
enced by polymer-specific chemical details. Hence, the crossover from
flexible to stiff modes in the transition zone is not universal—each
monomer type has a distinct viscoelastic response. For a given monomer,
the transition zone does not depend on either chain length or large-scale
molecular architecture. The observed viscoelastic response typically has a
frequency dependence that is intermediate between the Rouse and semi-
flexible chain limits G(#) ~ ¢~ with 0.5 < <0.75.

Qur discussion above focuses on intramolecular effects, but leaves
out any intermolecular effects. Current ideas about relaxation in glass-
forming liquids speculate that monomer motion is cooperative, involving
multiple monomers collectively rearranging in a cooperative fashion.
While there is some evidence for this cooperative motion, it is an area of
active research that has not yet yielded a generally accepted model.
Intermolecular constraints such as the requirement of cooperative
relaxations may change the dynamic modulus at very high frequencies.

At still higher frequencies than the highest frequency in Fig. 3.14,
polymer liquids exhibit a solid response, with storage modulus G’ inde-
pendent of frequency and equal to the glassy modulus G,. A typical value
of the glassy modulus is of order 10°Pa (see Table 8.2). The glassy modulus

Giassy  modulus
amorphous polymers
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is considerably larger than the starting value of the Rouse model
G(tg) = kTjb of kT/vy which is of order 107 Pa.

This same glassy modulus describes the linear elastic response of the
polymer at temperatures below its glass transition temperature T, [see
Hooke’s law, Eq. (7.98)]. The physical reason that the liquid’s response
becomes similar to that of the glass is that at such high frequencies (or
short time scales) monomers (and even small parts of monomers) do not
have time to move and relax stress,

8.7.3 Short linear polymer melts

The Rouse model describes the terminal viscoelastic response of polymer
melts consisting of linear chains that are too short to form entanglements.
For example, Eq. (8.53) describes the viscosity of such short linear poly-
mer melts. However, the viscosity is proportional to the product of friction
coefficient of a monomer and the number of monomers per chain.
I[sothermal viscosity data are not proportional to the number of monomers
in the chain because the friction coefficient depends on chain length for
short chains. Indeed, the glass transition temperature depends on chain
length for melts of short chains. The physical reason is that the monomers
near the chain ends have more free volume than monomers in the middle
of the chain. Assuming Eq. (8.132) applies, there should be a lowering of
the glass transition temperature that is proportional to the number density
of chain ends (2pA 4,/ M), see Problem 8.31:

C
Tg:Tgm—m. (8.135)
The constant C is typically in the range 10°~10° K gmol ', which means
that for long chains with M, > 10*-10°gmol ™', the glass transition is
practically independent of chain length, adopting its long chain limiting
value Ty, The physical significance of the constant C is that it is the molar
mass at which the glass transition temperature is 1 K lower than the high
molar mass limit Tg... Representative values of C and Ty, are listed in
Table 8.3.

To test the Rouse prediction that viscosity is proportional to chain
length, viscosity data at constant friction coefficient must be used instead
of viscosity data at constant temperature. If the coefficient of thermal

expansion of the free volume «in Eq. (8.131) were independent of chain

Table 8.3 Molar mass dependence of the glass transition temperature [see
Eq. (8.136)] and WLF coefficients of high molar mass polymers [see Eq. (8.134)
with Ty=T]

Polymer C (Kgmol™ Y Tere (K) Bif, T.. (K)
Polybutadiene 1.2 x 10* 174 25.6 112
Poly(methyl methacrylate) 6.9x 10° 388 76.9 308

Polystyrene 1.7 x 10° 373 30.3 325
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length, the simplest procedure to compare viscosities at the same free
volume and hence constant friction coefficient would be to measure visc-
osity at a certain temperature increment above the glass transition (con-
stant T — T,). However, agincreases as the chains get shorter, precluding
the use of a constant 7 — T}, to attain a constant friction coefficient. '

The simplest way to correct viscosity data to constant friction coefficient
is to first fit the temperature dependence of viscosity of each individual
sample to the WLF equation [Eq. (8.134)], which determines B/fy. At a
given reference temperature, sufficiently long chains have the same B/f;
and progressively lower values of B/fy are obtained for shorter chains,
since they have more free volume at a given temperature. The viscosity
data at the reference temperature can then be corrected to the friction
coefficient of the long chains at the reference temperature using
Eq. (8.133). Viscosity data subjected to such a correction are shown in
Fig. 8.17 for polybutadiene, polyisobutylene and polystyrene, roughly
120 K above their glass transitions. All linear polymer melts have viscosity
proportional to molar mass (n~ M) for sufficiently short chains, when
the data are determined at a constant friction coefficient as opposed to
isothermal data. Longer chains have entanglement effects (discussed in
Chapter 9) and have n~ M>* The full chain length dependence of
the viscosity (at constant (riction coefficient) of all three polymers are
guantitatively described by a simple crossover function:

1+ (g)zal

Equation (8.136) is tested in Fig. 8.17 (solid curves) and found to
describe the molar mass dependence of constant friction coefficient visc-
osity data for all three of these linear polymers. The critical molar mass
M, for entanglement effects in viscosity is always a factor of 2-4 larger
than the entanglement molar mass M, that was defined in Eq. (7.47).

n~M (8.136)

8.8 Randomly branched polymers

As an illustration of the Rouse model, consider the polydisperse mixture
of polymers produced by random branching with short chains between
branch points. The molar mass distribution and size of the branched
polymers in this critical percolation limit were discussed in Section 6.5.
Close to the gel point, some very large branched polymers (with M > 10°)
are formed and the intuitive expectation is that such large branched
polymers would be entangled. However, recall that hyperscaling requires
polymers of a given size in the critical percolation class only overlap with
shorter molecules. Since these shorter polymers relax much more rapidly,
each polymer relaxes with no effective topological consiraints.

0 The thermal expansion coefficient of the fres volume o for the shortest polybutadiene
chains in Fig. 8.17 is larger than the long chain value by a factor of 1.4.
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Fig. 8.17

Viscosity data for three linear polvmers
corrected 1o the friction coefficient of
high molar mass polymer at roughly
T+ 120K, fit to Eq. (8.137) {curves).
Open circles are polyisobutylene
(T="50°C) with M, = 14 000 gmol ™.
filled squares are polybutadiene
(T=25°C) with M. — 6700 gmol !,
open triangles are free radically prepared
polystyrene (T'=217°C), and filied
triangles are anionically prepared
polystyrene (T=217°C} with

M, =35000 gmol ~ ', Polybutadiene
data are from R. H. Colby er ai.,
Macromolecules 20, 2226 (1987).
Poiyisobutylene and polystyrene data
are from T. G. Fox et al., J. Am. Cheni.
Soc. 10, 2384 (1948), J. Phys. Chem. 55,
221 (1951), and J. Chem. Phys. 41, 344
(1964).
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Unfortunately, there is no accurate theoretical estimate of the strength
of hydrodynamic interaction or the extent of hydrodynamic screening
of polydisperse branched polymers. Hydrodynamic screening usually
correlates well with excluded volume screening. As was demonstrated
in Chapter 6, excluded volume interactions are partially screened in the
critical percolation limit, Therefore, at least partial screening of hydro-
dynamic interactions might be expected in these systems. Experiments
indicate that hydrodynamic interactions are completely screened in melts
of polydisperse branched polymers near the gel point and they can be
described by the Rouse model.

Regardless of its complex architecture, any polymer relaxing with no
topological constraints and no hydrodynamic interactions is well-
represented by the Rouse model, with friction proportional to molar mass.
To estimate the terminal response of randomly branched polymers, we
apply this reasoning to the characteristic polymers, with size £ consisting
of N* monomers. The diffusion coefficient of these chains is given by the
Einstein relation [Eq. (8.4)]:

kT
N*(*

Dg =~ (8.137)

Equation (8.137) is perfectly analogous to Eq. (8.12) for a linear polymer
{(in both cases ¢ is the friction coefficient of a single monomer}. The Rouse
relaxation time of this characteristic polymer, t* will be the longest
relaxation time in the ensemble of branched polymers. It is determined as
the time required for the characteristic polymer to move a distance of
order of its own size &

T* w‘f_zmijv*gz. (8.138)

Dr kT .
Equation (8.138) is perfectly analogous to Eq. (8.13) for a linear polymer.
This simple argument for the relaxation time will require the relaxation
time to be proportional to the product of degree of polymerization and the
square of size for the Rouse model of any polymer. The scaling of the
characteristic polymer’s degree of polymerization is N* ~ |5|71/ 7 with
7220.45 [Eq. (6.95)] and the scaling of its size is £ ~ |¢| ", where v =0.88
is the critical exponent for the correlation length &€ near the gel point
[Eq. (6.125)]. These power laws determine the divergence of the longest
relaxation time as the gel point is approached (as the relative extent of
reaction ¢ — O):

T* ~ |E|—(2J/+U0) —~ ‘gi—4.0. (8.]39)
The value of the relaxation modulus at this terminal relaxation time is of

order kT per characteristic polymer. The hyperscaling ideas discussed in
Section 6.5.3 require that the characteristic polymers are just at their
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averlap concentration (they are space-filling but not overlapping). Hence,
the Rouse terminal modulus [Eq. (7.93) with P=1] is

G (%) m = ~ e ~ Je[*®, (8.140)

and the viscosity is the product of this modulus and the relaxation time
[Eq. (7.120)].

8 G (e~ e~ e (8.141)

In practice, the gel point is often difficult to determine with sufficient
precision to test these scaling laws. Instead, viscosity and relaxation time
can be correlated with weight-average molar mass (My ~ |g|77 with
¥ 2 1.82) [Eq. (6.103)]:

n ~ M7 A MO (8.142)

T+~ MY L M2 (8.143)

Comparison of these prediction with experimental data on randomly
branched polyesters is shown in Fig. 8.18. The line in part (a) has the slope
of 0.75 expected by Eq. (8.142) and the line in part (b) has a slope of 2.28
which is slightly larger than the value expected by Eq. (8.143). The
agreement is quite good, and indicates that the Rouse model applies to
these polymers up to weight-average molar masses exceeding 10°gmol 1.

The Rouse relaxation time 7i of a branched polymer of N monomers
with size R is a generalization of Eq. (8.138):

—~ iNRZ ~— C_b2N1+2/D ~ N1+2/D 8.144
R T hr s ' (8.144)

The final relation uses the fractal dimension of the randomly branched
polymer, which is D 22 2,53 for critical percolation in three dimensions.
The fact that randomly branched polymers are fractal means that the
size r of a polymer section has the same dependence on the number g of
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Fig. 8.18

Viscosity (a} and longest relaxation time
(b) of randomly branched polyesters
with average degree of polymerization
between branch points of No=2, at
T'=T,+64 K. Data are from

C. P. Lusignan et ai., Phys. Rev. E

52,6271 (1995).
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monomers in the section r = hg'/? as the size R and degree of poly-
merization N of the whole polymer R~ bN'/P (see Section 1.4). The
Rouse model of randomly branched polymers exhibits fractal dynamics:
the relaxation time t(g) of a polymer section of g monomers has the
same dependence on the number of monomers g as the whole chain
[Eq. (8.144)]:

1(g) =~ tog /7. (8.145)

At time {=1(g) smaller randomly branched polymers with degree
of polymerization N < g are almost completely relaxed, while larger
branched polymers with degree of polymerization N> g consist of N/g
unrelaxed sections of size r, each storing elastic energy of order AT. The
time dependence of the number of monomers g in these crossover sections
is obtained from (Eq. 8.145):

¢\ 1/(1+2/D)
g (w) ) (8.146)
To

Equation (8.140) states that the terminal modulus G(r*) is kT per
characteristic polymer. Hyperscaling also requires polymers of a given size
r and sections of larger polymers of the same size to be just at their overlap
concentration, so their pervaded volumes #* densely fill all space. This
means that Eq. (8.140) can be generalized for the stress relaxation modulus
at the time scale where each chain section of size r relaxes:

kT kT _ kT f TP
G(r)zr—Ef'u-b—fg 3/Dmb3(m) for rp <t < t*.  (8.147)

The stress relaxation modulus decays as a power law in tim® with exponent
3/(D + 2) 22 0.66. This power law dependence continues up to the longest
relaxation time t* of the characteristic branched polymer. At the gel point
this power law extends forever because t* diverges [see Eq. (8.139)].

For oscillatory shear, Eqs (7.149) and (7.150) allow calculation of the
intermediate frequency behaviour of storage and loss moduli of randomly
branched polymers below the gel point:

G'{w) ~ G"(w) ~ P for 1/t% < w < 1/1. (8.148)

This power law character extends over the entire frequency range w < 1/7
at the gel point, where t* diverges. Critical percolation expects D =2 2.53,
so the storage and loss moduli at the gel point are parallel power laws with
exponent 3/(D + 2) = 0.66. The loss tangent at the gel point is

G" 3w
= — = s —— E . . 4
tan & G tan(2(D+2)) 1.70, (8.149)
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for all sufficiently smali frequencies (w < 1/zq). The frequency dependence
of storage and loss moduli for unentangled randomly branched polymers
are compared with the predictions of the Rouse model in Fig. 8.19 (see
Probiem 8.35 for the full functional form).

8.9 Dynamic scattering

Scattering techniques for measuring various static and thermodynamic
properties of polymers, such as molar mass, size, conformations, inter-
action parameters, elc. were described in experimental sections of
Chapters 1-5. In addition to static properties, scattering can provide
important information about dynamic properties of polymeric systems.
This section focuses on dynamic scattering from dilute solutions, but
similar methods are used in semidilute and concentrated solutions.""

The instantaneous scattering intensity f(g, {) at wavevectors of magni-
tude g [see Eq. (2.131)] depends on the spacial arrangement of scattering
centres (positions and conformations of molecules) at time ¢. As mole-
cules move, cltanging their conformations and locations in space, the
scattering intensity X(g, £} fluctuates in time [see Fig. 8.20(a)]. The value
of scattering intensity, averaged over a long time interval ¢, is the static
scaltering intensity J(¢) discussed in Chapters 1-3:

{

Ig.7)dr. (8.150)

14 = ((g,0)) = lim ~

i—oo | o

Fluctuations of the instantaneous scattering intensity I(g,7) about its
average value I(g) contain information about polymer dynamics on the
length scale 1/g. In order to extract this information it is useful to con-
sider a memory of the instantaneous intensity I(g,¢") at time ¢” that
still remains after an elapsed time ¢ (at time ¢+ 7). This memory is
defined mathematically through a kme autocorrelation function [see
Fig. 8.20(b)]:

l!
{I{qg. 0} {g,0)} = l,lil&%/o I{g, " (g, t" + 1)de”. (8.151)

At r=0, the autocorrelation function {[{(g, 0)]2) is the mean-square value
of the intensity. The limiting value of the autocorrelation function at times
much longer than the correlation time t is the square of the average
intensity because the values of Kg,0) and (g, ) are independent of each
other for t» 1

tim (7 (g, 0)1 (q.1)) = {I(9.0){/ (g, 1)) = {I{g.0))" (8.152)

"' Here we only consider dynamic scattering from isotropic solutions.

345

b and b G (Pa)
5::

10% E
2 ;
10 E:
7
10! et 4
w3 w2w? 11! 10?10
w {rad/s)
Fig. 8.19

Storage modulus (filled symbols) and
loss modulus {open symbois) for three
randomiy branched polyesters 41 K
above their glass transition temperature.
Squares have M, = 57 (00 gmol ~ !

(b= 1), triangles have

M., =380000gmol ~ ' (=13}, and the
circles correspond to a sample extremely
close to the gel point (5 = 10). The curves
are predictions from fractal dynamics
based on the Rouse model.

(a)

Itg,n

(b

(g, 0) Igq, 0>

Fig. 8.20

{a) Intensity of scattered lightasa
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autocorrelation function of the scattered
intensity as a function of time.
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Hence, the autocorrelation function always decays from the mean of
the squared static intensity to the square of the mean intensity [see
Fig. 8.20(b)]. In the simplest case of a single relaxation mode, the time
autocorrelation function decays like a single exponential with correlation
time

(1q. 0)1 (g, 1) = (g, O +(17(a. 1) = {1q, 0))exp(-2).
(8.153)

The memory of the initial intensity (g, 0) decays at the correlation
time 1.

The autocorrelation function depends on how molecules move and
rearrange on length scales 1/g during time ¢, Therefore, the correlation
time 71 is expected to depend on q.

Scattering from dilute solutions was discussed in Section 3.5. The inter-
molecular scattering regime was defined for reciprocal wavevectors 1/g
larger than the distance between molecules. In this regime the scattering
intensity is propertional to the square of the difference in the number of
molecules in the neighbouring volumes ¢—>. The average of the square
of this difference determines the static scattering intensity [Eq. (3.126)].
The time variations in the scattering intensity are directly related to the
time variations in the number of molecules in volumes ¢ . The memory of
the number of molecules in a given volume ¢ > persists as long as most of
the molecules that were in this volume initially did not have time to leave
it. The correlation time 7 is therefore of the order of the time required for
molecules to diffuse out of the volume. Since the diffusion distanceis ¢ = !,
the correlation time is 7 =s(g "~ 1)Z/D [Eqg. (8.1)]. A more careful analysis of
the problem determines the numerical prefactor:

1

375 (8.154)

T

Hence, the time autocorrelation function provides a direct means to
determine the diffusion coefficient D in dilute monodisperse solutions:

(1(4.9) 1(g, 1)) = (@ 0"+ [T (q,0)]%) — {I(q,0))"] exp (-24° D).
(8.155)

In practice, the autocorrelation function is fit to a simple expression
with three fitting parameters—the amplitude A, the base line B and the
diffusion coefficient I

(I{q.0)I(q, 0) = [Aexp(—¢’DD)* + B. (8.156)

It is crucial to realize that the baseline at long times has to equal the square
of the mean static intensity (B = {l(g, 0))2). If this criterion is not realized,
then artefacts such as dust are influencing the data! Another criterion
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for proper measurement of the diffusion coefficient is to make sure that it
is independent of ¢ by following the intensity correlations at different
scattering angles.

The diffusion coefficients of dilute solutions of polystyrene in toluene
are plotted in Fig. 8.20. Data on dilute solutions of flexible polymers obey
Eq. (8.23). The data in Fig. 8.21 exhibit the expected crossover from
f-solvent scaling (v = 1/2) at low molar masses where the coils are smaller
than the thermal blob to athermal solvent scaling (z-=0.588) at high molar
masses where there are many thermal blobs per chain.

The hydrodynamic radius of polymers can be obtained from the
measured diffusion coefficients in dilute solution and the known solvent
viscosity 7, using the Stokes—Einstein relation [Eq. (8.9)]:

kT  kTq’r
" ermD | 3wy,

(8.157)

Toluene at 25°C has a viscosity 7,2 5.6 x 10 ~?Pas and Fig. 8.21 shows
that polystyrene with M, =10° gmol™! has diffusion coefficient D=
1.3 x 10”4 m?s !, Equation (8.157) determines the hydrodynamic radius
of this polymer to be Ry = 30 nm. A typical wavevector in a light scattering
experiment is ¢~ 107 m~ ! the correlation time is 7~ 0.38 ms.
Experimental results for the ratio R,/ Ry, are compared with expectations
based on the Zimm model for various polymer structures in Table 8.4, In
general, increasing the density of monomers decreases the ratio Ry/Ry
towards the value for hard spheres of R,/R, = \/3/_5 ~().77 (see
Table 2.4), as seen by increasing the number fof arms in a star polymer, for
instance. Experiment shows that the f=270-arm star polymer is practi-
cally in the hard sphere limit (see Table 8.4), owing to crowding. Large
generation number dendrimers also correspond to the hard sphere limit.
Increasing the solvent quality generally increases Ry/Ry. Polydispersity
also increases the ratio Ry/ Ry, and randomly branched polymers near their

Table B.4 Ratio of radius of gyration and hydrodynamic radins for different
polvmer architectures

Polymer structure Solvent R,{Ry, Zimm theory Rg/Ry, experiment
Randomly branched Good — 20
Linear monodisperse Goeod 1.6 1.5
Randomly branched A 1.7 —
Linear M, /M,=2 d 1.7 —
Linear monodisperse 8 1.5 1.3
3-Arm star g 1.4 1.2
4-Arm star é 1.3 1.05
12-Arm star 6 1.17 0.93
18-Arm star 6 114 0.82
270-Arm star i 1.08 6.77
Hard sphere — 0.77 0.77
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Diffusion coefficient from dynamic light
scattering for dilute polystyrene
solutions in the good solvent toluene
{open circles). The lines show the
limiting power laws with slopes expected
by Eq. (8.23) (v =1/2 inside the thermal
bleb and v =0.588 at higher molar
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inside a thermal blob estimated from
intrinsic viscosity of polystyrene in
toluene in Fig. 8.3. Data from D. W.
Schaefer and C. C. Han, in Dynamic
Light Scartering (R. Pecora, editor)
Plenum, New York (1985).
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gel point (with very large polydispersity) in good solvent have the largest
Rg/Rn = 2.0.

The experimental values of R,/Ry, are always smaller than the theoret-
ical estimates, indicating that the Zimm model underestimates the
hydrodynamic radius. More recent calculations predict Ry/Ry, in far better
agreement with experiment (for example, linear chains are predicted by
Oono'? to have Ry/Ry,=1.56 in good solvent have Ry /R,=124 in
#-solvent).

In polydisperse solutions, the decay of the autocorrelation function is
not a single exponential and it is challenging to extract the distributions
of diffusion coefficients and sizes from the non-exponential decay of
the intensity correlations. In the case of a bidisperse distribution with
diffusion coefficients that differ by at least a factor of 2, it is possible to fit
the decay of the intensity correlations by a sum of two exponentials and
obtain the corresponding sizes and relative concentrations of the two
components:

({q,00(g,1)) = [ exp(—g"Di1) + Azexp(—¢*D:t)]* + B.  (8.158)

The coefficients 4, and 4, are proportional to the relative concentrations
of the two components present in the bidisperse solution.'® The intensity
autocorrelation function {f(g,0) I(g, t)} is fit to the square of the sum of
modes because it can be related to the square of the electric field auto-
correlation function (£*(q, 0) £(g, 1)}:

{1{(g,0) I{g, 1)} ~ {|E(q,0)[*|E (g, )%
~ {|E{g,0)])" + (E* (4,0) E(g,1})". (8.159)

Equation (8.159) is strictly valid for a Gaussian distribution of electric
ficlds. The electric ficld autocorrelation function is related to the dynamic
structure factor S{g, £} [compare it with the static scattering function S(g)
in Eq. (3.121)]: )

(E*(q.0) E{gq, 1)) ~ S{q,1)

=23 Y fewpl-id- (0 - AODD. (R160
=
The number of monomers in the scattering volume (see Section 1,7.2) is »
and r;(7) is the position of monomer j at time 7. The dynamic structure
factor of a bidisperse solution can be represented as a sum of two modes
{Eq. (8.158)].

In the case of a more general polydispersity, the time autocorrelation
function corresponds to the sum of many modes:
2

+B. (8.161)

{I(q,0) I{q,1)) = [Z Ajexp(—¢*Du1)

2 Y. Qono, J. Chem. Phys. 19, 520 (1983) and Adv. Chem. Phys. 61, 301 (1985).
13 ¢ fey= A,/A5, where ¢; is the concentration of species i.
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In a continuous representation it can be written as a Laplace transform of
the distribution A4(I'} of decay rates I = ¢°D:

oG 2
(f(g,O)I(q,z))_UG A(T)exp(—-T)dl| +8. (8.162)

Determination of the distribution of modes A(I") and the related dis-
tribution of sizes requires inversion of the Laplace transform, which is an
ill-defined problem for a limited data set containing any noise. There are
some numerical programs (such as CONTIN®) that attempt to perform
this inverse transformation. The resulting distributions do sometimes (but
not always) correlate (but not coincide) with the actual distribution of
hydrodynamic radii in solution.

Dynamic modes of sermidilute solutions can also be studied using
dynamic scattering. The dynamic structure factors S(g, r) of these more
complicated systems still have a simple diffusive behaviour at low values of
the wavevector g [Eqs (8.156), (8.159), and (8.160)):

"S(q.1) = §(q,0)exp{—¢*Dr) for gR < 1. (8.163)

However, for non-dilute systems, the diffusion coefficient obtained from
the low ¢ time dependence of S(g, r) may not be the diffusion coefficient of
the polymers. For example, in semidilute solutions the dominant decay
in S(g,1) corresponds to correlations disappearing at the scale of the
correlation length. In such cases, the diffusion coefficient is called the
cooperative diffusion coefficient.

The logarithm of the ratio of the dynamic structure factor and the static
structure factor is linear in time for diffusive motion described by a single
diffusion coefficient:

Sa.0] _ o, L
I“[S(q,m] = ~¢'Dt= =g ([r() = r(O)F) forgR<1.  (8.164)

The mean-square displacement of the monomers is diffusive [Eq. (8.1)] on
large length scales (¢R < 1) corresponding to times longer than the
relaxation time:

({r(1) — r(0))%) ~ Dr. (8.165)

Dynamic scattering can also provide information about relaxation
modes of polymers at higher values of the wavevector g (gR>1).
Equation (8.164) can be generalized to higher wavevectors and to semi-
dilute and concentrated solutions by noticing that the decay of the
dynamic structure factor is determined by the ratio of mean-square
monomer displacement and the square of the reciprocal wavevector (1/¢)*:

Sg. 0] . (1) — OV
|20 ~ o - o 8.166)
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For the Rouse model the mean-square displacement is proportional to the
square root of time [Eq. (8.58)]. The logarithm of the dynamic structure
factor of the Rouse model then also scales as the square root of time for
To < { < TR:

in Sla. 0} 22 (! " for Rouse model 1/R < g < 1/b
S0~ 17 \g © 7 '
(8.167)

For the Zimm model the mean-square displacement of monomers is faster
[Eq. (8.70)] leading to the logarithm of the Zimm dynamic structure factor
scaling as the 2/3 power of time for 7o <1 < 12

in Sla.0] 2p2 (! 7 for Zimm model 1/R < g < 1/b
@)~ W) T
(8.168)

More generally, dynamic scattering methods are used to study many
aspects of polymer dynamics. Full discussion of those methods is beyond
the scope of this book.

8.10 Summary of unentangled dynamics

The Rouse model is the simplest molecular model of polymer dynamics.
The chain is mapped onto a system of beads connected by springs. There
are no hydrodynamic interactions between beads. The surrounding
medium only affects the motion of the chain through the friction coeffic-
ient of the beads. In polymer melts, hydrodynamic interactions are
screened by the presence of other chains, Unentangled chains in a polymer
melt relax by Rouse motion, with monomer friction coefficient {. The
friction coefficient of the whole chain is N¢, making the diffusion coef-
ficient inversely proportional to chain length:

kT

Dp =—.
R NC

(8.169)

In contrast, the Zimm model considers the motion of beads (or mono-
mers} to be hydrodynamically coupled with other monomers. Both the
polymer and the solvent molecules within the pervaded volume of the
chain move together in dilute solutions. The diffusion coefficient of a chain
in the Zimm model is of the same form as the Stokes—Einstein relation
[Eq. (8.9)] for diffusion of a colioidal particle in a liquid:

kT

The intrinsic viscosity of polymers in dilute solutions is an extremely
important measure of the coil size, owing to its simplicity and precision.
The Zimm model leads directly to the Fox—Flory equation for intrinsic
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viscosity, which in turn leads to the Mark-Houwink equation:
R a1
=®—=KM". A71
[7] i K (8.171)

During their relaxation time 7, polymers diffuse a distance of order their
own size (2 R*/D). The relaxation times of the Rouse and Zimm models
are then easily obtained from the diffusion coefficients:

NR? R\’ R R\’
TR & ¢ ~ roN(w) and 1z = B To (—) . (8.172)

kT b kT b

The final relations are written in terms of the relaxation time of a monomer
o= n5b3 Tk T = Cbz/k 7. These relations are very general, and can be applied
whenever the topoelogical interactions, called entanglements (discussed in
detail in Chapter 9), can be ignored.

