Chapter 14

Polymer Viscoelasticity

I. INTRODUCTION

Traditional engineering practice deals with the elastic solid and the viscous liquid as separate classes of
materials. Engineers have been largely successful in the use of materials like motor oil, reinforced
concrete, or steel in various applications based on design equations arising from this type of material
classification. However, it has become increasingly obvious that elastic and viscous material responses
to imposed stresses represent the two extremes of a broad spectrum of material behavior. The behavior
of polymeric materials falls between these two extremes. As we said in Chapter 13, polymers exhibit
viscoelastic behavior. The mechanical properties of solid polymers show marked sensitivity to time
compared with traditional materials like metals and ceramics. Several examples illustrate this point.
(1) The stress—strain properties of polymers are extremely rate dependent. For traditional materials, the
stress—strain behavior is essentially independent of strain rate. (2) Under a constant load, the deformation
of polymeric material increases with time (creep). (3) When a polymer is subjected to a constant
deformation, the stress required to maintain this deformation decreases with increasing time (stress
relaxation). (4) The strain resulting from a polymer subjected to a sinusoidal stress has an in-phase
component and an out-of-phase component. The phase lag (angle) between the stress and strain is &
measure of the internal friction, which in principle is the mechanical strain energy that is convertible to
heat. Traditional materials, for example, metals close to their melting points, exhibit similar behavior.
However, at normal temperatures, creep and stress relaxation phenomena in metals are insignificant and
are usually neglected in design calculations. In choosing a polymer for a particular end-use situation,
particularly structural applications, its time-dependent behavior must be taken into consideration if the
polymer is to perform successfully.

Our discussion of the viscoelastic properties of polymers is restricted to the linear viscoelastic behavior
of solid polymers. The terriinear refers to the mechanical response in which the ratio of the overall
stress to strain is a function of time only and is independent of the magnitudes of the stress or strain
(i.e., independent of stress or strain history). At the onset we concede that linear viscoelastic behavior
is observed with polymers only under limited conditions involving homogeneous, isotropic, amorphous
samples under small strains and at temperatures close to or aboyge Ith@ddition, test conditions
must preclude those that can result in specimen rupture. Nevertheless, the theory of linear viscoelasticity,
in spite of its limited use in predicting service performance of polymeric articles, provides a useful
reference point for many applications.

To aid our visualization of viscoelastic response we introduce models that represent extremes of the
material response spectrum. This is followed by the treatment of mechanical models that simulate
viscoelastic response. These concepts are developed further by discussion of the superposition principles.

II. SIMPLE RHEOLOGICAL RESPONSES

A. THE IDEAL ELASTIC RESPONSE

The ideally elastic material exhibits no time effects and negligible inertial effects. The material responds
instantaneously to applied stress. When this stress is removed, the sample recovers its original dimensions
completely and instantaneously. In addition, the induced s#aim,always proportional to the applied

stress and is independent of the rate at which the body is deformed (Hookean behavior). Figure 14.1
shows the response of an ideally elastic material.

The ideal elastic response is typified by the stress—strain behavior of a spring. A spring has a constant
modulus that is independent of the strain rate or the speed of testing: stress is a function of strain only.
For the pure Hookean spring the inertial effects are neglected. For the ideal elastic material, the
mechanical response is described by Hooke’s law:
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Figure 14.1 Ideal elastic response.
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o=Ee (14.1)

whereo is the applied stress,is the strain, and E is Young’s modulus.

B. PURE VISCOUS FLOW

Fluids have no elastic character; they cannot support a strain. The dominant characteristic of fluids is
their viscosity, which is equivalent to elasticity in solids. According to Newton’s law, the response of a
fluid to a shearing stregsis viscous flow, given by

T=n (14.2)

wheren is viscosity and ydt is strain rate. Thus in contrast to the ideal elastic response, strain is a
linear function of time at an applied external stress. On the release of the applied stress, a permanent
set results. Pure viscous flow is exemplified by the behavior of a dashpot, which is essentially a piston
moving in a cylinder of Newtonian fluid (Figure 14.2). A dashpot has no modulus, but the resistance to
motion is proportional to the speed of testing (strain rate).

However, no real material shows either ideal elastic behavior or pure viscous flow. Some materials,
for example, steel, obey Hooke'’s law over a wide range of stress and strain, but no material responds
without inertial effects. Similarly, the behavior of some fluids, like water, approximate Newtonian
response. Typical deviations from linear elastic response are shown by rubber elasticity and viscoelasticity.
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Figure 14.2  Pure viscous behavior. W/

C. RUBBERLIKE ELASTICITY

The response of rubbery materials to mechanical stress is a slight deviation from ideal elastic behavior.
They show non-Hookean elastic behavior. This means that although rubbers are elastic, their elasticity
is such that stress and strain are not necessarily proportional (Figure 14.3).

