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In Chapter 2 we discussed the engineering science of transport phenomena and Newtonian

fluid mechanics. Only simple fluids such as gases and small liquid molecules exhibit

Newtonian behavior. High molecular weight polymer melts are structurally complex fluids in

that their macromolecules can assume many conformations, which become more stretched

under flow, while gradually recovering into random conformations upon removal of the flow

stresses. The state of macromolecular conformations profoundly affects intermolecular

interactions during flow and, therefore, the viscosity of polymer melts strongly depends on

the flow velocity gradients, rendering them non-Newtonian and their viscosity a rheological

material function, not just a material parameter, as with Newtonian fluids. Furthermore,

polymer melts also exhibit, in addition to a viscous nature, an elastic response, since

conformations recover from stretched to random. Therefore, melts are viscoelastic materials.

A major portion of all the polymer processing shaping operations and elementary steps

involves either isothermal or, most often, nonisothermal flow of polymer melts in

geometrically complex conduits. Before dealing with the realistic polymer processing flow

problems, it is therefore appropriate to examine separately the rheological (flow) behavior

of polymer melts in simple flow situations and in the absence of temperature gradients.

Our aims are to clarify the physical meaning of terms such as non-Newtonian or

viscoelastic behavior, primary normal stress coefficient, and viscosity functions, to discuss

briefly, from a primarily physical viewpoint, the constitutive equations that either

quantitatively or semiquantitatively describe the observed behavior of polymer melts, and

to examine the experimental methods that yield the rheological information needed to

characterize polymer melt flow behavior in simple flows.

It is important to note that the rheological material functions obtained experimentally,

using rheometers, are evaluated in simple flows, which are often called viscometric or

rheometric. A viscometric flow is defined as one in which only one component of the

velocity changes in only one spatial direction, vxðyÞ. Yet these material functions are used

to describe the more complex flow situations created by polymer processing equipment.

We assume, therefore, that while evaluated in simple flows, the same rheological

properties also apply to complex ones.
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The combined effects of flow, geometric channel complexities, and coupled thermo-

mechanical phenomena necessitate the use of numerical solutions. In the past 25 years a

large number of increasingly powerful numerical simulation packages have been

developed commercially taking advantage of the exponential growth in available and

affordable computational power to enable solutions of nonisothermal processing flows

of non-Newtonian polymer melts. We will describe some of these in the relevant chapters.

3.1 RHEOLOGICAL BEHAVIOR, RHEOMETRY, AND RHEOLOGICAL

MATERIAL FUNCTIONS OF POLYMER MELTS

Three kinds of viscometric flows are used by rheologists to obtain rheological polymer

melt functions and to study the rheological phenomena that are characteristic of these

materials: steady simple shear flows, dynamic (sinusoidally varying) simple shear flows,

and extensional, elongational, or shear-free flows.

Steady Simple Shear Flows

This type of flow is obtained either by the relative motion of the rheometer surfaces

inducing simple drag flow on the fluid, or by an externally created pressure drop inducing

pressure flow on the fluid as shown in Fig. 3.1, parts 1a, 2a, and 3. These flows have the

following general flow field: v1 ¼ v1ðx2Þ, v2 ¼ v3 ¼ 0, leading to a single nonzero shear

rate component _gg12 6¼ 0. The coordinates xi for each of the steady shear flows are also

shown on Fig. 3.1. The maximum shear rates that are attainable in the simple shear drag

flows are very low, below _gg < 1 s�1, because of secondary flow-induced instabilities

generated at the melt sample periphery edges. On the other hand, the operational shear rate

range for the externally applied pressure-induced capillary flow rheometer is

1 < _gg < 104 s�1, covering a range which coincides with most if not all processing flows.

Dynamic (Sinusoidally Varying) Drag Simple Shear Flows

Dynamic (sinusoidally varying) drag simple shear flows are shown in Fig. 3.1, parts 1b and

2b. They are obtained by applying a sinusoidally varying angular displacement

Aðo; tÞ ¼ A0 sinot in the same rheometers that generate steady simple shear flows.

Since polymer melts are viscoelastic, the resulting time-varying shear stress has both an

in-phase (viscous) and an out-of-phase (elastic) component.

The steady and dynamic drag-induced simple shear-flow rheometers, which are limited

to very small shear rates for the steady flow and to very small strains for the dynamic flow,

enable us to evaluate rheological properties that can be related to the macromolecular

structure of polymer melts. The reason is that very small sinusoidal strains and very low

shear rates do not take macromolecular polymer melt conformations far away from their

equilibrium condition. Thus, whatever is measured is the result of the response of not just a

portion of the macromolecule, but the contribution of the entire macromolecule.

Extensional, Elongational or Shear-free Flows

Extensional, elongational or shear-free flows play a dominant role in the post die-forming

step, such as stretching of melt strands in spinning, uniaxial stretching of molten films
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exiting a flat film die, or the biaxial stretching of a tubular film exiting a blown film die to

form a ‘‘bubble.’’ However, as with shear rheometers, the extensional rheometer flows are

simpler than the previously mentioned real flows, because they are spatially uniform,

isothermal, and shear-free. The general form of the rate of deformation matrix for

incompressible fluids is

_cc ¼ _ee
1 0 0

0 m 0

0 0 �ð1þ mÞ

2
4

3
5 ð3:1-1Þ

Three uniform, steady extensional flows, which are related to post–die flows and useful

to study rheological behavior, and the ability of constitutive equations to predict such

behavior, are listed below, and are shown on Fig. 3.2.

Figure 3.2 (Case 1) shows a simple uniaxial extensional flow created by the uniform

stretching of a rectangular or a thin filament in the 1 direction. For this flow, _ee22 ¼ �_ee11=2,
and because of the incompressibility assumption, _ee22 ¼ _ee33. Thus, in Eq. 3.1-1, m ¼ �0:5,
giving the following rate of deformation matrix

_cc ¼
_ee 0 0

0 �_ee=2 0

0 0 �_ee=2

2
4

3
5 ð3:1-2Þ

For this simple uniaxial extensional flow to be steady, the instantaneous rate of change of

the 1 direction length (l) must be constant

1

l

dl

dt
¼ _ee ¼ const: ð3:1-3)

Defining a ¼ l=l0, we rewrite the preceding equation:

1

a

da

dt
¼ _ee ð3:1-4)

upon integration with l0 being the length at t ¼ 0

aðtÞ ¼ lðtÞ=l0 ¼ e_eet ð3:1-5)
Thus, in order to create a steady simple uniaxial extensional flow, the rheometer must

cause the thin filament length to increase exponentially in time.

Figure 3.2 shows planar extensional flow generated by the uniform stretching of a thin

wide sheet or film in one direction only, while allowing the thickness in the

perpendicular direction to decrease. Thus, _ee11 ¼ �_ee33 and _ee22 ¼ 0. Therefore, m ¼ 0

in Eq. 3.1-1, giving

_cc ¼ _eepl
1 0 0

0 0 0

0 0 �1

2
4

3
5 ð3:1-6)

Again, an exponential film length increase is necessary in order to obtain constant _eepl.
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In an equibiaxial extensional flow, shown in Fig. 3.2, the film is stretched at a constant

rate _eebi in two directions, allowing the thickness of the incompressible molten film to

decrease. Here _ee11 ¼ _ee22 and _ee33 ¼ �2_ee11. Thus m ¼ 1 in Eq. 3.1-1 and

_cc ¼ ebi
1 0 0

0 1 0

0 0 �2

2
4

3
5 ð3:1-7)

It is quite difficult to experimentally produce the preceding three uniform and

isothermal flows, and extensional rheometers are therefore often limited to low attainable

_ee � 1 s�1 and short duration. Nevertheless, polymer processing engineers have to deal

with nonuniform, nonisothermal extensional flows with polymer melts which, if they are

crystallizable, undergo rapid crystal nucleation and anisotropic growth of the crystalline

phase. As mentioned in Chapter 1, these phenomena in actual post–die forming operations

cause the formation of unique structures and morphologies, called structuring, which

greatly affect product properties. For further reading on experimental rheology, the reader

is referred to the extensive available literature (e.g., Refs. 1–4).

Let us now turn again to Figs. 3.1 and 3.2 to examine the experimental results obtained

with polymer melts in rheometers and the differences between them and those obtained

with Newtonian fluids, thus gaining a specific understanding of what non-Newtonian

behavior means in the response of polymeric melt to deformation.

Rheological Response of Polymer Melts in Steady Simple Shear-Flow Rheometers

Non-Newtonian Viscosity In the cone-and-plate and parallel-disk torsional flow

rheometer shown in Fig. 3.1, parts 1a and 2a, the experimentally obtained torque, and

thus the t12 component of the shear stress, are related to the shear rate _gg ¼ _gg12 as follows:
for Newtonian fluids t12 / _gg, implying a constant viscosity, and in fact we know from

Newton’s law that t12 ¼ �m_gg. For polymer melts, however, t12 / _ggn, where n < 1, which

implies a decreasing shear viscosity with increasing shear rate. Such materials are called

pseudoplastic, or more descriptively, shear thinning.1 Defining a non-Newtonian

viscosity,2 Z,

t12 ¼ Zð _ggÞ _gg ð3:1-8)

and assuming that the shear rate dependence of Z can be expressed by simple power

dependence, which agrees well with experimental measurements of many polymeric melts

over a broad shear rate range, we get the following relationship

Zð _ggÞ ¼ m _ggn�1 ð3:1-9)

1. The term pseudoplastic is somewhat outdated because there is nothing ‘‘pseudo’’ in the flow behavior of

polymers. In this book we use the term shear thinning, which well describes the phenomenon.

2. Non-Newtonian viscosity is sometimes called apparent viscosity, presumably because it changes with shear

rate. In this book we call it non-Newtonian viscosity.
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This relationship, as we will see in Section 3.3, is called the Power Law fluid model, and is

used extensively in modeling flows in polymer processing.

In conclusion, we thus find that polymer melts are non-Newtonian in that they have a

viscosity that depends on the shear rate _gg12, or the shear stress t12 in steady shear flows. This
is the most important non-Newtonian property that we encounter in polymer processing.

Normal Stresses In the steady cone-and-plate and parallel-disk torsional flow

rheometers, again with polymer melts, we observe experimentally a phenomenon that is

totally unexpected and unpredictable by Newtonian rheological behavior, namely a

normal force, FN , acting on both pairs of plates. For a Newtonian fluid, the only stress

component needed to support the single shear rate components _gg ¼ _gg12 is shear stress

component t12. This stress component gives rise to the experimentally needed torque, as

noted earlier. How can the normal force FN on the rheometer plates be explained? On the

grounds of physical macromolecular behavior, we can reason that the flow in the direction

that the velocity points, defined as direction 1, tends to orient the macromolecules in that

direction, somewhat like rubber bands stretched around a cylinder. But stretched polymer

melt macromolecules want to revert to their equilibrium coiled conformations. This

creates tensile stresses in the 1 direction, t11 (which act as ‘‘strangulation’’ forces) as well
as stresses in the normal direction in which the velocity changes, defined as direction 2,

t22. These normal stresses would be relieved if the rheometer spacing were increased.

Thus, in order to maintain the plate spacing constant, we have to impose on the sheared

melt a normal force FN . Because of the difficulties associated with the absolute value of

pressure in a flow system (see Chapter 2), we define normal stress differences rather than

individual components, such as the primary normal stress difference t11 � t22. In fact, as

we will see later, the measurement of the normal force FN in the cone and plate rheometer

is a direct measure of this normal stress difference.

A graphic example of the consequences of the existence of t11 stress in simple steady

shear flows is demonstrated by the well-known Weissenberg rod-climbing effect (5). As

shown in Fig. 3.3, it involves another simple shear flow, the Couette (6) torsional

concentric cylinder flow,3 where x1 ¼ y, x2 ¼ r, x3 ¼ z. The flow creates a shear rate

_gg12 ¼ _gg, which in Newtonian fluids generates only one stress component t12.
Polyisobutelene molecules in solution used in Fig. 3.3(b) become oriented in the 1

direction, giving rise to the shear stress component in addition to the normal stress

component t11.
Furthermore, when the cone-and-plate rheometer is outfitted with pressure taps at

various radial positions, the experimentally obtained pressure distribution is found to be

increasing with decreasing radial distance. This, as we will see later, enables us to compute

the secondary normal stress difference, namely, t22 � t33, where direction 3 is the third

neutral spatial direction.

Next we define the two normal stress difference functions that arise in simple shear

flows

t11 � t22 ¼ �1ð _ggÞ _gg212 ð3:1-10)

3. The Couette apparatus was developed by Maurice Couette in 1890 as a means for measuring the viscosity of a

fluid at small imposed angular velocities of the cylinders.
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and

t22 � t33 ¼ �2 _ggð Þ _gg212 ð3:1-11)

The coefficients �1 and �2, like non-Newtonian viscosity, are also found to be shear rate

dependent. The non-Newtonian property of exhibiting normal stresses in shear flows plays

an important role in processing under situations in which shear stresses vanish, as in

extrudate swell, discussed later in this section.

Capillary Flow Rheometry Next we examine the experimentally obtained results with

the capillary flow rheometer shown in Fig. 3.1, which are directly relevant to polymer

processing flows, since the attainable shear rate values are in the range encountered in

polymer processing. The required pressure drop �P does not increase linearly with

increases in the volumetric flow rate Q, as is the case with Newtonian fluids. Rather,

increasingly smaller increments of �P are needed for the same increases in Q. The

Newtonian Poiseuille equation, relating flow rate to pressure drop in a tube, is linear and

given by

�P ¼ 8mL
pR4

Q ð3:1-12)

On the other hand, for polymer melts, we obtain experimentally a nonlinear

relationship

�P / Qn ðn < 1Þ ð3:1-13)

Again, this dependence may reasonably be attributed to a decreasing viscosity with

increasing shear rate. With decreasing viscosity, resistance to flow at higher flow rates

decreases as well. It is this decreasing viscosity with increasing shear rates that enables

Fig. 3.3 A 9.52-mm D aluminum rod rotating at 10 rps in a wide-diameter cylinder containing (a)

Newtonian oil, and (b) polyisobutylene (PIB) solution, which exhibits the rod-climbing

Weissenberg effect [from G. S. Beavers and D. D. Joseph, J. Fluid Mech., 69, 475 (1975)]. (c)

Schematic representation of the flow direction flow-induced t11, causing rod climbing. For

Newtonian fluids, t11 ¼ 0, since the small and simple Newtonian fluid molecules are incapable of

being ‘‘oriented’’ by the flow.
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processing machinery to operate at high rates of production and avoid excessive heat

generation that may damage the polymer.

Another important ramification of shear-thinning behavior in capillary or tube flow,

relevant to polymer processing, relates to the shape of the velocity profiles. Newtonian and

shear-thinning fluids are very different, and these differences have profound effects on the

processing of polymer melts. The former is parabolic, whereas the latter is flatter and

pluglike. The reason for such differences emerges directly from the equation of motion.

The only nonvanishing component for steady, incompressible, fully developed, isothermal

capillary flow, from Table 2.2, is

1

r

d

dr
ðrtrzÞ ¼ � dP

dz
ð3:1-14)

Integrating with the boundary condition trzð0Þ ¼ 0

tzr ¼ tðrÞ ¼ Cr ¼ � �P

2L

� �
r ð3:1-15)

Equation 3.1-14 holds for all fluids, since it is a physical law. This is shown in Fig. 3.4(a).

