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15.1 THE CALENDERING PROCESS

Two-roll mills and calenders belong to the earliest group of equipment used for processing

natural rubber. They were introduced in the 1830s by Edwin Chaffee and Charles Goodyear

in the United States, as described in Section 1.1. The number of rolls of a calender is

determined by the nature ofmaterial processed and the product. Rubber can be calendered on

a two-roll calender, with four-roll calenders generally used for double coating of substrates

[Fig. 15.1(a)]. However, the surface quality requirements of calendered thermoplastic

polymer require four-roll calenders [Figs. 15.1(b), 15.1(c)]. Therefore, when calendaring

polymers, the material passes three nip regions. The first pass is the ‘‘feed’’ pass, the second,

the ‘‘metering’’ pass, and the third, the ‘‘sheet formation, gauging, and finishing’’ pass (1).

Calenders with five rolls in various arrangements are also used.

Transfer from one roll to the next is accomplished by some combination of

differentials in roll speed, temperature, and surface finish (2). The width of the sheet

(when the speed of both rolls is equal) changes at each nip in inverse proportion to the

decrease in thickness. The production rate of a calendering line, when not limited by

the mixing and melting capacity upstream, is determined primarily by the size and

surface requirements of the product and the properties of the polymer (1). Thus, heavy

sheets of 0.25mm and up can be produced at 60m/min without difficulty. Even higher

speeds are possible if the sheet is posttreated (e.g., embossed, top coated). However,

certain rigid, glossy, roller-polished sheets are produced atmuch lower rates of 10–35m/min.

Thin flexible films can be produced at 100m/min at the roll and 125m/min at the winder.

The higher speed at the winder is due to a drawdown process that helps in producing

thin films (0.04mm and below); films of such thickness would be hard to separate from

the roll.

Calender sizes range up to 90 cm (36 in) in diameter and 250 cm (97 in) wide, with

polymer throughputs up to 4000 kg/h. The surface temperature of the rolls is carefully

controlled by using drilled rolls—that is, axially drilled holes all around the periphery—in

which a temperature-controlling liquid is circulated.

The calendering process is commonly used for shaping high melt viscosity thermoplastic

sheets and is particularly suitable for polymers susceptible to thermal degradation or

containing substantial amounts of solid additives. This is because the calender can convey

large rates of melt with a small mechanical energy input (compared to an extruder).
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The thickness of the calendered product must be uniform in both the machine and

cross-machine directions. Any variation in gap size due to roll dimensions, setting, thermal

effects, and roll distortion due to high pressures developing in the gap, will result in

product nonuniformity in the cross-machine direction. Eccentricity of the roll with respect

to the roll shaft, as well as roll vibration and feed uniformity, must be tightly controlled to

avoid nonuniformity in the machine direction. A uniform empty gap size will be distorted

in operation because of hydrodynamic forces, developed in the nip, which deflect the rolls.

The resulting product from such a condition will be thick in the middle and thin at the

edges, as shown in Fig. 15.2.

Three common methods, which are commonly referred to as roll-crown, roll-crossing,

and roll-bending, are employed to compensate for this deformation. Roll-crown indicates

that the roll diameter at the center is slightly greater than at the edges. In principle, by

applying an appropriate roll diameter and profile, roll deflection can be exactly

(b) (c)

Fig. 15.1 (a) A four-roll, inclined ‘‘Z’’ calender for double casting of tire cord. (b) A four-roll,

inverted ‘‘L’’ calender. (c) A four-roll ‘‘Z’’ calender.
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compensated for given operating conditions. Roll-crossing and roll-bending provide

means for continuous adjustment of gap size distribution. Roll-crossing results in a wider

gap at the edges and can easily be visualized as giving the same effect as increasing the

roll-crown. In roll-bending, a bending moment is applied on both ends of the roll by two

additional bearings, which can increase or decrease the bending due to hydrodynamic

forces.

Figure 15.2 shows the effect of roll-crossing and roll-bending on product uniformity.

An exact knowledge of the hydrodynamic pressure distribution in the nip is therefore

necessary for predicting by structural analysis the exact gap thickness distribution, as well

as the load on the bearings; we discuss this in Section 15.4. Accurate gap thickness control

and stringent roll temperature uniformity requirements are indicative of the sensitivity of

the product quality to minor variations in conditions. It is not surprising, therefore, that a

calender line takes a long time, sometimes hours, to ‘‘stabilize,’’ that is, to reach steady

state. Consequently calender lines are best utilized in long production runs. The ruggedness

and basic simplicity of the machine elements involved are fully compatible with such long

runs.

15.2 MATHEMATICAL MODELING OF CALENDERING

A comprehensive mathematical model of the calendering process should consist of a

coupled hydrodynamic and roll structural analysis, heat transfer in the deforming polymer
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Fig. 15.2 Effect of roll-crossing and -bending on web uniformity in a calender 1.8m wide. (a) No

crossing or bending. (b) Crossing, 4mm; no bending. (c) Crossing, 8mm; no bending. (d) Crossing,

12mm; no bending. (e) No crossing, bending of 10Mp. (f) No crossing, bending of 16Mp.