. VISCOELASTICITY

Viscoelastic material such as polymers combine the characteristics of both elastic and viscous materials.
They often exhibit elements of both Hookean elastic solid and pure viscous flow depending on the experi-

mental time scale. Application of stresses of relatively long duration may cause some flow and irrecoverable
(permanent) deformation, while a rapid shearing will induce elastic response in some polymeric fluids. Other

examples of viscoelastic response include creep and stress relaxation, as described previously.

t t1

Figure 14.3  Rubber elasticity.
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Figure 14.4 The Maxwell element. o

It is helpful to introduce mechanical elements as models of viscoelastic response, but neither the
spring nor the dashpot alone accurately describes viscoelastic behavior. Some combination of both
elements is more appropriate and even then validity is restricted to qualitative descriptions; they provide
valuable visual aids. In most polymers, mechanical elements do not provide responses beyond strains
greater than about 1% and strain rates greater than'0.1 s

IV. MECHANICAL MODELS FOR LINEAR VISCOELASTIC RESPONSE

A. MAXWELL MODEL
To overcome the poor description of real polymeric materials by either the spring or the dashpot, Maxwell
suggested a simple series combination of both elements. This model, referred to as the Maxwell element,
is shown in Figure 14.4. In the Maxwell model, E, the instantaneous tensile modulus, characterizes the
response of the spring while the viscosifydefines viscous response. In the following description we
make no distinction between the types of stress. Thus, we use the symbol E even in cases where we are
actually referring to shearing stress for which we have previously used the symbol G. This, of course,
does not detract from the validity of the arguments.

In the Maxwell element, both the spring and the dashpot support the same stress. Therefore,

=0, (14.3)

where o, and g, are stresses on the spring and dashpot, respectively. However, the overall strain and
strain rates are the sum of the elemental strain and strain rates, respectively. That is,

€ =€ +E, (14.4)
or
& =& +HE (14.5)
But
& :% andg, =a/n (14.6)

whereg; is the total strain rate, whike and¢, are the strain rates of the spring and dashpot, respectively.
The rheological equation of the Maxwell element on substitution of Equation 14.6 in 14.5 becomes

& = —“&+ -0 14.7
= ES (14.7)
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As Equation 14.7 shows, the Maxwell element is merely a linear combination of the behavior of an
ideally elastic material and pure viscous flow. Now let us examine the response of the Maxwell element
to two typical experiments used to monitor the viscoelastic behavior of polymer.

1. Creep Experiment

In creep, the sample is subjected to an instantaneous constantdgtrass, the strain is monitored as
a function of time. Since the stress is constanfiitdis zero and therefore, Equation 14.7 becomes

(14.8)

Solving the equation and noting that the initial straio i€, the equation for the Maxwell element for
creep can be written as

s(t):G—E"+%t (14.9)
M tO

- t 14.10

e(t) GOEE+FI ( )

On removal of the applied stress, the material experiences creep recovery. Figure 14.5 shows the creep
and the creep recovery curves of the Maxwell element. It shows that the instantaneous application of a
constant stress,, is initially followed by an instantaneous deformation due to the response of the spring

by an amount/E. With the sustained application of this stress, the dashpot flows to relieve the stress.
The dashpot deforms linearly with time as long as the stress is maintained. On the removal of the applied
stress, the spring contracts instantaneously by an amount equal to its extension. However, the deformation
due to the viscous flow of the dashpot is retained as permanent set. Thus the Maxwell element predicts
that in a creep/creep recovery experiment, the response includes elastic strain and strain recovery, creep
and permanent set. While the predicted response is indeed observed in real materials, the demarcations
are nevertheless not as sharp.