But when a rheological model relating tðrÞ versus _ggðrÞ is substituted into Eq. 3.15, two
different shear rate and velocity profiles are obtained. For Newtonian fluids, tðrÞ ¼
�m _ggðrÞ, the shear rate profile is

_ggðrÞ ¼ �P

2mL
r ð3:1-16)

indicating that the Newtonian shear rate increases linearly with r, as shown in Fig. 3.4(b),

whereas for shear-thinning melts, using the Power Law model tðrÞ ¼ �m _ggðrÞn, we get

_ggðrÞ ¼ �P

2mL

� �1=n

r1=n ð3:1-17)

Same
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P
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Fig. 3.4 The (a) shear stress, (b) shear rate, and (c) velocity profiles of a Newtonian and a shear-

thinning fluid flowing in a capillary of dimensionsR is under the influence of the same�P, that is, tðrÞ.
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Thus for shear-thinning melts, that is, n < 1, the shear rate profile, _ggðrÞ, dependence is

stronger than the first power, as shown again in Fig. 3.4(b). Consequently, as shown in

Fig. 3.4(c), shear-thinning polymer melts flow in pressure-induced flows with very high

shear rates near the walls, while there is a core of the fluid that is sheared very little.

Because of this, and the high polymer melt viscosity, the melt layers next to the wall heat

up, while the core flows isothermally. Thus, figuratively speaking, at high shear rates

where both shear rate and temperature are high near the capillary wall, the wall polymer

melt layer acts almost as a lubricant, while the core flows almost in plug flow. The shear

viscosity Zð _ggÞ of polymer melts typically decreases dramatically with increasing shear

rates in the process range of _gg (as shown on Fig. 3.5).

Polymer melts exhibit capillary exit and entrance behavior, which is different than that

of Newtonian fluids. Polymer melt extrudates ‘‘swell,’’ that is, increase in diameter,

following the capillary exit. This is, again, a ramification of the existence of tensile stresses

in the flow direction, encountered earlier. The extrudates in the stress-free boundary region

following the exit relieve this axial tension by contracting, and thus expanding radially.

Just ahead of the capillary entrance, polymer melts undergo a more complex combined

extension and shear flow. The entrance pressure drops generated are much higher for

melts, because their elongational viscosity is higher than the Newtonian, as we will see

later in this section. We will discuss both the preceding phenomena in Chapter 13.

Rheological Response of Polymer Melts to Small, Sinusoidally Varying Shear

Deformations, gðo; tÞ ¼ g0 sinot

The shear rate field that results from such cyclic deformation is

dg
dt

¼ _ggðotÞ ¼ g0o cos ot ¼ _gg0 cos ot ð3:1-18)
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Fig. 3.5 Logarithmic plot of the shear rate-dependent viscosity of a narrow molecular weight

distribution PS ð�Þ at 180�C, showing the Newtonian plateau and the Power Law regions and a

broad distribution PSð�Þ. [Reprinted with permission from W. W. Graessley et al., Trans. Soc.

Rheol., 14, 519 (1970).]
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The cyclic stress needed to support the imposed strain and flow field is experimentally

found to be

tðo; tÞ ¼ t00 sinot þ t000 cosot ð3:1-19)

The first term of the needed stress is in phase with the applied strain; it is, therefore, an

elastic stress, since elastic materials respond to a stress only by deforming. The second

term of Eq. 3.1-19, which is out of phase with the applied strain, is in phase with the shear

rate, Eq. 3.1-18; it is, therefore, a viscous stress, since viscous fluids respond to a stress by

flow, where flow is a time-increasing strain and its measure is shear rate (see Section 2.7).

The conclusion from the response of polymer melts to small cyclic deformations, then, is

that they are viscoelastic materials. Their viscous nature is due to the ability of polymer

chain segments to drag past one another, while their elastic nature is due to the ability of

stretched chain segments to recoil, thus restoring their coiled configurations, and acting as

elastic springs.

An equivalent representation of Eq. 3.1-19, in terms of rheological functions, is

tðo; tÞ ¼ _gg0Z00ðoÞ sinot þ _gg0Z0ðoÞ cos ot ð3:1-20)

where Z0 and Z00 are components of the complex viscosity

Z�ðoÞ ¼ Z0 � iZ00 ð3:1-21)

For Newtonian fluids, tðo; tÞ ¼ m cos ot, Z0 ¼ m, and Z00 ¼ 0.

The viscoelastic response of polymer melts, that is, Eq. 3.1-19 or 3.1-20, become

nonlinear beyond a level of strain g0, specific to their macromolecular structure and

the temperature used. Beyond this strain limit of linear viscoelastic response, Z0, Z00, and Z�

become functions of the applied strain. In other words, although the applied deformations

are cyclic, large amplitudes take the macromolecular, coiled, and entangled structure far

away from equilibrium. In the linear viscoelastic range, on the other hand, the frequency

(and temperature) dependence of Z0, Z00, and Z� is indicative of the specific macromolecular

structure, responding to only small perturbations away from equilibrium. Thus, these

dynamic rheological properties, as well as the commonly used dynamic moduli

G0ðoÞ ¼ oZ00 and G00ðoÞ ¼ oZ0 ð3:1-22)

are widely used for the characterization of the macromolecular structure by both polymer

scientists and engineers (7,8).

The dependence of Z0, Z00, G0, and G00 on frequency reflects the ability of

macromolecular systems to flow like Newtonian fluids if the experimental time allowed

them, texp ¼ 1=o, is very large compared to the time that they require to fully respond

macromolecularly. This temperature-dependent, material-characteristic time is commonly

called the relaxation time, l, although it is actually a relaxation spectrum (7). Conversely,

when texp is very short, that is, o is very high compared to l, the macromolecular system

can only respond like an elastic solid, able only to undergo deformation and not flow. In
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terms of the dimensionless Deborah number,4

De ¼ l
texp

¼ lo ð3:1-23)

Polymer melts act, qualitatively speaking, as elastic solids for De � 1, as viscous

liquids for De � 1, and viscoelastic materials in the range in-between. Finally, since both

(o) and ð _ggÞ represent rates of change of deformation, it is not surprising that both Z�ðoÞ
and Zð _ggÞ are rate dependent and shear thinning. As a matter of fact, Z�ðoÞ, which can be

evaluated experimentally to very low frequency ranges, as low as 10�2 s�1, often forms an

extension to Zð _ggÞ obtained by capillary flow at higher shear rates, as high as 104 s�1ð9Þ.
Thus, the viscosity function can be obtained over six orders of magnitude of frequency/

shear rate, yielding information on both molecular structure and processing. Dynamic

simple shear-flow rheometers yield information on the first normal stress difference N1

through the out-of-phase component of the complex viscosity Z00 or its equivalent in-phase
modulus G0 ¼ Z00o. The experimentally determined function 2G0ðoÞ tracks N1ð _gg2Þ
determined from steady flow cone-and-plate experiments (10,11). Laun (12) suggested

another empiricism relating G0 and N1 that fits the data over wider ranges of shear rate and

frequencies given by

N1 ¼ t11 � t22 ¼ 2G0Z00ðoÞ 1þ Z00

Z0

� �2
" #0:7 �����

o¼ _gg

In summary, steady and dynamic simple shear rheometric results are complementary:

at very low ð _ggÞ or (o) values they both yield useful macromolecular structure

characterization. Moreover, Z�ðoÞ in the range o < 10 s�1 forms an extension of Zð _ggÞ
obtained by capillary rheometry at _gg > 10 s�1, a range that is relevant to processing.

Rheological Response of Polymer Melts in Steady, Uniform, Extensional Flows

Turning to Fig. 3.2, Case 1, we see that the tensile force F1 needed to sustain the applied

constant extensional rate _ee, either levels off to a constant F1ð_eeÞ or exhibits strain hardening
increasing with time, occasionally in an unbounded fashion; the force is then represented

as Fþð_ee; tÞ. For this uniform extensional flow

F1

A
¼ t11 þ P ð3:1-24)

where

�P ¼ t22 ¼ t33 ð3:1-25)

4. The dimensionless Deborah number was defined and coined by Prof. Marcus Reiner from the Technion–Israel

Institute of Technology, and one of the fathers of rheology, in an after-dinner speech at the 4th International.

Congress on Rheology in Providence, Rhode Island. The Prophetess Deborah, said Marcus, ‘‘knew’’ rheology,

because in her song [Judges 5:5] she says ‘‘The mountains flowed before the Lord’’ , so

not only did she know that mountains, like everything else, flow but she knew that they flowed before the Lord and

not before man for man has a too short lifespan to notice. The ratio of relaxation time to observation time clearly

illuminates this point (Phys. Today, January 1964).
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We define a material function �ZZ, commonly called the elongational or extensional

viscosity, through the primary normal stress difference t11 � t22; thus, for the case of

F1ð_eeÞ, it is given by

�ZZð_eeÞ ¼ �F1=A

_ee
¼ � t11ð_eeÞ � t22

_ee

� �
ð3:1-26)

and for Fþ
1 ð_ee; tÞ, the elongational viscosity is given by

�ZZþð_ee; tÞ ¼ � t11ð_ee; tÞ � t22
_ee

� �
ð3:1-27)

Experimentally, in both cases, we have

�ZZð_eeÞ ¼ �F1ð_eeÞ=A1

_ee
ð3:1-28)

or

�ZZþð_ee; tÞ ¼ �F1ð_ee; tÞ=A1

_ee
ð3:1-29)

For a Newtonian fluid in a simple elongational flow, the constitutive equation becomes

s ¼ �m _cc ¼ �m
þ2_ee 0 0

0 �_ee 0

0 0 �_ee

0
@

1
A ð3:1-30)

thus

t11 � t22 ¼ �m 2_eeþ _eeð Þ ¼ �3m_ee ð3:1-31)

Combining Eqs. 3.1-31 and 3.1-26, we obtain the so-called Trouton relation, which defines

the Trouton viscosity (13).

�ZZ ¼ 3m ð3:1-32)

For polymer melts where the low shear rate limiting viscosity value is Z0 , �ZZ ¼ 3Z0 (14).
Examples of extensional viscosity growth, either to a steady �ZZð_eeÞ value or to a strain-

hardening–like mode, are shown in Fig. 3.6 for the linear nonbranched polystyrene (PS), a

high density polyethylene (HDPE) that is only slightly branched with short branches, and a

long chain-branched low density polyethylene (LDPE) (15).

We observe that strain-hardening stress and viscosity growth are associated with long

chain branching. Long chain branching is a chain structural feature that impedes large

macromolecular rearrangements of flow motions because it creates entanglements. With

this in mind, and the fact that in steady uniform extensional flow, the length is increased

exponentially to maintain _ee ¼ const, it is not surprising that even at _ee ¼ 10�2 s�1, the

extensional viscosity still exhibits strain hardening. The Deborah number De ¼ l10�2 is

still larger than unity for LDPE, denoting very long relaxation times l> 100 s. Similar
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results with LDPE are obtained for both the equibiaxial and planar extensional flows, as

shown in Fig. 3.7.

Turning to Fig. 3.2, Case 4, we note that the extensional flows encountered by fibers,

films, and tubes in fiber spinning, film blowing, and stretch blow molding are not uniform;

the strand/film varies in thickness in the stretching direction(s). This extensional flow

rheometry once again involves simpler flow, and the rheological results obtained are used

to analyze or interpret more complicated, nonuniform, post-die forming flows.

Finally, it is worth discussing briefly the flow singularity at the exit corner of pressure-

flow dies used for forming fibers and film, which are consequently stretched to orient and

structure them. At that location we have to reconcile the fact that the wall melt flow layer

must, in nearly zero distance, accelerate from a zero to a finite velocity. Irrespective of the

details of this high acceleration, the surface layer undergoes high extensional rate flows,
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Fig. 3.6 Extensional growth viscosity versus time for polystyrene (top), HDPE, and LDPE. [S. A.

Khan, R. K. Prud’homme, and R. G. Larson, Rheol. Acta, 26, 144 (1987).]
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and consequently, is exposed to potentially very high extensional stresses. Local crack

development can occur at critical stresses equal to those needed to rupture the melt, due to

its inability to disentangle, thus acting as a fracturing solid. Such phenomena may be the

cause of the ‘‘shark-skin’’ (16–19) melt fracture, which is discussed in Chapter 12.
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Fig. 3.7 (a) Uniaxial, (b) equibiaxial, and (c) planar extensional viscosities for a LDPE melt. [Data

fromP.Hachmann, Ph.D.Dissertation, ETH,Zurich (1996).] Solid lines are predictions of themolecular

stress function model constitutive equation by Wagner et al, (65,66) to be discussed in Section 3.4.
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3.2 EXPERIMENTAL DETERMINATION OF THE VISCOSITY

AND NORMAL STRESS DIFFERENCE COEFFICIENTS

This section describes two common experimental methods for evaluating Z,�1, and �2 as

functions of shear rate. The experiments involved are the steady capillary and the cone-

and-plate viscometric flows. As noted in the previous section, in the former, only the

steady shear viscosity function can be determined for shear rates greater than unity, while

in the latter, all three viscometric functions can be determined, but only at very low shear

rates. Capillary shear viscosity measurements are much better developed and understood,

and certainly much more widely used for the analysis of polymer processing flows, than

normal stress difference measurements. It must be emphasized that the results obtained by

both viscometric experiments are independent of any constitutive equation. In fact, one

reason to conduct viscometric experiments is to test the validity of any given constitutive

equation, and clearly the same constitutive equation parameters have to fit the

experimental results obtained with all viscometric flows.

Example 3.1 Capillary Flow Rheometry The experimental setup used in capillary

viscometry is shown schematically in Fig. 3.1, Case 3. Care is taken to have a uniform tem-

perature and to eliminate the piston frictional effects in the reservoir. Either constant pressure

or constant flow rate experiments are conducted, depending on the available instrument. At

very slow flow rates, with shear rates below 1 s� 1, the surface tension of the emerging extru-

date, gravity, and the frictional forces between the piston and the reservoir cannot be

neglected; thus, the viscosity values obtained in this range are usually too high. A capillary

viscometer yields viscosity data up to shear rates, where the phenomenon of melt fracture

occurs (see Chapter 12). At high shear rates, the danger of having a high level of viscous dis-

sipation of energy, and thus nonisothermal flow, as pointed out earlier, is very real.

The starting point of our analysis is the z-component momentum equation

dP

dz
¼ � 1

r

d

dr
ðtrzÞ ðE3:1-1)

which is valid for all incompressible fluids and is subject to the assumptions of steady and

isothermal flow. Integrating Eq. E 3.1-1, we obtain

trz ¼ tw
r

R

� �
ðE3:1-2)

where tw is the shear stress at the ‘‘wall’’ (r ¼ R) given by

tw ¼ P0 � PL

2L

� �
R ðE3:1-3)

The shear stress at the wall tw can be experimentally evaluated by measuring R, L, and

P0 ¼ PL.

