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In this chapter we deal with the entire ‘‘journey’’ of polymeric particulate solids, from the

polymerization reactor to the shaped and structured finished product. The reader is referred to

Chapter 1, which discusses all the processes and elementary steps involved in this journey.

The products of polymerization reactors are most often in particulate form: gas phase and

slurry reactors produce porous spherical particulates about 300mm in diameter; emulsion

reactors produce ultrafine 0.1mm-diameter powder particulates; and suspension reactors

produce beads that are 100–1000mm in diameter. Except for the gas-phase reactor, the

particulate product stream has to be dried. The particulate reactor products are then

transported in finished form to storage silos. Since they do not contain the necessary

‘‘stabilizer package,’’ and since, fine particulates are in general, more difficult to feed in

compounding and final fabrication processing equipment, the following steps are taken. The

particulates are transported in fluidized form to conical blenders, where stabilizing additives

are spray-mixed onto them. From there, they are metered by weight-in-loss feeders with feed

screws into large, twin-rotor melting extruders where melting and intimate mixing of the

stabilizers are accomplished. Large, multihole, generally underwater strand dies with fast

rotating knife blades in contact with the die-hole ring produce pellets of typical cylindrical

dimension, that is, 0.3 cm diameter and 0.3 cm height. The molten pellets are cooled skin-

deep by water in turbulent flow in the water box and transported as slurry for further cooling,

spin-drying, storage, and shipping into 50-lb bags, 1000 lb gaylords or railroad cars. Typical

polymer particulates are shown in Fig. 4.1.

As we pointed out in Chapter 1, the preceding describes the postreactor ‘‘finishing’’

operation. The pellets are then shipped to be compounded, namely, blended with fillers,

colorants, or other polymers, where after melting, mixing, and reacting, they form physical
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or reactive blends, as we shall see in Chapter 11. The pellets are meter-fed into twin rotor

compounding equipment and exit again out of multihole dies to be pelletized as hot strands

or underwater; in both cases, they are water-cooled and dried, packaged, and shipped to

final polymer product fabricators. Finally, pellets are fed into single-rotor shaping

processing equipment, such as single screw extruders or injection molding machines. For

water-absorbing polymers, such as PET and polyamide (PA), the pellets are dried by hot

air for 2 to 4 hours before processing, and transported in airtight conduits in fluidized form,

to hoppers sealed from the atmosphere.

All the preceding ‘‘particulate handling steps’’ are affected by the unique properties

of all particulates, including polymeric particulates; while they may behave in a

fluidlike fashion when they are dry, fluidized and above 100 mm, they also exhibit

solidlike behavior, because of the solid–solid interparticle and particle–vessel friction

coefficients. The simplest and most common example of the hermaphroditic solid/

fluidlike nature of particulates is the pouring of particulates out of a container (fluidlike

behavior) onto a flat surface, whereupon they assume a stable-mount, solidlike behavior,

shown in Fig. 4.2. This particulate mount supports shear stresses without flowing and, thus

by definition, it is a solid. The angle of repose, shown below, reflects the static equilibrium

between unconfined loose particulates.

Solidlike behavior abounds when the surface-to-volume ratio is very high,1 that is, when

the particulates are even mildly compacted, surface-charged, or wet; all contribute to large

frictional forces and to nonuniform, often unstable stress fields in both flowing and

compacted particulate assemblies, as we discuss later in this chapter. We begin by

discussing some of the unique properties of polymer particulates relevant to processing.

Comprehensive reviews can be found in the literature (1–4).

4.1 SOME UNIQUE PROPERTIES OF PARTICULATE SOLIDS

Scientific and engineering investigations into the properties and behavior of particulate

solids date back to the early work of Coulomb, who in 1776 developed a theory on ‘‘soil

pressure and resistance,’’ thus laying sound foundations for important engineering

Fig. 4.1 Typical polymer particulates.

1. Pellets, compared to fine powders, with low surface-to-volume ratios, are readily flowable, easily fluidized and

meter- or hopper-fed. These attributes justify pelletization.
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practices. Later, in 1852, Hagen analyzed the flow of sand in an hourglass, and shortly

afterward, Reynolds, in 1885, made his observation on the dilatancy of a deforming mass

of sand.2 The latter, unique property of particulate solids can be observed while walking on

wet sand at the seashore. The sand ‘‘whitens’’ or appears to dry momentarily around the

foot because the pressure of the foot dilates the sand.

The analysis of particulate solids systems in analogy to fluids can be divided into statics

and dynamics: it is interesting to note that, in spite of the early beginnings of scientific

interest in the properties of particulate solids, this field—in particular the dynamics of

particulate solids—has not experienced the same intensive scientific development as fluid

dynamics. In most engineering curricula, relatively little attention is focused on the

analysis of particulate solids. Therefore, as engineers, we are generally ill-equipped to

analyze these complex systems and to design equipment for handling them, and we may

often be surprised by the behavior of solids, such as, for example, the fact that the drag on

the plough is independent of its speed (5).

A closer look at the properties of particulate solids and their response to external forces

reveals, as pointed out earlier, that these are a blend of (a) liquidlike behavior, (b) solidlike

behavior, and (c) particle-interface–dominated behavior, unique to these systems. Like

liquids, particulate systems take the shape of the container they occupy, exert pressure on

the container walls, and flow through openings. Yet like solids, they support shearing

stresses (hence, they form piles), may possess cohesive strength, and exhibit a nonisotropic

stress distribution upon application of a unidirectional load. But unlike liquids, shearing

stress is proportional to normal load rather than to rate of deformation, and unlike solids,

the magnitude of the shearing stress is generally indeterminate, and all that can be said is

that the following inequality holds

t � f 0s ð4:1-1Þ
where f 0is the interparticle static coefficient of friction and s represents a range of normal

forces (‘‘pressures’’) that can be applied to the particulate system before a value of shear

stress t is reached that is high enough to start the particles sliding past one another. That is,
before particulate solids flow starts, there is a range of equilibrium states and a range of

bulk densities allowable. Only at the inception of flow are the frictional forces fully

mobilized (4). At this state, the relation takes the form of Amonton’s law, discussed in the

following subsection, which is the defining equation for the coefficient of static friction.

Fig. 4.2 The angle of repose. It should be noted that the angle of repose is generally not a measure

of flowability of solids, and as Jenike (22) points out, it is strictly useful only to determine the

contour of a pile. Its popularity stems from the ease with which it can be measured.

2. O. Reynolds, ‘‘On Dilatancy of Media Composed of Rigid Particles in Contact. With Experimental

Illustrations.’’ Philos. Mag., Ser. 5, 20, 469 (1885).
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Solid–Solid (Dry) Friction

Friction is the tangential resistance offered to the sliding of one solid over another, due to dry

friction. Friction is an apparently simple phenomenon with very complex mechanisms that

take place on a variety of length scales, from atomic to nano and up. The study of friction is part

of the engineering–scientific discipline of tribology,3 which is the scientific study of friction,

wear, and lubrication (6). It was Leonardo da Vinci (1452–1519) who discovered the first two

laws of friction, namely, that the area of contact has no effect on friction and that friction is

proportional to the load. These two laws were rediscovered later by Guillaume Amontons

(1663–1705), and later Charles-Augustin Coulomb (1736–1806), added the third law:

1. The friction force (FT ) is directly proportional to the applied load (FN); that is,

FT / FN , where the proportionality constant for any pair of solid surfaces is called

the coefficient of friction, f.

2. The force of friction is independent of the apparent area of contact.

3. Kinetic friction is independent of sliding velocity.

Bowden and Tabor (7) suggested a physical explanation for the observed laws of friction.

They determined that the true area of contact is but a small fraction of the apparent area of

contact, because the surfaces of even the most highly polished material show irregularities

appreciably larger than atomic dimensions called in the literature asperities, as shown in

Fig. 4.3. Thus, with increasing normal load, more asperities come in contact and the

average area of contact grows, as shown in Fig. 4.4

Consequently, Bowden and Tabor (7) specify two factors that are responsible for dry

friction: the first, and usually the more important factor, is the adhesion that occurs at the

3. The word ‘‘tribology’’ comes from the Greek word tribo, which means ‘‘to rub.’’

Fig. 4.3 A magnified view of a solid surface showing surface roughness of hills, referred to as

asperities, separated by valleys. [Reproduced by permission from I. M. Hutchings, Tribology:

Friction and Wear of Engineering Materials, Edward Arnold, UK, 1992 (co-published by CRC

Press, Boca Raton, FL).]
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regions of real contact: these adhesions, welds, or junctions have to be sheared if sliding is

to occur; the second factor arises from the plowing and grooving of one surface by the

asperities of the other. However, elastic deformation, which precedes the yield point, also

plays a role, as does the presence of surface contaminants, such as organic compounds or

oxides, which tend to decrease adhesion. Disregarding the latter effects, in the case of

static friction, only adhesion at the contact sites is important, whereas in either sliding or

rolling friction, the second factor, plowing, enters the picture. By neglecting the second

factor relative to the first, we can approximately explain the first two laws of friction.

