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2.1 INTRODUCTION

The engineering science of ‘‘transport phenomena’’ as formulated by Bird, Stewart,

and Lightfoot (1) deals with the transfer of momentum, energy, and mass, and provides

the tools for solving problems involving fluid flow, heat transfer, and diffusion. It is

founded on the great principles of conservation of mass, momentum (Newton’s second

law), and energy (the first law of thermodynamics).1 These conservation principles

can be expressed in mathematical equations in either macroscopic form or microscopic

form.

In this chapter, we derive these equations in some detail using the generalized,

coordinate-free formulation of the Reynolds Transport Theorem (2). We believe that it

isimportant for every student or reader to work through these derivations at least once. We

then discuss the nature of the stress and rate of deformation tensors, demonstrate the use of

the balance equations for problem solving with Newtonian fluids using analytical and

numerical techniques, discuss the lubrication approximation, which is very useful in

modeling of polymer processing operations, and discuss the broad principles of

mathematical modeling of complex processes.

1. See R. Feynman, The Character of Physical Law, MIT Press, Cambridge, MA, 1967, where the profound nature

of the conservation laws is discussed.
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2.2 THE BALANCE EQUATIONS

Since in ‘‘transport processes’’ mass, momentum, and energy are transported from one

part of the medium to another, it is essential that proper ‘‘bookkeeping’’ be applied to keep

track of these quantities. This can be done using balance equations, which are the

mathematical statements of the physical laws of conservation. These are very general laws

that always hold, and they apply to all media: solids or fluids, stationary or flowing. These

equations can be formulated over a specified macroscopic volume, such as an extruder, or

a microscopic volume taking the form of a differential (field) equation that holds at every

point of the medium. In the former case, the balance holds over the extensive quantities of

mass, momentum, and energy, whereas in the latter case, it holds over their intensive

counterparts of density, specific momentum, and specific energy, respectively.

In the formulation of the microscopic balance equations, the molecular nature of matter

is ignored and the medium is viewed as a continuum. Specifically, the assumption is made

that the mathematical points over which the balance field-equations hold are big enough to

be characterized by property values that have been averaged over a large number of

molecules, so that from point to point there are no discontinuities. Furthermore, local

equilibrium is assumed. That is, although transport processes may be fast and irreversible

(dissipative), from the thermodynamics point of view, the assumption is made that, locally,

the molecules establish equilibrium very quickly.

2.3 REYNOLDS TRANSPORT THEOREM

The physical laws of conservation of mass, momentum, and energy are commonly

formulated for closed thermodynamic systems,2 and for our purposes, we need to transfer

these to open control volume3 formulations. This can be done using the Reynolds

Transport Theorem.4

Let P represent some extensive property of the system (e.g., mass, momentum, energy,

entropy) and let p represent its intensive counterpart (i.e., per unit mass), such that:

P ¼
ð
�V
rp d�V ð2:3-1Þ

where �V is the volume of the system, which can be a function of time, t. The Reynolds

Transport Theorem states that the substantial derivative (see Footnote 6) of P is

DP

Dt
¼
ð
V

@

@t
rpð ÞdV þ

ð
S

rpv � n dS ð2:3-2Þ

2. A thermodynamic system is an arbitrary volume of matter without any transportation of matter across its surface.

3. The control volume is an arbitrary, fixed volume in space.

4. We assume the reader is familiar with vector notation, which is covered in many texts (e.g., Ref. 1), and except

for brief explanatory comments, no summary of vector operation is presented. However, the tabulated

components of the balance equations in various coordinate systems presented in this chapter should enable the

reader to apply them without any detailed knowledge of vector operations.
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where V is the control volume fixed in space, S is the surface area of the control volume, v

is the velocity field, and n is the unit outward normal vector to the control surface. In

physical terms, Eq. 2.3-2 states that the rate of change of P of the system, at the instant it

coincides with the control volume, is the sum of two terms: the rate of change of P within

the control volume, and the net rate of flow of P out of the control volume.

Proof of Eq. 2.3-2 First we take the substantial derivative of Eq. 2.3-1

DP

Dt

����
system

¼ d

dt

ð
�V
rp d�V ðaÞ

Then by defining Ps ¼ Psystem we can express the left-hand side of Eq. (a)

DPs

Dt
¼ lim

�t!0

Ps;tþ�t � Ps;t

�t
ðbÞ

Next we let the arbitrary volume of Ps coincide at time twith the control volume. Since the

volume is arbitrary, we can do so without losing generality. But because there is the flow of

matter in the space, at time t þ�t the volume of Ps will be different, as shown in Fig. 2.1.

Looking at the figure we see that there are three distinct volume regions, A;B; and C.

The control volume equals the sum Aþ B, and the system equals Bþ C. Therefore Ps at

time t þ�t can be expressed as

PS;tþ�t ¼ PB;tþ�t þ PC;tþ�t ¼ PCV ;tþ�t � PA;tþ�t þ PC;tþ�t ðcÞ
and

PS;t ¼ PCV ;t ðdÞ

where the subscript CV stands for control volume. Substituting Eqs. (c) and (d) into Eq. (b)

gives

DPS

Dt
¼ lim

�t!0

PCV ;tþ�t � PCV ;t

�t
þ lim

�t!0

PC;tþ�t

�t
� lim

�t!0

PA;tþ�t

�t
ðeÞ

t + ∆tSystem at

B

CA

CSI

CSII

Control volume at t

Fig. 2.1 The control volume (broken curve) and the thermodynamic system (solid curve) at time

t þ�t in a flowing medium. The control volume and the thermodynamic system coincide at time, t.
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The first expression on the right hand side is the partial differential in time of

PCV ; @PCV=@t. Now, PC;tþ�t is due to flow through surface CSII of the control volume,

separating volumes B and C, which can be calculated as follows:

� The local volumetric rate of flow is v � n dS
� The local rate of flow of the property is rp v � n dS
� The differential quantity of PC transported over time �t is dPC ¼ �tpv � n dS

Thus, the total amount of PC transported over surface CSII and time �t is given by:

PC;tþ�t ¼ �t

ð
CSII

rpv � n dS ðfÞ

and, therefore,

lim
�t!0

PC;tþ�t

�t
¼
ð

CSII

rpv � n dS ðgÞ

Similarly we can show that

lim
�t!0

PA;tþ�t

�t
¼ �

ð
CSI

rpv � n dS ðhÞ

The reason for the negative sign is that v � n for flow into the system is negative.

Substituting Eqs. g and h into Eq. e yields the following equation:

DPS

Dt
¼ @

@t

ð
V

rp dV þ
ð
S

rpv � n dS ðiÞ

where S is the total surface ðCSI þ CSIIÞ of the control volume and V is its volume, which

is identical to Eq. 2.3-2. This concludes the proof.

2.4 THE MACROSCOPIC MASS BALANCE AND THE EQUATION

OF CONTINUITY

In deriving the balance equations, we use vector notation and the sign convention adopted

by R. B. Bird, W. E. Stewart, and E. N. Lightfoot in their classic book Transport

Phenomena (1).

We begin the derivation of the conservation of mass by simply inserting into Eq. 2.3-2,

P ¼ M and p ¼ 1, yielding directly the macroscopic mass balance equation:

@

@t

ð
V

r dV þ
ð
S

rv � n dS ¼ 0 ð2:4-1Þ
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We can convert the surface integral in Eq. 2.4-1 to a volume integral using the Gauss

Divergence Theorem5,6 to yield:

@

@t

ð
V

r dV þ
ð
V

ð= � rvÞ dV ¼ 0 ð2:4-2Þ

But by definition, we have selected a fixed control volume, therefore the order of

differentiation by time and integration can be reversed to get:

ð
V

@r
@t

þ = � rv
� �

dV ¼ 0 ð2:4-3Þ

For this equation to hold for any arbitrary volume V, the kernel of the integral must vanish,

resulting in the equation of continuity:

@r
@t

þ = � rv ¼ 0 ð2:4-4Þ

Equation 2.4-4 can be rewritten in terms of the substantial derivative as:

Dr
Dt

¼ �r = � vð Þ ð2:4-5Þ

Equation 2.4-4 states the mass conservation principle as measured by a stationary

observer. The derivative ð@=@tÞ is evaluated at a fixed position in space (this is referred to

as the Eulerian point of view); whereas, Eq 2.4-5 states the conservation principle, as

5. The Gauss Divergence Theorem states that if V is a volume bounded by a closed surface S, and A is a

continuous vector field, then
Ð
v
ð= � AÞ dV ¼ Ð

s
ðn � AÞ dS.

6. The recurring vectorial operator =, known as del or nabla, is a differential operator that, in rectangular

coordination is defined as:

= ¼ d1 þ @1
@x1

þ d2 þ @2
@x2

þ d3 þ @3
@x3

where di are unit vectors in directions x1; x2 and x3. For the derivation of = in curvilinear coordinates, see

Problem 2.1. The ‘‘substantial derivative,’’ namely, the change in time of some property in a fluid element while

being convected (or riding with) the fluid in terms of =, is given by:

D

DT
¼ @

@t
þ v � =

Recall that the operation of = on a scalar quantity is the gradient, which is a vector. For example, if = is operated

on a scalar pressure field P, then = P is the pressure gradient vector field, which can have different values in the

three spatial directions. The operation of = on a vector field can either be the divergence or the curl of the vector

field. The former is obtained by the dot product (also called the scalar product) as = � v or div v!, where the result

is a scalar; whereas, the latter is obtained by the cross product (also called the vector product)=� v, or curl v, and

the result is a vector field.
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measured (reported) by an observer who is moving with the fluid (this is referred to as the

Lagrangian point of view). Table 2.1 gives Eq. 2.4-4 in rectangular, cylindrical, and

spherical coordinate systems.

For an incompressible fluid, the density is constant, that is, it does not change in time or

spatial position, and therefore Eq. 2.4-5 simplifies to:

= � v ¼ 0 ð2:4-6Þ

In fluid dynamics we frequently invoke the incompressibility assumption, even though

fluid densities change with pressure and temperature, and these may vary in time and

space. If the density change cannot be neglected, then an appropriate equation of state of

the form r ¼ rðT;PÞ must be used in conjunction with the balance equations.

Example 2.1 The Use of the Macroscopic Mass Balance for a Vessel with Salt
Solution A liquid-filled vessel shown in the accompanying figure contains a 1000 kg of

10% by weight salt solution. At time t ¼ 0 we begin feeding a 2% by weight salt solution

at 20 kg/h and extracting 10 kg/h solution. Find the amount of solution M and salt S in the

vessel as a function of time.

S0S1

S2

V1 h

Va

TABLE 2.1 The Equation of Continuity in Several Coordinate Systems

Rectangular Coordinates (x, y, z)

@r
@t

þ @

@x
rvxð Þ þ @

@y
rvy
� �þ @

@z
rvzð Þ ¼ 0

Cylindrical Coordinates (r, �, z)

@r
@t

þ 1

r

@

@r
rrvrð Þ þ 1

r

@

@y
rvyð Þ þ @

@z
rvzð Þ ¼ 0

Spherical Coordinates (r, �, �)

@r
@t

þ 1

r2
@

@r
rr2vr
� �þ 1

r sin y
@

@y
rvy sin yð Þ þ 1

r sin y
@

@f
rvf
� � ¼ 0

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,

Wiley, New York, 1960.
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Solution Using the macroscopic mass balance Eq. 2.4-1, we first define the control volume

as shown by the dotted line in the figure. Note that we defined the control volume above the

liquid surface. Next, we apply Eq. 2.4-1 to the control volume which, taking into account all

streams entering and leaving the tank, yields:

@

@t

ð
Vl

rsol dV þ @

@t

ð
Va

rair dV � rsol;2%v1S1 þ rsolv2S2 þ rair
dh

dt
S0 ¼ 0

ðchange in M in CVÞ ðmass flow inÞ ðair mass flow outÞ
ðchange in air mass in CVÞ ðmass flow outÞ

Note that n is normal to the surface and points outward from the control volume, hence,

streams entering are negative and leaving are positive. Now the second and last terms cancel

each other so they can be dropped to yield:

dM

dt
� 20þ 10 ¼ 0

and integration with the given initial condition gives:

MðkgÞ ¼ 1000þ 10tðminÞ
We next apply Eq. 2.4-1 to the salt:

@

@t

ð
V

S

M

� �
rsol dV � 20� 0:02þ 10

S

M

� �
¼ 0

where the first term is @S=@t and S=M is the instantaneous salt concentration, leading to:

dS

dt
þ 10S

1000þ 10t
¼ 0:4

which results after integration with initial conditions S ¼ 100 at t ¼ 0, in

SðkgÞ ¼ 10000þ 40t þ 0:2t2

100þ t

where t is in minutes. The ratio of S=M gives the concentration of salt as a function of time.

This will show that, as time goes toward infinity, the concentration approaches inlet

concentration.

Example 2.2 The Radial Velocity in a Steady, Fully Developed Flow Show that in a

steady, fully developed flow of an incompressible liquid in a pipe, the radial velocity compo-

nent vanishes.

Solution In a pipe flow we have, in principle, three velocity components vz; vy, and vr. The

equation of continuity in cylindrical coordinates is given in Table 2.1. For an incompressible

fluid, this equation reduces to

1

r

@

@r
rvrð Þ þ 1

r

@vy
@y

þ @vz
@z

¼ 0
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However, because of symmetry, vy must vanish and, in a fully developed flow @vz=@z ¼ 0, we

therefore obtain

@

@r
rvrð Þ ¼ 0

which, upon integration, yields rvr ¼ C, where C is a constant. However, since there is no flow

across the wall, C ¼ 0, and hence the radial velocity must vanish everywhere.

2.5 THE MACROSCOPIC LINEAR MOMENTUM BALANCE
AND THE EQUATION OF MOTION

Newton’s Second Law is a statement of conservation of linear momentum for a

system:

DPs

Dt
¼
X
i

Fi ð2:5-1Þ

where Ps is the linear momentum mv of a body of mass m;DPs=Dt is the substantial

derivative of the linear momentum; and
P
i

Fi are the forces acting on the body.

Substituting Eq. 2.5-1 into Eq. 2.3-2 with p ¼ v, we get:

@

@t

ð
V

rv dV þ
ð
S

rvv � n dS ¼ Fb þ Fs ð2:5-2Þ

where Fb are the body forces (e.g., gravitation), and Fs the surface forces (e.g., viscous

forces) that are acting on the control volume. If there are other forces, such as electric or

magnetic forces, acting on the control volume, they should be added to Eq. 2.5-2 and

appropriately accounted for. Within this text, however, the only forces that we will

consider are gravitational and viscous forces.