In semidilute solutions, the hydrodynamic interactions affect dynamics
only up to the scale of the hydrodynamic screening length, which is of the
order of the correlation length. On length scales larger than the correlation
length, both exauded volume and hydredynamic interactions are screened
by the presence of other chains. This screening becomes increasingly
important as concentration is raised, and eventually the melt state is
reached where hydrodynamic interactions are fully screened down to the
scale of individual monomers. For unentangled chains in semidilute
solution, the chain sections within a correlation volume relax by Zimm
motion and the sections of chain larger than the correlation length relax by
Rouse motion. The relaxation time of the chain in unentangled semidilute
solution is our first (and the simplest) example of a hierarchy of relaxation
processes. The correlation blob relaxes by Zimm motion on the time scale
7¢, while the whole chain relaxes as a Rouse chain of blobs at the time
scale Tenain:

7?63 5 3 N 2 5 3 N 2
fg%ﬁ% 1'0(5) and Tchain ~ T¢ E T E E . (8173)

There are many examples of hierarchies of relaxation processes in
Chapter 9.

The time-dependent viscoelastic response of polymers is broken down
into individual modes that relax on the scale of subsections of the chain
with N/p monomers. The Rouse and Zimm models have different struc-
ture of their mode spectra, which translates into different power law
exponents for the stress relaxation modulus G(1):

G(1) ~ ]gqb(rio) " exp(=1/1). (8.174)

The longest mode relaxes at time 7 (17 for the Zimm model, with exponent
% =1/(3v) and tg for the Rouse model, with exponent x = 1/2). While the
difference between these exponents is small, they can be measured quite
precisely, allowing unambiguous identification of Rouse and Zimm
motion.
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Problems
Section 8.1

8.1 In unentangled polymer melts

(i} Are hydrodynamic interactions important or screened?
(i} Which model describes dynamics?
(it} Isthe friction coefficient of the polymer proportional to the chain size R or
the number of monomers in the chain &7

8.2 Consider a polymer chain represented by ¥ =20 beads connected by springs
of root-mean-square size #=>5A diffusing in a melt of similar chains with
bead friction coefficient { =3 x 10~ gs ™" at 22°C.

(i) What is the root-mean-square end-to-end distance R of this chain?
(i) Whatis best model deseribing the dynamics of the chain in a melt? Whatis
the friction coefficient of the chain?
(i) What is the diffusion coefficient D of the chain?
(iv) Estimate the longest relaxation time 7 of the chain.
(v) Estimate the viscosity of the melt.

Section 8.2

8.3 In dilute polymer solutions

(i) Are hydrodynamic interactions important or screened?
(i1} Which model describes dynamics?
(iii) Isthe friction coefficient of the polymer proportional to the chain size R or
the number of monomers in the chain N7

8.4 Considera polymer chain represented by ¥ = 100 beads connected by springs
of root-mean-square size # = 5 A in a dilute 8-solution at 22,5°C with solvent
viscosity 7, =0.6cP =6 x 10" *g (cm s}~ ".

(i) What is best model describing the dynamics of the chain in a dilute
solution? What is the friction coefficient of the chain?
(il) What is the diffusion coefficient D of the chain?
(iii) What is the longest relaxation time 7 of the chain?  »
(iv} Estimate the specific viscosity 5y, = (53 — 1)/ of a solution at volume
fraction ¢ =0.017

8.5 Comparison of polymer and solvent diffusion in dilute solution.

(i) Calculate the time scale for diffusion of a solvent molecule, initially
located at the centre of a polymer’s pervaded volume, to diffuse out of the
pervaded volume. Assume the solvent is the same size b as a monomer.

{ii) Use the Zimm model to show that the time scale for the polymer to diffuse
out of the same volume is a factor of N longer than the solvent diffusion
time.

(i) Show that the ratio of diffusion coefficients of the polymer and the solvent
isN7"

(iv) Why is the ratio of time scales (part ii) reciprocally related to the ratio of
diffusion coefficients (part iii)?

Section 8.3

8.6 (i} Calculate the scaling predictions of the Rouse and Zimm models for the
intrinsic viscosity [¢] and relaxation time 7 of dilute solutions of a rigid rod
polymer of length L.
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(ii) Compare the calculated relaxation times in part (i) with the result for
the rotational relaxation time of a rod in dilute solution that includes
hydrodynamic interactions of monomers along the rod,

my,;Lz
3kTIn (L/26)°
where b is the diameter of the rod.

{iii} Calculate Rouse and Zimm model predictions for [n] and 7 for a
general fractal with fractal dimension D and show that the rigid rod limit
and the ideal chain have the expected results when D=1 and D = 2.

T (8.175)

8.7 Intrinsic viscosity of a dendrimer

(i) Use the Fox-Flory equation to determine the intrinsic viscosity of a
dendrimer of generation g, functionality f, and core functionality r,
assuming that the degree of polymerization is given by Eq. (6.35) and the
size increases linearly with generation number (R = bg).

(i) Using monomer size »=7A, a monomer mass of 100g mol !,
functionality f=3, and core functionality n=6, plot the intrinsic
viscosity as a function of generation g fromg=1to g= 10

(iii) Qualitatively explain the shape of the plot in part (ii).

8.8  Derive thg following general relation between intrinsic viscosity and overlap

concentration:

o e (8.176)

nl
8.9 Estimate the specific viscosity at the overlap concentration using the fol-

lowing equations:

(i} Huggins equation [Eq. (1.97)] for good solvent with ky =0.3;

(i} Huggins equation for §-solvent with kyy =0.8;

(iii} The Zimm model [Eq. (8.33)] for good solvent;

(iv) The Zimm model for §-solvent;

(v) The Rouse model for semidilute unentangled solutions in good solvent
[Eq. (8.98)];

{vi} The Rouse model for semidilute unentangled solutions in f-solventi
[Eq. (8.97)].

Hint: Remember [7] = 1/c*.

Section 8.4

8.10 Calculate the stress relaxation modulus G{'t}, valid for all times longer than
the relaxation time of a monomer, for a monodisperse three-dimensional
melt of unentangled flexible fractal polymers that have fractal dimension
D < 3, Assume complete hydrodynamic screening. Hint: Keep the fractal
dimension general and make sure vour result coincides with the Rouse
model for D = 2.

8.11 The Fox-Flory prefactor

The Zimm stress relaxation modulus has the same form as Eq. (8.55) with
the Zimm relaxation times [Eqgs. (8.26) and (8.61)] replacing the Rouse times.

(i) Show that the intrinsic viscosity can be expressed as a sum over the
stress relaxation times
] = RT & ;
nM i "
(i) Derive the Fox-Flory prefactor @ of Eq. {8.37) in a §-solvent from the
Zimm stress relaxation times. Hinr: Use the approximation of a sum

p it =2.6124.
p=1
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8.12 Diffusion of a long chain in a melt of shorter chains
Consider dilute long probe chains with N4 Kuhn monomers of length bin
a melt of chemically identical unentangled shorter chains with ¥y Kuhn
monomers.

(i) What is the root-mean-square end-to-end distance R4 of probe chains?
Hint. Consider two separate cases Na < N3 and Na > Nj and review
section 4.5.2.

(i) What would be the diffusion coefficient of the probe chain Dpg, if its
dynamics were Rouse-like with monomeric friction coefficient ¢?

(i) Show that if the dynamics were Zimm-like, the diffusion coefficient of
the probe chain for the case Na < N5 would be

kT (NN s

~ Na (N%) for Na < Ng. {8.177)
Compare this Zimm diffusion coefficient Dz with the Rouse diffusion
coeflicient Dy of part (ii). Hint: The viscosity of an unentangled melt of
shorter Np-chains is predicted by the Rouse model [Eq. (8.53)].

(iv) Show thatin the case Na > N3 the Zimm-like diffusion coefficient of the
probe chain would be

kT (NN )

R (N%) for Na > Ng. {8.178)
Compare this Zimm diffusion coefficient Dz with the Rouse diffusion
coefficient Dy of part (ii).

(v} Whatis the relation between the degrees of pelymerization of the probe
chain N, and melt chains Ng for which Dz= Dg? Compare this
hydrodynamic crossover to the excluded volume crossover.

(vi} If the faster modes dominate dynamics, what is the mode structure of a
very long probe chain in unentangled melt of shorter chains at short and
long time scales (and correspondingly short and long length scales)?
Compare your answer with the mode structure in semidilute unen-
tangled solutions.

Dy

Dy

8.13 Consider a steady shear flow (with shear rate 4) of a monodisperse melt of
unentangled N-mers with monomeric friction coefficient ¢

(i) Show that a relative drift velocity of a chain with respect to a typical
chain it overlaps with is

Ve YR 2 bV N.

(ii) Using the energy dissipation rate per monomer ¢ V2, where V' is the
relative velocity of monomers, show that the rate of energy dissipation
per chain is

W= (:bZNlP}/Z

for a chain with friction coefficient N(. .

(iil) Estimate the rate of energy dissipation per unit volume W if the volume
per monomer in the melt is v,.

(iv) Using the relation between the rate of energy dissipation per unit volume
W and viscosity n

W=

obiain the expression for viscosity of unentangled melts.
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8.14 (i) Derive the approximate Rouse model predictions for G’ and G” [Eqs

(8.49) and (8.50}] from the approximate Rouse prediciion for the stress
relaxation modulus [Eq. (8.48)].

(1) Show that at intermediate frequencies (1/Tp <€ w < 1/7p) the Rouse
model of an ideal linear chain predicts G* and G* [Egs (8.49) and (8.50}]
scaling as 1/w [Eq. (8.51)].

(iii) What is the value of the loss tangent tan § in this intermediate frequency
range of the Rouse model?

8.15 (i) Starting from the exact Rouse stress relaxation modulus [Eq. (8.55)],
derive the exact expressions for storage and loss moduli of the Rouse

model
QS ul wrp
=kT— E 8.179
NB? =7 1 un:p) ( )
CD
G (w 8.180
) =kT-2 pz e (8.180)

with stress relaxation time of the p-th mode 7,= r/p” related to the
Rouse stress relaxation time tg of the chain [Eq. (8.18)].

(i) Demonstrate that the exact solution follows the asymptotic beha-
viour of Eq. (8.51), G’(u.:) G"(w)~w'? at intermediate fre-
quency scales 13! < w < 15", where the monomer relaxation time
is 7o = T/ N

(iiiy Compare the exact storage and loss moduli with the approximate ones
[Egs. (8.49) and (8.50}].

8.16 (i} Derive the approximate Zimm model predictions for G* and G” [Eqs

(8.67)and (8.68)] from the approximate Zimm stress relaxation modulus
[Eq. (8.64)].

(iiy Show that at intermediate frequencies (1/ty < w < l/7g} the Zimm
maodel for a linear po 2ymf:r in a f-solvent predicts G' and G" [Eqs (8.67)
and (8.68)] scale as w

(iii) What is the value of the loss tangent tan & in this intermediate frequency
range of the Zimm model?

8.17 What is the physical reason that the 2/3 exponent in Eq. (8.70} for sub-
diffusive Zimm motion is independent of solvent quality?

Section 8.5

8.18 In semidilute polymer solutions:

(i} Are hydrodynamic interactions important or screened?
(i) On which scales do Rouse and Zimm models apply for semidilute
unentangled solutions?

8.19 Derive a general expression for the viscosity of a blend of dilute long
chains with N5 monomers (with volume fraction ¢} in a matrix of shorter
chains of the same species, but with Ny monomers. Be sure to include both
the cases where the long chains swell (N > N3) and where they do not
(Na < NB)

8.20 What is the physical significance of the fact that the value of the stress
relaxation modulus at the relaxation time of a correlation blob G{z;) is
proportional to the osmotic pressure in semidilute solutions?
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8.21

8.22

(i} What is the prediction of the Rouse-Zimm model of semidilute
unentangled solutions for the stress relaxation modulus Gfr) at very
short times ¢ < 147

(iiy Show that the time integral of the stress relaxation modulus in
unentangled semidilute solutions over all time regimes {and therefore
the solution viscosity) is dominated by the longest relaxation time
[Eq. (8.93)].

Estimate the time dependence of the mean-square displacement of a
monomer in an unentangled semidilute solution.

i) For time scales s < 7., where 1, is the relaxation time of a chain section
insid lati ; | ¢
nside a correlation volume.
(i) For time scales 7 < 7 < Tengin, Where Tepgiy is the longest relaxation time
of the polymer.
(i) For time scales 7 > Tepain

Section 8.6

8.23

8.24

Consider a semi-flexible rod with Young's modulus £=10% Pa and cross-
section L, = L-= 1 nm. Estimate the Kuhn length of this rod at room tem-
perature. How does the Kuhn length change if the cross-section changes to
L,=L.=3nm?

Estimate the frequency dependence of the storage and loss modulus of
semiflexible chains at intermediate frequencies '« wa gl from
Eq. (8.117), keeping in mind that Young’s modulus is three times the
shear modulus (E(r) = 3G(2)). What is the value of the loss tangent tan § in
this intermediate frequency range?

Section 8.7

8.25

8.26

8.27

8.28

Derive the relation between WLF coefficients [B/fp and T, in Eq. (8.134)]

for two choices of the reference temperature Ty Hint: The Vogel tempera-

ture T, will not change when the reference temperature is changed, but

fo will change. *

(i) Estimate B/f, for high molar mass linear PVME melts from Fig. 8.16,

ignoring any modulus scale shift b7

(i) Estimate the value of the empirical constant B in the Doolittle equation
(8.130).

The relaxation time of a polybutadiene melt at room temperature
(298K) is 1s. Estimate the relaxation time of this melt at the glass
transition temperature using Table 8.3 and ignoring any modulus scale
shift.

If the temperature dependence of the free volume is assumed to be

B

/= (- T/ Ty

derive the following dynamic scaling expression for the temperature
dependence of viscosity:

9
%: (1;‘37 f) : (8.181)
[




Problems

8.29 (i) Determine the temperature dependence of the apparent activation
energy F, in the WLF equation [Eq. (8.134)] using the definition

d In{y/m0)
Ey=k—F—>="——. .
a a0, 7} (8.182)
(if) Show that the high temperature limit of the WLF activation energy is
Bk
Er=— (8.183)
Of

where of is the thermal expansion coefficient of the free volume
[Eg. (8.131}].

(iii) A typical value of this high-temperature limiting activation energy is
E..~50 kJmol'. By how much does the temperature need to increase
in the high temperature limit to have the viscosity decrease by a factor
of ten?

8.30 Polymer melts typically have their Vogel temperature 50K below their
glass transition temperature.

(i) Assuming that the fractional free volume f, = 0.025at 7,= T+ 30K
[Eq. (8.132)], what is the coefficient of thermal expansion for the free
volume?

(i) What is the fractional free volume at T, + 10K and at T, + 100 K?

{iii} How much do we need to raise the temperature to lower the viscosity by
a factor of 10 from its value at 7,7 Assume B=1.

(iv) Howmuch do we need to raise the temperature to lower the viscosity by a
factor of 10 from its value at 7, + 100 K? Assume B=1.

8.31 Assuming that the chain ends have more free volume than monomers in the
middle of the chain, derive the molar mass dependence of the glass tran-
sition temperature of polymer melts {Eq. (8.135)].
8.32* Demonstrate that the glass iransition temperature of ring polymers
decreases with increasing molar mass.
Hint: Consider the molar mass dependence of the entropy of ring polymers,

Section 8.8

8.33* Rouse model for polydisperse fractals

The arguments of Section 8.8 can be generalized to describe the relaxa-
tion modulus of any polydisperse mixture of fractal polymers with dis-
tribution function n(#), the number of A-mers per monomer. The
relaxation modulus has contribution k7 from each unrelaxed section of g
monomers at time ¢ = 7(g) [see Eq. (8.145}]. The number density of N-mers
is n(M)/b*. The mumber density of unrelaxed sections of g monomers con-
sists of contributions of /g from all chains with degree of polymerization
N>g

[T NN
G(r)~kT/g 5 N

Use this equation for a general polydisperse fractal polymer and the dis-
tribution function of Eq. (6.93) to rederive the Rouse stress relaxation
modulus of the melt randomly branched polymers found in the three-
dimensional percolation polymerization reactor [Eq. (8.147)). Hinr: Use
hyperscaling.

8.34 (alculate the stress relaxation modulus G(¢) for a polydisperse unentangled
melt of linear polymers with a power law distribution of chain lengths
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n(N)=AN "7, where A =1 — | is a normalization constant and = > 2 is the
pelydispersity exponent. Assume that all excluded volume and hydro-
dynamic interactions are screened.
8.35* Rouse model of randomly branched polymers
The full-time dependence of the stress relaxation modulus of randomly
branched unentangled polymers is best derived from the fractal dynamics
of Section 8.8 using the relaxation rate spectrum P(e):

G(1) = Ax P(e) exp{—et) de. (8.184)

(i) Show that the relaxation rate spectrum of a single branched polymer
between the relaxation rate of the linear section between branch points
¢, and the relaxation rate of the entire chain gy is

o 10=2D)
Ple)de ~ (;) di,

x 2

where D is the fractal dimension.
(ii) Show that the contribution to G(f) from one branched polymer with ¥
monomers is

b f oy 1042/D) de
GMI):/ (L> exp(wef}?

x AEx

(iii) Derive the stress relaxation modulus of the polydisperse ensemble of
randomly branched polymers by summing the response from each
molecule in the distribution using

¥
G(1) = Nn(N) Gn()dN,
Ny
where N, is the number of monomers between branch points, N* is the
characteristic degree of polymerization, and #{N) ~ N~ " is the number
density distribution function.

(iv) What is tacitly assumed in the calculation of part (iii)?

{(v) Determine the contribution to the complex moedulus of one branched
polymer from the result of part (ii).

(vi} Using an integration similar to part (iii), show that the complex
modulus of the polydisperse ensemble of randomly branched polymers
is

iw
—.ﬁ X
1= (Nx/ N* )T .

[ (/) e (N [ )/ de}
con w4+ e 3 N* ey w+e £

This form was used for the curves in Fig. 8.19.
8.36* The Rouse model (see the book by Doi and Edwards)

A polymer in the Rouse model is represented by a chain of N beads, each
with friction coefficient ¢, located at positions {Rl, Ri,..., Ry} and
connected by sprmgs with spring constant 3k77b°, where k is the Boltz-
mann constant, 7' is the absolute temperature and #* is the mean-square
unperturbed distance between neighboring beads. The f_r}ictional force due
to motion of the j-th bead through the solvent —{(d R;/dt) is balanced
by the surg of thi forces acting on g from the two neighboring beads
(3 T/b*)(Ry — R)) and (3kT/p")(R;oy — j) as well as the random
Brownian force f ;. This random force is assumed to be Gaussian with zero

G*(w) ~



Problems

average (?j} = 0 and with no correlations between different moments of
time nor between different components of the force. The mean-square
value of each component of the random Brownian force is related to the
friction coefficient ¢ of the beads by the fluctuation-dissipation theorem
and is equal to 2¢kT.

(i} Show that the continuum version of the equation of motion for the j-th

(i1)

(i)

(iv)

(v}

bead is

AR, 3KTHR, —»
“Efzb_E 312}+ff‘ (8.185)

with zero average and delta-function correlated random force
{fal0)fis(t)y = 2CkTH(f — )6,,86(r — ¢'), where f;, is the e-component
of the random force acting on bead j, §,4 is the Kronecker delta and
&(n — m) is the Dirac delta function.

The end beads are attached to the rest of the chain by only one spring and
these free ends can be modeled by adding two hypothetical beads at both
ends (=0 and j= N+ 1) with their positions coinciding with those of
real end beads ( Ry = Ry and Ry, = Ry). Show that the boundary
cenditions in the continuum limit become GR;/8f =0 for j=0 and
=N,

The motion of beads is directly coupled to the neighboring beads
through the springs, reflected by the presence of the second derivative of
bead position vector in the equation of motion for the Rouse model
(Eq. 8.185). It 1s easier to solve this equation in terms of uncoupled
variables, called normal modes. Normal modes for the Rouse model are
defined by the cosine transform of the real coordinates

N -
Y, = %{ /0 cos(%) Rdy (8.186)

Demonstrate that the Rouse equations for different normal modes are
decoupled from each other with the form

5? - -3
gpa—t”:gk,,xp+ o (8.187)

where kp=67r2kTp2f(Nb2) and the friction coefficient of zeroth mode
(corresponding to the center of mass position) is the friction of the whole
chain {p = N¢, while the friction coefficient of all other normal modes is
twice as large {, =2N(forp=123,.. how that the average cosine
transform of the random force is zero { = 0, while its correlation
function s {f,.(0)f,a(t')) = 20,k T8 b0 ja” 1~ 1), where f,, is the
a-component of the random force acting on mode p.

Prove that the time correlation function of each normal mode decays
exponentially with time

¢

(Ko ()X g8(0}) = Opgboz geXp (f %) (8.188)
? Tp
where the times 7, = tr/p*and 1, = 7 is the Rouse stress relaxation time
of the chain {Eq. 8.18).
Show that the end-to-end vector of the ¢ chain can be expressed as the sum
over odd normal modes R = Ry — Ry = —4 3 ?j,, and therefore its

time correlation function is odd p
N R U | r
<R(:). R(0)> = —Nb Zp—zexp(—ﬁt) (8.189)

odd p
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{(vi) The polymericcontribution to stress can be expressed as the sum over all
menomers in the polymer o,5= — ¢/(Nb*) > A FiaRya), where ¢_L(Nb3)
is, the number density of the chains and Fj, = (BET/B*Y R+
R; 1 —2R;) is the force acting on the j-th monomer from other
monomers. Demonstrate that the polymeric contribution fo the stress
can be written in the continuum limit and expressed in terms of normal
modes as

@ 3kT/N aRJ.a 8Rj-3 . @ N
(] T ——— i i —__r X aX .1
Gad NB B, 8 o dj NE ka< paXy3) (8.190)

i=t

Calculate the stress relaxation modulus of the Rouse model (Eq. 8.55)
by showing that after a small step shear strain - at time =0 the
correlation function of normal modes decays as {X,(NX, (1)} =
(vkTik,) exp (—t/zy).

Section 8.9

8.37 Does the diffusion coefficient measured in dilute solution using Eq. (8.156)
rely on proper instrumental calibration to get the absolute intensity?

8.38 The correlation length in semidilute solution can be experimentally deter-
mined by measuring the diffusion coefficient of very dilute colloidal spheres
of various sizes, provided that the spheres do not interact with the
polymers. Consider diffusion of a non-interacting sphere in a semidilute
unentangled solution.

(iy What equation determines the diffusion coefficient D of the sphere, if
the sphere radius R is much smaller than the correlation length?
(i) What equation determines the diffusion coefficient of the sphere, if it is
much larger than the chain size?
(iii) Sketch the dependence of the product of sphere diffusion coefficient
and sphere radius (DR) on sphere radius and explain how such a plot
can be used to estimate the correlation length.

8.39* (alculate the Rouse model prediciion for the dynamic structure factor for
gels in the gelation regime.
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Entangled polymer
dynamics

9.1 Entanglements in polymer melts

The Edwards tube model of polymer entanglements was already discussed
in Section 7.3.1. The topological constraints imposed by neighbouring
chains on a given chain restrict its motion to a tube-like region (see Fig. 7.10)
called the confining tube. The motion of the chain along the contour of
the tube (the Primitive path) is unhindered by topological interactions.
Displacement of monomers in the direction perpendicular to the primitive
path is restricted by surrounding chains to an average distance ¢, called the
tube diameter. The number of Kuhn monomers in a strand of size equal to
the amplitude of transverse fluctuations (the tube diameter) is N,, the
number of monomers in an entanglement strand. For melts, excluded
volume interactions are screened (see Section 4.5.2) and the tube diameter
is determined by ideal chain statistics:

a~by/Ne. (9.1)

The tube can be thought of as being composed of N/N, sections of size a,
with each section containing N, monomers. The chain can be considered as
either a random walk of entanglement strands (N/N, strands of size ) or a
random walk of monomers (N monomers of size b).

Rwa\/leb\/ﬁ (9.2)

The average contour length (L} of the primitive path (the centre of the

confining tube, see Fig. 7.10) is the product of the entanglement strand

length a and the average number of entanglement strands per chain N/N,.
N bN _bN

Dmag—— 9.3

(I mag =~ 93)

The average primitive path contour length (L) is shorter than the contour
length of the chain AN by the factor a/b == /N, because each entanglement
strand in a melt is a random walk of N, Kuhn monomers.

One manifestation of entanglement in long chains (N3 N,) is the
appearance of a wide region in time (or frequency) where the modulus is
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almost constant in a stress relaxation (or oscillatory shear) experiment.
In analogy with crosslinked rubbers, this region is referred to as the rubbery
plateau, and the nearly constant value of the modulus in this plateau regime
is called the plateau modulus G.. In analogy with an affine network, whose
modulus is of order &T per network strand [Eq. (7.31)], the plateau
modulus is of order kT per entanglement strand [Eq.(7.47)]. The number-
average molar mass of an entanglement strand is called the entanglement
molar mass M.. The occupied volume of an entanglement strand with
molar mass M, in a melt with density p is the product of the number of
Kuhn monomers per strand N, and the Kuhn monomer volume vy

Me vaN. LIZ Vo
= e RV —= 2 —
oNaw 0 Opz T B3

a*h. (9.4)

Since monomers are space-filling in the melt, the number density of
entanglement strands is just the reciprocal of the entanglement strand
volume, leading to a simple expression for the plateau modulus of an
entangled polymer melt [Eq. (7.47)].

pRT kT P kT
Me NVQNSNVOsz.

Ge = (9.5)

The number of chains 2, within the confinement volume &’ is deter-
mined from the fact that monomers in the melt are space-filling:
@& b

. R — . 9.6
veNe v Ne 5:6)

Table 9.1 shows N, and P, calculated from the measured platean modulus.
All flexible polymers have P.220 overlapping entanglement strands
defining the entanglement volume &, which is the overlap criterion for
entanglement in polymer melts.

Table 9.1 Entanglement parameters for flexible linear polymer melts

Polymer G. (MPa) M.gmol™'y N. b(A) a(A) vwA) P
Polyethylene at 140°C 2.60 1000 7 14 36 320 21
Poly{ethylene oxide} 1.80 2000 15 1 40 20 21
at 140°C
1,4-Polybutadiene at 25°C 1.15 1900 18 10 41 190 19
Polypropylene at 140°C 0.47 5300 32 11 62 380 20
1,4-Polyisoprene at 25°C 0.35 6400 56 82 62 210 20
Polyisobutviene at 25°C 0.32 7100 26 13 64 500 20
Polydimethylsiloxane 0.20 12000 32 13 74 650 20
at 25°C
Polystyrene at 140°C 0.20 17 000 23 18 85 1200 22
Polyvinylcyclohexane 0.068 49 000 81 14 130 1100 22

at 160°C
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9.2 Reptation in polymer melts

At first glance, understanding the motion of a polymer in the melt
is daunting. Since roughly +/N other polymers share the pervaded volume
of a given chain in the melt, chain motion appears to be a difficult many-
body problem. However, by utilizing the Edwards tube concept, de
Gennes cleverly reduced this many-body problem to the motion of a
single chain confined to a tube of surrounding chains. Models that con-
sider chain motion as being restricted to a tube-like region are referred to
as fube models. The simplest tube model was proposed by de Gennes in
1971 for the motion of linear entangled polymers, and is called the reptation
model.

921 Relaxation times and diffusion

In de Gennes’ reptation model, an entangled chain diffuses along its
confining tube in a way analogous to the motion of a snake or a worm (see
Fig. 9.1). This motion of the chain consists of diffusion of small loops,
along the contour of the primitive path. This curvilinear motion of a
polymer along its tube satisfies the topological constraints imposed by
surrounding chains and is characterized by the Rouse friction coefficient
NC. The curvilinear diffusion coefficient D, that describes motion of the
chain along its tube is simply the Rouse diffusion coefficient of the chain
[Eq. (8.12)].

kT

De=—.
[+ NC

(9.7)

The time it takes for the chain to diffuse out of the original tube of average
length (L) is the reptation time:

2 3
~ & ~C_b2N3—<b2N2(N) . (9.8)

T, ~ o~ —_ -
T D, T kTN, kT C\N,

Here, Eq. (9.3) was used for the average contour length of the tube. The
reptation time 7, is predicted to be proportional to the cube of the molar
mass. The experimentally measured scaling exponent is higher than 3:

T~ M, (9.9)

We will discuss the possible reasons for the disagreement between the
simple reptation model and experiments in Section 9.4.5.