By assuming only that the polymer melt is viscous and time independent, and that the

viscosity is a function of the shear rate, Zð _ggÞ, without the need to specify any specific

viscosity function, we can state that for capillary flow at the wall,

tw ¼ �Z _ggrz j R ¼ Z _ggw ðE3:1-4)

where _ggw is the shear rate at the wall.
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Having the shear stress at the wall from Eq. E3.1-3 as a function of pressure drop, Eq. E3.1-

4 suggests that if in some way the shear rate at the wall, _ggw, could be evaluated experimentally

from the flow rate at the corresponding pressure drops, the viscosity function could be

determined. This is indeed possible because of the volumetric flow rate Q, which can be

expressed independently of any constitutive equation as follows

Q ¼ 2p
ðR
0

rvzðrÞdr ¼ 2p
r2vzðrÞ

2

� � �����
R

0

�
ðR
0

r2

2
dvz

2
4

3
5 ðE3:1-5)

Assuming no slip at the wall of the capillary, we note that the first term on the right-hand side

of Eq. E3.1-5 is zero and it becomes

Q ¼ �p
ðR
0

r2
dvz

dr

� �
dr ðE3:1-6)

From Eq. E3.1-2, r ¼ tyzR=tw, a relationship that can be utilized to change the integration
variable in Eq. E3.1-6, to obtain the following equation

Q ¼ �pR3

t3w

ðtw
0

dvz

dr

� �
t2rz dtrz ðE3:1-7)

Next, Eq. E3.1-7 is differentiated (20) with respect to tw using the Leibnitz formula of

differentiating an integral5 to give

1

pR3
t3w

dQ

dtw
þ 3t2wQ

� �
¼ �t2w

dvz

dr

� �
r¼R

¼ _ggwt
2
w ðE3:1-8)

Equation E3.1-8 indicates that we can obtain the desired shear rate at the wall if we know

the flow rate corresponding to the particular shear stress at the wall and the change in flow rate

(i.e., the slope of the flow-rate function) at that point. Equation E3.1-8 with Eq. E3.1-3 can be

written as

_ggw ¼ � 1

pR3
3Qþ�P

dQ

d �Pð Þ
� �

ðE3:1-9)

Finally, we can rewrite Eq. E3.1-9 as

_ggw ¼ 3�w

4
þ tw

4

d�w

dtw
ðE3:1-10)

where � is the Newtonian shear rate at the wall

�w ¼ 4Q

pR3
ðE3:1-11)

5. The Leibnitz formula:

d

dx

ða2ðxÞ
a1ðxÞ

f ðs; xÞds ¼
ða2ðxÞ
a1ðxÞ

@f

@z
dsþ f ða2; xÞ da2

dx
� f ða1; xÞ da1

dx

� �
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Either Eq. E3.1-9 or Eq. E3.1-10, known as the ‘‘Rabinowitsch’’ or ‘‘Weissenberg–Rabinowitsch’’

equations, can be used to determine the shear rate at thewall _ggw bymeasuringQ and�P or tw and

�w (21). Thus, in Eq. E3.1-4 both tw and _ggw can be experimentally measured for any fluid having

a shear rate–dependent viscosity as long as it does not slip at the capillary wall. Therefore, the

viscosity function can be obtained.

Experimentally, it is found that for polymer melts _ggw 	 �w, with the inequality, as noted in

Section 3.1, becoming more pronounced at higher shear rates.

Finally, because the results obtained in capillary viscometry, especially for capillaries of

small L/R, are influenced by both extensional and shear flow phenomena associated with the

fluid spatial accelerations at the capillary entrance, it is necessary to correct the values of tw
given in Eq. E3.1-3. Chapter 13 covers the nature, magnitude, and significance of these,

commonly known as ‘‘Bagley’’ corrections.

The Rabinowitsch equation has been used in the long capillary viscometry data found in

Appendix A. Figure E3.1 shows long capillary tw vs. �w and tw vs. _ggw results with and without

the Rabinowitsch correction.

Example 3.2 Cone-and-Plate Flow Rheometry The cone-and-plate flow apparatus is

shown schematically in Fig. E3.2a. The polymer melt flows in the space formed by the rotat-

ing cone and stationary plate.

The experimentally measured quantities are:

1. The cone rotational frequency �

2. The resulting torque needed to turn the cone T

3. The total force normal to the fixed plate (thrust) FN .

4. The pressure distribution on the fixed plate as a function of r:

pyy rð Þjy¼p=2 ¼ Pþ tyy rjy¼p=2
� 	 ðE3:2-1)
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Fig. E3.1 Shear stress vs. shear rate with and without Rabinowitsch correction. [Courtesy

of V. Tan, Polymer Processing Institute (PPI), Newark, NJ.]
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We note that with the cone-and-plate rheometers, fracture of the polymer melt is observed

at shear rates exceeding 10�2 or 10�1 s�1. Fracture is initiated at the melt–air interface at the

perimeter. This has been attributed to the fact that the elastic energy becomes greater than the

energy required to fracture the polymer melt at those shear rates (22). Irrespective of the origin

of the fracture, it limits the operation of the cone-and-plate instrument to below the previously

mentioned shear rates.

The velocity field between the cone and the plate is ‘‘visualized’’ as that of liquid cones

described by y-constant planes, rotating rigidly about the cone axis with an angular velocity

that increases from zero at the stationary plate to � at the rotating cone surface (23). The

resulting flow is a unidirectional shear flow. Moreover, because of the very small c0 (about

1��4�), locally (at fixed r) the flow can be considered to be like a torsional flow between

parallel plates (i.e., the liquid cones become disks). Thus

vf ¼ �r
z

z0
ðE3:2-2)

where z and z0 can be expressed in terms of the angle c ¼ p=2� y

z ¼ r sinc 
 c ðE3:2-3)

and

z0 ¼ r sinc0 
 rc0 ðE3:2-4)
Inserting Eqs. E3.2-3 and E3.2-4 into Eq. E3.2-2, the following velocity profile is obtained

vf ¼ �r
c
c0

� �
ðE3:2-5)

Accordingly, the only nonvanishing component of the rate of deformation tensor is

_ggyf ¼ _ggfy ¼ 1=rð Þ @vf=@y
� 	

, and from Eq. E3.2-5 we obtain

_ggyf ¼ � �

c0

¼ constant ðE3:2-6)

q

y y0r

R
Thrust measuring device Pressure taps on

 fixed plate

Polymer melt

Fig. E3.2a Schematic representation of the cone and plate viscometer.
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The preceding relationship establishes that the cone-and-plate flow is viscometric, where

f is direction 1, that is, the direction of motion, y is direction 2, that is, the direction in which
the velocity changes, and r is direction 3, that is, the neutral direction. Furthermore, the flow

field is such that shear rate is constant in the entire flow field, as it is in the flow between

parallel plates.

The torque on the shaft of the cone is due to the action of the shear stress tyf on its surface

T ¼ 2p
ðR
0

rtyf
� 	

r dr ðE3:2-7)

where tyf is constant, since _ggyf is constant throughout the flow field. Upon integration, we

obtain

tyf ¼ T
2
3
pR3

� 	 ðE3:2-8)

This expression suffices to determine experimentally the shear stress. Having evaluated both

tyf and _ggyf, we can readily obtain the viscosity function Z _ggyf
� 	

. Figure E3.2b gives such data

for low-density polyethylene. The data extend beyond the commonly accepted upper limit of

shear rate for polymer melts, probably because of the low average molecular weight of the

polymer.

To obtain experimental information on normal stresses, we employ and mathematically

manipulate the r component of the equation of momentum, which (neglecting centrifugal

forces) is

� @P

@r
� 1

r2
@

@r
r2trr
� 	þ tyy þ tff

r
¼ 0 ðE3:2-9)

Introducing pii ¼ tii þ P (no sum)

pyy þ pff
r

� 1

r2
@

@r
r2prr
� 	 ¼ 0 ðE3:2-10)
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Fig. E3.2b The viscosity Z and first (primary) normal stress difference t11 � t22 of LDPE
evaluated using the Weissenberg rheogoniometer (cone and plate). LDPE is Tenite 800 of

density 0.918 g/cm3, and Mn ¼ 25; 800. [Reprinted with permission from I. Chen and D. C.

Bogue, Trans. Soc. Rheol., 16, 59 (1972).]
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Upon rearrangement and integration, and taking into account that the negative of the

secondary normal stress difference, prr � pyy, is a constant (since _ggyf is constant), and that py
at y ¼ p=2 (the plate) is a function of the radius, we have

pyyðrÞ � pyy Rð Þ½ �y�p=2¼ tff � tyy
� 	þ 2 tyy � trrð Þ
 �

ln
r

R

� �
ðE3:2-11)

The left-hand side of Eq. E3.2-11 can be experimentally evaluated; thus, the quantity in

brackets on the right-hand side can be determined.

The normal force on the stationary plate can be expressed as

FN ¼ 2p
ðR
0

pyyr dr � pR2Patm ðE3:2-12)

With the help of Eq. E3.2-11 and the relation Patm ¼ prrðRÞ, we obtain, after integration of Eq.
E3.2-12, the simple relation for the primary normal stress difference function

t11 � t22 ¼ tff � tyy ¼ �2FN

pR2
ðE3:2-13)

Figure E3.2b shows experimental data for the primary normal stress difference for LDPE.

In summary, and in terms of the viscometric flow notation, we conclude the following about

the experimental capabilities of the cone-and-plate viscometric flow:

1. The viscosity function Z can be determined with the aid of Eqs. E3.2-6 and E3.2-8.

2. The primary normal stress difference, t11 � t22 ¼ tff � tyy, can be calculated through

Eq. E3.2-13, and the coefficient �1 can be calculated from Eq. 3.1-10.

3. The secondary normal stress difference, t22 � t33 ¼ tyy � trr , can be determined

subsequent to the evaluation of t11 � t22 using Eq. E3.2-11, and the coefficient �2

can be calculated from Eq. 3.1-11.

These conditions are subject to the limitation for polymer melts that the applied shear rate

_gg ¼ �=c0 must be below that which gives rise to fracture in the fluid sample. For solutions of

polymers, the upper limit of shear rate (or �), however, is one at which the centrifugal forces

become important.

Figure E3.2b presents the primary normal stress difference data for LDPE, and Fig. E3.2c

presents the primary and secondary normal stress-difference data for a 2.5% polyacrylamide

solution, again using a cone-and-plate rheometer.

We note that the primary normal stress coefficient �1 is positive, whereas the secondary

normal stress coefficient �2 is negative, but with a lot of scatter in the data. It is difficult to

measure ðt22 � t33Þ and its value is in doubt, but the ratio�ðt11 � t22Þ=ðt22 � t33Þ appears to
be about 0.1.

Bird et al. (24) pointed out a simple method of estimating the primary normal stress

difference from viscosity data. The method is approximate, originating with the Goddard–

Miller (G–M) (25) constitutive equation (Eq. 3.3-8), and it predicts that

�1 _ggð Þ ¼ 4K

p

ð1
0

Z _ggð Þ � Z _gg0ð Þ
_gg0ð Þ2� _gg2

d _gg0 ð3:2-1)

where K is an empirical constant. Good fit to data results are obtained, with K equaling

about 2 for solutions and 3 for melts.
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3.3 POLYMER MELT CONSTITUTIVE EQUATIONS BASED

ON CONTINUUM MECHANICS

There is a multitude of constitutive equations proposed for polymer melts. However, only

a few have been used to solve actual polymer processing problems. Nevertheless, we feel,

as we did in the first edition of this book, that it is instructive to trace their origin and to

indicate the interrelationship among them. We will do this quantitatively, but without

dealing in detail with the mathematical complexities of the subject. The following three

families of empirical equations will be discussed:

1. The generalized Newtonian fluid models (GNF), which are widely used in polymer

processing flow analysis, since they are capable of describing well the very strong

shear rate dependence of melts.

2. The linear viscoelastic models (LVE), which are widely used to describe the

dynamic rheological response of polymer melts below the strain limit of the linear

viscoelastic response of polymers. The results obtained are characteristic of and

depend on the macromolecular structure. These are widely used as rheology-based

structure characterization tools.

Fig. E3.2c Values for –ðt11 � t22Þ, ðt22 � t33Þ and the ratio –ðt11 � t22Þ=ðt22 � t33Þ for

2.5% acrylamide solution measured with a cone-and-plate rheometer. [Reprinted with

permission from E. B. Christiansen and W. R. Leppard, Trans. Soc. Rheol., 18, 65 (1974).]
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3. The nonlinear viscoelastic models (VE), which utilize continuum mechanics

arguments to cast constitutive equations in coordinate frame-invariant form, thus

enabling them to describe all flows: steady and dynamic shear as well as

extensional. The objective of the polymer scientists researching these nonlinear

VE empirical models is to develop constitutive equations that predict all the

observed rheological phenomena.

Here we follow the systematic and clear classification and description of the consti-

tutive equations of Bird et al. (14), and we refer the reader who is interested in the

detailed development of the subject to that source. There is general agreement that, by

and large, the constitutive equations for polymer melts and solutions are special cases of

a very general constitutive relation, according to which the stress at any point in a

flowing fluid and at any time depends on the entire flow history of the fluid element

occupying that point. Because it does not depend on the flow history of adjacent

elements, the dependence is ‘‘simple,’’ and the general relation is called the simple fluid

constitutive equation (26).

One physical restriction, translated into a mathematical requirement, must be

satisfied: that is that the simple fluid relation must be ‘‘objective,’’ which means that its

predictions should not depend on whether the fluid rotates as a rigid body or deforms.

This can be achieved by casting the constitutive equation (expressing its terms) in

special frames. One is the co-rotational frame, which follows (translates with)

each particle and rotates with it. The other is the co-deformational frame, which

translates, rotates, and deforms with the flowing particles. In either frame, the observer is

oblivious to rigid-body rotation. Thus, a constitutive equation cast in either frame is

objective or, as it is commonly expressed, ‘‘obeys the principle of material objectivity’’.

Both can be transformed into fixed (laboratory) frame in which the balance equations

appear and where experimental results are obtained. The transformations are similar to,

but more complex than, those from the substantial frame to the fixed (see Chapter 2).

Finally, a co-rotational constitutive equation can be transformed to a co-deformational

one.

Goddard (27) expressed the notion of the simple fluid constitutive equation in a

co-rotational integral series. The integral series expansion had been used in the co-

deformational frame by Green and Rivlin (28) and Coleman and Noll (29). The co-

rotational expansion takes the form:

s x; tð Þ ¼ �
ðt

�1
G1 t � t0ð Þ _CC0dt0

� 1

2

ðt
�1

ðt
�1

G11 t � t0; t � t00ð Þ _CC0 � _CC00 þ _CC00 � _CC0
 �
dt00dt0 � � � �

ð3:3-1)

where G1;G11; . . . are characteristic material functions, _CC is the corotating rate of strain

(velocity gradient) tensor, t0; t00 are integration variables, and t is the present time. Equation

3.3-1 is in an unusable form. There are two alternative routes through which useful

constitutive equations can be obtained:
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1. Expand _CC in a Taylor series about t0 ¼ t

_CC t; t0ð Þ ¼ _cc tð Þ � t � t0ð ÞD _cc
Dt

þ � � � ð3:3-2)

where

D _cc
Dt

¼ @ _cc
@t

þ v � r _ccf g þ 1

2
x � _ccf g � _cc � xf gð Þ ð3:3-3)

is the co-rotational derivative or Jaumann derivative measuring the time rate of change of

_cc as measured by an observer who is translating and rotating with the local fluid velocity

and vorticity. Keeping only the first two terms of the Taylor series (which means that the

flow under consideration is almost steady), one can obtain the second-order fluid

constitutive equation

s ¼ �a1 _ccþ a2
D _gg
Dt

� a11 _cc � _ccf g � � � � ð3:3-4)

where ai are constants related to G1;G11; � � �. For steady shear flows, the Criminale–

Ericksen–Filbey (CEF) constitutive equation can be obtained (30):

s ¼ �Z _cc� 1

2
�1 þ�2

� �
_cc � _ccf g þ 1

2
�1

D _cc
Dt

ð3:3-5)

where Z;�1; and �2 are the viscosity, first normal stress-difference coefficient, and

second normal stress difference coefficient functions, respectively. They are all functions

of the magnitude of the rate of strain tensor _gg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_gg : _ggð Þ=2p

. Because many polymer

processing flows are steady shear flows, and because of the physical significance

of the material functions Z;�1, and �2, the CEF equation is considered in detail in

Example 3.3.