Now Eq. 2.5-2 is a vectorial equation that has three components, reflecting the fact that

linear momentum is independently conserved in the three spatial directions. For a

rectangular coordinate system, Eq. 2.5-2 becomes:

@

@t

ð
V

rvx dV þ
ð
S

vxrv � n dS ¼ Fbx þ Fsx ð2:5-3Þ

@

@t

ð
V

rvy dV þ
ð
S

vyrv � n dS ¼ Fby þ Fsy ð2:5-4Þ

@

@t

ð
V

rvz dV þ
ð
S

vzrv � n dS ¼ Fbz þ Fsz ð2:5-5Þ

For deriving the equation of motion, which is the microscopic counterpart of the

macroscopic momentum balance, we proceed as in the case of the mass balance and first
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rewrite Eq. 2.5-2 using the Gauss Divergence Theorem to get:

ð
V

@

@t
rvð Þ þ = � v rvð Þ

� �
dV ¼ Fb þ Fs ð2:5-6Þ

Next, we consider the forces that act on the control volume. The body forces are due to

gravitation and act on all the mass in the control volume:

Fb ¼
ð
V

rg dV ð2:5-7Þ

The surface forces that act on the control volume are due to the stress field in the deforming

fluid defined by the stress tensor p. We discuss the nature of the stress tensor further in the

next section; at this point, it will suffice to state that p is a symmetric second-order tensor,

which has nine components. It is convenient to divide the stress tensor into two parts:

p ¼ Pdþ s ð2:5-8Þ

where P is a scalar quantity, which is the ‘‘pressure,’’ d is the identity tensor defined as:

d ¼
1 0 0

0 1 0

0 0 1

0
@

1
A ð2:5-9Þ

and s is the dynamic or deviatoric component of the stress tensor, which accounts for the

viscous stresses created in the fluid as a result of flow.

Thus Eq. 2.5-8 can be written as

p11 p12 p13
p21 p22 p23
p31 p32 p33

0
@

1
A ¼ P

1 0 0

0 1 0

0 0 1

0
@

1
Aþ

t11 t12 t13
t21 t22 t23
t31 t32 t33

0
@

1
A ð2:5-10Þ

which expresses nine separate scalar equations relating the respective components of the

tensors: pij ¼ Pdij þ tij, where dij ¼ 1 for i ¼ j, and dij ¼ 0 for i 6¼ j. For convenience, the

tensor p is called the total stress tensor and s is simply the stress tensor. Clearly, pij ¼ tij
for i 6¼ j and pii ¼ Pþ tii for i ¼ j. Thus, the total normal stress incorporates the

contribution of the ‘‘pressure,’’ P, which is isotropic. In the absence of flow, at equilibrium,

the pressure P becomes identical to the thermodynamic pressure, which for pure fluids is

related to density and temperature via a state equation.

Two difficulties are associated with P. First, flow implies nonequilibrium conditions,

and it is not obvious that P appearing during flow is the same pressure as the one defined in

thermodynamics. Second, when the incompressibility assumption is invoked (generally

used in solving polymer processing problems) the meaning of P is not clear, and P is

regarded as an arbitrary variable. No difficulty, however, arises in solving practical

problems, because we only need to know the pressure gradient.
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Turning back to Eq. 2.5-6, the surface forces Fs can now be expressed in terms of the

total stress tensor p as follows:

Fs ¼ �
ð
S

p � n dS ð2:5-11Þ

where the minus sign is introduced to account for the forces the surrounding fluid applies

on the control volume.

Substituting Eqs. 2.5-11 and 2.5-7 into Eq. 2.5-6, using the Gauss Divergence Theorem,

we obtain: ð
V

@

@t
rvð Þ þ = � v rvð Þ

� �
dV ¼

ð
V

rg dV �
ð
V

= � p dV ð2:5-12Þ

or ð
V

@

@t
rvð Þ þ = � v rvð Þ þ r � p� rg

� �
dV ¼ 0 ð2:5-13Þ

Equation 2.5-13 is valid for any arbitrary control volume. The only way this can hold true

is if the kernel of the integral vanishes, that is,

@

@t
rvð Þ þ = � vrvþ = � p� rg ¼ 0 ð2:5-14Þ

which is the equation of motion. But, = � vrv ¼ v = � rvð Þ þ rv � =v. Thus Eq. 2.5-14 can
be written as

r
@v

@t
þ v

@r
@t

þ vr � rvþ rv � =vþ = � p� rg ¼ 0 ð2:5-15Þ

Furthermore, the second and third terms express the product of v with the equation of

continuity. Thus they equal zero, and Eq. 2.5-15 reduces to

r
@v

@t
þ rv � =v ¼ �= � pþ rg ð2:5-16Þ

or, in terms of the substantial derivative, we get:

r
Dv

Dt
¼ �= � pþ rg ð2:5-17Þ

which we recognize as Newton’s Second Law, which states that the mass (per unit volume)

times acceleration7 equals the sum of the forces acting on the fluid element.

Next, we substitute Eq. 2.5-8 into Eq. 2.5-16 to yield the common form of the equation

of motion:

r
@v

@t
þ rv � =v ¼ �=P� = � sþ rg ð2:5-18Þ

7. Recall that the substantial derivative implies that we ‘‘ride’’ with the fluid element.
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where the terms on the left-hand side express accumulation of momentum and the

convection of momentum, respectively, and those on the right side express the forces

acting on the fluid element by the pressure gradient, the stresses in the flowing fluid, and

the gravitational forces. The three components of the equation of motion, in rectangular,

cylindrical, and spherical coordinates are given in Table 2.2.

TABLE 2.2 The Equation of Motion in Terms of s in Several Coordinate Systems

Rectangular Coordinates (x, y, z)

r
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z

� �
¼ � @P

@x
� @txx

@x
þ @tyx

@y
þ @tzx

@z

� �
þ rgx

r
@vy
@t

þ vx
@vy
@x

þ vy
@vy
@y

þ vz
@vy
@z

� �
¼ � @P

@y
� @txy

@x
þ @tyy

@y
þ @tzy

@z

� �
þ rgy

r
@vz
@t

þ vx
@vz
@x

þ vy
@vz
@y

þ vz
@vz
@z

� �
¼ � @P

@z
� @txz

@x
þ @tyz

@y
þ @tzz

@z

� �
þ rgz

Cylindrical Coordinates (r, h, z)

r
@vr
@t

þ vr
@vr
@r

þ vy

r

@vr
@y

� v2y
r
þ vz

@vr
@z

� �
¼ � @P

@r
� 1

r

@

@r
ðrtrrÞ þ 1

r

@try
@y

� tyy
r

þ @trz
@z

� �
þ rgr

r
@vy
@t

þ vr
@vy
@r

þ vy

r

@vy
@y

þ vrvy

r
þ vz

@vy
@z

� �
¼ � 1

r

@P

@y
� 1

r2
@

@r
ðr2tryÞ þ 1

r

@tyy
@y

þ @tyz
@z

� �
þ rgy

r
@vz
@t

þ vr
@vz
@r

þ vy

r

@vz
@y

þ vz
@vz
@z

� �
¼ � @P

@z
� 1

r

@

@r
ðrtrzÞ þ 1

r

@tyz
@y

þ @tzz
@z

� �
þ rgz

Spherical Coordinates (r, h, /)

r
@vr
@t

þ vr
@vr
@r

þ vy

r

@vr
@y

þ vf

r sin y
@vr
@f

� v2y þ v2f

r

 !

¼ � @P

@r
� 1

r2
@

@r
r2trr
� �þ 1

r sin y
@

@y
try sin yð Þ þ 1

r sin y
@trf
@f

� tyy þ tff
r

� �
þ rgr

r
@vy
@t

þ vr
@vy
@r

þ vy

r

@vy
@y

þ vf

r sin y
@vy
@f

þ vrvy

r
� v2f cot y

r

 !

¼ � 1

r

@P

@y
� 1

r2
@

@r
r2try
� �þ 1

r sin y
@

@y
tyy sin yð Þ þ 1

r sin y
@tyf
@f

þ try
r
� cot y

r
tff

� �
þ rgy

r
@vf
@t

þ vr
@vf
@r

þ vy

r

@vf
@y

þ vf

r sin y
@vf
@f

þ vfvr

r
þ vyvf

r
cot y

� �

¼ � 1

r sin y
@P

@f
� 1

r2
@

@r
r2trf
� �þ 1

r

@tyf
@y

þ 1

r sin y
@tff
@f

þ trf
r

þ 2 cot y
r

tyf

� �
þ rgf

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,

Wiley, New York, 1960.
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Example 2.3 The Use of the Macroscopic Momentum Balance to Calculate the

Diameter of a Free Jet A free jet of diameter d leaves a horizontal tube of diameter D,

as shown in the accompanying figure. Assuming a laminar, fully developed velocity profile

at the exit of the tube, and neglecting gravitational forces and the drag of the air on the free jet,

prove that d=D ¼ ð0:75Þ0:5.

x D vx(r) Ve
d

r

Solution We first select the control volume as shown by the dotted line in the figure, assum-

ing that, at the downstream end of the control volume, the velocity profile in the free jet is flat.

Next, we apply the macroscopic momentum balance, Eq. 2.5-3, to the control volume. We

need be concerned only with the x component, because this is the only momentum that crosses

the control volume boundaries. The flow is steady, and therefore the time-dependent term

vanishes, as do the forces, since there are none acting on the control volume. Thus the equa-

tion reduces to:

ð
S

vxrv � n dS ¼ 0 ðE2:3-1Þ

The velocity profile in a laminar flow is given by vx ¼ V0 1� r=Rð Þ2
h i

, where V0 is the

maximum velocity. At the exit, the velocity is uniform and given by Ve. Substituting these

terms into Eq. E2.3-1 gives:

�r
ð
S

V2
0 1� r=Rð Þ2
h i2

dSþ rV2
e pd2=4
� � ¼ 0 ðE2:3-2Þ

or

�2pV2
0 D=2ð Þ2

ð1
0

x 1� x2
� �2

dxþ V2
e pd2=4
� � ¼ 0 ðE2:3-3Þ

where x ¼ r=R, which then yields:

d

D

� �2

¼ 1

3

V0

Ve

� �2

ðE2:3-4Þ

Next we apply the macroscopic mass balance, Eq. 2.4-1, which gives a second relationship

between the variables:

�r
ð
S

V0 1� r=Rð Þ2
h i

dSþ rVe pd2=4
� � ¼ 0 ðE2:3-5Þ

36 THE BALANCE EQUATIONS AND NEWTONIAN FLUID DYNAMICS



which results in

V0

Ve

¼ 2
d

D

� �2

ðE2:3-6Þ

Combining Eqs. E2.3-4 and E2.3-6 gives the desired result of d=D ¼ 0:750:5.

2.6 THE STRESS TENSOR

Consider a point P in a continuum on an arbitrary surface element �S (defined by the

normal n), as in Fig. 2.2. Let �f i be the resultant force exerted by the material on the

positive side of the surface on that of the negative side across �S.

The average force per unit area is �f i=�S. This quantity attains a limiting nonzero

value as �S approaches zero at point P (Cauchy’s stress principle). This limiting

quantity is called the stress vector, or traction vector T 0. But T 0 depends on the

orientation of the area element, that is, the direction of the surface defined by normal n.

Thus it would appear that there are an infinite number of unrelated ways of expressing

the state of stress at point P.

It turns out, however, that the state of stress at P can be completely specified

by giving the stress vector components in any three mutually perpendicular planes

passing through the point. That is, only nine components, three for each vector,

are needed to define the stress at point P. Each component can be described by

two indices ij, the first denoting the orientation of the surface and the second, the

direction of the force. Figure 2.3 gives these components for three Cartesian planes.

The nine stress vector components form a second-order Cartesian tensor, the stress

tensor8 p0.
Furthermore, some argumentation based on the principles of mechanics and

experimental observations, as well as molecular theories, leads to the conclusion that

the stress tensor is symmetric, that is,

p
0
ij ¼ p

0
ji ð2:6-1Þ

n ∆ fi

Fig. 2.2 An arbitrary surface element with direction defined by normal n with resultant force �fi
acting at point P.

8. Note that we differentiate the stress tensor p0 discussed in this section from the previously discussed stress

tensor p because they are defined on the basis of different sign conventions, as discussed later in the chapter.
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Hence, only six independent components of the stress tensor are needed to fully define the

state of the stress at point P, where p0ii are the normal stress components, and p0ij i 6¼ jð Þ are
the shear-stress components.

By considering the forces that the material on the positive side of the surface (i.e.,

material on the side of the surface at which the outward normal vector points) exerts

on the material on the negative side, a stress component is positive when it acts in the

positive direction of the coordinate axes and on a planewhose outer normal points in one of

the positive coordinate directions (or if both of the previously mentioned directions are

negative).

A stress component is negative if any one direction is negative. Hence, by this sign

convention, generally used in mechanics and mechanical engineering, tensile stresses are

positive and compressive stresses are negative. Moreover, according to this sign convention,

all the stresses shown in Fig. 2.3 are positive. Unfortunately, this sign convention is opposite

to that resulting from momentum transport considerations, thus p0y ¼ �p (where y stands

for ‘transpose’). In the latter sign convention, as pointed out by Bird et al. (1), if we consider

the stress vector pn ¼ n � p acting on surface dS of orientation n, the force pndS is that

exerted by the material on the negative side onto that on the positive side. (According to

Newton’s Third Law, this force is equal and opposite to that exerted by the material of the

positive side to the material of the negative side.) It follows, then, that, in this latter

convention, tensile stresses are negative. In this book we follow this latter sign convention.

As we pointed out in the introductory remarks, polymer processing is the simultaneous

occurrence of momentum, heat, and occasionally, mass transfer in multicomponent

systems. This sign convention, as shown in the following paragraphs, leads to consistency

among the three transport processes. Nevertheless, it is worth emphasizing that the sign

convention used in no way affects the solution of flow problems. Once constitutive

equations are inserted into the equation of motion, and stress components are replaced by

velocity gradients, the two sign conventions lead to identical expressions.

x3

p 21′
p 12′

p 11′
p 13′

p 22′

p 23′

p 32′

p 33′
p 31′

x1

x2

Fig. 2.3 The nine Cartesian components of the stress tensor. In the limit, the cube shrinks to

point P.
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Generally, from the tensor p or tensor s, which is related to the former via Eq. 2.5-8, three

independent scalar invariant entities can be formed by taking the trace of s. The three

invariants are:

Is ¼ tr s ¼
X3
1

tii ð2:6-2Þ

IIs ¼ tr s2 ¼
X3
1

X3
1

tijtji ð2:6-3Þ

IIIs ¼ tr s3 ¼
X3
1

X3
1

X3
1

tijtjktki ð2:6-4Þ

and the magnitude of the stress tensor s denoted as t is given by:

s ¼ jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
s:sð Þ

r
¼

ffiffiffiffiffiffiffiffiffi
1

2
IIt

r
ð2:6-5Þ

Example 2.4 The Similarity Between the Three Transport Phenomena Consider an

infinite slab of solid shown in Fig. E2.4(a) with a constant temperature difference over its

surfaces.