2. Stress Relaxation Experiment
In a stress relaxation experiment, an instantaneous strain is applied to the sample. The stress required
to maintain this strain is measured as a function of time. When the Maxwell element is subjected to an
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Figure 14.5 Creep and creep recovery behavior of the Maxwell element.
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Figure 14.6  Relaxation time for the Maxwell element.

instantaneous strain, only the spring can respond initially. The dashpot will relax gradually, and conse-
quently, the stress decreases with increasing time.
The rheological equation for the Maxwell element from Equation 14.7 is

& :é"‘*ﬁl“ (14.7)

Since the strain is constast, is zero, thus Equation 14.7 is reduced to

le+rlo=0 (14.11)
E n

The solution to this first-order differential equation with the boundary conditiow thdie, at t = 0 is
O E.O
o=0,expg—t 14.12
0 pH‘ N E ( )

We define the quantity as the relaxation or response time and it is given as they/&idcquation 14.12
thus becomes

o =a,exp(- 1) (14.13)

The relaxation time from Equation 14.13 is the time required for the stress to decay to 1/e or 37% of
its initial value (Figure 14.6). If we divide the stress by the constant stgabquation 14.13 becomes

ﬂ = &e—t/'[

€ €

0 0

or

E (f)=Ee" (14.14)

E, is the relaxation modulus. For the Maxwell element in a stress relaxation experiment, all the initial
deformation takes place in the spring. The dashpot subsequently starts to relax and allows the spring to
contract. For times considerably shorter than the relaxation time, the Maxwell element behaves essentially
like a spring; while for times much longer than the relaxation time, the element behaves like a dashpot.
For times comparable to the relaxation time, the response involves the combined effect of the spring
and the dashpot.
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Example 14.1: A polystyrene sample of 0.027raross-sectional area is subjected to a creep load of
10 N. The load is removed after 30 s. Assuming that the Maxwell element accurately describes the
behavior of polystyrene and that viscosity is 50'° P, while Young’s modulus is% 1 psi, calculate:

a. The compliance

b. The deformation recovered on the removal of the dead load
c. The permanent

Solution: a. The creep equation for the Maxwell element is

s(t):00%+%ﬁ or

e(t)

= +£Dor compliance.
o, [E nf>reom
E=5x10 psi=5 x10° psi><6894><l(?(l\1/n12/ps)
=3.45x 10 N/m?
n:5x101°P:5><1(5’%

3= 1 .30
3.45x 10 5x10°

m?/NF 6.29x 10° m?/N

b. The deformation recovered on the removal of load is due to the spring

o

SSZEO
P 5

0 =2 - 10 N/m? =5 x10° N/m?
A 0.02

e, = 210 1 45x10°
3.45% 10

c. The permanent set is due to the viscous #pw
(o]
g, = ?‘)t
5x 10 (N/m?
= ( / ) x30(s)
5x10° iNs/mzi

=0.03

3. Dynamic Experiment

Let us consider the response of a Maxwell element subjected to a sinusoidal stress. The corresponding
strain will be sinusoidal but out of phase with the stress by an &natediscussed in Chapter 13. Thus,

0 =0, sin ot (14.15)
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Now the rheological equation for the Maxwell element is

gt)== ¢s<+ﬁ o
(14.16)
de _ 0, 0 o
- =0 coswt +—2 sinwt
dt

Integration of Equation 14.16 between two time limits and notingefbais not necessarily zero yields

tan6:i
Tw

. (14.17)
. Etf’w

1+ WP T

1 _ Etw
= oo (14.18)

wheret = n/E.

B. THE VOIGT ELEMENT
Since, as we saw above, the Maxwell element is not perfect, it seems logical to consider a parallel
arrangement of the spring and the dashpot. This is the so-called Voigt or Voigt—Kelvin element
(Figure 14.7).

The Voigt element has the following characteristics:

» The spring and the dashpot always remain parallel. This means that the strain in each element is the same.
» The total stress supported by the Voigt element is the sum of the stresses in the spring and the dashpot.

0, =0,+0, (14.19)

Thus, the rheological equation for the Voigt element is given by

o, =Ee+ r]E (14.20)
dt
E
n
Figure 14.7 The Voigt element. a
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1. Creep Experiment
In a creep experiment, the applied stress is constant; consequently, Equation 14.20 becomes

o, =Ee+ n% (14.21)

This is a linear differential equation with solution [integrate between the E(oixs= 0 anc(t) = €(t)]:

g(t)= c—é’[l—e‘EV”]
(14.22)
e(t) = G—Eo[l - e"/T]

or

OE e(t) Ji-ev]
0—0

where

J= é =reciprocal of modulus

The creep and creep recovery curves for the Voigt elements are shown in Figure 14.8.
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Figure 14.8 Creep and creep recovery curves for the Voigt element.
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On the application of a sudden constant stress in a creep experiment, only the spring offers the initial
resistance to deformation; the spring would elongate instantaneously if possible, but its deformation is
constrained by that of the dashpot. Recall that for the Voigt element both the spring and the dashpot
have equal strains. Therefore, the initial total stress is borne by the dashpot. Under the influence of the
constant force, the dashpot begins to flow thus transferring part of the load to the spring. The transfer
of load to the spring results in a concomitant decrease in the stress on the dashpot and hence a decreas
in the strain rate, which is proportional to the magnitude of the stress experienced by the dashpot.
Eventually, the element comes to its equilibrium strain. At this point the strain rate is zero; the resistance
of the dashpot is therefore also zero which means that the entire stress is now supported by the spring.
The equilibrium strain is simply the strain due to the sprimgE]. If the load is removed after
equilibrium, the strain decays exponentially.