If the normal stress coefficient functions �1 and �2 are ignored, the CEF equation

reduces to the GNF equation

s ¼ �Z _cc ð3:3-6)

This equation reduces for an incompressible Newtonian fluid to Newton’s law, which in

tensorial form is given by

s ¼ �m _cc ð3:3-7)

2. If, in Eq. 3.3-1 a single integral term is retained, the Goddard-Miller (G–M)

constitutive equation is obtained (17, 25):

s ¼ �
ðt

�1
Gðt � t0Þ _CCdt0 ð3:3-8)
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For small deformation flows it is evident from Eqs. 3.3-2 and 3.3-3 that _�� equals _gg, thus
the G–M equation yields the LVE fluid (14, 28, 29):

s ¼ �
ðt

�1
Gðt � t0Þ _ccðt0Þdt0 ð3:3-8a)

where G t � t0ð Þ is the relaxation modulus, which can take specific forms, depending on

the LVE ‘‘mechanical model’’ used to simulate the real LVE behavior. For example, if a

single Maxwell element, consisting of a ‘‘spring’’ G and a ‘‘dashpot’’ m in a series is used,

the Maxwell constitutive equation is obtained

sþ l0ds=dt ¼ �Z0 _cc ð3:3-9)

where l0 ¼ Z0=G. When l0 ¼ 0 ðG ! 1Þ, the Newtonian constitutive equation for an

incompressible fluid, Eq. 3.3-7, is obtained.

Including a velocity gradient in the time derivative, we obtain the Jeffreys model (31)

sþ l1
d

dt
s ¼ �Z0 _ccþ l2

d

dt
_cc

� �
ð3:3-10)

From the G–M equation, while still in the co-rotational frame, we can choose a specific

form of the relaxation modulus. Thus, for a single Maxwell element we can obtain

sþ l0
Ds
Dt

¼ �Z0 _cc ð3:3-11)

This is called the Zaremba-Fromm-DeWitt (ZFD) equation.

As stated earlier, the simple fluid concept can be expressed in a series of co-

deformational integrals (14, 28, 29)

s ¼ �
ðt

�1
G1ðt � t0Þ _cc½1�0dt0

� 1

2

ðt
�1

ðt
�1

G2ðt � t0; t � t00Þ _cc½1�
0 � _cc½1�00 þ _cc½1�

00 � _cc½1�0
h i

dt00 dt0 � � � �
ð3:3-12)

where G1, G2, . . ., are material functions and _cc 1½ � is the co-deforming rate of strain tensor

using covariant differentiation. If contravariant derivatives are used (14)

s ¼ �
ð
G1 t � t0ð Þ _cc 1½ �

0dt0

� 1

2

ðt
�1

ðt
�1

G2 t � t0; t � t00ð Þ _cc 1½ �
0 � _cc 1½ �

00 þ _cc 1½ �
00 � _cc½1�0

h i
dt00 dt0 � � � �

ð3:3-13)

where G1, G2, . . . are material functions and _cc 1½ � is the co-deforming rate of strain tensor

using contravariant differentiation.
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As was the case with Eq. 3.3-1, Eqs. 3-3.12 and 3.3-13 are also not usable in their

current form. But the same means for making them usable are available (see Ref. 14:

Fig. 9.6-1 and Table 9.4-1). Two specific steps to simplify the equation are as follows:

1. For almost steady flows one can expand _cc 1½ � or _cc 1½ � about t ¼ t0 and obtain second-order
fluid constitution equations in the co-deforming frame. When steady shear flows are

considered, the CEF equation is obtained, which, in turn, reduces to the GNF equation

for�1 ¼ �2 ¼ 0 and to a Newtonian equation if, additionally, the viscosity is constant.

2. Setting G1, G2, . . . , or G
1, G2, . . . , equal to zero, Eqs. 3.3-11 and 3.3-12 reduce to

G–M-type equations. For example,

s ¼ �
ðt

�1
G t � t0ð Þ _cc0½1� dt0 ð3:3-14)

is the so-called Oldroyd (32)–Walters (33)–Fredrickson (34) equation. This

equation, when integrated by parts, yields the Lodge rubber-like liquid equation (23)

s ¼
ðt

�1
M t � t0ð Þc0½0� dt0 ð3:3-15)

where M t � t0ð Þ ¼ dG t � t0ð Þ=dt0 and c00½ � is the strain tensor in a co-deforming

frame using contravariant differentiation.

For small deformations, Eq. 3.3-14 reduces to the LVE Eqs. 3.3-9 and 3.3-10 ðg01½ � ¼ _ggÞ.
On the other hand, for large deformations, while still in the co-deforming frame, one can

use a particular linear viscoelastic model to represent G t � t0ð Þ in Eq. 3.3-14. If, as before,
a single Maxwell element is used, one can obtain the following analog to Eq. 3.3-11

sþ l0s 1ð Þ ¼ �Z0 _cc ð3:3-16)
where t 1ð Þ is a co-deforming time derivative (14) equal to

s 1ð Þ ¼ D

Dt
s� rvð Þy�sþ s � rvð Þ

n o
ð3:3-17)

Together with Eq. 3.3-17, Eq. 3.3-16 is the White–Metzner constitutive equation, which

has been used frequently as a nonlinear viscoelastic model. Of course, for small

deformations, s 1ð Þ ¼ ds=dt, and the single Maxwell fluid equation (Eq. 3.3-9) is obtained.

Finally, a number of commonly used constitutive equations are derived from Eq. 3.3-13

by specifying G1;G2; . . . instead of specifying only G1 and settingG2; . . . equal to zero.

Moreover, in these equations,Mi are allowed to be functions of the invariants of the strain

or rate-of-strain tensors, since there is experimental evidence supporting this dependence

(35). Examples of such usable integral co-deformational constitutive equations are:

s¼þ
ðt

�1
M1 t� t0;Ic0 0½ �; IIc0 0½ �
� 	

c 0½ �
0 þM2 t� t0;Ic0 0½ �; IIc0 0½ �

� 	
c 0½ �

0 �c 0½ �
0

n oh i
dt0 ð3:3-18)

which is the Bernstein–Kearsley–Zappas (BKZ) (36) constitutive equation, and

s ¼ þ
ðt

�1
M t � t0; II _gg tð Þ� 	

1þ e
2

� �
c 0½ �

0 � e
2
c 0½ �0

h i
dt0 ð3:3-19)
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which is the Bogue or Chen-Bogue (37) and Bird-Carreau (38) constitutive equation,

depending on the representation of the dependence of M on II _gg; e is a constant.

We have tried to give a quick glimpse of the interrelationships among some commonly

used constitutive equations for polymer melts and solutions. None predicts quantitatively

the entire spectrum of the rheological behavior of these materials. Some are better than

others, becoming more powerful by utilizing more detailed and realistic molecular

models. These, however, are more complex to use in connection with the equation of

motion. Table 3.1 summarizes the predictive abilities of some of the foregoing, as well as

other constitutive equations.

In examples 3.3, 3.4 and 3.5 we discuss three of the models listed above: the LVE, some

members of the GNF family and the CEF; the first because it reveals the viscoelastic nature

of polymer melts; the second because, in its various specific forms, it is widely used in

polymer processing; and the third because of its ability to predict normal stress differences

in steady shear flows.

Example 3.3 Small Amplitude Oscillatory Motion of a Linear Viscoelastic Body
We wish to derive the steady state response of a linear viscoelastic body to an externally

applied sinusoidal shear strain (dynamic testing) using the constitutive Eq. 3.3-8, which for

this viscometric flow reduces to

t tð Þ ¼ �
ðt

�1
G t � t0ð Þ dg

dt0
dt ðE3:3-1)

and

dg
dt0

¼ g0o cosot0 ðE3:3-2)

Let the linear viscoelastic body be represented by a continuous spectrum of relaxation times,

that is,

G t � t0ð Þ ¼
ðþ1

�1
H ln lð Þe� t�t0ð Þ=ld ln l ðE3:3-3)

Substituting in the constitutive equation and integrating, we have

t tð Þ ¼ �
ðt

�1

ð1
�1

H ln lð Þe�t=leþt0=ld ln l

2
4

3
5 g0o cosot0 dt0

¼ �og0

ð1
�1

H ln lð Þe�t=l
ðt

�1
et

0=l cosot0 dt0

2
4

3
5 dln l

¼ �g0

ð1
�1

H ln lð Þ
1þ o2l2

ol cosot þ o2l2 sinot

 �

d ln lð Þ

¼ �g0

ð1
�1

H ln lð Þo2l2

1þ o2l2
d ln lð Þ

2
4

3
5 sinot

� g0

ð1
�1

H ln lð Þol
1þ o2l2

d ln lð Þ
2
4

3
5 cosot

ðE3:3-4)
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Thus, according to the result just given, the response of a linear viscoelastic body to a

sinusoidal strain (a) lags in time behind the applied strain, and (b) is composed of purely

elastic and purely viscous parts. Figure E3.3 illustrates these features.

Furthermore, it is useful to define the following quantities associated with dynamic

mechanical testing:

(a) The in-phase or elastic dynamic modulus

G0ðoÞ ¼
ðþ1

�1

H ln lð Þo2l2

1þ o2l2
d ln lð Þ ðE3:3-5)

(b) The out-of-phase or loss dynamic modulus

G00ðoÞ ¼
ðþ1

�1

H ln lð Þol
1þ o2l2

d ln lð Þ ðE3:3-6)

(c) The loss tangent or dissipation factor; the ratio of the mechanical energy dissipated to

that stored per cycle

tan d ¼ G00

G0 ðE3:3-7)

Note that since in this case, the Deborah number, De ¼ lo, the moduli and the loss tangent,

G0;G00; tan d, are functions of the Deborah number.

The moduli can be expressed in terms of the discrete spectrum of relaxation times given by

G t � t0ð Þ ¼
XN1

i¼1

Gie
� t�t0ð Þ=li ðE3:3-8)

as

G0 ¼
XN1

i¼1

Gi olið Þ2
1þ olið Þ2 ðE3:3-9)

and

G00 ¼
XN1

i¼1

Gioli
1þ olið Þ2 ðE3:3-10)

Applied strain
Elastic solid stress
Viscous fluid stress
Viscoelastic fluid stress

Time
A

m
pl

itu
de

Fig. E3.3 The schematic stress response of elastic, a viscous, and a viscoelastic body to a

sinusoidally applied strain.
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GNF-based Constitutive Equations

As was pointed out before, the GNF is the generic expression for a whole family of

empirical, semiempirical, or molecular model–based equations that were proposed to

account for the non-Newtonian, shear-thinning behavior of polymer melts that take the

form

s ¼ �Z _cc ð3:3-20)

GNF-based constitutive equations differ in the specific form that the shear rate

dependence of the viscosity, Z _ggð Þ, is expressed, but they all share the requirement that

the non-Newtonian viscosity Z _ggð Þ be a function of only the three scalar invariants of the

rate of strain tensor. Since polymer melts are essentially incompressible, the first invariant,

I _cc ¼ 0, and for steady shear flows since v1 ¼ f ðx2Þ; and v2 ¼ v3 ¼ 0 the third invariant,

III _cc ¼ 0, and therefore the non-Newtonian viscosity can only be a function of the second

invariant Zð _ggÞ ¼ f II _cc
� 	

. In practice, this functionality is expressed via the

magnitude of _cc, and is given by

_gg ¼
ffiffiffiffiffiffiffiffiffi
1

2
II _gg

r
ð3:3-21)

For viscometric flows, II _cc ¼ 2 _gg212, and thus the magnitude of _cc is _gg ¼ _gg12j j, or the absolute
value of the shear rate.

There are numerous fluid models or empirical constitutive equations that comply with

the GNF fluid assumptions that were proposed in the literature. They vary in form and in

the number of parameters that have to be determined by fitting them to experimental

results. Rheological flow curves of non-Newtonian fluids and polymer melts generally

exhibit a Newtonian range in the low shear rate range, followed by a broad range of shear-

thinning viscosity, and ending in an upper Newtonian range (though the upper range is

hardly relevant to polymer melts because of excessive heat generation and the possibility

of degradation in this range). These empirical equations have two uses: the primary use is

to insert them into the equation of motion to obtain an analytical solution to real

processing flow problems. The more complex the empirical model is, the more difficult it

is to reach analytical solutions, but even the simplest one converts the equation of motion

into a nonlinear set of differential equations as compared to the linear Newtonian

equivalent. The second use is to record in a simple way (with the minimum number of

required parameters) the experimentally obtained results. This use simply converts a table

of results to an algebraic equation. For numerical solutions, such as finite-element methods

(FEM), having a more complex empirical equation does not add to the mathematical

complexity of the solution. We now review a few of the commonly used empirical

equations with an increasing number of parameters.

The Power Law Model

The Power Law model (excluding temperature dependence) is a two-parameter empirical

model proposed by Ostwald and de Waele (39). It is based on the experimental observation

that by plotting ln Z _ggð Þvs: ln _ggð Þ, a straight line is obtained in the high shear rate region for
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many non-Newtonian fluids, including most polymer melts. This suggests the following

functional relationship between non-Newtonian viscosity and shear rate

Z _ggð Þ ¼ m _ggn�1 ð3:3-22)

where m(Nsn/m2) and the dimensionless n are parameters, commonly called the

consistency and Power Law index, respectively. Thus a Power Law constitutive equation

can be arrived at:

s ¼ �m _ggn�1 _cc ¼ �m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_cc : _ccð Þ

r" #n�1

_cc ð3:3-23)

The parameter m is a sensitive function of temperature, obeying an Arrhenius-type

relationship

m ¼ m0 exp
�E

R

1

T
� 1

T0

� �� �
ð3:3-24)

where m0 is the value of m at T0, and �E is the flow activation energy. For mathematical

convenience, a simpler relationship is frequently used

m ¼ m0e
�aðT�T0Þ ð3:3-25)

where a is an empirical parameter. Equation 3.3-25 holds well over relatively narrow

temperature ranges.

The following comments can be made about the Power Law equation and the viscosity

or ‘‘flow curve,’’ as, for example, that shown in Fig. 3.5:

� The upper limit of the Newtonian plateau is dependent on Mw and the melt

temperature. Commonly, it is roughly in the region _gg ¼ 10�2s�1: Low viscosity

fiber-forming Nylon and polyethylene terephthalate (PET) are important exceptions,

as their Newtonian plateau extends to higher shear rates.

� This upper limit decreases with increasing Mw, with increasing molecular weight

distribution (MWD) at constant Mw, and with decreasing melt temperature. On

physical grounds, it is considered to terminate roughly where the Deborah number

reaches unity.

� If the Power Law equation is used in pressure flows, where 0 
 _gg 
 _ggmax, an error is

introduced in the very low shear rate Newtonian region. In flow rate computation,

however, this is not a very significant (40).

� The transition from the Newtonian plateau to the Power Law region is sharp for

monodispersed polymer melts and broad for polydispersed melts (see Fig. 3.5).

� The slope of the viscosity curve in the Power Law region is not exactly constant.

The flow index n decreases with increasing shear rate. Thus the Power Law equation

holds exactly only for limited ranges of shear rate, for a given value of n.

In conclusion, despite its limitations, the Power Law model is one of the most widely

used empirical relations in polymer fluid dynamics, and it gives surprisingly good results,

even for nonviscometric and slightly transient flows.
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The Ellis Model

The Ellis model (41), is a three-parameter model, in which the non-Newtonian viscosity is

a function of the absolute value of the shear stress tensor, t,

ZðtÞ ¼ Z0
1þ t=t1=2

� 	a�1
ð3:3-26)

yielding the following constitutive equation

s ¼ �ZðtÞ _cc ¼ � Z0
1þ t=t1=2

� 	a�1

" #
_cc ð3:3-27)

where t is related to the second invariant of the stress tensor as follows

t ¼
ffiffiffiffiffiffiffiffiffi
1

2
IIt

r
ð3:3-28)

The three parameters are a, which is the slope of the curve logðZ=Z0 � 1Þ vs. logðt=t1=2Þ;
t1=2, which is the shear stress value, where Z ¼ Z0=2; and Z0, which is the zero shear

viscosity. Thus the Ellis model matches the low shear Newtonian plateau and the shear-

thinning region.