The temperature gradient for Tð0Þ > TðbÞ is negative and given by

dT

dy
¼ � Tð0Þ � TðbÞ

b

and using Fourier’s law, the heat is given by:

qy ¼ �k
dT

dy
¼ k

b
Tð0Þ � TðbÞ½ �

where k is the thermal conductivity. Clearly, for the ase shown, the heat flux is in the positive y

direction, and flows from high temperature to low temperature.

Now consider the case of one-dimensional diffusion of component A shown in Fig. E2.4(b).

Similarly, the concentration gradient for CAð0Þ > CAðbÞ is negative and given by:

dCA

dy
¼ �CAð0Þ � CAðbÞ

b

Fig. E2.4 (a) Temperature, (b) concentration, and (c) velocity profile over infinite slabs of

material. In (c) the fluid is confined between two parallel plates in relative motion.
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Using Fick’s law (assuming constant density and low concentration of the diffusing

component), the mass flux is positive and is given by

JAy ¼ �DAB

dCA

dy
¼ DAB CAð0Þ � CAðbÞ½ �

where DAB is the binary diffusion coefficient. As in the case of heat flux, the flux of the A

component is positive, and it flows from high concentration to low concentration.

Finally, let us examine the flow of viscous fluid between two parallel plates in relative

motion [Fig. E2.4(c)]. Because of intermolecular forces, the fluid layer next to the bottom

plate will start moving. This layer will then transmit, by viscous drag, momentum to the layer

above it, and so on. The velocity gradient for vxð0Þ > vxðbÞ is positive and given by

dvx

dy
¼ �Vð0Þ

b

Using Newton’s law, which holds for an important class of fluids, we get:

tyx ¼ �m
dvx

dy
¼ m

b
Vð0Þ

where m is the viscosity. Clearly, the flux of x momentum is the shear stress, and it is in the y

direction from the lower plate to the upper one; that is, it flows downstream the velocity

profile, from high velocity to low velocity, and there is a positivemomentum flux according to

the coordinate system used. This example demonstrates the similarity of the three transport

processes, and the reason for defining the fluxes of heat, mass, and momentum in Fourier’s,

Fick’s, and Newton’s laws with a negative sign.

2.7 THE RATE OF STRAIN TENSOR

We know from everyday experience that applying a given tensile or shear stress to a solid

material results in a given deformation. In the elastic range, Hooke’s law predicts a linear

deformation with the applied stress. The elastic modulus in Hooke’s law specifies the

nature of the particular solid. Yet in viscous fluids, the applied stress is not related to

the deformation of the fluid, but to the rate at which the fluid is being deformed, or to the

rate of strain. As we shall see in this section, in order to define the rate of strain of a fluid at

a given point, we need nine (six independent) numbers. Therefore, just like stress, the rate

of strain is a second-order symmetric tensor. It is the nature of the relationship between the

stress and the rate of strain tensors that the constitution of the particular fluid being

deformed is manifested. The generally empirical equations relating the two, therefore, are

called constitutive equations.

In an important class of materials, called Newtonian, this relationship is linear and one

parameter—the viscosity—specifies the constitution of the material. Water, low-viscosity

fluids, and gases are Newtonian fluids. However, most polymeric melts are non-Newtonian

and require more complex constitutive equations to describe the relationship between the

stress and the rate of strain. These are discussed in Chapter 3.

Geometric Considerations of the Rate of Strain Tensor

We first consider a small rectangular element at time t in shear flow, as shown in Fig. 2. 4.

This element is a vanishingly small differential element, and therefore without loss of

generality we can assume that the local velocity field is linear, as shown in the figure.
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At time t þ�t the rectangular fluid element is translated in the x direction and deformed

into a parallelogram. We define the rate of shear as –dd=dt, where d is the angle shown in

the figure.

Out of simple geometrical considerations, we express the rate of shear in terms of

velocity gradients as follows:

� dd
dt

¼ lim
�t!0

dtþ�t � dt
�t

¼ � lim
�t!0

p=2� arctan vx;yþ�y � vx;y
� �

�t=�y
	 
� p=2

�t

� �

¼ lim
�y!0

vx;yþ�y � vx;y

�y
¼ dvx

dy

ð2:7-1Þ

Thus, we find that the rate of shear (or shear rate, as it is commonly referred to), or the rate

of change of the angle d, simply equals the velocity gradient.

We can extend this analysis to general flow fields vðx; y; z; tÞ by considering the

deformation of the fluid element in the x,y, z,y, and x,z planes. In such a case, for the x,y

plane we get (see Problem 2.6):

� ddx;y
dt

¼ @vx
@y

þ @vy
@x

¼ _ggxy ð2:7-2Þ

and for the other two planes we get:

� ddy;z
dt

¼ @vy
@z

þ @vz
@y

¼ _ggyz ð2:7-3Þ

� ddx;z
dt

¼ @vx
@z

þ @vz
@x

¼ _ggxz ð2:7-4Þ

where we defined the shear components of the rate of deformation tensor _cc in Cartesian

(rectangular) coordinates.

Now that we have discussed the geometric interpretation of the rate of strain tensor, we

can proceed with a somewhat more formal mathematical presentation. We noted earlier

that the (deviatoric) stress tensor s related to the flow and deformation of the fluid. The

kinematic quantity that expresses fluid flow is the velocity gradient. Velocity is a vector

and in a general flow field each of its three components can change in any of the three

y

x

t t + ∆ t

d d

Fig. 2.4 The deformation of a fluid element in unidirectional shear flow.
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spatial directions, giving rise to nine velocity gradient components. We can therefore

define a velocity gradient tensor =v (i.e., the dyadic product of = with v), which in

Cartesian coordinates can be written as:

=v ¼

@v1
@x1

@v1
@x2

@v1
@x3

@v2
@x1

@v2
@x2

@v2
@x3

@v3
@x1

@v3
@x2

@v3
@x3

0
BBBBBB@

1
CCCCCCA

ð2:7-5Þ

A fluid in motion may simultaneously deform and rotate. Decomposing the velocity

gradient tensor into two parts can separate these motions:

=v ¼ 1

2
_ccþ xð Þ ð2:7-6Þ

where _cc and x are the rate of strain and the vorticity tensors, respectively, defined as:

_cc ¼ =vþ =vð Þy ð2:7-7Þ
and

x ¼ =v� =vð Þy ð2:7-8Þ
where =vð Þy is the transpose9 =v: Thus by inserting Eq. 2.7- 5 and its transpose into

Eq. 2.7- 7, we get the following expression for the rate of deformation tensor in Cartesian

coordinates:

_cc ¼

2
@v1
@x1

@v2
@x1

þ @v1
@x2

@v3
@x1

þ @v1
@x3

@v1
@x2

þ @v2
@x1

2
@v2
@x2

@v3
@x2

þ @v2
@x3

@v1
@x3

þ @v3
@x1

@v2
@x3

þ @v3
@x2

2
@v3
@x3

0
BBBBBB@

1
CCCCCCA

ð2:7-9Þ

For simple shear flow (as between parallel plates in relative motion) Eq. 2.7-9

reduces to:

_cc ¼
0 1 0

1 0 0

0 0 0

0
@

1
A _gg ð2:7-10Þ

where _gg is the shear rate, which is a scalar quantity related to the second invariant of _cc
(see Eqs. 2.6-5 and 2.6-3) as follows:

_gg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_cc : _ccð Þ

r
ð2:7-11Þ

9. The indices are ‘‘transposed’’—that is, the rows and columns are interchanged (180� flip on the diagonal).
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For simple shear flow we get:

_gg ¼ dvx

dy
¼ d

dy

dx

dt

� �
¼ d

dt

dx

dy

� �
¼ dg

dt
ð2:7-12Þ

where g is the shear strain.

2.8 NEWTONIAN FLUIDS

In the previous section we discussed the nature and some properties of the stress tensor s
and the rate of strain tensor _cc. They are related to each other via a constitutive equation,

namely, a generally empirical relationship between the two entities, which depends on the

nature and constitution of the fluid being deformed. Clearly, imposing a given stress field

on a body of water, on the one hand, and a body of molasses, on the other hand, will yield

different rates of strain. The simplest form that these equations assume, as pointed out

earlier, is a linear relationship representing a very important class of fluids called

Newtonian fluids.

In 1687 Isaac Newton proposed a simple equation relating the shear stress to the

velocity gradient in fluids, and defined viscosity as the ratio between the two:

m ¼ � tyx
dvx

dy

� � ð2:8-1Þ

This equation is known as ‘Newton’s law’. Of course, it is not really a ‘physical law’, but

only an empirical relationship describing a limited, yet very important class of fluids.

Newton’s law is generally valid for ordinary fluids with molecular weights below 1000.

Gases, water, low molecular weight oils, and so on, behave under most normal conditions

according to Newton’s law, namely, they exhibit a linear relationship between the shear

stress and the consequent shear rate.

Equation 2.8-1 holds only for simple shearing flow, namely, when there is one velocity

component changing in one (normal) spatial direction. The most general Newtonian

constitutive equation that we can write for an arbitrary flow field takes the form:

s ¼ �m _ccþ 2m=3� kð Þ = � vð Þd ð2:8-2Þ

where k is the dilatational viscosity. For an incompressible fluid (and polymers are

generally treated as such), = � v ¼ 0 and Eq. 2.8-2 reduces to:

s ¼ �m _cc ð2:8-3Þ

Equations 2.8-2 and 2.8-3 are coordinate-independent compact tensorial forms of the

Newtonian constitutive equation. In any particular coordinate system these equations

break up into nine (six independent) scalar equations. Table 2.3 lists these equations in

rectangular, cylindrical and spherical coordinate systems.
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TABLE 2.3 The Components of s ¼ �m _ccþ 2m=3� kð Þ = � vð Þd in

Several Coordinate Systems

Rectangular Coordinates (x, y, z)

txx ¼ �m 2
@vx
@x

� 2

3
= � vð Þ

� �

tyy ¼ �m 2
@vy
@y

� 2

3
= � vð Þ

� �

tzz ¼ �m 2
@vz
@z

� 2

3
= � vð Þ

� �

txy ¼ tyx ¼ �m
@vx
@y

þ @vy
@x

� �

tyz ¼ tzy ¼ �m
@vy
@z

þ @vz
@y

� �

tzx ¼ txz ¼ �m
@vz
@x

þ @vx
@z

� �

= � vð Þ ¼ @vx
@x

þ @vy
@y

þ @vz
@z

Cylindrical Coordinates (r, �, z)

trr ¼ �m 2
@vr
@r

� 2

3
= � vð Þ

� �

tyy ¼ �m 2
1

r

@vy
@y

þ vr

r

� �
� 2

3
= � vð Þ

� �

tzz ¼ �m 2
@vz
@z

� 2

3
= � vð Þ

� �

try ¼ tyr ¼ �m r
@

@r

vy

r

 �
þ 1

r

@vr
@y

� �

tyz ¼ tzy ¼ �m
@vy
@z

þ 1

r

@vz
@y

� �

tzr ¼ trz ¼ �m
@vz
@r

þ @vr
@z

� �

= � vð Þ ¼ 1

r

@

@r
rvyð Þ þ 1

r

@vy
@y

þ @vz
@z

Spherical Coordinates (r, �, �)

trr ¼ �m 2
@vr
@r

� 2

3
= � vð Þ

� �

tyy ¼ �m 2
1

r

@vy
@y

þ vr

r

� �
� 2

3
= � vð Þ

� �

tff ¼ �m 2
1

r sin y
@vf
@f

þ vr

r
þ vy cot y

r

� �
� 2

3
= � vð Þ

� �

try ¼ tyr ¼ �m r
@

@r

vy

r

 �
þ 1

r

@vr
@y

� �

tyf ¼ tfy ¼ �m
sin y
r

@

@y
vf

sin y

 �
þ 1

r sin y
@vy
@f

� �

tfr ¼ trf ¼ �m
1

r sin y
@vr
@f

þ r
@

@r

vf

r

 �� �

= � vð Þ ¼ 1

r2
@

@r
r2vr
� �þ 1

r sin y
@

@y
vy sin yð Þ þ 1

r sin y
@vf
@f

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N.

Lightfoot, Transport Phenomena, Wiley, New York, 1960.
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Inserting Eq. 2.8-3 into the equation of motion, 2.5-18, we get10 the celebrated Navier–

Stokes11 equation:

r
@v

dt
þ rv � =v ¼ �=Pþ mr2vþ rg ð2:8-4Þ

The symbol defined as =2 is called the Laplacian. Table 2.4 lists the components of the

Navier–Stokes equation in the various coordinate systems.

We should note that the Navier–Stokes equation holds only for Newtonian fluids and

incompressible flows. Yet this equation, together with the equation of continuity and with

proper initial and boundary conditions, provides all the equations needed to solve (analytically

or numerically) any laminar, isothermal flow problem. Solution of these equations yields the

pressure and velocity fields that, in turn, give the stress and rate of strain fields and the

flow rate. If the flow is nonisothermal, then simultaneously with the foregoing equations,

we must solve the thermal energy equation, which is discussed later in this chapter. In

this case, if the temperature differences are significant, we must also account for the

temperature dependence of the viscosity, density, and thermal conductivity.

Polymer processing flows are always laminar and generally creeping type flows. A

creeping flow is one in which viscous forces predominate over forces of inertia and

acceleration. Classic examples of such flows include those treated by the hydrodynamic

theory of lubrication. For these types of flows, the second term on the left-hand side of

Eq. 2.5-18 vanishes, and the Equation of motion reduces to:

r
@v

@t
¼ �=Pþ m=2vþ rg ð2:8-5Þ

and the Navier–Stokes equation for creeping flows reduces to:

r
@v

@t
¼ �=Pþ m=2vþ rg ð2:8-6Þ

On the other extreme of negligible viscosity, which is of little interest to the subject

matter of this book, but is added for the sake of comprehensiveness, the equation of motion

reduces to

r
@v

@t
þ rv � =v ¼ �=Pþ rg ð2:8-7Þ

which is the well-known Euler equation, after the Swiss mathematician Leonard Euler,

who derived it in 1775.

Finally, for the no-flow situation (v ¼ 0), the equation of motion reduces to

=P ¼ rg ð2:8-8Þ
which is the basic equation of hydrostatics.