[Reprinted by permission from D. Katz, ‘‘An Inquiry on the Behavior of Bingham Materials in

Calender Processing,’’ M. S. Thesis, Department of Mechanics, Technion—Israel Institute of

Technology, Haifa, 1973.]
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and the rolls, and product response to drawdown. By taking into account the rheological

properties of the material, feed conditions, and operating conditions, such as roll speeds

and temperatures, gap separation, roll-crossing and -bending, the following matters can be

ascertained: the exact nature of the flow in the nip, the width variation from nip to nip, and

the thickness and temperature distribution, as well as the effect of these conditions on the

transfer of the material from roll to roll, and the onset of instabilities. Such a model would

assist the calender designer in selecting roll size, gap separation, roll-crown, -crossing, and

-bending requirements, and operating conditions for given production rates and quality

requirements.

The first step in developing such a model (cf. Section 6.4) is to gain a clear qualitative

picture on the exact nature of the flow mechanism. A viscoelastic melt is fed into the first

nip in strips. The melt accumulates in the center zone of the nip area and simultaneously

undergoes flow into the nip and sideways; the drag-induced flow leads to pressure buildup,

which inevitably produces pressure gradients in the machine and cross-machine

directions, resulting in the flow above. Experimental evidence of such a pressure

distribution is given by Unkrüer (3), who reports on detailed calendering studies of

polyvinyl chloride (PVC) and polystyrene (PS).

Figure 15.3 gives pressure profiles at three cross-machine locations. Thus, a complex

three-dimensional flow field is set up with an a priori, unspecified free boundary. Axial

flow (cross-machine direction) continues throughout the nip zone all the way to the exit,

but the rate varies because of the varying gap size. That is, in the narrow region of the nip,

drag flow in the direction of rotation is predominant as compared to cross-machine

pressure flow.

According to Marshall (2), it can be assumed that the increase in width is virtually

limited to the entrance zone up to where the peak pressure is obtained. The actual

flow in the nip area is further complicated because the gap clearance varies axially as

a result of built-in roll-crowns, hydrodynamic flexing, and bending of the rolls. All

these factors should bring about a flow distribution in the nip area that results in
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Fig. 15.3 Pressure profiles in the calender gap at various cylinder axial positions, with rigid PVC

(Vestolit Z 1877) at equal roll speeds of 5 cm/s and roll temperature of 185�C: minimum gap,

0.6mm; roll diameter, 30 cm; width, 50 cm. Note the drop in pressure in the cross-machine

direction with distance from the centerline, which drops to zero at the end of the rolled web.

[Reprinted by permission from W. Unkrüer, Doctoral Thesis, IKV, Technischen Hochschule,

Aachen, 1970.]
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uniform flow rate per unit width. Minor variations of pressure profiles in the direction

of rotation will cause variations in detachment locations, and hence, thickness

variations.

In light of the preceding qualitative picture, we can understand recent developments

in a modified calendering process, where an extruder equipped with a simple and short

sheet forming die feeds the nips uniformly throughout the nip width of only one pair of

calender rolls. The sheet forming die therefore performs the functions of the first nip—

namely, spreading out the material and feeding it at a more or less uniform rate to the

second nip.

The functions of the second and third nips are a further reduction of the thickness and of

the flow rate nonuniformities in both the machine and cross-machine directions. The

rolling banks in all nips act as reservoirs that can accommodate and attenuate flow rate

fluctuations. Thus, no sharp qualitative distinction should be made between the functions

of the three nips; it is the relative significance of the various functions that changes from

nip to nip. All nips ‘‘meter’’ flow rate, reduce thickness, and ‘‘wash out’’ variations in

thickness and flow rate to various degrees (just as in plasticating screw extruders, flow rate

is determined by the whole length of the screw, not merely by the ‘‘metering’’ section).

Clearly there is no simple analytical mathematical solution to this three-dimensional flow

in a complex geometry (variable gap thickness in two directions) with rheologically

complex fluids under nonisothermal conditions.

Most models proposed in the literature are based on Gaskell’s (4) model, which was

discussed in detail in Section 6.4. This is a one-dimensional, rather restrictive model.

Recall that to use the model, we must know the location X1 where the sheet detaches from

one of the rolls (X1 is uniquely related to X2, the upstream location where the rolls come in

contact with the polymer). This is tantamount to an a priori knowledge of the exiting sheet

thickness, 2H1. The latter, however, for a given flow rate, Q, depends on the exiting sheet

width W1

Q ¼ 2H1W1U ð15:2-1Þ

where U is the velocity of the roll surface. But W1 cannot be predicted from a one-

dimensional model (which implicitly assumes infinitely wide rolls), hence as McKelvey

(5) pointed out, X1 (or H1) must be considered to be an experimentally determined

parameter of the model. This, of course, restricts the predictive capability of the model. To

overcome this problem, the previously discussed cross-machine flow must be incorporated

into the model.

This, however, is not the only limitation of the Gaskell model. As discussed in Section

6.4, this model fails to predict the experimentally observed flow patterns in the inlet region

because it neglects the effect of the incoming melt stream on the flow in the bank, as well

as the non-Newtonian and viscoelastic effects. Consequently, the model does not

satisfactorily predict the observed pressure profiles, as shown by Bergen and Scott (6),

Unkrüer (3), and others.

