
I11 RHEOLOGY 

111.1 Introductory Definitions 

In the course of fiber formation from fluids such as polymer melts or polymer 
solutions, it is necessary to push the fluids through openings, holes, or capillaries 
under pressure, as well as to extend, to draw the fluids under tensional forces. 
Therefore, we must pay attention to the behavior of polymeric fluids under such 
conditions. It is necessary to know how the polymeric fluids behave when sub- 
jected to various strains and stresses.’>2 Rheology is a very large field, so in this 
little introduction the subject is abbreviated “to bare bones” only. The descrip- 
tion is limited to the theory of viscoelasticity, particularly as presented by N. W. 
Tschoegl’ and A. ,J.  Staverman and F. S ~ h w a r t z l . ~ ~  Other important aspects are 
treated in a sketchy way, with the exception of the slightly more detailed descrip- 
tion of capillary flow. 

If we have a cylindrical rod, and if we stretch the rod by pulling by its two ends, 
we supply the force, F ,  in the direction of the material axis. The applied force 
causes a deformation, elongation or extension, AL,  of the initial length, Lo. If the 
extension is not excessive the deformation will be proportional to the applied force 
by some proportionality constant: F = k A L ,  where AL = L - Lo. If we relate 
the force to the cross sectional area of the specimen and the increase of length to 
the initial length, we obtain stress, 0, and strain, E .  

(111.1) 

Equation 111.1 represents the formulation of the Hookels law, where E repre- 
sents the proportionality constant , known as the modulus of elasticity. 

Another deformation type of concern is shearing, or laminar shear flow. Let 
us assume that we have two surfaces, A,  and, B separated by the distance, Y .  
The space between the two surfaces is filled with a fluid, as in Figure 111.1. If 
the bottom surface, B,  is moving in relation to the surface A in the direction 
2,  then the fluid contained between the surfaces will be subjected to a shearing 
force. The fluid velocity at  any distance between the plates will be v ( Y ) ,  while the 
fluid velocity at  each of the surfaces will remain zero. The force needed to move 
the surfaces, in analogy to Hooke’s law, depends on the surface area and on the 
gradient of velocity d v / d Y .  The proportionality constant, 77, is called viscosity. 

(111.2) 

Here we designate shearing stress, T = F / a ,  and rote of shearing, $ = d v / d Y  
Both equations, 111.1 and 111.2, are constitutive equations, equations that de- 

pend only on the nature of the material and are independent of the geometry of the 
body. The form of these equations was introduced by Isaac Newton, and materials 
which obey equation 111.2 are often referred to as Newtonian fluids. 
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(111.6) 

Figure 111.1: Shear flow of a fluid between surfaces. 

In the case of a cylindrical surface, like the interior of a capillary, shear stress 
at  the wall surface, q,,, may be calculated as 

Tw = Pr/(21) (111.3) 

where P stands for the pressure drop in the capillary of length 1 and of radius r .  In 
reality, certain velocity gradients develop a t  the entry to the capillary, and these 
gradients cause some pressure losses. These losses, named after their discoverer, 
Couette, depend on the radius of the capillary, so equation 111.3 is often given in 
the form which corrects for those losses: 

T~ = Pr/[2(1+ n ~ ) ]  (111.4) 

The value of n must be determined experimentally. 
The rate of shear for the flow in a capillary may be calculated as 

. 4Q y=- 
7rr3 

(111.5) 

where Q is the volume of polymer flowing through the capillary in a unit of time, 
usually in a second. 

Equation 111.1 relates to materials which are purely elastic, and equation 111.2 
describes behavior of materials which are purely viscous. Real materials that are 
purely elastic or purely viscous are extremely rare; combinations of both behaviors 
are most common. We shall look into some of the reasons for this. 

Usually, when a material is under the action of forces, the forces do not act 
only in one direction. Hence, it is important to examine the forces active in a body 
under stress. If we imagine a body in space, the forces and moments acting on this 
body may be characterized by resultant force elements, moment element, and a 
unitary vector normal to the surface being acted upon. In a Cartesian coordinate 
system, the state of stress in a body may be characterized by nine components 
resulting from three coordinates, one on each plane, and three vectors for each 
plane (Figure 111.2). The state of stress may be represented by a second order 
stress tensor.  

(111.6) 

The components which are perpendicular to the coordinate planes are called n o r -  
mal stresses , and are on the diagonal of the tensor ( o l l , u 2 2 , ~ 3 ) .  The compo- 
nents with “mixed” indices are called shear stresses. Analogously, one may derive 
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(111.7) 

(111.8) 

Here too, the components on the diagonal are called normal strains and the com- 
ponents with ”mixed” indices are called shearing strains. 

According to the definition of deformation in simple shear ~ 1 2  = d u l / d u 2  the 
corresponding strain component in simple shear is 712 = &~1/2du2. Thus ~ 1 2  may 
be named the amount of shear and y will be the shear strain. In analogy to this 
the shear rate is twice the corresponding tensor component. 

Equation 111.2 may be given in terms of the tensor components: 

T = Gy (111.9) 

where G is the shear modulus, T = u12 and y = 2x12. 

equation 111.7 we have: 
If a material is subjected to isotropic forces (pressure), then in agreement with 

P = -K(y11 + 722 + 733) (111.10) 

where K is the bulk modulus 

as 
Lateral contraction of a body subjected to uniaxial extension may be expressed 

(111.11) -Y22/711 = P 

Here p represents Poisson’s ratio. 

number of different ways: 
Different moduli and Poisson’s ratio may be expressed by each other in a 

E = -  ’KG = 3K(1-  2) = 2G(l+) 
3 K + G  

(111.12) 
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- - E - - 3KE G=- 
9K - E 2(1+ /I) 

GE - 2G(1+ p )  K =  - 
9G - 3E 3(1- 2p) 

E E 3K-2G 
p = - - 1 = 0.5 - - = 

2G 6K 6K + 2G 

(111.13) 

(111.14) 

(111.15) 

Behavior of an elastic material may be expressed also through the elastic com- 

y = J T  (111.16) 
pliance: 

where J is the shear compliance, and J = 1/G. In further analogy we have 

E = Du (111.17) 

Here D is the tensile compliance or stretch, D = 1/E. Bulk modulus, K has 
corresponding bulk compliance, B = 1/K. Likewise one may quote the mutual 
interrelationships: 

3 D - B  2 B ( ~ + / I )  J = 2 D ( l + p ) = - -  - 
3 3 (1 - 2p) 

B J  = - + -  
2(1+/1)  3 (1-2p)  9 3 

B - - %J 
D =  

3 J (1 - 2 / L )  
B = 9 D - 3  J =  = 3 D(1 - 2 /I) 

2 (1 + P )  

.I B 3 J 2 B  
2 0  6 D  6 J + 2 B  

/ I ,  = ~ - 1 = 0.5 - __ = 

(111.18) 

(111.19) 

(111.20) 

(111.21) 

For purely linear viscous flow, in conjunction with equation 111.2 we have: 

~ = u 1 2  and .;/= X/2 (111.22) 

The viscous analog of tensile or elongational or Trauton’s viscosity for extension 

(111.23) 01 1 
acting in the 1 - direction: 

( = -  
A l l  

For an incompressible, isotropic fluid, normal stress di.fference in the directions 
For zero extension rate, extensional viscosity reduces to C = 37. 

transverse to the flow direction may be defined as: 

c11 - 0 2 2  = 27 (rll - +22) 

The stresses, strains, and rates of strain are identical in both transverse directions. 
Further, 

(111.24) ( 0 1 1  - 0 2 2 )  

A1 1 
c =  
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Equation 111.24 is valid for extensional viscosity of an incompressible fluid, while 
for a solid there is a difference caused by the fact that ~ 7 2 2  = 0. 