The Cross Model

The Cross and the temperature-dependent Cross-WLF model (42) is an often used GNF-

type model accounting for, like the Ellis and Carreau fluids for the viscosity at both low

and high shear rates,

Zð _gg; T ;PÞ ¼ Z0ðT1Þ

1þ Z0ðTÞ
t�

_gg
� �n�1

ð3:3-29)

where n denotes the Power Law index; t� the critical stress level at which Z transitions

from the Newtonian plateau, Z0, to the Power Law regime; and _gg is the shear rate. If an

Arrhenius viscosity temperature dependence is assumed, then a shift factor aT is defined as

log aT ¼ �E

R

1

T1
� 1

T2

� �
ð3:3-30)

Given the value of the activation energy, �E, a master curve ZðT ; _ggÞ can be constructed,

and Eq. 3.3-30 becomes

Z ¼ Z0

1þ Z0
t�

_gg
aT

� �1�n

2
6664

3
7775 1

aT
ð3:3-31)
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This relation holds well for semicrystalline polymers; for amorphous polymers, it holds

for T > Tg þ 100�C. Below this region free volume effects predominate necessitating the

use of the Arrhenius–WLF equation

log aT ¼ �E

R

1

T1
� 1

T2

� �
� b1

T1 � T2

b2 þ T2 � T1

� �
ð3:3-32)

The parameters b1 and b2 have to be experimentally determined.

The Carreau Model

The Carreau model (43) is a four-parameter model that accounts for the both the low shear

rate Newtonian region and the high shear rate upper Newtonian region that is expected

(although polymer melts do not reach this region, because of excessive heating and

degradation at these high shear rate values):

Zð _ggÞ � Z1
Z0 � Z1

¼ 1

1þ l _ggð Þ2
h ið1�nÞ=2 ð3:3-33)

where Z0 is the zero shear rate viscosity, Z1 is the infinite shear-rate viscosity, l is a

parameter with units of (relaxation) time, and n is a dimensionless parameter. Note that the

shear-thinning nature of melts is accounted for by the parameter nðn < 1Þ, as was the case
with the Power Law model. The product l _gg ¼ De reflects the viscoelastic nature of the

melt, which at low De number values De ! 0 become Newtonian. As De is increased,

melts become less viscous and more elastic.

There are numerous other GNF models, such as the Casson model (used in food

rheology), the Ellis, the Powell–Eyring model, and the Reiner–Pillippoff model. These are

reviewed in the literature. In Appendix A we list the parameters of the Power Law, the

Carreau, and the Cross constitutive equations for common polymers evaluated using

oscillatory and capillary flow viscometry.

The Bingham Fluid

The Bingham fluid is a two-parameter, somewhat different model from the previous

rheological models, in that it has a final yield stress below which there is no flow, whereas

above it, the stress is a linear function of the rate of strain

Z ¼ 1 t 
 ty

Z _ggð Þ ¼ m0 þ
ty
_gg

� �
t > ty

ð3:3-34)

where ty is the yield stress, and m0 is the Newtonian viscosity for vanishing yield stress. A
typical Bingham plastic fluid is ketchup, but many other fluids have this property, such as

‘‘no drip’’ paints, pastes, and slurries.

Example 3.4 Flow of a Power Law Fluid in Tubes For an isothermal, laminar, fully devel-

oped steady pressure flow of an incompressible Power Lawmodel fluid in a horizontal tube without

slip, we wish to derive (a) the velocity profile and (b) the flow rate.

(a) For a tubular flow we use the cylindrical coordinate system. Since flow is isothermal

and the fluid incompressible, the equation of motion and continuity, together with the
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constitutive equation, fully describe the flow. On the basis of symmetry, we assume that there

is no y dependence and that vy ¼ 0. Fully developed flow implies that @vz=dz ¼ 0, and hence

the equation of continuity reduces to

@

@r
ðrvrÞ ðE3:4-1)

which can be integrated to give rvr ¼ C, whereC is a constant. Since vr ¼ 0 at the tube radius, we

conclude that C ¼ 0, and therefore vr ¼ 0. Hence, the only nonvanishing velocity component is

vz, which is a function only of r. Turning to the equation of motion in Table 2.2, the three

components of the equation therefore reduce to

@P

@r
¼ 0

@P

@y
¼ 0

@P

@z
¼ � 1

r

@

@r
rtrzð Þ

ðE3:4-2)

Clearly, the left-hand side of the equation is a function only of z, since P 6¼ f ðr, yÞ, whereas
the right-hand side of the last equation is a function only of r; therefore, they both must equal a

constant, indicating that the pressure gradient is constant along the tube and that partial

differentials can be replaced by ordinary differentials. Following integration, we get

trz ¼ � r

2

� � dP
dz

þ C1 ðE3:4-3)

where C1 is an integration constant. The constant C1 is zero, because at r ¼ 0, where the

velocity has a maximum and the gradient is zero, the shear stress must vanish as well. Thus the

shear stress distribution is given by

trz ¼ � r

2

� � dP
dz

ðE3:4-4)

indicating that the shear stress increases linearly from a value of zero at the center to a

maximum at the wall. The only nonvanishing velocity gradient in this flow is dvz=dr, and
therefore the rate of deformation tensor of Table 2.3 reduces to

_cc ¼
0 0

dvz

dr

0 0 0

dvz

dr
0 0

0
BBBB@

1
CCCCA ðE3:4-5)

and the Power Law constitutive equation reduces to

trz ¼ �m _ggn�1 dvz

dr
ðE3:4-6)

However, _gg in Eq. E3.4-56 is obtained from Eq. E3.4-5 and given by

_gg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_cc : _ccð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dvz

dr

� �2
s

¼ dvz

dr

����
���� ðE3:4-7)
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where the scalar product of the tensor _cc is 2ðdvz=drÞ2. By substituting Eq. E3.4-7 into

Eq. E3.4-6, we get

trz ¼ �m
dvz

dr

����
����
n�1

dvz

dr
ðE3:4-8)

Note that shear rate _gg is the magnitude of the tensor _cc, and therefore it must always be positive.

Thus we maintain the absolute-value sign over the term that reflects the shear dependence of

the viscosity.

Combining Eq. E3.4-8 with Eq. E3.4-4 yields

m
dvz

dr

����
����
n�1

dvz

dr
¼ r

2

dP

dz

� �
ðE3:4-9)

In tubular flow for all r; dvz=dr < 0; therefore

dvz

dr

����
���� ¼ � dvz

dr
ðE3:4-10)

and Eq. E3.4-9 can be written as

� dvz

dr
¼ � r

2mL

dP

dz

� �s

ðE3:4-11)

where s ¼ 1=n. Note that the pressure gradient in the preceding equation is negative, and

therefore the term in parenthesis is positive. This equation can be integrated with boundary

condition vzðRÞ ¼ 0 to give

vzðrÞ ¼ R

sþ 1

� �
� R

2m

dP

dz

� �s
1� r

R

� �sþ1
� �

ðE3:4-12)

For Newtonian fluids with s ¼ 1, this equation reduces to the classic parabolic profile.

(b) The volumetric flow rate is obtained by integrating Eq. E3.4-12.

Q ¼
ðR
0

2prvzdr ¼ pR3

sþ 3
� R

2m

dP

dz

� �s

¼ pR3

sþ 3
� R

2m

�P

L

� �s ðE3:4-13)

where �P ¼ P0 � PL;P0 is the pressure at z ¼ 0; and PL at z ¼ L. Equation E3.4-13 is the

Power Law equivalent to the celebrated Newtonian Hagen–Poiseuille equation, with s ¼ 1

and m ¼ m

Q ¼ pR4

8mL
P0 � PLð Þ ðE3:4-14)

Example 3.5 The CEF Equation in Steady, Fully Developed Flow in Tubes The visc-

osity functions in both the Power Law model GNF fluid and the CEF fluid are expected to be
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the same. Therefore, assuming that the velocity field of a CEF fluid, in steady viscometric

flow, will be the same as that of a purely viscous fluid, we can calculate the stress field needed

to maintain such a flow. In this Example, we calculate the stress field needed to maintain the

pressure-driven tube flow discussed in Example 3.4.

In Section 3.3 we discussed the origins of the CEF equation

s ¼ �Z _cc� 1

2
�1 þ�2

� �
_cc � _ccf g þ 1

2
�1

D _cc
Dt

ðE3:5-1)

where the material functions Z;�1; and �2 are functions of shear rate, and they hold for steady

shear flow and account for the shear-thinning viscosity and for normal stresses.

Our starting point is the rate-of-deformation tensor given in Eq. E3.4-5

_cc ¼
0 0 _ggrz
0 0 0
_ggrz 0 0

0
@

1
A ðE3:5-2)

To calculate the stresses generated by the CEF fluid, we need to calculate the quantities _cc � _cc
and D _cc=Dt in Eq. E3.5-1. The first one is a simple matrix multiplication, resulting in

_cc � _ccf g ¼
_gg2rz 0 0

0 0 0

0 0 _gg2rz

0
@

1
A ðE3:5-3)

Next we calculate

D
Dt

_cc ¼ @

@t
_ccþ v � = _ccf g þ 1

2
x � _ccf g � _cc � xf gð Þ ðE3:5-4)

The first term on the right-hand side is zero because the flow is steady. The components of the

second term, v � = _cc, we obtain from Table 3.2

ðv � = _ccÞrz ¼ ðv � =Þ _ggrz �
vy

r
_ggyz

¼ vr
@

@r
þ vy

r

@

@y
þ vz

@

@z

� �
_ggrz �

vy

r
_ggyz

ðE3:5-5)

Since vr ¼ 0; vy ¼ 0, and @vz=@z ¼ 0 for a developed flow, the term v � = _ccð Þrz¼ 0. Similarly,

we evaluate all other components and conclude that v � = _cc ¼ 0. The vorticity tensor x can be

obtained for this flow from Table 3.3

x ¼ =v� =vð Þy¼
0 0 _ggrz
0 0 0

� _ggrz 0 0

0
@

1
A ðE3:5-6)

Next, with Eqs. E.3.5-2 and E3.5-6 we derive

x � _ccf g ¼
0 0 _ggrz
0 0 0

� _ggrz 0 0

0
@

1
A 0 0 _ggrz

0 0 0

_ggrz 0 0

0
@

1
A ¼

_gg2rz 0 0

0 0 0

0 0 � _gg2rz

0
@

1
A ðE3:5-7)
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and

_cc � xf g ¼
� _gg2rz 0 0

0 0 0

0 0 _gg2rz

0
@

1
A ðE3:5-8)

Thus, Eq. E3.5-4 reduces to

D
Dt

_cc ¼ 1

2
x � _ccf g � _cc � xf gð Þ ¼

_gg2rz 0 0

0 0 0

0 0 � _gg2rz

0
@

1
A ðE3:5-9)

TABLE 3.2 The Components of (v � = _cc) in Three Coordinate Systems

Rectangular Coordinatesa ðx; y; zÞ
ðv � = _ccÞxx ¼ ðv � =Þ _ggxx ðv � = _ccÞxy ¼ ðv � = _ccÞyx ¼ ðv � =Þ _ggxy
ðv � = _ccÞyy ¼ ðv � =Þ _ggyy ðv � = _ccÞyz ¼ ðv � = _ccÞzy ¼ ðv � =Þ _ggzy
ðv � = _ccÞzz ¼ ðv � =Þ _ggzz ðv � = _ccÞzx ¼ ðv � = _ccÞxz ¼ ðv � =Þ _ggxz
Cylindrical Coordinatesb ðr; y; zÞ

ðv � = _ccÞrr ¼ ðv � =Þ _ggrr �
vy

r
ð _ggry þ _ggyrÞ

ðv � = _ccÞyy ¼ ðv � =Þ _ggyy þ
vy

r
ð _ggry þ _ggyrÞ

ðv � = _ccÞzz ¼ ðv � =Þ _ggzz
ðv � = _ccÞry ¼ ðv � = _ccÞyr ¼ ðv � =Þ _ggyr þ

vy

r
ð _ggrr � _ggyyÞ

ðv � = _ccÞyz ¼ ðv � = _ccÞzy ¼ ðv � =Þ _ggyz þ
vy

r
_ggrz

ðv � = _ccÞrz ¼ ðv � = _ccÞzr ¼ ðv � =Þ _ggrz �
vy

r
_ggyz

Spherical Coordinatesc ðr; y;fÞ

ðv � = _ccÞrr ¼ ðv � =Þ _ggrr �
2vy

r
_ggry �

2vf

r
_ggrf

ðv � = _ccÞyy ¼ ðv � =Þ _ggyy þ
2vy

r
_ggry �

2vf

r
_ggyf cot y

ðv � = _ccÞff ¼ ðv � =Þ _ggff þ 2vf

r
_ggrf þ 2vf

r
_ggyf cot y

ðv � = _ccÞry ¼ ðv � = _ccÞyr ¼ ðv � =Þ _ggry þ
vy

r
ð _ggrr � _ggyyÞ �

vf

r
ð _ggfy þ _ggrf cot yÞ

ðv � = _ccÞrf ¼ ðv � = _ccÞfr ¼ ðv � =Þ _ggrf � vy

r
_ggyf þ vf

r
½ð _ggrr � _ggffÞ þ _ggry cot y�

ðv � = _ccÞyf ¼ ðv � = _ccÞfy ¼ ðv � =Þ _ggyf þ vy

r
_ggrf þ vf

r
½ _ggyr þ ð _ggyy � _ggffÞ cot y�

Source: Reprinted by permission from R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of

Polymeric Liquids, 2nd Edition, Vol. I, Fluid Dynamics, Wiley, New York, 1987.

aðv � =Þ ¼ vx
@

@x
þ vy

@

@y
þ vz

@

@z

bðv � =Þ ¼ vr
@

@r
þ vy

r

@

@y
þ vz

@

@z

cðv � =Þ ¼ vr
@

@r
þ vy

r

@

@y
þ vf

r sin y
@

@f

POLYMER MELT CONSTITUTIVE EQUATIONS BASED 115



Finally, we substitute Eqs. E3.5-2, E3.5-3, and E3.5-9 into Eq. E3.5-1 to obtain the stress

field

trr try trz
tyr tyy tyz
tzr tzy tzz

0
B@

1
CA ¼ �Z _ggð Þ

0 0 _ggrz
0 0 0

_ggrz 0 0

0
B@

1
CA� 1

2
�1ð _ggÞ þ�2ð _ggÞ

� � _gg2rz 0 0

0 0 0

0 0 _gg2rz

0
B@

1
CA

þ 1

2
�1ð _ggÞ

_gg2rz 0 0

0 0 0

0 0 � _gg2rz

0
B@

1
CA ðE3:5-10)

Table 3.3 Components of the Vorticity Tensor x in Three

Coordinate Systemsa

Rectangular Coordinates ðx; y; zÞ

oxy ¼ �oyx ¼ @vy
@x

� @vx
@y

oyz ¼ �ozy ¼ @vz
@y

� @vy
@z

ozx ¼ �oxz ¼ @vx
@z

� @vz
@x

Cylindrical Coordinates ðr; y; zÞ

ory ¼ �oyr ¼ 1

r

@

@r
ðrvyÞ � 1

r

@vr
@y

oyz ¼ �ozy ¼ 1

r

@vz
@y

� @vy
@z

ozr ¼ �orz ¼ @vr
@z

� @vz
@r

Spherical Coordinates ðr; y;fÞ

ory ¼ �oyr ¼ 1

r

@

@r
ðrvyÞ � 1

r

@vr
@y

oyf ¼ �ofy ¼ 1

r sin y
@

@y
ðvf sin yÞ � 1

r sin y
@vy
@f

ofr ¼ �orf ¼ 1

r sin y
@vr
@f

� 1

r

@

@r
ðrvfÞ

Source: Reprinted with permission from R. B. Bird, R. C. Armstrong,

and O. Hassager, Dynamics of Polymeric Liquids, 2nd Edition, Vol. I,

Fluid Dynamics, Wiley, New York, 1987.
aAll diagonal components are zero.
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From Eq. E3.5-10 we obtain the following nonvanishing stress components:

trz ¼ tzr ¼ �Z _ggrz

trr ¼ � 1

2
�1 þ�2

� �
_gg2rz þ

1

2
�1 _gg2rz ¼ ��2 _gg2rz

tyy ¼ 0

tzz ¼ � 1

2
�1 þ�2

� �
_gg2rz �

1

2
�1 _gg2rz ¼ � �1 þ�2ð Þ _gg2rz

ðE3:5-11)

We therefore observe that unlike in the Power Law model solution with a single shear stress

component, trz, in the case of a CEF model, we obtain, in addition, two nonvanishing normal

stress components. Adopting the sign convention for viscometric flow, where the direction of

flow z is denoted as 1, the direction into which the velocity changes r, is denoted as 2, and the

neutral direction y is denoted as direction 3, we get the expressions for the shear stress in terms

of the shear rate, the primary, and secondary normal stress differences (see Eqs. 3.1-10 and

3.1-11):

t12 ¼ t21 ¼ �Z _gg21 ðE3:5-12)
t11 � t22 ¼ tzz � trr ¼ ��1 _gg221 ðE3:5-13)
t22 � t33 ¼ trr � tyy ¼ ��2 _gg221 ðE3:5-14)

with the three material functions of the CEF equation being identified as follows: Z _ggð Þ is the
viscosity function; �1 _ggð Þ is the first normal stress-difference coefficient; and �2 _ggð Þ is

the second normal stress-difference coefficient. Examples of the shear rate dependence of

both the viscosity and the coefficient of the first normal stress-difference functions are shown

in Fig. E3.5.