10. Note that: �= � s ¼ m= � _cc ¼ m= =vþ ð=vÞy
h i

¼ m =2vþ =ð= � vÞ	 
 ¼ m=2v

11. Claude Louis Navier (1785–1836) was a French scientist who, using molecular arguments, derived the

equation in 1882; George Gabriel Stokes (1819–1903) was a British physicist who made many contributions to

the theory of viscous flow in the period 1845–1850.
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TABLE 2.4 The Navier–Stokes Equation in Several Coordinate Systems

Rectangular Coordinates (x, y, z)

r
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z

� �
¼ � @P

@x
þ m

@2vx

@x2
þ @2vx

@y2
þ @2vx

@z2

� �
þ rgx

r
@vy
@t

þ vx
@vy
@x

þ vy
@vy
@y

þ vz
@vy
@z

� �
¼ � @P

@x
þ m

@2vy

@x2
þ @2vy

@y2
þ @2vy

@z2

� �
þ rgy

r
@vz
@t

þ vx
@vz
@x

þ vy
@vz
@y

þ vz
@vz
@z

� �
¼ � @P

@x
þ m

@2vz

@x2
þ @2vz

@y2
þ @2vz

@z2

� �
þ rgz

Cylindrical Coordinates (r, �, z)

r
@vr
@t

þ vr
@vr
@r

þ vy

r

@vr
@y

� v2y
r
þ vz

@vr
@z

� �

¼ � @P

@r
þ m

@

@r

1

r

@

@r
rvrð Þ

� �
þ 1

r2
@2vr

@y2
� 2

r2
@vy
@y

þ @2vr

@z2

� �
þ rgr

r
@vy
@t

þ vr
@vy
@r

þ vy

r

@vy
@y

þ vrvy

r
þ vz

@vy
@z

� �

¼ � 1

r

@P

@y
þ m

@

@r

1

r

@

@r
rvyð Þ

� �
þ 1

r2
@2vy

@y2
þ 2

r2
@vr
@y

þ @2vy

@z2

� �
þ rgy

r
@vz
@t

þ vr
@vz
@r

þ vy

r

@vz
@y

þ vz
@vz
@z

� �

¼ � @P

@z
þ m

1

r

@

@r
r
@vz
@r

� �
þ 1

r2
@2vz

@y2
þ @2vz

@z2

� �
þ rgz

Spherical Coordinates (r, �, �)

r
@vr
@t

þ vr
@vr
@r

þ vy

r

@vr
@y

þ vf

r sin y
@vr
@f

� v2y þ v2f

r

 !

¼ � @P

@r
þ m r2vr � 2

r2
vr � 2

r2
@vy
@y

� 2

r2
vy cot y� 2

r2 sin y
@vf
@f

� �
þ rgr

r
@vy
@t

þ vr
@vy
@r

þ vy

r

@vy
@y

þ vf

r sin y
@vy
@f

þ vrvy

r
� v2f cot y

r

 !

¼ � 1

r

@P

@y
þ m r2vy þ 2

r2
@vr
@y

� vy

r2 sin2 y
� 2 cos y
r2 sin2 y

@vf
@f

� �
þ rgy

r
@vf
@t

þ vr
@vf
@r

þ vy

r

@vf
@y

þ vf

r sin y
@vf
@f

þ vfvr

r
þ vyvf

r
cot y

� �

¼ � 1

r sin y
@P

@f
þ m r2vf � vf

r2 sin2 y
þ 2

r2 sin y
@vr
@f

þ 2 cos y
r2 sin2y

@vy
@f

� �
þ rgf

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,

Wiley, New York, 1960. In these equations

r2 ¼ 1
r2

@
@r r2 @

@r

� �þ 1
r2 sin �

@
@� sin � @

@�

� �þ 1
r2 sin2 �

@2

@�2

 �
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Although polymeric melts are generally non-Newtonian, many problems in polymer

processing are initially solved using the Newtonian assumption, because these solutions

(a) provide simple results that help gain insight into the nature of the process; (b) provide

quick, rough, quantitative estimates; and (c) the rigorous non- Newtonian solution may

be too time-consuming for the problem at hand. Yet, for a true appreciation of polymer

processing, the non-Newtonian character of the material must be considered. The study of

non-Newtonian behavior forms an active branch of the science of rheology, and is

discussed in Chapter 3.

In the meantime, we will solve a number of flow problems that are highly relevant to

polymer processing problems, which demonstrate the rather straightforward use of the

equation of motion and continuity.

Example 2.5 Parallel Plate Flow The methodology for formulating and solving flow

problems involves the following well-defined and straightforward steps:

Step 1. Draw a schematic figure of the flow configuration, visualize the flow on physical

grounds, pick the most appropriate coordinate system, and make some sensible assump-

tions about the velocity components.

Step 2. Reduce the equation of continuity to the form appropriate for the problem at hand.

Step 3. Reduce the equation of motion or the Navier–Stokes equation to the form appropriate

for the problem at hand. Take advantage of the results of the equation of continuity.

Step 4. State the boundary and initial conditions, if any.

Step 5. Solve the differential equations for the velocity profiles, which then lead to the

volumetric flow rate expression, shear stress, and rate distribution, power consumption,

and so forth.

Step 6. Sketch out the velocity profiles and velocity gradient profiles and see if they are

reasonable for the problem at hand.

In this example, we consider the viscous, isothermal, incompressible flow of a Newtonian

fluid between two infinite parallel plates in relative motion, as shown in Fig. E2.5a. As is

evident from the figure, we have already chosen the most appropriate coordinate system for

the problem at hand, namely, the rectangular coordinate system with spatial variables x, y, z.

We placed the coordinate system at the stationary lower plate, with the coordinate y pointing

across the flow field, and z pointing in the direction of the flow. The upper plate is moving at

constant velocity V0 and the lower plate is stationary. Derive (a) the velocity profile; (b) the

flow rate; (c) the shear stress and shear rate distributions, and (d) the power consumption.

Solution This flow configuration is of great significance in polymer processing and it is

important to understand in depth. We therefore discuss it in some detail.

y

z

H

L

V0

Fig. E2.5a Two parallel plates in relative motion. The upper plate moves at a constant

velocity V0 and the lower plate is stationary.

NEWTONIAN FLUIDS 47



The infinite parallel plates construct may sound theoretical and impractical, but it is not.

The flow in screw extruder channels, between the rotor and the wall of an internal mixer or

between the rolls of calenders and roll-mills, to mention a few, can be considered to first

approximation as taking place locally between parallel plates in relative motion.

We assume a creeping laminar flow because, in all practical cases, the very high viscosities

of polymeric melts preclude turbulent flow. With increasing Reynolds number prior to

reaching turbulence, viscous dissipation heating and degradation will take place. The

following table, which illustrates characteristic values of some typical fluids, gives a sense of

the magnitude of viscosities of polymeric melts:

We also assume isothermal flow. Of course, no viscous flow can be truly isothermal,

because the friction between the sliding layers of fluid generates heat, called viscous

dissipation. But slow viscous flows in narrow channels can be assumed, at first approximation,

to be isothermal. This assumption greatly simplifies the solution and provides simple, useful

working equations.

We further assume that the flow is steady in time. We make this assumption because most

machines operate continuously, and even in reciprocating machines such as, for example,

injection-molding machines, the flow can be viewed instantaneously as steady state. Finally,

we assume that the fluid is incompressible and Newtonian, that the flow is fully developed, that

is, @vz=@z ¼ 0, and that the gravitational forces are negligible compared to viscous forces.

(a) Now we begin the actual solution of the problem. We start with the equation of conti-

nuity and, turning to Table 2.1, we find that, for an incompressible fluid (constant density), it

reduces to

@vx
@x

þ @vy
@y

þ @vz
@z

¼ 0 ðE2:5-1Þ

The third term on the left-hand side vanishes because we assumed fully developed flow, as

does the first term because we do not expect any flow in the neutral x direction. Thus we are

left with dvy=dy ¼ 0, which upon integration, yields vy ¼ C, where C is a constant. But vy
must equal zero on the plate surfaces and therefore, vy ¼ 0 everywhere.

Now we turn to the Navier–Stokes equation in Table 2.4. We take each component and

analyze it term by term, dropping those that equal zero. This simple process leads to the

following equations:

@P

@x
¼ 0 ðE2:5-2Þ

@P

@y
¼ 0 ðE2:5-3Þ

m
@2vz

@y2
¼ @P

@z
ðE2:5-4Þ

Characteristic Viscosities of Some Typical Fluids ðNs=m2Þ

Fluid Viscosity Character Fluid Viscosity Character

Air 10� 5 Gas Polymeric melts 102–106 toffee-like

Water 10� 3 Liquid Pitch 109 stiff

Olive oil 10� 1 Liquid Glass 1021 rigid

Glycerin 1 Thick liquid

48 THE BALANCE EQUATIONS AND NEWTONIAN FLUID DYNAMICS



Equations E2.5-2 and E2.5-3 tell us that the pressure P is not a function of x or y. Thus P

can only be a function of z. Considering Eq. E2.5-4, with partial derivatives replaced with

ordinary derivatives, we find that the left-hand side of the equation is a function only of y, the

right-hand side of the equation is a function only of z, and the only way this can happen is if

they both equal a constant:

m
d2vz

dy2
¼ dP

dz
¼ C ðE2:5-5Þ

This situation has a number of interesting implications. First, it implies that the pressure

gradient for such flows must be a constant, that is, the pressure changes (drops or rises—we do

not yet know which) linearly with distance. We can further conclude that, in principle, a

moving plate that drags liquid with it, as in this case, may, in principle, generate pressure in

the direction of flow and that this pressure will increase linearly with distance, just as pressure

drops linearly with distance, in pipe flow, for example.

Equation E2.5-5 can be integrated, but first we define the following dimensionless

variables: uz ¼ vz=V and x ¼ y=H. Since the pressure gradient is constant, we can replace it

by the pressure drop:

dP

dz
¼ PL � P0

L
ðE2:5-6Þ

where PL and P0 are the pressure at z ¼ 0 and z ¼ L, respectively. Clearly, if the pressure at

the exit is higher than at the entrance, we know that pressure rises in the direction of flow and

the pressure gradient is positive, and vice versa. Rewriting Eq. E2.5.6 in dimensionless form

gives:

d2uz

dx2
¼ H2

mVL0
PL � P0ð Þ ðE2:5-7Þ

which can be integrated with the boundary condition uzð0Þ ¼ 0 and uzð1Þ ¼ 1, to give:

uz ¼ x� xð1� xÞ H2

2mV0

PL � P0

L

� �
ðE2:5-8Þ

Clearly, the first term on the right-hand side expresses a linear velocity profile due to the drag

of the moving plate, and the second term is a parabolic profile due to the pressure gradient. We

will explore the velocity profile after we derive the flow rate.

(b) We obtain the flow rate by integrating the velocity over the cross section:

q ¼
ðH
0

vz dy ¼ V0H

ð1
0

uz dx

¼ V0H

2
� H3

12mL
PL � P0ð Þ

ðE2:5-9Þ

where q is the net flow rate per unit width, the first term on the right-hand side is the drag

flow qd:

qd ¼ V0H

2
ðE2:5-10Þ
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and the second term is the pressure flow qp:

qp ¼ H3

12mL
ðP0 � PLÞ ðE2:5-11Þ

For further insight into the flow rate equation, we can now rewrite Eq. E2.5-9 as follows:

dP

dz
¼ PL � P0

L
¼ 12m

H3
qd � qð Þ ðE2:5-12Þ

This equation now clearly demonstrates that the parallel plate geometry will generate pressure

if qd > q, that is, provided that the moving plate drags more fluid than is actually delivered.

Under these conditions the parallel-plate geometry becomes a pump. This requires a

restriction or die at the discharge end. We can further see that the pressure generation is

proportional to the viscosity. Therefore, the high viscosities encountered with polymeric melts

increase the device pressurization capability (of course, high viscosities also imply large

pressure drops over dies and restrictions). We can further see that, at constant discharge rate q,

increasing plate velocity will increase the pressure generation (by increasing qd).

Plate velocity in actual machines becomes tantamount to speed of rotation and becomes an

operating variable. Furthermore, we find that pressurization is inversely proportional with the

gap size to the cube, which becomes a sensitive design variable. The maximum pressure that can

be generated is obtained by setting q ¼ 0, to get

dP

dz

� �
max

¼ 6mV0

H2
ðE2:5-13Þ

Finally, it can easily be shown (see Problem 2.12) from Eq. E2.5.9 that, for a given net flow

rate q there is an optimum H ¼ 3q=V0 for a maximum pressure rise of

dP

dz

� �
max;q

¼ 6mV3
0

27q2
ðE2:5-14Þ

Equation E2.5-9 further indicates that, in the absence of a pressure drop, the net flow rate

equals the drag flow rate. Note that qp is positive if P0 > PL and pressure flow is in the

positive z direction and negative when PL > P0. The net flow rate is the sum or linear

superposition of the flow induced by the drag exerted by the moving plate and that caused by

the pressure gradient. This is the direct result of the linear Newtonian nature of the fluid, which

yields a linear ordinary differential equation. For a non- Newtonian fluid, as we will see in

Chapter 3, this will not be the case, because viscosity depends on shear rate and varies from

point to point in the flow field.

By dividing Eq. E2.5-11 by Eq. E2.5-10 we get a useful expression for the pressure-to-drag

flow ratio:

qp

qd
¼ q� qd

qd
¼ H2

6mLV0

P0 � PLð Þ ðE2:5-15Þ

Next we substitute Eq. E2.5-15 into Eq. E2.5-8 to yield:

uz ¼ xþ 3
qp

qd
xð1� xÞ ðE2:5-16Þ

We can plot the dimensionless velocity profile with pressure-to-drag flow ratio as a single

parameter. When this ratio is zero we get pure drag flow, when it assumes a value of �1, the
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net flow rate is zero, and when the value isþ1, the net flow rate is twice the drag flow rate. As

the value of this ratio increases, the velocity profile approaches a parabolic profile of pure

pressure flow between two stationary parallel plates. Figure E2.5b shows the characteristic

velocity profiles.

(c) By taking the derivative of the velocity we obtain the shear rate:

_ggyz ¼
dvz

dy
¼ V0

H

duz

dx
¼ V0

H
1þ 3 1� 2xð Þ qp

qd

� �
ðE2:5-17Þ

This equation shows that, when the pressure to drag flow ratio equals �1=3, the shear rate

at the stationary plate is zero, when it equals þ1=3, the shear rate at the moving plate is

zero, and when it equals zero, the shear is constant and equals V0=H. In this range the

velocity profile exhibits no extremum. In terms of the net flow rate, the condition of no

extremum in velocity is:

2qd

3
< q <

4qd

3
ðE2:5-18Þ

With the shear rate at hand, we can calculate the local viscous dissipation per unit volume.

From Table 2.3 we note that the only nonvanishing shear-stress component is tyz ¼ tzy which
is given by

tyz ¼ �m_ggyz ¼ �m
V0

H
1þ 3 1� 2xð Þ qp

qd

� �
ðE2:5-19Þ

and the stress at the moving plate tyz (1) becomes

tyzð1Þ ¼ �m
V0

H
1� 3

qp

qd

� �
ðE2:5-20Þ

Figure E2.5b depicts the shear rate and shear stress profiles normalized by the pure drag

flow values for a number of pressure-to-drag flow ratios.

V0

vz
uz  =

000

g yz

tyzShear stress

Shear rate
.