Under influence of stress or strain, some rearrangements on the molecular scale 
take place inside the material. These changes do require some finite time to OC- 

cur. The time may be very short, almost infinitely short, or it may be long. If 
the rearrangements take infinitely much, or closely so, time we have purely elastic 
material; the energy invested in the material is stored. If the time for the molec- 
ular relocation is infinitely short we have purely viscous material; all the energy 
input is spent on overcoming the internal friction. Practically all real materials are 
viscoelastic as there are neither infinitely long nor infinitely short rearrangement 
times to be encountered. The relation between the time needed for the rearrange- 
ments and the time scale of the experiment may be described by the Deborah 
number: 

N D  = ~ m a t / & z p  (111.25) 

Linear viscoelastic material is not characterized by a simple summation of the 
Instead, the simplest constitutive equation for a viscous and elastic behavior. 

viscoelastic body has the form of a linear differential equation of the form: 

~7 + n da ld t  = by + c d y l d t  (111.26) 

111.2 Excitations and Responses 

A more adequate representation of real materials requires differential equations 
containing higher derivatives of stress and strain. Behavior of some materials may 
be impossible to describe by linear equations, and the coefficients may not be 
constant. However, every material may be treated as linear if one considers it 
in terms of infinitesimal deformations. In practice, many materials show linear 
behavior over a fairly large interval of deformations; the strain, however, must 
remain below a certain limit, the value of which is a material property. If the 
response to a stimulus is to be linear, two conditions must be satisfied: 1" ~ the 
increase in a stimulus must increase the response by the same factor, and 2O - 

a sequence of stimuli must result in a response which is the sum of responses to 
the individual stimuli in the sequence. The general relation between the time 
dependent st,ress and strain is 

(111.27) 

11, and qm, are constant coefficients. Equation 111.27 may be put in the form of an 
linear differential operator equation, which is being used in the form of its Laplace 
transform 

f ( s )  = 1 f( t )e?  dt 

00 

(111.28) 

O 
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where s is the transform variable. 
If the strain at  t = 0 is taken as the reference strain, then the one sided Laplace 

transformation may be used. In this way, the differential equation with constant 
coefficients in the t i m e  d o m a i n  becomes an algebraic equation in the complex 
domain .  Transformation of the operator equation gives 

n(s)  a(s) = Q(s) q s )  (III.29) 

where a(s) and E(s) are transforms of stress and strain, respectively. Also, 

n(s )  = Cu,,sn and q(s)  = ~ q , s m  (III.30) 
n m 

represent polynomials of the variable of transforms. From equations 111.29 and 
III.30 one obtains 

a(s) = Q(s)E(s)  and E(s) = U ( s ) i f ( s )  (III.31) 

where 

(III.32) 

Applying the nomenclature proposed by Tschoegl,68 o(s) and U ( s )  are called 
operationsol! r e l a x m c e  and retardance, respectively, in shear. The corresponding 
relations between stress and rate of strain are the operational im'pedance and ad- 
mi t tance ,  respectively. 

The operator equation (III.27) and its transform (equation III.28) represent one 
of the possible forms of the general constitutive equation for viscoelastic bodies. It 
describes the superposition of response to any chain of excitations. The additivity 
is essential to the linear behavior. In the time domain, these characteristics may 
be expressed in the form of Boltzm,ann superposit ion integrals: 

o( t )  = / Q ( t  - u) E ( U )  d 7 ~  

0 

(111.33) 

~ ( t )  = U ( t  - 71) O ( U )  dlL (111.33 a )  i 
0 

Due to commutativity of the convolution operation, equations III.33 may be also 
written as 

o(t)  = p Q ( u )  &(t - 7 ~ )  dqi (III.34) 

0 

&(t)  = jp"(.) o(t - ? A )  dll 

0 

(111.34 a )  
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In equations 111.33 u denotes the historic time and in 111.34 it denotes the elapsed 
time. It is, however, immaterial whether stress is taken as excitation and strain as 
response, or vice versa. Equations 111.31 represent Hooke’s law for shear flow in 
the complex plane. In equation 111.31, S(s) is the excitation transform and C(s) is 
the response transform; in equation II1.3la, the roles are reversed. ”The response 
and excitation transforms are connected through the respondances, Q(s )  and U ( s ) ,  
which may also be called material transforms because they embody the properties 
of the material.”’ Viscoelastic behavior is time dependent: it is governed by the 
role of time in the excitation function. Therefore, it is important to examine the 
material behavior under influence of different types of excitation functions. Figure 
111.3 presents four of the more important excitation functions: 

1. impulse applied a t  the time zero with a very short time of duration; 

2. step excitation; where the impulse remains constant from the time zero on; 

3. slope excitation, with the impulse increasing at  a constant rate; 

4. harmonic excitation. The harmonic excitation is of particularly great impor- 
tance for experimental purposes. 

HARMONIC EXCITATION 
- 1  

Excitation 

In In w 

In 
a 

Figure 111.3: Difierent types of excitation fiinctions. 

Strain impulse excitation may be presented as 

&(t)  = 60 d ( t )  (111.35) 

where d ( t )  is the impulse or delta function: 

00 

(111.36) 

where E may take any positive values. The function is bell shaped, with an in- 
creasing value of E it becomes broader, but the integral of the function always 
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equals unity. If E approaches zero, the bell shaped curve vanishes, and the height 
increases indefinitely: 

1 E 
6 ( t )  = - lim 

7i- E+O ( € 2  + t 2 )  
(111.37) 

As described by equation 111.37, the function 6 ( t )  = 00 for t = 0, and 6 ( t )  = 0 
for t # 0. 

Laplace transformation gives 

E ( S )  = 20 (111.38) 

After substitution into equation 111.31, one obtains operational relaxance, and 
similarly operational retardance, respectively: 

(111.39) 

where E0 and @0 are impulse strength, strain and stress, respectively. Retransfor- 
mation of the equations gives 

(111.40) 

The relaxance represents the response of the material to a unit impulse of 
strain, and retardance represents the response to a unit impulse of stress. The 
strain and stress, as functions of time, become respectively: 

t t 

a ( t )  = / Q ( t  - u) ~ ( u )  d u  = Q ( u )  ~ ( t  - u)du (111.41) s 
0 0 

t t 

(111.42) J ~ ( t )  = / U ( t  - u)  n(u) du = U ( u )  a ( t  - u) d~ 
0 0 

Step excitation is very widely used for experimental purposes. A mathematical 
description of it may be obtained from the integral of the delta function as E tends 
to zero. The equation is 

1 
h(t)  = 0.5 + - Iim arctan(t/E) = 

IT € 4 0  

sin(wt) 
exp(-~w) ~ 

7r € 4 0  W 
0 

dw 

(111.43) 
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The delta function may be considered a derivative of the step function: d ( t )  = 
d h ( t ) / d t .  The step function is h(t)  = 0 for t < 0 and h( t )  = 1 for t > 0. 
The excitation function may be taken as 

€ ( t )  = &(I h(t)  (111.44) 

The Laplace transform of 111.44, E ( s )  = E O / S  together with the Hooke's law, gives 

(111.45) 

Q ( s ) / s  is the transform of the modulus connecting time dependent stress with 
a unit step of strain. Consequently, after combining with equation 111.45 and 
retransformation. one obtains: 

(111.46) 

where G ( t )  is the shear relaxation modulus. 
Analogously, we may write the relationships for the shear strain response to a 

unit step stress, 00 .  

