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In this chapter we discuss three common and important stretch or extensional flow-based

shaping operations: melt fiber spinning, tubular film blowing, and blow molding. These

operations take place downstream from the die. Another stretch-flow–type shaping

method is thermoforming, which involves deformation of previously shaped polymer

sheets or films into a desired shape. Since the principles of thermoforming are very similar

to those of parison inflation discussed later in this chapter, we do not dwell on this shaping

method.

Fiber spinning is a uniaxial extensional deformation process,which is the principalmethod

ofmanufacturing synthetic fibers for the textile industry. It alsoprovides a goodexample of the

enormous significance of ‘‘structuring’’ polymeric chains during shaping for imparting

unique properties to a product. In fact, fiber spinning is the quintessential example of the goal

ofmodern polymer processing as amultidisciplinary activity, better termed ‘‘macromolecular

engineering,’’ whose objective, as discussed in Chapter 1, is: ‘‘to bridge the gap between

science and technology in material processing using modeling and computation of the full

thermomechanical history during formation to quantitatively predict properties’’ (1).

Film blowing and blow molding are shaping operations that produce most plastics

films, bags, and bottles, respectively. Both processes involve two-dimensional elonga-

tional deformation of the polymer melt. Thermoforming is a versatile, relatively

inexpensive shaping method used extensively for packaging applications, which also

involves two-dimensional extensional deformation. In all these processes, the purpose of a

mathematical analysis is to describe the kinematics and dynamics of the process, to predict

the nature and source of instabilities that are characteristic of these unconfined

deformation processes, and, as just stated, hopefully predict a priori final properties

based on the thermal and deformational history.

14.1 FIBER SPINNING

Until the 20th century mankind was limited to natural fibers such as wool, cotton, linen, and

for the rich, silk. The first man-made fiber was artificial silk rayon (1910), which was based

on cellulose. The big jump came with the invention of nylon by Wallace Carothers, with

commercial production starting in 1939, followed in the 1950s by acrylics (which, when

mixed with cotton, produced the ‘‘wash-and wear’’ textiles), polyesters, and many others.
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The melt spinning of fibers begins with the melting and pumping of solid pellets by a

screw extruder (normally followed by a gear pump for accurate flow-rate control) into a

die with multiple holes called a spinneret. The extruded strands are drawn and the

solidified fibers are wound up and subsequently cold-drawn further, as shown

schematically in Fig. 14.1(a). The design of a commercial spinneret is shown in

Fig.14.1(b). In addition to melt spinning, there are two other spinning methods: wet

spinning, in which the polymer is dissolved in a solvent and extruded through a spinneret

immersed in a chemical solution, and dry spinning, which also extrudes a solution of the

polymer the solvent of which evaporates upon exiting the spinneret. These are used for

polymers that cannot be melt-spun. However, in this chapter we discuss only the

ubiquitous and most commercially important melt spinning.

In analyzing the melt spinning process, we consider a single strand as it emerges from

the spinneret and is drawn by the take-up roll, as shown in Fig. 14.2. There is no clear point

of demarcation where post–die extrudate swelling ends and melt stretching begins. The

two phenomena occur simultaneously, especially near the die exit, where the rapid rate of

swelling ordinarily occurs. Experimental data from actual melt-spinning runs indicate that

the melt strand cross-sectional area decreases hyperbolically from the spinneret exit to the

take-up rolls (2). Figure 14.3 gives typical melt strand area and radius axial profiles. The

melt drawdown region extends to about 200 cm from the spinneret exit. There is no

specific indication of where the melt strand begins to solidify (‘‘frost line’’).

The final properties of the fiber, such as tenacity,1 modulus, luster, and flex loss, are

determined by the spinning process. This is because, as the molten filament moves from

Fig. 14.1 (a) Schematic representation of the melt fiber spinning process. (b) Photograph of a

spinneret. [Fiber-world Classroom Website.]

1. Tenacity equals the breaking strength (grams) divided by denier. Denier is the weight in grams of 9000meters

of filament.
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the spinneret exit to the take-up roll, it is simultaneously stretched and cooled, thus

orienting the polymer chains (Fig. 14.4) and crystallizing the polymer; this is repeated

with the subsequent drawing and orientation in the solid sate. Therefore, the spinning

process is, in fact, not only a fiber forming step, but a ‘‘structuring’’ one as well. Early

Fig. 14.2 A single strand emerging from the spinneret which undergoes die swell, then cooling to

a point of solidification, drawn by the take-up roll.
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Fig. 14.3 Melt strand area and radius profiles in the melt drawdown region: � nylon 6 at 265�C
and take-up velocity of 300m/min; �, polypropylene (PP) at 262�C and take-up velocity of

350m/min. [Reprinted with permission from H. F. Mark, in Rheology, Vol. 4, F. R. Eirich, Ed.,

Academic Press. New York, 1969.]

826 STRETCH SHAPING



work on structuring during fiber spinning was done by Dees and Spruiell (3), who studied

structure development with linear high density polyethylene fiber spinning and modeled it

as shown in Fig. 14.5. They reported that the observed orientation function behavior

during melt spinning can be explained with a morphological model, assuming that at low

Fig. 14.4 Schematic view of orientation development along the spinline.

Crystallization during melt spinning of linear polyethylene
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Fig. 14.5 Morphological model of structures developed in as-spun HDPE. Take-up velocities are

(a) very low; (b) low; (c) medium; and (d) high. [Reprinted by permission from J. E. Spruiell and

J. L. White, ‘‘Structure Development during Polymer Processing: Studies of the Melt Spinning of

Polyethylene and Polypropylene Fibers,’’ Polym. Eng. Sci., 15, 660 (1975).]
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spinline stresses or take-up velocities, spherulitic structures are obtained. Increasing the

take-up velocity results in row nucleated twisted lamellae, and at even higher speeds, in

row nucleated untwisted lamellae.

As noted in Fig.14.1(a), commercial fibers of semicrystalline polymers are always cold-

drawn after spinning to achieve further structuring through further macromolecular

orientation and crystalline morphological changes, many of which are retained because of

the low temperature of the cold-drawing processes. A typical stress–strain curve for a

polycrystalline polymer at a temperature Tg < T < Tm appears in Fig. 14.6.

The onset of yielding and necking of fibers, as well as films and tensile bar specimens,

is the result of the ability of polycrystalline ‘‘composites’’ to accommodate stress-induced

destruction of the crystalline units. In this process both the amorphous and the crystalline

phases are involved. A ‘‘molecular’’ descriptive model of the morphological changes

initiated with necking, and propagated by cold drawing, indicated in Fig. 14.7, consists of

the following steps:

1. The lamellae slip rigidly past one another. Lamellae parallel to the direction of draw

cannot slip; thus, spherulites become anisotropic. At this stage, at which necking begins,

the strain is accommodated almost entirely by the interlamellar amorphous component.

2. Since the amorphous ‘‘ties’’ are almost completely extended, slip-tilting of the

lamellae is induced.

3. Lamellar breakup occurs through chain pulling and unfolding; the chains pulled still

connect the fragments of the lamellae.

4. The lamellar fragments slip further in the direction of draw and become aligned. They

now form fibrils of alternating crystal blocks and stretched amorphous regions, which

may also contain free chain ends, and some chain folds. Thus, the lamellae break into

fragments that end up stacked in the axial direction. Tie molecules that connect these

fragments in the draw direction provide the strength of the microfibrils in the fiber.

Thus the goal in a fiber structuring operation is to employ the values of the parameters

of spinning and drawing processes, which increase the fraction of tie molecules.

Fig. 14.6 Schematic stress–strain curves for a semicrystalline polymer. The shape of tensile

specimens at several stages is indicated. [Reprinted by permission from J. M. Schultz, Polymer

Materials Science, Prentice Hall, Englewood Cliffs, NJ, 1974.]
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It is evident from the preceding that the important cold drawing variables are not only the

rate of extension, determining texp ¼ 1=_ee, and the temperature; determining the relaxation

time, l, but also the initial crystalline morphology, that is, the morphology obtained during

the spinning process (see Fig. 14.5). Capaccio andWard (4) demonstrated the important role

played by the initial crystalline morphology in obtaining ultrahighly drawn and ultrahigh

stiffness high density polyethylene (HDPE) fibers and films. A HDPE ofMn ¼ 13,350 and

Mw ¼ 67,800, cooled from 160�C and quenched at 110�C, possessed an initial morphology

such that, when drawn at 75�C at 10 cm/min, it can be extended to a draw ratio of 30. The

cold-drawn sample had a specific Young’s modulus in tension E ¼ 68 � 109N/m2, an order

of magnitude higher than of conventionally drawn HDPE. For comparison, ‘‘E’’ glass fibers

have a specific Young’s modulus of 35 (N/m2) and Kevlar fibers, 92 (N/m2). It should be

noted, however, that the theoretical estimates of Young’s modulus for fully extended

HDPE chains range from 240N/m2 to 350N/m2 (4). Thus, further structuring improve-

ments are possible, in principle.