Following Gaskell’s work, a great deal of effort was invested by numerous

researchers in the field to improve on his model. Most of this effort, however, basically

concentrated on solving the Gaskell model with more realistic, constitutive equations

and attempts to account for nonisothermal effects. In the original Gaskell model, a

purely viscous (nonelastic and time-independent) fluid model is assumed, with specific
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solutions for Newtonian and Bingham Plastic fluids, and a brief treatment of

nonsymmetric calenders. McKelvey (5) and Brazinsky et al. (7) extended the model

to Power Law fluids (as discussed in Section 6.4), and Alston and Astill (8) investigated

fluids whose shear rate dependent viscosity can be represented by a hyperbolic tangent

function.

Flow of viscoelastic fluids in the roll geometry was considered by Paslay (9) and

Tokita and White (10), and by Chong (11); Paslay’s analysis is essentially based on

a three constant Oldroyd model.1 He analyzes the interrelations of the parameters of

the constitutive equation with flow kinematics, but neglects the normal stresses in the

equation of motion. Tokita andWhite (10) relate experimental observations on milling of

elastomers to rheological parameters of a second order Rivlin–Ericksen asymptotic

expansion fluid, and point out the significance of the Deborah number

De ¼ _ggl ffi ðV=LÞl in milling and calendaring, where V and L are characteristic velocity

and gap size. Following their analysis, Example 15.1 briefly explores the significance

of normal stresses in calendering. However velocity and pressure profiles were not

obtained by them.

Chong (11) analyzed a Power Law model fluid, a three-constant Oldroyd fluid and a

modified second order Rivlin–Ericksen fluid. He incorrectly stated that the shear rate and

the shear stress attain maximum values at minimum clearance location, and in

integrating for the velocity profile with the Power Law model fluids, did not properly

account for the sign of the pressure gradient. The velocity profile for the Oldroyd fluid

cannot be obtained analytically. Therefore Chong obtained an approximate pressure

distribution by assuming Newtonian flow kinematics, and he analyzed the flow pattern

with the Rivlin–Ericksen flow equation in terms of dimensionless groups only. He also

measured the separating force at various calendering conditions for cellulose acetate.

Like Tokita and White (10), he found, upon analyzing experimental data of calendering

cellulose acetate, that the Deborah number is an important number in determining the

onset of a nonuniform internal strain pattern, called nerve in calendering. Calendering

defects with PVC were studied in detail by Agassant et al. (12), who also measured

separating force, torque power, and reservoir height-to-gap ratio (H2/H0) as a function of

calendering conditions.

With regard to constitutive equations, White (13) notes that, in view of the short

residence time of the polymer in the nip region (of the order of magnitude of seconds), it

would be far more realistic to use a constitutive equation that includes viscoelastic

transient effects such as stress overshoot, a situation comparable to that of squeezing flows

discussed in Section 6.6.

Example 15.1 The Significance of Normal Stresses We consider the calender geometry

of Fig. 6.22 (shown here) and make the same simplifying assumptions as in Section 6.4, but

instead of a Newtonian or Power Law model fluid, we assume a CEF model that exhibits

normal stresses in viscometric flows. By accepting the lubrication approximation, we assume

that locally we have a fully developed viscometric flow because there is only one velocity

component vx, which is a function of only one spatial variable y.

1. The three constant Oldroyd model is a nonlinear constitutive equation of the differential corrotational

type, such as the Zaremba–Fromm–Dewitt (ZFD) fluid (Eq. 3.3-11). [For details, see R. B. Bird, R. C.

Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Second Edition, Vol. 1, Wiley, New York, 1987,

Table 7.3-2.]
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An analysis similar to that carried out in Section 6.5 leads to the following, nonvanishing

stress components

txx ¼ �ð�1 þ�2Þ _gg2 ðE15:1-1Þ
tyy ¼ ��2 _gg2 ðE15:1-2Þ

where _gg ¼ j _ggyxj is the shear rate and

_ggyx ¼
dvx

dy
ðE15:1-3Þ

which is assumed to be independent of x locally. The three components of the equation of

motion then reduce to

@P

@x
¼ � @tyx

@y
ðE15:1-4Þ

@P

@y
¼ � @tyy

@y
ðE15:1-5Þ

@P

@z
¼ 0 ðE15:1-6Þ

Comparing with the solution in Section 6.4, we observe that instead of a single differential

equation for the velocity profile, two coupled (through _gg) differential equations are obtained.
However, the kinematics can be well approximated by assuming @P=@y ¼ 0, which then will
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lead to the same velocity profile given in Section 6.4. Moreover, we note that the pressure at

the roll surface will differ from that of the simple model by a term ��2 _gg2. Since �2 is found

to be negative, this normal stress contribution adds to the pressure at the roll surface. Hence, it

is the secondary normal difference function that plays a role in calculating the forces on the

calender roll. This can probably be assumed to be small.