Example 3.6 Combined Drag and Pressure Flow between Parallel Plates In this exam-

ple we examine the isothermal, laminar, steady, fully developed combined pressure and drag

T = 150°C

(s–1).
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Fig. E3.5 Steady-state shear viscosity Z and first normal stress coefficient�1, obtained from

dynamic measurements versus shear rate for a low-density polyethylene melt, melt I. [H. M.

Laun, Rheol. Acta, 17, 1 (1978).]
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flow of an incompressible Power Law model fluid, between parallel plates in relative motion

as shown schematically in Fig. E3.6a. Superimposed on the drag flow there may be a positive

or negative pressure gradient. In the figure we show a case where the pressure gradient is posi-

tive (i.e., pressure increases in the positive z direction). We present this example for two rea-

sons: first, it is the type of flow that occurs in many types of processing equipment, most

notably single-screw extruders, and second, it illustrates the relative complexity introduced

in dealing analytically with the absolute sign in the Power Law model.

This problem was solved by Hirshberger (44), whose solution we follow. We will derive

the velocity profile and the flow rate and demonstrate how to deal with a Power Law model

fluid when the flow field where the velocity gradient is negative in one region and positive in

the other.

The flow is viscometric because there is only one velocity component, vzðyÞ, which is

changing only in one spatial direction, y. Adopting a rectangular coordinate system, we find in

analogy to Example 3.3 that vy ¼ vx ¼ 0, and therefore the equation of motion reduces to

@P

@x
¼ 0

@P

@y
¼ 0

@P

@z
¼ � @tyz

@y

ðE3:6-1)

From the preceding equations we conclude that the pressure is a function of coordinate z

only. Consequently, in the last equation the left-hand side is a function of z only, whereas the

right-hand side is a function of y only. This is only possible if both equal a constant. Thus we

conclude that the pressure gradient is constant, that is, pressure rises (or drops) linearly with z,

and that the shear stress, in the presence of a pressure gradient, is a linear function of y, and in

the absence of a pressure gradient it is constant across the gap. These observations follow from

the momentum balance, and, they are therefore, true for all fluids, Newtonian and non-

Newtonian alike.

Following the logic described in Example 3.4, we find that the Power Law model fluid for

this viscometric flow reduces to

tyz ¼ �m
dvz

dy

����
����
n�1

dvz

dy
ðE3:6-2)

V0

H

y

z

vz( y)

Fig. E3.6a Two parallel plates at a distance H apart with the upper plate moving at constant

velocity V0. The velocity profile is for a particular flow situation where the pressure is ‘‘built

up’’ in the z direction and is sufficiently high to create a ‘‘back flow’’ in the lower part of the

channel.
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Substituting Eq. E3.6-2 into Eq. E3.6-1 and casting it into dimensionless form, we obtain

d

dx
dvz

dy

����
����n�1

dvz

dy

 !
¼ 6G ðE3:6-3)

where uz ¼ vz=V0, and the dimensionless pressure gradient G is defined as

G ¼ Hnþ1

6mVn
0

dP

dz

� �
ðE3:6-4)

Equation E3.6-3 can be integrated with respect to x to give

duz

dx

����
����n�1

duz

dx
¼ 6G x� lð Þ ðE3:6-5)

where �6Gl is an integration constant. The advantage of writing the integration constant this
way is that l acquires a clear physical meaning; it is the location where the shear rate is zero,

or the location of the extremum in the velocity profile. We need to know this location in order

to rid ourselves of the absolute value in Eq. E3.6-5. Depending on the value of G, there are

four velocity profiles that we must consider (Fig. E3.6b). Cases a and b exhibit an extremum in

the velocity profile within the flow regime. In the former, the pressure gradient is positive

ðdP=dz > 0Þ; in the latter it is negative ðdP=dz < 0Þ. Cases c and d exhibit no extremum in

the velocity profile within the flow regime, thus, in this case, l lacks physical meaning,

although it still is the location of an extremum value of the mathematical function describing

the velocity profile. In Case c, l < 0, and in Case d, it is l > 1. In Cases c and d, _ggyz ¼ dvz=dy
is positive through the flow regime, whereas in Cases a and b, it changes sign above and

below l.
We note from Eq. E3.6-4 that G may be positive or negative depending on the sign of the

pressure gradient. It is, therefore, convenient to introduce at this point a variable accounting

for the sign of G

signG ¼ G

Gj j ðE3:6-6)

We can now rewrite Eq. E3.6-5 as

duz

dx

����
����
n�1

duz

dx
¼ 6 sign G Gj j x� lð Þ ðE3:6-7)

It can easily be verified that for regions x 	 l for both positive and negative pressure gradients
(i.e., both Cases a and b), Eq. E3.6-5 can be written as follows:

duz

dx
¼ 6Gj js x� lð ÞssignG ðE3:6-8)

where s ¼ 1=n. Similarly, for x 
 l we get

duz

dx
¼ � 6Gj js l� xð ÞssignG ðE3:6-9)
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Equations E3.6-8 and E3.6-9 can be integrated subject to boundary conditions uzð1Þ ¼ 1

and uzð0Þ ¼ 0, respectively, to give

uz ¼ 1� 6Gj js
1þ sð Þ 1� lð Þ1þs� x� lð Þ1þs

h i
signG ðE3:6-10)

and

uz ¼ 6Gj js
1þ sð Þ x� lð Þ1þs�l1þs

h i
signG ðE3:6-11)

Since the velocity is continuous throughout x, Eqs. E3.6-10 and E3.6-11 are equal at

x ¼ l, resulting in an equation for the unknown l as a function of G and sign G

l1þs � ð1� lÞ1þs þ 1þ s

6Gj jssignG ¼ 0 ðE3:6-12)

Fig. E3.6b Four regions of the solution of Eq. E3.6-5 corresponding to four types of

velocity profiles. In regions (Cases) a and b, the velocity profile exhibits an extremum. In the

former the pressure gradient is positive ðdP=dz > 0Þ; in the latter, it is negative

ðdP=dz < 0Þ. The location of the extremum is at x ¼ l. In regions c and d, the velocity

profile exhibits no extremum in the flow regime. In the former the pressure gradient is

positive ðdP=dz > 0Þ; in the latter, it is negative ðdP=dz < 0Þ. The curves present solution l
as a function of G from Eq. E3.6-5, for n ¼ 1, n ¼ 0:6, and n ¼ 0:2.
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Equation E3.6-12 is a nonlinear algebraic equation that must be solved numerically.

However, it provides the limiting values of G for determining a priori whether the flow

corresponds to Case a or b. By setting l ¼ 0 for G > 0, and l ¼ 1 for G < 0, we obtain the

following conditions for the existence of an extremum within the flow region 0 
 x 
 1

Gj j 	 1

6
1þ sð Þn ðE3:6-13)

By substituting Eq. E3.6-12 into Eq. E3.6-10, we can rewrite the velocity profile in one

equation

uz ¼ 6Gj js
1þ sð Þ x� lj j1þs�l1þs

h i
signG ðE3:6-14)

subject to the inequality in Eq. E3.6-13.

Turning now to Cases c and d, where no extremum occurs and duz=dx > 0, we note that

Eq. E3.6-7 can be written for G > 0 and G < 0, respectively, as

duz

dx
¼ 6Gð Þs x� lð Þs G > 0 ðE3:6-15)

and

duz

dx
¼ �6Gð Þs l� xð Þs G < 0 ðE3:6-16)

Integration of Eqs. E3.6-15 and E3.6-16 with boundary conditions uzð0Þ ¼ 0 and

uzð1Þ ¼ 1 results in the following velocity profiles for each of the Cases c and d:

uz ¼ 6Gð Þs
1þ sð Þ x� lð Þ1þs� �lð Þ1þs

h i
G > 0 ðE3:6-17Þ

where l is obtained from

�lð Þ1þs�ð1� lÞ1þs þ 1þ s

6Gð Þs ¼ 0 G > 0 ðE3:6-18Þ

and

uz ¼ �6Gð Þs
1þ sð Þ l1þs � l� xð Þ1þs

h i
G < 0 ðE3:6-19Þ

where l is obtained from

lð Þ1þs�ðl� 1Þ1þs � 1þ s

�6Gð Þs ¼ 0 G < 0 ðE3:6-20Þ

By setting l ¼ 0 in Eq. E3.6-18 and l ¼ 1 in Eq. E3.6-20, we find the following condition for

the flow without an extremum within the flow regime

Gj j 
 1

6
1þ sð Þn ðE3:6-21Þ

a result that, of course, is predictable from Eq. E3.6-13.
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All the velocity profile and the equations for obtaining l can be collapsed, respectively,

into a single equation

uz ¼ 6Gj jssignG
1þ sð Þ x� lj j1þs� lj j1þs

� �
¼ x� lj j1þs� lj j1þs

1� lj j1þs� lj j1þs
ðE3:6-22Þ

and

lj j1þs� 1� lj j1þsþ 1þ s

6Gj jssignG ¼ 0 ðE3:6-23Þ

In solving for l in the last equation, we find multiple solutions, but we must recall the

following inequalities that help select the right solution

if Gj j 	 1

6
1þ sð Þn then 0 
 l 
 1

if Gj j 
 1

6
1þ sð Þn and if G > 0 then l 
 0

if Gj j 
 1

6
1þ sð Þn and if G < 0 then l 	 1

Figure E3.6b, which plots the solution of Eq. E3.6-23 for three n values, also indicates the

four solution regions.

Finally, we can integrate the velocity profile to obtain the volumetric flow rate per unit

width

q ¼ V0H 6Gj jssignG
1þ sð Þ 2þ sð Þ 1� lð Þ 1� lj j1þs þ l lj j1þs� 2þ sð Þ lj j1þs

h i
ðE3:6-24Þ

Figure E3.6c plots the dimensionless flow rate q=qd , where qd is the drag flow rate,

namely, the flow rate with zero pressure gradient, versus the dimensionless pressure gradient

G. The figure shows that, whereas for Newtonian fluids, as expected, there is a linear

relationship, non-Newtonian fluids deviate from linearity. The more non-Newtonian the

fluid is, the greater is the deviation. Of particular interest is the inflection point indicating,

for example, that in screw extruders, even for the isothermal case, increasing die resistance

brings about somewhat unexpected changes in flow rate.

3.4 POLYMER MELT CONSTITUTIVE EQUATIONS BASED

ON MOLECULAR THEORIES

Molecular theories, utilizing physically reasonable but approximate molecular models,

can be used to specify the stress tensor expressions in nonlinear viscoelastic constitutive

equations for polymer melts. These theories, called kinetic theories of polymers, are, of

course, much more complex than, say, the kinetic theory of gases. Nevertheless, like the

latter, they simplify the complicated physical realities of the substances involved, and we

use approximate ‘‘cartoon’’ representations of macromolecular dynamics to describe the

real response of these substances. Because of the relative simplicity of the models, a

number of response parameters have to be chosen by trial and error to represent the real

response. Unfortunately, such parameters are material specific, and we are unable to

predict or specify from them the specific values of the corresponding parameters of other
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substances, even of similar macromolecular structures. In other words, the kinetic theory

of polymer melts is not true molecular theory.

With these comments in mind, we list and briefly discuss the two classes of these

theories: the single molecule (14) and entanglement network theories (23).

Single-molecule Theories

Single-molecule theories originated in early polymer physics work (45) to describe the

flow behavior of very dilute polymer solutions, which are free of interpolymer chain

effects. Most commonly, the macromolecular chain, capable of viscoelastic response, is

represented by the well-known bead–spring model or ‘‘cartoon,’’ shown in Fig. 3.8(a),

which consists of a series of small spheres connected to elastic springs.

Upon flow in the solvent environment, the drag that the solvent exerts on the spheres

(representing the viscous nature of the real macromolecule), orients the bead–spring and

stretches the elastic springs between the beads (which represent the elastic nature of the

real macromolecules). The consequent stored energy in the springs is capable of restoring

the equilibrium conformations of the bead–springs, but it is resisted by Stokesian drag on
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Fig. E3.6c Dimensionless flow rate versus dimensionless pressure gradient, with the Power

Law exponent n as a parameter, for parallel-plate flow, as given in Eq. E3.6-24.
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the beads, responding with relaxation times that are proportional to the effective solvent

drag viscosity and inversely proportional to the elastic spring constant.

Extension of this theory can also be used for treating concentrated polymer solution

response. In this case, the motion of, and drag on, a single bead is determined by the mean

intermolecular force field. In either the dilute or concentrated solution cases, orientation

distribution functions can be obtained that allow for the specification of the stress tensor

field involved. For the concentrated spring–bead model, Bird et al. (46) point out that

because of the proximity of the surrounding molecules (i.e., spring–beads), it is easier for

the model molecule to move in the direction of the polymer chain backbone rather than

perpendicular to it. In other words, the polymer finds itself executing a sort of a snake-like

motion, called reptation (47), as shown in Fig. 3.8(b).