The mathematical formulation of the fiber-spinning process is meant to simulate and

predict the hydrodynamics of the process and the relationship between spinning conditions

and fiber structure. It involves rapid extensional deformation, heat transfer to the

surrounding quenching environment, air drag on the filament surface, crystallization under

rapid axial-orientation, and nonisothermal conditions.

Example 14.1 A Semiempirical, Simplified, One-Dimensional, Nonisothermal
Model [C. D. Han, Rheology in Polymer Processing, Academic Press, New York, 1976,

Section 12.3.1.] Assuming steady state and further assuming that there is only one nonvan-

ishing velocity component v(z), which is a function of only z, and that temperature varies

only in the z direction, the equation of motion reduces to

vz
dvz

dz
¼ �vz

d

dz

tzz
rvz

� �
� 2

pvz
rG

� �
FD þ gz ðE14:1-1Þ

Fig. 14.7 Steps in the deformation of semicrystalline fiber, shown schematically. [Reprinted by

permission from J. M. Schultz, Polymer Materials Science, Prentice Hall, Englewood Cliffs, NJ, 1974.]
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where G ¼ rpR2vz is the mass flow rate and FD is the air drag force per unit area given by:

FD ¼ 0:843

pR2

� �
ra
r

� �
Gvz

prma
ra

ðL� zÞ
G

� �0:915
ðE14:1-2Þ

indicating that extension rate is controlled by tensile stresses, air drag on the fiber, and

gravitational forces. Similarly, the equation of energy reduces to

dT

dz
¼ � 2

Cv

p
rGvz

� �1=2
½hðT � TaÞ þ seðT4 � T4

a Þ� ðE14:1-3Þ

In this equation, h is the heat transfer coefficient given by

hR

ka
¼ 0:21ð1þ KÞ 2Rravz

ma

� �0:334

ðE14:1-4Þ

where K is an adjustable parameter and the subscript a refers to ambient air. According to

Eq. E14.1-3 the temperature drop of the fiber depends on heat transfer to the ambient air and

radiation losses. Han coupled these transport equations with an empirical ‘‘Power Law in

tension’’ constitutive equation containing a temperature-dependent viscosity

tzz ¼ �3aeb=T k1 þ k2
dvz

dz

� �n�1
" #

dvz

dz
ðE14:1-5Þ

where

a ¼ Z0e
�E=RT0 ¼ Z0e

�b=T0 ðE14:1-6Þ

This system of equations is solved numerically. The results obtained are physically reasonable

up to the axial position where crystallization commences, where the rate of cooling slows

down because of the exothermic solidification phenomenon and the rheological properties

change sharply.

Many of the early models were one-dimensional, in which the field equations were

averaged over the filament cross section. Kase and Matsuo (5,6) were the first to consider

nonisothermal (in the stretching direction) fiber stretching. Matovich and Pearson (7)

studied Newtonian, shear thinning and second order fluids. Denn at al. (8,9) modeled the

process with upper-convected Maxwell constitutive equation. Papanastasiou et al. (10)

studied isothermal viscoelastic spinning. Bell and Edie (11), using a finite element method

(FEM), computed the two-dimensional temperature profile, assuming a one-dimensional

velocity profile and measures of orientation, to obtain the internal stress distribution (12).

The single component models were extended by Kulkarni and Beris (13) and Doufas et al.

(14) to two component models, accounting for stress-induced crystallization.

A detailed two-dimensional numerical analysis of nonisothermal spinning of

viscoelastic liquid with phase transition was carried out recently by Joo et al. (15). They

used a mixed FEM developed for viscoelastic flows (16) with a nonisothermal version of

the Giesekus constitutive equation (17), the Nakamura et al. (18) crystallization kinetics
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model, and the dependence of the crystallization rate on temperature and molecular

orientation according to Ziabicki (19). They simulated amorphous polystyrene and fast-

crystallizing nylon-6.6. The results indicate that although the kinematics in the thread line

are approximately one-dimensional, as assumed by most researchers, the significant radial

temperature nonuniformity leads to radially nonuniform viscoelastic stresses, which result

in radially nonuniform molecular orientation and strong radial variation of crystallinity.

The polystyrene simulation followed the experiments of Bell and Edie (12) with good

agreement. Figure 14.8 shows the simulation results for fiber spinning nylon-6.6 with a

draw ratio of 40. The figure demonstrates the wealth of information provided by the model.

It shows the velocity, temperature, axial normal stress, and crystallinity fields along the

threadline. We see the characteristic exponential-like drop in diameter with locally

(radially) constant but accelerating velocity. However, results map out the temperature,

stress, and crystallinity fields, which show marked variation radially and axially.

Recent advances in molecular dynamics simulations enabled Levine et al. (20) to take

modeling one step further, to the molecular level. They succeeded in simulating from first

principles the structure formation of 100 carbon atom polyethylene during uniaxial

extension, under a variety of conditions. Figure 14.9 shows the dynamics of extensional

deformation below the melting point, beautifully indicating the dynamic development of

orientation and order.

Figure 14.10 shows the simulation results of nonisothermal crystallization, during

simultaneous deformation and cooling through the melting point, as is the case in fiber

spinning, indicating the formation of homogeneous, deformation-induced crystallization

nuclei.

The foregoing analyses show, as pointed out earlier, that fiber spinning is perhaps the

first process approaching the goal of modern polymer processing as macromolecular

engineering. That is, developing a multiscale approach to simulate manufacturing

processes using the governing continuum-level equations and operating conditions.

Material-specific parameters for those equations are generated from molecular dynamics

simulations, to ensure consistent, predictive ability. Crystal growth rates are generated

using parameters derived entirely from first principles molecular modeling, over a large

range of temperatures and molecular weight. This is shown schematically in Fig. 14.11.

So far, we assumed that the spinning process is stable. In practice, however, spinning

instabilities may constrain spinning rates and even curb the possibility of spinning a fiber.

Indeed, not all polymers can be melt-spun. Some polymers are easier to spin than others.

The spinnability of a polymer is related to the stability of the process (21,22), particularly

the ability of polymer melts to be drawn without breaking, due to either capillary failure

resulting from surface tension–induced breakup into droplets, ‘‘necking’’ and ductile

failure (23) characteristic to extension-thinning polymers, and/or cohesive fracture (24,25)

exhibited by extension-thickening polymers.

A typical instability is draw resonance. Physically, the occurrence of draw resonance

can be viewed as follows. In the region between the spinneret exit and the take-up rolls

there can be a time variation of the total extrudate mass: although the rate of mass entering

this region is constant, the rate it leaves is not controlled, since only the take-up speed is

regulated, not the fiber diameter. Thus, if the strand thins out near the take-up rolls, the

diameter of the strand above it will increase, creating (from the spinneret exit) a thick–thin

strand. But the thick portion soon reaches the take-up rolls. Mass leaves the region at a

high rate and the strands thin out upstream, creating a thin–thick strand. The process can

repeat itself. This may explain the experimental reports that if solidification occurs before
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Fig. 14.8 Simulation results for velocity, temperature, axial normal stress, and crystallinity fields

for low-speed spinning of nylon-6.6. [Reprinted with permission from Joo et al., ‘‘Two-dimensional

Numerical Analysis of Nonisothermal Melt Spinning with and without Phase Transition,’’ J. Non-

Newt. Fluid Mech., 102, 37–70 (2002).]
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the take-up rolls, no resonance is observed (26), as well as the observation of increased

resonance period with increased residence time in the spinline (21).