The first part of the final relation of Eq. (9.8) is the Rouse time of an
entanglement strand containing ¥, monomers:

bZ
Te 72 %c_jf_'Nz

e’

(9.10)
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Fig. 9.1

Reptation steps: (a) formation of a loop
at the tail of the snake and efimination of
the tail segment of the confining tube:
{b) propagation of the loop along the
contour of the tube; (c) release of the
loop at the head of the snake and
formation of a new section of the
confining tube.
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Fig.9.2

Molar mass dependence of the diffusion
coefficient for melts of hydrogenated
polybutadiene at 175°C. Data compiled
in T. P. Lodge Phys. Rev. Lert. 83, 3218
{1999).

Entangled polymer dynamics

The ratio of the reptation time 7., and 7. is the cube of the number of
entanglements along the chain:

Trep (ﬁ)a, (9.11)

T Ne

The chain moves a distance of order of its own size R in its reptation time
Trep, SiNCE this is the time scale at which the tube is abandoned:

R* kTN,
Doy e — ——, 9.12

o trep C NZ ( )
The diffusion coefficient of entangled linear polymers is predicted to be
reciprocally proportional to the square of the molar mass, which also
disagrees with experiments, as shown in Fig. (9.2):

2
D= RT ~ M2, (9.13)

9.2.2  Stress relaxation and viscosity

The reptation ideas discussed above will now be combined with the
relaxation ideas discussed in Chapter 8 to describe the stress relaxation
modulus G(¢) for an entangled polymer melt. On length scales smaller than
the tube diameter g, topological interactions are unimportant and the
dynamics are similar to those in unentangled polymer melts and are
described by the Rouse model. The entanglement strand of N, monomers
relaxes by Rouse motion with relaxation time . [Eq. (9.10)]:

Te = T[]Ng. (9.14;

The Rouse model predicts that the stress relaxation modulus on these short
time scales decays inversely proportional to the square root of time
[Eqg. (8.47)]:

—1/2
t

G(5) = Gy (r) for 7p < ¢ < 7. (9.15
0

The relaxation time of the Kuhn monomer 7 is the shortest stress

relaxation time in the Rouse model, given by Eq. (8.56) with p=N:
NG

= =, 9.16

T 6nkT kT ©.16)

The stress relaxation modulus at 1 is the Kuhn modulus (k7 per Kuhn
monomer}:

G[)%G(TO)EE. (9]7)
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Consider for example, a melt of 1,4-polybutadiene linear chains with
M=130000gmol™'. The molar mass of a polybutadiene Kuhn
monomer is My=105gmol™"' (see Table 2.1) so this chain has ¥N=
MMy = 1240 Kuhn monomers. At 25°C, this polymer is 124 K above its
glass transition and its oscillatory shear master curve is shown in Fig. 9.3.
The time scale for monomer motion is to 22 0.3 ns, An entanglement strand
of 1,4-polybutadiene has molar mass M, = 1900 gmol™! (see Table 9.1)
and therefore contains N, = M./M,=18 Kuhn monomers. The whole
chain has N/N.=M/M,=068 entanglements. The Rouse time of the
entanglement strand 7,2 0.1 us [Eq. (9.16)].

At the Rouse time of an entanglement strand t., the chain ‘finds out’ that
its motion is topologically hindered by surrounding chains. Free Rouse
motion of the chain is no longer possible on time scales ¢ > te. The value of
the stress relaxation modulus at 7, is the plateau modulus G., which is kT
per entanglement strand [Eq. (9.5)]:

Ge kT

Ge=Glre) =3 =7 (9.18)

The Rouse time of the chain is Tp = 0.5ms:

N

2
wm=noMN =1 (Kf) : (9.19)
=

In the simple reptation model, there is a delay in relaxation (the rubbery
plateau) between 7, and the reptation time of the chain 1, [Eq. (9.11)]. By
restricling the chain’s Rouse motions to the tube, the time the chain takes
to diffuse a distance of order of its size is longer than its Rouse time by a
factor of 6 A/N.. This slowing arises because the chain must move along the
confining tube. The reptation time of the chain 7 = 0.2s is measured
experimentally as the reciprocal of the frequency at which G'=G" in
Fig. 9.3 at low frequency (see Problem 9.8). In practice, this time is
determined experimentally and o, T, and tgr are determined from z.p.
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Fig.9.3

Master curve at 25°C from oscillatory
shear data at six temperatures for a

1. 4-polybutadiene sample with

M, = 120000 g mo! L. Data from

R. H. Celby, L. J. Fetters and

W. W. Graessley, Macromolecules 20.
2226 (1987).
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Fig.9.4

Schematic representation of the stress
relaxation modulus of entangled linear
polymers on jogarithmic scales.

Entangled polymer dynamics

The stress relaxation modulus is summarized schematically in Fig. 9.4.
For long linear chains, the rubbery plateau can span many decades
in time.

The diffusion coefficient of the chain is controlled by the reptation time
[Eq. (9.12)]. The linear polybutadiene chain with M =130 0(]0 gmol‘ has
N=1240 Kuhn monomers, with Kuhn length 6=10 A and coil size
R = bv/N = 350 A. Since linear polymers move a distance of order their
own size in their reptation time, the reptation time of rrep ~{).2s at

25°C enables estimation of the diffusion coefficient D~ R /rrep_ 6x
107 m?s !, Physically, this means that at 25 °C this polybutadiene chain
moves about 350 A in a random direction every 0.2s.

The stress relaxation modulus in the reptation model is proportional
to the fraction of original tube remaining at time ¢ (see [ig. 9.1). As time
goes on, sections of the original tube are abandoned when the chain end
first visits them. Such a problem is called a first-passage time problem.
The stress relaxation modulus G(¢) for the reptation model was calculated
by Doi and Edwards in 1978 by solving the first-passage problem for the
diffusion of a chain in a tube (see Problem 9.6):

2

Gl -6 exp(—P—t). (9.20)

g odd p Trep

The longest relaxation time in this model is the reptation time required
for the chain to escape from its tube

N3 LAY N
Trep = 6'-'.'0—1;\]-: = 61'3 (E) = 61’1{? (921)

where the Rouse time 7 is the longest relaxation time of the Rouse model
[Eq. (8.18)], which is half the end-to-end vector correlation time.

The main contribution’ comes from the first mode p = Iand the function
is almost a single exponential [Eq. (7.111)]:

G{1)  Ge exp(~1/Trp). 9.22)

The Doi-Edwards equation [Eq. (9.20)] is the first attempt at a molecular
model for viscoelasticity of entangled polymers. It ignores tube length
fluctuation modes that relax some stress on shorter time scales. These
modes significantly modify dynamics of entangled polymers, as described
in Section 9.4.5.

The reptation model prediction for the viscosity of an entangled polymer
melt is determined by integrating Eq. (9.20):

o 8 B Pt 7
W:L G(1) dr=ﬁzGeZF/0 exp<——> df = 5 GeTrp- (9-23)

add p Trep

! Fraction 8/n° of the terminal relaxation is associated with the first mode with relaxation
time Tgp (see Problem 9.7).
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The final result was obtained from the fact that 3~ 1/p* = 7%/96. Since
oddp

the stress relaxation is nearly a single exponential, the scaling prediction of
the viscosity as the product of the plateau modulus [Eq. (9.5)] and the
reptation time [Eq. (9.8)] is nearly quantitative:

kT CHIN? 3 2 p3
NY C”_ME)NQ__ .24

1
= Ge ep Ge el ar | ™ ~ .
17 Detrep = et (N) voNe kT (NE, vo N2

e

The viscosity of a polymer melt is predicted to be proportional to molar

mass for unentangled melts (the Rouse model) and proportional to the

cube of molar mass for entangled melts (the reptation model}.
M forM< M,

7 { M for M > M. (9:25)

As Fig. 8.17 shows, the critical molar mass M. for entanglement effects in
viscosity [defined in Eq. (8.136)] is typically a factor of 2-4 larger than the
entanglement molar mass M, [defined in Eq. (9.5)]. As shown in Fig. 9.5,
the exponent in the entangled regime is =3.4 for all linear entangled
polymers, This exponent is significantly larger than the prediction of 3 by
the simple reptation model [Eq. (9.24)]:

&2 Gt ~ M4, (9.26)
The deviations from the 3.4 power law at low molar masses (M < M) are
because those chains are too short to be entangled (see Section 8.7.3). The
deviations at very high molar mass are consistent with a crossover to pure
reptation (see Section 9.4.5).

The simple reptation model does not properly account for all the
relaxation modes of a chain confined in a tube. This manifests itself in all
measures of terminal dynamics, as the longest relaxation time, diffusion
coefficient and viscosity all have stronger molar mass dependences than the
reptation model predicts. In Sections 9.4.5 and 9.6.2, more accurate ana-
lytical and numerical treatments of this problem are given with results that
are in reasonable agreement with the experimental dependence of terminal
dynamics on the molar mass of the chain [Egs (9.9), (9.13), and (9.26)].

9.3 Reptation in semidilute solutions
2.3.1

Consider a semidilute solutiocn with polymer volume fraction ¢. The
concentration dependence of the correlation length was discussed in
Chapter 5:

Length scales

&~ b/l (9.27)
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Fig.9.5

Molar mass dependence of viscosity
for polymer melts reduced by their
critical molar mass. Open circles

are polyisobutylene with
M.=14000gmol™", from T. G. Fox
and P. ). Flory, J. Am. Chem. Soc. 70,
2384 (1948) and J. Phys. Chem. 55, 221
(1951). Open squares are polybutadiene
with M, = 6700 gmoi~?, from

R. H. Colby et al., Macromolecules 20,
2226 (1987). Open triangles are
hydrogenated polybutadiene with

M. =8100 gmol", from D. S. Pearson
et al., Macromolecules 27, 711 (1994).



368

D)

X2
AN

)
%
%

L)
(A

)
TG
D

Fig.9.6

The confining tube in a semidilute
solution. Thick circles are the
correlation blobs of the chain. Thin
empty circles are the correlation biobs
of surrounding chains.

Entangled polymer dynamics

In an athermal solvent the exponent 1222 0.588 and the correlation length
decreases with concentration as £xbg "¢, while in a #-solvent the
exponent v = 1/2 and the correlation length has a stronger concentration
dependence £ bo ' [Eq. (5.52)]. The number of monomers g in a cor-

relation volume {3 was also determined in Chapter 5 [Eq. (5.24)]:

3
g%%z A (9.28)

In an athermal solvent, the number of monomers in a correlation volume
decreases with concentration as gm ¢~ !, while in a ésolvent a
stronger concentration dependence is expected with g~ ¢, The chain is
always a random walk of correlation blobs, with end-to-end distance R
[Eq. (5.26)]:

AN 12
R =~ 6(-) - bNI/qu—(Zu-l)/(Gu—Z). (929)
4

In a good solvent, the chain size decreases with concentration as
R~bN"?¢7%12, In a @-solvent (= 1/2) there is no concentration depend-
ence of chain size, as the chain is nearly ideal at all concentrations
R~bN'2,

To understand the dynamics of entangled solutions, another length
scale, the tube diameter @, must be specified. Just as in the melt, the con-
finement volume & must contain multiple chains. Entanglements between
chains are controlled by binary intermolecular contacts. In the athermal
solvent limit, the number density of binary intermolecular contacts is
proportional to the reciprocal of the correlation volume £7° ~ ¢**/0 = D,
and the distance between binary contacts is the reciprocal cube root of this
number density & ~ ¢~*"** =1, Hence, the correlation length describes the
distance between binary intermolecular contacts. The rube diameter a in an
athermal solvent is proportional to, but larger than, the correlation length &:

a(9) = a(1)¢™/% "V = a(1)¢™°"  for an athermal solvent.  (9.30)

The tube diameter in the melt, a(1) = b\/m, is given by Eq. (9.1) in
terms of the number of Kuhn monomers in an entanglement strand in the
melt N, (1). Notice that a (1) 3> b, which makes a > £ at all concentrations.
Since the chain is a random walk of correlation blobs on scales larger
than &, the entanglement strand is a random walk of correlation blobs, as
depicted in Fig. 9.6.

In a #-solvent, the correlation length is determined by ternary contacts
between chains (see Section 5.4). This is because the effects of binary
contacts on the free energy (or osmotic pressure) exactly cancel at the
f-temperature. The solvent-mediated energetic interaction between
monomers exactly compensates for the hard core repulsion at the
f-temperature. Binary contacts between chains still occur, they simply have
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no effect on the free energy, and this directly leads to nearly ideal chain
statistics at all concentrations in a f-solvent, and the applicability of mean-
field theory. However, binary contacts still control entanglements between
chains. The number density of space-filling correlation volumes in a
#-solvent is given by the mean-field result £~ ¢°. The same mean-field
ideas determine the number density of binary intermolecular contacts to
be proportional to #”. Just as in the good solvent, the average distance
between binary contacts is given by the reciprocal cube root of this number
density, and in a #-solvent the distance is proportional to qﬁ*m. Once again,
we expect the tube diameter to be proportional to, but larger than, the
distance between binary contacts:

a(¢) = a(1)¢p™** for a O-solvent. (9.31)

The length scales &, a, and R are plotted as a function of concentration for a
typical good solvent in Fig. 9.7. All three length scales change their con-
centration dependences from athermal to ideal at the concentration
¢** =~ v/b” separating semidilute and concentrated solutions.

9.3.2 Entanglement concentration

The concentration at which the correlation length £ is of the order of the
coil size R~ bN" is the overlap concentration ¢*, given by Eq. (5.19):

Nb? i
or o NI (9.32)
In an athermal solvent ¢* ~ N "7%, while in a #-solvent ¢* ~ N2
The concentration at which the tube diameter @ [from Egs (9.30)
or {9.31)] equals the coil size R [Eq. (9.29)] is the entanglement concen-
tration ¢

bo ~ N1/ N7 [Ne(1)/N*™ for an athermal solvent,
T\ (1) /Bf N & [N(1) /NP for a f-solvent,
(9.33)

where N (1) is the number of Kuhn monomersin an entanglement strand in
the melt. Note that the predictions for both solvents are very similar.
For &> ¢,, entanglement effects control chain dynamics and the
reptation model must be used as described below. Between the overlap
concentration and the entanglement concentration (¢* < ¢ <), the
solution is semidilute but not entangled, and the unentangled solution
model of Section 8.5 describes dynamics. The width of this semidilute
unentangled regime is given by the ratio of Eqs (9.33) and (9.32):
Se { [N = [N(1))™™  for an athermal solvent, (9.34)
o* L {[Ne(1)]4)/ N1 for a #-solvent. '
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Chain size R, tube diameter ¢, and
correlation length £ in a good solvent.
The semidilute unentangied regime is
&* < ¢ < b the semiditute entangled
regime is ¢, < ¢ < ¢** and; the
concentrated regime is ¢** < @< 1.
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Dilution effect on the platean modulus
of linear polymers. Filled diamonds
are polystyrene in cyclohexane at
34.5°C (8-solvent), open squares are
polystyrene in benzene at 25 °C (good
salvent), filled circles are polybutadiene
in dioctylphthalate at 25°C (near
#-salvent) and open triangles are
polybutadiene in phenyloctane (good
salvent}. PS data from M. Adam and
M. Delsanti, J. Phys. France 4, 1185
(1983); 45, 1513 (1984). PB data from
R. H. Colby et al., Macromolecules 24,
3873 (1991).
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Table 9.1 shows that the number of Kuhn monomers in an entanglement
strand in the melt state varies over a wide range (7 < N.(1) < 80) making
4 < ¢be/p* < 30 for solutions in an athermal solvent. Since the entanglement
concentration ¢, cannot be lower than the overlap concentration ¢*, the
expressions for a #-solvent [Eqgs (9.31), (9.33), and (9.34)] are valid for
N <[N(DJ. This condition is not very restrictive and it is satisfied for all
experimental studies to date.

93.3 Plateau modulus

Owing to the fact that the tube diameter is always larger than the cor-
relation length (@3> £), the entanglement strand is a random walk of
correlation volumes in any solvent:

Ne
=€y —, 9.35
" (9.35)

where N./g is the number of correlation volumes per entanglement sirand.
The above relation can be solved for the concentration dependence of the
number of monomers in an entanglement strand:

2
a ¢ /3= for an athermal solvent

e == - =z e ’ 936
Ne(o) g(§) N (1){ o3 for a #-solvent. ( )

The two predictions are nearly identical, since 1/(3v — 1) 1.3,

The occupied volume of an entanglement strand is £ N.jg~a’¢. Since
the correlation volumes are space-filling in solution, the number density of
entanglement strands is simply the reciprocal of this volume. Analogous to
Eq. (9.5), the plateau modulus of an entangled polymer solution is once
again of the order of £T per entanglement strand,

(¢) = k_T ~ kT¢ ~ G.(1) ¢3”f (3»=1}  for an athermal solvent,
° @t BINA(o) ¢ @' for a f-solvent,

(9.37)

where G.(1) is the plateau modulus of the melt, given by Eq. (9.5). The
predictions for athermal and #-solvents are essentially the same {the con-
centration dependence exponents are = 2.3 in both cases). This interesting
result is experimentally confirmed, as shown in Fig. 9.8.

93.4 Relaxation times and diffusion

Topological constraints do not influence polymer motion on length scales
smaller than the size of an entanglement strand. In entangled polymer
solutions, chain sections with end-to-end distance shorter than the tube
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diameter @ move as they would in an unentangled solution. On length
scales smaller than the correlation length £, hydrodynamic interactions are
not screened. As with unentangled chains, the relaxation time r; of the
strand within each correlation volume is determined by the Zimm result
[Eq. (8.79)]:

3 3
s s b (AN (EN e
Tg /2 kT =~ 5T (b) = Tn (b ~ ngﬁ . (938)

On length scales larger than the correlation length £ but smaller than the
tube diameter a, hydrodynamic interactions are screened, and topological
interactions are unimportant. Polymer motion on these length scales is
described by the Rouse model. The relaxation time 7. of an entanglement
strand of N, monomers is that of a Rouse chain of N./g correlation
volumes [Eq. (8.76)]:

2
o (NeN 2 [ ¢/ for an athermal solvent,
fe e (:;,r_) = 7ol Nel1]] { ¢ for a d-solvent.

(9.39)

On length scales larger than the tube diameter, topological interactions are
important and the motion is described by the reptation model with the
chain relaxation time given by the reptation time:

A3 NN/ NY

Trep ~ Te (E) =T (%) (?) (Nc) . (9.40)

Using Egs (9.27), (9.28), and (9.36) transforms this into a simple relation
for the concentration dependence of the reptation time:

N {¢3(1v1/(3v1) for an athermal solvent, (9.41)

R Tg——
e A TATIR UL for a 0-solvent.

The reptation time has a considerably weaker concentration dependence in
athermal solvent than in #-solvent, since 3(1 — )/(3v — 1) =2 1.6. Note that
Eq. (9.41) reduces to Eq. (9.20) when ¢ =1.

The diffusion coefficient in semidilute polymer solutions is determined
from the fact that the chain diffuses a distance of order of its own size in its
reptation time:

D

R BN {qﬁ‘(z"’)/””” for an athermal solvent, (9.42)

N Trep - 79 N? 773 for a f-solvent.

The reptation prediction of the concentration dependence of diffusion
coefficient in athermal solvent is slightly weaker than in #-solvent, since
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Fig.9.9

Schematic representation of the stress
relaxation modulus of an entangled
polymer solution in an athermal soivent
on logarithmic scales.
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(2 — v)/(3v — 1) = 1.85. Figure 8.9 already showed that there is a low con-
centration regime that is semidilute but unentangled that is described by
Eq. (8.85). That regime persists for roughly one decade in good solvent, as
expected by Eq. (9.34). Above the entanglement concentration ¢., the
athermal solvent prediction of Eq. (9.42) applies for a range of con-
centration (see Fig. 8.9). At still higher concentrations, an even stronger
concentration dependence is noted for the two highest concentrations
in Fig. 8.9, consistent with the #-solvent scaling prediction of Eq. (9.42) in
concentrated solution (for ¢ > ¢**):

¢ 9 for ¢* < ¢ < ¢,
D~ ¢71% for g < ¢ < 9™, (9.43)
¢~ for ¢*F < p < 1.

9.3.5 Stress relaxation and viscosity

There are three different regimes of polymer dynamics on three different
length and time scales for an entangled polymer solution in an athermal
solvent. The stress relaxation modulus of such a solution is shown
in Fig. 9.9. Two of the regimes are identical to those discussed in
Section 9.2.2 and the other regime was discussed in Section 8.5,

Between 1g and the relaxation time of a correlation blob 7., both static
and dynamic properties are similar to those in a dilute solution. Hydro-
dynamic interactions are important and dynamics of these small sections
of chains are described by the Zimm model. The stress relaxation
modulus on time scales between tp and 1, is similar 1o the Zimm result
for unentangled solutions discussed in Section 8.5 [Eq. (8.88)]. The
stress relaxation modulus decays with time as a power law with exponent
—1/(3%). This time dependence is (¢} ~ %% in a good solvent with Flory
exponent »=0.588 and is G(f)~ t*" in a f-solvent. The stress relaxation
modulus in this regime decays from the Kuhn modulus Gy (kKT per
Kuhn monomer) to the osmotic pressure I [k7 per corrélation blob, see
Eq. (8.89)].

On intermediate length scales between the correlation length £ and the
tube diameter @, hydrodynamic interactions are screened and topological
interactions are not important. The dynamics on these intermediate scales
(for 1¢ < r< 1) are described by the Rouse model with stress relaxation
modulus similar to the Rouse result for unentangled solutions [Eq. (8.90)
with the long time limit the Rouse time of an entanglement strand t.]. At z,,
the stress relaxation modulus has decayed to the plateau modulus G, [kT
per entanglement strand, Eq. [(9.37), see Fig. 9.9}]. The ratio of osmotic
pressure and plateau modulus at any concentration in semidilute solution
in athermal solvents is proportional to the number of Kuhn monomers in
an entanglement strand in the melt. In #-solvents this ratio is considerably
smaller and concentration dependent:

o 2
o (a) » { Ne(1) for an athermal solvent, (9.44)

G. \¢& Ne(1)¢?/*  for a -solvent.
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At the Rouse time of an entanglement strand t,, the chain in semidilute
solution ‘finds out’ that it is trapped in the confining tube. The stress
relaxation modulus between 7. and the reptation time Ty, is almost con-
stant and equal to the plateau modulus (see Fig. 9.9). At the reptation time
[Eq. (9.41)], the stress relaxation modulus decays to zero exponentially
[Eq. (9.22)].

The polymer contribution to the viscosity of an entangled polymer
solution is estimated as the product of the plateau modulus [Eq. (9.37)] and
the reptation time [Eq. (9.41)]:

A {¢3/(3u1)
P Lo

for an athermal solvent,

— 1 & GoTrop =
T erep for a #-solvent.

(9.45)

The concentration dependence of viscosity is 77~ #°? in an athermal solv-
ent with Flory exponent v=0.588 and 7~ ¢"7 in a f-solvent. The
14/3 = 4.7 exponent is demonstrated for poly(ethylene oxide) in water at
25.0°C in Fig. 8:11. There are two different scaling regimes for the specific
viscosity in an athermal solvent, corresponding to unentangled and
entangled semidilute solutions:

fOl‘ ¢* <¢<¢ea

(9.46)
for ¢ < ¢ < 1.

| @ie%) /D
B (o) D N (1))

Data for different molar masses of the same polymer species combine
into a single plot in good solvent [Fig. 9.10(a)] if specific viscosity
nsp = (1 —1s)/ms is plotted as a function of reduced concentration o/p*.
This simple data collapse works in a good solvent because the correlation
length and the tube diameter are proportional to each other, with the same
concentration exponenis. The line in Fig, 9.10(a) has the slope of 3.9
expected by Eq. (9.46) for semidilute entangled solutions.

In a f-solvent, the correlation length £ and the tube diameter a have
different concentration dependences [£=bo¢ !, Eq. (9.27), with v=1/2
and a~a (1) 27, Eq. (9.31)]. The simple plot of relative viscosity
n/ns vs. ¢j¢* will only collapse data for different molar masses in unen-
tangled solutions, but not in entangled solutions in a #-solvent.

for ¢* < ¢ < e,

for ¢ < ¢ < 1. (5.47)

o { /%)’
P U a/oM) PN N

Construction of a reduced data plot for the viscosity of entangled solutions
of a given type of polymer in 6-solvents requires plotting nsp/NZ/3 as a
function of reduced concentration, as demonstrated in Fig. 9.10(b). This
complicated form of data reduction is a direct consequence of the two
length scales @ and £ having different concentration dependences in
g-solvent. The line in Fig. 9.10(b) has the slope predicted by Eq. (9.47).
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Concentration dependence of viscosity
in semidilute solutions of polystyrene at
35°C. (a) Solutions in the good solvent
toluene have ¢/¢* reduce data for
different molar masses to a universal
curve, using data from M. Adam and
M. Delsanti, J. Phys. France 44, 1185
(1983). (b) Solutions in the f-sclvent
cyclohexane must have specific viscosity
divided by N*” for ¢/¢* to reduce data
to a unjversal curve, using data from
M. Adam and M. Delsanti, J. Phys.
France 45, 1513 (1984).

Open triangies are M = 171 000 gmol”~ !
filied triangles are A =422000gmol .
open circies are M = 1260000 gmol ™.
filled circles are M =2 890000 g mol~'.
open squares are M = 3 840 000 g mol™ !,
filled squares are M =6 770 000 g mol™ "
and open inverted triangles are
M=20600000 gmol ",
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Fig 2.1

Frame {2) shows a two-dimensional
model of a chain in a permanent
entanglement network: a giant snake in
a forest. Frame (b) shows two students
recling-in the ends of the snake to
construct the primitive path.

Fig.9.12

A long-exposure photograph of the
giant snake in the forest clearly defines
its confining tube.

Entangled polymer dynamics

The entangled viscosity data in both good solvent and f-solvent show
stronger concentration dependences than predicted by the simple reptation
model. The steeper experimental slopes are consistent with the additional
relaxation modes discussed in Section 9.4.5 (see Problem 9.14),

In order to construct a universal plot for the viscosity of all entangled
polymer solutions in a given class of solvent it is necessary to also multiply
the ordinates of Fig. 9.10 by [N(1)]* because different polymers have
different numbers of Kuhn monomers in their entanglement strands in the
melt (see Table 9.1). Such universal plots have indeed been constructed
successfully in the literature.

9.4 Dynamics of a single entangled chain
9.4.1 Chain in an array of fixed obstacles

Chains in polymer melts and entangled polymer solutions form an effective
entanglement network. Since chains in melts and solutions are free to
diffuse, the entanglements they form with their neighbours are temporary
and have finite lifetime. Any given chain can disentangle from its neigh-
bours by its own motion (reptate away) or by the motion of its neighbours.
Effects of the motion of surrounding chains on the dynamics of a given
chain will be discussed in Section 9.5.

A simple case to consider first is a single chain diffusing through a net-
work, where the network only imposes permanent topological obstacles’
that retard the motion of the chain. Consider an ideal chain in an array of
fixed topological obstacles. A two-dimensional schematic representation
of this problem, a giant snake in a forest, is presented in Fig. 9.11a. The
snake randomly meanders through the forest and each of its conforma-
tions are assumed to be as likely as any other (an ideal snake). If the snake
gets tired of being in a certain conformation, it is difficult for it to get into a
completely different one because of the trees in the forest. These trees
constrain this poor reptile to move primarily along its contour. Sideways
excursions, although possible, put the snake into uncomfortable con-
formations with loops. The topological constraints imposed by the trees
determine that the preferred path for the motion of the snake is along the
confining tube.