4 t )  J ( t )  = - 
0 0  

where J ( t )  is creep compliance in shear. 
modulus and instantaneous compliance, 

Inversion of the Laplace transform 

= ]u('ll) d7L (111.47) 

G(0) and J ( 0 )  represent the instantan,eous 
respectively. 
of equation 111.46 leads to four different 

0 

forms of the relationship, in which G(0) has been substituted with G, - glassy 
modulus, respectively glassy  com,pliance . 

(111.48) 

.(t) = G(t - U) ~ E ( ? L )  i 0 

(111.48 0,) 

(111.48 b )  

(111.48 c)  
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t 

s dJ(:: lL) 
&(t)  = Jq c(t)  - 

0 

u(u) du (111.49) 

t 

~ ( t )  = G, a( t )  - 1 (T(t - 11) d'll 

0 

(111.49 a )  

(111.49 b)  

0 

(111.49 c) 

The slope excitation (see Figure 111.3) means application of excitation which is 
growing at  a constant rate, hence the other name constant rate of stress (or strain) 
excitation. In this type of excitation the limit of linear behavior of the material 
may be easily exceeded; the given solutions would, naturally, loose their validity. 

If one denotes constant rate of strain as 60 and constant rate of stress as 60, 
then for a constant rate of strain is 

&(t)  = E0 p ( t )  = E" t (111.50) 

where p ( t )  is the slope function, which is derived from the step function (equation 
111.43): 

p ( t )  = t h ( t )  (111.51) 

For t < 0 p ( t )  = 0 and for t > 0 p ( t )  = t .  
Laplace transformation of equation 111.50 gives 

E ( s )  = & / s 2  (111.52) 

and substitution into equation 111.31 results in 

(111.53) 

( T ( S ) / &  = q ( s )  represents the transform of time dependent shear viscosity. In 
effect. one obtains 

The further relationships are: 

t t u  

v ( t )  = - d t )  = 1 G(u)  d u  = / 1 &(u) d u  dv 
E0 

0 0 0  

(111.54) 

(111.55) 
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Q ( S )  = sG(s) = s2 q(s) (111.56) 

And from retransformation: 

(111.58) 

Equations for the response to constant rate of stress are analogous to those 
given for t,he response to the constant rate of strain. 

Steady state harmonic or sinusoidal excitation (Figure 111.4) is often used in 
testing. The sequence of reasoning is similar as for previous cases.' Harmonic 
strain excitation may be expressed mathematically as 

~ ( t )  = €0 [sin(wt) + i cos(wt)] = EO exp(iwt) (111.59) 

In this case, EO means strain amplitude and w is frequency in radians. This is the 
general equation for sinusoidal curves, and in this case describes the generalized 
harmonic strain (or stress). 

Figure 111.4: Vector resolution of complex modulus and complex compliance; modulus 
or storage compliance. 

Again, the process of deriving the equations is similar. The Laplace transform 
of the response to E ( t )  is 

(111.60) EO 

s - i w  
E ( s )  = - 

After substitution to equation 111.31 one obtains 

(111.61) 

After retransformation to the real time axis, the total response obtained con- 
sists of two parts: 1' - a steady state response in the form of a periodic function 
resulting from the poles of excitation, and 2 O  - a nonperiodic transient response 
arising from the poles of the material transforms, Q ( s )  and U ( s ) .  For steady state, 
it is then 

(111.62) 5,.9(s) - Q ( i 4  
Erl s - i w  
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gss = Q ( i w ) ~ o  eiWt (111.63) 

In this case, the response varies with frequency w ,  which for steady state is 
of primary interest, rather than time. Consequently, one may denote E ( W )  = 
EO exp(iwt) and change the equations accordingly. 

The quantity &(iw)  has the dimensions of modulus, and in polymer rheology 
is usually denoted G*(w) and called complex shear modulus,  but it may also be 
called harmon ic  relazance. 

In analogy to the above, one may derive the harmon ic  retardance or complex 
shear compliance,  J* (w) .  

E Q s ( t )  = U(iw)goeiwt (111.64) 

J*(w) = U ( S ) I , = i w  (111.65) 

The complex nature of the modulus in compliance permits each of them to be 
decomposed into either Cartesian or polar coordinates: 

G * ( w )  = G’(w) + iG”(w) = G ( w )  eis(W) (111.66) 

J * ( w )  = J ( w )  - i J” (w)  = J ( w )  e-is(W) (111.67) 

G’(w) and J’ (w)  are proportional to the energy stored during a cycle of deforma- 
tion in a unit of volume of a material and are called storage modulus and storage 
compliance,  respectively. G”(w) and J”(w)  are proportional to the energy dis- 
sipated per unit of volume of the material and are called loss modulus or loss 
compliance; O(w) is loss angle. As may be seen from Figure 111.4 the following 
relationships are self understood: 

G ( w )  = {[G’I2 + [G”(u)I2}+ 

J ( w )  = { [ J ] 2  + [J”(w)]”+ 

(111.68) 

(111.68 u )  

G” (w ) J” (w ) 
G’(w)  J(w) 

tanB(w) = - - - 

G’(w) = G ( w )  cosO(w) 

G”(w) = G ( w )  sinB(w) 

(111.69) 

(111.70) 

(111.70 a )  

J’(w) = J ( w )  cosO(w) (111.71) 

~ ” ( w )  = J ( w )  sinO(w) (111.71 u )  

G(u) = - (To(w) and J ( w )  = - EO ( w )  (111.72) 

Absolute modulus and compliance represent the ratio of the response amplitude 
to the excitation amplitude. The loss angle represents the phase difference of the 
response and excitation, the stress always reaches its peak before strain does. 

- 

€0 g o  

The further relationships of interest are: 

i ( t )  = d & ( t ) / d t  = -EO w[sin(wt) - i cos(wt)] (111.73) 
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E(W) = E O ( W )  exp{i[wt - O(w)]} (111.74) 

E O ( W )  cose(w) = go (111.75) 

E ~ ( w )  sinO(w) = 00 J ” ( w )  (111.75 a )  

i ( w )  = de(w) /d t  = i w E ( W )  (111.76) 

O ( W )  - G*(w ? ) * w = -  - - 
ZWE(W) iw 

G*(t)  = .(W) = [ Q ( S ) ] ~ = ~ ~  
4-J) 

(111.77) 

(111.78) 

(111.79) 

(111.80) 

(111.81) 

(111.82) 

(111.83) 

111.3 Mechanical Models 

It has been found convenient to represent mat,erial properties by mechanical 
models. The common symbols used for this purpose are presented in Figure 111.5. 
The sprin,g represents idealized storage of elasticity, without any losses to fric- 
tion; E represents operational elastance, which is the proportionality coefficient 
for the relation between force, f ,  and displacement, z, or velocity, Y. The dashpot 
represents idealized energy dissipation as heat, with no energy storage involved. 
Frictance, F ,  is the proportionality constant for the relation between force and con- 
stant velocity at  which the two ends of the dashpot are moving. Kinetic energy 
may be represented by mass, which responds to applied force with pure inertia, 
with no energy storage or dissipation. The coefficient of proportionality between 
force and the resulting acceleration is called inertmce. These relationships may 
be put in a mathematical form as follows: 
Potential energy storage: 

f ( s )  = E %(s) (111.84) 

Dissipation, of en,ergy: 
f ( s )  = F s %(s) (111.84 a )  
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Figure 111.5: Symbols used in mechanical rheological models: E - for elastance of the 
spring, F - for frictance o f  the dashpot, I - for inertance o f  the mass, f - applied force, 
x - displacement, v - velocity. 