Isothermal draw resonance is found to be independent of the flow rate. It occurs at a

critical value of draw ratio (i.e., the ratio of the strand speed at the take-up rolls to that at

the spinneret exit). For fluids that are almost Newtonian, such as polyethylene

terephthalate (PET) and polysiloxane, the critical draw ratio is about 20. For polymer

melts such as HDPE, polyethylene low density (LDPE), polystyrene (PS), and PP, which

are all both shear thinning and viscoelastic, the critical draw ratio value can be as low as 3

(27). The maximum-to-minimum diameter ratio decreases with decreasing draw ratio and

decreasing draw-down length.

The experimental and theoretical literature on instabilities in fiber spinning has been

reviewed in detail by Jung and Hyun (28). The theoretical analysis began with the work of

Pearson et al. (29–32), who examined the behavior of inelastic fluids under a variety of

conditions using linear stability analysis for the governing equations. For Newtonian

fluids, they found a critical draw ratio of 20.2. Shear thinning and shear thickening fluids

Fig. 14.9 Snapshots of a system of twenty 100 carbon atom long polyethylene chains deformed at

300K. The initial slab at the top rapidly deforms with the applied stress in the x dimension of the

slab, roughly doubling in the first 500 ps to l ¼ 2.64 (second image from the top); then the rate of

deformation is slower and doubles again in 1500 ps to l ¼ 5.15 (third image from the top). Beyond

this point the cell deforms even more slowly to reach a final deformation of l ¼ 6.28 (bottom

image). In absolute values, the initial cell of dimensions 1.88 � 5.32 � 5.32 nm deforms to

11.8 � 2.23 � 1.96 nm. [Reprinted by permission from M. C. Levine, N. Waheed, and G. C.

Rutledge, ‘‘Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene

during Uniaxial Extension,’’ Polymer, 44, 1771–1779, (2003).]
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Fig. 14.10 Chain configurations from a nonisothermal deformation simulation. From top to

bottom, the images were taken at 374, 368, 364, 360K, and 290K, corresponding to 7.6, 8.2, 8.6,

9.0, and 16.0 ns. [Reprinted by permission from M. C. Levine, N. Waheed, and G. C. Rutledge,

‘‘Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene during

Uniaxial Extension,’’ Polymer, 44, 1771–1779, (2003).]

Fig. 14.11 Schematic representation of fiber spinning process simulation scheme showing the

multiple scale simulation analysis down to the molecular level. This is the goal of the Clemson

University–MIT NSF Engineering Research Center for Advanced Engineering Fibers and Films

(CAEFF) collaboration. CAEFF researchers are addressing fiber and film forming and structuring

by creating a multiscale model that can be used to predict optimal combinations of materials and

manufacturing conditions, for these and other processes.
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exhibit critical draw ratios that are smaller or larger, respectively, than 20.2. At the same

time, Denn et al. (8,33–36) systematically carried out both infinitesimal (linearized) and

finite amplitude analyses of the isothermal draw resonance problem. They found that

Newtonian fluids are stable to finite amplitude disturbances for draw ratios of less than

20.2. Linearized stability analysis revealed that for fluids that obey a White–Metzner-type

constitutive equation, the critical draw ratio depends on the Power Law index n and the

viscoelastic dimensionless number N

N ¼ 3ð1�s=2Þ m

G

� �s V0

L

� �
ð14:1-1Þ

where s ¼ 1=n, L is the spinline length, G is the tensile modulus, and V0 is the spinneret

velocity. The results appear in Fig. 14.12. Of interest is the ‘‘nose’’ region of the curves,

which indicates that one could eliminate the draw resonance phenomenon by an increase

in the draw ratio. Also of interest is the work of Han (37), who finds experimentally that as

the temperature level is decreased in isothermal spinning, draw resonance occurs at lower

draw ratios. This seems reasonable from the figure. In the ‘‘nose’’ region, decreasing the

temperature increases G and decreases m, which in turn decreases N, bringing about lower

draw ratio values.

White et al. (38,39) presented experimental and theoretical (isothermal linear stability

analysis) results that indicate the following: first, that polymer melts respond similarly to

uniform elongational flow and to melt spinning; second, that polymers whose elongational

viscosity �ZZþðt; _eeÞ increases with time or strain result in a stable spinline, do not exhibit

draw resonance, and undergo cohesive failure at high draw ratios. A prime example of

such behavior is LDPE. On the other hand, polymer melts with a decreasing �ZZþðt; _eeÞ

.

Unattainable

Unstable

n = 1
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n = 0.33

Stable
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1

Fig. 14.12 Results of the linearized stability analysis for a White–Metzner-type fluid, indicating

the dependence of the critical draw ratio on n and N. [Reprinted by permission from R. J. Fisher and

M. M. Denn, ‘‘A Theory of Isothermal Melt Spinning and Draw Resonance,’’ AIChE J., 22, 236

(1976).]
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exhibit draw resonance at low draw ratios and break in a ductile fashion (after ‘‘necking’’)

at high draw ratios. Typical polymers in this category are HDPE and PP.

The preceding analyses were based on steady state solution of the governing equations,

and examining the response of the system to applied sinusoidal perturbations. However,

for the study of the dynamics of the instability, and for tracing the physical sources of

instability, transient time-dependent solutions are needed. Hyun et al. (40,41) developed

such solutions by tracing and analyzing kinematic traveling waves on the spinline from the

spinneret to the take-up. Their simulation shows good agreement with the experiments (28).

14.2 FILM BLOWING

Most films and bags, in sizes varying from a sandwich bag to large films covering building

sites, are made by the ingenious and deceptively simple process of film blowing. This

process is shown schematically in Fig. 14.13(a), and a photograph of the process is shown in

Fig. 14.13(b). A relatively small diameter tubular film is extruded upwards; upon exit it is

blown up, with air introduced below the die, into a larger tubular film and then picked up by

a pair of nip rolls that seal the bubble. An external stream of chilled air cools and solidifies

the film at a certain upstream location called the freeze line, where Tf ¼ Tm. In this process

the film is stretched biaxially, thereby improving its mechanical properties. The blow up

ratio, Rf =R0, determined by the pressure level within the bubble, sets the (tangential)

circumferential stretching, and the speed of take-up by the nip rolls sets the axial stretching.

The film thickness produced by film blowing ranges from 10 mm to 100 mm and the

rates of production are very high. The most common plastic films produced by this method

are branched LDPE, linear low density polyethylene (LLDPE), and linear HDPE films. By

using more than one extruder, multilayer films can also be manufactured. To appreciate the

Fig. 14.13 (a) Schematic representation of the tubular blown film forming operation. (b)

Photograph of a coextruded blown film die followed by blown film with external and internal

cooling. [Courtesy of Windmoeller & Hoelscher (Lincoln RI).]
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elegant engineering simplicity of this process, we have to compare it to the more

complicated and expensive die forming flat film process, where the melt is extruded

through a slit die onto chilled take-up rolls. The latter process, while more expensive, has

the advantage of producing optically clear films, because of the profuse nucleation

induced by the quenching abilities of the chilled rolls. Yet, as the mathematical analysis

discussed below demonstrates, the film blowing process is not simple at all, particularly

when we consider the multiplicity of steady states and bubble instabilities that may arise

which, in addition to cooling rates, place upper limits on production rates.

The first milestone in modeling the process is credited to Pearson and Petrie (42–44),

who laid the mathematical foundation of the thin-film, steady-state, isothermal Newtonian

analysis presented below. Petrie (45) simulated the process using either a Newtonian fluid

model or an elastic solid model; in the Newtonian case, he inserted the temperature profile

obtained experimentally by Ast (46), who was the first to deal with nonisothermal effects

and solve the energy equation to account for the temperature-dependent viscosity. Petrie

(47) and Pearson (48) provide reviews of these early stages of mathematical foundation for

the analysis of film blowing.

Han and Park (49–51) used a coupled force and thermal energy balances to take care

of the nonisothermal nature of the process and accounted for the non-Newtonian nature

of the viscosity. Gupta (52) presented experimental results that were used by several

investigators. Kanai and White (53,54) carried out detailed experimentation as well as

theoretical analysis of both the kinematics and the dynamics of the process and the effect

of the cooling rate on crystallization. Heat transfer and bubble cooling were studied by

Sidiropoulos and Vlachopoulos (55–58), who used numerical simulation to study air flow

around the bubble, investigated the effect of internal bubble cooling, and studied the

temperature gradient in the blown film. Finally, Campbell et al. (59) carried out a full

aerodynamic analysis of the cooling air around the bubble.