The primitive path is the centre line of the confining tube. It can be
visualized by hiring one smart student and one brave student to reel in the
snake at its ends (Fig. 9.11b). The final contour of the snake, when pulied
taut, is the primitive path—the shortest path with the same ‘topology’ as
the original conformation of the snake. A long-exposure photograph of the
wiggling snake, taken by a curious student, depicts the whole confining
tube in Fig. 9.12.

The reptation model assumes the contour length of the primitive path
is fixed at its average value (L). In reality, the primitive path length

2 Real networks can iead to correlation and excluded volume effects on chain conforma-
tion that we ignore here.
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I fluctuates in time as the chain (or snake} moves. A full description of
chain dynamics requires knowledge of the probability distribution of the
primitive path lengths. This problem has been solved exactly by Helfand
and Pearson in 1983 for a lartice model of a chain in a regular array of
topological obstacles, but here we present a simple estimate of the prob-
ability distribution of primitive path lengths.

If an ideal linear chain is confined to a cylindrical pore of diameter «, it
occupies a section of the pore of length R ~ bv/N [Eq. (3.47)]. Entangled
chains occupy a much longer length of confining tube (L) =~ AN//N, >
bv/'N, making them strongly stretched. The source of this stretching is
the entropy gain at each tube end because each end segment of the prim-
itive path is free to choose from multiple possible directions. This entropy
gain leads to an approximately linear contribution to the free energy of a
chain in a confining tube® of order kT per primitive path step,

Fo(L) = —TkT%, (9.48)

where T is a numerical constant of order unity. This approximately linear
potential can be thought of as arising from nearly constant entropic forces
of order &k T/a acting on the chain at the tube ends. The chain in its confining
tube is effectively under a tension £7/a and can be represented as an array
of Pincus blobs of size a (see Section 3.2.1). Stretching an ideal chain along
the contour of its tube to length I raises its freec energy by ’ykTLZ/(ZNbZ),
where + is an effective dimensionless spring constant of order unity. The
total free energy of a chain in a tube is the sum of these two effects:

_okTL? L

P(L) e Do = YT
KT [0 2TNB (TN TN
T 2NB? Y ~a 2va?
— ’}’kT 2 kﬂz N

ST i ey vl (9.49)
In the second line of Eq. (9.49), the term kTTINB?/(2va®) was added
and subtracted so as to complete the square inside the square brackets, in
order to recover the expression for the equilibrium tube length (L)~
T Nb*/(~vay [Eq. (9.3)]. This quadratic approximation for the free energy
of tube length fluctuations around the average value (L) was first pro-
posed by Doi and Kuzuu in 1980:

_ kT
~ 2NB?

The constant term kTY>N/(2vN.) in Eq. (9.49) does not affect the
dependence of the free energy F(L) on the contour length L of the primitive

F(L) (L — (L))", (9.50)

¥ The contribution to the free energy is not strictly linear because for each primitive path
length L, the entropy of not only the ends, but of the rest of the chain in an entanglement
network needs to be considered.
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Fig. 213

Arm retraction of entangled star
poiymers demonstrated by an octopus
in a fishing net. The circles are
permanent iopological constraints.

Entangled polymer dynamics

path. The quadratic approximation of the free energy leads to a Gaussian
probability distribution of the tube length L for a chain with ¥ monomers:

F(L) Y 2
~ e —— (L - . 5
pv 1y ~esp | -T2~ expl- 50 - ) (9.51)

The average length of a tube with diameter « is {L} ~=aN/N, [Eq. (9.3)}.
A typical fluctuation in the tube length corresponds to a free-energy
change of order #(L) — F({L})) =kT:

(L — (L)) = bv'N = R = a+/N/N.. (9.52)

Thus, a typical tube length fluctuation is of the order of the root-mean-
square end-to-end distance R of the chain and the confining tube has a wide
range of typical lengths:

N N
L {L):tRNa(Nc:l: Ne). (9.53)
These thermal fluctuations of the tube length are the basis of the Doi
fluctuation model, leading to significant modifications of reptation dyna-
mics for entangled linear chains. Linear chains in a permanent network
relax stress by abandoning tube sections via tube length fluctuations and
reptation. Since the branch point of a branched polymer prohibits its rep-
tation, branches relax only by fluctuations in tube length. For this reason,
we next consider relaxation of simple branched polymers: star polymers
(next section), H-polymers and comb polymers (Section 9.4.3). Star poly-
mers in particular relax primarily by fluctuations in tube length. The ideas
of tube length fluctuations and reptation will be combined in Sections 9.4.4
and 9.4.5 to treat linear polymers relaxing in a permanent network.

-

9.4.2 Entangled star polymers

All the discussions of entangled polymer dynamics above were limited to
linear chains. The molecular architecture of the chain (star vs. linear vs.
ring) significantly modifies polymer dynamics. Snake-like reptation is
impossible for f-arm star polymers because they would have to drag f— 1
arms along the tube of a single arm, significantly reducing the entropy of
the star polymer. Therefore, the branch point of a star is usually localized
in one cell of an entanglement net. Stars relax stress and diffuse by arm
retractions, which are large (exponentially unlikely) fluctuations of the
tube lengths of their arms. This is analogous to an octopus entangled in an
array of topological constraints (a fishing net), sketched in Fig. 9.13.

The easiest way for the octopus to change the conformation of any of
its arms without crossing the obstacles, represented by gray circles in
Fig. 9.13, is by retracting that arm. Such arm retraction reduces the
length L, of its primitive path by forming loops. In Section 9.4.1, we
demonstrated that such conformations with primitive path reduced by
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more than the root-mean-square fluctuation R from its equilibrium length
{L,) are exponentially unlikely [Eq. (9.51)]. Arm retraction by distance
s ={L,) — L, along the contour of the tube can be analysed as a thermally
activated process in an effective potential U(s) = F(L,) (see Fig. 9.14). This
potential is typically approximated by a parabola [Eq. (9.50)]:

(5) = AT (Lo = {La))* kT &
WET N2 2 WY

(9.54)

The number of Kuhn monomers in each arm of the star is N, and the
effective spring constant of this harmonic potential 1s . Most of the time,
the length Z, of the confining tube of an arm is close to its equilibrium value
(L.} with deviations from it |s| < R = b\/N, [Eq. (9.53)] corresponding to
an effective potential change of order k7.

Occasionally, there are large atypical fluctuations of the tube length
(with |s| = |[L — {L}| >» R) that are exponentiaily unlikely [Eq. (9.3D)]
because of the restricted number of conformations that allow such a state.
The probability of the tube length to be reduced by s can be estimated by
the Boltzmann weight in the effective potential U(s) [Eq. (9.51)]:

pls) ~exp (— %;,)) ~ X (_%ijz) .

The average time between these large fluctuations z(s) is inversely
proportional to their probability p(s):

e
v 5
7(85) ~ exp (51’\/ b2>'

The coefficient in front of the exponential depends on the degree of poly-
merization N of the arm as well as on the magnitude of arm retraction s, but
the average retraction time is dominated by the exponential [Eq. (9.56)].
For these large tube length fluctuations, it is important to remember that
the quadratic potential [Eq. (9.50)] and the related Gaussian distribution
[Eq. (9.51)] are approximations valid for small tube length fluctuations
|L — {L}| < L. The probability of large tube length fluctuations deviates
from the simple Gaussian form [Eq. (9.51)]. For example, Eq. (9.51) pre-
dicts that the probability for the primitive path to be reduced to L =0 and
for the chain to form a singie loop is exponentially low in the number of
entanglements per chain (exp[—YN/(2ZN.)]). The actual probability indeed
has an exponential dependence on the average number of entanglements
per chain,

(9.55)

(9.56)

¥ Ny
pvo) ~ e (-3

but with a different coefficient in the exponential " # .
The relaxation time of a star in an array of fixed topological obstacles
is equal to the time it takes to completely retract its arms, written here

(9.57)
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Fig.9.14

(a) Effective potential for arm retraction
for an entangled star polymer. The

thin curves are harmonic
approximations for small and large
arm retractions. (b) Numerical resuits
for the dependence of the effective spring
constants 4 (selid curves) and 4’ (dashed
curves) on the number of Kuhn
meonomers per entanglement strand on
square {two-dimensional) and cubic
(three-dimensional) lattices.
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Fig.9.15

Storage modulus (filled symbols) and
loss modulus (open symbols) for linear
1.4-poivbutadiene with

M, = 160000 gmol ! (squares) and a
6-arm star 1 4-polybutadiene with

M, =77000gmol ' (circles), both at a
reference temperature of 28°C. The
linear polymer was chosen because it's
molar mass is approximately the span
molar mass of the star polymer. Data
courtesy of L. Archer.

Entangled polymer dynamics

by including the power law “prefactor’ in the number of entanglements
per armu

5/2 1 orpa2 572 '
fun = ) ~ (32 ep(%%)fv(ﬁ) a3 3) 959

The relaxation time of a star grows exponentially with the number of
entanglements N,/ N, per arm and is independent of the number of arms fin
the star. The coefficient in the exponential is weakly dependent on the
relative amount of arm retraction s/{L}, changing from - at small retrac-
tions to " at full retraction, because the harmonic potential is only an
approximation of the actual potential. For polystyrene (with N, — 23), the
cubic lattice model predicts the spring constant of the harmonic potential
to increase from y=0.63 for abandoning the first few tube sections to

'=0.75 for complete retraction of the arm s=(L.) [see Fig. 9.14(b)].
However, this small change of v to~’ changes the relaxation time of strongly
entangled star polymers enormously. For example, a star with N,/N,. = 100
entanglements per arm changes its relaxation time by a factor of
exp(6) =400.

The stress relaxation modulus is proportional to the average fraction of
entanglements per arm that have not yet relaxed by having the free end of
the arm visiting that tube section. If s is the length of the tube that has been
retracted and relaxed during time 7 =1(s) then the stress relaxation modu-
lus at time ¢ 1s
{(Ly) — s

{La}
where G, is the plateau modulus [Eq. (9.18)]. The stress relaxation modulus
of a star polymer has a time dependence similar to that of a linear polymer
with molar mass 2 M, (the span molar mass of the star polymer) for times
shorter than the Rouse time of the span, as shown in the frequency
dependence of the complex modulus in Fig. 9.15. At the ter.minal time Tapm,

G{1) = G, for te < t < Tarm, (9.59)

._.
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* See the Appendix of L. J. Fetters, ef al.. Macromolecules 26, 647 (1993).
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there is of order one unrelaxed entanglement ieft per arm and the stress
relaxation modulus is lower than the plateau modulus by the number of
entanglements per arm:

Ne
G(Tarm) = RFGE' (960)

a
The viscosity of entangled stars can be estimated as the product of the
relaxation time and the terminal modulus:

N\ N,
1 % G(tam) Tam ~ (—N—> exp (’}2/N) (9.61)

¢

The main feature is the exponential growth of the viscosity with the
number of entanglements per arm N,/N.. Another interesting feature of
the viscosity of entangled stars is that it is independent of the number of
arms /. An experimental verification of this prediction is presented in
Fig. 9.16. Viscosity of three-arm stars is ~ 30% lower than for stars with
the same arm molar mass, but larger number of arms > 4. This effect
might be due to additional diving modes of a branch point down the tube of
a three-arm star (see Problem 9.28).

Naively, one may think that for a branch point to hop between neigh-
bouring entanglement cells, f — 2 of the arms must simultaneously retract,
forming essentially linear tube and f— 2 large loops. This simultaneous
retraction is an extremely unlikely event and its probability is the product
of the already very low retraction probabilities for each of the f— 2 arms,
The problem with this naive approach is that it is indeed hard for an
octopus to put on a sweater by pulling in all arms and then pushing
themn all out at the same time. It would be much easier for the octopus to
retract one arm at a time. This way, in several steps of arm retraction it
could form a favourable arrangement of tubes near the branch point fora
successful hop of this branch point between neighbouring cells of an
entanglement net.
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Fig.2.16

Viscosity of polyisoprene star polymers
with various numbers of arms at 6¢°C.
The feft piot shows that viscosity is only
a function of the number of
entangiements per arm and that the
viscosity of entangled linear
polyisoprene (line with M, = M/2)is
always lower. The right plot shows that
Eq. (9.61) describes all star poiymer
viscosity data with the effective spring
constant of the quadratic potential

~' ={0.96. Data from L. J. Fetters ¢ af..
Macromolecules 26, 647 (1993).



380

Fig.9.17

(a) Diffusion coefficients of three-arm
star hydrogenated polybutadienes at
165°C. The slope determines ' =0.82.
(b} The product of viscosity and
diffusion coefficient is inversely
proportional to the number of
entangiements on each arm. Data are
from C. R. Bartels er al.,
Macromolecules 19, 785 (1986).

Fig.9.18

(a) Entangled comb polymer with g="7
branches and N, monomers per branch
and a backbone (thick line) with

Ny, monomers. {b) Reptating backbone
of a comb with Ny, monomers {thick
line) and ¢ — 2 = 5 high friction points
{black circles) in its confining tube
{dashed lines).
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Linear polymers move a distance of order of their own size during their
relaxation time, leading to a diffusion coefficient D~ R*/r [Eq. (9.12)].
However, the diffusion of entangled stars is different because at the time
scale of successful arm retraction, the branch point can only randomly hop
between neighbouring entanglement cells by a distance of order one tube
diameter a. For this reason, diffusion of an entangled star is much slower
than diffusion of a linear polymer with the same number of monomers:

2 —5/2
D~ o (&) exp(—iﬁ).
Tarm Ne 2 N,

The main feature of the diffusion coefficient of stars [Eq. (9.62)] is its
exponential dependence on the number of entanglements per arm N, /N,
related to the arm retraction time t,,. This prediction is in good agree-
ment with experiments, as illustrated in Fig. 9.17(a) for diffusion of three-
arm star hydrogenated polybutadienes. The product of viscosity [Eq.

(9.61)] and diffusion coefficient [Eq. (9.62)} decreases with the number of
entanglements per arm:;

(9.62)

Ne
1D % Gltam)a® ~ =

5 (9.63)

as shown in Fig. 9.17(b).

9.4.3 H-polymers and combs

The arm retraction mechanism of star dynamics can be applied to other
entangled branched polyvmers, such as H-polymers and comb polymers
(sec Fig. 1.5) in an array of fixed topological obstacles. In the simplest case,
all side branches of an H-polymer or a comb polymer are the same and
contain N, monomers (Fig. 9.18). The delineation of the comb into the
backbone (thick line) and branches is done so that the ends of the backbone
coincide with the branch points at the two ends of the polymer.
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The retraction time of an arm 1., in an array of fixed obstacles is the
same as the relaxation time of a star polymer with &, monomers per arm
[Eg. (9.58)]. On time scales shorter than t,,, the branch points are loca-
lized and cannot move between neighbour cells of the entanglement net.
The branch points begin to hop between neighbouring cells of the entan-
glement net on the time scale of arm retraction Ty, Similar to star poly-
mers, the length scale of these hops is of the order of the tube diameter 4,
allowing the effective friction coefficient for motion of the branch points to
be determined by the retraction time of an arm:

Tarm
o 52 RT3 (9.64)

The backbone of the polymer moves by reptation along the contour of
its tube, with curvilinear diffusion dominated by the branch point
friction ¢y, An H-polymer is the simplest comb polymer with g=4
branches per molecule. For any trifunctional comb polymer (g>4) the
number of branch peints is ¢ — 2 since each end of the backbone has two
branches. The total number of monomers in the reptating backbone is
Npy. We assume that branches are well-entangled, so that the branch points
dominate the friction:

(g — 2)Cor = C(Nob + g M), (9.65)

where ¢ is the monomeric friction coefficient and Npp + g/, is the total
number of monomers in the whole chain. The curvilinear diffusion coef-
ficient of the backbone alongits confining tube is given by the Rouse model
[Eq. (9.7)] with friction from the g — 2 branch points:

kT a
(q - 2)Cbl‘ (q - 2)Tarm .

The length of the confining tube of the backbone is Ly, = aNyp/N. leading
to the reptation time of the backbone:

D, = (9.66)

2

Nop\’
bb _
- 2 Tarm (g — 2} ( N ) . (9.67)

Trep =

The diffusion coefficient of entangled H-polymers and combs is the mean-
square size of the backbone divided by its reptation time:

) 2
prlwb @ (Ne) (9.68)
Trep Tarm (q - 2) Nub

The stress relaxation modulus of combs and H-polymers consists of an
arm-retraction part at shorter times (r < t,.,) and a reptation part at
longer times (Tamm < 1 < Trep).-

9.4.4 Monomer displacement in entangled linear melts

On time scales shorter than the relaxation time of an entanglement
strand 7., the sections of a linear chain involved in coherent motion are
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Fig.9.19

Curvilinear displacement of 4 monomer
(labelled by a dark circle) along the
contour of the tube between two
conformations is As. Only a short
section of the tube is shown.

Entangled polymer dynamics

shorter than the entanglement strand and are not aware of the topological
constraints. Since hydrodynamic interactions are screened in polymer
melts, the motion on very short time scales 7 < 7. is Rouse-like with mean-
square monomer displacement given by the subdiffusive motion of the
Rouse model [Eq. (8.58)].

1/2
(70 = PO = B (%) for t < 1. (9.69)

On longer time scales ¢ > 1., topological constraints restrict polymer
motion to the confining tube. Displacements of monomers tangential to
the axis of the tube (primitive path) on length scales larger than the tube
diameter ¢ are suppressed by surrounding chains. Monomer displacement
along the contour of the tube is unconstrained and follows the subdiffusive
motion of the Rouse model [Eq. (8.58)] along the primitive path.

For times shorter than the Rouse time of the chain (r< tgr), each
monomer participates in coherent motion of a chain segment consisting of
+/ 1/ 1¢ neighbouring monomers. The time-dependent curvilinear coordin-
ate of a monomer along the contour of the tube is s(#) (Fig. 9.19). The
mean-square monomer displacement along the tube is of the order of the
mean-square size of this section in three-cimensional space [Eq. (8.58)]:

12 172
(s(0) — s(0)]%) ~ B? (i) o (i) for o < t < tr.  (9.70)

Te

Since the tube itself is a random walk with step length @, the mean-square
displacement of a monomer in three-dimensional space {Ar”) is the pro-
duct of the step length @ and the contour length displacement 1/ {As?):

(Ar?) = a\/(A). (9.71)

-

Thus, the mean-square monomer displacement in space exhibits a weak
one-fourth power law in time when the chain is confined to a tube:

1/4

{7 — FIOV) ~ ay/ (Is(0) — s(0)]) = &® (I{e) for . <t < 1R.
(9.72)

This time dependence is slower than for unrestricted Rouse motion
[Eq. (8.58)] because displacement along the contour of the tube leads to a
smaller displacement in space [Eq. (9.71)]. At the Rouse time of the chain,

q

A2
TR & ToN = 1 () , (9.73)

each monomer participates in coherent Rouse motion of the whole chain
along the tube. The mean-square displacement of a monomer along the
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tube at the Rouse time of the chain is of the order of the mean-square size of
the whole chain:

{[s{tr) — s(0)]*) = b’N = R (9.74)

Note that the root-mean-square magnitude of these fluctuations is in
perfect agreement with the value of tube length fluctuations derived above
[Eq. (9.52)]. Even though this magnitude seems large, it is a small fraction
of the contour length of the tube [Eq. (9.3)]:

R BN/ N(Ne)lfz

e R Mok 75
L bNMUZ N (9-75)

At times longer than the Rouse time tg, all monomers move coherently
with the chain. The chain diffuses along the tube, with a curvilinear dif-
fusion coefficient given by the Rouse model D, = RY/tg:

N
(s(2) — 5O ~ Dot ~ szri md L forimre. (9.76)
R ¢ TR

In entangled polymer melts this diffusion occurs along the contour of the
tube, with the mean-square monomer displacement in space determined
using Eq. (9.71):

(7t — 703" = ay/ {Is(r) — sO)1")

N 12\ 12
~e() (7)) frm<icm o7

This curvilinear motion continues up to the reptation time 7., where the
chain has curvilinearly diffused the complete length of the tube, of order
aN/N,. At times longer than the reptation time (¢ > T,e;) the mean-square
displacement of a monomer is approximately the same as the centre of
mass of the chain and is a simple diffusion with diffusion coefficient D
[Eq. (9.12)].

There are four different regimes of monomer displacement in entangied
linear polymer melts, shown in Fig. 9.20. The 14 subdiffusive regime for
the mean-square monomer displacement is a unique characteristic of
Rouse motion of a chain confined to a tube, which has been found in both
NMR experiments and computer simulations.

9.4.5 Tube length fluctuations

Displacements of monomers at the two ends of the tube are unrelated
to each other on time scales shorter than the Rouse time of the chain
(¢ < tr). These incoherent curvilinear displacements lead to tube length
fluctuations [Eq. (9.70)]:

L) — LY ~ B (f) i (f—) T rn <<t (978)
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Fig.9.20

Time dependence of the mean-square
monomer displacement prediczed by the
reptation model for a melt of long
entangled linear chains, on logarithmic
scales.
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Doi was the first to point out that the decrease of tube length due to these
fluctuations leads to partial relaxation of stress. The stress relaxation
modulus () 18 not quite constant in the rubbery plateau, but decreases
slightly with time. The weak time dependence of the stress relaxation
modulus corresponds to the rate at which sections of the tube are vacated
by the fluctuating chain. Subdiffusive Rouse dynamics along the contour
of the tube [Eq. (8.58)] implies a ¢''* time dependence of vacated sections of
the tube [see Eq. (9.70)]:

{L) (€L
b " 1/4
G|l m (7-'_0) ]
1/4
2 G |1 ,% (ri) } for . <t < 1R, (9.79)

The last relation made use of the fact that (L) ~ aN/N, = bN//N, and
T T(}Ng'. The tube length fluctuations grow and the stress relaxation
modulus decreases up to the Rouse time of the whole chain [Eq. (3.17)].
Consequently, the stress relaxation modulus at the Rouse time of the chain
is lower than G.:

1—p %] (9.80)

] Ne ()M
N r:)
The final result was obtained using Eq. (9.19) (tr/T = (N/N.)*) and 1 is a
coefficient of order unity. The fraction /N /N of the tube is vacated, and
therefore relaxed, at the Rouse time of the chain by tube length fluctua-
tions. The modulus at the relaxation time of the chain is also lower by the

same factor: .

1u\/%]. (9.81)

Since the distance that the chain must diffuse along the tube has been
shortened by tube length fluctuations, the relaxation time is shorter thanin
the Doi-Edwards reptation model [Eq. (9.8)]:

{L)z[l - ]L\fNe/N]z N3 [l _y Nej|2‘ (982)

D NTOE W

Gitr) = G, 7= (7,

G(Tyep) = Ge

Trep =~

The stress relaxation modulus then decays exponentially at the reptation
time [Eq. (9.22)]. The terminal relaxation time can be measured quite
precisely in linear viscoelastic experiments.” Hence, Eq. (9.82) provides the
simplest direct means of testing the Doi fluctuation model and evaluating

5 The modutus scale typically has a +£5% uncertainty owing to imperfect sample geometry
which also affects viscosity but not relaxation times.
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the parameter ., as shown in Fig. 9.21. Requiring each data set to have an
intercept of unity in Fig. 9.21 provides a correction to Eq. (9.21) for esti-
maling 1. We conclude from Fig. 9.21 that = 1.0, based primarily on
computer simulations of the repton model (Section 9.6.2.6} because the
experimental data are noisy owing to the usnal £5% uncertainties in
determination of molar mass.

Recall that Fig. 9.3 showed the linear viscoelastic response of a poly-
butadiene melt with M/M, = 68. The squared term in brackets in Eq. (9.82)
is the tube length fluctuation correction to the reptation time. With y=1.0
and N/N, =68, this correction is is 0.77. Hence, the Doi fluctuation model
makes a very subtle correction to the terminal relaxation time of a typical
linear polymer melt. However, this subtle correction imparts stronger
molar mass dependences for relaxation time, diffusion coefficient, and
viscosity.

Tube length fluctuation modes significantly modify the rheological res-
ponse of entangled polymers. The effect of these modes is most clearly
observed in the shape of the loss modulus G* {w). The Doi-Edwards
equation ignores tube length fluctuations and predicts an almost single
exponential stress relaxation modulus with small contribution from higher
order modes [Eq. (9.21)]. The corresponding loss modulus is obtained
from the Doi—Edwards equation by integration using Eq. (7.150) (see
Problem 9.8):

8G, Wrep

2 2 :
ﬂ- podd (wrfﬁp) +P4

G"(w) = (9.83)

In the rubbery plateau (for 3 Swrep < 300 in Fig. 9.22), this Doi-Edwards
reptation prediction gives G”~w ™' In contrast, a single exponential
G(t) leads to G” ~w " at high frequencies. The shorter time modes, cor-
responding to p=3, 5, 7,..., make the reptation prediction of the loss
modulus larger than that of a single exponential relaxation at high fre-
quencies. The Doi fluctuation model has even more relaxation in the
rubbery plateau, with " ~w™ L4 for frequencies larger than the reciprocal
of the Rouse time of the chain (see Problem 9.36). Experimental data
appear to obey a power law that is independent of polymer species (see ['ig.
9.22) but with an intermediate exponent® (G”~w™°%). At higher fre-
quencies, differences between the two polymers are noted (particularly in
G") that are consistent with their 20% difference in M/M, that creates a
factor of 1.8 difference in t.p/7.. These differences show up at high fre-
quency because the normalization of the axes in Fig. 9.22 requires overlap
at low frequencies.

In Fig. 9.23(a), the loss moduli of two nearly monodisperse
polybutadiene samples are simultaneously fitted by the predictions of the
Doi-Edwards reptation model [Eq. (9.83)]. Experimental peaks are much

¢ Longitudina! Rouse modes of the chain along the tube may affect the value of this
exponent.
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Experimental verification of the Doi
fluctuation model using data for
polystyrene as open squares, from

S. Onogi et al., Macromolecules 3,

109 {1970y and A. Schausberger e a/.,
Rheol. Acta 24,220 (1985),
polybutadiene as open circles from

R. H. Colby et al., Macromolecules 20,
2276 (1987) and filled circles from the
repton model described in

Section 9.6.2.6, courtesy of

D. Shirvanyants. The line is Eq. (9.82)
with = 1.0.
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Fig.9.22

Oscillatory shear data for two nearly
monodisperse linear polymers with
MM, =40, reduced by their terminal
loss medulus maximum. Triangles are
the storage modulus G’ and circles are
the loss modulus G”. Filled symbols
are for polybutadiene with
M,=T70900gmoi ™" (M'M.=37)
from M. Rubinstein and R. H. Colby,
J. Chem. Phys. 89. 5291 (1988). Open
symbols are for polystyrene with

M, =750000gmol ' (M/M,=44)
from A. Schausberger ef af..

Rheol. Acta 24,220 (1985).
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Fig. 9.23

Simuitaneous fit of loss moduius
data for the two menodisperse
polybutadiene samples at 30°C by
(a) the Doi-Edwards equation and
(b) the Doi tube length fluctuation
model. Lines are the fitting results,
Open circles are data for

M = 355000 gmol !, Filled squares
are data for M = 70900 g moi™*.
Data from M. Rubinstein and

R. H. Colby, J. Chem. Phys. 89,
5291 (1988).
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Fig. 9.24

Dependence of viscosity, reduced by the
cube of molar mass, on the number of
entanglements per chain. Filled circles
are data from the ‘Repton medel’

of Section 9.6.2, courtesy of

D). Shirvanyants. Open symbols are
experimental data for the three
polymers in Fig. 9.5, shifted parallet to
the n0/M3 axis to coincide with the
‘Repton model’ data. The curve is the
Doi fluctuation model [Eq. (9.84)] with
p=1.0.
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broader, especially at high frequencies (short times). The breadth of
the experimental peaks of the loss modulus increases with decreasing
molar mass. This comparison suggests that the Doi-Edwards equation
underestimates stress relaxation by ignoring tube length fluctuation modes
[Eq. (9.79)]. The complete stress relaxation modulus due to motion of a
chain in its tube consists of two parts:

(1} Rouse modes of the chain, including tube length fluctuations and
longitudinal Rouse modes, are active at times shorter than the Rouse
time of the chain.

(2) Reptation modes are active at times longer than the Rouse time of the
chain.