The present analysis was based on the lubrication approximation; that is, we neglected

changes in the x direction. If this assumption is lifted, we are faced with a flow field in which

two nonvanishing velocities exist that are functions of two spatial coordinates, vx(x, y), vy
(x, y). This is clearly a nonviscometric flow situation, and the Criminale–Ericksen–Filbey

(CEF) equation is not applicable. White (13) made an order of magnitude evaluation of

normal stress effects for this more realistic flow situation. In this case, the equation of motion

reduces to

� @P

@x
¼ @tyx

@y
þ @txx

@x
ðE15:1-7Þ

and

� @P

@y
¼ @tyx

@x
þ @tyy

@y
ðE15:1-8Þ

which can be combined by respective differentiation into one equation

@2tyx
@y2

� @2tyx
@x2

þ @2

@x@y
txx � tyy
� � ¼ 0 ðE15:1-9Þ

Expressing the various terms in Eq. E15.1-9 at the roll surface as orders of magnitude, we

get

tw
H2

0

;
tw
R2

;
txx � tyy
H0R

ðE15:1-10Þ

where H0 and R are gap clearance and roll radius, respectively. If R�H0, the second term is

negligible. The third term, which reflects the primary normal stress difference, is also

negligible, provided

R

H0

tw � txx � tyy ðE15:1-11Þ

The preceding condition is met at low shear rates, but it begins to break down with increasing

shear rate when txx � tyy increases rapidly, as indicated in Fig. E3.2b.

In the Gaskell model, the flow geometry is simplified to facilitate the solution (see Eq.

6.4-13). This geometrical simplification can be avoided either by using bipolar coordinates

or finite element methods (FEMs). Both provide a convenient way to treat calenders of

unequal rolls and unequal speeds. The former approach was taken by Finston (14),

Takserman-Krozer et al. (15), and Bekin et al. (16), whereas the latter was chosen by

Kiparissides and Vlachopoulos (17). Finally, the Gaskell model is isothermal, whereas in

calendaring, significant nonisothermal effects arise because of viscous dissipation and heat

conduction to the temperature-controlled rolls.

872 CALENDERING



Finston (14) was the first to deal with viscous heating of Newtonian fluids. Torner (18)

reported on an experimental study by Petrusanskii and Stachaev (19) on the calendering of

styrene-butadiene rubber (SBR) on a 12� 32-cm calender. Figure 15.4 is a schematic view

of the reported temperature profiles. Characteristic to the temperature profiles is the

existence of two maxima in the vicinity of the rolls. This is the combined effect of a shear

rate profile with a maximum value at the roll surface and heat conduction to the

temperature-controlled roll surface. The temperature profile has a minimum at the center

plane. The temperature profiles change in the machine direction, with a gradual

temperature rise at the center plane and more complex behavior in the vicinity of the rolls.

It should be noted that these temperature profiles do not refer to recirculating regions in the

entry to the calender gap. Temperature effects were also studied by Bekin et al. (16), using

bipolar coordinates and temperature dependent fluid viscosity.

15.3 ANALYSIS OF CALENDERING USING FEM

The FEM, which was originally developed for structural analysis of solids, has been very

successfully applied in the past decades to viscous fluid flow as well. In fact, with the

exponentially growing computer power, it has become a practical and indispensable tool

for solving complex viscous and viscoelastic flows in polymer processing (20) and it

is the core of the quickly developing discipline of computational fluid mechanics (cf.

Section 7.5).

One of the first applications of FEM in polymer processing is a result of the work of

Vlachopoulos and Kiparissides (21,22). Some of the computed results obtained by this
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Fig. 15.4 Schematic temperature distribution based on data given by Torner (18).
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method are discussed later in this chapter. The use of FEM in calendering has the added

advantage that it can, in principle, be combined with a structural FEM analysis of the rolls

accounting for roll deflections.

The principles and applications of FEM are described extensively in the literature (e.g.,

23–26). FEM is a numerical approximation to continuum problems that provides an

approximate, piecewise, continuous representation of the unknown field variables (e.g.,

pressures, velocities).

The continuous region or body is subdivided into a finite number of subregions or

elements (Fig. 15.5). The elements may be of variable size and shape, and they are so

chosen because they closely fit the body. This is in sharp contrast to finite difference

methods, which are characterized by a regular size mesh, describable by the coordinates

that describe the boundaries of the body.

The crossing of two curves bounding adjacent elements form nodes. The values of

the field variables at the nodes form the desired solution. Common shapes of finite

elements are triangular, rectangular, and quadrilateral in two-dimensional problems, and

rectangular, prismatic, and tetrahedral in three-dimensional problems. Within each

element, an interpolation function for the variable is assumed. These assumed functions,

called trial functions or field variable models, are relatively simple functions such as

truncated polynomials. The number of terms (coefficients) in the polynomial selected to

represent the unknown function must at least equal the degrees of freedom associated

with the element. For example, in a simple one-dimensional case [Fig. 15.6(a)], we have

two degrees of freedom, Pi and Pj, for a field variable P(x) in element e. Additional

conditions are needed for more terms (e.g., derivatives at nodes i and j or additional

internal nodes).

The chosen function must satisfy certain additional requirements. Not only must it be

continuous throughout the element, but also compatible across element interfaces. In the

simple case [Fig. 15.6(b)], this means Pa ¼ Pb at the node m is common to elements a and

b. Thus the coefficients of a selected trial function can be expressed in terms of the

(unknown) values of the field variables at the nodes. For a two-dimensional case we can

write for the field variable u,

uðmÞðx; yÞ ¼
Xr
i¼1

Niðx; yÞuðmÞi ð15:3-1Þ

Boundary of
the region

Node

Element

Fig. 15.5 Two-dimensional region represented as an assemblage of triangular elements.
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where the superscript denotes that the field is for the mth element, r is the number of nodes

associated with this element, u
ðmÞ
i are the nodal values of the variable u, and Ni(x,y) is the

shape function. The function Ni(x,y) is determined by the shape of the element, the

location of the nodes, and the number of terms in the polynomial. Again, the objective is

the numerical evaluation of ui. The common approach to obtaining this is to set up the

finite element equations either by ‘‘variational’’ methods or by ‘‘residual’’ methods, such

as the Galerkin method. These, together with appropriate boundary conditions, result in a

set of linear or nonlinear algebraic equations with the nodal variables ui as unknowns.