Entanglement Network Theories

Entanglement network theories are based on the following premise: polymer melts are

much like cross-linked rubber macromolecular networks, except that their cross-links are

due to chain entanglements and are temporary. Such entanglements are continuously

destroyed and formed to establish network entanglement densities characteristic of the

state of motion of the network, being maximum at equilibrium. Green and Tobolsky (48)

extended the rubber elasticity theory (49–52) to liquids with ‘‘temporary junctions’’ with

equal probabilities of breaking and reforming. Following Larson (53), the development of

the constitutive equation for such liquid with temporary entanglement networks is

as follows: Let the probability that a chain breaks loose of a junction point, per unit time,

be 1=l, where l is of the order of the relaxation time. The probability that the strand

does not break free in the time interval t 0 to t (present time), Pt0;t obeys the differential

equation

d

dt
Pt0;t ¼ � 1

l
Pt0;t ð3:4-1Þ

(a) (b)

Fig. 3.8 Single-molecule bead–spring models for (a) a dilute polymer solution, and (b) an

undiluted polymer (a polymer melt with no solvent). In the dilute solution, the polymer molecule

can move about in all directions through the solvent. In the undiluted polymer, a typical polymer

molecule (black bead) is constrained by the surrounding molecules and tends to execute snakelike

motion (‘‘reptation’’) by sliding back and forth along its backbone direction (46). [Reprinted by

permission from R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd Edition,

Wiley New York (2002).]
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with Pt0;t0 ¼ 1. Hence

Pt0;t ¼ eðt
0�tÞ=l ð3:4-2Þ

When the material is deformed, each strand is stretched affinely until it breaks free from

its junction. After it breaks free, it relaxes to a configuration typical of equilibrium. As

often as a strand breaks free, another relaxed strand becomes entangled. The probability

that a strand breaks free and becomes reentangled in an interval of time between t0 and
t0 þ dt0 is dt0=l. The probability that it survives without breaking from time t0 to time t is

Pt0;t. It obeys the differntial equation

d

dt
Pt0;t ¼ 1

t
Pt0;t ð3:4-3Þ

The contribution dt to the stress from those stretched strands that meet both of these

conditions is, according to Eq. 3.4-1,

ds ¼ dt0

l
Pt0;tGc½1� t

0; tð Þ ¼ G
1

l
e t0;tð Þ=lc½1� t

0; tð Þ dt0 ð3:4-3aÞ

with G ¼ ð4=5ÞvkBT ; where v is the entanglement density and c½1� is the Finger relative

strain tensor between the states of the fluid at t and t0. The total stress produced by strands

that became reentangled at all past times, t0, is then

s ¼
ðt

�1
m t � t0ð Þ c½1� t0; tð Þ dt0 ð3:4-4Þ

where mðt � t0Þ is the so called memory function, which is determined by the linear or the

nonlinear viscoelastic spectra, depending on the level of strain. For the former case,

m t � t0ð Þ ¼
X
i

Gi

li
exp t0 � tð Þ=li½ � ð3:4-5Þ

Equations 3.4-3 and 3.4-4 form the molecular theory origins of the Lodge ‘‘rubberlike

liquid’’ constitutive Eq. 3.3-15 (23). For large strains, characteristic of processing flows,

the nonlinear relaxation spectrum is used in the memory function, which is the product of

the linear spectrum and the damping function h(g), obtained from the stress relaxation melt

behavior after a series of strains applied in stepwise fashion (53)

In the preceding treatment, the ‘‘strands’’—entire chains or chain segments—are free to

move through any path, for example, relaxing to an equilibrium configuration. But as

noted in Fig. 3.9, any given polymer chain is able to move only in a constrained path,

because of the surrounding chains and, therefore, tends to move and advance along its

backbone direction by, as pointed out before, in a snakelike, reptation motion.

Pierre-Gilles deGennes (47) utilized this concept and coined the term in his work to

explain why the relaxation times of entangled melts have a l � M3:4 dependence. Earlier,

the lateral confinement of melt chains to a tubelike region had been postulated by Edwards

(54). Since these early days of the reptation theory, a very significant volume of work has

been dedicated to incorporating features that are physically reasonable and warranted in
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order to improve the predictions of the corresponding members of the reptation-based

constitutive equation. But before discussing some of them, it is useful to present a pictorial

representation of reptation according to the work of Graessley (55). He considers the

polymer chain shown on Fig. 3.9(a), entangled in a mesh of other polymers to be confined

by individual chain neighbors in a manner shown in Fig. 3.9(b). As a physical

consequence, the polymer chain is confined in a tubelike region shown in Fig. 3.9(c).

Motion within the tube is achieved by a random walk (‘‘primitive path’’) of unit steps of

the order of the tube diameter, a. When a straight reptation tube is considered, for

simplicity, reptation diffussional motion of the chain out of the tube is represented

schematically in the steps depicted from Fig. 3.9(d)(i) to Fig. 3.9(d)(v).

Perkins and colleagues (56) have provided graphic and direct evidence of reptation,

using a fluorescently stained, very long DNA molecule in an entangled environment of

similar unstained DNA molecules. Figure 3.10 shows time-sequence images of such a

60 mm long molecule, which was attached at one end to a small sphere that was pulled

through the fluid using a laser-optical trap to form a letter ‘‘R.’’ As seen in the picture

sequence, the free end of the DNA undergoes retraction through a tubelike region defined

by the surrounding mesh of the invisible neighboring DNA chains.

The retraction follows the path of ‘‘R’’ containing the stretched, strained DNA

molecule, strikingly demonstrating reptation. Molecular dynamic computational simula-

tions (a tool of rapidly increasing utility in melt rheology and structuring) also show chain

motion that is highly anisotropic, suggesting that diffusion motions of long chains are

largely confined in a tube (57), as shown in Fig. 3.11.

The constitutive equations benefiting from the specific representations of reptation

theory have the general form of the Lodge rubber-like liquid equation, since they are all

Fig. 3.9. (a) A polymer melt chain entangled in a mesh of other chains. (b) Individual neighboring

chain entanglement points that result in (c) the confinement of the given chain to a tubelike region.

[(d)(i)–(d)(v)] represents a schematic reptation of the polymer chain out of its (stretched for

visualization) tube, requiring a reptation time td. [Reprinted by permission from R. G. Larson, The

Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.]
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entanglement network theories, treating chain motion, deformations, and entanglements

and disentanglements with different degrees of scrutiny and physical assumptions. Thus,

the Doi–Edwards equation (58,59) considers the contributors to the stress tensor of the

stretched and oriented tube segments due to the flow. This results in the integral form

s tð Þ ¼
ðt

�1
m t � t0ð ÞSIADE t0ð Þ dt0 ð3:4-6Þ

where SIADE; the Doi–Edwards strain measure for tube segments independently aligned

SIADE ¼ 5
u0 u0

u0ð Þ2
* +

¼ 5S ð3:4-7Þ

Fig. 3.10. Time sequence of images showing retraction of one end of a fluorescing 60-mm long

DNA molecule entangled in a solution of other, nonfluorescing DNA molecules. The fluorescing

molecule was attached at one end to a small sphere that was pulled through the solution using a laser-

optical trap, to form the letter ‘‘R’’. The free end then retracts through a tubelike region formed by the

surrounding mesh of other, invisible DNA chains. [Reprinted by permission from the cover of

Science, May 6, 1994 (Copyright 1994, American Association for the Advancement of Science).]

Fig. 3.11. Each of the two images contains superimposed configurations of a chain at many

different instants in time in a molecular-dynamics simulation of a melt of such chains in a box. Over

the time scale simulated, each chain appears to be confined to a tubelike region of space, except at

the chain ends. [Reprinted by permission from K. Kremer and G. S. Grest, J. Chem. Phys., 92, 5057

(Copyright 1990 American Institute of Physics).
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where S is the second-order orientation function and u is the deformation vector. The

memory function m t � t0ð Þ is expressed as

m t � t0ð Þ ¼ G0
N

5
@F t � t0ð Þ=@t0 ð3:4-8Þ

where the plateau modulus is defined from the Treloar theory of rubber elasticity (52):

G0
n ¼

3ckTh2

a20
ð3:4-9)

The function F t � t0ð Þ is related, as with the temporary network model of Green and

Tobolsky (48) discussed earlier, to the survival probability of a tube segment for a time

interval t � t0ð Þ of the strain history (58,59). Finally, this Doi–Edwards model (Eq. 3.4-5)

is for monodispersed polymers, and is capable of moderate predictive success in the non

linear viscoelastic range. However, it is not capable of predicting strain hardening in

elongational flows (Figs. 3.6 and 3.7).

The pom-pom polymer reptation model was developed by McLeish and Larson (60) to

represent long chain–branched LDPE chains, which exhibit pronounced strain hardening

in elongational flows. This idealized pom-pommolecule has a single backbone confined in

a reptation tube, with multiple arms and branches protruding from each tube end, as shown

in Fig. 3.12(a). Mb is the molecular weight of the backbone and Ma, that of the arms.

Corresponding dimensionless entanglement lengths are Sb ¼ Mb=Me for the backbone

and Sa ¼ Ma=Me for the arms, where Me is the entanglement molecular weight. The

dominant contribution to the stress tensor is assumed to arise from the backbone/crossbar

segment. Because these branches are entangled with the surrounding molecules, the

backbone can readily be stretched in start-up extensional flows, producing strain

Fig. 3.12 (a) A pom-pom with three arms at each branch point (q ¼ 3). At short times the

polymer chains are confined to the Doi–Edwards tube. Sc is the dimensionless length of branch

point retraction into the tube; l is the stretch ratio where L is the curvilinear length of the crossbar

and L0 is the curvilinear equilibrium length. (b) Relaxation process of a long-chain–branched

molecule such as LDPE. At a given flow rate _ee the molecule contains an unrelaxed core of

relaxation times t > _ee�1 connected to an outer ‘‘fuzz’’ of relaxed material of relaxation t < _ee�1,

behaving as solvent. [Reprinted by permission from N. J. Inkson et al., J. Rheol., 43(4), 873 (1999).]
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hardening when it gets fully stretched and the poms on each end as they ‘‘cork’’ the tube

ends. The tension that the poms may be able to sustain and impart on the backbone is

qkB=a; where q is the number of poms and a is the reptation tube diameter. Beyond this,

tension in the backbone is sufficient to gradually withdraw the dangling arms into the tube

(Se > 0). When this branch point withdrawal is complete, strain-hardening behavior

disappears. On the other hand, in start-up of shear flows, the backbone tube stretches only

temporarily and eventually goes back to zero as the pom-pom molecule is aligned by the

flow, thus producing shear strain softening.

Inkson et al. (61) and McLeish (62) in a recent review have proposed also a multimode

pom-pom model in an attempt to account for the multiple levels of branching believed to

be present in LDPE molecules. Because the precise structure and degree of branching

of LDPE molecules are unknown, with no experimental techniques to determine them,

the potential exists for these multimode models to ‘‘characterize’’ the LDPE macro-

molecular structure through fitting with experimental rheological data.

Figure 3.12(b) indicates how a reptating large molecule with multiple branch points

relaxes after deformation. The free chain arms relax rapidly, much as the pom-pom arms at

the outer branch point. This branch point is able to move one diffusive step after a deep

retraction of the chain arms connected to it. This allows the molecular segment in the next

(inward) branch point to relax. This, in turn, is repeated until the innermost segment relaxes.

The relaxation time of a segment depends hierarchically on the path distance to the nearest

free end that can release it from its tube constraint by retraction. The multimode pom-pom

models, which utilize a small set of trial-and-error picked modes and utilize experimentally

determined discreet relaxation spectra are able to closely account for three rheological

functions: Z _gg; tð Þ; �ZZþ _ee; tð Þ, and �ZZþpl _eepl; t
� 	

, simultaneously over four decades of times and

rates (61), which is rather remarkable. Still, these models lack the ability to predict the

rheological behavior of a structurally slightly different polymer, that is, there is no direct

connection to the specific macromolecular characteristics of the polymer melt

Wagner et al. (63–66) have recently developed another family of reptation-based

molecular theory constitutive equations, named molecular stress function (MSF) models,

which are quite successful in closely accounting for all the start-up rheological functions

in both shear and extensional flows (see Fig. 3.7). It is noteworthy that the latest MSF

model (66) is capable of very good predictions for monodispersed, polydispersed and

branched polymers. In their model, the reptation tube diameter is allowed not only to

stretch, but also to reduce from its original value. The molecular stress function f(t), which

is the ratio of the reduction to the original diameter and the MSF constitutive equation, is

related to the Doi–Edwards reptation model integral-form equation as follows:

sðtÞ ¼
ðt

�1
mðt � t0Þ SMSFðt0Þdt0 ¼

ðt
�1

mðt � t0Þ f 2 SIADEðt0Þdt0 ð3:4-10)

In the MSF theory, the function, f, in addition to simple reptation, is also related to both

the elastic effects of tube diameter reduction, through the Helmholtz free energy, and to

dissipative, convective molecular-constraint mechanisms. Wagner et al. arrive at two

differential equations for the molecular stress function f: one for linear polymers and one

for branched. Both require only two trial-and-error determined parameters.

The constitutive equations discussed previously contain both linear and nonlinear

response parameters. Both have to be evaluated experimentally. The first five to ten terms
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of the discrete LVE spectrum constitute a sufficient number of linear response terms. They

are derived from small-strain (below the limit of linear viscoelastic response), sinusoidally

varying flow experiments, specifically using the experimentally obtained G0;G00 or Z�.
Until recently, the nonlinear response parameters have been obtained from flow

experiments that are relatively simple (rheometric) and that impose large strains as large

step-strain experiments, or extensional flows. Both result in altering the quiescent,

entangled macromolecular network of the melts. This practice has left open the question of

how relevant the evaluation of all the constitutive equation parameters is, using simple

rheometric experiments that do not have the complexity of real processing flows. This

question has been the subject of a large-scale investigation by a multidisciplinary network

of European polymer researchers, which has been in progress for several years, and is

described in by Agassant et al. (67). Two-dimensional, isothermal prototype industrial

flows (PIF), resembling and closely related to polymer processing practice were used.

Three such flows are shown in Fig. 3.13.

The flow birefringence pattern of these flows can be obtained through the use of a pair

of flat glass walls. Using image enhancement and the stress-optical law (68),

� ¼ Cðt11 � t22Þ ð3:4-11)

where � is the birefringence and C is the stress-optical constant, the principal normal

stress difference can be obtained experimentally and enhanced and ‘‘skeletized’’ by image

analysis. This is shown in Fig. 3.14 for the smooth convergent die of the PIFs shown in

Fig. 3.13.

Such contours are then compared with numerically derived ones obtained in the

following fashion: a nonlinear response constitutive equation is selected (60, 61, 64, 69) to

be used with the equation of motion for a given PIF. The numerical solution computational

Smooth convergent
slit (SCS)

Double cavity die
(DCD)

Rheotens extensional
Rheometer

(RER)

Fig. 3.13 Schematic of three prototype industrial flow (PIF) geometries showing shaded exten-

sional flow regions for each geometry. [Reprinted by permission from J. F. Agassant et al., Intern.

Polym. Proc., 17, 3 (2002).]
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packages required for the solution of the PIFs (as contrasted to the simpler rheometric

flows) have to be powerful and the computational demands on both time and computer are

daunting. Three different finite-element numerical codes were used: the commercial

Fluent Group Polyflow (70), Venus (71), developed at Eindhoven University, and Seve 2

(72), developed at the CEMEF of Ecole des Mines de Paris.

In the example given, the constitutive equation used is a multimode Phan Tien Tanner

(PTT). It requires the evaluation of both linear and nonlinear material-response

parameters. The linear parameters are a sufficient number of the discrete relaxation

spectrum li and Zi pairs, which are evaluated from small-strain dynamic experiments. The

values of the two nonlinear material-response parameters are evaluated as follows. Three

semiarbitrary initial values of the two nonlinear parameters are chosen and the principal

normal stress difference field is calculated for each of them using the equation of motion

and the multimode PTT. They are compared at each field point (i, j) to the experimentally

obtained normal stress difference and used in the following cost function F

F ¼
Xn
L¼1

Xn
j¼1

ðGSIM
ij � G

exp
ij Þ2

ðGexp
ij Þ2

" #1=2
ð3:4-12Þ

where GSIM
ij is the ‘‘grey level’’ of the normalized simulation pattern and G

exp
ij the

corresponding experimental pattern at any (i,j) point. The cost function is then evaluated

for each of the three initial nonlinear parameter pairs (69). The simplex optimization

method is then employed to arrive at the ‘‘optimal’’ values of the nonlinear parameters,

which minimize the value of the cost function. The agreement between the experimentally

and numerically obtained birefringence patterns, using the optimal nonlinear parameter

pair, is shown in Fig. 3.15; it is very good.

Thus, adequate determination of nonlinear rheological parameters can be obtained,

using industrial polymer processing–relevant flows, albeit with very substantial

computational efforts, virtually assuring the relevance of the use of the constitutive

equation for solving other complex processing flows.