The early attempts to account for the viscoelastic nature of the fluid encountered

mathematical difficulties in the numerical solutions. Yet later, Luo and Tanner (60) expanded

the Petrie model to viscoelastic nonisothermal flow using the convected Maxwell and

Leonov (61) models, and compared results to experiments done by Gupta (52). Cain and

Denn (62) carried out a detailed analysis of both Newtonian and viscoelastic fluids. For the

latter, they used the upper convected Maxwell model and the Marruci (63) model. They

found that multiple solutions of the governing equations are possible even for the Newtonian

fluid, with the existence of more than one steady state bubble profile for a given set of

operating conditions. Furthermore, they found several types of instabilities. A recent,

detailed review of film blowing instabilities is given by Jung and Hyun (28).

Following the principles of the Petrie model, and recalling that the film thickness d is

much smaller than the radius d=R � 1, we invoke the ‘‘thin-film approximation,’’ which

implies that field equations are averaged over the thickness and that there are no shear

stresses and moments in the film. The film is regarded, in fact, as a thin shell in tension,

which is supported by the longitudinal force Fz in the bubble and by the pressure

difference between the inner and outer surfaces, �P. We further assume steady state, a

clearly defined sharp freeze line above which no more deformation takes place and an

axisymmetric bubble. Bubble properties can therefore be expressed in terms of a single

independent spatial variable, the (upward) axial position from the die exit,2 z. The object

2. To be exact, the origin of variable z is located not at the die exit, but just past the die-exit swell region (21).
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of the analysis is to predict the dependent variables, including the bubble radius, film

thickness, film temperature (in the nonisothermal case), and local values of stresses as a

function of the axial distance, z.

We first derive the kinematics of the deformation. The flow situation is shown in

Fig. 14.14. Coordinate z is the vertical distance in the center of the axisymmetric bubble

with the film emerging from the die at z ¼ 0. The radius of the bubble R and its thickness d
are a function of z. We chose a coordinate system xi embedded in the inner surface of the

bubble. We discussed extensional flows in Section 3.1 where we defined the velocity field

of extensional flows as

vi ¼ aixi ð14:2-1Þ

In this case, as pointed out earlier, the extension is planar, but unequal in directions x1 and
x3. In order to derive the rate of deformation tensor components, we need to define the flow

field in terms of the dependent variables d and R. We note that in direction ‘‘2’’ at x2 ¼ d,
we can write

v2 ¼ a2d ¼ dd
dt

ð14:2-2Þ

Writing a2 in terms of d, from the kinematics of extensional flow, we have

_gg22 ¼ 2a2 ¼ 2

d
dd
dt

ð14:2-3Þ

We can rewrite Eq. 14.2-3 as follows

_gg22 ¼ 2a2 ¼ 2

d
dd
dx1

dx1
dt

ð14:2-4Þ

where

dx1
dt

¼ v1 ð14:2-5Þ

 θ
ξ2  

ξ1 

δ

R0

z

R

Rf

Zf

Fig. 14.14 The melt exits the die at z ¼ 0; the radius of the bubble R and the thickness d are a

function of z. The coordinate system xi is embedded into the inner surface of the bubble.
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And from geometrical considerations, we find that

dd
dx1

¼ dd
dz

dz

dx1
¼ cos y

dd
dz

ð14:2-6Þ

Substituting Eqs, 14.2-6 and 14.2-5 into Eq. 14.2-4, we get

_gg22 ¼
2

d
v1 cos y

dd
dz

ð14:2-7Þ

The volumetric flow rate Q is given by

Q ¼ 2pRdv1 ð14:2-8Þ

Substituting it into Eq. 14.2-7, we obtain

_gg22 ¼
Q cos y
pRd

� �
1

d
dd
dz

ð14:2-9Þ

The film circumference at any given z where the bubble radius is R, is l ¼ 2pR, and the
velocity v3 is given by

v3 ¼ dl

dt
¼ 2p

dR

dt
¼ 2p

dR

dx1

dx1
dt

ð14:2-10Þ

Substituting Eq. 14.2-5 into Eq.14.2-10 and recalling that dz=dx1 ¼ cos y, we get

v3 ¼ 2pv1 cos y
dR

dz
ð14:2-11Þ

Next we substitute Eq. 14.2-8 into Eq.14.2-11 and with Eq. 14.2-1, get

v3 ¼ Q cos y
d

1

R

dR

dz
¼ 2pRa3 ð14:2-12Þ

Recalling that _gg33 ¼ 2a3, we obtain

_gg33 ¼
Q cos y
pRd

� �
1

R

dR

dz
ð14:2-13Þ

Finally, we obtain the third component of the rate of deformation tensor _gg11 from the

equation of continuity �ai ¼ 0 or �_ggii ¼ 0 to give

_gg11 ¼ �Q cos y
pRd

1

d
dd
dz

þ 1

R

dR

dz

� �
ð14:2-14Þ
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Having the components of the rate of deformation tensor, we can turn to the

components of the stress tensor assuming a Newtonian fluid

p ¼ Pd� m _cc ð14:2-15Þ

Setting p22 ¼ 0 because no external forces act in this direction, we can extract P from the

previous equation after substituting Eq. 14.2-9, to obtain

P ¼ mQ cos y

pRd2
dy
dz

ð14:2-16Þ

From the foregoing, the two other normal stress components can be evaluated

p11 ¼ Qm cos y
pRd

2

d
dy
dz

þ 1

R

dR

dz

� �
ð14:2-17Þ

p33 ¼ Qm cos y
pRd

1

d
dy
dz

� 1

R

dR

dz

� �
ð14:2-18Þ

To solve for d(z) and R(z), one needs to state the force balance equations for the blown

film. The simplest form of these equations, disregarding inertial and gravity forces, are the

classic thin-film equations. The forces per unit length in the film in the x1 and x3 directions
are FL=2pR ¼ dp11 and FH=x1 ¼ dp33, respectively; thus from the thin film equation, we

get

�P ¼ �d
p11
RL

þ p33
RC

� �
ð14:2-19Þ

where RC ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _RR2

p
¼ R=cos y and RL ¼ �ð1þ _RR2Þ3=2=€RR ¼ � sec3 y=€RR are the radii

of curvature with _RR ¼ dR=dz and €RR ¼ d _RR=dz. Next we make a force balance in the z

direction on a portion of the bubble bound by two planes, one at z and the other at the

freeze line z ¼ ZF, where the radius is RF, and the force Fz, acting in the axial direction on

the bubble for z � ZF, is

Fz ¼ �ð2pR cos yÞdp11 þ p�PðR2
f � R2Þ ð14:2-20Þ

By substituting Eq. 14.2-17 and 14.2-18 into Eqs. 14.2-19 and 14.2-21, we obtain two

differential equations, one for the radius and the other for the thickness. In terms of the

dimensionless parameters r ¼ R=R0, w ¼ d=R, and z ¼ z=R0

2r2ðAþ r2BÞ€rr ¼ 6_rr þ rð1þ _rr2ÞðA� 3r2BÞ ð14:2-21Þ

where _rr ¼ dr=dz and €rr ¼ d _rr=dz, and is subject to boundary conditions rð0Þ ¼ 1 and

_rr (zf) ¼ 0, and

_ww ¼ �w
_rr

2r
þ ð1þ _rr2ÞðAþ r2BÞ

4

� �
ð14:2-22Þ
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where _ww ¼ dw=dz, and dimensionless groups A and B are

A ¼ R0Fz

mQ
� B

Rf

R0

� �2

ð14:2-23Þ

B ¼ pR3
0�P

mQ
ð14:2-24Þ

subject to boundary conditions w(0) ¼ d0=R0.

Note that in order to solve these equations, the position of the freeze line Zf and the

value d0 at the die exit (post–die exit swelling) must be known. Neither quantity can be

specified a priori. Cain and Denn (62) discuss the numerical solution of these equations for

various rheological models. The two differential equations are decoupled, and after

solving Eq. 14.2-22 for the radius profile, which most investigators solve by using a fourth-

order Runge–Kutta method, the results can be inserted into Eq. 14.2-22 to obtain the

thickness profile. In the former, a final bubble radius at the freeze line is assumed and the

initial bubble radius at the origin is computed. Then the freeze-line radius is adjusted until

the desired initial radius is achieved. Cain and Denn simulations, using the rich

experimental data collected by Gupta (52), show a complex, multiple, steady state

behavior even for the Newtonian isothermal model. Han and Park (50) carried out LDPE

film blowing experiments and, using a modified model described earlier with a Power

Law–type temperature-dependent viscosity and heat transfer calculation, showed good

agreement between simulation and experiments (64).