Storage of kinetic enxrgy: 

If the system is nt rest, then: 

J ( s )  = 1 s2 z(s) (111.84 b)  

z(0) = k ( 0 )  = ? ( O )  = 0 (111.84 c )  

where the dots denote differentiation U ~ T S U S  time. 
The relaxances are additive, so 

f ( ~ )  = ( I s 2  + F S  + E )  .?;.(s) = Q ~ ( s )  S 

After retransformation of equation 111.85 one obtains 

(111.85) 

(111.86) 

The rules to be observed in the model analysis are: 

relazances add in parallel 

retardances add in, series. 

These rules result from the fact that forces add in parallel and displacements add in 
series. In a parallel combination of the passive elements, all elements are displaced 
equally, then the forces in the elements are additive. In a series cornbination, the 
same force acts through all the elements, therefore the displacements are additive. 

In cases of rotational motion, the transform of force is replaced by the trans- 
form of torque, U(s); the transform of the linear displacement is replaced by the 
transform of angular displacement, 8( s) . Consequently, the respondances change 
correspondingly: inertance to the moment of inertia, frictance to the moment of 
mechanical resistance, elastance to the moment of stiffness. The reciprocal of elas- 
tance is mechanical compliance, the reciprocal of frictance is called, / I , ,  glidance. 
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In modeling rheological behavior the rheological respondances are translated 
to mechanical respondances by use of a shape factor, b. In this way, force and 
displacement (or torque and angular displacement) are converted to stress and 
strain. 

U f M 
& 5 e - = b t - = b T -  (111.87) 

Here bt has the dimension of reciprocal length and b, has the dimension of re- 
ciprocal volume. Thus, instead of force, displacement (or velocity), elastance and 
frictance we use stress, strain (or rate of strain), modulus, viscosity, respectively. 
Inertivity is usually omitted since it has negligible effect, except for cases involv- 
ing high frequencies or impact, and then it is represented by the density of the 
material. 

w- Fur* - 
Figure 111.6: Models of purely elastic and purely viscous behavior. 

Figure 111.6 exemplifies how purely elastic and purely viscous materials may 
be modeled using simple elements. One may write 

S(s) = G E ( s )  (111.88) 

for the model of purely elastic, and 

6 ( s )  = q s & ( S )  = qi- (s) (111.89) 

for the model of purely viscous behavior. The models and equations 111.88 and 
111.89 represent the equations 111.1 and 111.2. If one considers equation 111.31, 
then it becomes evident that the relaxance, Q ( s ) ,  is G - the shear modulus. From 
equation 111.89 and 111.31 one may see that Q ( s )  is qs. Both G and q are the 
model parameters. Per analogy, J and #/s are operational retardances. For better 
visualization, all the quantities are gathered in table 111.1. 

Viscoelastic behavior may be represented in the simplest way by the Voigt 
or by the Maxwell model (Figure 111.7). In the parallel Voigt model, all of the 
elements have the same strain and the stresses are additive. 

Q ( s )  = G + q  s (111.90) 
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Figure 111.7: 
Maxwell unit. 

and further 

The simplest models of viscoelastic behavior: the Voigt unit and the 

C(s) = (G + US) E(s) (111.91) 

which is a Laplace transform of the equation 

(111.92) 

Equation 111.92 is a simple combination of equations for purely elastic and purely 
viscous response. The retardance of the Voigt model is 

dE 
dt 

u = G E + ~ -  

(111.93) 

where 7 is retardation time, r = ,J/4, and 4 = 1/77. 

as 
The Maxwell arrangement of dash-pot and spring in a series may be described 

U ( s )  = cJ + - 4 (111.94) 
S 

where .I = 1/G and 4 = 117. Furthermore 

E ( s )  = (.I + !) C(s) (111.95) 
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The differential equation which corresponds to 111.95 is 

d& 1 1 d u  
- u + - -  

d t  q G d t  
- - - 

The relaxance of the Maxwell model is 

(111.96) 

(111.97) 

where OM is relaxation time, OM = q/G. With the help of relaxation and retarda- 
tion times, one may write the equation for operational retardance of the Maxwell 
model 

V, ( s )  = J +  (;) = J (1 + &) (111.98) 

and for the operational relaxance of the Voigt model 

Real viscoelastic materials behave neither like the Maxwell nor like the Voigt 
model: they behave rather like some kind of combination of both models. A real 
viscoelastic material shows relaxation of stress, as well as a retardation of strain, 
depending on the kind of excitation. The delay in behavior reflects the time needed 
for the material to adjust to the changes forced upon it - it is easy to imagine this 
fact on the molecular level. 

The meaning of the relaxation time becomes quite clear if one substitutes 
equation 111.97 into equation 111.45 and inverts the transform, which leads to 

(111.100) 

Equation 111.100 describes stress in a Maxwell unit when subjected to a constant 
strain of E O .  Since GEO = go, the initial magnitude of stress, one therefore obtains 

u( t )  = 00 exp (2) (111.101) 

The initial stress relaxes exponentially with time. For a perfectly elastic material, 
the initial stress ought to remain constant for an indefinite time. For a perfectly 
viscous material the relaxation time ought to be zero. 

From equation 111.101 results that 

t(Obf) = 00/t3 = 0.369 00. (111.102) 

In a similar way, one may substitute equation 111.93 into E ( s )  = u(s)uo/.s and 
retransform it to obtain 

(111.103) 
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Three parameter Voigt unit Three parameter Maxwell unit 

Figure 111.8: Threeparameter Voigt and Maxwell models. 

Equation 111.103 describes strain as a function of the time that has elapsed 
since the stress uo was applied. Jom = E ~ ,  the final strain at  t = 00. For 
t = 01, ~ ( 0 , )  = 0.631 E ~ .  

In order to  bett,er describe the actual properties of a viscoelastic material, many 
units of both Maxwell and Voigt variety may be joined in different combinations. 
In fact, any of the constitutive equations derived in the past in different ways 
may be described by such combinations. In this highly abridged description of the 
rheological problems are quoted only simple examples: three parameter models of 
Voigt and of Maxwell. 

Combinations of the different units make sense only when units of different 
kind are joined in the system. Figure 111.8 shows such "expansions" of the unitary 
models previously considered. The Voigt model has been obtained by addition of 
a spring in series with a basic Voigt unit. The retardance of the model may be 
obtained using equation 111.93 and the combination principle: 

U , ( S )  .Jg + - J (111.104) 
1 + 0s 

J / $  = 0 is the retardation time of the model. For the step input one may obtain 

E ( S )  = 0 0  + [$ x s (1 J l  +Os) 
(111.105) 

and after retransformation 

~ ( t )  = 00 { J,  + J [l - exp (;)I} = EO + E [I - exp (;)I (111.106) 

If a constant stress is applied, according to this model, there is an instantaneous 
strain, EO = cJgo~ ,  after which follows a delayed strain to reach an equilibrium 
value, E~ = EO + E = Jeo0 at t = 03. This kind of behavior is called creep, and 
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J ( t )  = E ( t ) / u o  is called creep compliance.  Jg is the instantaneous compliance (at 
t = O),  and J e  is the equilibrium compliance (at t = co), J,  = J9 + J .  J is delayed 
(retarded) compliance. 