Because the real contact area is so small, we can assume that, even if the normal load is

small, the pressure at the contact points is sufficiently high to reach the value of the yield

stress of the softer material sy. Assuming that this is indeed the case, that is, that plastic

flow occurs, we can argue that the area at a point of contact, Ai is

Ai ¼ FNi

sy
ð4:1-2Þ

where FNi is the load supported by the contact point. An adhering contact point forms a

joint that can be broken only when the value of the applied tangential force FTi reaches the

level

FTi ¼ ty Ai ð4:1-3Þ

where ty is the shear strength of the softer material. If we assume that the total tangential

frictional force is simply the sum of all, FTi, we obtain that

FT ¼
X

FTi ¼
ty
sy

X
FNi

¼ ty
sy

� �
FN ð4:1-4Þ

Equation 4.1-4 suggests that the static coefficient of friction is a material property

characteristic of the pair of solid surfaces and, specifically, of the softer solid

f 0 ¼ ty
sy

ð4:1-5Þ

By extension, Eqs. 4.1-4 and 4.1-5 are assumed to hold for kinematic friction ( f ), too,

assuming that adhesion predominates. The statement that the kinematic friction coefficient

Fig. 4.4 Two surfaces in contact with (a) without normal load, and (b) with normal load.
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f is a material property, independent of the geometric nature of the surface and frictional

process conditions, is only a rough approximation.

Only recent developments in instrumentation of scanning probe microscopy, such as

scanning tunneling microscopy (8) and atomic force microscopy (9), have made it possible

to study friction on the nanometer and higher scales. These experiments show that the

behavior on the single asperity level is different from that on the macroscopic scale.

One of many complications in the experimental studies, and in developing a theoretical

foundation, is the interpretation of the experimental results and the complexity caused

by ambient conditions, because real surfaces are always contaminated with airborne

molecules, water, hydrocarbons, debris, and the formation of liquid bridges. Moreover,

sliding of one solid onto another introduces a new set of circumstances and unknowns. It

may lead to high and unknown local temperatures and pressures, generating fresh and

chemically different surfaces, and mostly altering the topography of the surface as a

result of deformation and wear. For these reasons, the coefficients of static and sliding

friction are different. The static coefficient is larger than the sliding (kinematic)

coefficient. However, recent findings and techniques lend support to Bowden and Tabor’s

assumption that the macroscopic, dry frictional behavior is undoubtedly dominated by

the physics of individual contacts and interactions of contacting asperities (10,11).

In view of these complexities, it is remarkable that Eq. 4.1-4 represents numerous

metal–metal, dry frictional data rather well, for both the static and sliding cases. Polymers,

on the other hand, exhibit an even more complex frictional behavior on metal. This is,

perhaps, not surprising, since the physical situation involves a relatively soft, viscoelastic,

and temperature-dependent material in contact with a hard, elastic, and much less

temperature- and rate-dependent material. Empirical evidence of these complexities is the

nonlinear relationship between the frictional force and the normal load

FT ¼ CFa
N ð4:1-6Þ

from which a load-dependent coefficient of friction can be deduced

f ¼ CFa�1
N ð4:1-7Þ

where C is a constant and the exponent a is found to vary between the values of 1 and

0.666. It has been suggested by Lodge and Howell (12) that a ¼ 2/3 corresponds to

the case of pure elastic deformation at the contact points, whereas a ¼ 1, according to

Eq. 4.1-4, corresponds to purely plastic (yielding) deformation. Hence, values in

between appear to reflect viscoelastic deformation at the contact points. If this is the

case, the total contact area would be expected to depend on the normal load, the time of

contacts, the temperature, and the speed of sliding. As we shall see later in the chapter, these

effects are generally observed. It is worth noting that the expression for the dry coefficient of

friction (Eq. 4.1-7) has the same form as that of the viscosity (‘‘internal friction’’) of a Power

Law fluid that describes the non-Newtonian behavior of polymer melts.

From the foregoing it follows that, except for a ¼ 1, the coefficient of friction

decreases with increasing load, FN . This observation is a general feature of polymers,

namely, that the effective coefficient of friction reduces at higher loads (13,14).

Thus, before we consider the response of particulate systems to externally applied

stresses, we must know whether the shear and normal stresses at any point and orientation

are above the values specified by the equality of Eq. 4.1-1. Furthermore, since there are

two kinds of particulate solids, the noncohesive (free-flowing) and the cohesive, we
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comment on the phenomenon of agglomeration, which transforms the former to the latter.

Finally, we must remember that, since it is necessary to contain particulate solids, the wall

particulate static coefficient of friction and the wall shear and normal forces must be

specified. The wall is another location at which flow can be initiated.

4.2 AGGLOMERATION

The term agglomeration describes the forming of a cluster of particles from individual

particles. Agglomerates form because of the binding of van der Waals forces between

individual particles, which require intimate contact to exert any significant attraction. For

small particles of sizes up to ultrafine 10 mm, the mass of any one individual particle is so

small that it creates a loose-particle agglomeration, and great difficulties in fluidization

are encountered. Rotating fluidized beds creating 10–20-g centrifugal fields have recently

been used to make the mass of each particulate effectively 10–20 times larger, enabling

gas–solid fluidization (15). Presumably, any surface shear stresses imposed on the system

have the effect of decreasing the size of agglomerates, either by breakup, or by erosion, or

by both (16,17), as is discussed in Chapter 7 in connection with dispersive mixing of solid

additives by shear and extensional polymer processing flows. Additionally, solid–solid

forces are significantly amplified by increases in pressure exerted on loose particulate

assembly regions, leading to ‘‘caking.’’ In the processing of particulate-filled polymers,

when the particulates and polymer (powder or pellets) are fed as a solid mixture into either

single- or twin-rotor processing equipment, compaction takes place in SSEs, and repeated

cycles of compressions in TSEs, often leading to caking before melting. Following

melting, such agglomerated ‘‘cakes’’ may be held strongly enough for the shearing

stresses in the flowing melt to prevent dispersing them. We discuss such a problem in

Chapters 9 and 10.

4.3 PRESSURE DISTRIBUTION IN BINS AND HOPPERS

The static pressure under a liquid column is isotropic and is determined by the height of the

column above the point of measurement, h, and the density of the liquid r

P ¼ rgH ð4:3-1Þ

In a column of particulate solids contained in a vertical bin, the pressure at the base will

not be proportional to the height of the column because of the friction between the solids

and the wall. Moreover, a complex stress distribution develops in the system, which

depends on the properties of the particulate solids as well as the loading method. The

latter affects the mobilization of friction, both at the wall and within the powder. Finally,

arching or doming may further complicate matters. Hence, an exact solution to the problem

is hard to obtain. In 1895, Janssen (18) derived a simple equation for the pressure at the base

of the bin, which is still frequently quoted and used. The assumptions that he made

are: the vertical compressive stress is constant over any horizontal plane, the ratio of

horizontal and vertical stresses is constant and independent of depth, the bulk density is

constant, and the wall friction is fully mobilized, that is, the powder is in incipient slip

condition at the wall.
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A force balance over a differential element (Fig. 4.5) simply using pressure P

instead of the compressive stress, with shear stress at the wall tw ¼ sw tan bw þ cw,

where bw is the angle of internal friction and cw is the coefficient of cohesion at the wall

(14), gives

Arbg dh
½Weight of
element�

þ ðPþ dPÞA
½Pressure acting
downward�

¼ ðcw þ f
0
wKPÞC dh

½Frictional forces
suporting element�

þ PA
½Pressure acting

upward�

ð4:3-2Þ

where rb is bulk density, A is the cross-sectional area, C the ‘‘wetted’’ circumference, and

K is the ratio of compressive stress in the horizontal direction to compressive stress in the

vertical direction. The physical parameter K is discussed by Tadmor and Gogos (19).