Bubble instability is one of the complications of this process. Only recently did this

matter receive theoretical attention. As pointed out by Jung and Hyun (28), there are three

characteristic bubble instabilities: axisymmetric draw resonance, helical instability, and

metastability where the bubble alternates between steady states, and the freeze line moves

from one position to another. Using linear stability analysis, Cain and Denn (62) showed

that multiple steady state solutions are possible for the same set of conditions, as pointed

out earlier. However, in order to study the dynamic or time-dependent changes of the

process, transient solutions are needed. This was recently achieved by Hyun et al.

(65), who succeeded in quite accurately simulating the experimentally observed draw

resonance (28).

14.3 BLOW MOLDING

Blow molding is a very important polymer processing method, borrowed from the glass

industry, for manufacturing hollow articles such as small bottles for household products

and personal care, dairy products and beverages, containers for industrial goods or

chemicals, fuel tanks, drums, car dashboards, and so on (66–68). There are three basic

types of blow molding processes: extrusion, injection, and stretch blow molding. Classic

extrusion blow molding involves first the forming of a molten tube, called the parison. The

parison is engaged between two mold halves and, upon their closing, is inflated like a

balloon by compressed air, to conform to the interior shape of the chilled mold, as shown

in Fig. 14.15. The polymer quickly solidifies upon contact with the cold mold, and the

finished hollow article is ejected.
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The extrusion blow molding process can be continuous or intermittent, as shown in

Fig. 14.16. The former, employed commonly for parts less than 1 gal, has a continuously

rotating screw extruder, extruding parisons through one or more dies. The latter may use

either an accumulator head with a piston-driven extrusion forming of the parison, or a

reciprocating screw, such as the one used in injection molding.

Mold Blow pin

Blowing

Extruder

Extruded plastic

a

dc

b

Fig. 14.15 Schematic representation of the blow molding process. (a) The extruder head with the

blowing pin and open mold; (b) the extrusion of the parison; (c) the mold closed with the parison

pinched in the bottom and sealed at the top; (d) the inflated parison forming a bottle.

Fig. 14.16 Schematic view of (a) continuous extrusion blow molding; (b) reciprocating screw

blow molding; and (c) ram-accumulator blow molding. [Reprinted by permission from Modern

Plastics Encyclopedia, McGraw-Hill, New York, 1976–1977.)
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The intermittent-parison production methods are more suited to the nature of the blow

molding process; greater flexibility and control are possible in the forming itself, which is

the heart of the process. The inflation step is fast, and little flexibility is allowed in the

control of the ‘‘bubble’’ thickness. Thus, by controlling the rate of extrusion during parison

forming (which results in different degrees of swelling of the extrudate), the thickness of

the parison can be programmed to result in a product of more-or-less uniform thickness.

Figure 14.17 shows a parison of programmed thickness. The same result can be obtained

by varying the annular die gap and extruding the polymer at a constant rate. Parison

forming is very sensitive to both shear and extentional rheological properties, hence to

temperature.

It is possible to blow mold several layers of material by coextrusion blow molding

processes. By appropriate material selection, the various parts of the structure can be

optimized for the best balance between properties and cost.

In the injection blow molding process, the parison is formed by injection molding of the

preshaped parison onto a steel rod, as shown in Fig. 14.18. The rod with the molded thread

already completed is moved to the blowing station, where the article is inflated free of

scrap. The parison thickness distribution is determined in the injection mold without the

need of further control. Some axial orientation is introduced during injection, resulting in

an article with partial biaxial orientation.

A process that greatly improves blow molded product properties is that of injection

stretch blow molding, which introduces biaxial orientation in crystallizable polymers.

There are two variants of this process involving the molding of a preform as the first step.

The thermomechanical paths of the two process variants are shown in Fig. 14.19. In the

Fig. 14.17 Example of a parison thickness variation by parson ‘‘programming.’’ [Reprinted by

permission from Modern Plastics Encyclopedia, Vol. 53, McGraw-Hill, New York, 1976–1977.]
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two-step process, the preform is molded, cooled and transported to the stretch blow

molding station, where it is reheated (thermally conditioned) to a temperature, Ts, above

Tg, but well below Tm, and stretched with an axially moving rod, while simultaneously

being blown in a mold. In the one-step process the preform is cooled to the stretching

temperature Ts, and then is stretched and blown in the same molding station to conform in

shape with the mold. Although thermally efficient, the one-step process is not process

efficient, since it ties up the equipment during the parison cooling time period, which

cannot be very small, since a preformwide uniform temperature must be attained before

Fig. 14.18 Schematic of the three-position injection blow-molding rotary machine. The third

position is easily accessible for removing the blow-molded article. [Reprinted by permission from

Modern Plastics Encyclopedia, Vol. 53, McGraw-Hill, New York, 1976–1977.]

Stretch/blow
molding of preform
and “heat-setting”

Time

Tm

Troom

Tg

Maximum
crystallization

rate temp.

Molding
of  preform

Rapid
cooling of
preform

One-step
process

(b)

(a)

Two-step
process

Rapid
cooling
of bottle

Fig. 14.19 Thermomechanical histories of the two variants of the injection stretch blow molding

process; (a) the two-step, and (b) the less common one-step.
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the stretching and blowing step. Thus, the two-step process is the most common and is

typically used to produce PET carbonated beverage bottles, which represent a very large

volume market. The stages of the two-step process are shown in Fig. 14.20. The reason for

thermally conditioning the preform in both process variants to the previously given

temperature range, Tg < Ts < Tm, is to allow for crystallization during the biaxial stretch

blow molding step, as shown in Fig. 14.21. In this way, deformation-induced

crystallization is promoted both during the stretch blow molding stage and the heat-

setting stage, if a hot mold is used. Following Druin (68), standard PET carbonated

beverage bottles are produced by heating the preform to 95�–105�C and stretch blow

molding it into a cold mold (3�–10�C), producing a deformation-induced crystallinity of

25%. The resulting product Tg is 73
�C, and the O2 and CO2 permeability is reduced to half

that of an nonoriented amorphous PET film.

If the preheated preform is stretched and blown into a hot mold, for example, 100–

110�C and held there for a short period, the resulting Tg is in the range of 88�C, allowing
for ‘‘hot fill’’ capabilities of such bottles, increasing the crystallinity to the 28–30% level

and further decreasing the O2 permeability to one-third that of an nonoriented amorphous

Reciprocating screw
Mold closed

Mold opens–part ejected

(1)

Heating

Mold closed Stretch

(3)

Blow

Eject

(2)

Fig. 14.20 Schematic representation of the injection stretch blow-molding process. Step (1)

producing preforms may be carried out in different location from the stretch blow molding process.

[Reprinted by permission from Schmidt et al., ‘‘Experimental Study and Numerical Simulation of

the Injection Stretch/Blow Molding Process,’’ Polym. Eng. Sci., 38, 1399 (1998).]
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PET film. The overall improvement in ‘‘barrier’’ properties of PET upon biaxial

deformation, followed by heat-setting, is the combined result of higher deformation-

induced crystallization and orientation. The role of crystallinity may be more significant

than that of orientation, because it reduces both the diffusion rate (increasing the

permeant’s path ‘‘tortuosity’’) as well as its solubility, while orientation reduces only the

diffusion rate.

Figure 14.22 plots the oxygen permeability of PET nonoriented sheets and biaxially

oriented bottles as a function of the degree of crystallinity. Indeed, the effect of

crystallinity is larger than that of biaxial orientation. But in practical terms, nonoriented

sheets crystallize much more slowly than the biaxially oriented bottle walls, because

deformation-induced orientation proceeds at higher rates at any temperature between Tg
and Tm. That is, the schematically represented ‘‘crystallization rate’’ curve in Fig. 14.21

extends vertically upwards.