The results of models that include tube length fluctuation modes
[Fig. 9.23(b)] are in much better agreement with the experimentally meas-
ured loss modulus G” (w) of monodisperse melts than the prediction of the
Doi-Edwards reptation model [Eq. (9.83}]. Tube length fluctuation cor-
rections predict that the loss peak broadens with decreasing molar mass
because the fraction of the stress released by fluctuations is larger for
shorter chains.

The viscosity can again be estimated as the product of the terminal
modulus and the reptation time:

3
ok T N3

N,
n IrepG(rrep) ~ B A2 1 —p We (9.84)

Doi’s estimate of the effect of tube length fluctuations [Eq. (9.84)] predictsa
molar mass dependence that approximates n~N3'4 over a reasonable
range of molar masses. Viscosity data [rom experiments and Repton model
simulations are compared with the predictions of the Doi fluctuation
model in Fig. 9.24. The Doi fluctuation model with = 1.0 (solid curve) is
in good agreement with both experimental and simulation data for
M > 10M,. The data exhibit departures from the 3.4 power law (dashed
linein Fig. 9.24) for longchains (M > 300M,) that are well described by the
Doi fluctuation model.



Many-chain effects: constraint release

Other computer simulations, such as the Evans—Edwards model of a
chain in an array of fixed obstacles (described in detail in Section 9.6.2)
exhibit fluctuations of the tube length and also find stronger molar mass
dependences of relaxation time 7~ M*3=%? and diffusion coefficient
D~ M *%! than the simple reptation model without tube length fluc-
tuations [Eqgs (9.8) and (9.12)]. These results of computer simulations of a
single chain in an array of fixed obstacles are in good agreement with
experiments on entangled polymer solutions and melts over the entire
range of molar masses covered by simulations (M < 6004f,). Tube length
fuctuations are responsible for the stronger molar mass dependences of dif-
Jfusion coefficient (Fig. 9.2), relaxarion time [Eq. (9.9)], and viscosity
(Fig. 9.5) than predicted by the simple reptation model.

9.5 Many-chain effects: constraint release

In Section 9.4, the motion of a single chain in an array of fixed topological
constraints was discussed. Such models apply to dynamics of a chain in a
network or in a melt of extremely long chains. In a melt of shorter chains,
the topological constraints that define the confining tube are formed by
neighbouring chains, which also move along their respective tubes. As
chain B moves away, the topological constraint it once imposed on chain A
disappears (Fig. 9.25). A new set of conformations is now available for
chain A. A third chain moves in and imposes a new topological constraint
on chain A. The constraints hence fluctuate in time, keeping the time-
average total number of topological constraints imposed on a given chain
by its neighbours constant. As some neighbours move away and remove
their constraints from a given chain, others move in and place new con-
straints on it.

The exchange of neighbours and their topological constraints imposed
on a given chain leads to a modification of the tube that a given polymer is
confined to and is called constraint release. When a neighbouring chain B
moves away, chain A can explore an additional volume of the order of an
entanglement mesh size 2°. If a new chain C movesin, it can locally confine
chain A to this new volume, changing the conformation of the tube of A.
This process can be modelled by a local jump of the tube, analogous to an
elementary move of the Rouse model. The rate of these local jumps of the
primitive path is reciprocally proportional to the lifetime 7 of the topolo-
gical constraints. Thus, constraint release leads 10 Rouse-like motion of the
confining tube and its primitive path.
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Fig.9.25

Constraint release mechanism: when
chain B reptates away, it releases

the constraint on chain A. Later. this
constraint is replaced by chain C. which
confines chain A in a displaced tube.
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@51 Relaxation times and dilfusion

Consider a single linear chain with P monomers in a melt of shorter
N-mers. The P-mer has two relaxation mechanisms occurring simultan-
eously:

(1) Single-chain motion of the P-mer within its confining tube by reptation
and tube length fluctuations.
(2) Constraint release as a Rouse motion of the tube confining the P-mer.

Whichever process relaxes the chain faster is the one that controls terminal
dynamics.

The constraint release process for the P-mer can be modelled by Rouse
motion of its tube, consisting of P/N. segments, where A, is the average
number of monomers in an entanglement strand. The average lifetime of a
topological constraint imposed on a probe P-mer by surrounding N-mers
is the reptation time of the N-mers t..,(N). The relaxation time of the tube
confining the probe chain by constraint release is the Rouse time of P/N,
tube segments [Eq. (8.17)] with segment relaxation time t,¢, (V) dictated by
the reptation time of the surrounding N-mers:

P\2
Tiube = Trep{ V) (F) : (9.85)
[
The diffusion coefficient of a P-mer in a melt of N-merscan be written as
a sum of contributions from each of these two types of motion, assuming
that each contributes independently to diffusion:
R R’
D— e —. 9.86
Trep(P) Ttube ( )
The reptation time of the P-mer is T,.p( ) and the constraint release time
Trube Ziven in Eq. (9.835). The faster of the two types of motion controls the
diffusion of the P-mer. For constraint release to significantly affect term-
inal dynamics, the Rouse relaxation time of the confining tube 7., must be
shorter than the reptation time of the P-mer 7.p(P):

P2
Toep(F) > Trube &= Trepl V) (F) . {9.87)
[~

Very long P-mers have the constraint release time [Eq. (9.85)] shorter than
their reptation time.” Such very long P-mers relax and diffuse by constraint
release (Rouse motion of their tubes) before they get a chance to reptate
out of their confining tubes. For shorter P-mers, the reptation time z,.5(P)
is shorter than the constraint release time e and reptation dominates
the diffusion of these chains. Reptation certainly dominates diffusion in
monedisperse solutions and melts (for P = N).

7 Constraint release controls the terminal relaxation in the reptation model if
PIN, > (N/N.)’ and in the Doi fluctuation model if P/N, > (N/No)>*.
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Experiments on diffusion of deuterated polystyrene into a melt
of hydrogenated polystyrene (Fig. 9.26) confirm the crossover assumed
in Eq. (9.86). For very long matrix chains (large ), the terminal dynamics
of the P-mer are controlled by reptation and consequently the diffusion
coefficient of the P-mer only depends on the molar mass of the P-chains
and is independent of N

R?.
D=
Trep (P )
On the other hand, if the matrix chains are short enough (small N) con-

straint release controls the terminal dynamics of the P-chains [Eq. (9.85)]
and the diffusion coefficient of the P-mers depends strongly on N:

for large N. {9.88)

2

D~ for small &.

— {9.89)
The solid line in Fig. 9.26 is the crossover between Egs (9.88) and (9.89),
and divides the data nicely into a regime of constraint release control,
where D is stromgly dependent on N/, for short-chain matrices [described
by Eq. (9.89)] and a regime of reptation control, where D is independent of
N for diffusion into long-chain matrices [described by Eq. (9.88)].

9.5.2 Stress relaxation

Constraint release has a limited effect on the diffusion coefficient: it is
important only for the diffusion of very long chains in a matrix of much
shorter chains and can be neglected in monedisperse solutions and melts.
The effect of constraint release on stress relaxation is much more important
than on the diffusion and cannot be neglected even for monodisperse
systems. Constraint release can be described by Rouse motion of the tube.
The stress relaxation modulus for the Rouse model decays as the reciprocal
square root of time [Eq. (8.47)]:

G(f) ~ (tjr) V2. (9.90)

Thus, a finite fraction of the stress relaxes by constraint release at time
scales of the order of the constraint lifetime in the Rouse model of con-
straint release. This is also the time scale at which the stress relaxes by
reptation in monodisperse entangled solutions and melts. Both processes
simultaneously contribute to the relaxation of stress. Therefore, constraint
release has to be taken into account for a quantitative description of stress
relaxation even in monodisperse systems. The contribution of constraint
release to stress relaxation in polydisperse solutions and melts is even more
important as will be discussed below.

9.5.2.1 Stress relaxation in birary blends

Single-chain models, such as the Doi-Edwards reptation model [Eq. (9.21)]
or the Doi tube length fluctuation model, assume a linear contribution to
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Diffusion coefficient of trace amounts of
deuterium-labelled polystyrene P-mers
into polystyrene N-mer melis at 174°C
for six P-mers: open circles

M= 55000gmol ~'; filled circles
M=110000gmol~'; open squares

M =255000gmol™"; filled squares

M =520000gmol™'; open triangles
M=915000gmol~"; and filled triangles
have M = 2000000 g mol~". Data from
P. F. Green and E. J. Kramer,
Macromolecules 19, 1108 (1986).
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Comparison of the loss modulus data for
three blend compositions of the two
polybutadiene samples in Fig. 9.23 at
30°C with the predictions of

(a} Doi-Edwards reptation model and
(b) self-consistent constraint release
model. Dotted lines are the predictions
and open circles are the data for

#1 = 0.882. Solid lines and filled squares
are for ¢ = (.768. Dashed lines and
open triangles are for ¢ =0.638. Data
from M. Rubinstein and R, H. Colby,
J. Chem. Phys. 89, 5291 (1988).

Entangled polymer dynamics

the stress relaxation modulus from each component of a polydisperse
system:

(HQ::E:@NGNUL (9.91)

where ¢y 18 the volume fraction of A-mers and Ga(¢) is the single-chain
stress relaxation modulus of N-mers. For a binary blend of long (1) and
short (S) chains, these models predict a simple linear addition of the
stress relaxation moduli of the two components weighted by their volume
fractions:

G(e) = GLGL{E) + 836 (1). (9.92)

However, many experiments observe that the amount of stress relaxed at
the time scale of the reptation time g of shorter chains is much larger than
the volume fraction of short chains. This is shown in Fig, 9.27(a), where the
loss moduli of binary blends are compared with the predictions of
Eq. {9.92) using the Doi-Edwards reptation model predictions for G(¢)
[Eq. (9:21)] for the G1(r) and Gs(f) relaxation functions. Recall from
Section 7.6.5 that the magnitude of G”(w) directly reflects the amount of
relaxation occurring at each frequency w. Hence, Eq. (9.92) strongly
underestimates the amount of relaxation occurring when the short chains
relax [the high-frequency peak in G”(w)].

Some of the stress relaxed at time scale 5 occurs by release of constraints
imposed on long chains by short ones, which makes a significant con-
tribution to the stress relaxation at the reptation time of the short chains ts.

Topoelogical constraints are often assumed to be pairwise entanglements
between chains. There are three types of these pairwise entanglements in a
binary blend: between two long chains (L-L); between two short chains
(S-S), and between a short and a long chain (8-L). If the dynamics of each
chain along its tube 1s approximated by the Doi—Edwards reptation model,
there are two time scales in the problem—reptation times of long (7 ) and
short (tg) polymers. The constraint on a given chain, caused by a long
neighbour, has lifetime 7, while the constraint impoesed by a short neigh-
bour has lifetime 75. The constraint release process in a binary blend can be
represented by a Rouse model with two mobilities of the effective beads:

(1) slow, corresponding to entanglements with long chains;
(2) fast, corresponding to entanglements with short chains.

These two mobilities can be assumed to be randomly distributed aleng
the tube with relative concentrations corresponding to the probabilities of
entanglement with a chain of each type. The simplest assumption is that
these relative concentrations are proportional to the volume fractions of
each type of chain (for pairwise cntanglements).

The combined stress relaxation modulus for both reptation and con-
straint release of a binary blend is

G(1) = LGLINAL(Y) + ¢sGs(NAs(D), (9.93)
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where AL (1) and Ag(?) are the stress relaxation functions due to constraint
release (Rouse motion of tubes) of long and short chains (with two bead
friction coefficients t147/a* and tsk T/e”). This model is in reasonable
agreement with experiments. Adding constraint release modes to the Doi-
Edwards reptation model improves the dependence of the heights of the
loss modulus peaks on the volume fractions ¢, and ¢s of components. But
this model lacks the higher frequency modes because it does not include
tube length fluctuations.

These tube length fluctuation modes (see Section 9.4.5) of the neigh-
bouring chains affect the constraint releasc modes of a given chain. If
entanglements between chains are assumed to be binary, there should be a
duality between constraint release events and ‘chain in a tube’ relaxation
events. A release of an entanglement by reptation or tube length fluctuation
of one chain in its tube leads to a release of the constraint on the second
chain. If this duality is accepted, the distribution of constraint release rates
can be determined sclf-consistently from the stress relaxation modulus of
the tube model.

The constraint release process in this self-consistent model is described
by a Rouse model with random bead mobilities. The distribution of these
mobilitics is given by the constraint release rate distribution. The predic-
tions of this self-consistent model are in good agreement with experiments
on binary blends [see Fig. 9.27(b)].

The constraint release model represents the effects of surrounding
polymers on the motion of a given chain by allowing transverse motion of
the tube, controlled by the rate that entanglements are abandoned. The
width of the confining tube stays, on average, constant in the constraint
release process. While the more general problem of polydispersity effects
on constraint release is well posed, it has not been solved thus far for
anything beyond the simplest case of a binary blend. Consequently, other
models that are easier to solve but are also less accurate have been pro-
posed. For instance, Marrucci and Viovy have suggested that the tube
diameter might be considered to increase as entanglements are abandoned.
After a step strain the relaxed sections of the chains are assumed to be
unable to confine the polymer any more, effectively becoming solvent-like
at long time scales. The polymer is confined to a wider dilated tube and this
process is called tube dilation. Problems 9.45-9.48 show that tube dilation
has rather limited utility for linear polymers. Tube dilation has most
effectively been applied to the dynamics of branched polymers with an
exponentially broad distribution of relaxation rates (see Problem 9.49).

9.6 Computer simulations in polymer physics

Rapid advances in computer technology are making computer simulations
powerful tools to study polymer properties. Computer simulations occupy
an important intermediate position between theory and experiments. They
can provide valuable tests of assumptions and predictions of theoretical
models as well as attempt to mimic experimental systems, such as polymer
solutions, melts, and networks.
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There are two main approaches used to simulate polymer materials:
molecular dynamics and Monte Carlo methods. The molecular dynamics
approach is based on numerical integration of Newton’s equations of
motion for a system of particles (or monemers). Particles follow deter-
ministic trajectories in space for a well-defined set of interaction potentials
between them. In a qualitatively different simulation technique, called
Monte Carlo, phase space is sampled randomly. Molecular dynamics and
Monte Carlo simulation approaches are analogous to time and ensemble
methods of averaging in statistical mechanics. Some modern computer
simulation methods use a combination of the two approaches.

96.1 Molecular dynamics

Consider a molecular dynamics simulation of a system consisting of X
particles in a cubic box of volume ¥ = L*, Periodic boundary conditions
are typically used to minimize surface effects. Periodic boundary condi-
tions correspend to densely filling space with identical copies of the
simulation box (see Fig. 9.28 for a two-dimensional sketch of periodic
boundary conditions). As particles leave the simulation box from one side,
they automatically reenter it from the opposite side.

In one of the simplest models, all particles are identical with mass m
and size o interacting with each other via a Lennard-Tones potential
[Eq. (3.96)]. A cutoff in the potential is intreduced at r,, in order to speed-
up the simulations:

mn_{%ﬂwn”@ﬁf]44@ﬁmf%4wgﬂﬂ for r < reu,
0 for r > reut
(9.94)

A typical cutoff used for attractive interactions is rey =2.50 and for
purely repulsive interactions the cutoff is at the minimume®of the potential
rou = 2"%c. The potential in Eq. (9.94) is shifted in order to make it con-
tinuous at the cutoff U(r.,) =0.

A simulation starts with an initial set of positions {7} and velocities
{dF;/de} of all particles (with i=1,2,...,n for a system of » particles).
Temperature T is determined from the average kinetic energy of the par-
ticles 3, m,{dF} /dr)?/(2n). This average kinetic energy is conserved during
the simulation and is equal to 34T/2 in three dimensions:

1 I di_"; 2
T= ﬂ . m,(a) . {995)

The total force acting on particle / at position 7 is the sum of the forces
from all other particles in the simulation box and is equal to its mass m;
times its acceleration:

d%r; OU(F; — 1))
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Since this is basically a statement of Newton'’s second law applied to each
particle, the # equations of the form of Eq. (9.96) are called Newton's
equations of motion. These equations of motion are integrated over a small
time step &7 and new positions and velocities of all the particles are com-
puted. The position of particle j at time 1 4 67 can be obtained by the Taylor
series expansion in powers of the time step or:

. . diy (s & (6 &
1,(f+6t)—r.(f)+6fd1’!+ 3 dg ‘:+_6 Eﬂﬁ'” (9.97)

Similarly, the position of particle i at carlier time ¢ — é¢ can also be written
as a series expansion:

d—»! 2 42
Rt — 66 =F(n — 6td—’[ by d 7

50’ A3,
RO ARG
7 2 dF

A

Adding Eqs (9.97) and (9.98) provides the Verlet algorithm for calculation
of the position of particle / at time 7 4 é¢:

-

L d*F;
Fit + 6) = 271y — Filt = bt) + (61)

de

+O((86. (9.99)

14

Acceleration d°F;/ds?|, of particle i is determined by Newton’s equation of
motion [Eq. (9.96)]. The position of the particle in the Verlet algorithm is
caleulated with the accuracy of (80)°%, as denoted by O((61"). The Verlet
algorithm for the velocity of particle / at time ¢ is obtained from its posi-
tions at times ¢+ &¢ and ¢ — 8 with accuracy of (87)° [by subtracting Eq.
(9.98) from Eq. (9.97)]:

dri| _ it + 80 = F(r — 1)
dele 26t

+ O((60)*). (9.100)

Positions and velocities of all particles are calculated at every step of the
molecular dynamics simulation, producing a complete time evolution of
the system. In order for this time evolution to be accurate, the integration
time step 6¢ has to be much smaller than the shortest characteristic time of
the system (the reciprocal Einstein frequency of the Lennard-Jones crys-
tal). The simple Verlet algorithm is used for systems with constant number
of particles, volume, and total energy. There are more sophisticated integ-
ration algorithms for simulations of systems at constant temperature that
allow temperature rescaling to be done concurrently with the calculation of
new positions and velocities of particles.

A physical quantity {4} is evaluated by the average of its instantaneous
value 4(f) at time ¢ over a long period of time (large number X of molecular
dynamics steps) after initial equilibration during a sufficiently long run
{with equilibration time #y):

X
(A) = %ZE Alty + jb1). (9.101)
=
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If the simulation is long enough for the system to equilibrate (if it is much
longer than all relaxation times), this time average is equivalent to the
ensemble average.

In a more complicated simulation, particles are connected by bonds
into small molecules or even into polymers. The atomic details included in
a simulation depend on the specific problem being investigated. It is
tempting to include the chemical details of menomers with accurate atomic
potentials. Such simulations are carried out to answer detailed questions,
such as the temperature dependence of density, or polarizability and
solubility in a specific solvent. Including accurate potentials between atoms
(e.g., bond-bending and bond-stretching C-C potentials) requires very
small integration time steps (much shorter than vibration periods of these
potentials) and makes complete relaxation of long chains with hundreds
of monomers practically impossible. For example, a common time step of
a molecular dynamics simulation is és = 10™!%s, while relaxation times of
long polymers could be 10~ s or even longer than 1 s. Computer technol-
ogy is still a long way from simulations covering 12 or 15 orders of
magnitude of time.* Therefore, multi-scale methods are being currently
developed to bridge the gap between atomistic and course-grained models.

A simple generic bead-spring model of chains can be used to study uni-
versal polymer properties that do not depend on specific chemical details.
Bonds between neighbouring Lennard-Jones particles in a chain can be
represented by the finite extension non-linear elastic (FENE) potential,

UFENE(F) — —%rﬁond ln[l - (r/rbond)2] for ¥ < rpend, (9.102)
o0 for r > ryond,

with typical values of bond length ryong between 1.5 and 20 and typical
values of bond strength x between 5¢/a” and 30e/c?, where ¢ and ¢ are
parameters of the Lennard-Jones potential [Eq. (9.94)]. Polymer solutions
can be simulated by connecting some of the particles info polymers, while
leaving the rest of the particles to represent solvent molecules. At low
polymer concentrations, most of the particles in a simulation box are
solvent molecules and most of the simulation time is occupied by calcu-
lation of their trajectories. It is necessary to keep explicit solvent molecules
if the objective of the molecular dynamics is to simulate hydrodynamic
flow or to investigate the details of the polymer—solvent interaction.
Explicit solvent is usually excluded from simulations directed at the
study of solutions of longer chains for long times due to computational
constraints {(simulations with explicit soclvent would be prohibitively long).
Interactions between monomers are replaced by an effective potential
mediated by implicit solvent of a given quality (see Chapter 3). The effects
of collisions of explicit solvent molecules with monomers of the chains can
be replaced by random forces acting on monomers in implicit solvent.
These random forces are usually assumed to be non-correlated and
therefore hydrodynamic interaction between monomers in explicit solvent

* Currently, 7-8 orders of magnitude in time are accessible on modern computers.
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is lost as scon as explicit solvent molecules are replaced by random forces
acting on monomers. Molecular dynamics simulation with random forces
and corresponding viscous friction (called Brownian dynamics) is an
example of a hybrid method.

A good example of results from a molecular dynamics simulation of
entangled polymers is shown in Fig. 9.29. The 40 configurations of the
chain shown are equally spaced in time up to the Rouse time of the chain.
The chain is clearly confined to a tube-like region, with only the ends of the
chain beginning to explore the rest of the volume.

96.2 Monte Carlo

Random sampling of different possible states of the system is called a
Monte Carlo simulation technique. Starting trom an arbitrary initiai state
of the system, a transition into another state is attempted following a
certain set of transition rules. In the simplest cases, this transition corres-
ponds to a random jump of a particle or several particles.” If different states
of a system have different energies, the probability 7; of the system to be
found in a state i with energy £ is proportional to its statistical weight. For
systems with constant volume, temperature, and number of particles, the
statistical weight of a state is given by the Boltzmann factor:

P~ exp(%). (9.103)

In equilibrium, a detailed balance must be satisfied, meaning that the
number of transitions per unit time from any state i to any state j is on
average equal to the number of transitions per unit time from j to i. Then,
the number of transitions from any state / to any state j is proportional to
the product of the probability P; of being in state /. the probability
gi_; of making an attempt to move from state i to state j and the probability
pi; of accepting this attempted transition. Therefore, detailed balance can
be written as a simple equation:
Pigiipini = Pigmilimic (9.104)
The condition of detailed balance can be solved for the ratio of acceptance
probabilities of forward and backward transitions between states / and j.
e Pig
Pio 218t (9.105)
Pimi Pigiy
9.6.2.1 Metropolis algorithm
In the simplest Monte Carle methods, such as the Metropolis algorithm,

the probability of attempting to move to state j from statc 7 is the same as
the probability of attempting to move to state / from state j:

8= 8 (9.106)

° In practicce, the transitions often do not correspond to realistic moves, in an attempt to
sample all of phase space as rapidly as possible.
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Fig.9.29

Motlecular dynamics simulation of a
chain with ¥ =400 monomers in an
entangled polyvmer melt. Forty
configurations of the chain are shown at
equally spaced time intervals up to the
Rouse time of the chain. Picture
courtesy of G. 8. Grest based on data
from K. Kremer and G. 8. Grest,

J. Chem. Phys. 92, 5057 (1990},
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In this case, the ratio of acceptance probabilities for attempted moves
between states 7 and j depends on the energy difference E; — E; between
these states:

iy B E,— F;
i S iy S— 9.107
o P, eXp( 5T (9.107)

In the Metropolis algorithm an attempted transition into a state with lower
energy 1s always accepted:

piy=1 ifE<E. (9.108)

If the energy of the final state £, is higher than the energy of the initial state
E,, the attempted transition is accepted with probability

Piy = X (— ﬁ) if E; > E, (9.109)

kT

thereby automatically satisfying detailed balance at equilibrium. If the
transition is not accepted, the old state counts one more time for any
quantity to be calculated in the Monte Carlo simulation. For example, the
average of any quantity over a large number K of Monte Carlo steps (after
a large number J of equilibration steps) includes multiple terms with the
same value whenever attempted moves were not accepted:

J+K

{4) 2% > 4, (9.110)

i=J+1

The Metropolis set of transition rates [Eqs (9.108) and (9.109)] satisfies the
detailed balance [Eq. (9.107)] at equilibrium and the average over a long
Monte Carlo run approximates the thermodynamic average. The detailed
balance is also satisfied and thermodynamic equilibrium is approached in
more sophisticated biased Monte Carlo algorithms with the probability of
attempting to move to state j from state / not equal to the probability of
attempting to move to state / from state j{g;—; # g;_,). These algorithms
are used to enhance sampling of highly improbable states. Below, we
outline several examples of lattice Monte Carlo models in which the states
are either allowed and have equal energies and equal probabilities or for-
bidden with infinite energies and zero probabilities.

3.6.2.2 Random walk

For a chain modeled by an ideal N-step random walk on a cubic lattice
there are 6" different states with a fixed position of one end (see Fig. 9.30).
It is impossible to sample all of these states for large &. Therefore, the
simulation is restricted to a smaller, but stifl representative, subset of all
allowed states for long polymers. There are many different methods of
generating this subset of states. For example, the first monomer Ay can be
placed at the origin and the bonds of the chain are placed sequentially with
their bond directions determined by a randem number generator.
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The random number generator produces random numbers in the
interval between 0 and 1. For a random walk on a cubic lattice, there are six
possible directions. If the first random number is less than 1/6, the first
bond is chosen to be directed to the right. If it is between 1/6 and 1/3.
the bond 7/ is directed up. If the random number is between 1/3 and 1,2, the
bond is directed to the left. If the random number is between 1/2 and 2/3,
the bond is directed down. If the random number is between 2/3 and 5/6,
the bond is directed forward (out of the page). If the random number is
greater than 5/6, the bond 7} between Ay and A is directed backward (into
the page). The same procedure (with different random numbers) is repe-
ated for the remaining N — 1 bonds of the N-step random walk generating
one possible conformation of the chain. Repeating the same procedure
many times produces a large number of conformations of ideal random
walks. The resulting random walks satisfy the ideal chain statistics of
Chapter 2.

9.6.2.3 Self-avoiding walk

Monte Carlo simulations of a polymer in an athermal solvent are more
difficult. In order to satisfy the excluded volume requirements in a lattice
simulation, no lattice site can be occupied by more than on¢ monomer.
The simplest sampling technique is based on the algorithm described above
for an ideal random walk. The only modification is that whenever an
attempted new bond runs into an already occupied site, the whole chain
is thrown away and a new chain is grown from the very beginning. The
success rate for growing a self-avoiding N-mer by this simple algorithm
rapidly decreases with N. In order to simulate long self-avoiding walks,
alternative Monte Carlo algorithms have been developed. These alter-
native approaches include biased sampling (checking one step ahead to
avoid self-intersection), dimerization (attempting to connect two shorter
self-avoiding chains of N/2 monomers cach), and the pivot algorithm
(rotating sections of a self-avoiding chain by a lattice angle). Similar
methods are also used for off-lattice simulations.

9.6.2.4 Verdier—Stockmayer model of unentangled chain dynamics

Verdier and Stockmayer used Monte Carlo simulations to study pelymer
dynamics using the bond moves shown in Fig. 9.31. The Monte Carlo
simulation proceeds by randomly choosing one of the & + 1 monomers of
the chain by a procedure similar to choosing a random direction for a bond
(multiplying a random number from an interval between 0 and | by N+ 1
and taking an integer part of the product). Next, an attempt is made to
move the chosen monomer by selecting the type of move from the set
shown in Fig. 9.31 and randomly picking the new potential location for the
monomer. Moves 1, 2, and 3 in Fig. 9.31 are used for random walks, while
moves 1, 2 and 4 are used for self-avoiding walks.

For example, if the end monomer is chosen to be moved by an end flip
(move 1 in Fig. 9.31). its new possible position is selected in a way identical
to choosing a random bond vector for a random walk (by choosing one of
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Fig.9.31

Typical moves in a dynamic Monte
Carlo simulation: (1) end flip, (2) corner
move, (3) kink jump, and (4) crankshaft
move. The solid lines are bonds in one of
many possible configurations and the
dotted lines arc potential new bond
positions.