=  –1
qp

qd
= 0

qp

qd

qp

q
d

= 1

Fig. E2.5b Schematic representation velocity shear rate and shear stress profiles of a

Newtonian fluid between parallel plates.
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(d) The power input per unit area needed to drag the moving plate is given by

pw ¼ �V0tyzð1Þ ¼ m
V2
0

H
1� 3

qp

qd

� �
ðE2:5-21Þ

where the minus sign is introduced because, according to the sign convention adopted in this

book, the shear stress tyz (1) is the stress exerted by the fluid on the plate. The total power

input into a system of length L and width W is

Pw ¼ m
V2
0LW

H
1� 3

qp

qd

� �
ðE2:5-22Þ

For pressure-to-drag flow ratios above 1/3, the Pw becomes negative, implying that power

is flowing out of the system via the moving plate. In this case, the pressure drop is negative,

implying that an outside power source pressurized the liquid and some of that is extracted by

the moving (now restraining rather than forward dragging) plate, with the rest of the power

dissipated into heat. The specific power input, defined as the power input into a unit volume of

material leaving the system, is given by

Pw

qW
¼ m

V2
0L

Hq
1� 3

qp

qd

� �
¼ 2m

V0L

H2

1� 3
qp

qd

� �

1þ qp

qd

� � ðE2:5-23Þ

Clearly, the power input and the specific power input both vanish at a pressure-to-drag flow

ratio of 1/3, when the shear stress at the wall is zero. It is also worth noting that the specific

power input is proportional to viscosity and plate velocity, and inversely proportional to the

distance between the plates squared.

From Eq. E2.5-17 we can calculate the total viscous dissipation between the parallel

plates. The second invariant of the rate of strain tensor multiplied by the viscosity gives the

viscous dissipation per unit volume. From Table 2.3 we find that, for the case at hand, the

second invariant reduces to _gg2yz;; therefore, the total viscous energy dissipation (VED) between
the plates will be given by

s: _cc ¼ m _gg2 ¼ LHW

ð1
0

m_gg2yz dx ¼ mV2
0LW

H
1þ 3

qp

qd

� �2
" #

ðE2:5-24Þ

Now the difference between the total power input (Eq. E2.5-22) and the total viscous

dissipation (Eq. E2.5-24) is the power converted into pressure. Indeed, if we subtract the latter

from the former, we get exactly qðPL � P0Þ, which is the power input required for raising the

pressure. This pressure also will be converted into heat through a die, and therefore the

expression given in Eq. E2.5-23 correctly gives the total power input into the exiting fluid.

Example 2.6 Axial Drag and Pressure Flow between Concentric Cylinders The

accompanying figure provides a schematic representation of a wire-coating die. We wish

to analyze the flow of polymeric melt in the tip region of the die where the flow is confined

in an annular space created by an axially moving wire in a constant-diameter die. This section

determines the thickness of the coating. Polymer melt is forced into the die by an extruder at

high pressure, bringing it in touch with the moving wire. The wire moves at relatively high

speeds of up to 1000–2000 m/min. The wire drags with it the melt and the flow is a combined

pressure and drag flow. Derive expressions for (a) the velocity profile in the tip region, (b) the
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shear rate and stress profile, (c) an expression for the flow rate and (d) an expression for the

coating thickness.

In Region A, flow cross-section converges to a constant value in the tip Region A. The wire

moves at a constant speed.

Feed

Coated wire

Region BRegion A

Solution

(a) The flow boundaries are best described by a cylindrical coordinate system. We assume

an incompressible, Newtonian fluid flowing at steady state in a fully developed isothermal

flow. We visualize the flow with one nonvanishing velocity component, vzðrÞ, which is a

function of only r. The y direction is neutral and we do not expect flow in this direction.

Moreover, it is easy to show, along the lines of the previous example, that vr ¼ 0, and,

therefore, the components of the Navier–Stokes equation in cylindrical coordinates listed in

Table 2.4 reduce to:

@P

@r
¼ 0 ðE2:6-1Þ

@P

@y
¼ 0 ðE2:6-2Þ

@P

@z
¼ m

1

r

@

@r
r
@vz
@r

� �� �
ðE2:6-3Þ

Thus we find that the pressure is a function of only z and, since the right-hand side of

Eq. E2.6-3 is a function of only r, @P=@z ¼ constant. We can therefore rewrite this equation

as an ordinary differential equation and integrate it with boundary conditions vzðRiÞ ¼ V0

and vzðRoÞ ¼ 0, where Ri and Ro are the inner and outer radii, respectively, to give:

vz ¼ V0

ln r=Roð Þ
ln a

� �
þ R2

o

4m
� dP

dz

� �
1� r

Ro

� �2

� 1� a2
� � ln r=Roð Þ

ln a

" #
ðE2:6-4Þ

where a ¼ Ri=Ro. Note that the pressure gradient�ðdP=dzÞ ¼ ðP0 � PLÞ=L, where P0 and PL

are the pressures at the beginning of the tip region and at the exit, respectively, and L is the

length of the tip region, is positive because pressure drops in the direction of motion.

(b) Taking the derivative of Eq. E2.6-4 with respect to r gives:

_ggrz ¼
@vz
@r

¼ V0

ln a
� 1
r
� P0 � PLð Þ

4mL
2r � 1� a2ð Þ

ln a
� R

2
0

r

� �
ðE2:6-5Þ
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The shear stress can be obtained with Eq: E2.6-5 as follows:

trz ¼ �m _ggrz ¼
P0 � PLð Þ

4L
2r � 1� a2ð Þ

ln a
� R

2
0

r

� �
� mV0

ln a
� 1
r

ðE2:6-6Þ

(c) The flow rate can be obtained by integrating Eq. E2.6-4 as follows:

Q ¼ pR4
0 P0 � PLð Þ 1� a2ð Þ

8mL
1þ a2 þ 1� a2

ln a

� �
� pR2

0V0 a2 þ 1� a2

2 ln a

� �
ðE2:6-7Þ

Note that the flow rate increases with the pressure drop and decreases with increasing wire

speed at constant die geometry.

(d) We define the polymer coating thickness as d. The circular cross-section area of the

coating lay is given as

S ¼ p Ri þ dð Þ2�pR2
i ¼ pd 2Ri þ dð Þ ðE2:6-8Þ

In terms of the mass balance in an incompressible fluid, we have

Q ¼ V0S ¼ pV0d 2Ri þ dð Þ ðE2:6-9Þ
Equation E2.6-9 can be rewritten as

d2 þ 2Rid� K ¼ 0 ðE2:6-10Þ
where

K ¼ Q

pV0

ðE2:6-11Þ

Solving Eq. E2.6-10 according to the limit of d > 0 gives

d ¼ Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

R2
i

� 1

s" #
ðE2:6-12Þ

If an assumption of K=R2
i � 1 is made, the preceding equation can be rewritten by first taking

two terms of a binomial expansion for it:

d ¼ K

2Ri

¼ Q

2pRiV0

ðE2:6-13Þ

Inserting Eq. E2.6.7 into the preceding equation results in

d ¼ R4
0 P0 � PLð Þ 1� a2ð Þ

16mLRiV0

1þ a2 þ 1� a2

ln a

� �
� R2

0

2Ri

a2 þ 1� a2

2 ln a

� �
ðE2:6-14Þ

Note that the thickness of the coating layer is proportional to the pressure drop and inversely

proportional to wire speed.

2.9 THE MACROSCOPIC ENERGY BALANCE AND THE BERNOULLI

AND THERMAL ENERGY EQUATIONS

Polymer processing operations, by and large, are nonisothermal. Plastics pellets are

compacted and heated to the melting point by interparticle friction, solid deformation
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beyond the yield point, and conduction. The molten polymer is heated or cooled by

temperature-controlled processing machine walls, and the deforming viscous polymer

melt constantly undergoes heating by internal viscous dissipation. Therefore, we need to

account for nonisothermal effects via appropriate equations.

The starting point is the first law of thermodynamics, which states mathematically the

great principle of conservation of energy:

dE ¼ dQþ dW ð2:9-1Þ
where E is the total energy of a system, dQ is the heat added to the system, and dW is the

work done on the system. The differential d signifies that the changes on the right-hand

side of the equation are path dependent. The rate of change of the energy in the systems is

given by:

dE

dt

����
system

¼ _QQþ _WW ð2:9-2Þ

where

Esystem ¼
ð
�v
er d�V ð2:9-3Þ

and where e is the specific energy or energy per unit mass. Substituting the energy E and

specific energy e for P and p, respectively, in the Reynolds Transport Theorem, Eq. 2.3-2

we get the macroscopic total energy balance equation:

dE

dt
¼ @

@t

ð
V

re dV þ
ð
S

rev � n dS ¼ _QQþ _WW ð2:9-4Þ

The total rate of heat added to the control volume through the control surfaces can be

expressed in terms of the local heat flux q as follows:

_QQ ¼ �
ð
S

q � n dS ð2:9-5Þ

where the negative sign was introduced to be consistent with _QQ, which defined heat added

to the system as positive (recall that n is the outward unit normal vector). The rate of work

done on the control volume through the control surfaces and by gravitation is given by

_WW ¼ �
ð
S

p � n � v dSþ
ð
V

rg � v dV ð2:9-6Þ

Substituting Eqs. 2.9-5 and 2.9-6 into Eq. 2.9-4 gives

@

@t

ð
V

re dV þ
ð
S

re v � n dSþ
ð
S

q � n dSþ
ð
S

p � n � v dS�
ð
V

rg � v dV ¼ 0 ð2:9-7Þ

and using Gauss’ Divergence Theorem, we can rewrite it as

@

@t
ðreÞ þ = � vreþ = � qþ = � p � v� rg � v ¼ 0 ð2:9-8Þ
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Next we break the total specific energy into specific kinetic and internal energies:

e ¼ 1

2
v2 þ u ð2:9-9Þ

to give

@

@t

1

2
rv2 þ ru

� �
þ = � 1

2
rv2 þ ru

� �
vþ = � qþ = � p � v� rg � v ¼ 0 ð2:9-10Þ

Equation 2.9-10 is the total differential energy balance, and it contains both thermal

and mechanical energies. It is useful to separate the two. We can do this by taking the

dot product of the equation of motion with the velocity vector v to get the mechanical

energy balance equation:

@

@t
ðrv2Þ þ = � 1

2
rv2

� �
vþ v � = � pð Þ � rv � g ¼ 0 ð2:9-11Þ

Integration of Eq. 2.9-11 leads to the macroscopic mechanical energy balance

equation, the steady-state version of which is the famous Bernoulli equation. Next

we subtract Eq. 2.9-11 from Eq. 2.9-10 to obtain the differential thermal energy-balance

equation:

@

@t
ruð Þ þ = � ruð Þvþ = � qþ p : =v ¼ 0 ð2:9-12Þ

Substituting p ¼ Pdþ s, we get:

@

@t
ruð Þ

rate of increase
in internal energy
per unit volume

¼ �= � ruð Þv
net rate of
addition of

internal energy
by convective
transport per
unit volume

�= � q
rate of internal
energy addition
by conduction
per unit volume

�P = � vð Þ
reversible rate
of internal

energy increase
per unit volume

�s : =v
irreversible

rate of internal
energy increase
per unit volume

by viscous dissipation

ð2:9-13Þ

or

r
Du

Dt
¼ �= � q� P = � vð Þ � s : =v ð2:9-14Þ

This equation simply states that the increase in internal energy of a fluid element riding

with the stream is due to the heat flux, the reversible increase of internal energy per unit

volume by compression, and viscous dissipation or the irreversible conversion of internal

friction to heat. Should there be another type of heat source (e.g., chemical reaction), it can

be added to the equation.

The heat flux can be expressed in terms of temperature gradient by the Fourier

equation:

q ¼ �k=T ð2:9-15Þ
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and the internal energy in terms of enthalpy u ¼ h� P=r; which in turn is expressed in

terms of specific heat to give12 the two following expressions for the equation of change of

temperature:

rCv

DT

Dt
¼ = � k=T � T

@P

@T

� �
r
= � vð Þ � s : =v

rCp

DT

Dt
¼ = � k=T � @ ln r

@ ln T

� �
P

DP

Dt
� s : =v

ð2:9-16Þ

The first equation is listed in rectangular, cylindrical, and spherical coordinates in

Table 2.5. For incompressible Newtonian fluids with constant thermal conductivity, Eq.

2.9-16 reduces to:

rCv

DT

Dt
¼ kr2T þ 1

2
m _cc : _ccð Þ ð2:9-17Þ

which is listed in various coordinate systems in Table 2.6.

Clearly, then, the temperature dependence of viscosity, on the one hand, and the viscous

dissipation term that depends on the magnitude of the local rate of deformation, on the

other hand, couple the energy equation with the equation of motion, and they must be

solved simultaneously.

Example 2.7 Nonisothermal Parallel Plate Drag Flow with Constant Thermophysical

Properties Consider an incompressible Newtonian fluid between two infinite parallel plates

at temperatures Tð0Þ ¼ T1 and TðHÞ ¼ T2, in relative motion at a steady state, as shown in

Fig. E2.7 The upper plate moves at velocity V0. (a) Derive the temperature profile between the

plates, and (b) determine the heat fluxes at the plates.

