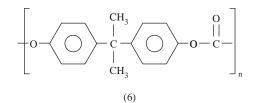

Polymer Nomenclature

The IUPAC has specific guidelines for the nomenclature of polymers. However, these names are quite frequently discarded for common names and even principal trade names. Even though there is currently no completely systematic polymer nomenclature, there are some widely accepted guidelines that are used to identify individual polymers.

Simple vinyl polymers are named by attaching the prefix *poly* to the monomer name. For example, the polymer made from styrene becomes polystyrene. However, when the monomer name consists of more than one word or is preceded by a letter or a number, the monomer is enclosed in parenthesis with the prefix *poly*. Thus polymers derived from vinyl chloride or 4-chlorostyrene are designated poly(vinyl chloride) and poly(4-chlorostyrene), respectively. This helps to remove any possible ambiguity.

Diene polymerization may involve either or both of the double bonds. Geometric and structural isomers of butadiene, for example, are indicated by using appropriate prefixes — *cis* or *trans*; 1,2 or 1,4 — before *poly*, as in *cis*-1,2-poly(1,3-butadiene). Tacticity of the polymer may be indicated by using the prefix *i* (isotactic), *s* (syndiotactic), or *a* (atactic) before *poly*, such as *s*-polystyrene. Copolymers are identified by separating the monomers involved within parentheses by either *alt* (alternating), *b* (block), *g* (graft), or *co* (random), as in poly(styrene-*g*-butadiene).

When side groups are attached to the main chain, some ambiguity could result from naming the polymers. For example, poly(methylstyrene) is an appropriate designation for any of the following structures.



To avoid such ambiguity, these structures are designated $poly(\alpha$ -methylstyrene) (1), poly(o-methylstyrene) (2), and poly(p-methylstyrene) (3), respectively.

The nomenclature of step-reaction polymers is even more complicated than that of vinyl polymers and can be quite confusing. These polymers are usually named according to the source or initial monomer(s) and the type of reaction involved in the synthesis. For example, nylon 6,6 (4) is usually designated poly(hexamethylene adipamide), indicating an amidation reaction between hexamethylenediamine and adipic acid. Nylon 6 is called either poly(6-hexanoamide) or poly(ε -caprolactam). The former name indicates the structural and derivative method while the latter, which is more commonly used, is based on the source of the monomer.

$$\begin{bmatrix} H & H & O & O \\ | & | & || & || \\ -N - (CH_2)_6 - N - C - (CH_2)_4 - C - \end{bmatrix}_n \begin{bmatrix} H & O \\ | & || \\ -N - (CH_2)_5 - C - \end{bmatrix}_n$$
(4)
(5)

Some polymers are referred to almost exclusively by their common names instead of the more appropriate chemical names. An example is polycarbonate in place of poly(2,2-bis(4-hydroxyphenyl) propane) (6).

The following table lists the internationally accepted abbreviations for some common commercial polymers.

Name of Plastic	Abbrev.	Name of Plastic	Abbrev.	
Cellulose acetate	СА	Polypropylene	PP	
Chlorinated poly(vinyl chloride)	CPVC	Polystyrene	PS	
Melamine-formaldehyde resins	MF	Polytetrafluoroethylene	PTFE	
Poly(acrylonitrile- <i>co</i> -butadiene)	NBR	Polyurethane	PUR	
Polyacrylonitrile	PAN	Poly(vinyl acetate)	PVAC	
Bisphenol A polycarbonate	PC	Poly(vinyl alcohol)	PVAL	
Polyethylene	PE	Poly(vinyl butyral)	PVB	
Poly(ethylene terephthalate)	PETP	P Poly(vinyl chloride)		
Phenol-formaldehyde resins	PF	Poly(vinylidene fluoride)		
Poly(methyl methacrylate)	PMMA	Poly(vinyl pyrrolidone)	PVP	
Polyoxymethylene	POM	Urea-formaldehyde resins	UF	