Considering the three-element Voigt model under step strain, one may take 
advantage of the relation Q ( s ) U ( s )  = 1 and the defining relationship of equilibrium 
compliance to obtain 

and for a constant strain the stress transform is 

1 + o s  

s ( J e  + Jges) 
a(s) = E o  

After inversion of the transform one obtains 

where 

1 

Je JeJg 
u( t )  = Eo [- + --I Je - Jq  = ue + aexp  

I J q  o 
Je 

7 = -  

The initial stress in response to a step strain is 

(111.107) 

(111.108) 

(111.109) 

(111.110) 

(111.111) 

If t = 00, according to this model, the material relaxes to an equilibrium value of 

If one considers the Maxwell model with an added parallel spring (Figure II1.8), 
ue = E ~ / J , .  

(111.112) 

Relaxances add in parallel, so for a step strain of magnitude EO the Laplace 
transform is 

G G o  
C(S) = Eo (-5 s + --) 1 + o s  

After inversion of the transform, one obtains 

o(t)  = EO [G + Gexp (;)I = ue + u exp (;) 

(111.113) 

(111.114) 

At t = 0, the stress is (TO = ue + B = Gg&O, and the instantaneous modulus is 

G, = G, + G (111.115) 

In the last equation G, is equilibrium modulus and G is relaxing m,odulus. If t = co 
then 0, = Ge&0. The behavior is identical with the three-element Voigt model. 
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The three-parameter Maxwell model responds to a step stress as the Voigt 
model does, and the mathematical formalism is completely analogous. The three 
element models describe properties of solids (arrheodictic, cross linked polymers 
with equilibrium strain), while properties of liquids (rheodictic, where strain in- 
creases linearly with time, and there is no equilibrium value) are described better 
by four- parameter models. 

Respondances are rational algebraic functions (polynomials) of complex trans- 
form variables. These functions have poles 

(111.116) 

which are the roots of the polynomials in the denominators, &(s) and U M ( S ) .  
The roots of the numerators are equal zero. In this way the zeros of retardances 
are the poles of the relaxances and vice versa. This results from the fact that 
V ( s ) Q ( s )  = 1. The Voigt and Maxwell units have no zeros, therefore they are not 
real models. 

For the rheodictic materials, and those include practically all fiber forming 
polymers, retardance must have a pole in the origin of the axes, while relaxances 
have a zero at the same point. For arrheodictic materials the situation is re- 
versed. When the pole and zero locations are known, the respondances are fully 
determined. 

Real polymers only in rare cases may be approximately described by three 
or four-element models. Generalized models (Figures 111.9 and 111.10) have been 
developed to fit the real polymers. Nevertheless, detailed description of the real 
polymers are better. However, a detailed description of the mathematical deriva- 
tions would greatly exceed the boundaries of this book; hence, the reader is referred 
to the specialistic, original source.' Only some of the final equations will be quoted 
here. 

Summation of a number of Maxwell units results in the generalized Maxwell - 
Wiechert model. the relaxance of which is 

N-1 G,  6 ,  -5 

n=O 

The corresponding relaxation modulus is: 

N - l  

G(t )  = G, exp 
n=O 

(111.117) 

(111.118) 

The relaxance may be interpreted as a superposition of exponentials represent- 
ing some unitary processes. This model represents rheodictic materials; to obtain 
a description of arrheodictic materials, it is necessary to replace the spring and 
dashpot unit in the zero position of the Maxwell model with a spring of G,. This 
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Figure 111.9: Generalized Maxwell - Wiechert model for the description of rheodictic 
material behavior. 

JN J2 J 1  

Figure 111.10: Generalized Voigt-Kelvin model for the description of rheodictic material 
behavior. 

new model would have the relaxance 

N - 1  
Gn e n  s Q(s)  = G, + C - 

n= 1 l + O n s  
(111.119) 

It is important to  stress that for the rheodictic materials, the summation in 
equations 111.117 and 111.118, as well as in others to follow, is carried out from 
zero to N - 1 (consult also Figure 111.9). In the case of arrheodictic descriptions, 
the summation needs to be carried from 1 to N - 1, as the spring of G, occupies 
the zero position. 

The complex modulus of a rheodictic material is 

N-I 
Gn i w On 

G * ( w )  = C 
n=O i + i w e n  

The storage modulus equation is 

(111.120) 

N-1 
Gn w2 0; 

G’(LJ) = C 
n=O 

1 + ~ 2  e:’ (111.121) 
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For the loss modulus the equation is 

N-1 
Gn w en G"(w) = C 
i + w e n  

n=O 

(111.122) 

It is necessary to stress that for the cases involving arrheodictic materials, the 
summations in equations 111.120 through 111.122 must be carried from n = 1 to 
N - 1. On integration of eqiiation 111.120 one obtains: 

(111.123) 

The values in braces, for example {Ge} ,  concern arrheodictic behavior and for 
rheodictic behavior are to be omitted. Further, 

(111.123 u) 
n n 

is the sum of the viscosities of all dashpots, and is usually written simply as q. 
For rheodictic cases the sum represents the steady flow viscosity, q f .  

The generalized Wiechert model is often named the Kelvin model or Wiechert 
- Kelvin model, and for rheodictic behavior it is presented in Figure 111.10. For 
arrheodictic behavior the dashpot, $ f / s ,  is omitted. To avoid presentation of the 
equations separately for rheodictic and for arrheodictic materials, braces will be 
used for those terms which are to be omitted in the case of rheodictic behavior, 
e.g. {4f/s}. This is opposite to the case of the generalized Maxwell model, where 
arrheodictic terms are put in braces. The retardance of such models may be 
presented in two different forms 111.124 and 111.124a: 

N-1 

U ( S )  = Jg+ * + { $} n=l 

N-1  
Jn en s U.(s) = J,("} - C + { $} n=l 

(111.124) 

(111.124 u )  

It is necessary to note that the two forms of retardances are equivalent, U ( s )  = 

The creep compliance of the generalized Voigt model is 
U.(s), the notation is to indicate the origin of the different forms. 

or 

J ( t )  = J9 + C Jn [I - exp (")I + {$f t }  
n On 

(111.125) 

(111.125 a)  
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The complex compliance is 

or 

or 

N-1 

? ( w )  = Jg + C 
n= 1 

The real and imaginary compliances are, respectively 

N-l 

(111.126) 

(111.126 a )  

(111.127) 

(111.127 a )  

(111.128) 

The loss modulus has only one form, equation 111.128. 
The properties described by the equations 111.117 through 111.128 imply that a 

material has more than one relaxation or retardation time. The set of relaxation 
or retardation times may consist of several points, it may have many points to 
form a discrete spectrum, or it may also be taken as a continuous spectrum. The 
summation present in equations 111.117 through 111.128 suggest also than each 
time, O n ,  is associated with a modulus, G,. One may then speak about a spectrum 
of moduli uersus time, and, consequently, one may take modulus as strength of a 
spectrum. In a similar way, compliance may be taken as the strength of retardation 
spectrum. The pairs of G ,  and n may be grouped and the groups treated as single 
relaxation time. 