Structural analysis, initially developed on an intuitive basis, later became identified

with variational calculus, in which the Ritz procedure is used to minimize a functional

derived mathematically or arrived at directly from physical principles. By substituting the

final solutions into the variational statement of the problem and minimizing the latter, the

FEM equations are obtained. Example 15.2 gives a very simple demonstration of this

procedure.
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(E)(e)
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j+1

j
H(i, j)

Fig. 15.6 (a) Side view of two infinite plates with a variable gap in the x direction. The region of

interest 05x5L is broken up into E elements forming M nodes. A schematic pressure profile for

one-dimensional pressure flow is plotted on the top. (b) Details of two neighboring elements a and bwith

the common node m. (c) Two-dimensional square elements representing flow analysis network model.
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However, in many cases (general non-Newtonian flow problems being among them), a

variational principle either does not exist or its existence is not obvious. Nevertheless,

these problems can often be defined by a set of differential equations (e.g., the equations of

continuity and motion with a constitutive equation), together with their boundary

conditions. In such cases, weighted residual methods such as the collocation and the

Galerkin methods produce a simpler and direct formulation of the FEM equations (27). In

the Galerkin method, the approximate interpolation function is substituted into the

governing differential equations, multiplied by the weighting function, which is the

relevant shape function, and integrated over the body. The resulting expressions are set to

zero, leading to a set of algebraic equations.

Inherent in the FEM is the flexibility in dealing with complex geometries as well as

mixed boundary conditions (e.g., stress and velocity boundary conditions as in a die-swell

problem). Moreover, computationally, the FEM is not difficult to carry out. Not only can a

continuous domain of complex boundary be easily broken down into well-fitting finite

elements, but the inherent possibility exists of using elements of various sizes and shapes.

This permits a refined solution in critical regions (corners, sudden changes in geometry,

etc.) without the penalty of excessive computation in the rest of the regions, as would be

the case with the more limited finite difference methods. Finally, it is noted by Oden et al.

(28) that by certain function choices, the standard finite difference processes can be

included in the general finite-elements concept.

Example 15.2 FEM Formulation of Isothermal Steady Pressure Flow in Narrow but
Variable Thickness Gap of a Newtonian Fluid The governing differential equation is the

Reynolds equation given for a two-dimensional flow in Eq. 2.11-11. To demonstrate the FEM

formulation, we consider the one-dimensional flow case, for which Eq. 2.11-11 reduces to

d

dx

HðxÞ3
m

dP

dx

 !
¼ 0 ðE15:2-1Þ

We have retained the viscosity because we want to treat approximately the non-Newtonian

fluids case later. If the function H(x) is known, preceding the differential equation can be

solved analytically or numerically for P(x) in a straightforward method without turning to

FEM. Our purpose here, however, is to demonstrate the FEM method and, following Myers

(29), we do so in a step-by-step fashion.

The flow configuration appears in Fig. 15.6(a). The one-dimensional conduit of length L is

broken down into E elements, bounded by M nodes. Our objective is to set up the FEM

equations that will give the pressure values Pi.

The first step is to derive the variational statement of the problem. This can be done with

the aid of the Lagrange–Euler equation

@F

@P
� d

dx

@F

@ _PP

� �
¼ 0 ðE15:2-2Þ

which must be satisfied for the following functional I

I ¼
ðL
0

Fðx;P; _PPÞ dx ðE15:2-3Þ
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to be an extremum. Comparison of Eqs. E15.2-1 and E15.2-2 gives the following expressions

for F:

@F

@P
¼ 0 ðE15:2-4Þ

and

@F

@ _PP
¼ H3

m
_PP ðE15:2-5Þ

Integration of Eqs. E15.2-4 and E15.2-5, respectively, gives

F ¼ K0 þ f ð _PPÞ ðE15:2-6Þ

and

F ¼ H3

2m
ð _PPÞ2 þ gðPÞ ðE15:2-7Þ

Comparing Eqs. E15.2-6 and E15.2-7, we note gðPÞ ¼ K0 and f ð _PPÞ ¼ ðH3=2mÞð _PPÞ2; thus, F
can be written as

F ¼ K0 þ 1

2

H3

m
ð _PPÞ2 ðE15:2-8Þ

Hence, the variational statement of this problem reduces to obtaining the extremum of the

functional

I ¼
ðL
0

K0 þ 1

2

H3

m
ð _PPÞ2

� �
dx ðE15:2-9Þ

that is, we are searching for the unknown function P(x) that, when substituted into Eq. E15.2-