Integration of Eq. 4.3-2 results in

P ¼ P1

f
0
wCKðh� h1Þ

A

� �
þ ðArbg=C � cwÞ

f
0
wK

1� exp
f
0
wCKðh� h1Þ

A

� �� �
ð4:3-3Þ

where P1 is the pressure at height h1. For the special case of a cylindrical bin, with h ¼ H,

where P1 ¼ 0 and cw ¼ 0 (no adhesion between solids and the wall), Eq. 4.3-3 reduces to

the more familiar Janssen equation

P ¼ rbgD
4f

0
wK

1� exp
4f

0
wKðh� HÞ

D

� �� �
ð4:3-4Þ

Clearly the pressure at the base approaches a limiting value as H goes to infinity

Pmax ¼ rbgD
4f

0
wK

ð4:3-5Þ

KP

P + dP

H

dh

h
P

Fig. 4.5 AVertical bin filled with particulate solids.
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Hence, most of the weight is supported frictionally by the walls of the bin. The maximum

pressure is proportional to bin diameter and inversely proportional to the coefficient of

friction at the wall.

Figure 4.6 plots the pressure measured under a load of PS pellets in a 10-in-diameter

cylindrical bin as a function of solids height. The many attempts to verify the Janssen

equation have met with varying success, and improved models have been offered (20)

(these are discussed in some detail in the first edition of this book), but the shape of the

curve as predicted by the model is usually observed (4). The underlying reason for the

good qualitative agreement is that the particulate assembly in the cylindrical hopper is

stripped of its volume-wise particle-to-particle interactions, which are due to interparticle

friction. The column of particulates is treated as a solid plug with only three properties:

density, rb; the ratio of the compressive stress in the horizontal direction, K; and the static

friction coefficient between the particulates and the hopper wall, f
0
w. All these may vary

from one location to another, because of neighboring particulate interactions, which

include both Newton’s second law of motion and a force-deformation constitutive

equation for the particulates. The discrete element method (DEM), which we discuss in

Section 4.10, takes this approach in simulating static and flowing particulate assembly

behavior under externally applied and gravity forces.

4.4. FLOWAND FLOW INSTABILITIES IN HOPPERS

In polymer processing practice, we need to ensure that the particulate gravitational mass

flow rate of the hopper exceeds, over the complete operating range, the extruder ‘‘open

discharge’’ rate (i.e., the rate without any die restriction). That is, hoppers must not be the

production-rate limiting factor. Second, and more importantly, it is necessary for stable

extrusion operations and extruded product quality that the flow be steady and free of

instabilities of the particulate flow emerging from the hoppers. Finally, as we will see in

Chapter 9, we need to know the pressure under the hopper in order to determine the

pressure profile in a SSE.

There are generally two types of gravitational flow in bins and hoppers [Fig. 4.7(a),

4.7(c)]: ‘‘mass’’ flow and ‘‘funnel’’ flow. In mass flow, the whole mass of particulate solids
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Fig. 4.6 Base pressure in a 10-in-diameter cylindrical hopper filled with 1/8-in PS cubes with

K ¼ 0:521, f
0
w ¼ 0:523, and rb ¼ 39lb=ft3. [Reprinted by permission from W. L. McCabe and J. C.

Smith, Unit Operations of Chemical Engineering, McGraw-Hill, New York, 1956.]
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moves toward the exit, and in funnel flow, the particles flow out through a central opening.

In the former, the main cause for flow disturbance is doming or arching, where all the

weight of the solids is supported by the walls [Fig. 4.7(b)], whereas in the latter flow,

disturbances may occur when the solids can sustain the existence of an empty central tube,

called ‘piping’ [Fig. 4.7(d)]. These and other flow disturbances were discussed by

Johanson (21). In both arching and piping, the solids must have consolidated sufficiently to

develop the level of strength necessary to sustain the weight of the retained particulate

solids. Hence, obstruction to flow is acute in cohesive particulate solids and it depends, in

addition to material properties, on hopper geometry, which determines the stress

distribution in the system. Jenike (22) and Richmond and Gardner (23), among others,

developed design methods and criteria for building obstruction-free hoppers and bins.

(d)(a) (b) (c) 

Fig. 4.7 Schematic representation of (a) ‘‘mass’’ flow in hoppers, (b) ‘‘arching,’’ (c) ‘‘funnel’’

flow, and (d) ‘‘piping.’’

A

A

C

B

B

D

Fig. 4.8 Regions of different flow behavior in two-dimensional hoppers as observed by radiographic

techniques. [Reprinted by permission from J. Lee et al., Trans. Soc. Rheol., 18, 247 (1974).]
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The flow pattern in two-dimensional hoppers was studied by Lee et al. (24). They used

radiographic techniques to determine simultaneously the flow field and the porosity field.

The marks left by tracer particles during discharge permit the evaluation of the local

velocity vector, and the intensity of the shade, the porosity. On the basis of both velocity

and porosity fields, the authors distinguished between four regions (Fig. 4.8): region D

they identified as a ‘‘plug-flow zone’’; in region B they observed rigid-body behavior;

region A appeared to be a ‘‘rupture zone,’’ where intensive deformation occurs, and region

C is a free-flow zone. A detailed mapping of the flow kinematics in two-dimensional

hoppers using the stereoscopic technique developed by Butterfield et al. (25), was done by

Levinson et al. (26). Other noninvasive techniques such as MRI were applied more

recently to the study of the flow fields in particulate systems (27,28).

Although a great deal of progress has been made in obtaining flow fields of particulate

solids, and design criteria for arch-free flow are available, it is not yet possible to calculate

discharge rates from first principles. Hence, empirical equations are used for this purpose.

It should be noted, perhaps, that in most polymer processing applications, such as in

hopper feeding processing equipment, the maximum, open discharge hopper flow rates are

much higher than present processing rates. This was aptly shown in a recent paper by

Potente and Pohl (29), where it is shown that hoppers can become limiting (because of

flight interference to hopper flows) only at very high screw speeds.

4.5 COMPACTION

The response of particulate solid systems, specifically powders, to forced compaction, is of

great interest in a broad range of processes. Tableting or pelleting of pharmaceutical

products, powder pressing in ceramic industries, powder metallurgy, and briquetting of

coal can serve as examples. In polymer processing, loose particulate solids are compacted

prior to melting inside most processing machinery, and the performance of these machines

is greatly influenced by the compaction behavior of the solids.

In polymer processing, compaction is an important and necessary step in order to

reduce the interparticle, unoccupied spaces and thus eliminate air. It is essential for

melting in both single-screw extruders as well as for twin-rotor processors, as we shall see

in Chapters 5 and 10. In twin-rotor devices, such as Co-TSEs, for example, the large and

repeated deformation of compacted particulates by the ‘‘kneading elements,’’ which

induces large plastic deformation of particulates, is the dominant melting mechanism.

In other applications, the purpose of compaction is to induce agglomeration. The

compaction is obtained by applying an external force. This force is transmitted within the

system through the points of contact between the particles. By a process of small elastic

and plastic deformation (shear deformation and local failure), the points of contact

increase, as do the forces holding the particles together, as discussed in the section dealing

with agglomeration. The externally applied force generates an internal stress field, which,

in turn, determines the compaction behavior.

It was Wollaston (30) who in 1829 recognized the great pressures needed for

compaction of dry powders—an observation that led to his famous toggle press. Since that

time, compaction and deformation of powders and particulate systems have been

extensively studied (31–35). There are many difficulties in analyzing the compaction

process. Troublesome in particular are the facts that the properties of particulate solids

vary greatly with consolidation, and that stress fields can be obtained, in principle, only in
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the limiting cases of steady flow or in a state of incipient flow when the friction is fully

mobilized. In compaction, these conditions are not necessarily fulfilled.

Let us consider an apparently simple situation of compaction of solids in a cylinder

(Fig. 4.9). Assuming a uniform stress field, a normal force F0 applied to the top ram

generates within the solids a certain normal stress tzz, as well as a radial stress trr. The
frictional shear force due to the latter acts in the opposite direction to the applied

force. Hence, the transmitted force to the lower ram, FL, will be smaller than the applied

force. By making a force balance similar to that made in deriving the Janssen equation,

and assuming that the wall friction is fully mobilized, that the ratio of axial to radial

stresses is a constant throughout, and that the coefficient of friction at the wall is

constant, we obtain the following simple exponential relationship between the applied

and transmitted force:

F0

FL

¼ exp
4f

0
wKL

D

� �
ð4:5-1Þ

Experimental data seem to conform to this relationship, yet there are serious doubts

about its validity. Both the coefficient of friction and the ratio of normal stresses vary along

the compaction (although it appears that their product stays approximately constant,

explaining the reasonable agreement with experimental data). Experimental measurement

of stresses within the compaction, however, reveal a rather complex stress distribution

(31), which depends very much on conditions at the wall and the geometry of the

compaction, as shown in Fig. 4.10.