The real ‘‘structuring’’ benefit, then, of the stretch blow molding–induced biaxial

deformation is to create the needed degree of crystallinity during the very short stretch

blowing and heat-setting times, which makes the process commercially viable. Finally,

the deformation-induced nonspherulitic crystalline morphology not only increases the

modulus of elasticity, but also the impact strength of the stretch blow molded bottles.

Thus, the structuring achieved during stretch blow molding for plastic materials has

opened up the vast market for bottling pressurized supersaturated carbonated drinks, at

Polyethylene terephthalate
crystals cannot form here
because molecules are too

sluggish

Crystals form
and grow here

Crystals cannot exist
here because molecules

are too energetic

Crystallization
rate curve

Existing crystals
are stable

Glassy state “Rubbery” state Melt state

Temperature, °C
175

Max
crystallization

rate

Crystallization
temperature

range

250 – 255 

Crystalline
melting

zone

65 – 90 

Glass-
transition

zone

Fig. 14.21 Schematic representation of the crystallization behavior of PET relative to the stretch

blow molding process. [J. S. Schaul, ‘‘Drying and Injection Molding PET for Beverage Bottle

Preform,’’ SPE ANTEC Tech. Papers, 26, 534 (1980).]
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the expense of both glass and aluminum containers, which have product-appropriate

strength (though glass is brittle and thus breakable) and permeability, but are costlier to

fabricate.

Finally, it is worth mentioning the more recent three-dimensional blow molding in

which a robot arm optimally positions the parison in the mold cavity, to minimize trim-off,

and to produce complex shapes, such as automotive parts.

Parison Formation

If the ratio of the final postinflation diameter to parison diameter is constant along the

parison length (cylindrical shape), then the parison thickness should be uniform along its

length. If, however, it varies, the parison should be thicker at axial locations where the

diameter ratio is larger. Only under such conditions can acceptable product strength levels

be reached with minimum product weight. To accomplish thickness control of the parison,

special dies have been designed. In a typical reciprocating screw blow molding die head

(Fig. 14.23), the choke screwD is adjustable to compensate for batch-to-batch or polymer-

to-polymer viscosity variations. The choke ring I is adjustable to eliminate circumferential

melt pressure variations. It also forms an annular channel that is narrow enough to ensure

reduction of the effects of the varying melt flow histories of the incoming melt. The

centering screw J is used for the final adjustments, which ensure that there is no angular

dependence of the parison thickness or diameter.

The final die gap is a conical section, slightly tapering, annular channel. The cone angle

� is appreciable (Fig. 14.24) and is an important die design variable in determining the

parison diameter, diameter profile, and thickness. Furthermore, an angle y4 0 allows

convenient die gap adjustment through slight axial mandrel position changes.

Figure 4.25 shows other possible parison die designs: diverging, converging, and

straight, that also allow for flow rate control. An appreciable value of the diverging or

converging angle renders the flow in the conical die land gap nonviscometric, consisting

of both shear and planar extensional flows. This makes extrudate swell prediction
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Fig. 14.22 Oxygen permeability of nonoriented PET sheets and biaxially oriented PET bottles as

a function of crystallinity. [M. Salame, paper presented at the Bev-Pak 1992 Conference, Atlanta,

GA March 23–25 (1992).]
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more difficult, in particular since the polymers that are suitable for the blow molding

process are generally strongly elastic with a high extensional viscosity to avoid parison

sagging and to undergo stable parison blowing to form final products. Moreover, in

annular extrudate swell, in addition to the thickness swell (equivalent to radial swell in

capillary flow), we must also deal with the diameter swell, as indicated in Fig. 14.18,

both of which are affected by sagging due to gravitational forces; hence they are time-

dependent and also affected by nonuniform temperature due to cooling of the parison. It

is not surprising, therefore, that numerical methods are still somewhat limited, and

semiempirical methods based on experimental measurements need to be used in process

and die design.

A

C

B

D

E

J

HA

I

G

F

M

N

L

K

Fig. 14.23 Typical blow molding die: A, choke adjusting nut; B, mandrel adjustment; C, feed

throat; D, choke screw; E, die head; F, plastic melt; G, die barrel; H, heater band; I, choke ring;

J, centering screw; K, clamp ring; L, die heater; M, die; N, mandrel. [Reprinted by permission from

J. D. Frankland, ‘‘A High Speed Blow Molding Process,’’ Trans. Soc. Rheol., 19, 371 (1975).]
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Fig. 14.24 Detailed cross-sectional representation of the die exit and the parison formed in the

blow molding process, with the key design variables and the thickness and outer diameter swell.

Fig. 14.25 Schematic parison die designs: (a) convergent; (b) divergent, and (c) straight.

[Reprinted by permission from A. Gracia-Rejon, R. W. DiRaddo, and M. E. Ryan, ‘‘Effect of Die

Geometry and Flow Characteristics on Viscoelastic Annular Die Swell,’’ J. Non-Newt. Fluid Mech.,

60, 107–128 (1995).]
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A simple and straightforward experimental method to determine parison shape and

thickness distribution was suggested by Sheptak and Beyer (69), who developed a mold

that pinched off the extruded parison in several axial segments, enabling the measurement

of the weight and the lay-flat width of each segment. Kamal et al. (70) derived a time-

dependent relationship between diameter and thickness swell based on experimental data.

Kamal and Kalyon (71) correlated between area swell and capillary swell. Gracia-Rejon

et al. (72) explored the effect of the die geometry (e.g., diverging versus converging, die

contraction ratio, inclination angle, and length of tapered section) and flow characteristic

on viscoelastic annular swell of HDPE using the commercial POLYFLOW FEM program

and the Kaye-Bernstein-Kearrsley-Zappas (K-BKZ) constitutive model. They found that

diameter and thickness swell depend on the extent of elongational and shear deformation

history in the die and, of course, the rheological characteristics of the polymer. Orbey and

Dealy (73) also explored the effect of die design on annular swell values for both

converging and diverging dies, and they (74) developed a lumped parameter model to

predict the length and shape of the parison on the basis of experimental swell data and

storage modulus of the resin. Wagner and Kalyon (75) studied parison shape and thickness

distribution experimentally using cinematography and a transparent mold with a range of

polyamide resins. They observe differences in behavior that cannot be easily related to the

rheological properties of the resins. As Fig. 14.26(a), 14.26(b), and 14.26(c) indicates

there are great differences in swell behavior between the resins. The straight nylon

[Fig. 14.26(a)] shows greater nonuniformity along the axis. Diameter swell increases from

1.1 to 1.3, whereas the weight and thickness swell undergo a minimum, due to drawdown

or sag and strain recovery. The addition of 12% glass fiber significantly reduces swell, with

diameter swell slightly above 1 and the weight and thickness swell below 1 due to

drawdown, this, in spite of measuring similar primary normal stress difference and storage

modulus for the two resins. The polyolefin modified resin shows the largest swell ratio and

minimal drawdown, indicating higher melt strength resisting drawdown.

Laroche et al. (76), who developed an integrated numerical model for the blow molding

process, observe that computation of the annular die swell using differential viscoelastic

constitutive models were found to overpredict the measured swell levels. Integral

constitutive models, such as the K-BKZ constitutive equation, have proved to be more

reliable. They deal with parison formation by a numerical Lagrangian scheme, whereby

the parison is subdivided into axial increments and followed from emergence from the die

to the end of the cycle. In each one, deformation due to swell and sagging is obtained using

empirical relations.

Tanue et al. of the Funatsu computational group (77) using an FEM formulation and a

Giesekus constitutive model (17), predicted the parison swell and shape within 20%

accuracy, though it appears that they neglected gravitational effects. A number of

viscoelastic constitutive equations (e.g., K-BKZ, Larson) for computing HDPE annular

extrudate swell in large parisons were explored by Otsuki et al. of the same group (78),

indicating very different responses with the different models, and great sensitivity to

differences in resin properties at relatively small deformation.

The SIMBLOW3 integrated FEM simulation commercial software for the extrusion

blow molding process also uses the K-BKZ fluid (79), which accounts for shear thinning,

3. The Plamedia Research Corporation (Tokyo, Japan)
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normal stresses in shear flow, and elastic behavior. It is a special case of the Lodge rubber-

like liquid constitutive equations (Eqs. 3.4-4 and 3.4-5)

sðtÞ ¼
ðt

�1

X
i

Gi exp � t � t0

li

� �
hðgÞ½c½1�ðt0; tÞ;�I�

" #
dt0 ð14:3-1Þ

where c[1] is the Finger tensor and Ht is the dynamic damping function to account for

nonlinearity in the relaxation spectrum (Gi, li) (80). The evaluation of the material

rheological parameters needed in Eq.14.3-1 requires the following characterization

experiments: dynamic mechanical, steady shear, and transient uniaxial elongational flow.