Experimental data may be fit into the model equations; there are several meth- 
ods of doing so described in the literature on rheology.'i2 

The fundamental equations of viscoelastic behavior (equations 111.30 and 111.31) 
may be described in a more generalized way: response transform equals material 
transform multiplied by excitation transform.' Since the excitation and response 
are clearly connected to time (or frequency), the material functions are also time 
dependent. However, for every imaginable driving function, there exists a different 
material function. To avoid the inconvenience of multiplicity of material functions 
a material response function has been introduced under the name spectral distribu- 
tion function or just relaxation spectrum. There are relaxation spectra derived from 
response to strain, retardation spectra derived from response to stress. There may 
be line (or discrete) spectra or continuous, spectra uersus time or versus frequency. 
Due to its fundamental importance, representation of the response function in the 
form of spectra is termed the canonical representation. 
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The generalized equation 111.119 describing a discrete spectrum may be changed 
to describe a continuous relationship: 

(111.129) 

where Q ( 0 )  is a continuous function of the relaxation time, 0, and its integral 
replaces the sum of the discrete points G,. The Q(6) function is also called the 
distribution of relaxation times. The function has dimensions of modulus divided 
in time; it is the density of modulus per time. The relaxation spectrum - with the 
dimensions of modulus, in a common notation, may be given as 

dye)  = q o )  = o Q(o) (111.130) 

If the new function (equation 111.130) is introduced into equation 111.129 one 
obtains: 

M 

(111.131) 

The term dln represents a conventional term which strictly formally ought to be 
written as d6/B ; should this correct term be used, then the lower integration limit 
must be zero. 

6s 
Q ( S )  = {Gel + 1 ~ ( 6 )  dln6 

-cc 

Other important relationships may be given as follows: 

-02 

-c€ 

(111.132) 

(111.133) 

(111.134) 

(111.135) 

(111.136) 

As far as corresponding equations for the retardation time spectrum from the 
creep behavior are concerned, there is a full analogy to all the above. 

(111.137) 
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We introduce j ( e ) ,  a continuous function of the retardation time, 8, and when 
its integral replaces the sum of the discrete points, the resulting J ( e )  function is 
called the distribution of retardation tames. Other remarks are analogous to those 
for the relaxation function. Common notation gives 

j ( e )  = q e )  = e O(e) (111.138) 

If the function (equation 111.138) is introduced into equation 111.137 one ob- 

-ffi 

The term d In 0 represents a conventional term which strictly formally ought 
to be written as dt9/t9; should this correct term be used, then the lower integration 
limit must be zero. 

Other important relationships may be given as follows: 

ffi 

J ( t )  = Jg + 1 L(0)  [I - exp (;)I d In 0 + {q5f t }  
-m 

-02 

M 
F 

(111.140) 

(111.141) 

(111.142) 

(111.143) 

-ffi 

In effect, experimental response functions are integrals over the continuous 
spectral distribution functions multiplied by the kernel functions specific to the 
time regime of the stimulus. Every given value of a response function depends on 
all the values of the spectral function from 8 = 0 to 0 = 00. The experimental 
response functions are called functionales. 

The relaxation and retardation spectra may also be expressed as functions of 
relaxation (retardation) frequencies, which are reciprocals of the corresponding 
times. The frequency functions form the basis for computation of the time spectra 
from the experimental response functions. Exact solutions of mathematical prob- 
lems involved in the spectra calculation are known, however, they are rarely used, 
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not only due to their complexity, but also because of their sensitivity to input data 
inaccuracies. Approximate methods are most often used instead. Many different 
computational procedures to obtain both continuous and discrete point spectra 
are known. Description of all these methods greatly exceeds the main topic of this 
book, so the reader must be referred to the specific literature on the 
though, to some extent, we shall return to this subject in chapter IV. 

For a long time it has been s ~ s p e c t e d ~ ~ i ~ ~  that relaxation functions may be 
affected by stress and/or strain to which the material is subjected. As the time 
progresses, there is more and more evidence, both theoretical and experimental, 
p ~ b l i s h e d ~ ~ ~ ~ ~ f .  that it is indeed the case. 

As it is evident from the above given canonical equations of the experimental 
response functions, a number of time independent material constants are included 
in the equations. Here, the constants, and their interrelations, are summarized. 
Equilibrium shear modulus 

G, = lim Q ( s )  = lim G ( t )  = lirn G'(w) (111.145) 
s-to t+c€ w+o 

Glassy shear modulus 

G - lim Q(s )  = lirn G(t )  = lirn G'(w) 
- .s+m t+o W + M  

(111.146) 

Steady state (rheodictic) or equilibrium shear compliance 

J,'"} = lim [U(s)  - {$f/s)] = 
s+o 

= 

= lim J'(w) 

lim [ J ( t )  - {$f t}] = t + M  

W + M  

(111.147) 

Glassy shear compliance 

J - Iim U ( s )  = lim J ( t )  = lim J ' ( w )  (111.148) 
- S + M  t +a W + W  

Steady state shear fluidity 

4f = lim s &s) = lim 4(t)  = lim $'(w) (111.149) 
s +o t+m W - i c O  

Steady state shear viscosity 

qf = Iim s ~ ( s )  = lim q ( t )  = lim ~ ' ( w )  (111.150) 
S+O t + M  W + M  

111.4 Energy Considerations 

It is important to note the energy questions connected to material deformation. 
In line with the brevity of this overview, only those relationships are quoted which 
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are most relevant to fiber formation processes. And so, for strain excitation - stress 
relaxation in step excitation cases the energy stored, Ws(t) ,  due to imposition of 
an initial strain, E O ,  is 

Ws(t)  = ($) - [ {G,} + 7 H ( 0 )  exp (-: - ') d h 0 ]  (111.151) 

-00 

The rate of energy storage, W,(t) ,  is 

m 

W s ( t )  = E; [Gg 6 (2 t )  - 1 0-' H ( 0 )  exp (T) d h 0 ]  (111.152) 

-00 

The energy dissipated, Wd(t), under the same conditions may be described as 

00 

-2 t 
Wd(t) = (f) 1 H ( 0 )  [I - exp (a)] dln 6 (111.153) 

-00 

The rate of energy dissipation, W d ( t ) ,  is 

For creep behavior, stress excitation - strain retardation with step excitation, 
for a continuous retardation spectrum (continuous distribution of retardances) the 
stored energy, Ws(t) ,  is 

W,(t)= (z) {Jg+ T L ( 0 )  [ l - e x p ( T ) ]  d ln0]  (111.155) 

-00 

The corresponding rate of energy storage, W3, is 

.. 

(111.156) 
The dissipated energy, Wd(t) ,  under the same conditions is 
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laijl = 

The rate of energy dissipation, W d ( t ) ,  in accordance with the above, is formu- 
lated as 

611 0 0 
0 0 0 
0 0 0  

The total energy is, of course, the sum of the stored and dissipated energies. 

7111 0 0 

0 0 ,733 

l71ijl = 0 7 2 2  0 

111.5 Uniaxial Extension 

(111.160) 

The majority of the rheology issues covered above concerns shear stresses. 
Uniaxial extension (or compression) is at least as important, or even more so, in 
fiber formation and other areas (e.g. testing). The matrices of the transforms of 
stress and strain tensors for this case are: 

(111.159) 

From the last equations it follows that the shear modulus is known if the stress 
in transverse direction is known. Experimentally, however, it is very difficult to 
determine the transverse stress and to overcome this, the ratio of stress to strain 
is used instead. In the transform plane, the stretch relaxance, Y, and elongatzonal 
(stretch) relaxation modulus, E ,  become 

The canonical representations of the relaxance are 

M 

--M 

M 

(111.163) 

(111.164) 

(111.165) 
-m 
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Here HE(O) is elongational (OT tensile, OT stretch) modulus, E, and Eg are corre- 
spondingly equihbrzum and glassy elongational modulus . 