398

Fig. 9.32

Evans-FEdwards model on a
two-dimensional square lattice. Corner
flips (move 2) cross obstacles and are
forbidden. End flips (move 1) and kink
flips (move 3) satisfy topological
constraints and are allowed.
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six possible directions for the bond). The final step is to determine whether
the move is accepted or not by checking whether it satisfies the conditions
of the problem. For example, for self-avoiding walks the move is not
accepted if there is an overlap between monomers. Whether the move is
accepted or not, the clock of the simulation is moved forward by [/(N+ 1)
time units. A unit time in a Monte Carlo simulation corresponds to N + 1
such attempted moves (an average of one attempt per monomer). All of the
Monte Carlo moves (Fig. 9.31) are local and not directly correlated with
each other. They can be thought of as representing uncorrelated monomer
displacements of the Rouse model. On larger length and time scales the
chain follows Rouse dynamics. The Monte Carlo time unit is shorter than,
but proportional to, the menomer relaxation time 7.

In the random walk and self-avoiding walk models, described above,
all energies are either zero (no interactions) or infinite (complete exclu-
sion for overlapping monomers). In a more general case, finite, but non-
zero interaction energies could be considered. In this case, different states
(different polymer conformations) would have different energies and
therefore different statistical weights. Monte Carlo moves are accepted or
rejected according to an algorithm satisfying detailed balance [such as the
Metropolis algorithm of Eqs (9.108) and (9.109)]. Some results of off-
lattice Monte Carlo simulations of isolated chains in implicit solvents of
different quality were presented in Fig. 3.16.

9.6.2.5 Evans-Edwards model of entangled chain dynamics

The dynamics of an entangled chain in an array of fixed obstacles can
also be studied by Monte Carlo simulations. An initial unrestricted
random walk conformation of a chain on a lattice (representing a
chain in a melt) could be obtained using the methed of section 9.6.2.2. The
topological entanglement net of surrounding chains is represented by
obstacles, sketched as solid circles in the middle of each elementary cell
in Fig. 9.32.

Motion of the chain, represented by a random walk on a lattice, is defined
by the set of allowed elementary moves of monomers between neigh-
bouring sites that preserve chain connectivity and do not allow the chain to
cross obstacles, Moves 1, 2, and 3 for an unrestricted two-dimensional
random walk on a square lattice are sketched in Fig. 9.32. The comner flip
(move 2) crosses obstacles and is therefore forbidden. The two remaining
moves (end flips and kink jumps) satisfy topological constraints and
therefore are allowed. The Monte Carlo model of chain motion by end flips
and kink jumps is called the Evans-Edwards model. Forbidding corner
flips leads to a dramatic change of polymer dynamics from free Rouse
motion to Rouse motion of a chain confined in a tube (reptation with tube
length fluctuations). The only allowed moves for a monomer in the middle
of an entangled Evans—Edwards chain are the kink jumps that represent
the diffusion of loops in the reptation model (Fig. 9.1). The time in a Monte
Carlo simulation is defined by the average number of artempted moves
PEr monomer.
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The diffusion coefficient D of the chain [Eq. (8.1)] is calculated by
averaging the square of the displacement of the centre of mass of the chain
{Fem(£) — Fo(0))?) during some long time ¢ over many independent runs
and taking its ratio to 67 in a three-dimensional simulation (4 in a two-
dimensional simulation):

D = fim (e (&) — Pem (0%
BT 6t
The limit in front of the ratio means that the time 7 has to be much longer
than the longest relaxation time of the chain. The resulting diffusion
coefficients obtained by Monte Carlo simulation of the Evans-Edwards
meodel of entangled polymers are presented in Fig. 9.33(a). The diftusion
coefficient decreases with the number of monomers in the chain. Another
quantity that can be extracted from the Monte Carlo simulations of the
EvansEdwards model is the relaxation time of the chain. It can be defined
as the characteristic decay time of the time correlation function of the
end-to-end vector {(R{f)R{0)) ~ exp(—¢/Twp). Figure 9.33(b) presents the
results of such simulations.
Both diffusion coefficient and relaxation time obey stronger power laws
in chain length than predicted by the simple reptation model [Egs (9.8)
and (9.12)].

(9.111)

D N-2,5:I:0.1 Trep ~ N}jio.ll (91 12)

These stronger molar mass dependences are in excellent agreement with
experiments on entangled polymer liquids and the Doi fluctuation model.
The important modes missing in the simple reptation model (that uses only
the centre of mass diffusion along the contour of the tube) are already
included in the Evans—Edwards model. It is important to emphasize that
no assumptions about the existence of a confining tube or a primitive path
was made in the Evans—Edwards model. The chain knows nothing about
such definitions and moves the best way it can within the established rules.
In order to verify that the missing modes are indeed related to tube length
fluctuations, an even simpler model is discussed next.

9.6.2.6 Repton model of chain motion in a confining tube

The original reptation model of de Gennes assumes that loops diffuse
randomly along the tube. The cumulative effect of the diffusion of loops is
the reptation motion. A discretized version of the reptation model is the
repton model that follows the diffusion of loops along the contour of the
tube. The confining tube is represented by a set of neighbouring sites on a
one-dimensional lattice. The chain in its tube is coarse-grained to a cluster
of reptons on these lattice sites. Each tube section must have at least one
repton. Longer loops are represented by additional reptons assigned to the
section of the tube from which the loop emanates.

Figure 9.34 displays the mapping of a chain in an array of fixed obstacles
to the repton model. Topological obstacles form a lattice with cell size
equal to the tube diameter. Roughly N, monomers are incell I, between the
end of the chain A and the point B where the chain finally leaves cell I for
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Chain length dependence of diffusion
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fig.9.34

Mapping of a chain in an array of
topological entanglements (grey circles)
onto a repton model. Cells of the
entanglement net, numbered [-1V. are
outlined by dotted lines and are mapped
onto a one-dimensional lattice.
Unentangled loops corresponding to
these cells are mapped onto reptons,
numbered 1-7, on the lattice sites.

Entangled polymer dynamics

cell TI. This is mapped into a single repton at site I of the one-dimensional
lattice. The number of monomers assigned to one repton N, is proportional
to, but smaller than, the number of monomers per entanglement strand N,
[see Eq. (9.114)]. Cell TT has roughly 3N, monomers in the chain section
between points B and C, thereby placing three reptons at site II of the
repton model. Similarly, cell IIT has roughly N, monomers and cell IV has
roughly 2N, monomers, making the number of reptons 1 and 2 at sites 111
and 1V of the one-dimensional lattice, respectively. In this manner, the
chain of ¥ monomers in Fig. 9.34 is mapped onto a sequence of n=7
reptons that are placed on K —4 sites of a one-dimensional lattice. This
mapping effectively coarsens the chain to an integer number of connected
reptons that each represents a section of the chain with &, monomers.

The dynamics of a single chain in a tube is mapped onto the dynamics of
the cluster of reptons along the one-dimensional lattice. To properly
describe chain motion along the tube, the motion of reptons must obey a
specific set of rules. The reptons can never vacate a site in the middle of the
cluster because the real chain always stays connected. This means that
repton 5 cannot move at the particular time step shown in Fig. 9.34 and
that repton | cannot move to a site to the left of site I (but could move to
site [T). The order of the reptons must always be preserved, since they
represent sequential sections of the chain along the confining tube. Hence,
repton 2 could move tosite I but not to site I1L, repton 3 cannot move'” and
repton 4 can move to site 111, but not to site 1.

At cach time step, a repton and the direction of its motion (4 or — ) are
randomly selected. If the move obeys the simple rules described above
(preserving connectivity and order) the move is actually made with prob-
ability p. For a chain segment of N, monomers in Fig. 9.34, corresponding
to one repton, there are z possible directions to move, where z is the number
of faces in each cell (z =4 for a square lattice and z =6 for a cubic lattice).
For a move between neighbouring occupied sites, there is one and only one
direction of motion that will move the repton to a new site, making p=1/z.
For example, there is one face between cells I and 11l in Fig. 9.34 for the
chain segment, corresponding to repten 4, to go through. All of the other
z— 1 directions effectively do not move the repton because these moves
keep the chain in loops associated with the original cell. However, the
reptons at the ends of the chain are different. The end sections of the chain
have z — | ways to move to new cells, making the probability p=(z — 1)/z
for a repton to move to an empty site. For example, the last section of the
chain, correspending to repton 7, has z — 1 = 3 new cells to choose from on
the square lattice (z=4) in Fig. 9.34. The relative probability p=(z — 1)/=
for a repton to move to an empty site controls the average number of
occupied sites (K} for a cluster of N/N, reptons:

o= (v

'® The chain segments corresponding to repton 3 could be in cell TF or ir: any cell adjacent to
cell IT, but the mapping to reptons always places repton 3 in cell IT.

(9.113)



Computer simulations in polymer physics

Thus, each repton contains slightly fewer than N, monomers:

r—1

Ne=——N.. (9.114)

These simple rules for connectivity, order, and motion allow the repton
model to be analysed analytically and easily solved numerically. The time
dependence of such motion is shown in Fig. 9.35(a) for the extremities of
the repton chain. The repton model allows direct visualization of tube
length fluctuations.

The stress relaxation modulus is determined by the set of sites on the one-
dimensional lattice {cells of the confining tube) that have not been vacated
between time 0 (the moment of the step strain) and time 7. The number of
these ‘still occupied’ sites is the difference between the furthest propagation
of the right end of the cluster to the left xg(s) (the upper dashed curve in
Fig. 9.35(a)) and the furthest propagation of the left end of the cluster to
the right x; (¢) (the lower dashed curve in Fig. 9.35(a)). The stress relaxation
modulus is proportional to the number of unrelaxed modes of the chain,
equal to the number of cells of the original confining tube that have never
been vacated. The stress relaxation modulus is proportional to the average
fraction of still oecupied sites in the repton model:

(xr(f) — xL(1)
(K} '

The ensemble average utilizes only positive values of xg(r) — x.(7), and
averages over many different chains. All negative values of xg(r) — xL(!)
are replaced by zeroes. The stress relaxation modulus for a chain of 80
reptons is shown in Fig. 9.35(b).

Viscosity is determined by integration of the stress relaxation modulus
[Eq. (7.117)] = [G(¢)dt. The numerically calculated dependence of visc-
osity on the number of reptons (for the coordination number z=6) is

(9.116)

G(1) = Ge (9.115)

N~ N3.3

for the entire range of repton numbers A studied (more than two decades),
as shown in Fig. 9.36. Analogous results were obtained in Monte
Carlo simulations of the Evans—Edwards model. The fact that the results of
the Evans—Edwards model that does not assume the existence of the tube
agree with the results of the repton model validates the concept of the
confining tube.

The simple reptation model that takes into account only the centre of
mass motion along the contour of the tube, but ignores tube length flue-
tuations, predicts different results than what are obtained from the Evans—
Edwards and repton models, as well as from experiments. This implies that
tube length fluctuations lead to important corrections to the simple
reptation dynamics of the chain in its confining tube. The apparent molar
mass exponent in the Evans—Edwards and repton models (as well as in
experiments) is larger than the ‘pure’ reptation value of 3 because real
chains abandon their tube fasrer through fluctuations in tube length and
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Repton model results for a chain of

80 reptons, courtesy of D. Shirvanyants.
(a) Tube length fluctuations represented
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Fig. 9.36

Viscosity of linear polymer calculated
from Monte Carlo simulations. Filled
circles are repton model data from

M. Rubinstein, Phys. Rev. Letz. 59, 1946
(1987), with data range extended by

D. Shirvanyants and open squares are
Evans-Edwards model data from

J. M. Deutsch and T. L. Madden,

J. Chem Phys. 91, 3252 (1989).
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the effect gets stronger as the chains get shorter. The tube length fluctua-
tions that are evident in Fig. 9.35(a) directly result in the stronger molar
mass dependence of viscosity observed in Fig. 9.36.

9.7 Summary of entangled dynamics

Topoloegical constraints, called entanglements, are manifestations of the
fact that chains cannot cross one another. There is no first-principles
microscopic model of chain entanglements. The most successful existing
model of entangled polymers is the Edwards tube model. This model
postulates that topological constraints of surrounding chains confing the
motion of any long chain to a tube-like region. This postulate separates the
complicated many-chain problem of entangled polymer solutions and
melts into two simpler problems: the motion of a single chain in its tube and
the motion of the tube due to motion of surrounding chains.

The main parameter of the tube model is the tube diameter a, determined
by the amplitude of fluctuations that are restricted by the surrounding
chains. The tube diameter is refated to the number of monomers in an
entanglement strand N.:

awb\/ﬁ.

The tube diameter in an athermal solvent is proportional to, but larger
than, the correlation length £

(9.117)

a(p) == a(1)¢~ % for an athermal solvent. (9.118)

The tube diameter in a #-solvent is proportional to, but larger than, the
distance between binary contacts

a(¢) = a{l)¢=** for a g-solvent. _ {9.119)

The number of monomers in an entanglement strand has practically the
same concentration dependence in all solvents N, ~ ¢~ %, The number of
monomers in an entanglement strand is usually determined from the pla-
teau modulus G, (the value of the stress relaxation modulus at the
relaxation time of an entanglement strand t.):

kT
Ge =

9.120
o (9.120)

for polymer melts.

The plateau modulus in entangled polymer solutions has practically the
same concentration dependence in all solvents, (g~ 23,

The primary mode of motion of a linear chain along its confining tube is
reptation, first proposed by de Gennes. Reptaticen is a snake-like diffusion
of a chain, as a whole, along the contour of its tube, with a Rouse curvi-
linear diffusion coefficient. The relaxation time of the melt is the time
it takes the chain to reptate out of its original tube, called the reptation
time T,ep. The reptation time and the viscosity of entangled polymers are
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predicted by the simple reptation model to be proportional to the cube of
pelymer molar mass

Tiep ~ 1 ~ M. (9.121)

The three-dimensional diffusion coefficient is predicted by the simple
reptation model to be reciprocally proportional to the square of polymer
molar mass:

D~ M2 (9.122)

The probability distribution function of the tube length L for a chain
with ¥ monomers is approximately Gaussian, with mean-square fluctua-
tion of the order of the mean-square end-to-end distance of the chain. The
tube length fluctuates in time, leading to stronger molar mass dependences
of relaxation time, viscosity, and diffusion coefficient resembling experi-
mental observations over some range of molar masses:

Teep ~ 1 ~ M4, (9.123)
D~M7 (9.124)

Tube length fluctuations medify the rheological response of entangled
polymers. Reptation dynamics adds a 11" regime to the mean-square
monomer displacement that was not present in the free Rouse model. This
extra regime is a characteristic signature of Rouse moticn of a chain
confined te a tube.

Entangled star polymers relax by arm retractions with relaxation times
and viscosities exponentially large in the number of entanglements per arm
N./N. [Eqs (9.58) and (9.61)]. This leads to exponentially small diffusion
coefficients [Eq. (9.62)] for entangled star polymers.

Reptation and tube length fluctuations of surrounding chains release
some of the entanglement constraints they impose on a given chain and
lead to Rouse-like motion of its tube, called constraint release. Constraint
release modes are important for stress relaxation, especially in polydisperse
entangled solutions and melts.

Problems
Section 9.1

9.1 The molar mass of an entanglement strand in a PDMS melt at 25°C is
M.2212000¢g mol™'. Estimate the plateau modulus G. if the density of the
PDMS melt at 25°Cis p=0.97gem >,

9.2 Consider a poly(methyl methacrylate) melt at 140°C.

{i) Use the information in Table 2.1 to estimate the volume v; of a Kuhn
monomer at 140°C.

(i) Calculate the number of Kuhn monomers per entanglement strand N,
and the molar mass M. of an entanglement strand, assuming the number
of entanglements strands P, = 20 per confinement volume a” and compare
your estimate with the experimental value M 2= 10000 g mol™".
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(iii) What is the tube diameter @ of PMMA at 140°C?

(iv) Calculate the plateau modulus G, of poly(methy! methacrylate) melt at
140°C and compare it with the experimental value G.==3.] x 10° Pa.

Section 9.2

9.3

9.4

9.5

9.6

Consider a PDMS melt with molar mass M =6 x 10° g mol ™", The relaxation
time of a Kuhn monomeris 7, = 10~'%s. The molar mass of a Kuhn menomer
is My=381g mol~' and the molar mass of an entanglement strand is
M.=12000g mol™".

(i) Estimate the reptation time t,o, of chains. How much longer is it than the
Rouse time 7 of the chains?
(ii) Estimate the diffusion coefficient D of these chains if the Kuhn length is
b=1.3nm.
(iii) Estimate the melt viscosity if the plateau modulus of a PDMS melt is
G.=2.0x10° Pa.

Consider a polystyrenc melt with molar mass M = 106 g mol ™"

(i) Estimate the width of the rubbery plateau (Trep/Te) if the molar mass of an
entanglement strand M, 2 |7 000 g mol ' assuming the cubic dependence
of the reptation time on the molar mass [Eq. (9.121))].

(ii) Repeat the calculation of (i) using the 3.4 power law dependence of
reptation time on the molar mass [Eq. (9.123)].

Consider an entangled polymer melt of A-mers with moln(z)meric friction
coefficient ¢, monomer size b, and tube diameter ¢ = bN;'" under steady
shear with shear rate .

(i) Show that the relative three-dimensional velecity of two typical over-
lapping chains of size R =~ bv/Nisv = R,

In order for one chain to move a distance of the order of the tube
diameter g, the other chain must move out of its way by the curvilinear
distance of the order of the tube length {L).

(il) Demonstrate that the relative velocity of the monomers of two over-
lapping chains is

N -
- 2R —
¥ N,
The rate of energy dissipation per unit volume 4° defines the viscosity 7

of the melt.
(iii) Calculate the viscosity of an entangled melt using the energy dissipation
rate per monomer {v.’.

Consider a segment s of the tube of an entangled N-mer at time /= 0. Assume
that the chain moves along its tube by simple diffusion with curvilinear
diffusion coefficient D..

(i) Show that the probability ¥(¢, t; ) that the primitive path of the chain
moves the distance ¢ during time ¢, while its ends have not yet reached a
segment s of the original tube is

s~ () ()22,

where the reptation time is

_
Trep = —ﬂ_z D,
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Hint: The probability $(¢£, 1; 5) is the solution of the diffusion equation

2
ou _, v
o ag?

with initial condition ¥{s — (L), 0; 5) = §(£) and two boundary conditions
Uis, :5)=0="V(s — (L}, 1; 5).

(i) Show that the probability of the segment s of the original tube (at time
7=1{}) to still be the part of the tube at time ¢ is

s =3 % sin (% p) exp (- fzi) . (9.126)

odd p

Hint: In order for segment s to still be part of the tube at time ¢ is should
not be reached by the ends of the tube. Therefore, the displacement & of
the tube during time 7 should be between s — {L) and 5. This means that

. Vs, 1) = / ;@ dew (e, 1;5).

(iii) The normalized stress relaxation modulus for reptation is the fraction
of original tube segments that have not been vacated between times {0
and ¢. Demonstrate that this normalized stress relaxation modulus is

G(1) 3 L exp(fp—%). (9.127)

2 2
Ge e pp

Hint: Note that the normalized stress relaxation modulus for reptation is
the probability w(s, ¢) that a segment s is still a part of the tube after time ¢
averaged over all segments &

9@__1_ (L) S8
o), e

9.7 (i) Calculate the upper bound on the error made in replacing the reptation
stress relaxation modulus [Eq. (9.20)] by a single exponential:

Gt =2 Ge exp(f‘[t )
Tep

Hint: The largest error arising from neglecting any term p= 3,5,7,...1n
Eq. (9.20) occurs at r="0.

(i) Calculate the upper bound on the error made in replacing the reptation
stress relaxation modulus [Eq. (9.21)] by a sum of two exponentials:
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9.8 (i) Demonstrate that the storage modulus of the Doi-Edwards reptation
model with stress relaxation modulus given by Eq. (9.20) is

8 ‘2Ir25
—= G - 9128
e Z pz(p‘l 41 ,21,;7@) ( )

odd p

Giw) =

while the loss modulus is

& wT
G'w) = =G, —_— 9.129

(ii) Calculate the low frequency limiting behaviour of G’ and G”.

(iii) Estimate the longest relaxation time as the reciprocal of the frequency at
which the low-frequency power laws of G and G” cross.

(iv) What is the error in assuming this estimate of the longest relaxation
LME 1S Tygp?

Section 9.3

9.9 Determine the number of other chains P, in the entanglement volume ¢° as a
function of concentration n semidilute solution for

(1) an athermal solvent;
(i) a f-solvent;
(iii) what bappens at low concentrations in a #-solvent?

9.1¢0 Consider a semidilute pelymer solution in a good solvent with excluded
volume v. At different length scales an entanglement strand can be viewed as
(see Figs 3.5 and 5.6) an ideal chain of gr monomers in a thermal blob; a self-
avoiding walk of g/gr thermal blobs up to correlation length £, where g is the
number of monomers in a correlation volume; and an ideal chain of N,/g
correlation blobs on the largest length scale, where N, is the number of
monomers in an entanglement sirand. Assume that a certain fixed number
of binary contacts is required in a confinement volume a”.

(i) Estimate the number of binary contacts between two overlapping
thermal blobs.

(ii) Assume that the number of binary contacts between two neighbouring
correlation volumes is the same as between two overlapping thermal
blobs. Estimate the number of monomers in an entanglement strand &,
from the assumption that the total number of contacts between
monomers on different chains in the confinement volume &’ is constant
and equal to (a(1)/#)*. Demenstrate that the number of monomers
in an entanglement strand N, in the concentration interval ¢, <
¢ < ¢**is

w4y 1/(30-1)
Ne() = Ne(1) (%) (g*%) 2 (9.130)

(ili) Estimate the entanglement concentration ¢, as a function of excluded
volume v for the case with ¢, < ¢**. How does the width of unentangled
semidilute regime ¢./¢* depend on the excluded volume v?

(iv) How does the number of monomers in an entanglement strand N,
depend on concentration at higher concentrations ¢ > ¢**?



9.11

9.12

9.13

9.14

Problems

(v) Determine the condition at which the entanglement concentration is in
the concentrated regime @, > ¢**?

(vi) Estimate the width of the unentangled semidilute regime for the case
with ¢** < ..

(i) Consider long polystyrene chains in carbon disulphide at 25°C
(athermal solvent). Estimate the correlation length £ and tube diameter
a at volume fractions ¢ = 0.1 and ¢=0.02.

(ii) Consider long polystyrene chains in cyclohexane at 35°C (f-solvent).
Estimate the correlasion length £ and tube diameter 2 at volume
fractions ¢=0.1 and ¢ =0.02.

(iif) What are the entanglement concentrations ¢ of polystyrene with molar
mass M = 500 000 in carbon disulphide at 25 °C (athermal sclvent) and
in cyclohexane at 35°C (@-solvent}?

Explain the length scales over which the reptation, Rouse, and Zimm
models describe dynamics in semidilute entangled solutions of linear

polymers.

Consider an entangled solution of N-mers in a good solvent with excluded
volume v and Xuhn monomer length 4, in a solvent with viscosity 5 at
volume fraction ¢, < ¢ < ¢** and derive the following results for

(i) the reldxation time 1, of the pelymer strand of size equal to the correla-
tion blob

3{2v—1)/ (-1}
b’ » —3u(3e—1)
— ; 9.13
T (v @ ’ (9-131)

(ii) the reptation time of the chain

b N (V)m 3(—p) /(1)

~ BT v 132
e = T NG (1) -132)

[

b.’!

(iii) the diffusion coefficient of the chain

ETN.(1 b3 1/[3(3w-1})
D ﬁ ;‘52 } (?> ¢7(27V}/(3V—]]; (9]33)
3

(iv) the specific viscosity of the solution

N N 2 VAN
(= — Y, 9.134
= (5) NP .

Repeat the calculations of Section 9.3 using the dependence of reptation
time Trep 0N molar mass with power 3.4 instead of 3 and using the values
of the scaling exponent vz 0.588 for athermal solvent and »=1/2 for a
#-solvent.

(i) Derive the following results for the concentration dependence of the
reptation time in athermal solvent and in £-solvent:

Tiep ~ ¢*'  for an athermal solvent; (9.135)

Toep ~ &> for a G-solvent. (9.136)
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9,15

9.16

9.17

9.18

9.19

9.20

9.21

(iiy Derive the following resuits for the concentration dependence of the
diffusion coefficient in athermal solvent and in #-solvent:

D~ o™ % for an athermal solvent; {9.137)
D~ ¢*? for a f-solvent. {9.138)

(iil) Derive the following results for the concentration dependence of
viscosity in athermal solvent and in #-sclvent:

n~o*3 for an athermal solvent; (9.139)
n~ o> for a -solvent, (9.140)

Consider a solution of DNA with molar mass A = 1.1x10* g mol™! corre-
sponding to n =1.64 x 10° base pairs. Assume that the jonic strength is high
enough to ignore excluded volume interactions.

(i) What is the contour length R, of this DNA if /=3.4 A per base pair?
(ii) What is the overlap concentration if the Kuhn length is =100 nm
(approximately 300 base pairs).

(iii) Assuming that the entanglement concentration ¢, = |0c* estimate the
contour length of an entanglement strand at ¢ =0.5mg mL~". What is
the molar mass of an entanglement strand at this concentration?

{(iv) Estimate the plateau modulus at the concentration 0.3mg mL~! at
30°C.

(v) Estimate the relaxation time and the viscosity of the DNA solution at the
concentration 0.5mg mL ™! at 30°C. Assume the solvent viscosity is
s = 1077 Pas.

Consider a solution of polystyrene with molar mass M=10°g mol™' in
cyclohexane at 35 °C (#-solvent with viscosity 1, = 7.6 x 10~*Pass). Estimate
the relaxation time, plateau modulus, viscosity, and diffusion coefficient as
functicns of concentration in semidilute solution.

Demonstrate that the specific viscosity 7y, of entangled solutiens in a good
solvent can be expressed as a universal function (independent of molar mass
and polymer species) of the ratio ¢/e* and the number of Kuhn monomers
in an entanglement strand in the melt.

Demonstrate that the ratio of specific viscosity ns, and the 2/3 power of
degree of polymerization N of entangled solutions in a*#-solvent can be
expressed as a universal function of the ratio ¢/¢* and the number of Kuhn
monomers in an entanglement strand in the melt.

How does the width of the plateau region of the stress relaxation modulus of
entangled polymer solutions (the ratio of reptation time 1., to the Rouse
time 1, of a strand between entanglements) increase with concentration:

(i) for athermal solutions;
(ii) for g-solutions.

Consider a linear chain of N Kuhn monomers of length # and monomer
volume vy in a B-solvent confined to an infinite cylindrical pore with dia-
meter ¢ and impenetrable walls. What average length (L} of the pore is
occupied by the chain? Is this average length the same or different for
the confining tube of diameter & in a semidilute entangled solution in a
f-solvent? Explain your answer.

Consider a linear chain of N monomers in a good solvent with excluded
volume v.

(1) Find the condition on & for which the onset of entanglement concentra-
tion ¢ is in concentrated regime above ¢** if the number of monomers
per entanglement strand in a melt is Ve(1).
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Problems

(ii) What is the concentration dependence of the diffusion coefficient for
the case with ¢, > ¢** in the three different concentration regimes:
P < o<t o*F LD <o Pe<O< L

Consider a small non-adsorbing spherical particle of diameter ¢ diffusing in
an entangled polymer solution of linear chains with ¥ Kuhn monomers of
length b, with volume fraction ¢ in an athermal solvent with solvent visc-
osity 7. Calculate the diffusion coefficient of the particle if' its diameter is:

{i) smaller than the correlation length £ of the solution {d < §):
(it) larger than ¢ but smaller than the tube diameter & (£ < d < a);
(iii) larger than the diameter « of the confining tube (d > a).

Section 9.4

9.23

9.24

9.25

9.26

The primitive path is defined as the shortest line with the same topology as
the original chain. Provide a precise definition of what is meant by the ‘same
topology’.

The confining tube can be visualized by a long-exposure photograph of a
wiggling chain (see Fig. 9.29). What is the shortest time for this photograph
to clearly show the entire volume of the tubg?