Solution

(a) By assuming constant thermophysical properties, the equation of motion and energy

are decoupled. The velocity profile between the plates is simple drag flow vz ¼ V0ðy=HÞ, and
all other velocity components equal zero. We now turn to the equation of energy in rectangular

coordinates in Table 2.6, which reduces to:

k
d2T

dy2
þ m

dvz

dy

� �2

¼ 0 ðE2:7-1Þ

Substituting the linear drag velocity profile ðdvz=dyÞ ¼ V0=H into Eq. 2.7-1, and defining

x ¼ y=H subsequent to integration, yields:

T � T1

T2 � T1
¼ xþ Br

2
x 1� xð Þ ðE2:7-2Þ

where Br is the dimensionless Brinkman number defined as

Br ¼ mV2
0

k T2 � T1ð Þ ðE2:7-3Þ

12. For details see R. Byron Bird, Waren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, 2nd ed.,

Wiley, New York, 2002, pp. 336–340.
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TABLE 2.5 The Equation of Energy in Terms of Energy and Momentum Fluxes in Several

Coordinate Systems

Rectangular Coordinates (x, y, z)

rCv

@T

@t
þ vx

@T

@x
þ vy

@T

@y
þ vz

@T

@z

� �

¼ � @qx
@x

þ @qy
@y

þ @qz
@z

� �
� T

@P

@T

� �
r

@vx
@x

þ @vy
@y

þ @vz
@z

� �

� txx
@vx
@x

þ tyy
@vy
@y

þ tzz
@vz
@z

� �

� txy
@vx
@y

þ @vy
@x

� �
þ txz

@vx
@z

þ @vz
@x

� �
þ tyz

@vy
@z

þ @vz
@y

� �� �

Cylindrical Coordinates (r, y, z)

rCv

@T

@t
þ vr

@T

@r
þ vy

r

@T

@y
þ vz

@T

@z

� �

¼ � 1

r

@

@r
rqrð Þ þ 1

r

@qy
@y

þ @qz
@z

� �
� T

@P

@T

� �
r

1

r

@

@r
rvrð Þ þ 1

r

@vy
@y

þ @vz
@z

� �

� trr
@vr
@r

þ tyy
1

r

@vy
@y

þ vr

� �
þ tzz

@vz
@z

� �

� try r
@

@r

vy

r

 �
þ 1

r

@vr
@y

� �
þ trz

@vz
@r

þ @vr
@z

� �
þ tyz

1

r

@vz
@y

þ @vy
@z

� �� �

Spherical Coordinates (r, y, f)

rCv

@T

@t
þ vr

@T

@r
þ vy

r

@T

@y
þ vf

r sin y
@T

@f

� �

¼ � 1

r2
@

@r
r2qr
� �þ 1

r sin y
@

@y
qysin yð Þ þ 1

r sin y
@qf
@f

� �

� T
@P

@T

� �
r

1

r2
@

@r
r2vr
� �þ 1

r sin y
@

@y
vysin yð Þ þ 1

r sin y
@vf
@f

� �

� trr
@vr
@r

þ tyy
1

r

@vy
@y

þ vr

� �
þ tff

1

r sin y
@vf
@f

þ vr

r
þ vy cot y

r

� �� �

� try r
@

@r

vy

r

 �
þ 1

r

@vr
@y

� �
þ trf r

@

@r

vf

r

 �
þ 1

r sin y
@vr
@f

� ��

þ tyf
sin y
r

@

@y
vf

sin y

 �
þ 1

r sin y
@vy
@f

� ��

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,

Wiley, New York, 1960.
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TABLE 2.6 The Equation of Thermal Energy in Terms of Transport Properties (for

Newtonian fluids at constant q; l and k. Note that constant q implies that Cv ¼ Cp)

Rectangular Coordinates (x, y, z)

rCv

@T

@t
þ vx

@T

@x
þ vy

@T

@y
þ vz

@T

@z

� �

¼ k
@2T

@x2
þ @2T

@y2
þ @2T

@z2

� �
þ 2m

@vx
@x

� �2

þ @vy
@y

� �2

þ @vz
@z

� �2
( )

þ m
@vx
@y

þ @vy
@x

� �2

þ @vx
@z

þ @vz
@x

� �2

þ @vy
@z

þ @vz
@y

� �2
( )

Cylindrical Coordinates (r, y, z)

rCv

@T

@t
þ vr

@T

@r
þ vy

r

@T

@y
þ vz

@T

@z

� �

¼ k
1

r

@

@r
r
@T

@r

� �
þ 1

r2
@2T

@y2
þ @2T

@z2

� �
þ 2m

@vr
@r

� �2

þ 1

r

@vy
@y

þ vr

� �� �2
þ @vz

@z

� �2
( )

þ m r
@

@r

vy

r

 �
þ 1

r

@vr
@y

� �2
þ @vz

@r
þ @vr

@z

� �2

þ 1

r

@vz
@y

þ @vy
@z

� �2
( )

Spherical Coordinates (r, y, f)

rCv

@T

@t
þ vr

@T

@r
þ vy

r

@T

@y
þ vf

r sin y
@T

@f

� �

¼ k
1

r2
@

@r
r2
@T

@r

� �
þ 1

r2siny
@

@y
sin y

@T

@y

� �
þ 1

r2sin2y
@2T

@f2

� �

þ 2m
@vr
@r

� �2

þ 1

r

@vy
@y

þ vr

r

� �2

þ 1

r sin y
@vf
@f

þ vr

r
þ vy cot y

r

� �2
( )

þ m r
@

@r

vy

r

 �
þ 1

r

@vr
@y

� �2
þ r

@

@r

vf

r

 �
þ 1

r sin y
@vr
@f

� �2(

þ sin y
r

@

@y
vf

sin y

 �
þ 1

r sin y
@vy
@f

� �2)

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,

Wiley, New York, 1960.
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Fig. E2.7 Schematic temperature profiles between the parallel plates in relative motion at

different temperatures with temperature-independent physical properties.
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which measures the ratio of the rate of thermal heat generation by viscous dissipation to rate of

heat conduction. Clearly, in the absence of viscous dissipation, the temperature profile between

the plates is linear; whereas, the contribution of viscous dissipation is a parabolic, and the linear

combination of the two yields the desired temperature profile as depicted in Fig. E2.7.

(b) The heat fluxes at the two plates are obtained by differentiating Eq. E2.7-2, and

substituting it at y ¼ 0 and y ¼ H into the Fourier equation to give:

qyðHÞ ¼ �k
T2 � T1

H
þ mV2

0

2H
ðE2:7-4Þ

qyð0Þ ¼ �k
T2 � T1

H
� mV2

0

2H
ðE2:7-5Þ

If T2 > T1; qyð0Þ will always be negative. The flux of heat into the lower plate is the sum of

conduction and one half of the rate of heat generated by viscous dissipation. At the upper plate,

on the other hand, the flux may be either negative (into the fluid) or positive (into the plate) or

zero, depending on the relative values of heat flux due to conduction and viscous dissipation.

2.10 MASS TRANSPORT IN BINARY MIXTURES

AND THE DIFFUSION EQUATION

Subsequent to polymer manufacture, it is often necessary to remove dissolved volatiles, such

as solvents, untreated monomer, moisture, and impurities from the product. Moreover,

volatiles, water, and other components often need to be removed prior to the shaping step.

For the dissolved volatiles to be removed, they must diffuse to some melt–vapor interface.

This mass-transport operation, called devolatilization, constitutes an important elementary

step in polymer processing, and is discussed in Chapter 8. For a detailed discussion of

diffusion, the reader is referred to the many texts available on the subject; here we will only

present the equation of continuity for a binary system of constant density, where a low

concentration of a minor component A diffuses through the major component:

DCA

Dt
¼ DAB=

2cA þ _RRA ð2:10-1Þ

where the diffusivity DAB was assumed constant, cA is the molar concentration of the

species A, and _RRA is the molar rate of production of A per unit volume (e.g., by chemical

reaction). The equation, containing the flux and source terms, is identical in form to

Eq. 2.9-17, hence, the components of the equation in the various coordinate systems can be

easily obtained from Table 2.6.

2.11 MATHEMATICAL MODELING, COMMON BOUNDARY

CONDITIONS, COMMON SIMPLIFYING ASSUMPTIONS,

AND THE LUBRICATION APPROXIMATION

Mathematical Modeling

Engineering design, analysis, control, optimization, trouble shooting, and any other

engineering activity related to specific industrial processes, machines, or structures can

best be performed using a quantitative study of effect of the parameters as well as of the
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design and process variables on the process, machine, or structure. In any of these

contexts, this undertaking calls for mathematical modeling13 of the specific entity. Hence,

engineering mathematical modeling, as the name implies, refers to the attempt to mimic

(describe) the actual engineering entity through mathematical equations, which will

always contain simplifications about the nature of the substances involved, the relative

magnitudes of the various physical effects, and the geometry of the space in which the

phenomena take place. But ‘‘simplification’’ is not quite the right definition for what is

done in modeling. A better description would be construction of analogs. These may be

physical analogs or mental analogs, which are amenable to mathematical formulation. A

successful modeler is someone with a thorough understanding of the physical mecha-

nisms, who is imaginative enough to create the analog in such a way that it captures the

essential elements of the process, and is then able to cast it into mathematical equations.

Aris (3) more formally defined a mathematical model thus: ‘‘a system of equations, �,
is said to be a model of prototypical system, S, if it is formulated to express the laws of S

and its solution is intended to represent some aspect of the behavior of S.’’ Seinfeld and

Lapidus (4) gave a more specific definition: ‘‘Mathematical model is taken to mean the

formulation of mathematical relationships, which describe the behavior of actual systems

such that the dependent and independent variables and parameters of the model are

directly related to physical and chemical quantities in the real system.’’

All the mathematical formulations presented in the following chapters are

mathematical models of polymer processing subsystems and systems that generally

consist of a series of intricate, mostly transport-based, physical phenomena occurring in

complex geometrical configurations.

Clearly, then, a mathematical model is always an approximation of the real system. The

better the model, the closer it will approximate the real system.

It is worth noting at this point that the various scientific theories that quantitatively and

mathematically formulate natural phenomena are in fact mathematical models of nature.

Such, for example, are the kinetic theory of gases and rubber elasticity, Bohr’s atomic

model, molecular theories of polymer solutions, and even the equations of transport

phenomena cited earlier in this chapter. Not unlike the engineering mathematical models,

they contain simplifying assumptions. For example, the transport equations involve the

assumption that matter can be viewed as a continuum and that even in fast, irreversible

processes, local equilibrium can be achieved. The paramount difference between a

mathematical model of a natural process and that of an engineering system is the required

level of accuracy and, of course, the generality of the phenomena involved.

An engineering mathematical model may consist of a single algebraic equation, sets of

partial differential equations, or any possible combination of various kinds of equations

and mathematical operations, often in the form of large computer programs. Indeed, the

revolutionary developments in computer technology have immensely increased the

modeling possibilities, their visualization and their interpretation, bringing all engineering

models much closer to the real process. They have also vastly expanded the practical use of

numerical solutions such as finite difference methods and finite elements.

The quantitative study of the process, which as we stressed at the outset, is the reason

for modeling, is called simulation. But modeling and simulation have useful functions

13. The word ‘‘model’’ derives from the Latin wordmoduswhich means a ‘‘measure,’’ hinting toward a change in

scale.
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beyond the quantitative study of the process. An attempt to build a model for a complex

process requires first of all a clear definition of objectives, which is often both useful and

educational. In addition, by repeated simulations, a better understanding of the process is

achieved, greatly improving our insight and developing our engineering intuition. Using a

model, we can study extrapolation or scale-up problems and the effect of individual

variables, and explore sensitivity and stability problems. All of these are often difficult,

costly, or even impossible to carry out in the actual processes.

Model building consists of assembling sets of various mathematical equations, originating

from engineering fundamentals, such as the balance equations which, together with the

appropriately selected boundary conditions, bear the interrelations between variables and

parameters corresponding to those in the actual processes. Modeling a complex process, such

as a polymer processing operation, is done by breaking it down into clearly defined subsys-

tems. These are then assembled into the complete model. The latter is tested for experimental

verification. A mathematical model, no matter how sophisticated and complicated, is of little

use if it does not reflect reality to a satisfactory degree as proved by experimentation.

There are various ways to classify mathematical models (5). First, according to the

nature of the process, they can be classified as deterministic or stochastic. The former

refers to a process in which each variable or parameter acquires a certain specific value or

sets of values according to the operating conditions. In the latter, an element of uncertainty

enters; we cannot specify a certain value to a variable, but only a most probable one.

Transport-based models are deterministic; residence time distribution models in well-

stirred tanks are stochastic.

Mathematical models can also be classified according to the mathematical foundation

the model is built on. Thus we have transport phenomena–based models (including most

of the models presented in this text), empirical models (based on experimental

correlations), and population–based models, such as the previously mentioned residence

time distribution models. Models can be further classified as steady or unsteady, lumped

parameter or distributed parameter (implying no variation or variation with spatial

coordinates, respectively), and linear or nonlinear.

In polymer processing, the mathematical models are by and large deterministic (as are

the processes), generally transport based, either steady (continuous process, except when

dynamic models for control purposes are needed) or unsteady (cyclic process), linear

generally only to a first approximation, and distributed parameter (although when the

process is broken into small, finite elements, locally lumped-parameter models are used).

Common Simplifying Assumptions

In the examples discussed so far, as well as those to be discussed throughout this book,

several common simplifying assumptions are introduced without proof or discussion. Their

validity for polymeric materials is not always obvious and they merit further discussion.

The No-slip Condition The no-slip condition implies that, at a solid–liquid interface,

the velocity of the liquid equals that of the solid surface. This assumption, based on

extensive experimentation, is widely accepted in fluid mechanics, though its validity is not

necessarily obvious.

The slip of viscoelastic polymeric materials (and flow instabilities) was reviewed in

detail by Denn (6). Apparent slip at the wall was observed with highly entangled linear

polymers, but not with branched polymers or linear polymers with insufficient numbers of
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entanglements per chain. The slip was observed at stresses below the onset of visible

extrudate distortions. Yet more advanced experimental tools need to be developed to

examine slip and its length scales.

Three theories were proposed to explain wall-slip: (a) adhesive failure at the wall, (b)

cohesive failure within the material as a result of disentanglement of chains in the bulk and

chains absorbed on the wall, and (c) the creation of a lubricating surface layer at the wall

either by a stress-induced transition, or by a lubricating additive. If the polymer contains

low molecular weight components or slip-additives, their diffusion to the wall will create a

thin lubricating layer at the wall, generating apparent slip.

Slip at the wall is closely related to extrudate instabilities, but in normal flow situations

within machines, in virtually all but exceptional cases, the no-slip condition is assumed for

solving flow problems.

Liquid–liquid interface At the interface between two immiscible liquids, the boundary

conditions that must be satisfied are (a) a continuity of both the tangential and the normal

velocities (this implies a no-slip condition at the interface), (b) a continuity of the shear

stress, and (c) the balance of the difference in normal stress across the interface by the

interfacial (surface) force. Thus the normal stresses are not continuous at the interface, but

differ by an amount given in the following expression:

P1 � P0 ¼ G
1

R1

� 1

R2

� �
ð2:11-1Þ

where P1 � P0 is the pressure difference, due to the surface tension G, action on a curved

surface of radii of curvature of R1 and R2.

The Steady State Assumption A physical process has reached a steady state when a

stationary observer, located at any point of the space where the process is taking place,

observes no changes in time. Mathematically, this statement reduces to the condition

where, in the field equations describing the process, all the @=@t terms vanish. In reality,

processes are very rarely truly steady. Boundary conditions, forcing functions, system

resistance, and composition or constitution of the substances involved change periodically,

randomly, or monotonically by small amounts. These changes bring about process response

fluctuations. In such cases the process can still be treated as if it were steady using the

pseudo–steady state approximation.

To illustrate this approximation, let us consider a pressure flow in which the driving-

force pressure drop varies with time. We set @r=@t and @v=@t in the equations of

continuity and motion, respectively, equal to zero and proceed to solve the problem as if it

were a steady-state one, that is, we assume �P to be constant and not a function of time.

The solution is of the form v ¼ vðxi;�PðtÞ, geometry, etc:Þ. Because�Pwas taken to be a

constant, v is also a constant with time. The pseudo–steady-state approximation

‘‘pretends’’ that the foregoing solution holds for any level of �P and that the functional

dependence of v on time is vðxi; tÞ ¼ vðxi;�PðtÞ, geometry, etc:Þ. The pseudo–steady

state approximation is not valid if the values of �ðrvÞ=�t (�t being the characteristic

time of fluctuation of �P) obtained using this approximation contribute to an appreciable

fraction of the mean value of the applied �P.