Another question of fundamental importance discussed by Long (33) is the nature of

the ratio of axial to radial stresses. Since there is complex stress distribution, the principal

axes may not coincide with the axial and radial directions, respectively. Long (33)

investigated this relationship by carrying out ‘‘radial stress cycles.’’ The cycles are

Fig. 4.9 Compaction in a cylindrical channel, between frictionless pistons. F0 is the applied force,

FL is the resultant force on the lower portion.
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obtained by first increasing the axial stress, then decreasing it. A residual radial stress

remains after the axial stress has been reduced to zero. This residual stress is responsible

for the necessity of forcing the compacted mass out from the die after removal of the axial

stress. According to Long, at small axial stresses, before any yield takes place in the

powder, the ratio of radial to axial stresses will be given by the Poisson ratio, v, which is the

stress needed to suppress the radial expansion the compact would undergo if it were free to

expand. However, once yield takes place, the ratio is determined by some yield criterion

such as the Coulomb yield function (19), and a more or less linear increase of radial stress

with axial stress is observed.

The response of polymeric particulate solids to compaction was investigated

experimentally by Schneider (36) and Goldacker (37). For polyethylene, for example, a

constant radial-to-axial stress ratio of 0.4 was observed.

The bulk density of particulate solids increases by compaction. Dilation, mentioned

earlier, occurs only in the presence of a free surface, which allows for a loosening of the

packing arrangements of the particles. The increase in density, or decrease in porosity,

seems to follow an exponential relationship with the applied pressure (38,39)

e ¼ e0e�b0P ð4:5-2Þ

where e0 is the porosity at P ¼ 0, and b0 is a ‘‘compressibility coefficient,’’ which, in view

of the complex stress distribution in compacts, should depend on properties of the

particulate system, on compact geometry, and possibly on the loading history. Therefore,

Eq. 4.5-2 can be viewed as an approximate empirical relationship reflecting some average

values. The inability to quantitatively describe or predict the internal stresses and

deformations of particulate assemblies under static or dynamic loads, and the velocity

fields of flowing particulates, has led to the rapidly growing development and use of the

numerical method, which is uniquely appropriate for the discreet nature of particulate

assemblies.
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Fig. 4.10 (a) Stress and (b) density distribution in a cylindrical compaction of magnesium

carbonate at an applied pressure of 2040 kg/cm2. [Reprinted by permission from D. Train, Trans.

Inst. Chem. Eng., 35, 262 (1957).]
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4.6 FLOW IN CLOSED CONDUITS

In polymer processing, it is usually necessary to force the particulate solids through some

sort of closed conduit or channel. In a ram-type injection molding machine, the solids are

pushed forward by the advancing ram. They move in a channel that becomes an annular

gap upon reaching the torpedo. In a screw extruder, the solids get compacted and dragged

forward in the helical channel formed between the screw and the barrel. These examples

represent the two basic conveying and compaction methods used in polymer processing:

external, mechanical, positive displacement conveying and compaction, and drag-induced

conveying and compaction by a solid boundary in the direction of flow. In the former, the

friction between the solids and the stationary walls reduces the conveying capacity,

whereas in the latter, friction between the solids and the moving wall is the source of the

driving force for conveying. It is perhaps worthwhile to note that the two solids-conveying

mechanisms are identical in concept to external mechanical pressurization and drag-

induced, viscous pressurization of liquids, discussed in Chapter 6.

Rigorous analysis of the flow of compacted particulate solids in closed conduits is

difficult, as we discussed earlier. Discreet numerical methods such as DEM, which is

discussed in Section 4.10, offer the promise of more rigorous analysis, but these methods

are also subject to severe limitations related to small elastic deformations and relatively

simple channel geometries. Moreover, the difficulties with using DEM are compounded by

the complexities of polymer processing, such as temperature increases as a result of

friction and external heating, and the viscoelastic response of polymeric particulate

systems under externally applied forces. Thus, despite the very serious doubts as to the

validity of the conventional assumptions that compacted particulate systems can be

analyzed as a continuum, often referred to as a solid plug, which is devoid of internal local

assembly rearrangements and deformations, the ‘solid-plug’ assumption is widely used in

polymer processing modeling. We therefore analyze the following three modes of

particulate flows next: mechanical-displacement flow (Section 4.7), steady mechanical-

displacement flow aided by frictional drag (Section 4.8), and steady, drag-induced flow in a

straight channel (Section 4.9). These are really not flows as we refer to them in fluid

mechanics, but rather transport of slightly compressible but otherwise nondeformable plugs.

4.7 MECHANICAL DISPLACEMENT FLOW

We now analyze mechanical-displacement flow in a straight channel of constant cross-

sectional area, as shown in Fig. 4.11 (with the upper plate at rest). A column of compacted

solids of length L is compressed between two rams. The one on the left exerts a force F0 on

the solids and it is opposed by a smaller force FL on the right. Thus, friction on the channel

walls also opposes the applied resultant force.

A differential force balance with the following assumptions: (a) the compacted solids

are either at a steady motion or in a state of incipient slip on the wall (friction at the wall

is fully mobilized); (b) axial and radial stresses vary only with the axial distance x;

(c) the ratio of the radial-to-axial stresses is a constant K, independent of location; (d) the

coefficient of friction is constant and independent of compaction; and (e) temperature

effects in the case of steady motion are negligible, results in

Fx � ðFx þ dFxÞ � C
Fx

A

� �
Kfi dx ¼ 0 ð4:7-1Þ
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where fi is either the static coefficient of friction for the case of incipient motion, or the

kinematic coefficient of friction for steady motion; C is the circumference, which for

noncircular cross sections is the wetted perimeter; and A is the cross-sectional area.

Integration of Eq. 4.7.1 gives

Fx ¼ F0e
�fiKCx=A ð4:7-2Þ

where Fx is the axial force at location x. The axial stress may be obtained by multiplying

the force by the cross-sectional area. The force at the downstream ram FL is obtained by

setting x ¼ L in Eq. 4.7-2.

Hence, in dealing with steady motion of particulate solids, it is evident that the axial

stress or ‘‘pressure’’ drops exponentially, whereas in the case of liquid flow, it drops

linearly with distance. This difference stems, of course, from the fact that frictional forces

on the wall are proportional to the absolute local value of normal stress or pressure. In

liquids, only the pressure gradient and not the absolute value of the pressure affects the

flow. Furthermore, Eq. 4.7.2 indicates that the pushing force increases exponentially with

the coefficient of friction and with the geometric, dimensionless group CL=A, which for a

tubular conduit becomes 4 L=D.
Experimental support on the validity of Eq. 4.7-2 was presented by Spencer et al. (32),

who also proposed a theoretical derivation based on considering a discrete number of

contact points between solids and containing walls. They assumed isotropic stress

distribution (K ¼ 1) and obtained an expression identical to Eq. 4.7-2

FL

F0

¼ e�4f 0wL0=D ð4:7-3Þ

where L0 is the initial length of the column. The use of initial length of column, even

though the column shortens upon compression, is justified by Spencer et al. on the basis of

assuming a constant number of contact points. Experiments were carried out with a

stationary column of saran powders and granular polystyrene, and results confirmed the

theoretical derivation within experimental error.

Example 4.1 Force Requirements of Ram Injection Molding Machines We consider a

ram injection-molding machine consisting of a 2-in-diameter barrel in which a well-fitting

Fig. 4.11 A column of particulate solids compressed between two pistons in a channel with a

constant cross section. A force F0 is applied at x ¼ 0, which is balanced by a force FL at x ¼ L. The

column is either moving at constant velocity or is stationary. The upper plate is either stationary or

is moving with constant velocity.
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ram reciprocates. We wish to calculate the maximum length of the solid plug the machine can

deliver if the downstream pressure during injection is 10,000 psi and the barrel can sustain a

radial stress of 25,000 psi. The static coefficient of friction is 0.5, and the radial-to-axial stress

ratio is 0.4.

With a 25,000-psi allowed radial stress, the maximum allowable axial stress is

25,000=0.4 ¼ 62,500 psi. Substituting the appropriate values into Eq. 4.7-3, but not setting

K ¼ 1, we get

lnð6:25Þ ¼ ð0:5Þð0:4Þð4ÞL
2

The length L is 4.58 in. Thus with an axial force of about 20,000 lb, we can only press a 4.58-

in-long solids column driving the radial stress to its upper limit! Clearly, if it is necessary for

injection molding machines of this type to develop such high downstream pressures,

appropriate means must be provided to reduce the coefficient of friction on the wall. This can

be achieved, for example, by heating the barrel, generating a liquid film on the wall. This will

change the drag mechanism to that of a viscous laminar flow, which is independent of the

absolute local normal stresses.