Fig. 14.26 Diameter (SD, thickness (ST), and weight (SW) swell of a parison extrudate from a

commercial blow-molding machine equipped with CCD camera equipment and parison pinch-off

mold based on the design of Shepak and Beyer (69). (a) A chain extended multibranched

polyamide-6 resin; (b) the former with 12% glass fiber of 10mm diameter 60:1 L=D; and (c)

polyolefin modified polyamide-6 with some carbon black. [Reprinted by permission from A. H.

Wagner and D. Kalyon, ‘‘Parison Formation and Inflation Behavior pf Polyamide-6 During

Extrusion Blow Molding,’’ Polym. Eng. Sci., 36, 1897–1906 (1996).]
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The momentum and energy equations are then cast in an Eulerian FEM mesh inside the

conical die and a Lagrangian mesh in the parison being formed, as shown in Fig. 14.27.

Typical results obtained with SIMBLOW are depicted qualitatively in Fig. 14.28. A

conical parison is formed initially, which, under the body force of gravity, turns vertical

downwards. The gradual thickening of the parison is due to the axial programmed parison

core movement.

Fig. 14.27 Lagrangian mesh used in the FEM in the post–die extruded parison. [Reprinted by

permission from the Plamedia Research Corporation, Tokyo, Japan.]

Fig. 14.28 Parison shape and thickness profile of the parison at different times with programmed

mandrel and a region of partially confined extrudate. [Reprinted by permission from the Plamedia

Research Corporation, Tokyo, Japan.]
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Parison Inflation

The parison is inflated fast, within seconds or less, at a predetermined rate such that it does

not burst while expanding. It is a complex process that involves expansion of a nonuniform

membrane-like element. Because the extension ratio is high (above 10), it is difficult to

calculate the final thickness distribution. Naturally, much of the recent theoretical research

on parison stretching and inflation (as in the case with thermoforming) focuses on FEM

methods and the selection of the appropriate rheological constitutive models to predict

parison shape, thickness, and temperature distribution during the inflation.

FEM is the only practical tool to handle the problem. Not surprisingly, this method was

first applied to membranes or thin shells in the field of structural analysis, a field where, in

fact, FEM was pioneered, with a much later penetration to fluid mechanics and polymer

processing. Indeed, Oden and Sato (81) were the first to apply FEM to examine the three-

dimensional membrane inflation problem. Two other engineering fields that apply a

similar FEM approach are metal sheet forming and glass bottle blowing (82).

Parison inflation models use a Lagrangian framework with most of them employing

the thin-shell formulation and various solidlike or liquid constitutive equations,

generally assuming no-slip upon the parison contacting the mold. The first attempts to

simulate polymeric parison inflation were made by Denson (83), who analyzed the

implications of elongational flow in various fabrication methods, as discussed in the

following example.

Example 14.2 Inflation of a Cylindrical Uniform Parison Assuming Simple Planar
Extensional Flow Following Denson (83), an approximate description of the inflation of

a cylindrical parison of uniform radius Ri and thickness hi to that R0 and h0 can be obtained

by assuming that (a) the flow is a planar extension; (b) the flow is isothermal; and (c)

h=r� 1, so that the hoop stress t ¼ � ½PR(t)=h(t)�. Experimentally, planar extensional visc-

osity at very low strain rates (which clearly is a poor approximation for blow molding pro-

cesses) can be expressed as

�ZZpl ¼ Kð_eeplÞn�1 ðE14:2-1Þ

The tangential elongational stress component tyy is given by

tyy ¼ �PR tð Þ
h tð Þ ¼ �Kð_eeplÞn�1 _eepl ðE14:2-2Þ

Since

_eepl ¼ 1

RðtÞ
dRðtÞ
dt

ðE14:2-3Þ

and for an incompressible material we have

V ¼ 2pRðtÞhðtÞL ¼ const: ðE14:2-4Þ
we obtain the expression

dR

dt
¼ CPsR2sþ1 ðE14:2-5Þ
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where s ¼ 1=n and

C ¼ 2pL
VK

� �s

ðE14:2-6Þ

Equation E14.2-5 can be solved for any time-dependent or constant inflation pressure to give

the radial value as a function of time. For example, if P is constant, the parison inflation time

is

t ¼ 1

2sCPs

1

Ri

� �2s

� 1

R0

� �2s
" #

ðE14:2-7Þ

However, since extentional viscous flow behavior is expected to occur only below a certain

critical strain rate given by _ee ¼ (2lmax))
� 1, and the blow-molding inflation rates are high, the

preceding approximation may only hold at high temperatures, where the maximum relation

time is small.

Petrie and Ito (84) used numerical methods to analyze the dynamic deformation of

axisymmetric cylindrical HDPE parisons and estimate final thickness. One of the early

and important contributions to parison inflation simulation came from DeLorenzi et al.

(85–89), who studied thermoforming and isothermal and nonisothermal parison inflation

with both two- and three-dimensional formulation, using FEM with a hyperelastic,

solidlike constitutive model. Hyperelastic constitutive models (i.e., models that account

for the strains that go beyond the linear elastic into the nonlinear elastic region) were also

used, among others, by Charrier (90) and by Marckmann et al. (91), who developed a

three-dimensional dynamic FEM procedure using a nonlinear hyperelastic Mooney–

Rivlin membrane, and who also used a viscoelastic model (92). However, as was pointed

out by Laroche et al. (93), hyperelastic constitutive equations do not allow for time

dependence and strain-rate dependence. Thus, their assumption of quasi–static equilibrium

during parison inflation, and overpredicts stresses because they cannot account for stress

relaxation; furthermore, the solutions are prone to numerical instabilities. Hyperelastic

models like viscoplastic models do allow for strain hardening, however, which is a very

important element of the actual inflation process.

Vantal et al. (94) and Rodriguez-Villa et al. (95) used viscoplastic models. Wang et al.

(96) also used a viscoplastic model, but assumed the material’s behavior at elevated

temperatures to be strain-rate-dependent, and a non-Newtonian creeping material model to

specify the strain rate–sensitive characteristic of the material, strain hardening, and

temperature dependence. They applied the model to PET stretch blow molding, and

simulated three cases: inflation without stretching, stretching followed by inflation, and

simultaneous stretching and inflation. Their conclusion is that the first case cannot be used

to produce a real product, the second case can lead to wrinkling, and only the third case

resulted in stable and smooth deformation.

With viscoelastic models used by an increasing number of researchers, time and

temperature dependence, as well as strain hardening and nonisotropic properties of the

deformed parison can, in principle, be accounted for. Kouba and Vlachopoulos (97)

used the K-BKZ viscoelastic constitutive equation to model both thermoforming and

parison membrane stretching using two-dimensional plate elements in three-dimensional

space. Debbaut et al. (98,99) performed nonisothermal simulations using the Giesekus

constitutive equation.
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Shrivastava and Tang (100) used a viscoelastic constitutive equation with special

reference to thermoforming, whereas Laroche et al. (101) developed an integrated

numerical model for the complete blow molding process, and simulated the blow molding

of a gas tank. The viscoelastic deformations during parison formation and inflation were

modeled by a K-BKZ constitutive equation, and the thermal dependence was accounted

for by the Williams–Landel–Ferry (WLF) equation. Temperature variations during parison

formation that affect the inflation were taken into account. They found good agreement

with commercial size blow molding machine products.

Schmidt et al. (102) carried out a detailed experimental study of PET blow molding

with a well-instrumented machine and compared the results with theoretical predictions

using FEM and an Oldroyd B constitutive equation. They measured and calculated internal

gas pressure, coupled it with the thermomechanical inflation and performed experiments

and computations with free parison inflation.

Parison cooling is an integral part of the process that has been treated by a number of

researchers (103–105). The principles are based on contact solidification without

deformation, as discussed in Chapter 5. A special complication is the frictional heat

generation in injection blow molding between the rod and the parison.
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PROBLEMS

14.1 Isothermal Fiber Spinning of a Newtonian Melt4 In carrying out this analysis,

neglect (i) any heat transfer to the surrounding air, that is, assume that the fiber

drawing is completed over a very short distance downstream from the spinneret and

then quenched in a liquid medium; (ii) the air-drag forces as well as the surface-

tension forces that arise from the rapid generation of new surface during drawing.