Consider a chain represented by an unrestricted random walk of N steps on
a square lattice, as sketched in Fig. 9.37. Topological constraints are
represented by obstacles placed in the middle of each cell. The chain is not
allowed to cross any of these obstacles. The primitive path (thick line in
Fig. 9.37)is then defined as the shortest walk on the lattice with the same end
points and the same topology as the original walk with respect to obstacles.

(i) Show that the average number of segments in a primitive path (K) fora ¥-
step random walk on a square lattice (Fig. 9.37) is

(K = (9.141)

N
5
(ii) Generalize this result to the N-step rander walk on a cubic lattice (with

coordination number z=6) and show that the average number of
segments in a primitive path (X} is

(K — (ij),yzé;v_ (9.142)

z

Hint: Note that the primitive path is a non-reversible random walk (with no
direct back-folding).

Imagine that one traditional student and another adventurous student are
sent to randomly wander in two different cities (Fig. 9.38). The traditional
student is sent to the city, called Squaros with a simple square grid of streets.
The adventurous student is sent to a city, called Betheus on a high dimen-
sional planet Cayleus in a recently discovered Universe. The streets in the
city Betheus form a Bethe lattice with coordination number z=4. The
reason for this layout of streets is to avoid arguments about the shortest way
of getting between any two locations in the city {there is only one path).

(i) Demonstrate that any sequence of loops and primitive path steps for a
random walk in Squaros can be mapped onto a simple random walk in the
stregts of Betheus.
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Lattice model of a chain in an array
of fixed topological obstacles. Thick
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Fig,9.39
Junction displacement mechanism of
star dynamics.

Entangled polymer dynamics

9.27

9.28

9.29*

(i) Show that loops formed by these two walks are identical, while the
length of the primitive path of the walk in Squaros corresponds to the
shortest path between the beginning and the end of the walk in
Betheus.

Estimate the probability distribution for an N-step walk of the adventurcus

student on the streets of Betheus (each step corresponds to a block) with
end-to-end distance of K blocks (see Fig. 9.38 and Problem 9.26).

(i) Show that for an arbitrary coordination number = this probability
distribution function is

1 l (N—K)/Z Z*l (N+K)/2 M
“Mm:it) (77) (N - RN K2

(9.143)
(ii} Derive an approximate expression for the probability distribution
function
pN.K) =[5 T oxp - T (K= 007 (9,144
20 P T2
where the average end-to-end distance (see Problem 9.25)
z—2
(k) ==
and the coefficient
z(z —2)
=I5 145
LTy (9.145)

Hint; Use Stirling’s approximation [Eq. (2.75)] and see Section 2.5.

Note that Eq. (9.144) is a probability distribution for a primitive path of

an N-step walk to consist of X steps and is an approximate expression for
tube length fluctuations.
Consider an alternative mechanism for relaxation of entangled star poly-
mers, studied by Klein. This relaxation process is analogous to reptation of
linear chains with the branch point of a star moving up the tube of one of its
Sarms. All remaining arms follow the branch point along the primitive path
of the chosen arm (Fig. 9.39). The tube length for each arm stays close to
the equilibrium length.

(i) Show that the free energy cost of the branch peint displacement by s/a
primitive path steps is

F(s) = kT(f-2) (9.146)

s

pt

(ii) Compare this fTeeenergy cost with tube length fluctuations and estimate
its importance for star polymers with different numbers of arms f.

Stress relaxation for polydisperse linear chains

Assume that the distribution of relaxation rates P(c) in Eq. (8.184) hasa
sharp cutoff at some characteristic lowest rate £* in the form of a stretched
exponential with some exponent x. A(s) is a weaker pre-exponential func-
tion (such as a power law):

P(e) = A(e} exp[—(e*/e}).



Problems

(i) Show that the integral in Eq. (8.184) is dominated by the maximum of
the exponential with

xq L/ (x+1)
£~ [x—(gt) ] %E*(E*t)flf(pr”

with the value of the exponent at this maximum

R Gl KA

Thus, the stress relaxation function can be approximated by a
stretched exponential form

G{1) = Bit)exp|—(eat) 7] (9.147)

where B(t} is a slowly varying function and e, = £*.
(i) Consider the distribution of chains obtained in a linear condensation
polymarization [Eq. (1.66)}.

1
Ay = N_n eXp(—N/Nn).

In an unentangled melt, the number density of modes relaxing with
rate ¢ corresponds to the number of chain sections containing K
Kuhn segments such that

-l— = 'L‘()K2
£
Show that the number density of these sections of K monomers is
N,
(F+1) expt-k/)

and therefore the spectrum of relaxation rates for an unentangled
melt can be represented by

O)lde| = (Ve7zn + 1) exp(—v/ea/2)

|de]
21(1)/253/2 ’

where the relaxation rate of the Ny -mer s

l
T[]N%_ )

En =

(iii) Note that this distribution is of the stretched expeonential form
P(e)= A(E) exp( — (£*/e)") with exponent x=1/2. Show that the
exponent in the stretched exponential form of Grt) is 1/3.

9.30* Consider a regular g-generation dendrimer entangled m an array of fixed
obstacles. The functionality of each junction point is fand the number of
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(b)
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Fig.9.40

(a) Ring polymer in an array of fixed
topological obstacles. {b) Equivalent
branched polymer with the “trunk’ of the
branched tree between points A and B
marked in bold. (¢) Branches of the tree
of the section AB, represented by circles
of different size, act as reservoirs of
kinks. Kinks diffuse between these
reservoirs along the trunk. as indicated
by arrows.

Entangled polymer dynamics

9.31%

Kuhn monomers i each linear section N, is sufficiently large that these
sections overlap with many obstacles and entangle extensively. Describe
the hierarchy of the relaxation processes of this entangled dendrimer.
Estimate the relaxation time and the diffusion coefficient. Assume a har-
monic arm retraction potential [Eq. (9.54)].
Entangled rings

Consider the dynamics of an entangled ring polymer in an array of fixed
obstacles [Fig. 9.40(a)]. The ring is not permanently trapped by the
obstacles, but is able to diffuse. The ring does not have free ends and,
therefore, ‘classical’ snake-like reptation is not expected for it. An ideal
untrapped ring polymer in an array of fixed topological obstacles is an
unentangled loop formed by double-folded strands of N, monomers each,
similar to an arm of a star at the moment of complete retraction.

(i) Show that the size of an ideal entangled untrapped ring polymer is

Ring = B/ NN, (9.148)

Even though the conformation of entangled ring polymers 1s similar to
that of branched polymers, they do not have fixed branch points and
therefore rings do not need to invoke the exponentially slow arm retraction
process to change their conformations. The reason the arm retraction of
branched polymers is an exponentially slow process is that they have to
reduce their entropy to form exponentially unlikely unentangled loops.
This high price was already paid when the ring polymer was squeezed into
the array of fixed topological obstacles and formed conformations with
double-folded strands. Motion of the ring polymer from one such con-
formation to another one does not carry any entropic penalty.

The dynamics of rings is qualitatively different from that of linear chains
and branched polymers. Considerany section of a ring, such as the lower part
between points A and B [Fig. 9.40(a)): this section can be treated as a linear
polymer consisting of a primitive path and severalloops. The corresponding
part AB of the branched polymer representation of the ring consists of a
trunk [thick line in Fig. 9.40(b)], corresponding to the primitive path of the
section, and side branches, corresponding to unentangled loops.

(ii) Demonstrate that the number of monomers my along the linear section
{(trunk) of a ring is proportional to the square root of the total number of
monomers 7 in the section: .

n = v/ aN..

Thus, most of the monomers are in the side branches, corresponding to the
unentangled loops.

Consider the diffusion of kinks (small unentangled loops containing N,
monomers) along the portion AB of the molecule. Diffusion of kinks along
large unentangled loops [branches of the equivalent tree in Fig. 9.41(b)]
changes the conformation of these loops, but does not contribute sig-
nificantly to the overall transport of the AB section. Mass transport. cor-
responding te this diffusion stays within larger unentangled loops,
represented by circles in Fig. 9.40(c). These larger unentangled loops act as
a reservoir of kinks that move along the primitive path (trunk) of the sec-
tion AB [shown by arrows in Fig. 9.40(c)].

(iil) Prove that the mean-square displacement of the centre of mass of the
section AB along the primitive path during the relaxation time 7. of an
entangled strand is

3/2
As? A g (&>

I H



Problems

and the curvilinear diffusion coefficient of section AB along its primitive

path is
Dy (N
Deln) = — [ ==
c(m) Nt(n> '

where the monomeric diffusion coefficient is Dy = b*/zq.
(1v) Show that the relaxation time of section AB is

5/2
T(n) = 1, (%e) .

(v) Prove that the relaxation time of the whole ring with ¥ monomers is

5/2
Tring = Te (Nﬁ) . (9.149)

{vi) Demonstrate that the diffusion coefficient of an ideal entangled
untrapped ring is
Ne
D=Dy—. 9.150
0Nz { )
932 Show that a stress relaxation modulus of an entangled but non-concate-
nated melt of rings on the basis of the single chain dynamic modes described
in Problem 9.31 is

-

P\ Y5
G(r)zGe(r—E) eXp(—!/Trng)» (9.151)

where the relaxation time of a ring is given by Eq. (9.149).

9.33  What is the mean-square curvilinear displacement of monomers in an
entangled melt along the confining tube on time scales between the
relaxation time of an entanglement strand 1'3 and the reptation time t,.,?
Sketch this time dependence of {[s(£) — 5(0)]3*%.

9.3  Estimate the time dependence of the mean-square displacement of the
centre of mass of an entangled linear chain in a melt on time scales:
(1) 1< 1es (1) Te < £ < TR; (1) TR < < Trep; (1V) 12 Trgy,.

9.35 Estimate the time dependence of the mean-square displacement of a
monomer in an entangled polymer solution.

(i) On time scales ¢ < 7., where 7, is the relaxation time of a chain section

with size equal to the correlation length.

(i) On time scales 7 <t < 7., where 7, is the relaxation time of a strand
between entanglements.

(ii) On time scales 1. < ¢ < T, where ty is the Rouse time of the polymer.

{iv) On time scales Tp <7< Trep, Where T, is the reptation time of the
polymer.

{v) On time scales ¢ > Trep.

9.36  Demonstrate that the loss modulus is predicted to have the following high-
frequency behaviour for various models:

i) G"wi~w! for the Maxwell model (if wz > 1);
(ii) G"(w)~w "* for the Doi fluctuation model (if /7 < w < 1/z.);
(iii) G"(w)~w™ " for the reptation model (if wT,ep 3 1).

9.37* (Calculate the storage and loss moduli corresponding to the Doi fluctuation
model with stress relaxation modulus
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2;1\;‘N¢/N 16,[4';2N
Gt:G",/ dé¢ ex [— Et]
() N p ‘f P fdtrepN

+Gy

! t
d - . 9.152
2un/ N /N & exp{ [Trep(f LAY NE/MZ]} ( )
0.38*

(i) Use the approximate expression for the time 1(s) for retraction of an
arm of the entangled star polymer down to length s

2
v s Na
T(5) & Tuem exp[ (N el E)] (9.153)
to obtain a simple estimate of the stress relaxation modulus of a star
polymer:
T3 T
G(1) %G?V(l qu}l ““) for t < Tapm (9.154)

(ii) A simple way to obtain the storage modulus of star polymers is to
replace £in the stress relaxation modulus by 1/w. Show that the storage
modulus is

G'{w) ::G{]’V(l — 1#1—%%111 wram).

9.39 Consider an entangled monodisperse melt of H-polymers with Ny, Kuhn
monomers in the central backbone and N, monomers in each of the four
arms, with N, monomers between entanglements.

(i) Estimate the terminal relaxation time of the H-polymer considering
exclusively single-chain modes. Express this terminal time in terms of the
single arm retraction time 7,.-

(i) What is the diffusion coefficient of the H-polymer? Ignore multi-chain
contributions to dynamics.

(iii) What is the single-chain expression of the stress relaxation modulus
of the H-polymer melt in terms of stress relaxation modulus G.(7)
of individual arms and the reptation contribution of the central back-
bone?

940 Consider a molecule made out of two f~arm stars with &, Kuhn segments
per arm with junction points connected by a central linear strand of Ny
Kuhn monomers. This molecule is called a pom-pom polymer. If f=1, this
molecule is linear, while the H-polymer corresponds to f=2. Estimate the
Jf-dependence of relaxation time and diffusion coefficient of a melt of
monodisperse pom-pom polymers for (> 1. Consider only single-chain
modes and assume that the coordination number of an entanglement net-
work is z.

9.41 Consider an asymmetric star with one short and two long arms in an array of
fixed topological obstacles. The short arm contains &g Kuhn monomers.
The long arms contain A Kuhn monomers and the number of Kuhn
monomers between entanglements is N,.

(1) Estimate the relaxation time 7g of the short arm.
(i) How many entanglements of the long arms do not have time to
disentangle during the relaxation time of the shert arm zs.



9.42

943

9.44

Problems

(iii) Estimate the relaxation time of the asymmetric entangled star
assurning that the junction point moves along the contour of the tubes
of long arms with curvilinear diffusion constant D, ~ &/ts.

{iv) What is the diffusion coefficient of this asymmetric star in an array of
fixed obstacles?

Ignoring many-chain effects, relate the stress relaxation modulus G{:) of a
comb polymer consisting of ¢ branches with &, monomers and backbone
with N, monomers to the stress relaxation modulus of a star with N,
MONOMErs Per arm.
Curro—Pincus relaxation in networks

The stress relaxation of polymer networks on long time scales is believed
to be due to arm retraction of dangling ends (Fig. 7.7). The polydispersity of
dangling ends is determined during crosslinking. Assume the number frac-
tion distribution of linear dangling ends [Eq. (1.52)]

ny = pY{1—p)

with the number-average number of monomers in a dangling end of
the order of that of a network strand [Eq. (1.31)] N, = /(1 — p). Assume
that the contribution of dangling ends to the stress relaxation modulus is
proportional to the unretracted part of these chains (similar to star
polymers)

G(t) — G ~ i (Nﬁe - %)rm

N=KI(r)

In the above equation, a = bN;/ 2 is the tube diameter with N. monomers
between entanglements, K(¢) is the number of monomers in the dangling
chain with retraction time equal to ¢

K= %Ne In(t/11),

where we ignore weak (logarithmic) dependence of 7, on X [Eq. (9.58)]. All
shorter dangling ends have already relaxed by time ¢. The sum in the equa-
tion above is only over longer dangling ends with s(¢) the length of the tube
that has already been vacated by time 1.

(i) Assume a simple logarithmic time dependence of the relaxed part of
dangling ends s{f) = e In (¢/7,) and show that the contribution of dangling
ends to the stress relaxation modulus of the network decays as a power
law in time.

(ii) What is wrong with the assumed time dependence of the relaxed part of
dangling ends s(#)? What should be the corrected time dependence of the
relaxed part of dangling ends? Hins: Is it consistent with a parabolic
retraction potential [Eq. (9.56)]?

Entanglement during gelation

Consider vulcanization of a melt of N-mers. At some extent of reaction
£ =(p — pc}/p. above the gel point and beyond the Ginzburg point (in the
mean-ficld regime) the network strands become entangled with each other.

(i) Show that the size of the network strand’s linear backbone is
Ry 22 bN'2712,

Hint: Remember that every network strand 1s branched, with structure
similar to the characteristic polymer at each extent of reaction.
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(i) Elastically effective linear backbones of these network strands are
random walks. Show that these lingar backbones contain Ny, =~ Nfe
TNONOMETS.

(iii) In the mean-field region of the gelation transition, the gel fraction is
Py~ and the number of monomers in a characteristic strand is
N* = N/e” including both backbone and side branches. Show that the
volume fraction of the backbone is gy, = &7,

{iv) The confining tube diameter in the melt of N-mers before the
vulcanization reaction was af1). Demonstrate that the tube diameter,
due exclusively to entanglements between the backbones of the gel, s

ama(l)e ¥? (9.155)

assuming all elastically ineffective side branches act as @-solvent.
(v) Show that the number of monomers in the linear part of an entangle-
ment strand is

Ne = (?)ZEW (9.156)

(vi) Demenstrate that the modulus of the network is

G szs“‘/—‘. (9.157)
bla(1)]

Section9.5

945 Tube dilation for a binary blend

Consider a melt consisting of a mixture of entangled long and short chains

with degrees of polymerization N 3 Ng > N.. Long chains are assumed to

be entangled with each other and with short chains. The distance

between entanglements of long chains & (if short chains are replaced

by a #-solvent) is larger than the average distance between all entan-

glements in the melt {tube length ay). Ignore tube length fluctuations

and consider only reptation of chainsin their tubes with a single mode.

(i) Show the constraint release process for long chains due to motion of
short chains takes place on fime scale

Ng }
Tg =2 Teap Nio
@

and the relaxation time of a long-chain strand between neighbouring
entanglements with other long chains is

2 4

oL Ts (NCL) 7 (aL

eL — Fad S _— .
Neo a9

(ii) Demonstrate that the average number of long-chain entanglements with

other long chains is
2
N (i)
Neo Neo \ar
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and the reptation time of a long chain in a dilated tube of diameter o
with elementary friction due to constraint release is

- ~1 Ng 3 Np 3 ad z

) dilated ~ te0 Nay Neo aL -
(iii} Prove that this reptation of long chains in dilated tubes is faster than
their reptation 7y in thin {original) tubes for relatively short surrounding

chains
Ns 3 (QL) 2/3
Neo e '
(iv) Recall the dependence of the number of monomers in an entanglement
strand N, on polymer concentration ¢ [Eq. (9.36)]:

Ne ~ (»i’iaq

where a=4/3 in #-solvents. Polymer concentration ¢ is replaced in the
tube dilation models by the fraction of unrelaxed chains. Show that the
ratio of dilated and bare tube diameters is

.

fL . d);u/l
4]

and reptation in the dilated tubes is effective for small numbers of
entanglements in the short chains:

(v) Demonstrate that for this inequality to be valid and for the volume
fraction of long chains to be above the entanglement onset of long chains,
it is necessary that the number of entanglements in the long chains is
larger than the cube of the number of entanglements in the short chains:

N Ng\'?
(2. 9.158
Neo (Neo) ( )

{vi) The dilated tube is effective as long as the lifetime of the corresponding
constraint (the reptation time of the long chains)is longer than the Rouse
time of constraint release of the correspending entanglement strands
T.r < TL. Prove that tube dilation can be observed for intermediate
volume fraction ¢, of long chains in the melt:

(ﬂ)—l/a{. d)L - (&)HG
Neﬂ Neo .

(vii) Estimate the composition range for the tube dilation approximation
for a binary blend of long chains containing Ny /N. = 300 entangle-
ments and short chains containing N/, =5 entanglements. Assume
that the number of monomers in an entanglement strand N, decreases
with volume fraction ¢ as N~ ¢ >~

9.46 Tube dilation for a power law polydispersity
For a chain to be confined to a dilated tube, the mean-square displace-
ment {r, ()} — 1 (0}]*} of its monomers in the direction perpendicular to the
contour of the tube has to be restricted by the mean-square tube diameter

[a(OT.
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Consider a melt with volume fraction of N-mers described by a power law
distribution

r,i:(N)::N“‘3 for N > N
with 4 2. Assume single-mode reptation of chains in their tubes.
(i) Show that polymers relaxing at time ¢ have degree of polymerization
ANVE
N(t) = N (——) .
Te

Assume that all shorter chains with N < N(¢) have already relaxed, while
all longer chains with N > N(¢) have not relaxed yet.
(ii) Show that the volume fraction of unrelaxed chains decreases with time as

PR
i(t) #= (—-—) .
Te

(iii) Demonstrate that the mean-square diameter of dilated tubes grows with

time as
(ﬂ(t))2~ Ne(f) N (i)tl[:jl)/‘
ap N (0} Te

assuming thatall relaxed chains nolonger constrain the unrelaxed chains.

(iv) Explain why the Rouse friction of the constraint release process at an
entanglement with an N-mer with lifetime r(¥) is

kT
LN) = =T,

Prove that the average Rouse [riction of the constraint release process
at time ¢ due to short N-mers with N < N(¢) is

S kT/@IND] for < 4,
Kuh = {Co i for 3 > 4.

Hinz: Assume that the probability of entanglement with an N-mer is
proportional to its volume fraction ¢(N). -

(v) Demonstrate that the time dependence of the average friction
coefficient is

(4-2)/3
o~ {5 fpsi

(vi) Show that the subdiffusive mean-square monomer displacement due
to constraint release increases with time as

- 2 A3-1/6 for B < 4
ooy~ {1,770 for o<

and therefore the diluting tube is not effective in constraining the chain
at all times and for all values of distribution exponent 3 > 2.

9.47 Stress relaxation modulus in tube dilation models
There is a conceptual difference between tube dilation and constraint
release. The motion of the tube in constraint release does not affect single-
chain modes inside the tube (reptation and tube length fluctuation). The
tube diamester for these single chains in a tube processes is, on average,
constant. In contrast, the tube diameter increases with time in the sube
dilation process and dramatically affects the chain motion within the tube.
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9.49

9.50*

Problems

(i) Explain why the stress relaxation modulus in tube dilation models can be
written as the product of the time-dependent modulus (/) times the
single chain in a dilated tube relaxation function pu(#):

G{1) = Ge(t)u(1). (9.159)

(ii) Demonstrate that the time-dependent modulus can be expressed in
terms of the time-dependent number of monomers in an entanglement
strand N.(#) of the dilated tube:

Gult) ~ kT
ST RN
(iii) Use the dependence of the number of monomers in an entanglement
strand N.(r) on the volume fraction of unrelaxed chains p(¢) to derive the
stress relaxation modulus

G{1) = Ge(O[u(0)]™"

{iv) Thedouble reptation model assumnes that the stress relaxation modulus is

) G2) = Ge(0) ()],

What value of o corresponds to the double reptation medel? In Section 9.3,
we have presented theoretical arguments and experimental data support-
ing the value o =4/3 in #-solvents (and melts with ideal chain statistics).
What is the expression of the stress relaxation modulus of tube dilaticn
models corresponding to o =4/37

Constraint release vs. tube dilation

Consider an isolated long probe P-mer entangled in a melt of shorter
N-mers. Tube dilation assumes that as soon as short chains relax, stress in
the long P-mer drops to zero. In particular, a version of tube dilaticn called
double reptation imposes an exact symmetry between single chains in a
tube and multi-chain processes. As one chain reptates away, stress at a
common entanglement (stress point) is relaxed complerely. In constraint
release models, this stress relaxes only partially due to connectivity of the
P-mer.

(1) Whatis the relaxation time of a P-mer in the constraint release models if
the reptation time of N-mers is 1,,(N )} and the number of monomers in
an entanglement strand in the melt is N7

(i) Whatisthe relaxation time of anisolated long P-mer in the tube dilation
model?

Consider a comb polymer consisting of a backbone with Ny, monomers
and ¢ branches with &, monomers and arm retraction time T, Assume
that backbones reptate along a dilated tube with entanglements only due to
other backbones. Use #-solvent scaling of the tube diameter with con-
centration of entangled polymers.

(i) Estimate the stress relaxation time of a comb.
(i) What is the diffusion coefficient of a comb?
(iii) Relate the stress relaxation modulus G(/) of a comb to the stress
relaxation modulus G.(#) of a star with N, monomers per arm.

Enormously long linear chains may have a many-chain effect that retards
their reptation. The plateau modulus of an entanglement network is given
by Eq. (9.18). In equilibrium there are small fluctuations of stress Aa(r)
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and strain A=(r) in entanglement networks with elastic energy of order kT

stored in these fluctuations on all length scales r.

(i} Ifthe energy per unit volume due to strain Ae(r)is GJ[Ae(r)]* show that
a typical thermal fluctuation of stress is

kT
VVoNert

(iiy A polymer segment with » monomers and size reebn't? gntering
this pre-stressed network will induce additional strain with
energy

Agir) a

AF(n) = voria(r).

Aslong as this energy is less than the thermal energy kT, the segment wil!
average over the whole volume r*. Show that the largest unperturbed

segment has degree of polymerization

bﬁ
n* i — Ng.
Va

(iii) Demonstrate that for smaller unperturbed segments the strain energy is

L/ 6
AF(n) ~ kT\/Z:‘j(j—%) for n < n* %Ng.
e ]

(iv) Longersegmentsn > n* & (b5 /v}) NZ cause strain energy larger than kT
and tend to localize in regions of lower stress with elastic encrgy
proportional to the number of these localization blobs. Show that the
strain energy of larger segments is

vin b8

Fgﬁe fOrn}ﬂ*'r‘Jv—%Ng.

{(v) For a melt of very long chains with degree of polymerization ¥, the
distance between chain ends is large (+ = bN'/). The section of polymer
that needs to penetrate the region devoid of chain ends of size r has a
large number of monomers # &= N°°. Using this result in the strain energy
of part (iv) and assuming motion requires overcoming this potenial
barrier, derive the following relation for the relaxation time of extremely
long linear chains:

AF(n) ~ kT}% ~ kT

2 AR/
T ~ exp (const.%%) for N/N, > i)’—;Ng (9.160)
e 0

Section9.6

9.51 In a molecular dynamics simulation, the average value of any quantity A is
estimated by averaging over a large number X of molecular dynamics time
steps of length &1 after a long initial equilibration of the system during ¥
molecular dynamics time steps:

X
(A :)i(ZA(YJr k)bt.
k=1

Is the relative error of this estimate | /+/X?

9.52 Which of the two computer simulation methods is more efficient in accu-
rately simulating (i) static and (i) dynamic properties of a single polymer
chain in dilute solution: molecular dynamics with explicit solvent or Brow-
nian dynamics without explicit solvent?
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9.54

9.55

9.56

9.57

9.58
9.59

9.60

Problems

Determine the fraction of attempted moves of an entangled Evans—Edwards
chain that actually move a monomer to a new lattice site for the:

(1) square lattice;
(ii) simple cubic lattice;
(iii) repeat both calculations for an unentangled Verdier—Stockmayer chain.

Hint: Write the final answers as functions of N.

Determine the assignment of reptons by starting at the opposite end of the

chain in Fig. 9.34. Explain the differences between these assignments and the

original assignments. Will they affect the diffusion coefficient?

Show that the minimum of the Lennard-Jones potential [Eq. (9.94)] is at

r=2"% Find the value of the potential at the minimum.

(i) Consider particles of mass i interacting via a Lennard-Jones potential

* with energy parameter ¢ and distance parameter o. Construct a time scale

out of these parameters, called the Lennard-Jones time 7 5. What is the
physical significance of this time scale?

(i) Consider an example of a bead representing a Kubn segment of
polystyrene with m= My =740 gmol ™', = =kT}2, o= 18 A, at tempera-
ture T= 300 K. Calculate the corresponding Lennard-Tones time t;yand
the molscular dynamics time step 62 =0.017;, thereby taking it to be
much smaller than the Lennard-Jones time.

(iii) Estimate the Finstein frequency of a Lennard-Jones crystal by

approximating the Lennard-Jones potential near its minimum by a
harmonic potential.

Consider a molecular dynamics simulation of a polymer system consisting
of 20 chains, each with 100 Lennard-Jones menomers. Let us assume that the
molecular dynamics step &2 = 0017y ; takes 10ms of CPU time, where 7pj is
the Lennard-Jones time (corresponding to the monomeric relaxation time):

(i) How long will it take to relax the systemn if we assume it is unentangled
(obeying Rouse dynamics)?

(i) How long would it take to obtain a 10% accuracy on an average
quantity, such as the longest relaxation time,

Show that the Metropolis algorithm satisfies detailed balance.

Estimate the N-dependence of the success rate of a simple Monte Carlo
simulation of a self-avoiding walk with N =100 steps. Assume that random
walks are generated on a cubic lattice. Each step of the walk is not allowed to
step back (they can only go forward, up, down, turn left, or right with equal
probability of 1/5). Walks that intersect themselves are discarded.

(i) Make a mean-field estimate of the N-dependence of the success rate.
(i) Use the number of N-step self-avoiding walks

W (N) = 2VNTL
where v =7/6 and z = 4.68 for a three-dimensional simple cubic lattice,

to obtain a better estimate of the success rate. How does this success rate
compare with the mean-field estimate?