4.8 STEADY MECHANICAL DISPLACEMENT FLOWAIDED BY DRAG

Drag-aided, particulate solids flow occurs when at least one of the confining solid walls

moves in the direction of flow parallel to its plane. The friction between the moving

wall and the solids exerts a forward dragging force on the solids. Figure 4.11 shows a

rectangular channel with the upper plate, which forms the top of the channel, moving at a

constant velocity in the x direction. Particulate solids are compressed into a column of

length L between two rams. We now can differentiate between four possible states of

equilibrium:

a. The solids are stationary with friction on the stationary walls fully mobilized, and

with F0 > FL.

b. The same as Case 1, but with FL > F0.

c. The solids move at constant velocity (less than the velocity of the upper plate) in the

positive x direction.

d. The same as Case 3, but the solids move in the negative x direction.

Force balances on a differential element for these four cases appear in Fig. 4.12. The

moving plate exerts a force of C1fw1KðF=AÞ in all cases, where C1 is the portion of the

‘‘wetted’’ perimeter of the moving plate and fw1 is the kinematic coefficient of friction.

The stationary channel walls in Cases (a) and (b) exert a force C2 f
0
wKðF=AÞ, where f

0
w is the

static coefficient of friction and C2 is the portion of the wetted perimeter of the lower plate

and side walls that is stationary. This force points in the direction of increasing force. Thus

it points to the left in Case (a) and to the right in Case (b).

Finally in Cases (c) and (d), the stationary walls exert a force C2fw2KðF=AÞ, where fw2
is the kinematic coefficient of friction. This force acts in the direction opposite to the

direction of motion of the plug.
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Force balances such as Eq. 4.7.1, with the further assumption that the channel is flat

and the torque induced by couples of forces can be neglected, lead to the following

equations.

Case a FL < F0: Stationary plug; friction mobilized:

FL

F0

¼ exp ðC1fw1 � C2f
0
wÞ

KL

A

� �
ð4:8-1Þ

Case b FL > F0: Stationary plug; friction mobilized:

FL

F0

¼ exp ðC1fw1 þ C2f
0
wÞ

KL

A

� �
ð4:8-2Þ

Case c Plug moves in the direction of the upper plate:

FL

F0

¼ exp ðC1fw1 � C2fw2ÞKL
A

� �
ð4:8-3Þ

Case d Plug moves in the direction opposite to the upper plate ðFL > F0Þ:

FL

F0

¼ exp ðC1fw1 þ C2fw2ÞKL
A

� �
ð4:8-4Þ

In the foregoing, we have allowed for different kinematic coefficients of friction on the

moving plate fw1 and the stationary walls fw2.

Analysis of these equations reveals the role of drag on the force and stress distribution.

First, we consider the case of a stationary column of solids. Assume that the drag force

dx

Fx Fx +  dFx

C1 fw1K
F
A dx

C2 fw K F
A dx¢ ¢

dx

Fx Fx + dFx

C1 fw1K
F
A dx

(b)(a)

(d)(c)

C2 fw K F
A dx

dx

Fx Fx + dFx Fx + dFx

C1 fw1K
F
A dx

C2 fw2 K F
A dx

dx

Fx

C1 fw1K
F
A dx

C2 fw2 K F
A dx

Fig. 4.12 Force balances on a differential element of solids in Fig. 4.11. (a) Stationary solids

F0 > FL; (b) Stationary solids, F0 < FL; (c) Solids move at constant velocity in the positive x

direction. (d) Solids move at constant velocity in the negative x direction.
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exerted by the moving plate can be gradually increased by changing fw1C1, by modifying

the surface properties of the plate through coating, roughening, and so on, or increasing

C1. This is demonstrated graphically in Fig. 4.13.

If fw1C1 is zero, the ratio of the forces is FL=F0 ¼ exp½ð�C2f
0
wÞKL=A�, as given in

Eq. 4.7-2. A gradual increase in fw1C1 increases this ratio, implying that, for a given FL,

less and less force has to be exerted on the upstream ram, until this ratio reaches a value of

1 (i.e., FL ¼ F0) when C1fw1 ¼ C2 f
0
w. At this point, the forward dragging force exerted by

the upper plate exactly compensates the fully mobilized frictional forces on the stationary

walls. Now we can slightly increase FL, thereby demobilizing the friction on the stationary

walls. This is indicated by the vertical line in Fig. 4.14. We then reach a point where the

frictional forces on the stationary plate are zero and the forward dragging force is fully

compensated by the force FL Under these conditions

FL

F0

¼ exp C1fw1
KL

A

� �
ð4:8-5Þ
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Fig. 4.13 The effect of drag on the ratio FL=F0 for a stationary column of solids. (The ordinate is a

logarithmic scale.)
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Fig. 4.14 The effect of drag on the ratio FL=F0 for a steadily moving column of solids. (The

ordinate is a logarithmic scale.)
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which is indicated by the heavy dot in Fig. 4.13. The force FL can gradually be further

increased, mobilizing the frictional forces on the stationary walls in the opposite direction

until they are fully mobilized, where the ratio of forces is

FL

F0

¼ exp 2C1fw1
KL

A

� �
ð4:8-6Þ

A further increase in fw1C1 will result in an increase in the ratio FL=F0 according to

Eq. 4.8-2. Analyzing the whole curve, we see that we have a condition indicated by the

vertical line in Fig. 4.13, where the force ratio is indeterminate. The condition indicated by

the heavy dot on the vertical line can also be interpreted as representing a point where the

downstream ram is replaced by a rigid channel block, which responds only to the forces

exerted on it by the solids and prevents mobilizing the friction on the stationary walls. This

is in agreement with the St. Venant principle, which states that, if statically equivalent and

opposing surface tractions are applied on a solid, the differences are negligible at far away

locations, that is, on the surface of the stationary walls; hence, this surface plays no role in

the force balance.

The same kind of analysis for the case of steadily moving solids leads to similar

conclusions, as Fig. 4.14 demonstrates. We should note, though, that in this case, we do not

have a continuous transition between the two directions of motion, because within the

region between the two curves, the solids must come to rest, thus encountering the two

previously discussed cases and leading to possible instabilities.

Both cases, however, vividly demonstrate the profound effect that drag forces, induced

by a moving boundary, may have on the force distribution. In positive displacement flow,

the addition of a drag permits the reduction of the force F0 needed to maintain a certain

downstream force FL to any desired level. Moreover, results indicate that drag is capable of

generating pressures within the solids above those applied externally. The pressure rise is

exponential with distance. The same holds for a moving plug. Hence drag, as we shall see

in the next section, is a mechanism by which solids can be compacted as well as conveyed.

4.9 STEADY DRAG-INDUCED FLOW IN STRAIGHT CHANNELS

We have concluded that frictional drag, when applied to a steadily moving column of solids,

can generate stresses or pressures above those applied externally. Consider once more the

case of a flat rectangular channel with the upper plate moving and the solids moving in the

same direction at constant velocity. The force ratio is plotted in the lower curve of Fig. 4.14.

Clearly, for any given F0 (which must be greater than zero, except for the frictionless case),

we can get any FL greater than F0, provided C1 fw1 is large enough. This ratio FL=F0 seems

to be independent of either the plate velocity or the velocity of the solids. All that is required

is that these velocities be steady. This result was obtained because we have assumed that the

frictional force depends only on normal stress and is independent of velocity, which, as we

have seen in this chapter, is a reasonable assumption. Yet the velocity of the solids multiplied

by the cross-sectional area gives the flow rate. Thus the previous argument implies that, in

this particular setup, flow rate is indeterminate. How, then, can we use the drag-induced flow

concept to obtain a geometrical configuration in which flow rate is not only indeterminate

but is also predictable? Such a situation would arise if the frictional drag could be made

dependent on solids velocity. We can create such a situation by replacing the upper cover
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plate with an infinite plate, moving not in the down-channel direction, but at an angle, y, to
this direction, as in Fig. 4.15.

The frictional force exerted by the moving plate on the solids remains constant, but the

direction of this force will be given by the vectorial difference between the plate velocity

and solids velocity (Fig. 4.16). Hence, the velocity component of this force in the down-

channel direction, which participates in the force balance, becomes a function of both

plate velocity and solids velocity (or flow rate). From the velocity diagram in Fig. 4.16, we

obtain the following expression for the angle f, which is the angle between the direction of
the force exerted by the moving plate on the solids and the direction of motion of the

moving plate (the solids conveying angle) where

tanf ¼ u sin y
V0 � u cos y

ð4:9-1Þ

where V0 is the velocity of the upper plate, and u is the velocity of the solids. Note that, for

stationary solids, the angle f becomes zero, and it increases with increasing flow rate.