9, gives an extremum for I. To evaluate I, we break it down into E subintegrals corresponding

to the E elements

I ¼ Ið1Þ þ Ið2Þ þ � � � þ IðEÞ ¼
XE
e¼1

IðeÞ ðE15:2-10Þ

The integral I(e) over a typical finite element is

IðeÞ ¼
ðxi
xi

K0 þ 1

2

H3

m
ð _PPÞ2

� �
dx ðE15:2-11Þ

We now assume a linear trial function for the variation of the pressure within each

element

PðeÞ ¼ C
ðeÞ
1 þ C

ðeÞ
2 x ðE15:2-12Þ
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We thus have two coefficients, and since we have two degrees of freedom—the (unknown)

nodal values of the pressures—we can express the former in terms of the latter, and Eq. E15.2-

12 can be written as

PðeÞ ¼ xj � x

xj � xi

� �
Pi þ x� xi

xj � xi

� �
Pj ðE15:2-13Þ

Note that Eq. E15.2-13 is of the same form as Eq. 15.3-1. Next we take the derivative of P(e)

given in Eq. E15.2-13 with respect to x

_PP ¼ dPðeÞ

dx
¼ Pj � Pi

xj � xi
ðE15:2-14Þ

and substitute it into Eq. E15.2-11 which, after integration, gives

IðeÞ ¼ K0ðxj � xiÞ þ 1

2

H3

m
ðPj � PiÞ2
ðxj � xiÞ ðE15:2-15Þ

We have assumed in the foregoing integration that m is constant within the element and equal

to the average value in it.

Next we differentiate I(e) with respect to the nodal pressures Pi and Pj

@IðeÞ

@Pi

¼ �H3

m
Pj � Pi

xj � xi
ðE15:2-16Þ

and

@IðeÞ

@Pj

¼ H3

m
Pj � Pi

xj � xi
ðE15:2-17Þ

where I(e) is a function of Pi and Pj only, whereas I (in Eq. E15.2-10) is a function of P1,

P2, . . . ,PM. To find the extremum of I, we must differentiate Iwith respect to all Pi, and set the

results equal to zero, obtaining M equations. Thus, differentiating Eq. E15.2-10 with respect

to a typical nodal pressure Pm , we get

@I

@Pm

¼ @Ið1Þ

@Pm

þ @Ið2Þ

@Pm

þ � � � þ @IðEÞ

@Pm

¼ 0 ðE15:2-18Þ

But the pressure Pm appears only in two neighboring elements, as Fig. 15.6(b) shows. For

element a we set i ¼ m � 1 and j ¼ m in Eqs. E15.2-16 and E15.2-17, and for element b we

set i ¼ m and j ¼ m þ 1 in the two previous equations, resulting in

@IðaÞ

@Pm

¼ H3

m

� �ðaÞ
Pm � Pm�1

xm � xm�1

ðE15:2-19Þ
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and

@IðbÞ

@Pm

¼ � H3

m

� �ðbÞ
Pmþ1 � Pm

xmþ1 � xm
ðE15:2-20Þ

where the superscripts a and b on H3/m indicate that mean local values are used. Adding

Eqs.E15.2-19 and E15.2-20, and equating the sum to zero, we get

H3

m

� �ðaÞ
Pm � Pm�1

xm � xm�1

þ H3

m

� �ðbÞ
Pm � Pmþ1

xmþ1 � xm
¼ 0 ðE15:2-21Þ

Since m is any interior nodal point, Eq. E15.2-21 is a set of M � 2 algebraic equations, the

solution of which provides the required pressure field (profile).

As a numerical example, consider a linearly decreasing gap broken down into four equal

length elements. The gaps at the entrance and at the exit are 1 and 0.5 cm, respectively. Thus

H1 ¼ 1, H2 ¼ 0.875, H3 ¼ 0.75, H4 ¼ 0.625, and H5 ¼ 0.5. The inlet pressure is 1 atm, and

the exit pressure is zero. The resulting equations from Eq. E15.2-21, with constant viscosity,

are

�1:53618þ 2:53618P2 � P3 ¼ 0

�1:6506P2 þ 2:6506P3 � P4 ¼ 0

�1:8257P3 þ 2:8257P4 ¼ 0

which, upon solution, give P2 ¼ 0.897, P3 ¼ 0.738, and P4 ¼ 0.477. The exact analytical

solutions obtained by integrating Eq. E15.2-1 are P2 ¼ 0.8980, P3 ¼ 0.7407, and P4 ¼
0.480, which agree well with the FEM solution using only four elements.

Equation E15.2-21 can also be derived by a ‘‘controlled volume’’ approach. Consider

the a element confining node m in Fig. 15.6(b) (shaded area). For an incompressible

fluid and under the same assumptions as earlier we can make the following flow rate

balance

1

12

H3

m

� �ðaÞ
Pm�1 � Pm

xm � xm�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rate of flow
into element

¼ 1

12

H3

m

� �ðbÞ
Pm � Pmþ1

xmþ1 � xm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rate of flow
out of element

ðE15:2-22Þ

The FEM formulation of two-dimensional problems is not different in principle

from the simple one-dimensional case just described. For two-dimensional problems,

however, the algebra becomes involved and matrix notation is required to keep it

manageable.

Example 15.3 The Flow Analysis Network Method Clearly Eq. E15.2-22 is identical to

Eq. E15.2-21. This is the basis for the flow analysis network (FAN) method developed by

Tadmor et al. (30) to solve two-dimensional steady or quasi-steady state flow problems in

injection molds and extrusion dies. In two-dimensional flows the pressure distribution is

obtained by dividing the flow region into an equal-sized mesh of square elements
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[Fig. 15.6(c)]. At the center of each element there is a node. The nodes of adjacent elements

are interconnected by links. Thus, the total flow field is represented by a network of nodes

and links. The fluid flows out of each node through the links and into the adjacent nodes of

the network. The local gap separation determines the ‘‘resistance’’ to flow between nodes.