Does the probability of successfully overlapping two independent three-
dimensiona) self-avoiding walks increase or decrease with the number of
steps N in these walks? Successful overlap of self-avoiding walks avoids
direct overlap of any monomers. Answer this question for two different
methods of overlapping walks:

(i} Dimerization—the end of ong walk is adjacent (or coincides) with the end
of the other walk.
(ii) Shared pervaded volume. The centres of mass of the two walks coincide.
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numerical approximation, e.g. w==3.14

approximately equal, e.g. R~bN 0588

proportional, e.g. R~ N2

ensemble average, p. 51

factorial M=1x2x3x ... xN

entropic part of Flory interaction parameter y,
[dimensionless], p. 145

second virial coefficient, [m® kg,"2 mol], p. 28

weight-average second virial coefficient, [m® kg™ mol], p. 28

z-average second virial coefficient, [m” kg™ mol], p. 33

second virial coefficient between species i and j,
[m? kg‘2 mol], p. 28

Mark-Houwink exponent, [dimensionless], p. 34

tube diameter, [m], p. 265

degeneracy, {dimensionless], p. 206

time scale multiplicative shift factor, [dimensionless], p. 335

coefficient in enthalpic part of Flory interaction parameter
x, K], p. 145

Kuhn length, [m], p. 54

modulus scale multiplicative shift factor,
[dimensionless], p. 335

coefficient of molar mass dependence of glass transition,
[kg K mol™!], p. 340

Mooney-Rivlin coefficients, [kg m* s77], pp. 268269

scaling factors, [dimensionless], p. 11

Flory’s characteristic ratio, [dimensionless], p. 53

pelymer mass concentration, [kg m ), p. 13

speed of light, [m s71, p. 30

overlap concentration, [kg m™], p. 13

mass concentration of N-mers, [kg m ], p. 16

monomer aumber density, [m ], p. 100

size of compressien blob, [m], p. 108

diffusion coefficient, [m2 s_l], p- 309

fractal dimension, [dimensionless], p. 10

curvilinear diffusion coefficient, [m2 571, p. 363

Rouse diffusion coefficient, [m* s '], p. 311

Zimm diffusion coefficient, [m2 s ', p. 313

space dimension, [dimensionless], p. 9

diameter of a cylindrical monomer, [m], p. 99

clectric field, [em/* g2 571, p. 30
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Jia
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f+(NIN%)

S ANIN¥)

e

e

Js

G
G(h)
G'(w)
GH (w)

monomer-surface interaction energy, [kg m® 5*2], p. 112
Young’s modulus, [kg m~' 577, p, 296
activation energy for flow, [kg m? s7%], p. 337
critical adsorption energy per monomer, [kg m
p. 112
incident electric field, [cm_UZ g s, p. 30
scattered electric field, [em ™' gi? 571, p. 30
Young’s modulus due to wavelength A, [kg m™' s,
p. 334
encrgy of vaporization, [kg m? 577, p. 143
energy barrier between trans and gauche minima,
[kg m? s, p. 50
energy of vaporization for a molecule of species A or B,
[kg m? s77], p. 144
elementary charge, [em*2g!%s™']
Helmholtz free energy, [kg m* s2], p. 71
free energy of mixing per site, [kg m” s~ 7], p. 140
free energy of mixing, [kg m? 577, p. 164
confinement free energy, [kg m?s” ] p- 108
clastic part of the free energy, [kg m® s A, p 275
entropic part of the free energy, (kg m? s ] p 116
interaction part of the frec energy, [kg m? s~ p. 100

force, (kg m s, p. 72

magnitude of force, [kg m 52, p. 72

functionality, [dimensionless], p. 206

free volume, [m?), p. 337

a-component of the force acting on bead j,
[kg m s, p. 359

Mayer f~function, [dimensionless], p. 99

cutoff function above the gel point,
[dimensionless], p. 227

cutoff function below the gel point,
[dimensionless], p. 227

energetic part of the force, [kg m s 7], p. 254

free volume at the glass transition, [m’], p. 338

entropic part of the force, [kg m s™7], p. 255

shear modulus, [kg m~' 574, p. 259, 282

stress relaxation modulus, [kg m™ 577, p. 284

storage modulus, [kg m—' s77), p. 291

loss modulus, [kg m™" s77), p. 291

complex modulus, [kg m ™' s, p. 292

Kuhn modulus, [kg m~" s77), p. 364

plateau modulus, [kg m ! s72], p. 266

equilibrium shear modulus, [kg m~"' 577, p. 284

glassy modulus, [kg m™! s77], p. 336

modulus in the Maxwell model, [kg m™" 572, p. 283
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crosslink contribution to the modulus,
[kg m 's 7], p. 263

number of monomers in a chain section,
[dimensionless], p. 12

exponent of the end-to-end distribution function,
[dimensionless], p. 122

pair correlation function, [m™], p. 78

probability of attempting a transition between

states / and j, [dimensicnless], p. 395

number of monomers in a thermal blob,
[dimensionless], p. 113

diameter of a wire, [m], pp. 9, 10

height of the brush, [m], p. 187

intensity scattered by molecules in a unit volume,
kg m™* s, p. 31

strain invariants, [dimensionless], p. 268

intensity of incident wave, [kg s™°], p. 30

_intensity of scattered wave, [kg s7°], p. 30

creep compliance, [kg™! m s7], p. 288

steady state compliance, [kg™' m s7], p. 288

recoverable compliance, [kg™' m s7], p. 290

optical constant, [m? kg™2 mol], p. 32

Mark-Houwink coefficient, [m” kg~' (mol kg~') ),
p. 34

number of chains in the scattering volume

[dimensionless], p. 189

bulk modulus, [kg m™" 577, p. 296

number of particles in a simulation boex,
[dimensionless], p. 392

Boltzmann constant, [kg m* s~ K™, p. 27

spring constant of mode p, [kg s, p. 359

Huggins coefficient, [dimensionless], p. 34

Langevin function, [dimensionless], p. 76

contour length of the primitive path, [m], p. 361

contour length of a tube of an arm, [m], p. 377

dimensions of deformed network, [m], p. 256

dimensions of undeformed network, [m], p. 256

length of a bond, [m], pp. §, 12

scattering length of solvent, [m], p. 196

Bjerrum length, [m], p. 129

scattering length of deuterated monomers, [m], p. 196
scattering length of hydrogenated monomers, [m], p. 196

persistence length, [m], p. 57
molar mass, [kg mol™!], p. 2
molar mass of a Kuhn monomer, [kg mol™], p. 54
molar mass of an entanglement strand,
[kg mol '], p. 266
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Mmrm

z

3

=

X =EX

I3
iN
b

1y
n(p. N)

Ha, Ap

molar mass of a chemical monomer, [kg mol™'], p. 3

molar mass of N-mer, [kg mol™'], p. 16

number-average molar mass, [kg mol~'], p. 17

number-average molar mass of a network strand,
[kg mol™ '], p. 259

weight-average molar mass, [kg mol '], p. 18

apparent molar mass of a network strand,
[kg mol~'], p. 263

z-average molar mass, [kg mol™!], p. 18

(z + k)-average molar mass, (kg mol™'], p. 18

mass of an chject, [kg], pp. 9, 10

number of monomers in a chain section

[dimensionless], p. 78

k-th moment of the number fraction distribution,
[kgt mol ™, p. 17

degree of polymerization, [dimensionless|, p. 2

characteristic degree of polymerization, [dimensionless],
p. 210

number of Kuhn monomers in an arm of a star,
[dimensionless], p. 377

number of lattice sites occupied by a molecule A
and a molecule B, [dimensionless], p. 138

number of monomers in a reptating backbone,
[dimensionless], p. 381

number of monomers in an entanglement strand,
[dimensionless], p. 266

number average degree of polymerization,
[dimensionless], p. 17

Avogadro’s number, mol '], p. 3

number of monomers in a combined chain,
[dimensionless], p. 262 *

number of backbone bonds, [dimensionless], p. 3

refractive index of the medium, [dimensionless], p. 31

number of scatterers in the scattering volume,
[dimensionless], p. 123

number of lattice sites in a mixture,
[dimensionless], p. 138

number of strands in a network, [dimensionless], p. 257

refractive index of a solvent, [dimensionless], p. 31

number of N-mers per monomer at extent of reaction p,
[dimensionless], p. 21

number of molecules of species A and B in a mixture,
[dimensionless], p. 139

number fraction of N-mers, [dimensionless], p. 16

number density of molecules, [dimensionless], p. 205

overlap parameter, [dimensionless], p. 14

form factor, [dimensicnless], p. 82
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1-dimensional probability distribution function for the
N-step walk, [m™'], pp. 69-70

3-dimensional probability distribution function for the
N-step walk, [m ], pp. 69-70

gel fraction, [dimensionless], p. 214

number of overlapping strands in an entanglement
volume, [dimensionless], p. 362

probability of being in state / in a Monte Carlo

simulation, [dimensionless], p. 393

sol fraction, [dimensionless)], p. 214

extent of reaction, [dimensionless], pp. 20, 213

dipole moment, [em*? g'?s7'], p. 30

bond probability, [dimensionless], p. 203

percolation threshold, [dimensionless], p. 203

probability of accepting an attempted transition

between states { and j, [dimensicnless|, p. 395

crossover mode index in semidilute solutions,

[dimensionless], p. 328

equilibrium swelling ratie, [dimensionless], p. 275

intermolecular contribution to scattering,

[dimensionless], p. 195

charge, [em*? g'? 571, p. 74

magnitude of the scattering wavevector, [m~], p. 81

scattering wavevector, [m~ '], p. 81

incident wavevector, [m™'], p. 80

scattered wavevector, [m~'], p. 80

chain size, [m], pp. 8, 11, 13

ball radius, [m], p. 9

longitudinal size of a chain, [m], p. 108

root-mean-square end-to-end distance of an ideal

chain, [m], p. 54

Rayleigh ratio, [m™'], p. 31

radius of gyration, [m], p. 60

size of a globule, [m], p. 114

hydrodynamic radius, [m], p. 311

position vector of the #~th menomer, [m], p. 60

vector connecting monomers i and j, [m], p. 82

a-component of the position vector of monomer j, [m],
p. 359

contour length, [m], p. 50

end-to-end vector, [m], p. 51

center of mass position vector, [m], p. 60

reference size of a network strand, [m], p. 275

gas constant R =Nk, [kg m? s 2 K~ mol™'], p. 27

radius of a sphere enclosing an object, [m], pp. 9, 10

size of a chain section, [m], p. 12
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¥ bond maximum bond extension in a FENE potential,
[m], p. 394

Fews cut-off distance for the interaction potential, [m], p. 392

ri bond vector, [m], p. 50

S entropy, [kg m* s> K], p. 70

AS, ASp entropy change on mixing of a molecule A and
a molecule B, [kg m®> s™2 K], p. 138

Spp(dF) labeled monomer pair contribution to scattering,
[dimensionless], p. 196

Sup(q) labeled-unlabeled pair contribution to scattering,
[dimensionless], p. 196

Sea(q) unlabeled monomer pair contribution to scattering,
[dimensionless], p. 196

A8, entropy of mixing, [kg m® s’ K*I], p. 139

ASoix entropy of mixing per site, [kg m* s™* K '], p. 139

NEs scattering function, [dimensionless], p. 123

Siq, 0 dynamic structure factor, [dimensicnless], p. 348

5 curvilinear coordinate along the tube, [m], pp. 377, 382

Sp number of main chain bonds in a persistence segment,

[dimensionless], p. 56

T absolute temperature, [K], p. 27

Ty reference temperature, [K], p, 335

Ty Vogel temperature, [K], p. 338

T, temperature of a binodal, [K], p. 150

T, critical temperature, [K], p. 152

T, entanglement trapping factor, [dimensionless], p. 281

T, glass transition temperature, [K], p. 15

Ty glass transition temperature of high molar mass
polymer, [K], p. 340

T, melting temperature, [K], p. 15

T, temperature of a spinodal, [K], p. 151 *

! time, [s]

U energy, [kg m> s’z], p. 71

U(r) effective interaction potential between a pair of
monomers, [kg m? s72], p. 98

Uy average interaction of an A monomer with one of its
neighbors, [kg m” 52, p. 141

Ug average interaction of a B monomer with one of its
neighbors, [kg m? 577, p. 141

AU ix energy change on mixing per site, [kg m* s~ 7], p. 142

U, energy of a mode with wavelength A,
[kg m? s77, p. 332

FTETS unit vectors along incident and scattered directions,

[dimensionless], p. 80

U4, Uap, Ugg Dairwise interaction energies between adjacent lattice
sites, [kg m? 7%, p. 141

V ball volume, [m?], p. 9
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pervaded volume, [m’], p. 13

scattering volume, [m?], p. 29

network volume in a dry state, [m?), p. 275

volume of the equilibrium swollen state, [m’], p. 275
excluded volume, [m?], pp. 99, 156-157

velocity [m s ']

lattice site volume, [m’], p. 137

molecular volume of species A and B, [m’], p. 138

relative velocity of two overlapping chains, [m s™'], p. 404
occupied volume of a single chemical monomer, [m?], p. 13
number of N-step walks with displacement x,
[dimensionless], p. 66

three-body interaction parameter, [m®), pp. 100, 156
weight fraction of N-mers, [dimensionless], p. 16

weight density of r-mers (per monomer),

[dimensionless], p. 214

normal mode p, [m], p. 359

a-compenent of normal mode p, [m], p. 359

fraction of labeled chains, [dimensionless], p. 189
partition funetion, [dimensionless], p. 73

chain interaction parameter, [dimensionless], p. 103
coordination number, [dimensionless], p. 141

adsorbed amount per unit surface area, [m2), p. 188
decay rate, [s71], p. 349

constraint release contribution to stress relaxation modulus
of long chains, [dimensionless], p. 390

constraint release contribution to stress relaxation modulus
of short chains, [dimensionless], p. 390

osmotic pressure, [kg m~! 572, pp. 26, 155

energy difference between trans and gauche minima,

kg m* s7%], p. 50

k-th moment of the sum, [dimensionless], p. 208
numerical prefactor, [dimensionless), p. 375

Fos-Flory constant, [mol™'], p. 316

probability for primitive path to move distance £ in time ¢,
while its end has not reached s, [m '], p. 404

number of states, [dimensionless], p. 70, 138

number of states of a molecule A in a pure A state,
[dimensionless], p. 138

number of states of a molecule in a homogeneous

AB mixture, [dimensionless], p. 138

number of conformations of N-mer with end-to-end
vector R, [dimensionless], p. 70

polarizability, fem?], p. 30

angle between scattering wavevector and vector between
monomers, [rad]. p. 83
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ay thermal expansion coefficient of the free volume,
[m®> K], p. 338

«/ shear strain, [dimensionless], p. 282

~, ! effective dimensionless spring constants, [dimensionless],
pp. 375, 377

A shear rate, [s”'], p. 283

~o strain amplitude, [dimensionless], p. 290

Yes Yy elastic and viscous shear strains in the Maxwell model,
[dimensionless], p. 283

b dimensionless adserption energy per monomer,
[dimensionless], p. 110

& exponent of the end-to-end distribution function,
[dimensionless], p. 121

] phase angle, [rad], p. 291

&, 84, 65 solubility parameter, [kg”2 m s, p. 143

bas Kronecker delta, [dimensionless|, p. 359

8(t—1t'y  Dirac delta function, [dimensionless], p. 359

&t integration time step in a molecular dynamics simulation,
[s], p- 393

& composition fluctuation, [dimensionless], p. 159

dielectric constant, [dimensionless], p. 94
Lennard-Jones interaction parameter, [kg m? s_z],
pp. 118 and 392

I3 relative extent of reaction, [dimensionless], p. 209

£g Ginzburg relative extent of reaction, [dimensionless], p. 239

¢ friction coefficient, [kg s ], p. 309

Co friction coefficient at the reference temperature T,
[kg s '], p. 335

Conr effective friction of a branch point, [kg s~'], p. 381

¢, friction coefficient of normal mode p, [kg s '], p- 359

(r Rouse friction coefficient of a chain, [kg s ', p. 311

(z Zimm friction coefficient of a chain, [kgs~'], p. 313

7 viscosity, [kg m™! s7'], p. 33

Mt viscosity in the Maxwell model, (kg m~! 57!, p. 283

(" relative viscosity, [dimensionless], p. 314

s solvent viscosity, [kg m~ ' s7'], p. 33

Nsp specific viscosity, [dimensionless], p. 315

7] intrinsic viscosity, [m® kg™'], p. 34

9 scattering angle, [rad], p. 29

g tertahedral angle, [rad], p. 49

6 bending angle, [rad], p. 330

K exponent of the time dependence of stress relaxation
modulus, [dimensionless], p. 351

K bond strength of the FENE potential, [kg s 7], p. 394

Ko, spring constant due to mode with wavelength A,

[kg s~7], p. 333
A wavelength of light, [m], p. 29
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wavelength of mode, [m], p. 331

deformation factors, [dimensionless), p. 256

number density of elastically effective crosslinks,

[m 7], p. 263

coefficient in Doi fluctuation moedel, [dimensionless], p. 384
frequency of light, [s7'], p. 30

scaling exponent, [dimensionless], p. 104

number density of molecules, [m ], p. 156

number density of elastically effective network strands,
[m~], p. 259

Poisson’s ratio, [dimensionless], p. 296

blob size, [m], p. 72

correlation length, [m], p. 162

adsorption blob size, [m], p. 110

hydrodynamic screening length, {m], p. 325

thermal blob size, [m], p. 113

polvmer density, [kg m ], p. 13

grafting density of a brush, [m 2], p. 186

shear stress, [kg m~! s, p. 282

Lennard-Jones length, [m], pp. 118 and 392

stress tensor, [kg m ' s7?, p. 258

true stress, [kg m~! 577, p. 258

engineering stress, [kg m~! s77], p. 259

stress due to mode with wavelength X, [kg m ™’ s72, p. 333
turbidity, [m™'], p. 45

relaxation time of a characteristic cluster, [s], p. 342
Kuhn monomer relaxation time, [s], p. 312

retraction time of an arm, [s], pp. 378, 381

relaxation time of a chain, [s], p. 327

Rouse time of an entanglement strand, [s], p. 363
relaxation time of the fastest stiff mode, [s], p. 334
relaxation time in the Maxwell model, s], p. 283
relaxation time of the p-th mode, {s], p. 319

Rouse time, [s], p. 311

reptation time, [s], p. 363

constraint release relaxation time of the confining tube,
[s], p. 388

Zimm time. [s], p. 313

torsion angle, [rad], p. 49

phase difference, [rad], p. 80

velume fraction, [dimensionless], p. 13

velume fraction of a gel in a preparation state,
[dimensionless]. p. 274

average volume fraction, [dimensionless], p. 159
volume fractions of components A and B of the mixture,
[dimensionless]. p. 137

critical volume fraction, [dimensionless], p. 152
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¢2b0dy
Yis, 1)

X
Xe

X
Xs

w

entanglement volume fraction, [dimensionless], p. 369
volume fraction of long chains, [dimensionless|, p. 390
volume fraction of short chains, [dimensionless], p. 390
overlap volume fraction, [dimensionless], p. 13

overlap volume fraction for #-solvents, [dimensionless], p. 172
semidilute-concentrated crossover volume fraction,
[dimensionless], p. 180

crossover volume fractien in mean-field theory,
[dimensionless], p. 181

probability for segment s to still be part of the

tube at time ¢, [dimensionless], p. 405

Flory interaction parameter, [dimensionless], p. 142
Flory interaction parameter for a binodal,
[dimensionless], p. 150

critical interaction parameter, [dimensionless], p. 152
Flory interaction parameter for a spinodal,
[dimensionless], p. 151

angular frequency, [rad s'], p. 291
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Bold page numbers refer to bold entries in the text, where terms are first introduced. Italic

page numbers refer to homework problems.

activation energy for flow 337, 357
adsorption

multi-chain 187, 195

single chain 110, 112, 136, 192
adsorption blob 110, /37
affine deformation 256
affine network model 256
Alexander - de Gennes brush 186, /94
Arrhenius equation 337
atactic 4
athermal solvent 98, 101, 118, /29
Avogadro’s number 3

balloon 297

Beer's Law 45

bending energy 330

Bethe lattice 213, 215, 217, 220, 224, 409

binary mixtures 19

binodal 150, 153, 154, 166, 172, 173

Boltzmann factor 59, 75, 98, 160, 395

Boltzmann superposition principle 285,
289, 292, 303, 304

Boltzmann constant 27

bond percolation 203, 204, 213, 248

bond vector 7

Brownian dynamics 395, 420

Brownian motion 309

bulk modulus 296

Cayley tree 211
chain interaction parameter 103, 118, 133
characteristic degree of polymerization 210,
232,233,244
characteristic ratio 83, 57-60, 90
table 53
cluster-cluster aggregation 202
coexistence curve 150, 152, 163, 173, 174
cohesive energy density 144
collagen 15
comb polymer dynamics 380, 381, 414, 419
combined chain 262, 299
common tangent rule 149
complexity 248

compression blob 107, 109, 13}
concentrated poor solvent [93
concentrated solution 180
concentration 13
concentration fluctuations 124,161, 169,174
confinement volume 362
confining tube 265. 361, 395, 408, 409
semidilute solution 368
conformation 7, 51
connectivity transition 213
constrained-junction model 270
constraint release 387, 388-191, 416,
418,419
self-consistent 390
continuous phase transition 215
contour length 50
contrast matching 189, 7195
cooperative diffusion coefficient 349
coordination number 141
copolymer 6, 40
ABC triblock 6
alternating 6
block 6, 200
diblock 6, 96, 194
multiblock 6
triblock 6
graft 6
random 6
terpolymer 6
correlation function see pair correlation
function 78
correlation length 162
adsorption blob 188
Alexander - de Gennes brush 186. /94
miscible blend 162, 163, J69
randomly branched polymers 234-240.
251,343
semidilute solution 176-185, 191. 323
368, 407
correlation volume 177, 183, 185, 280
creep compliance 288, 290, 303
critical composition 152, 173. 57
critical molar mass 341, 367
critical percolation 201. 227, 233, 239
250, 254
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Index

critical point
blend 151, 152,173
gelation 199, 202
critical temperature 152, 166, 167, 169, 173
crosslinks 199
elastically effective 263
fluctuations 259
functionality 201, 216, 218, 248, 262
thermoplastic elastorner 200
vulcanization 201, 237
curvilinear diffusion coefficient 363
curvilinear displacement 382
cutoff function 223, 227, 230, 231, 233,
234, 257
cyclization /33

dangling ends 262, 263
dangling loops 262, 263
de Gennes scaling theory 179
semidilute correlation length 179, 184
semidilute osmotic pressure 182, 185
sernidilute size 179
semidilute viscosity 330
de Gennes self-similar carpet 188, /95
Debye function 86, 953, 161
degeneracy 206, 209, 220
degree of polymerization 2
characteristic 223
number-average 23
at gel point 219
delnge 202
dendrimer 6, 211, 247
density profile 187, J94, {95
detailed balance 395, 396, 42!
diffused-constraints model 271
diffusion coefficient 309, 310
blend 354
constraint release 388
curvilinear 363
dilute solution 347
H-polymers and combs 381
measurement 346, 360
reptation model 364, 371, 404, 409
ring polymer 412
Rouse model 311, 352
semidilute solution 328, 408
simulation 399, 420
star polymer 380, 410
Zimm model 313, 352
diffusion-controlled reaction 202
diffusion-limited aggregation 202
diffusive motion 309
dilute good solvent 102
dilute poor solvent 93
dilute solution 13
dilute theta solutions 172, 184, /93 352
disease spreading 203

DNA 7,8, 57,74, 78, 408

Doi fluctuation model 376, 384-386, 413
parameter determination 385

Doi-Edwards equation 367

Doolittle equation 337

double reptation 419

duality 391

dynamic light scattering 345, 360

dynamic structure factor 348, 350

Edwards tube 265
effective chain 94, 260, 260
Einstein relation 309
electrophotographic toner 246
elution volume 37
end-to-end distance 92
end-to-end vector 51
energy of mixing 140-145
engineering stress 258
ensemble average 51
entanglement 264-267, 281, 341, 361-391
entanglement concentration 369, 467, 408
entanglement molar mass 266, 341, 362
table 362
entanglement strand 265, 368
entanglement trapping factor 281, 307
entropic spring constant 72
entropy 70
ideal chain 71
mixing 139, /66
network deformation 256, 257
stymied 140
epoxy 199
equilibrivm swelling ratio 275, 307
gels in athermal solvent 278
gels in good solvent 279
gels in theta solvent 276
equipartition principle 319
equivalent freely jointed chain 54
Evans-Edwards model 398, 399 420
diffusion coefficient 399
relaxation time 399
viscosity 40{
exchange chemical potential 159
excluded volume 99, 114, 117-119,
127-129, 132, 156, 169
extent of reaction 20, 213

Fetters overlap criterion for
entanglement 404

finite extensibility 263

Fisher exponent 228, 229, 233, 243, 244, 249

flexibility 49

Flory construction 255, 293

Flory interaction parameter 142, 144, 156,
166, 167

critical 152,173



Index

measuring 159-163
table 145
Flory theory 102
2-dimensional chain 127
adsorbed linear chain 111, /30
cancellation of errors 103
collapsed linear chain 115
confined linear chain 109
dendrimer 248
polyelectrolyte [29
randomly branched 128
randomly branched chain 236
swollen linear chain 102, 128
swollen randomly branched chain 249
Flory-Huggins equation 143
Flory-Huggins theory 140, 145
fluctuation-dissipation theorem 310
forest fire 203
form factor 82, 83, 95
Fox-Flory equation 34, 316, 350, 353
fractal 9
Koch curve 10, 40
Menger sponge 40
scattering 87, 123
Sierpinski carpet 40
Sierpinski gasket 11
fractal dimension 10, 79, 87, 97, 240
critical percolation 235
ideal branched 40, 226, 227, 237
ideal linear 11, 40, 104
linear {good sclvent) 40, 104, 114, 189
rod 79
table 12
fractal dynamics 344
free energy see Helmholtz free energy 71
free volume 337, 341, 356, 357
freely jointed chain model 52, 60
freely rotating chain model 55, 60
friction coefficient 309, 310, 352
constraint release 478
from side chains 381
monomer 312
Rouse mode] 311
short chains 340
Zimm modei 313

gas constant 27

gauche-minus rotation state 50

gauche-plus rotation state 50

Gaussian approximation 68

gel 15, 199

gel curve 249

gel fraction 214, 215, 217, 227, 229,

241, 248-251, 281

gel permeation chromatography 36

gel point 199, 216, 237, 248, 250
table 204
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gelatin 15, 19, 199

gelation 199
chemical 199
physical 199

Ginzburg criterion 169, 174, 239, 250

glass 15

glass transition temperature 15
short chains 340

glassy modulus 336, 340, 364
table 339

globule 40, 92,114, 116, 162
composition 173,175,176

good solvent 101

Guinier function 85, %6

H-polymer dynamics 380, 38], 414
Hamaker constant 131
hard core repulsion 99
head-to-head isomer 4
head-to-tail isomer 4
Helmholiz free energy 167
blend 140, 143, 146, 148-130, 166
chain 71,102,116, 129
confinement 108, 113, 130, 137
rubber 253, 257, 268, 295
stretching 71, 73, 76, 106, 194
heterogencous mixture 137
heteropolymer 6
hindered rotation model 59, 60, %0
homogeneous mixture 137
homopolymer 5
Hooke's Law of Elasticity 282
Huggins coefficient 34
Huggins equation 34
hydrodynamic coupling force 314
hydrodynamic interaction 313,
314, 324, 326, 352, 153, 355
hydrodynamic radius 311, 318, 347
table 347
hydrodynamic screening length 325, 326,
328, 342, 352
hyperbranched 201, 206, 233, 247
hyperscaling 235, 236, 342, 344, 357

ideal chain 49, 51
asymmetry 94
ideal mixture 140
incipient gel 213
incompressible 257, 296
intensity 30
interaction parameter see
chzin interaction parameter;
Flory interaction parameter
intrinsic viscosity 34. 315, 316. 324
dendrimer 353
measuring 35, 36