Next we can proceed with the force balance on the differential element shown in

Fig. 4.16. We first concentrate on making a down-channel force balance, neglecting the

cross-channel component of the forces

Fx � ðFx þ dFxÞ þ C1fw1K
Fx

A

� �
cosðyþ fÞ dx� C2fw2K

Fx

A

� �
dx ¼ 0 ð4:9-2Þ

V0
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x

y

z

H

W A

Fig. 4.15 A rectangular channel filled with solids that move in the positive x direction at constant

velocity u, covered by an infinite plate moving at constant velocity V0 at an angle y to the down-

channel direction, z.
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Fig. 4.16 Top view of a differential element of the column of solids in Fig. 4.15.
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which upon integration with the initial condition Fð0Þ ¼ F0, gives

Px

P0

¼ Fx

F0

¼ exp ½C1fw1 cosðyþ fÞ � C2fw2�Kx
A

� �
ð4:9-3Þ

Hence the ratio of forces, which by dividing by the cross-sectional area also equals the

ratio of axial stresses, which we shall refer to as pressures, become a function of the flow

rate via the angle f determined by Eq. 4.9-1. This implies that, for a given inlet pressure

P0, a fixed outlet pressure determines the flow rate, or conversely, a given flow rate

determines the magnitude of outlet pressure the device can generate. The lower the flow

rate, the higher the pressure rise.

The previously described solids conveying mechanism represents, in essence, the

conveying of solids in SSEs, although a realistic conveying model for the latter is

somewhat more complicated because, as Chapter 9 explains, the channel is curved.

Drag-induced flow in a rectangular channel, as in Fig. 4.15, neglecting cross-channel

forces, resulted in Eq. 4.9-3. We now consider the effect of these forces on the conveying

mechanism.

At steady flow conditions the moving plate exerts a force on the solids in the ðyþ fÞ
direction. This force is separated into two components: one in the down-channel direction,

which was used in the force balance, and the other in the cross-channel direction, which

was neglected. The latter will have the following effects: it will increase the normal stress

on the side wall, A, in Fig. 4.15, and it will alter the stress distribution within the solids.

Assume for the sake of simplicity that the St. Venant principle holds, that is, the externally

applied force by the plate is completely balanced by the additional force on the side wall A,

and within the solids (which will be considered to be located ‘‘far’’ from the places where

these tractions act), there will be no effect. In other words, we neglect the changes in the

stress distribution within the solids. The cross-channel force component, F�, is

F� ¼ fw1K
Fx

HW

� �
ðW dxÞ sinðyþ fÞ ¼ fw1KFx sinðyþ fÞ dx

H
ð4:9-4Þ

whereW and H are the width and height of the channels, respectively. Now we can write a

down-channel force balance, including the effect of this additional normal force on side

wall A on the frictional force along this wall

Fx � ðFx þ dFxÞ þ fw1K
Fx

HW

� �
ðW dxÞ cosðyþ fÞ � fw2K

Fx

HW

� �
ðW þ HÞ dx

� fw2 K
Fx

HW

� �
H dxþ F�

� �
¼ 0

ð4:9-5Þ

which, upon rearrangement and with Eq. 4.9-4, gives

dFx

Fx

¼ fw1K

H
cosðyþ fÞ � fw2

fw1
1þ 2

H

W

� �
� fw2 sinðyþ fÞ

� �
d x ð4:9-6Þ

Integration of this equation gives

Px

P0

¼ Fx

F0

¼ exp
fw1Kx½cosðyþ fÞ � fw2 sinðyþ fÞ � fw2=fw1ð1þ 2H=WÞ�

H

� �
ð4:9-7Þ
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Equation 4.9-7 reduces to Eq. 4.9-3 if the second term on the right-hand side vanishes.

Clearly the cross-channel force induces additional friction on the side wall, A, which in

turn reduces the pressure generation capability for a given flow rate (given angle f), or it
reduces the conveying capacity for a given pressure rise.

4.10 THE DISCRETE ELEMENT METHOD

In Sections 4.4 and 4.5, we dealt briefly with particulate flow instabilities in hoppers and

the nonhomogeneous stress distributions created under uniaxial loading of a particulate

assembly. In this section, we will expand on the discrete nature of such assemblies, and

refer the reader to the computational and experimental tools that have been developed, and

are rapidly advancing, to study such phenomena.

An assembly of particulates is composed of distinct particles that undergo displacements

independently from each other, and interact only via points of contact between the particles.

This discrete character of such assemblies results in complex behavior under loading and

unloading, as well as under flow, which the available, continuum-based constitutive

equations fail to describe. In this section we describe particle dynamics simulations, which

are based on the discreet, rather than the continuum nature of particulates, and which offer a

better chance to describe the behavior of such systems. Experimentally, it is very difficult to

measure internal stresses or flow details in real particulate assemblies. Thus, ‘‘model’’

experimental systems have to be used, which consist of assemblies of geometrically simpler

‘‘particles.’’ For example, DeJosselin de Jong and Verrijt in 1971 (40) used a two-

dimensional assembly of photoelastic disks of various sizes under load. Figure 4.17(a), taken

from their work, records the ‘‘force vector’’ plots resulting from the two-dimensional

loading, and Fig. 4.17(b) shows a simulation by Cundall and Strack (41). The complex stress

field is evident where the width of the lines indicates the magnitude of the force.

Relatively simple optical experimental techniques to study noncohesive particulate

flow have also been developed, such as the polarized light probe system by Allersma

(42,43). With this technique, the principal stress distribution and displacement of

photoelastic granular material flowing in two-dimensional hoppers, with and without

obstructions (distribution bars), can be obtained, as shown in Fig. 4.18.

Fig. 4.17 (a) Force vectors obtained in a two-dimensional assembly of photoelastic disks under

horizontal and vertical loads, FH=FV ¼ 0:39. (b) DEM calculations by Cundall and Strack (41) of

the force vectors for FH=FV ¼ 0:41 [Reprinted by permission from P. A Cundall and O. D. L

Strack, ‘‘A Distinct Element Model for Granular Assemblies,’’ Géotechnique, 29, 47–65 (1979).]
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Altobelli et al., used a more elaborate three-dimensional MRI technique to study the

flow of suspended particles (44) and granular flows (27), also studied by Ng et al. (45) for

pellet-sized pills under load, while being sheared in a nonmagnetic ‘‘shear box,’’ similar to

the Jenicke cell (22). This technique holds great potential for detecting details of

particulate movements and deformations of three-dimensional particulate assemblies, but

is currently limited to very low shearing velocities.

In the last decades, the modeling of both compacted particulates and flowing particle

assemblies under loads and under flow conditions has been advanced by DEM, first

developed by Cundall (46) for two-dimensional compacted-disk assemblies in 1971. The

origins of DEM are in the field of molecular dynamics (MD), where the motions of

individual molecules are tracked under the influence of an external force (e.g., electrostatic)

field (47). Experimental results such as those with model photo-elastic assemblies just

discussed have also assisted the development of the DEM simulation models.

In a dynamic particulate assembly, particle–particle interactions dominate. Thus, it is

essential for DEM to establish methods for identifying contacts and modeling the contact

interactions for all particulates. Most DEM simulations assume that the particles are

spheres, to facilitate the identification of the contact location. There are two categories of

DEM: the hard-(infinitely rigid) sphere model and the soft-sphere model. The hard-sphere

model is appropriate for sparse populations of bodies moving at high speeds, with

instantaneous two-body collisions only, which can be modeled as instantaneous exchanges

of momentum and energy (48). Haff (49) discusses the physical nature of such binary,

collision-dominated systems, resembling gases, but where the collisions are allowed to be

inelastic in the transfer of momentum and energy. He derives, heuristically, the equation of

state and the momentum and energy balances for such systems. This model, however, is

not applicable to dense particulate flows and deformation of packed particulates under

loads, relevant to polymer particulate solids handling.

Fig. 4.18 (a) The visualized stress distribution in a hopper with seven distribution bars. (b) The

measured particle displacements in the same hopper indicating uniform flow. [Reprinted by

permission from H. G. B. Allersma ‘‘Optical Analysis of Methods to Influence the Stress

Distribution in Hoppers,’’ in Mechanics of Deformation and Flow of Particulate Materials, C. S.