Making the quasi–steady state approximation, a mass (or volume) flow rate balance can be

made about each node (as done earlier for one-dimensional flow), to give the following set of

algebraic equations

Xi; jðPi; j � Piþ1; jÞ þ Xi�1; jðPi; j � Pi�1; jÞ þ Zi; jðPi; j � Pi; jþ1Þ þ Zi; j�1ðPi; j � Pi; j�1Þ ¼ 0

ðE15:3-1Þ

where Xi, j and Zi, j are ‘‘flow conductances’’ in the x and z directions, respectively:

Xi; j ¼ 1

12m
Hi; j þ Hiþ1; j

2

� �3

ðE15:3-2Þ

and

Zi; j ¼ 1

12m
Hi; j þ Hi; jþ1

2

� �3

ðE15:3-3Þ

This two-dimensional formulation of the flow problem is identical in concept to the ‘‘discrete

element method’’ or ‘‘lattice models’’ of classic structural analysis. Physically, the FEM

concept differs from the lattice analogy in that the elements themselves are two- or three-

dimensional bodies (31). The FAN method, however, is a straightforward, simple method,

which was extended to deal with non-Newtonian fluids by replacing the Newtonian viscosity

with an ‘‘equivalent Newtonian viscosity’’ (32). The latter is uniquely related to the local

shear stress at the wall, which in turn depends on the local pressure gradient. Both can be

converged upon by repeated solutions of the set of algebraic equations for Pij, while in each

iteration, the viscosities are recalculated. This method was applied by Tadmor et al. to cross-

head die flow (33), mold filling (34), and flow in non-intermeshing twin screw extruders (35).

White et al. (36) extended the method and applied it to intermeshing corrotating twin screw

extrusion flow. Both are two-dimensional, the first being steady while the second is assumed

to be quasi–steady.

Mitsoulis, Vlachopoulos, and Mirza (37) were the first to lift the lubrication

approximation in calendering flows and use FEM computational packages to obtain the

flow and temperature fields in the bank and nip regions, with which we can calculate the

pressure distribution, roll-separating force, torques, and power consumption to drive the

rolls, as well as the nip entry and exit locations and the exit sheet thickness. They did the

analysis for a Newtonian and a Power Law model fluid, with rheological constants

representing a rigid PVC melt, which also exhibits slip (38). The FEM results are in fair

agreement with experiments, but give only axysymmetric circulatory flows in the melt

pool upstream from the nip. Park et al. (39) used the viscoelastic integral type Kaye-

Bernstein- Kearsky-Zappas (K-BKZ) fluid model to simulate the converging flow using

an FEM. Luo (40) used a finite volume method (FVM) and the integral K-BKZ to

calculate the converging flow. Both groups of investigators did not integrate their fluid-

mechanical results with the resulting roll deformations.
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Recently, Mewes (41) utilized the FVM CFX4 computational package of Luo (40) and

integrated it with the ANSYS solids structural FEM model to calculate the resulting roll

deformations. The rolls were designed using a computer-aided design (CAD) program.

Their iterative computational scheme is shown in Fig. 15.7.

The calender roll diameter profiles are designed using the CAD Pro/Engineer program

and the isothermal flow field is calculated using the computational fluid mechanics FVM.

With the resulting stress field as boundary conditions, the deformation of the rolls is

calculated using ANSYS. If the resulting gap thickness determined by the initial diameter

axial profile, flow, and axial separation force profile do not yield a uniform gap thickness,

then the CAD design is changed as many times as it takes to obtain a gap spacing for the

calendered material thickness that is uniform, that is, independent of the axial roll

distance.

Conducting iterative flow calculations per se for given initial roll design was not

carried out, since this requires large computational times. Three constitutive equations

were used by Mewes et al: the K-BKZ with a damping function formulation by

Papanastasiou et al. (42) for the polymer melt [a low density polyethylene (LDPE)]; a

three-dimensional Hooke’s law for multiaxial strains (43) and the relation between the

Poison ratio (v), shear (G), and tensile (E) moduli G ¼ E=2ð1þ vÞ for the steel; and a

Mooney–Rivlin hyperelastic model (44) for the cross-linked elastomer lining of one of

the rolls. All the rheological parameters have to be evaluated. Details of the constitutive

equations, parameters, and the computational details are given in the paper by Mewes

et al. (41).

Computed values of the primary normal stress difference of a low molecular weight

polyisobutelene (PIB) melt we compared with experimentally obtained values, using bire

fringence techniques, as shown on Fig. 15.8; they indicate good agreement.

The effect of changing the longest relaxation time of the K-BKZ and the primary

normal stress difference is shown in Fig. 15.9.