We note that the Voigt model predicts that strain is not a continuous function of stress; that is, the
element does not deform continuously with the sustained application of a constant stress. The strain
approaches an asymptomatic value givendgyH). The strain of the element at equilibrium is simply
that of an ideal elastic solid. The only difference is that the element does not assume this strain
instantaneously, but approaches it gradually. The element is shown to exhibit retarded elasticity. In creep
recovery, the Maxwell element retracts instantaneously but not completely, whereas the Voigt element
exhibits retarded elastic recovery, but there is no permanent set.

2. Stress Relaxation Experiment
In a stress relaxation experimeat{constant), the rheological equation for the Voigt element reduces to

o(t)=Ee (14.23)
This is essentially Hooke’s law. The Voigt model is not suited for simulating a stress relaxation exper-
iment. The application of an instantaneous strain induces an infinite resistance in the dashpot. It would
require an infinite stress to overcome the resistance and get the dashpot to strain instantaneously. This
is obviously unrealistic.

3. Dynamic Experiment
Now consider the response of a Voigt element subjected to a sinusoidal strain:

e=¢g,sinwt
The stress response of the Voigt element is
0=0,+0,
o,=Eg, = Eg;sinwt, andg, = n& =nwe, cos wt (14.24)

o =Eg,sinwt+nwe, coswt

Since the sine term is the component in phase with the strain and the cosine term denotes the 90° out-
of-phase term, then

o' =E¢ ando” =nw¢e" (14.25)
Consequently,
0—! 0"
E=—=F=—=nw
sl 8" r]
tand = = (14.26)
EI
tand =19 =1
E
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Example 14.2: Comment on the physical significance of the quantities measured in dynamic mechanical
(oscillating) experiments.

Solution: To appreciate the physical significance of the quantities measured in oscillatory experiments,
we consider the energy changes in a sample undergoing cyclic deformation. We start by noting that in
viscoelastic and purely viscous materials, the stress and strain are out of phase. Figure E.14.2 shows
stress—strain representation of a viscoelastic material. The oscillatory strairgjsin wt.

a. Purely elastic bodythe work per unit volume is
W =ode
de =g, coswt d(wt)
For purely elastic body,
0 =Ee =Eg, sinwt

Therefore, the work done over the first quarter cycle of applied strain is given by

w2
w :IEe sinwt &, cosut d uf)
0

w2
= Eg? J’sin ot cosut d uf)
0

Eel
2
For the second quarter (i.e., integrating froff to 11, the result is exactly the same except that
the sign is negative. Thus for a full cycle, in the case of an elastic body, the energy stored in
the first and third quarter cycles is recovered completely in the second and fourth cycles.

b. Completely viscous flovin this case,

W =

o=ne
2n

W:J’nsooo cosut €, cosut d( of)
0

— 2
= MWE;

For a viscous body, the energy imparted is completely dissipated over the full cycle.

o b

o |

o'

Figure E.14.2 Quantities in oscillatory experiments.

c. Miscoelastic materialhere there is a phase anglbetween the stress and strain. Thus,

0 =0* sin(wt+ 9
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Therefore,
2n 2m
W :J'ods =o* soj'sin (wt + &) dos wt d o
0 0

Integration of this equation shows that for the elastic component of the work per unit volume,
there is no net energy lost or gained. The viscous component becomes

W =meZE" = el E tand

This is the net energy loss through viscous heat generation in material.

Example 14.3: A \Voigt element has parameters E = Ndm? andn = 5 x 10'° N - s/n%. Sketch the
creep curve for this element if the imposed constant stres§ /@

Solution:

J= é = compliance=10"® m?/N
.. 5x10°Ng/m?
T =n/E =retardation timee —————
"/ 10PN/ m?

=500s

Y = @ = 10*8(1_ eft/soo)

E(t) = 0,107 (1- )

=1-e""sinces, =10°

Using this equation a creep curve for several decades of time is shown in Figure E14.3.
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Figure E.14.3 Creep curve for Voigt element.
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Example 14.4: Figure E.14.4 shows the loss modulus—temperature curves for the two materials A and
B. Select either A or B for use as

a. Car tire
b. Engine mount

Explain the basis of your selection.