It is very important to stress that H E ( 0 )  is similar to  the shear relaxation 
spectrum, but that there are fundamental differences in the relaxation behavior 
between the two. 

The transform of the canonical equation of elongational viscosity may be pre- 
sented as 

(111.166) 

This leads to the expression for extensional viscosity analogous to equation 111.136 

(111.167) 

In considering compliance, by definition the elongational retardance is L ( s )  = 
l /Y(s)  and the elongational compliance is sD(s )  = l /E ( s )  and, by analogy with 
equation 111.155, they may be presented as 

And further 

(111.168) 

(111.169) 

(111.170) 

- m  

LD(O)  is the elongational retardation spectrum, D,, and 0,'"' are the glassy and 
pseudo-equilibrium compliance, and <f is the steady state elongational viscosity. 

As mentioned above 

H d O )  # H ( 6 )  # H K ( ~ )  and L d S )  # L ( 0 )  # L K ( ~ )  (111.171) 

The constants in equations 111.169 and 111.170 may be defined as 

03 

HE(O) dln0  = E, - {E,} 
co 

~ ~ ( 0 )  dlno  = D:"} - D, 
- m  .I 

(111.172) 

(111.173) 
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If a material is subjected to uniaxial strain in any direction, the two remaining 
directions also display certain strain. The ratio of the lateral strain to the excita- 
tion strain is known as Poisson’s ratio. While for purely elastic materials Poisson’s 
ratio is a material constant, for viscoelastic materials Poisson’s ratio is a time de- 
pendant function. If the undeformed material is isotropic, then the contraction in 
the two lateral directions is identical. Poisson’s ratio is the same, irrespective of 
the type of excitation (stress or strain). A stretched material experiences stress 
relaxation in the strain direction hut the transverse strain is delayed; it reaches its 
final value after infinite time. The strain retardation makes the problem analogous 
to compliance, so we have 

N-1 

1 en (III. 174) 
N-1 

= p e -  C p n  ___ 
1 + & s  

9s = iLg + C p n  
n=l  n= l  

N - 1  

(III. 175) 

and J .  In this case 
6 is called delay time, as it is not identical with retardation time in tension. The 
glassy and equilibrium Poisson’s ratios are designated respectively as ps and pel 

By its nature, Poisson’s ratio is arrheodictic and it may have maximum value 
of -0.5 for ideally incompressible material a t  equilibrium. The glassy Poisson’s 
ratio is normally smaller than 0.5, mostly closer to f .  

The canonical representation of Poisson’s ratio function may he derived by 
obtaining a spectrum of delay times, m(e), analogously to the above given cases 
for Voigt model. 

1 =!k- XiLn ____ en 
s ( 1 + e n  s )  n=l 1 + e n s  

N - l  

ps = + C p n  
n=l 

In equations III.174 and III.175 fi and p are analogous to 

and En pn  = il)e - pg. 

The final equations are: 

m(6) exp(-t/e) dIn8  (111.177) 

-m 

111.6 Ext rudate Swelling 

There is a phenomenon of particular importance to fiber formation: die swell 
or Barus effect or extrudate swelling. Namely, if a material is extruded from 
a capillary of a given diameter, the diameter of the extrudate almost always is 
larger than-the diameter of the capillary used. This phenomenon is somewhat 
elusive; the available explanation appears incomplete, and the problem is certainly 
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very complex. Empirical observations indicate that die swell depends strongly on 
the capillary length (or aspect ratio) and on the rate of shear in the 
Influence of these parameters on die swell may be appreciated from figures 111.11, 
111.14. and 111.15. These types of influences led to the belief that die swell is 
related to the melt e las t i~i ty ,~ to the relaxational processes. Further, it has been 
proved that die swell depends also on the extensional flow component developed 
at the entry to the ~ a p i l l a r y . ' ~ ~ ' ~  

V.Cogswel1" relates die swell, B ,  to the recoverable strain, E R ,  as follows: 

3'001 2.7 5 

IN-' \ 

0.25 i------ 10 CAPIUARY 1 2  ASPECT 1 4  RATIO. Ud 1 6  

0.00 0 

Figure 111.11: The relationship between die swell, defined as the  ratio of the extrudate 
diameter over capillary diameter, and the angle of the capillary entrance cone: heavy 
lines 60°, fine lines 20". After Walczak" 

ER = InB2 (111.178) 

For the case of free convergence at the die entry, the extensional stress, U E ,  

U E  = a,/ tan cp (111.179) 

where cp is one half of the entry cone angle, a, is shear stress corresponding to 
the shear rate + = 4Q/7rr3 for the cone location, if the shear stress - shear rate 
relationship is known. Otherwise, there are approximate formulae for the extension 
rate:14 

may be calculated from the relationship: 

i =  ( z )  [ sin3 cp 1 = (i)sincp [ (1 - cos cp) ] 
(1 - cos cp) 

and another:' ' 113 

(111.180) 

i =  (i) tancp (111.181) 
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Both of the above equations have been developed for Newtonian flow. The equation 
for non-Newtonian fluids developed by Cogswell" requires the knowledge of the 
local pressure drop, Po, during extrusion, as well as the exponent in the power law 
equation, n, on which the derivation is based: 

(111.182) 

For the flow in conical ducts (entry to a capillary), the fluid velocity at the 
wall is zero, maximum velocity is in the center. In effect the flow velocity profile 
includes telescopic shear and elongation. Again, there is a disagreement as to the 
final formulation of extension rate in the Newtonian flow. Similarly as for the 
free convergence, all the suggested solutions become identical for the cone angle 
approaching zero. The only non-Newtonian solution is given by Cogswell:" 

i =  [z] x (g) x t a n p  (111.183) 

Here n is the exponent in the power law equation o8 cx ;Vn. For Newtonian fluids, 
when n = 1, equation 111.183 becomes 

i,,, = ;V t a n p  (111.183 a )  

Die swell is the result of the superposition of the recoverable part of the ex- 
tensional strain and of the expansion created by the normal shearing force facing 
cessation of the capillary wall restraint. The second reason was demonstrated by 
Zidan15, in full agreement with the experimental work published by Goren and 
W r ~ n s k i ' ~ ~ ~ ~  and by Gavis and Madon", that even Newtonian fluids show extru- 
date expansion at Reynolds numbers below 16, while at higher Reynolds numbers 
the extrudate diameter is smaller than the capillary radius. Figures 111.12 and 
111.13 present calculated flow patterns and velocity distribution in the vicinity of 
the capillary exit for Newtonian fluid with different ratios of wall friction coeffi- 
cient, j ' ,  over viscosity, w = f / 2 q .  

The die swell descriptions given above do not unite all the aspects of the phe- 
nomenon. The problem is even further complicated by the fact that die swell 
depends quite strongly on the shearing history of the polymer. This may be seen 
from the comparison given in Figure III.P4, which represents the same polymer as 
obtained from polymerization in a powder form (top of figure) and after pelleti- 
zation in a screw extruder with no degradation detectable analytically (bottom of 
figure). The only speculative explanation for this dependence, as nebulous as it 
may be, may be the change in the molecular entanglements leading to changes in 
the elastic response. The polymer history cannot be quantified yet. Die swell, as 
important as it is in fiber formation processes, still remains elusive and not fully 
defined. 