The Constant Thermophysical-Properties Assumption The last commonly used set of

assumptions in liquid flow (isothermal, as well as nonisothermal) and in conductive heat
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transfer is to treat k, Cp, and r as constant quantities, independent of T and P. In polymer

processing, where both heat transfer and flow take place, typical temperature variations

may reach up to 200 �C and pressure variations, 50 MN/m2. Under such significant variations,

the density of a typical polymer would change by 10 or 20%, depending on whether it is

amorphous or crystalline, while k and Cp would undergo variations of 30 to 40%.

Under normal conditions, when solving momentum and energy equations, we can usually

assume the polymer melt to be incompressible, but the melt density at the prevailing

pressures and temperatures should be carefully evaluated. Assuming constant Cp and k

(taken at the average temperature), though it may affect the results of heat transfer or

coupled heat transfer and flow in polymer processing, do give very good approximations.

The Lubrication Approximation

In polymer processing, we frequently encounter creeping viscous flow in slowly tapering,

relatively narrow, gaps as did the ancient Egyptians so depicted in Fig. 2.5. These flows are

usually solved by the well-known lubrication approximation, which originates with the

famous work by Osborne Reynolds, in which he laid the foundations of hydrodynamic

lubrication.14 The theoretical analysis of lubrication deals with the hydrodynamic behavior

of thin films from a fraction of a mil (10� 3 in) to a few mils thick. High pressures of the

Fig. 2.5 Lubrication of a sledge used to transport the statue of Ti in ancient Egypt, about 2400

B.C. [Reprinted by permission from G. Hähner and N. Spencer, ‘‘Rubbing and Scrubbing,’’ Physics

Today, September, 22 (1998).]

14. Osborne Reynolds published his monumental paper on lubrication in 1886 (Phil. Trans. R. Soc., 177,

157–234). The paper was entitled ‘‘On the Theory of Lubrication and Its Application to Mr. Beauchamps Tower’s

Experiments.’’ Mr. Tower was an engineer working for the railroads who was trying to understand the mechanism

of lubrication of railroad cars. He observed experimentally that a very thin layer of lubricating oil appears to be

able to support the huge load of a railroad car. Unable to explain these observations, he turned to Reynolds.

Honoring Reynolds contribution to the field of lubrication, the commonly used engineering unit for viscosity,

lbfs/in
2 , is called a ‘‘reyn’’ (just as the unit ‘‘poise’’ is named after Poiseuille).
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order of thousands of psi (millions of newtons per square meter) may develop in these films

as a result of the relative motion of the confining walls. In polymer processing we are

generally dealing with films that are several orders of magnitude thicker, but since the

viscosity of polymeric melts is also several orders of magnitude higher than the viscosity of

lubricating oils, the assumptions leading to the lubrication approximation are valid in

polymer processing as well. Next we review the principles of hydrodynamic lubrication.

Consider a narrow two-dimensional gap with slowly varying thickness in the x,z plane

with the containing wall in relative motion. Specifically, the characteristic length in the x,z

plane is much larger than the characteristic length in the perpendicular direction. Without

loss in generality, we can assume that the flow is confined between a flat surface moving in

the x,z, plane and a slowly undulating fixed surface at distance H(x,z) from the flat plate, as

shown in Fig. 2.6.

According to the lubrication approximation, we can quite accurately assume that

locally the flow takes place between two parallel plates at H(x,z) apart in relative motion.

The assumptions on which the theory of lubrication rests are as follows: (a) the flow is

laminar, (b) the flow is steady in time, (c) the flow is isothermal, (d) the fluid is

incompressible, (e) the fluid is Newtonian, (f) there is no slip at the wall, (g) the inertial

forces due to fluid acceleration are negligible compared to the viscous shear forces, and (h)

any motion of fluid in a direction normal to the surfaces can be neglected in comparison

with motion parallel to them.

According to these assumptions, the only nonvanishing velocity components are vx
and vz, and the equations of continuity and motion in the Cartesian coordinate system

in Tables 2.1 and 2.4 reduce, respectively, to:

@vx
@x

þ @vz
@z

¼ 0 ð2:11-2Þ
@P

@x
¼ m

@2vx

@y2
ð2:11-3Þ

@P

@y
¼ 0 ð2:11-4Þ

@P

@z
¼ m

@2vz

@y2
ð2:11-5Þ

H(x,z)

VzVx

V

y

x

z

Stationary plate

Flat moving plate

Fig. 2.6 Flow region formed by two closely spaced plates with variable gap H(x,z). The lower

plate is flat and moves at velocity V. The upper plate is slowly undulating.
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Equation 2.11-4 implies that there is no transverse pressure gradient. The boundary

conditions for solving the equations are vxðHÞ ¼ vzðHÞ ¼ 0 and vxð0Þ ¼ Vx; vzð0Þ ¼ Vz.

Equations 2.11-3 and 2.11-5 can be directly integrated to give the velocity profiles,

recalling that P is not a function of y:

vxðyÞ ¼ Vx 1� y

H

 �
þ yH

2m
@P

@x

� �
y

H
� 1

 �
ð2:11-6Þ

vzðyÞ ¼ Vz 1� y

H

 �
þ yH

2m
@P

@z

� �
y

H
� 1

 �
ð2:11-7Þ

which upon integration gives the volumetric flow rates per unit width, qx and qz:

qx ¼ VxH

2
þ H3

12m
� @P

@x

� �
ð2:11-8Þ

qz ¼ VzH

2
þ H3

12m
� @P

@z

� �
ð2:11-9Þ

The equation of continuity is next integrated over y:

ðH
0

@vx
@x

þ @vz
@z

� �
dy ¼ 0 ð2:11-10Þ

and substituting Eqs. 2.11-6 and 2.11-7 into Eq. 2.11-10 gives

@

@x
H3 @P

@x

� �
þ @

@z
H3 @P

@z

� �
¼ 6m

@H

@x
Vx þ 6m

@H

@z
Vz ð2:11-11Þ

which is known as the Reynolds equation for incompressible fluids. By solving it for any

H(x,z) the two-dimensional pressure distribution P(x,z) is obtained, from which the local

pressure gradients can be computed and, via Eqs. 2.11-6 to 2.11-9, the local velocity

profiles and flow rates obtained.

The lubrication approximation facilitates solutions to flow problems in complex geometries,

where analytical solutions either cannot be obtained or are lengthy and difficult. The utility of

this approximation can well be appreciated by comparing the almost exact solution of pressure

flow in slightly tapered channels to that obtained by the lubrication approximation.

The lubrication approximation as previously derived is valid for purely viscous

Newtonian fluids. But polymer melts are viscoelastic and also exhibit normal stresses in

shearing flows, as is discussed in Chapter 3; nevertheless, for many engineering

calculations in processing machines, the approximation does provide useful models.

Example 2.8 Flow between Two Infinite Nonparallel Plates in Relative Motion
Consider an incompressible Newtonian fluid in isothermal flow between two non-parallel

plates in relative motion, as shown in Fig. E2.8, where the upper plate is moving at constant

velocity V0 in the z direction. The gap varies linearly from an initial value of H0 to H1 over

length L, and the pressure at the entrance is P0 and at the exit P1. Using the lubrication

approximation, derive the pressure profile.
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Solution We can gain insight into the nature of the flow if we first consider the special case

where the pressure at the entrance P0 equals the pressure at the exit P1. Figure E2.8 shows the

schematic velocity profiles at different locations. At a steady state, the net volumetric flow rate of

an incompressible fluid must be constant. Since the gap between the plates is wide at the entrance

and narrow at the exit, the drag flow decreases linearly from entrance to exit. Hence, in order to

maintain a uniform net flow rate, pressure must initially rise (with opposing pressure flow redu-

cing drag flow), and drop toward the exit (with the pressure flow augmenting the drag flow).

Clearly, the pressure profile must reach a maximum, at which point the pressure gradient is

zero and the flow is pure drag flow. Of course, if P0 6¼ P1 the pressure may rise continuously,

drop continuously, or go through a maximum, depending on the conditions.

The Reynolds equation (Eq. 2.11-11) for one-dimensional flow, as in the case at hand,

reduces to:

d

dz
H3 dP

dz

� �
¼ 6mV0

dH

dz
ðE2:8-1Þ

where z is the flow direction. Equation E2.8-1 can be integrated with respect to z to give

H3 dP

dz
¼ 6mV0H þ C1 ðE2:8-2Þ

where C1 is an integration constant, which can be conveniently expressed in terms of H*

defined as the separation between the plates where dP=dz ¼ 0. If the pressure exhibits a

maximum within 0	 z	 L, then H* is the separation between the plates at that location; if

the pressure profile exhibits no maximum in this range, the mathematical function describing

the pressure as a function of z will still have a maximum at z5 0 or z4L, and H* will be the

‘‘separation’’ between the virtual plates extended to that point. Thus, Eq. E2.8-2 can be

written as

dP

dz
¼ 6mV0

H � H


H3
ðE2:8-3Þ

and integrated to give the pressure profile:

P ¼ P0 þ 6mV0

ðz
0

H � H


H3
dz ðE2:8-4Þ

L

H0

H1

V0

Pressure-rise region

Drag flow

Pressure-drop region

Fig. E2.8 Two non-parallel plates in relative motion, with schematic velocity profiles

corresponding to a pressure-rise zone followed by a pressure-drop zone when entrance and

exit pressures are equal.
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where Pð0Þ ¼ P0. For a constant taper, the dimensionless gap size as a function of distance is

given by:

z ¼ z0 � z0 � 1ð Þ z
L

ðE2:8-5Þ

where z ¼ H=H1 and z0 ¼ H0=H1. Substituting Eq. E2.8-5 into Eq. E2.8-4 and integrating,

the latter gives the desired pressure profile:

P ¼ P0 þ 6mV0L

H0H1

z0 � z
z z0 � 1ð Þ �

q

V0H0

z20 � z2

z2 z0 � 1ð Þ

� �
ðE2:8-6Þ

where q is the net flow rate per unit width:

q ¼ 1

2
V0H


 ðE2:8-7Þ

The pressure distribution therefore depends on a number of variables: geometrical (H0, H1, and

L), operational (V0 and q), and physical properties (m). The maximum pressure that can be

attained is at z ¼ 1 ðz ¼ LÞ, at closed discharge conditions (q ¼ 0):

Pmax ¼ P0 þ 6mLV0

H0H1

ðE2:8-8Þ

If the entrance and discharge pressures are equal, the pressure profile will exhibit a

maximum value at H
 ¼ 2H0= 1þ z0ð Þ. This conclusion therefore focuses attention on an

important difference between parallel-plate and non–parallel-plate geometries. In the former,

equal entrance and discharge pressure implies no pressurization and pure drag flow, whereas,

in the latter, it implies the existence of a maximum in the pressure profile. Indeed, this

pressurization mechanism forms the foundation of the lubrication, as is shown in the next

example, and explains the experimental observation of pressure profiles along SSEs as we

discuss in Chapter 6.

Example 2.9 The Journal–Bearing Problem15 A journal of radius r1 is rotating in a

bearing of radius r2 at an angular velocity �. The length of the journal and bearing in the z

direction is L. Viscous Newtonian oil fills the narrow gap between the journal and bearing. The

oil lubricates the bearing, that is, it prevents solid-solid frictional contact between the journal

and the bearing. This is accomplished, of course, as a result of the pressure field generated

within the film. We wish to derive a mathematical model that explains this mechanism and

enables us to compute the forces acting on the journal and torque needed to turn the journal.

Solution We assume that the bearing is eccentric to the rotating journal by a displacement of

magnitude, a, as shown in Fig. E2.9a.

The concentric gap is c ¼ r2 � r1, and clearly a 	 c. The gap is very small, and locally we

can assume flow between parallel plates. Thus we define a rectangular coordinate system

X,Y,Z located on the surface of the journal such that X is tangential to the journal, as indicated

in Fig. E2.9a. The gap between the journal and bearing is denoted as B(y) and is well

approximated as a function of angle y by the following expression:

r1 þ BðyÞ ffi r2 þ a cos y ðE2:9-1Þ

15. We follow the solution presented in R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric

Liquids, Second Edition Vol. 1, Fluid Mechanics, Wiley, New York, 1987, p. 48.
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or

BðyÞ ¼ cþ a cos y ðE2:9-2Þ

Invoking the lubrication approximation, the local velocity profile (at a given angle y) in
rectangular coordinates X, Y, with boundary conditions vXð0Þ ¼ �r1 and vXðBÞ ¼ 0 (see

Example 2.5) is given by

vXðYÞ ¼ �r1 1� Y

B

� �
� B2

2m
Y

B

� �
1� Y

B

� �
dP

dX
ðE2:9-3Þ

Integrating Eq. E2.9-3 gives the flow rate:

Q ¼ 1

2
�r1BL� B3L

12m
dP

dX
ðE2:9-4Þ

In this case, we are not interested in the flow rate, but rather the pressure profile around

the journal. Therefore, we express the flow rate, which (at steady state and neglecting

leaks on the sides) is constant, in terms of the gap size B0 at locations where the pres-

sure profile attains maximum or minimum, and where the flow rate equals the local drag

flow:

Q ¼ 1

2
�r1B0L ðE2:9-5Þ

There will be two such locations, as schematically indicated in Fig. E2.9b.

Substituting Eq. E2.9-5 into Eq. E2.9-4, gives

dP

dX
¼ 6m�r1

1

B2
� B0

B3

� �
ðE2:9-6Þ

y

Y

X

B

Fy

Fx

x

a

r1 r2

Fig. E2.9a Journal–bearing configuration with centers separated by displacement a. The

force acting by the pressure field on the journal is given by component Fy and Fx.
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Next, we obtain an expression for the shear stress by substituting Eq. E2.9-6 into

Eq. E2.9-3 subsequent to taking its derivative and multiplying it by viscosity:

tYX jY¼0 ¼ �m
dvX

dY
¼ m�r1

4

B
� 3B0

B2

� �
ðE2:9-7Þ

Next, we substitute Eq. E2.9-2 into Eqs. E2.9-6 and E2.9-7, recalling that dX ¼ r1dy; to
get

1

r1

dP

dy
¼ 6m�r1

1

B2
� B0

B3

� �
ðE2:9-8Þ

tryjr¼r1 ¼ m�r1
4

B
� 3B0

B2

� �
ðE2:9-9Þ

By integrating Eq. E2.9-8 between y ¼ 0 and y ¼ 2p, we get an equation that we can solve

for B0:

ðP0

P0

dP ¼ 6m�r21

ð2p
0

1

B2
� B0

B3

� �
dy ¼

ð2p
0

1

B2
� B0

B3

� �
dy ¼ 0 ðE2:9-10Þ

which yields:

B0 ¼ J2

J3
¼ c

c2 � a2

c2 þ 1
2
a2

 !
ðE2:9-11Þ

y

x

a

r2

B0

P

B0

Fig. E2.9b The two broken lines show schematically the locations where the gap size is B0

and where the pressure profile exhibits a maximum and a minimum.
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where Jn is defined as

Jn ¼
ð2p
0

dy
cþ a cos yð Þn

and

J1 ¼ 2p c2 � a2
� ��1=2

J2 ¼ dJ1

dc
¼ 2p c2 � a2

� ��3=2

J3 ¼ � 1

2

dJ2

dc
¼ 2p c2 þ 1

2
a2

� �
c2 � a2
� ��5=2

Now we can compute the torque given by

T ¼ L

ð2p
0

�try½ �r¼r1
�r21 dy ðE2:9-12Þ

by substituting Eq. E2.9-9 into Eq. E.2.9-12 to give

T ¼ �mL�r31 4J1 � 3B0J2ð Þ

¼ � 2pmL�r31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p c2 þ 2a2

c2 þ a2=2

ðE2:9-13Þ

Next, we calculate the net force the fluid exerts on the journal. The components Fx and Fy

of this force, as shown in Fig. E2.9c, are obtained by integrating around the circumference the

respective contributions of the pressure and shear stress.