Chang et al. Eds., ASCE Publication, New York, 1997.]
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On the other hand, in Cundall’s soft-sphere model of the DEM, ‘‘soft’’ spheres colliding,

or in contact with several neighboring particles, undergo virtual (overlap) deformations,

which give rise to reaction (e.g., elastic, springlike) forces normal and tangential to the

contact. Thus, each contact can exert both a force and a moment on each particle, the total of

which is the resultant of all the contacts and the body forces of gravity and electrostatic

fields, if any. The new positions and velocities of each particle are determined by Newton’s

second law and solving second order differential equations involving the linear and angular

acceleration of each particle. The simultaneous solution of the entire assembly differential

equations determines the new ‘‘state’’ of the assembly. Figure 4.19 shows the computational

flow diagram of the soft-sphere DEM model. It is important to note that this DEM model is

equally applicable to static, quasi-static, and dynamic flow conditions.

We follow Cundall and Strack (41) in discussing this DEM model in two-dimensional

assemblies of disks under load. The equilibrium contact forces and particle displacements and

deformations of a stressed assembly of disks are predicted through a series of calculations

tracing the dynamic state of each particle, which is the result of the propagation, through the

assembly, of the externally applied wall stresses. Calculations are carried out in sequential,

small time increments over which we can assume that the particle velocities and accelerations

are constant. The time steps are also small enough so that disk-to-disk interactions

(disturbances) have the time to propagate only to immediate ‘‘neighbors’’ and no further. Thus,

at all times during the calculations, the resulting forces on any disk are determined only by its

interactions with the neighbors it is in contact with. This is the essential computational

component that enables DEM to follow nonlinear interactions between very large numbers of

district disks, with moderate computer memory requirements.

Initialize particle position, orientations, and velocities

Update particle link-list
(find new or broken contacts)

Calculate the forces and torques on each particle

Integrate the equation of motion to calculate the
new positions, velocities, and orientations

Calculate average properties

Time increase: t = t + dt

Loop

Fig. 4.19 The computational algorithm of the soft-sphere DEM model.
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The DEM calculation cycle (as noted in Fig. 4.19) involves the use of Newton’s second

law, giving the motion of a particle resulting from the forces acting on it, alternating with

the use of a force-displacement (particle deformation) constitutive relationship to find

contact forces from displacements. The deformations of individual soft particles are

‘‘virtual’’ in the sense that they are used only to calculate reaction forces. The response and

deformation of the entire assembly is calculated by the displacements and the rigid-body

rotation of all particles. This assumption limits the applicability of the soft-sphere DEM to

the description of the dynamic state of packed polymer pellets or powders in processing

equipment, such as twin rotor processing equipment, as we will discuss in Section 5.8 and

Chapter 10. There, the applied deformations are large and the solid polymer particulates

undergo plastic deformations, which cause large temperature increases in the deforming

assembly. The following example serves as a simple illustration of the DEM cycling

through a force-displacement constitutive response, F ¼ k� n, and Newton’s second law,

which relates the force to acceleration and, thus, particle motion.

Example 4.2 Soft-Sphere Model DEM Treatment of Two Disks Deformed by Two
Rigid Walls To demonstrate the basic and simple physical model used in DEM, we

turn to a pair of two disks, X and Y, compressed between two rigid walls, as shown in

Fig. E4.2.

Initially, at t ¼ t0, the walls and disks touch with no force, FN ¼ 0, Fig. E4.2(a). The walls

move toward each other at a constant velocity, v. At time t ¼ t0 þ�t the walls have each

moved a distance v�t. Since the disturbance cannot travel beyond a single disk as assumed by

the model, both disks maintain their initial positions during this time interval. Thus, overlaps

are created at points A and C, Fig. 4.2(b), given by

�n ¼ v�t ðE4:2-1Þ

The contact A at time t þ� t is defined as the halfway point between AD and Aw. The relative

displacement at A is related to the force resulting from the assumed linear constitutive

response of the particle (that of a simple ‘‘spring’’ in LVE terms)

�Fn ¼ knð�nÞt1 ðE4:2-2Þ

At the two disks at t1¼ t0 þ�t

FX1
¼ Knð�nÞt1 FY1 ¼ �Knð�nÞt1 ðE4:2-3Þ

Using Newton’s second law of motion to find the accelerations (constant over �t) of disks X

and Y

€XX1 ¼ FX1

mX

€YY ¼ FY1

mY

ðE4:2-4Þ

By integrating _XX1 and €YY1 over t1 to t2 ¼ t0 þ 2�t, the velocities of the two disks at t2 are

determined by

ð _XX1Þt2 ¼
FX1

mx

� �
�t ð _YY1Þt2 ¼

FY1

my

� �
�t ðE4:2-5Þ
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Thus the relative displacement at points A, B, and C at t2 are given by, see Fig. E4.2(a)

ð�nAÞt2 ¼ v� FX1

mx

� �
�t

� �
�t ðE4:2-6Þ

ð�nBÞt2 ¼
FX1

mX

� �
�t � FY1

mY

� �
�t

� �
�t ðE4:2-7Þ

ð�nCÞt2 ¼
FY1

mY

� �
�t � ð�vÞ

� �
�t ðE4:2-8Þ

where�ni are taken to be positive for compression. This cycle of calculation will be repeated

again and again.

In the general case of an assembly with a very large number of disks the calculation cycle is

as follows: the Fi ¼ k�ni is applied at each contact point of any disk and the vectorial sum of

the contact forces is calculated to yield the net force acting on the disk. However, for an

x yA B C

2

v v v v

1

(a)

(∆nA)t1
= nt (∆nC)t2

= nt

(b)

x yA(D) B C

2

1
A (w)

x yA(D) B C

2

1
A(w)

(c)

vv

(∆nA)t1
+ (∆nA)t2

(∆nB)t2 (∆nC)t1
+ (∆nC)t2

Fig. E4.2 Soft-sphere DEM model for two disks being compressed by two confining walls

moving in opposite direction with a velocity v. [Reprinted by permission from P. A. Cundall

and O. D. L. Strack, ‘‘A Distinct Element Model for Granular Assemblies,’’ Géotechnique, 29,

47–65 (1979).]
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assembly of particles there are both normal and tangential forces, the latter giving rise to

moments MXi
and angular acceleration €yyXi

, where

IXi
€yyXi

¼
X

MXi
ðE4:2-9Þ

IXi
are the moments of inertia of disks Xi. Interparticle frictional forces are included for both

compacted and flowing particulate assemblies

In 1979, Cundall and Strack (41) used the DEM simulation just outlined to compare it

with the experiment of de Josselin de Jong (40), and their results are shown in Fig. 4. 17(b).

The agreement is excellent, qualitatively, and good, quantitatively. What is important is

the fact that this experimental verification of the power of soft-sphere DEM simulations

established the field and contributed to its rapid growth.

The soft-sphere DEM is also used to model particulate packing under gravity (50),

shown in Fig. 4.20, and particulate flows and fluidization (51,52). DEM simulations

scarcely have been used to simulate the pellet/powder behavior under flow or compaction.

A notable example is the work of Yung, Xu, and Lau (53) in simulating the conveying of

polymer pellets in the solids-conveying region of SSEs. The simulated dependence of the

conveying rate on the screw speed, barrel, and screw wall friction coefficients is consistent

with that observed experimentally.
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PROBLEMS

4.1. Friction Between Two Surfaces Answer the following questions or discuss state-

ments: (a) Two clean, highly polished steel surfaces when brought into contact appear

to stick as if having very high coefficient of friction. (b) Would the dynamic coefficient

of friction between steel and a polymer increase or decrease with increasing surface
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roughness. (c) Why would the dynamic coefficient of friction between polymer pellets

and a metal increase with time of rubbing one against the other? How would this affect

start-up of solid pellet-fed machines? (d) Would you expect the dynamic coefficient of

friction to increase or decrease with metal surface temperature? (e) The dynamic

coefficient of friction on a clean surface of LDPE is 0.3 and that of HDPE is 0.08. How

do you explain the difference?

4.2. Effect of Liquids on Friction (a) Why do cars tend to slip on a wet road? Why is

the risk higher with a worn-out tire? (b) Why do certain people lifting something

heavy without gloves spit on their palms? (c) Describe in a short essay how it would

be to live in a frictionless world.

4.3. Solids Height in an Extruder Hopper An LDPE-fed SSE is equipped with a 10-

cm cylindrical hopper. The operation is sensitive to the pressure under the hopper. If

the static coefficient of friction is 0.5 and the ratio of compressive stress in the

horizontal direction to compressive stress in the vertical direction is 0.5, what should

the minimum height of the solids be in the hopper to secure steady operation?