Fig. 3.14 Experimental and matching numerical simulation data for the smooth convergent die

geometry of HDPE, Stamylan HD862 at T ¼ 190�C. [Reprinted by permission from J. F. Agassant

et al., Intern. Polym. Proc., 17, 3 (2002).]
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Finally, as we stated at the beginning of this section, all these recent successful molecular

theory–based constitutive equations are still not capable of answering the question of what

the empirical parameters, chosen by trial and error, will be for a yet-to-be-synthesized

polymer, to accurately describe its rheological properties. One expects an answer to this

question, if the theory would be based on fundamental molecular properties. The inability to

answer this question rests in the fact that molecular theories, such as the previously stated

one, are based on physically reasonable, ingeniously conceived and formulated, molecular

cartoons. Nevertheless, with available computational power growing exponentially, and the

potential synergy between molecular theories and molecular dynamics calculations,

predicting the properties of existing macromolecular systems and those yet to come, from

‘‘first molecular principles’’ will not come in the distant future, but sooner.
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PROBLEMS

3.1 Pressure Flow between Parallel Plates with Various GNF Fluids Derive expres-

sions for the pressure flow rate of a fully developed, isothermal, steady flow between

parallel plates for the following constitutive equations: (a) Power Law model: Z ¼ m _ggn�1,

(b) Ellis model: Z0=Z ¼ 1þ t=t1=2
� 	a�1

, (c) Bingham Plastic: Z ¼ 1; t 
 t0; Z ¼
m0 þ t0= _gg; t 	 t0. (d) Calculate the flow rate per unit width for 2 MI LDPE at 170�C
when the pressure gradient is 1.5 MPa/cm and the plate separation is 0.25 cm, using the

Power Law model and the Ellis model.

3.2 Evaluating the Melt Index (MI) from the Flow Curve Develop a methodology and

computer program logic to evaluate the Melt Index (ASTM Standard D) of a material

from its flow curve (non-Newtonian viscosity as a function of shear rate).

3.3 Evaluating the Flow Curve from Experimental Data The flow rate of 3% CMC

solution in water was measured in a long capillary as a function of pressure drop.

Based on the results given in the following table, compute the non-Newtonian

viscosity versus the shear-rate curve.

4Q=pR3ðs�1Þ twðN=m2Þ 4Q=pR3ðs�1Þ twðN=m2Þ
250 220 3500 670

350 255 5000 751

500 298 7000 825

700 341 9000 887

900 382 12500 1000

1250 441 17500 1070

1750 509 25000 1200

2500 584
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3.4 Inherent Errors in Using the Power Law Model in Pressure Flows The shear rate

during pressure flow between parallel plates varies from zero at the center to maximum

shear rate at thewall, _ggw. Most polymer melts showNewtonian behavior at low shear rates,

hence using the Power Lawmodel for calculating flow rate introduces a certain error. How

would you estimate the error introduced as a function of x�, where x� is the position below
which the fluid is Newtonian? [See Z. Tadmor, Polym. Eng. Sci., 6, 202 (1966).]

y

x = 1.0

x = 0
x

–x*

x*

H

I

II

I

Power Law Newtonian

3.5 A Race Between Newtonian and Non-Newtonian Fluids Consider two vertical

tubes, side by side, of diameter R and length L, as shown in the following figure, one

filled with a Newtonian fluid and the other with a Power Law model fluid. The fluids

emerge through a capillary of length l and radius r such that r � R. As the fluids

began to emerge, an interesting phenomenon was observed: first, the level of the non-

Newtonian fluids dropped faster than the Newtonian fluid, but then the Newtonian

fluid overcame the former. (a) Derive a mathematical model that can explain the

observed phenomenon. (b) If, after 10s, the height of both fluids is at H=2, what
heights will they reach after 20s if the Power Law exponent is 0.5?

RH

L

r

Newtonian Power law

3.6 Stresses Generated by CEF Fluids in Various Viscometric Flows What stresses

are necessary to maintain a CEF fluid flowing in the following flows: (a) parallel-

plate drag flow; (b) Couette flow with the inner cylinder rotating; and (c) parallel-

plate pressure flow. Assume the same type of velocity fields that would be expected
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from a GNF or a Newtonian fluid. The three just-named flows are all viscometric.

You should obtain the results in Eqs. E3.5-12 to E3.5-14.

3.7 Torsional Flow of a CEF Fluid Two parallel disks rotate relative to each other, as

shown in the following figure. (a) Show that the only nonvanishing velocity

component is vy ¼ �rðz=HÞ, where � is the angular velocity. (b) Derive the stress

and rate of deformation tensor components and the primary and secondary normal

difference functions. (c) Write the full CEF equation and the primary normal stress

difference functions.

z

H

r

3.8 Special Form of the Rabinowitsch Equation Show that the expression Q ¼
pR3=ðsþ 3Þ½ �ð�R�P=2mLÞs is a special form of the Rabinowitsch equation

(Eq. E3.1-9) for a Power Law fluid.

3.9 The Rabinowitsch Equation for Fluids Exhibiting Slip at the Wall Derive the

Rabinowitsch equation for the case where the fluid has a slip velocity at the wall Vw.

[See L. L. Blyler, Jr., and A. C. Hart, Polym: Eng: Sci., 10, 183 (1970).]

3.10 The Flow of Non-Newtonian Fluids in Flows between Almost Parallel Plates
The lubrication approximation was discussed in terms of Newtonian fluids. Consi-

dering a nearly parallel plate pressure flow (H ¼ H0 � Az), where A is the ‘‘taper,’’

what additional considerations would have to be made to consider using the lubrication

approximation for (a) a shear-thinning fluid flow, and (b) a CEF fluid?

3.11 The Flow of a Shear-Thinning Fluid on an Inclined Plate A shear-thinning

viscous liquid defined by Z0=Z ¼ 1þ t=t1=2
� 	a�1

flows at steady state gravitationally

on a surface inclined by angle b, as shown in the following figure. (a) Derive an

expression for the film thickness d in terms of the volumetric flow rate. (b) Find its

value for a ¼ 1.

z
r

d
b
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3.12 Evaluation of GNF Fluid Constants from Viscometric Data Using the flow

curve of Chevron/Philips 1409 MI ¼ 50 LDPE in Appendix A, calculate the para-

meters of the Power Law, Cross and Carreau models.

3.13 Helical Annular Flow Consider the helical annular flow between concentric

cylinders with an axial pressure gradient and rotating outer cylinder as shown in the

accompanying figure. Specify the equations of continuity and motion (z and y
components) and show that, if a Newtonian fluid is used, the equations can be

solved independently, whereas if Z ¼ Zð _ggÞ, where _gg is the magnitude of _gg, the
equations are coupled.

r

z

3.14 Dimensional Changes in Planar and Biaxial Extensional Flows Determine the

rate of dimensional changes that have to be applied on a flat film in order to generate

(a) planar extension, and (b) biaxial extension flows.

3.15 Pressure Flow Calculations Using the Equivalent Newtonian Viscosity6 Consi-

der fully developed isothermal laminar pressure flow between parallel plates of a

shear-thinning liquid with a flow curve fitted to the following polynomial relation-

ship above the shear rate _gg0:

ln Z ¼ a0 þ a1 ln _ggþ a11ðln _ggÞ2 þ a2T þ a22T
2 þ a12T ln _gg _gg 	 _gg0;

and Newtonian behavior below _gg0:

Z ¼ Z0ðTÞ; _gg 
 _gg0

The coefficients aij can be accurately determined from experimental data by

standard linear multiple regression methods.

(a) Show that the flow rate per unit width is given by

q ¼ � 2h2

t2w

ðtw
0

t_gg dz

where h is half the thickness and tw is the shear stress at the wall.

6. E. Broyer, C. Gutfinger, and Z. Tadmor, ‘‘Evaluating Flows of Non-Newtonian Fluids,’’ AIChE J., 21, 198

(1975).
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(b) Show that, for a Newtonian fluid, the flow rate can be written as

q ¼ 2

3

h2tw
m

(c) Show that, by defining an equivalent Newtonian viscosity,

�mm ¼ � t3w

3
Ðtw
0

t _gg dt

the flow rate of a non-Newtonian fluid can be calculated with the Newtonian

equation in (b) with m replaced by �mm.

(d) Show that �mm can be expressed uniquely in terms of tw and T , for example, by an

equation such as

ln �mm ¼ b0 þ b1 ln tw þ b11ðln twÞ2 þ b2T þ b22T
2 þ b12T ln tw

and indicate a procedure for evaluating the coefficients of bij from aij.

(e) Using the expression in (d), explain how to calculate the flow rate for a given

pressure drop, and the pressure drop for a given flow rate.

3.16 The Secondary Normal Stress Difference as a Stabilizing Force in Wire Coating
Dies Using a CEF equation, it can be shown,7 that, if the wire in a wire coating die

is off center, a lateral stabilizing force arises proportional to the secondary normal

stress-difference function �2. Use a bipolar coordinate system x; y; � (Fig. P3.16),

the components of the equation of continuity, and motion in Table P3.16. Assume

that there is no axial pressure gradient and the only nonvanishing velocity

component is v�ðxÞ, with boundary conditions v�ðx1; yÞ ¼ V0 and v�ðx2; yÞ ¼ 0.

Further assume the fluid to be incompressible and the flow isothermal.

(a) Show that the velocity profile is given by

v�=V0 ¼ x� x2
x1 � x2

(b) Show that the equation of motion reduces to

@P

@x
þ X

@

@x
1

X
txx

� �
¼ 0

@P

@y
� 1

X
txx sin y ¼ 0

7. Z. Tadmor and R. B. Bird, ‘‘Rheological Analysis of Stabilizing Forces in Wire-Coating Dies,’’ Polym. Eng.

Sci., 14, 124 (1974).
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where

X ¼ cosh xþ cos y

(c) Show that the lateral force in the wire per unit length fx is

fx ¼ � �2pV2
0

a x1 � x2ð Þ2

where a is the distance of the poles of the bipolar coordinate system from the

origin, which is related to the separation of centers of wire and die d, via

d
R2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

R2

� �2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

R2

� �2

þ a

R2

� �2
s

Note that

x1 ¼ sinh�1 a

R1

� �
and x2 ¼ sinh�1 a

R2

� �

3.17 The Single Maxwell Element LVE Constitutive Equation Consider the single

Maxwell mechanical element shown in the following figure. The element was

at rest for t < 0. A shear strain g12ðtÞ is applied at t ¼ 0. By stating that the stress

is the same in the dashpot and spring, while the total strain is the sum of those

Fig. P3.16 Bipolar coordinate system. The shaded area denotes the cross section of the fluid, and

the constant a, the distance of the pole from the origin. [Reprinted by permission from R. Bird, R.

Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics, Second

edition, Wiley, New York, 1987.]
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of the spring and the dashpot, obtain Eq. 3.3-9 in shear. Solve the differential

equation to obtain t=g0 ¼ Ge�t=l for a stress relaxation experiment, that is,

g12 ¼ g0.

TABLE P3.16 The Equations of Continuity and Motion in Bipolar Coordinates (�; �; �)

Continuity

@

@t
rþ X

a

@

@x
rvx þ X

a

@

@y
rvy þ @

@�
rv� � 1

a
sinh x � rvx þ 1

a
sin y � rvy

� �
¼ 0

Motion

r
@vx
@t

þ vx
X

a

@

@x
vxþ1

a
vy siny

� �
þ vy

X

a

@

@y
vxþ1

a
vy sinhx

� �
þ v�

@

@�
vx

� �� �

¼�X

a

@P

@x
� X

a

@

@x
txxþX

a

@

@y
tyxþ @

@�
t�xþ1

a
tyy� txxð Þsinhxþ1

a
tyxþ txyð Þsiny

� �
þrgx

r
@vy
@t

þ vx
X

a

@

@x
vy�1

a
vx siny

� �
þ vy

X

a

@

@y
vy�1

a
vx sinhx

� �
þ v�

@

@�
vy

� �� �

¼�X

a

@P

@y
� X

a

@

@x
txyþX

a

@

@y
tyyþ @

@�
t�yþ1

a
tyy� txxð Þsiny�1

a
tyxþ txyð Þsinhx

� �
þrgy

r
@v�
@t

þ vx
X

a

@

@x
v�

� �
þ vy

X

a

@

@y
v�

� �
þ v�

@

@�
v�

� �� �

¼�@P

@�
� X

a

@

@x
tx� þX

a

@

@y
ty� þ @

@�
t�� �1

a
tx� sinhxþ1

a
ty� siny

� �
þrg�

in which, for Newtonian fluids, tij ¼ �m =vð Þ þ =vð Þy
n o

ij
:

Source: Z. Tadmor and R. B. Bird, ‘‘Rheological Analysis of Stabilizing Forces in Wire-Coating Dies,’’ Polym.

Eng. Sci. 14, 124 (1974).

Note: For the definition of X and a, see Problem 3.16.

PROBLEMS 141



3.18 The Boltzmann Superposition Principle Apply the Boltzmann superposition principle

to obtain the LVE (Eq. 3.3-8) using tðtÞ ¼ g0Ge
�t=l. Consider the applied strain gðtÞ as

being applied discretely in a series of small steps �g, as shown in the following figure:

g0

g1

g2

gn

g

tt0 t1 t2 t3 tn

3.19 The Single Voigt Element LVE Constitutive Equation In the Voigt mechanical

element shown in the following figure, the total stress is the sum of the stresses

on the dashpot and spring. On the other hand, the strain in each component

is equal to the total strain. (a) Use these facts to develop the constitutive

equation for a single Voigt element. (b) Solve the differential equation for a

creep experiment ðt ¼ 0; t < 0; t ¼ t0; t 	 0).

3.20 The Boltzmann Superposition Principle: Alternate form of the LVE Equation
Apply the Boltzmann superposition principle for the case of a continuous stress

application on a linear viscoelastic material to obtain the resulting strain gðtÞ in

terms of Jðt � t0Þ and dt=dt0, the stress history. Consider the applied stress in terms

of small applied �ti, as shown on the accompanying figure.

g0

g1

g2

gn

g

tt0 t1 t2 t3 tn
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3.21 Creep in Structural Design A pendulum clock manufacturer wants to replace the

metal pendulum arm of the clocks with a polymer rod. Is his idea a good one? Use

the answer to Problem 3.20.

3.22 Prediction of �ggþðtÞ by the Rubberlike Liquid Constitutive Equation Calculate

the extensional viscosity as a function of time after the start-up of a steady

uniaxial extension of a Lodge rubberlike liquid, Eq. 3.4-3, having a single

relaxation time l0 and modulus G0, Eq. 3.4-4. Before the initiation of the steady

extensional flow the sample is and had been at rest, thus the stretch ratio

history is: lðt0; tÞ ¼ exp _eeðt0 � tÞ½ � for t0 > 0 and lðt0; tÞ ¼ exp _eet0ð Þ for t0 
 0

(independent of t0)

3.23 Prediction of the Steady-State Viscosity in a Simple Shearing Flow by the K–BKZ
Constitutive Equation The K–BKZ (Kaye–Bernstein, Kearsley, and Zappas)

constitutive equation [A. Kaye, Note No. 134, College of Aeronautics, Cranford

University, U.K. (1962)] has the same integral form as the Green and Tobolsky

Lodge rubberlike liquid, but utilizes a strain-dependent modulus G ðt � t0Þ; g½ � ¼
mðt � t0ÞhðgÞ ¼ hðgÞPi

Gi

ti
exp ðt � t0Þ=li½ �. Thus, it has the general form s ¼Ðt

�1
m t � t0ð Þc½1� t0; tð Þ dt0. Consider a fluid with a single relaxation time, l0, and

modulus, G0, and with hðgÞ ¼ e�g. Calculate the steady-state shear viscosity

function Zð _ggÞ.
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