The relevant stresses, velocity, surface vectors t and n, and coordinates are shown in

the accompanying figure for a representative section of the fiber being drawn in air.

r

R(z)

zt

v

n

f

where pil ¼ P þ tli and pij ¼ tij (i 6¼ j). Assume that vz ¼ vz (r, z), vr ¼ vr (r, z),

P ¼ P (r, z), and Newtonian constitutive equation pzz ¼ P� 2mð@vz=@zÞ

(a) Derive the following expression for the z-component velocity and resulting fiber

radius

RðzÞ ¼ R0 exp � 1

2
z
lnDR

L

� �

where DR ¼ VL=V0, V0 and R0 are values at the spinneret exit, and L is the

length of the drawdown region

(b) If nylon 6–6 is extruded at a volumetric flow rate of 0.1 cm3/s, at 285�C and

drawn under isothermal conditions in a chamber of L ¼ 400 cm, DR ¼ 100,

with a take up speed of 1000m/min, and if the extrudate swell diameter is three

times that of the spinneret diameter, calculate: (1) the maximum stretching rate

of the drawn nylon 6–6melt, and (2) the maximum tensile stress in the melt and

the force needed to draw the fiber

4. D. G. Baird and D. I. Collias, Polymer Processing, Wiley, New York, 1998, Chapter 9; also, S. Middleman,

Fundamentals of Polymer Processing, McGraw-Hill, New York, 1997, Chapter 9.
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14.2 Relative Importance of the Various Terms in the Analysis of the Isothermal Fiber
Spinning of a Newtonian Melt Use the data and result of Problem 14.1(b) to

evaluate the importance in the isothermal fiber spinning of a Newtonian melt analysis

(nylon 6-6 at 285�C) of the inertial terms and gravity relative to the viscous stress

terms. Using Eq. E14.1-2 for FD, evaluate the importance of the air-drag force term.

14.3 Isothermal Fiber Spinning of a Power Law Melt Derive the following expression

for the axial velocity vz(z) resulting from the steady isothermal fiber spinning of a

Power Law melt

vzðzÞ ¼ v0 1þ D
ðn�1Þ=n
R � 1

� � z

L

h in=ðn�1Þ

Use the assumption made in Problem 14.1

14.4 Transport Equations for Nonisothermal Fiber Stretching Starting from the

momentum and thermal energy balances, derive Eqs. E14.1-1 and E14.1-3, which

are used for the description of the nonisothermal stretching of molten polymer

fibers. (a) Discuss in detail the assumptions made, and specifically discuss the

nature of FD and its inclusion in the momentum balance (e.g., ‘‘Where did it come

from?’’); the relative magnitude of gravity (use real �ZZ and _ee data); the form of the

entire Eq. 14.1-3 and the absence of radial temperature gradients. (b) What additional

complexities to the solution of the problem would the inclusion of dT=dr bring?

14.5 Estimation of Tðr ¼ 0, tÞ in Melt-Spun Fibers (a) From Tðx1; atÞ values of the
accompanying figure (x1) is the characteristic length equivalent to the radius of

the cylinder) calculate the centerline temperature of a HDPE melt strand exiting the

spinneret at 240�C at a take-up speed of 50m/min, a mass flow rate of 1.93 g/min,

at distances 50 cm and 10 cm below the spinneret plate. Assume that no change

in phase occurs and that the heat-transfer coefficient is 10�3 cal=cm2 � s �K,
k ¼ 8� 10�4 cal=cm � s � K, r ¼ 0:75 g=cm3

, Cp ¼ 0:5 cal=g, and the cooling-

medium temperature is 25�C. (b) What can you conclude about the magnitude

of dT=dr relative to dT=dz?
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14.6 Isothermal Film Casting of a Newtonian Melt5 The film casting process is shown

schematically on the accompanying figure.

For very thin films jrh � 1j, both h and w decrease with increasing z. The analysis

of this case for a Newtonian melt being film cast nonisothermally has been treated

by Pearson [J. R. A. Pearson, Mechanics of Polymer Processing, Elsevier, New

York, 1985]. (a) For thicker films the deformation of the melt can be considered as

one where only h ¼ h(z) and w ¼ w0. Use the continuity and z-momentum

equations, neglecting inertial terms, gravity, and air-drag forces, to obtain the

following expressions for h(z) and vz(z):

hðzÞ ¼ h0 exp
�zrF
�ZZpl _mm

 !
¼ h0D

�z=L
R

vzðzÞ ¼ vz0 exp
�zrjFj
�ZZpl _mm

 !
¼ vz0D

�z=L
R

where

DR ¼ exp � rFL
�ZZpl _mm

 !

F is the force necessary to draw the film, r is the melt density, and �ZZpl ¼ 4m, thus,
pzz ¼ �4mðdvz=dzÞ.
(b) Prove that the following relationship holds for isothermal and Newtonian fiber

spinning and film casting:

½lnDR�spin:
½lnDR�cast:

¼ 4

3

5. D. G. Baird and D. I. Collias, Polymer Processing, Wiley, New York, 1998, Chapter 9.
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14.7 Free Sheet Blowing Free bubble blowing of heat-softened polymeric sheets is a

good test for thermoformability of polymers.6 The bubble behaves as a membrane

with rotational symmetry, as shown in the accompanying figure. The shape of the

membrane is specified by a meridian curve r(z) and the thickens distribution d(z).
The two principal radii of curvature of the surface RL and RC, in the meridian

(longitudinal) and circumferential (hoop) directions, respectively, are related to r(z)

as follows:

RC ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdr=dzÞ2

q
RL ¼ ½1þ ðdr=dzÞ2�

d2r=dz2

3=2

By symmetry, the two principal directions of stress (and strain) are in the meridian

direction, p11, and the circumferential direction p33. The third principal stress is

zero. Show that if body and acceleration forces are neglected, the following

equilibrium equations are obtained for thin membranes:

�P ¼ �d
p11
RL

þ p33
RC

� �

� d

dz
ðrdp11 cos yÞ ¼ r

dr

dz
�P

� �

R (z)

z

 α

14.8 Wall Thickness Distribution in a Conical Mold Consider a thermoforming

process of heat-softened polymeric sheet of thickness h0 into a cold conical mold,

as shown in the accompanying figure. Assuming incompressible polymer, elastic

deformation, uniform spherical bubble thickness at the time of contacting the

conical mold, frictionless contact, and immediate freezing of the plastic upon

contact, show the thickness distribution is given by:

h

h0
¼ 1þ cos b

2
1� zk

H
sin b

� �sec b�1

6. L. R. Schmidt and J. F. Carley, ‘‘Biaxial Stretching of Heat Softened Plastic Sheets: Experiments and Results,’’

Polym. Eng. Sci., 15, 51–62 (1975).
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14.9 Wall Thickness–Thermoforming a Cup Consider a cup 6 cm in diameter

throughout its height and 10 cm high, which has to be made out of a 1.5-mm-

thick molten high impact polystyrene (HIPS) sheet. Derive an expression for the

thickness distribution assuming that the free bubble is of spherical shape until its

top reaches the mold bottom, once the bubble touches the mold, no further

deformation occurs, and the thickness of the free bubble at any stage of its

deformation is spatially uniform. Once the melt touches the bottom of the mold,

the deformation that fills the corners can be represented by spherical sections of

successively smaller radii and centers that move diametrically to the corners.

14.10 Blown Film Deformation during Folding by the ‘‘Tent’’ and the Nip Rolls7 In

the film blowing process the solidified round film bubble comes into contact with a

series of guides (slats or rollers) that form the ‘‘tent,’’ and gradually collapses into

a folded configuration between the nip rolls. Folding the bubble and feeding it

into the nip rolls impose a deformation on the film, which is a function of the angle

y in the plane of the cross section of the bubble. The deformation results from the

fact that each ‘‘fiber’’ of the film, that is, at each y, travels a distance L(y) that is
different from the last round cross section to the nip rolls. Derive an expression for

this deformation. What effect does it have on the wrapping step following the

slitting?

7. William Arruda, private communication.
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