Loss Modoulus E?

Temperature

Figure E.14.4 Energy absorption profiles for two materials.

Solution: The area under the loss modulus—temperature curve is a measure of the damping capacity or
ability to absorb energy of the material. Obviously, A has a higher damping capacity than B.

a. In car tires, temperature buildup contributes to rapid deterioration and wear of tire and loss of
traction. Consequently, material B will be more suitable for use as a car tire since it will absorb
less energy and hence result in less temperature buildup.

b. A critical requirement for an engine mount is the ability to absorb the vibrational loads from
the engine. In this case, a material with the ability to dissipate the vibrational energy as heat
would be preferable; that is, material A.

C. THE FOUR-PARAMETER MODEL

Neither the simple Maxwell nor Voigt model accurately predicts the behavior of real polymeric materials.

Various combinations of these two models may more appropriately simulate real material behavior. We
start with a discussion of the four-parameter model, which is a series combination of the Maxwell and
Voigt models (Figure 14.9). We consider the creep response of this model.

Under creep, the total strain will be due to the instantaneous elastic deformation of the spring of
modulus E, and irrecoverable viscous flow due to the dashpot of visggsityd the recoverable retarded
elastic deformation due to the Voigt element with a spring of modylasdE dashpot of viscosity;.

Thus, the total strain is the sum of these three elements. That is,

g(t) =g, +¢, +¢, (14.27)
o gt o _
t)=—2+—0+_0[1-exp 14.28
(=g E3[ exp /] (14.28)
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Figure 14.9 Schematic of the four-parameter model.

whereg, is the imposed constant stress apdqualsn,/E; and is referred to as the retardation time.

In creep recovery, say, the load is removed at tignthe deformationg,/E,, due to the spring of
modulus E is recovered instantaneously. This will be followed by the retarded elastic creep recovery
due to the Voigt element given lay or

£, = %[1— exp-t, /1] (14.29)
3

Only the deformation due to the dashpot of viscaogitys retained as a permanent set. The creep and
creep recovery curve of this model is shown in Figure 14.10.

The four-parameter model provides a crude qualitative representation of the phenomena generally
observed with viscoelastic materials: instantaneous elastic strain, retarded elastic strain, viscous flow,
instantaneous elastic recovery, retarded elastic recovery, and plastic deformation (permanent set). Also,
the model parameters can be associated with various molecular mechanisms responsible for the vis-
coelastic behavior of linear amorphous polymers under creep conditions. The analogies to the molecular
mechanism can be made as follows.

1. The instantaneous elastic deformation is due to the Maxwell element sprifigpeBprimary valence
bonds in polymer chains have equilibrium bond angles and lengths. Deformation from these equilibrium
values is resisted, and this resistance is accompanied by an instantaneous elastic deformation.

2. Recoverable retarded elastic deformation is associated with the Voigt element. This arises from the
resistance of polymer chains to coiling and uncoiling caused by the transformation of a given equilibrium
conformation into a biased conformation with elongated and oriented structures. The process of coiling
and uncoiling requires the cooperative motion of many chain segments, and this can only occur in a
retarded manner.

3. Irrecoverable viscous flow is due to the Maxwell element dashpdhis is associated with slippage
of polymer chains or chain segments past one another.
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Figure 14.10 Creep response of the four-parameter model.

Example 14.5: The constants for a four-parameter model are
E,=5x10° N/m?,n, = 5x 16° N n?, E, =10° N/m?, andn, = 5x 16 Ng nt

For creep and creep recovery experiments calculate:

a. The instantaneous elastic strain
b. The recoverable retarded elastic strain
c. The permanent set

Assume that the creep experiment lasted for 200 s and that the imposed strébBrng.10
Solution:
a. Instantaneous elastic strain

=%
1
El

10°N/m?
=—— =02
5x 10° N/m?

€

b. Recoverable retarded elastic strain given by

n, _5x10° Ng/n?