Appendix II

Answers to selected problems

Chapter 1

1.5 (a) 1.13×10^5 ; (b) 1.92×10^5 ; (c) 1.18×10^5 ; (d) 2.54×10^5

Chapter 3

3.3 $\overline{M}_n = 3770 \text{ g/mol}; \overline{M}_2 = 31,000 \text{ g/mol}; \overline{M}_w/\overline{M}_n = 8.2$ 3.4 $\overline{M}_n = 2.35 \times 10^5$ g/mol, $\overline{M}_w = 7.36 \times 10^5$ 3.10 8.1

Chapter 4

- $\begin{array}{ll} 4.2 \quad V_{\rm B}=32.4\%\\ 4.4 \quad \overline{X}_{\rm n}=50 \end{array}$
- 4.5 $T_m = 286.5^{\circ}C$
- 4.6 $T_m = 194^{\circ}C$
- $4.7 \quad f = 0.028$

Chapter 5

5.10 (a) 59.26 phr; (b) 296.30 phr

Chapter 6

- 6.1 (a) $\overline{M}_n = 5650 \text{ g/gmol}$; (b) $\overline{X}_n = 30.45$; (c) $\overline{M}_n = 11,300 \text{ g/gmol}$; (d) $\overline{M}_n = 7533 \text{ g/gmol}$
- 6.2 (a) $\overline{M}_n = 6000 \text{ g/gmol}; \overline{M}_w = 8667 \text{ g/gmol};$ (b) melt viscosity will increase
- 6.3 (a) $\overline{M}_n = 2504$ g/gmol; (b) $\overline{M}_n = 4407$ g/gmol
- 6.4 (1) 2; 100; 00; (b) $\overline{X}_n = 199$; (c) $\overline{X}_n = 49$
- 6.5 (a) $\overline{M}_n = 9600$; (b) $\overline{M}_n = 19,104$; (c) 9.80×10^{-3} ; (d) 2.94×10^{-6}
- 6.6 For n = 1 p = 0.1, $W_x = 0.98$ $P = 0.9, W_x = 0.01$ For n = 100 p = 0.1, $W_x = 8.1 \times 10^{-98}$ $P = 0.9, W_x = 2.95 \times 10^{-5}$
- 6.7 Nylon 6, $\overline{M}_{n} = 3260$ Nylon 12, $\overline{M}_n = 3240$
- 6.8 Fraction of monomers = 4.0×10^3

Chapter 7

- 7.2 (b) $R_i = 7.5 \times 10^{-11} \text{ mol/ml}, \overline{X}_n = 4.01 \times 10^3$; (c) 94.3%
- 7.3 (a) $R_p = 0.715[I]^{1/2}[M]$; (b) $R_p = 0.044$ mol/l.s.; (c) 15 ls
- 7.4 (a) $C_M = 0.6 \times 10^{-4}$; (b) $\overline{X}_n = 602$; (c) $\overline{X}_n = 833$; (d) V = 415; (e) G = 0.055; (f) f = 0.61
- 7.5 Cyclohexane $\overline{M}_n = 3.69 \times 10^5$ Carbon tetrachloride $\overline{M}_n = 2.87 \times 10^3$
- 7.6 Styrene [S]/[M] = 19.35Methyl methacrylate [S]/[m] = 11.54Vinyl Aceptate [S][M] = 0.07
- 7.10 (a) $\overline{M}_n = 1.04 \times 10^6$; (b) $\overline{M}_n = 2.08 \times 10^6$; (c) $\overline{M}_n = 1.49 \times 10^5$
- 7.11 (a) 250 mn; (b) E = 7.3 Kcal/mol

Chapter 9

9.2 $E_{\rm L} = 2.88 \times 10^6 \text{ psi}$

Chapter 10

- 10.2 t = 11.1 h 10.3 t = 5.96×10^{1} s 10.4 [M]/[M_o] = 94.9% 10.5 $\Delta T = 617^{\circ}C$ 10.6 $(\overline{X}_{n})_{b}/(\overline{X}_{n})_{s} = 4.75$ 10.8 Ratio of total surface area of micelles to droplets = 20×10^{7} 10.9 (a) t = 0.40 h; (b) D = 4.44×10^{-5} cm 10.10 T_c = $30.1^{\circ}C$ 10.11 (a) $\tau = 2.53$ h; (b) flow rate = 19.73 m³/h 10.12 (a) p = 0.632; (b) L = 100 m
- 10.16 Feed temperature = 50° F