The force in the positive y direction is

Fy ¼ L

ð2p
0

�P sin y� try cos yð Þr¼r1
r1 dy

¼ L P cos y½ �2p0 þ
ð2p
0

� dP

dy

� �
� try

� �
cos yr1 dy

8<
:

9=
;

¼ L

ð2p
0

� dP

dy

� �
� try

� �
cos yr1 dy

ðE2:9-14Þ

y y

x x

(a) (b)

Fig. E2.9c (a) The normal force generated by the pressure and its x and y components. (b)

The tangential shear force and its x and y components.
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We can simplify this equation by neglecting the try contribution with respect to the dP=dy
contribution, because the former is of the order r1=c; whereas, the latter is of (r1=cÞ2. Thus
(neglecting higher-order terms from try), we obtain for Fy

Fy ¼ �Lr1

ð2p
0

6m�r21
1

B2
� B0

B3

� �
dy

¼ �6mLr31� K2 � B0K3ð Þ
ðE2:9-15Þ

where

Kn ¼
ð2p
0

cos y dy
cþ a cos yð Þn

and

K2 ¼ 1

a

� �
J1 � cJ2ð Þ

K3 ¼ 1

a

� �
J2 � cJ3ð Þ

or

Fy ¼ � 3m 2pr1Lð Þ �r1ð Þr1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

a

 �2
�1

r !
c

a

 �2
þ 1

2

� �
a2

ðE2:9-16Þ

The force in the positive x direction, Fx, is

Fx ¼ L

ð2p
0

�P cos yþ try sin y½ �r¼r1
dy ¼ 0 ðE2:9-17Þ

Finally, the pressure distribution is obtained by integrating Eq. E2.9-8 to give

P ¼ P0 þ 6m�r21a sin y cþ 0:5a cos yð Þ
c2 þ 0:5a2ð Þ cþ a cos yð Þ2 ðE2:9-18Þ

where P0 is an arbitrary constant pressure.

Thus we see that the net force acts in the negative y direction, and is proportional to

viscosity, journal surface area, and tangential speed, and inversely proportional and very

sensitive to the displacement a. Indeed, as a approaches zero, the force grows and approaches

infinity, so clearly, this force prevents the journal from contacting the barrel with the tight

clearance circling the bearing.
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PROBLEMS

2.1 Coordinate Transformation (a) Verify the following relationships for the con-

version of any function in rectangular coordinates fðx; y; zÞ, into a function in

cylindrical coordinates cðr; y; zÞ
x ¼ r cos y; y ¼ r sin y; z ¼ z

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; y ¼ arctan

y

x
; z ¼ z

(b) Show that the derivatives of any scalar function (including components of vectors

and tensors) in rectangular coordinates can be obtained from the derivatives of the

scalar function in cylindrical coordinates

@

@x
¼ cos y

@

@r
þ � sin y

r

� �
@

@y
@

@y
¼ sin y

@

@r
þ cos y

r

� �
@

@y
@

@z
¼ @

@z

(Use the Chain Rule of partial differentiation.)

(c) The unit vectors in rectangular coordinates are dx; dy; dz, and those in cylindrical

coordinates are dr; dy; and dz. Show that the following relationship between the unit

vectors exists

dr ¼ cos ydx þ sin ydy
dy ¼ � sin ydx þ cos ydy
dz ¼ dz

and

dx ¼ cos ydr � sin ydy
dy ¼ sin ydr þ cos ydy

(d) From the results of (c), prove that

@

@r
dr ¼ 0;

@

@r
dy ¼ 0;

@

@r
dz ¼ 0

@

@y
dr ¼ dy;

@

@y
dy ¼ �dr;

@

@y
dz ¼ 0

@

@z
dr ¼ 0;

@

@z
dy ¼ 0;

@

@z
dz ¼ 0
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(e) The operator = in rectangular coordinates is

= ¼ dx
@

@x
þ dy

@

@y
þ dz

@

@z

Using the results of (b) and (d), derive the expression for = in cylindrical coordinates

(f) Evaluate = � v in cylindrical coordinates.

2.2 Interpretation of the Equation of Continuity Show that the equation of continuity

can be written as

Dr
Dt

¼ �rð= � vÞ
where D=Dt is the substantial derivative defined as

D

Dt
¼ @

@t
þ v � =

2.3 The Equation of Continuity by Differential Mass Balance Derive the equation of

continuity in cylindrical coordinates by making a mass balance over the differential

volume �rðr�yÞ�z.

2.4 Macroscopic Mass Balance in a Steady Continuous System In the flow system

shown in the accompanying figure, fluid at velocity V1 and density r1 enters the

system over the inlet surface S1, and it leaves at density r2 with velocity V2 over

surface S2. The flow is steady state. Derive a mass balance using Eq. 2.4.1.

S2

S1

2.5 The Mean Velocity of Laminar Pipe Flow Use the macroscopic mass-balance

equation (Eq. 2.4.1) to calculate the mean velocity in laminar pipe flow of a

Newtonian fluid. The velocity profile is the celebrated Poisseuille equation:

vz ¼ vmax 1� r

R

 �2� �

2.6 The Rate of Strain Tensor Using geometrical considerations, show that in a

general flow field

_ggxy ¼
@vx
@y

þ @vy
@x

_ggyz ¼
@vy
@z

þ @vz
@y

_ggxz ¼
@vx
@z

þ @vz
@x
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2.7 Spatial Variation of Properties Let S(r) be a scalar field of a property of the

continuum (e.g., pressure, temperature, density) at point P defined by radius

vector r.

(a) Show that for any such scalar field an associated vector field =S can be defined

such that the dot product of which with unit vector e expresses the change of property

S in direction e.

(b) Prove that for a Cartesian coordinate system

=S ¼ dx
@S

@x
þ dy

@S

@y
þ dz

@S

@z

(c) If S ¼ xyþ z, find the unit vector of maximum gradient at P(2,1,0)

(d) Prove that for a cylindrical coordinate system

=S ¼ dr
@S

@r
þ dy

1

r

@S

@y
þ dz

@S

@z

(e) Prove that for a spherical coordinate system

=S ¼ dr
@S

@r
þ dy

1

r

@S

@y
þ df

1

r sin y
@S

@f

2.8 Viscous Stresses Acting in a Surface Element Using the expression p � n ds, show
that the forces acting on a unit surface in plane 2, 3 in a rectangular system is

p � n ¼ d1p11 þ d2p12 þ d3p13:

2.9 Sign Convention of the Stress Tensor s0 Consider a linear shear flow and examine

the stress components t0ij

2.10 The Relationship between Shear Rate and Strain Show that ðdvx=dyÞ in a simple

shear flow is identical to �ðdg=dtÞ, where g is the angle shown in the accompanying

figure.

y

x

b

d

2.11 The Invariants of the Rate of Strain Tensor in Simple Shear and Simple
Elogational Flows Calculate the invariants of a simple shear flow and elonga-

tional flow.
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2.12 Optimum Gap Size in Parallel Plate Flow Show that for the flow situation in

Example 2.5, for a given net flow rate the optimum gap size for maximum pressure

rise is

H ¼ 3q=V0

and the maximum pressure gradient is

dP

dz

����
max

¼ 6mV2
0

27q2

2.13 Couette Flow Couette flow is the flow in the annular space between two

long concentric cylinders of radii Ro and Ri, created by the rotation of one of

them. Consider Couette flow with (a) the outer cylinder rotating with angular

velocity �ðs�1Þ; (b) the inner cylinder is rotating with angular velocity ��ðs�1Þ.
(c) Also obtain the result by making a torque balance over a thin fluid shell

formed by two imaginary fluid cylinders of radii r and r þ �r and length

LðRi < r < RoÞ.
2.14 Axial Drag Flow between Concentric Cylinders Consider the drag flow created in

the space formed by two concentric nonrotating cylinders of radii Ro and Ri, with

the inner cylinder moving with an axial velocity V. The system is open to the

atmosphere at both ends. (a) Derive the velocity profile. (b) Also obtain the result by

making a force balance on a thin fluid shell previously discussed.

2.15 Capillary Pressure Flow Solve the problem of flow in a capillary of radius R and

length L, where L � R. The fluid is fed from a reservoir under the influence of an

applied pressure P0. The exit end of the capillary is at atmospheric pressure.

Consider three physical situations: (a) a horizontal capillary; (b) a downward

vertical capillary flow; and (c) an upward vertical capillary flow.

2.16 Axial Pressure Flow between Concentric Cylinders Solve the problem of flow in

the horizontal concentric annular space formed by two long cylinders of length

L and radii Ri and Ro, caused by an entrance pressure P0, which is higher than the

exit (atmospheric) pressure. Consider the limit as ðR0 � RiÞ=ðR0 þ RiÞ approaches
zero.

2.17 Helical Flow between Concentric Cylinders Consider the helical flow in an

annular space created by a constant pressure drop (P0 � P1) and the rotation of the

inner cylinder with an angular velocity �ðs�1Þ.
2.18 Torsional Drag Flow between Parallel Disks Solve the torsional drag flow

problem between two parallel disks, one of which is stationary while the other is

rotating with an angular velocity �(s�1). (Note: vy=r ¼ constant.)

2.19 Radial Pressure Flow between Parallel Disks Solve the problem of radial

pressure flow between two parallel disks. The flow is created by a pressure drop

Pjr¼0�Pjr¼R

� �
. Disregard the entrance region, where the fluid enters from a small

hole at the center of the top disk.
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2.20 Flow near a Wall Suddenly Set in Motion Set up the parallel-plate drag flow

problem during its start-up period t 	 ttr, when vx ¼ f ðtÞ in the entire flow region,

and show that the resulting velocity profile, after solving the differential equation

vx=V ¼ 1� erfðy= ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 mt=r

p Þ, if H is very large.

2.21 Heat Conduction across a Flat Solid Slab Solve the problem of heat transfer

across an infinitely large flat plate of thickness H, for the following three physical

situations: (a) the two surfaces are kept at T1 and T2, respectively; (b) one surface is

kept at T1 while the other is exposed to a fluid of temperature Tb, which causes a

heat flux qyjy¼H ¼ h2ðT2 � TbÞ; h2 being the heat-transfer coefficient (W/m2�K); (c)
both surfaces are exposed to two different fluids of temperatures Ta and Tb with

heat-transfer coefficients h1 and h2, respectively.

2.22 Heat Transfer in Pipes Solve the problem of conductive heat transfer across an

infinitely long tube of inside and outside radii of Ri and Ro. Consider the

following two physical situations: (a) the surface temperatures at Ri and Ro are

maintained at Ti and To; (b) both the inside and outside tube surfaces are exposed

to heat transfer fluids of constant temperatures Ta and Tb and heat-transfer

coefficients hi and ho.

2.23 Heat Transfer in Insulated Pipes Solve case (b) of Problem 2.22 for a composite

tube made of material of thermal conductivity ki for Ri 	 r 	 Rm and of material of

thermal conductivity ko for Rm 	 r 	 Ro.

2.24 Parallel-Plate Flow with Viscous Dissipation Consider the nonisothermal flow

of a Newtonian fluid whose r, Cp and k are constant, while its viscosity varies

with temperature as m ¼ Ae�E=RT . The flow is between two infinite parallel plates,

one of which is stationary while the other is moving with a velocity V. The fluid

has a considerably high viscosity, so that the energy dissipated 1
2
mð _cc : _ccÞ�

in

Eq: 2:9� 17Þ cannot be neglected. State the equations of continuity, momentum,

and energy for the following two physical situations and suggest a solution

scheme: ðaÞ Tð0Þ ¼ T1; TðHÞ ¼ T2 ðbÞ qyjy¼0 ¼ qyjy¼H ¼ 0.

2.25 Flow between Tapered Plates16 Consider the steady isothermal pressure flow of a

Newtonian and incompressible fluid flowing in a channel formed by two slightly

tapered plates of infinite width. Using the cylindrical coordinate system in the

accompanying figure and assuming that vrðr; yÞ; vy ¼ vz ¼ 0:

r ,x

L
X

h(x)a

y

16. W.E. Langlois, Slow Viscous Flows, Chapter VIII, Mcmillan, London, 1964.
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(a) show that the continuity and momentum equations reduce to

1

r

@

@r
rvrð Þ ¼ 0 or vr ¼ FðyÞ

r
ðaÞ

@P

@r
¼ m

r2
@2vr

@y2

� �
ðbÞ

@P

@y
¼ 2m

r

@vr
@y

� �
ðcÞ

Differentiate Eq.(b) with respect to y and Eq.(c) with respect to r and equate. Solve

the resulting equations using the boundary condition

vrðr;�aÞ ¼ 0; Q ¼
Za
�a

vrr dy

to obtain the velocity and pressure fields:

vrðr; yÞ ¼ Q

r

sin2 a� sin2 y
sin a cos a� aþ 2a sin2 a

ðdÞ

Pðr; yÞ ¼ P0 þ mQ
X2

sin2 a� sin2 y
� �

X2=r2 � 1ð Þ
sin a cos a� aþ 2a sin2 a

ðeÞ

where PðX; 0Þ ¼ P0.

(b) Show that the two nonvanishing pressure gradients in Cartesian coordinates are

@P

@x
¼ � 2mQð1þ D2ÞD3h

E

h2 � 3D2y2

h2 þ D2y2ð Þ3 ðfÞ

@P

@y
¼ � 2mQð1þ D2ÞD4h

E

3h2 � D2y2

h2 þ D2y2ð Þ3 ðgÞ

where D ¼ tan a; h ¼ Dðx� XÞ and E ¼ D� ð1� D2Þ arctan D.

(c) From the Reynolds equation (Eq. 2.4-11) show that for the tapered channel

pressure flow,
@P

@x
¼ � 3Qm

2h3
ðhÞ

Plot the ratio of pressure drops obtained by Eqs. (h) and (f) to show that for a5 10�,
the error involved using the lubrication approximation is very small.
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