—= = =5s
E, 10° N/m?

o =
83 :70[1_9 t/T:i]; '[3 =
E3

€, = %[1— e‘z"%]

=1.0-425%x 10¥ =10
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c. Permanent set

_ (10°N/m?) (2009 0
T 5x10°N@m®*

V. MATERIAL RESPONSE TIME — THE DEBORAH NUMBER

A physical insight into the viscoelastic character of a material can be obtained by examining the material
response time. This can be illustrated by defining a characteristic time for the material — for example,
the relaxation time for a Maxwell element, which is the time required for the stress in a stress relaxation
experiment to decay te! (0.368) of its initial value. Materials that have low relaxation times flow easily

and as such show relatively rapid stress decay. This, of course, is indicative of liquidlike behavior. On
the other hand, those materials with long relaxation times can sustain relatively higher stress values.
This indicates solidlike behavior. Thus, whether a viscoelastic material behaves as an elastic solid or a
viscous liquid depends on the material response time and its relation to the time scale of the experiment
or observation. This was first proposed by Marcus Reiner, who defined the ratio of the material response
time to the experimental time scale as the Deborah numperhit is,

_ material response time
experimental time scale observation jme

(14.30)

n

A high Deborah number that is a long response time relative to the observation time implies viscoelastic
solid behavior, whereas a low value of Deborah number (short response time relative to the time scale
of experiment) is indicative of viscoelastic fluid behavior. From a conceptual standpoint, the Deborah
number is related to the time one must wait to observe the onset of flow or creep. For example, the
Deborah number of a wooden beam at 30% moisture is much smaller than that at 10% moisture content.
For these materials the onset of creep occurs within a reasonably finite time. At the other extreme, the
Deborah number of a mountain is unimaginably high. Millions of years must elapse before geologists
find evidence of flow. This apparently is the genesis of Marcus Reiner’s analogy (“The mountains flowed
before the Lord” from the Song of Deborah, Book of Judges V).

It must be emphasized, however, that while the concept of the Deborah number provides a reasonable
qualitative description of material behavior consistent with observation, no real material is characterized
by a simple response time. Therefore, a more realistic description of materials involves the use of a
distribution or continuous spectrum of relaxation or retardation times. We address this point in the
following section.

VI. RELAXATION AND RETARDATION SPECTRA

Real polymers are not characterized by a simple response time. Instead, a distribution or continuous
spectrum of relaxation or retardation times is required for a more accurate description of real polymers.
Many complex models have been proposed to simulate the viscoelastic behavior of polymeric materials.
We discuss two of these models.

A. MAXWELL-WEICHERT MODEL (RELAXATION)
The generalized model consists of an arbitrary number of Maxwell elements in a parallel arrangement
(Figure 14.11).

Consider the generalized Maxwell model in a stress relaxation experiment. The strain in all the
individual elements is the same, and the total stress is the sum of the stress experienced by each element
Thus,

0=0,+0,+0,+...+0,_, +0, (14.31)
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Figure 14.11 The Maxwell-Weichert model.
The individual stress in each element is given by
o, =0,e"" (14.32)
This gives the stress relaxation of an individual element under a constantsésin
o,(t)=¢,E e’" (14.33)
whereT, = n;/E;. For the Maxwell-Reichert model under a constant stegin,

n

o(t)=¢, Z Ee'n (14.34)

or

n

E(Y) = Z Ee's (14.35)

If nis large, the summation in the equation may be approximated by the integral of a continuous
distribution of relaxation times E(r).

E(t)= L Tz(r) e’ d (14.36)

If one of the Maxwell elements in the Maxwell-Weichert model is replaced with a spring or a dashpot
of infinite viscosity, then the stress in such a model would decay to a finite value rather than zero. This
would approximate the behavior of a cross-linked polymer.

B. VOIGT-KELVIN (CREEP) MODEL
The generalized Voigt element or the Voigt—Kelvin model is a series arrangement of an arbitrary number
of Voigt elements (Figure 14.12). Under creep, the creep response of each individual element is given by

g () =09 (1-e") (14.37)
or
J(9)= ga(t) =3 (1-e") (14.38)
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Figure 14.12  Voigt-Kelvin model. o

1 . . . .
where J= E and is creep compliance. The response of a series of elements subjected to the same constant
stresso, bEcomes

ay=20= iJi (1-e") (14.39)

For a large value of n (i.e., n- ), the discrete summation in Equation 14.39 may be replaced by an
integration over all the retardation times:

OE J’O ")) (1- "), (14.40)

where J(t) is the continuous distribution of retardation times. If the generalized Voigt model is to represent
a linear polymer (viscoelastic liquid), then the modulus of one of the springs must be zero. This element
has infinite compliance and represents a simple dashpot in series with all the other Voigt elements.

Example 14.6: A polymer is represented by a series arrangement of two Maxwell elements with
parameters F= 3x 10® N/m?, t; = 1 s, E=5x 10° N/m?, and § = 1¢® s. Sketch the stress relaxation
behavior of this polymer over several decades (at least seven) of time.

Solution:

2
E ()= Z Ee'"

Determining log Kt) when t varies from 0.01 to 4G plot of log Kt) vs. log t is shown in Figure E14.6.
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Figure E.14.6 Behavior of a 2-component Maxwell-Reichert model.