Fig. 15.10(a) represents schematically the roll deformation along the roll axes, z,

caused by the flow of a K-BKZ fluid. Figure 15.10(b) plots the initial roll-diameter profile

Fig. 15.7 Iterative computational scheme used by Mewes et al. [Reprinted by permission from

D. Mewes, S. Luther, and K. Riest, ‘‘Simultaneous Calculation of Roll Deformation and Polymer

Flow in the Calendering Process,’’ Int. Polym. Process., 17, 339–346 (2002).]
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(‘‘tangential deviation’’), the roll deformation due to flow, and the resulting, almost

constant gap thickness. The desired constant gap thickness is due to the compensating

deformation and initial rolls profiles, as seen in the figure. Finally, for a pair of rolls, one of

which is ‘‘rigid’’ steel and the other coated with a deformable, hyperelastic fluid elastomer,

calculated

measured
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Fig. 15.8 Calculated and measured differences of the primary normal stresses in the calender gap

for two different planes; yðx¼0Þ ¼ H0=2. [Reprinted by permission from D. Mewes, S. Luther, and K.

Riest, ‘‘Simultaneous Calculation of Roll Deformation and Polymer Flow in the Calendering

Process,’’Int. Polym. Process., 17, 339–346 (2002).]

d = 0.15 m 
h0 = 5 mm
η = 36 Pa⋅s
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Fig. 15.9 Primary normal stress differences in the calender gap calculated with the K-BKZ model

for different relaxation times. [Reprinted by permission from D. Mewes, S. Luther, and K. Riest,

‘‘Simultaneous Calculation of Roll Deformation and Polymer Flow in the Calendering Process,’’

Int. Polym. Process., 17, 339–346 (2002).]
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the flow stresses in the nip deform the elastomer coats. Figure 15.11 depicts the

calculated von Mises stresses

sMises ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ2
h ir

in the elastomeric coat and the flow pressure buildup, both in the circumferential direction.

Fig. 15.10 (a) Representation of the deformation between rolls 3 and 4 of a calender design used

by Mewes at al. (41); not to scale (b) calculated gap uniformity, resulting from the initially imposed

roll diameter and the roll deformation for rolls 3 and 4. [Reprinted by permission from D. Mewes,

S. Luther, and K. Riest, ‘‘Simultaneous Calculation of Roll Deformation and Polymer Flow in the

Calendering Process,’’ Int. Polym. Process., 17, 339–346 (2002).]

Fig. 15.11 Representation of the pressure in the flow field and the deformation of the elastomer

coating. [Reprinted by permission from D. Mewes, S. Luther, and K. Riest, ‘‘Simultaneous

Calculation of Roll Deformation and Polymer Flow in the Calendering Process,’’ Int. Polym.

Process., 17, 339–346 (2002).]
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The ANSYS program is used to calculate the deformations and stresses in the elastomeric

coat.

The preceding work demonstrates the benefits of combining CAD design, computa-

tional fluid mechanics (in this case a FVM CFX4), and a solids deformation ANSYS

program to solve the ‘‘complete’’ calendering program and, thus, arrive at a computer roll

design that points to a promising uniform sheet production for a given polymer melt and

operating conditions. Of course, more realistic solutions, such as the simulation of the

nonisothermal flow and roll temperature case, are obtainable with sufficient computing

power.
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PROBLEMS

15.1 Calendering of Polymers: The Newtonian Gaskell Model A 0.2-m-diameter,

1-m-wide, equal-sized-roll calender operates at a speed of 50 cm/s. At a gap

separation of 0.02 cm, it produces a 0.022-cm-thick film. Assuming a Newtonian

viscosity of 104 poise, calculate in the last nip (a) the maximum pressure; (b) the

separating force; and (c) estimate the mean temperature rise.

15.2 Separating Force between Rolls in an Experimental Calender A cellulose

acetate–based polymeric compound is calendered on a laboratory inverted, L-

shaped calender with 16-in-wide rolls of 8 in diameter. The minimum gap between

the rolls is 15 mil. The sheet width is 15 in. Calculate the separation force and the

maximum pressure between a pair of rolls as a function of exiting film thickness,

assuming that film thickness equals the gap separation at the point of detachment.

Both rolls turn at 10 rpm. The polymer at the calendered temperature of 90�C
follows a Power Law model with m ¼ 3� 106 dyne.sn=cm2 and n ¼ 0:5. [Data
based partly on J. S. Chong, ‘‘Calendering Thermoplastic Materials,’’ J. Appl.

Polym. Sci., 12, 191–212 (1968).]

15.3 Design Considerations of a Calender We would like to manufacture a 2 m wide,

0.1 mm thick PVC film at a rate of 1200 kg/h with an inverted-L calender. Suggest a

design procedure to select roll sizes, gap separations, and operating conditions.

15.4 Dissipated Work in Calendering Calculate the dissipated mechanical work during

the forming of the sheet by calendering, as described in Problem 15.1. How much

work would be dissipated if the sheet were extruded at the same rate through a sheet

die with a 0.02-cm opening and 10-cm-long die lip.

15.5 FEM versus Analytical Solution of Flow in a Tapered Gap Consider isothermal

pressure flow of a constant viscosity Newtonian fluid, between infinite plates, 10 cm

long with a linearly decreasing gap size of 1.5 cm at the entrance and 1 cm at

the exit. The distance between the entrance and the exit is 10 cm. The pressure at

the inlet and outlet are 2 atmospheres and zero, respectively. (a) Calculate the

pressure distribution invoking the lubrication approximation. (b) Calculate the

pressure profile using the FEM formulation with six equal-sized elements, and

compare the results to (a).
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