4.4. The Effect of Drag on the Pressure Distribution in Solids Filling a Rectangular
Channel A bed of particulate solids is compressed in a rectangular channel

between two freely moving rams, with the upper plate of the rectangular channel

moving at a constant velocity. The width of the channel is 5 cm and its height is

0.5 cm. The coefficient of friction on the stationary channel walls is 0.5 and the ratio

of axial to perpendicular stresses is 0.4 and can be assumed constant throughout the

bed. The force on the downstream ram is 1000 N. (a) Calculate the force that has to

be applied on the upstream ram at equilibrium conditions as a function of the

coefficient of friction on the moving wall that can be varied in the range of 0 to 1.0.

(b) What effect will the doubling of the velocity of the moving plate have on the

results in part (a)?

4.5. Two-dimensional Pressure Distribution in Solids Filling a Rectangular Channel
Consider the rectangular channel geometry shown in Fig. 4.15. Equation 4.9-7 gives

the pressure distribution, accounting for the cross-channel force, but neglecting

cross-channel pressure distribution. (a) Show that the down-channel pressure

distribution that accounts for cross-channel pressure distribution is given by:

ln
�PPðxÞ
�PPð0Þ ¼ ðR1 � R2Þx ðP4:6-1Þ

where �PPðxÞ is the mean pressure over the cross-section at location x, the same as

before

�PPðxÞ ¼ Pðx; 0ÞðeR1W � 1Þ
R1W

where Pðx; 0Þ is the axial pressure at z ¼ 0 (see Fig. 4.15) and

R1 ¼ fw1
sinðyþ fÞ

H
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and

R2 ¼ fw1 cosðyþ fÞ � fw2

H

R3 ¼ fw3R1ðeR1W þ 1Þ
eR1W � 1

where fw1, fw2, and fw3 are the coefficients of friction on the moving plate, channel

bottom, and channel sidewalls, respectively. (b) Show that for R1W ! 0, Eq. P4.6-1

reduces to Eq. 4.9-7 with K ¼ 1.

4.6. Flow Rate in a Rectangular Channel The pressure profile for drag-induced

solids conveying in a rectangular channel is given by Eq. 4.9-7. The channel

dimensions are W ¼ 2:5 in and H ¼ 0:5 in. The pressure at a certain upstream

position is 10 psig, and 10 in downstream it is 55.7 psig. The coefficient of

friction on the moving wall is 0.5 and 0.2 on the stationary walls. The upper wall

moves at an angle of 15� to the down-channel direction and at a velocity of 10 in/

s. The bulk density is 30 lb/ft3 and K ¼ 0:5. Calculate the mass flow rate of

solids.

4.7. Experimental Determination of the Storage Friction Coefficient, 4Kf 0w Hyun

and Spalding4 developed a polymer particulate solids compaction cell shown

schematically in Fig. P4.7(a) and used it to obtain temperature and pressure-

dependent bulk density data, as shown on Fig. P4.7(b1) and p4.7(b2).

(a) Comment on the compressibility behavior of the semicrystaline LDPE and

amorphous high impact polystyrene (HIPS) (b) the cell was also used to calculate

(estimate) the storage friction coefficient f 0s ¼ 4f
0
wK in the force balance Eq. 4.5-1.

Measuring the top and bottom plunger pressure, they reported the following:

f 0s Values 25�C 50�C 75�C 90�C

LDPE 0.28 0.20 0.18

HIPS 0.29 0.25 0.24 0.60

Assuming that Pavg ¼ P ¼ Ptop þ Pbot

� �
=2 calculate the ratio of Ptop=Pbot for each

temperature. Comment on the physical significance of the results. The inner

diameter of the cell is D ¼ 1:4 cm and H is height of the bulk material in the cell,

D=H ¼ 0:5.

4.8. Calculation of the Particulate Solids Conveying a Screw Feeder The perfor-

mance of a feed screw of 1.0-in flight diameter, 0.325-in screw root diameter and

1.2-in lead was experimentally executed for LDPE pellets with a bulk density of

0.45 g/cm3 by measuring the mass flow rate in the rotational speed range of 10–215

rpm. The results are shown in the table below. Construct a particulates drag-flow

model that calculates with results that are in close agreement with the experimental

results.

4. K. S. Hyun and M. A. Spalding, Polym. Eng. Sci., 30, 571 (1990).
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4.9. The Discreet-Element Method for an Assembly of Two-dimensional Disks Exam-

ple 4.2 serves as a simple illustration of the DEM cycling through a force-displacement

constitutive response, Fi ¼ k�ni and the law of motion, which relates the Fi with €XXi

and, thus, particle motions. In the general case of an assemblywith a very large number

of disks the calculation cycle is as follows: the Fi ¼ k�ni is applied at each contact

point of any disk and the vectorial sumof the contact forces is calculated to yield the net

force acting on the disk. For such an assembly there are both normal and tangential
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Fig. P4.7 (a) Schematic representation of the compaction cell used by Hyun and Spalding. (b)

Experimentally obtained bulk densities of (b2) LDPE pellets (b2) HIPS pellets.

Screw Speed (rpm) Throughput (Exp.) (kg/hr)

10 2.94

20 5.88

50 14.04

100 26.4

150 40.44

200 52.2

215 58.08
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forces, the latter giving rise to moments MXi
and angular acceleration €yyXi

, where

IXi
€yyXi

¼
X

MXi

where IXi
are the moments of inertia of disks Xi. After the net forces and moments

are determined on every disk of the assembly, new accelerations are calculated for

Newton’s second law for each disk and, form those, their motions.

The more general force-displacement two-dimensional DEMmethod is shown in

Fig. P4.9 for a pair of disks x and y in a dynamic state.

The points PðxÞ and PðyÞ are defined as the points of intersection of the line

connecting the disk centers with the boundaries of the two disks. Contact takes place

if and only if the center-to-center distance D is smaller than the sum of the two disk

radii. If this condition is met, the relative (virtual) displacement at the contact C is

determined by the integration of the relative velocity, defined as the velocity of point

PðxÞ with respect to PðyÞ. The unit vector ei ¼ ðcos a; sin aÞ ¼ ðyi � xiÞ=D. The unit
vector ti is obtained by a clockwise 90� rotation of ei, that is, ti ¼ ðe2 � e1Þ. The
relative velocity of the point PðxÞ with respect to PðyÞ can be expressed as _XXi

_XXi ¼ ð _xxi � _yyiÞ � ð _yyðxÞRðxÞ þ _yyðyÞRðyÞÞti

Calculate (a) the relative normal ( _nn) and tangential ( _yy) relative velocities and, by

integrating the normal and tangential displacements, (b) the increment of the normal

�Fn and tangential forces�Fs using the linear laws�Fn ¼ kn�n and�Fs ¼ ks�s.

(c) Once the normal and shear (tangential) forces are specified for each contact

point, the sums
P ðFnÞðxÞi are resolved to the components

P ðFnÞðx1Þ andP ðFnÞðx2Þ, and the resulting moment on disk x is
P

Mx ¼
P

FsRðxÞ; the relations

sum the effects of all contacts. From the preceding resultant force and moment on
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Fig. P4.9 The soft-sphere DEM method for a two-dimenstional assembly, demonstrated by the

interaction of two disks, x and y. Positive Fn and Fs are as shown.
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disk x and Newton’s second law on disk x

mðxÞ€XXi ¼
X

ðFnÞðxÞi
IðlÞ€yyðlÞ ¼

X
MðxÞ

Calculate the new velocity and updated position and rotation on each disk.

4.10. The Effect of High Single Screw Rotational Speeds in Limiting Operational Mass
Throughput Rates Potente and Pohl5 point out that as the single screw rotational

speed is increased the actual equipment becomes increasingly smaller than that of the

drag throughput rate of the metering section. This is shown on Fig. P4.10. (a) Give the

physical reasons for this experimental finding. (b) Given the equipment geometric

variables at which rpm value will the throughput rate begin to get affected? D ¼ 50

mm, � ¼ 17:4�, W ¼ Lead� cos �b � e ¼ D cos �b � 0:1 W ¼ 4:4 cm and H ¼
0.5 cm; the polymer is LDPE pellets with �b ¼ 0:45 g/cc. (c) Is this limitation of

practical significance?
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Fig. P4.10 The LDPE throughput rate of a 5 cm square-pitched single screw extruder screw with

e ¼ 0.1 W and H ¼ 0.5 cm.

5. H. Potente and T. C. Pohl, Int. Polym. Process., 17, 11 (2002).
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