VII. SUPERPOSITION PRINCIPLES

In the following sections we discuss the two superposition principles that are important in the theory of
viscoelasticity. The first is the Boltzmann superposition principle, which is concerned with linear viscoelas-
ticity, and the second is time—temperature superposition, which deals with the time—temperature equivalence.

A. BOLTZMANN SUPERPOSITION PRINCIPLE
As discussed earlier for a Hookean solid, stress is a linear function of strain, while for a Newtonian
fluid, stress is a linear function of strain rate. The constants of proportionality in these cases are modulus
and viscosity, respectively. However, for a viscoelastic material the modulus is not constant; it varies
with time and strain history at a given temperature. But for a linear viscoelastic material, modulus is a
function of time only. This concept is embodied in the Boltzmann principle, which states that the effects
of mechanical history of a sample are additive. In other words, the response of a linear viscoelastic
material to a given load is independent of the response of the material to any load previously on the
material. Thus the Boltzmann principle has essentially two implications — stress is a linear function of
strain, and the effects of different stresses are additive.

Let us illustrate the Boltzmann principle by considering creep. Suppose the initial creepogtress,
on a linear, viscoelastic body is increased sequentialy,to,...o, at times {, t,...t,, then according
to the Boltzmann principle, the creep at time t due to such a loading history is given by

S(t) = J(t)OO + \KI— Tl)[cl—oo] +...+ \( t— R)[o’n - Gn—J] (14.41)

Here J is compliance, whose functional dependence on time is denoted by the parentheses. The square
brackets denote multiplication. For a continuous loading history, then, the creep is expressed by the
integral:
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e(t)= Ih(t—e)[s(e)] a8 (14.42)

whered(8) describes the stress history. A similar expression can be derived for stress relaxation. In this
case, the initial strain is changed sequentialgy te,, ande, at times , t,...t,; then the resultant stress is

o(t) =E (g, + E (t-t)[e;—g + ..+ E(t-t)[t, - t, ] (14.43)

For a continuous strain history, the Boltzmann expression becomes

o(t)= J’ tEr(t -6)[£(6)] do (14.44)

Linear viscoelasticity is valid only under conditions where structural changes in the material do not
induce strain-dependent modulus. This condition is fulfilled by amorphous polymers. On the other hand,
the structural changes associated with the orientation of crystalline polymers and elastomers produce
anisotropic mechanical properties. Such polymers, therefore, exhibit nonlinear viscoelastic behavior.

B. TIME-TEMPERATURE SUPERPOSITION PRINCIPLE

Structural engineering design with engineering materials usually requires that the structures maintain
their integrity for long periods of time. In such designs the elastic modulus of structural components is
an important parameter for relating design stresses to component dimensions. We know, of course, that
the modulus of polymeric materials decreases with increasing time. Therefore, to ensure a safe and
proper design, it is necessary to know the lower limit of modulus. Ideally, the most reliable information
on modulus changes of a polymeric material should be developed over a long period in which test
samples are subjected to conditions comparable to those that will be experienced by the material in real-
time service. Accumulation of such long-term data is obviously inconvenient, expensive, and indeed
hardly practical. Consequently, in engineering practice, reliance has to be placed necessarily on short-
term data for the design for long-term applications.

Fortunately for linear amorphous polymers, modulus is a function of time and temperature only (not
of load history). Modulus—time and modulus—temperature curves for these polymers have identical
shapes; they show the same regions of viscoelastic behavior, and in each region the modulus values vary
only within an order of magnitude. Thus, it is reasonable to assume from such similarity in behavior
that time and temperature have an equivalent effect on modulus. Such indeed has been found to be the
case. V&coelastic properties of linear amorphous polymers show time—temperature equivalence. This
constitutes theébasis for the time—temperature superposition principle. The equivalence of time and
temperature permits the extrapolation of short-term test data to several decades of time by carrying out
experiments at different temperatures.

Time—temperature superposition is applicable to a wide variety of viscoelastic response tests, as are
creep and stress relaxation. We illustrate the principle by considering stress relaxation test data. As a
result of time—temperature correspondence, relaxation curves obtained at different temperatures can be
superimposed on data at a reference temperature by horizontal shifts along the time scale. This generates
a simple relaxation curve outside a time range easily accessible in laboratory experiments. This is
illustrated in Figure 14.13 for polyisobutylene. Here, the reference temperature has been chosen arbi-
trarily to be 25°C. Data obtained at temperature above 25°C are shifted to the right, while those obtained
below 25°C are shifted to the left.