Chapter 11

- 11.1 Power Requirement = 7-18 hp
- 11.3 (a) Polystyrene Q = 591/b/h; (b) Polyethylene Q = 259/b/h; (c) Nylon 6,6 Q = 329/b/h
- 11.4 (a) 176 hp; (b) 233 hp
- 11.5 (a) 1.3%; (b) 2.1%; (c) 3.6%

Chapter 12

- 12.1 Polymer Most Suitable Solvent Natural Rubber Dichlorobenzene Polyacrylonitrite Nitromethane
- 12.4 (a) 6.9; (b) 1.86; (c) 6.04; (d) $3.47 \times 10^4 \text{ A}^{\circ}$
- 12.6 $P_1 = 92 \text{ mmHg}$
- 12.7 M = 1.58×10^{6}
- 12.8 $(\overline{r_{of}^2})^{1/2} = 302 \text{ A}^\circ$
- 12.9 (a) $3.98 \times 10^4 \text{ A}^\circ$; (b) r = 76 A°; (c) $(\overline{r_{ob}^2})^{1/2} = 750 \text{ A}^\circ$
- 12.11 k = 0.561; $\overline{M}_n = 2.22 \times 10^5$ g/mol
- 12.12 (a) Solution A: $\overline{M}_n = 1.89 \times 10^5$ g/mol
 - Solution B: $\overline{M}_{n} = 1.01 \times 10^{5} \text{ g/mol}$
 - (b) $\overline{M}_n = 1.14 \times 10^5 \text{ g/mol}$
 - (c) $\overline{M}_{w}/\overline{M}_{n} = 2.16$

Chapter 13

 $\begin{array}{rrr} 13.1 & 79.78 \times 10^4 \ J/m^3 \\ 13.4 & 7.07 \times 10^5 \ N/m^2 \\ 13.5 & 2 \times 10^2 \ N \\ 13.6 & 67.55 \times 10^6 \ N/m^2 \end{array}$

Chapter 14

To Convert From	То	Multiply By	
atmosphere (760mm Hg)	pascal (Pa)	1.013×10^5	
Btu	joule (J)	1.055×10^3	
calorie	joule (J)	4.187	
centipoise	pascal-second (Pa·s)	1.00×10^{-3}	
foot	meter (m)	3.048×10^{-1}	
ft-lb _f	joule (J)	1.356	
gallon (U.S. liquid)	cubic meter (m ³)	3.785×10^{-3}	
horsepower	watt (W)	$7.460 imes 10^2$	
inch	meter (m)	2.540×10^{-2}	
inch of mercury (60°F)	pascal (Pa)	3.377×10^{3}	
inch of water (60°F)	pascal (Pa)	2.488×10^2	
kilogram-force (K _{ef})	newton (N)	9.807	
micron	meter (m)	1.000×10^{-6}	
pound-force (lb _f)	newton (N)	4.448	
lb _f /in. ² (psi)	pascal (Pa)	6.895×10^{3}	
watt-hour	joule (J)	3.600×10^{3}	
yard	meter (m)	9.144×10^{-1}	

Some Useful Conversion Factors

Values of Some Useful Physical Constants

	cgs	SI
Avogadro's number, No.	6.02×10^{23} molecules/mol	6.02×10^{23} molecules/mol
Velocity of light, c	$3.00 \times 10^{10} \text{ cm/s}$	$3.00 \times 10^8 \text{ m/s}$
Boltzmann's constant, K	$1.38 \times 10^{-16} \text{ erg/K}$	$1.38 \times 10^{-23} \text{ J/K}$
Gas constant, R	$8.31 \times 10^7 \text{ erg/g mol} \cdot \text{K} (1.98 \text{ cal/mol} \cdot \text{K})$	$8.31 \times 10^3 \text{ J/kg mol} \cdot \text{K}$