The procedure for such data extrapolation is not arbitrary. The time—temperature superposition
principle may be expressed mathematically for a stress relaxation experiment as

E(T.1)=E(T, va) (14.45)

This means that the effect on the modulus of changing the temperature,ftorii,Tis equivalent to
multiplying the time scale by a shift factgrvehich is given by
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Figure 14.13 Time-temperature superposition for polyisobutylene. (From Tobolsky, A.V. and Catsiff, E., J. Polym.
Sci., 19, 111, 1956. With permission.)

aT = 1:T/'[To :TT/TTO :nT/r] To (1446)

where { is the time required to reach a particular mechanical response (modulus in this case) at
temperature T, andtis the time required to produce the same response at the reference temperature
T,- An important empirical relation correlating the shift factor with temperature changes has been
developed by Williams, Landel, and Ferry, the so-called WLF equafibe. WLF equation, which is

valid between Jand T, + 100°C, is given by the general expression

-C,(1-1,)

= (14.47)
C,+T-T,

logar

where T is the reference temperature anda@d G are constants to be determined experimentally. The
temperatures are in degrees Kelvin. It is common practice to choose the glass transition temperature,
T, as the reference temperature. In this case, the WLF equation is given by

-17.441-T,)

SRR ST (14.48)
51L6+T-T,

log,ar =

Before shifting the curves to generate the master curve, it is necessary to correct the relaxation modulus
at each temperature for temperature and density with respect to the reference temperature. That is,

E Shucea= B%B p"EEr (9 (14.49)

p, = density at T
p =densityatT

This correction is based on the theory of rubber elasticity, which postulates that the elastic modulus of

rubber is proportional to the absolute temperature T and to the density of the material. It can be argued,
of course, that this correction may only be necessary in the rubbery region, where the predominant
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response mechanism is chain coiling and uncoiling. It may not apply in the glassy region, where the
mechanical response is governed essentially by the stretching of bonds and deformation of bond angles,
or the viscous region, which involves chain slippage.

Example 14.7: In a stress relaxation experiment conducted at 25°C, it tobk idr the modulus of

the polymer to decay to 1W/m?. Using the WLF equation, estimate how long will it take for the
modulus to decay to the same value if the experiment were conducted at 100°C. Assume that 25°C is
the T, of the polymer.

Solution:

-17.44(100- 2%

— 1y b00
109, 8 =log = = 51.6+ 100~ 25

t25

=-10.33

o — 4 66x 107 h
25

t,o = 4.66x 10" x 10 h

100

=4.66x 10* h

VIIl. PROBLEMS

14.1. The following three-parameter model is assumed to simulate the behavior of a certain polymer:

i.

¢l

In a creep and creep recovery experiment:
a. What is the rheological equation that describes this model?
b. Sketch the creep and creep recovery curve.

14.2. Calculate the relaxation modulus after 10 s of the application of stress for a polymer represented by
three Maxwell elements in parallel where:
E,=10N/m, 1,=10s
E,= 10 N/m, 1,=20 s
E;= 10 N/m?, 1,=30 s
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14.3. A Voigt—Kelvin model consists of four elements with the following parameters:

Element No. E(N/m?2) n (N.s/m?

1 5x 108 5 x 10w
2 100 5x 10w
3 5x 108 5x 1@
4 1¢ 5 x 10w

In a creep experiment, if the imposed stress $\If,, determine the strain after 100 s.

14.4. The initial stress on a polymer in a creep experimentibl/he. This load is increased by 1R/m?
and 106 N/m? after 1@ and 10 s, respectively. Assuming that the Boltzmann superposition principle
holds for this material, find the strain after $0The creep compliance for the material is given by 10
(1 —elo).

14.5. In a stress relaxation experiment the modulus of polyisobutylene relaxéd\omtOn 10* h at 0°C.
If it is desired to cut the experimental time to 10 h, use the WLF equation to estimate the temperature
at which the experiment must be conducted. ThPIB is —70°C.

14.6. The relaxation time for a material that obeys the WLF equation at 0°€ 3s 19 relaxation time at
T, is 10°s. What is the relaxation time of this material at 25°C?

14.7. In a forced vibration experiment, the damping peak for polycarbonate occurred at 150°C at a frequency
of 1 Hz. What would be the location of this peak if the frequency were 1000 Hz? Polycarbonate has a
T, of 150°C.
¢]

14.8. A tactic polystyrene has g af 100°C. What are the relative rates of stress relaxation of this polymer
at 150°C and 125°C?
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