It has been found that extensional viscosity (Trouton viscosity) may be best de- 
scribed in relation to tensile stress. It initially is equal to 370 (where qo is zero shear 
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Figure 111.12: Streamlines in flow of Newtonian Auid in the vicinity of the capillary exit; 
negative values in the capillary, positive values outside the capillary. Parameter: w = 0.5 
full drawn lines, w = 0.05 dashed lines. After Zidan." 
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Figure 111.13: Velocity profiles in the vicinity of capillary exit, as calculated for New- 
tonian fluid. Parameter: distance from capillary (negative inside the capillary). A for 
w = 0.5, B for w = 0.05. After Zidan." 

viscosity), and increases with increasing ~ t r e ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~  contrary to shear viscosity 
which decreases with increasing stress. The increase of extensional viscosity with 
stress continues to about 105Pa,20 (ranging from 6.68. 105Pa to 2.15 . 105Pa2'), 
thereafter the viscosity may become constant, and later decreases. The decrease 
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of viscosity with stress is responsible for flow instabilities, both in the capillary 
flow due to the extensional flow component, and in extensional flow as such. 

Figure 111.14: Die swell, B = T / r o ,  in relation to the capillary aspect ratio, l / d ;  pa- 
rameter shear rate. Top: polypropylene in powder form, "as polymerized", bottom: the 
same polymer as above but pelletized in a screw extruder.12 

In general, any rheological function in one mode may be obtained from data 
acquired in another mode if the two functions are available. For example, one 
may obtain the bulk relaxance in isotropic compression from data obtained in 
shear experiments. One may obtain information on shear flow from data obtained 
in uniaxial extension. Nevertheless, as an exception, information on extensional 
flow cannot be extracted from data obtained in other modes of deformation. It is 
unfortunate, as experimentally analyses of extensional flow are very difficult and 
are usually burdened with a larger error. 

It appears important to mention, however, the simplified method of obtaining 
information on extensional flow from experiments with converging flow. Cogswel12* 
postulated that the flow from a reservoir into a zero-length capillary represents a 
sum of a shear and extensional component. The suggested solutions were based 
on the power law constitutive equation. Bersted" substituted the power law 
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Figure 111.15: Schematic representation of the flow pattern at the entry to a capillary. 

equation, r c( ?n, with a more “flexible“ formula: 

770 

l + A - ; %  
7 l =  

and the exponent, n, is 

1+(*) 
n =  

(1 + A ?f) 

(111.184) 

(111.185) 

where 70 is zero-shear viscosity and + is shear rate. In effect, the original Cogswell 
and the modified equations form the following set which describes the process: 
Pressure drop due to extension at  any point of the cone: 

(111.186) 

Here, < is extensional viscosity, cp is one half of the angle of the entrance cone and 
tancp = (277/<)’/’, h is the location in relation to the conical duct exit. Figure 
111.15 shows schematically the polymer flow in the vicinity of capillary entry. The 
vortices formed around the more or less conical flow pattern are the reason for the 
pattern development, unless the entry has conical walls to serve the same purpose. 
Pressure drop due to shear at  any point of the cone: 

where I? = j . (h ) / j (h  - 1). The summaric pressure drop a t  any point is 

Total pressure drop is 

(111.187) 

(111.188) 

(111.189) 
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where 

Average extension rate is 

After rearranging equation 111.189, extensional viscosity becomes 

(111.191) 

(111.192) 

Change of the constitutive equation improves the agreement between the data 
calculated from conical capillary experiments and those obtained by direct mea- 
surements of extensional viscosity only insignificantly. As a next step improve- 
ment, Bersted" uses extensional viscosity as a function of extension rate instead of 
Cogswell's constant "average extensional viscosity" in equation 111.186. Cogswell's 
equation for extension rate function in a conical capillary is 

~ ( h )  = tancp(h) - [ n0(?)3 I (111.193) 

Further, it is assumed that 

(111.194) 

Finally, the pressure drop function due to extension is 

The summaric pressure drop function of height h is 

(111.195) 
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where 

At the capillary exit ( h  = 1) the extensional viscosity is 

c = ( P / q  

(111.196 a )  

(111.197) 

In this case E becomes 

(111.197 a )  

where 

The above given calculations are rather involved, so it is obvious a computer 
has to be employed for their execution. Further, the value of k ( h )  is not known 
a priori, and it probably varies with the extension rate. Consequently, the en- 
tire problem must be solved iteratively by employing equations 111.184 through 
111.191 as the first approximation, and subsequently the extensional viscosity as 
a function of the extension rate is improved by fitting the data into equations 
III.196.29 The agreement between the data so calculated and the results obtained 
from experimental determination of extensional viscosity is quite good for several 
polymers, however, for narrow molecular weight polystyrenes, the agreement is 
disappointing. In summary, experimental determination of extensional flow is to 
be recommended over the above given method of calculation. Nevertheless, the 
Cogswell and Berst,ed work seems important, as it points to rather interesting phe- 
nomena taking place during extrusion through capillaries with conical entrance. 

The work of Cogswell and Bersted has been extended further by J. R. Col- 
lier and ~ o - w o x - k e r s . ~ ~ ~ ~ ~  These authors find that extensional flow data may be 
obtained from extrusion through hyperboloidal - conical dies (”capillaries”). The 
experiments mav be conducted eit,her by an axial coextrusion of two polymers 
with largely different viscosities (by a factor of 30 to or even without the 
”lubricating” polymer.67 

Some of their key findings may be summarized as follows: 
Interesting investigations of die swell were reported by Tanner and co-workers.60)61 

For Newtonian fluids the maximum diameter of the extrudate is attained only 
0.5 diameters below the exit of the capillary. This is true for non-Newtonian 
fluids at Weissenberg number of 1 (Wi = Ov/R where 0 - relaxation time, 6 
- average axial velocity, R - capillary diameter). 
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Extrudate swelling is strongly dependent on both elasticity and cooling. 

Presence of a yield stress in a material strongly reduces the swelling. 

In the end, one must conclude that the swelling problem is extremely com- 
plex and despite all the interesting work done thus far, a firm understanding and 
prediction ability still seem to lie in the future. 

111.7 Flow Instability in Extrusion 

Flow instabilities had been observed for a long time,22-24 and many different 
theories have been put forth to explain it. It has been noticed that the onset of 
flow instabilities coincides with the Deborah number approaching and 
this is understood as an indication that the instability is related to the viscoelastic 
nature of the fluid. Also, an interesting thermodynamic explanation of the flow 
instabilities has been offeredlZ7 and this is in agreement with the understanding 
that the flow instability is a phenomenon resulting from the viscoelastic nature of 
the polymer. 

The recent two decades have brought more convincing interpretations of the 
phenomenon. During extrusion through a capillary, the necessary pressure require- 
ment to drive the extrusion increases with the increasing flow rate. Nevertheless, 
the relationship is not as simple as it might result from the basic equations for flow 
in tubular ducts (capillaries). Figure 111.16 shows the general relationship between 
pressure in the barrel of a capillary rheometer and polymer flow rate.57-5g The 
graph is divided into five regions: 

I - where extrudate is smooth and at  constant flow, pressure is constant with 
time. 

I1 - where extrudate has a more or less rough surface ( ”shark skin”), though 
pressure is constant with time, 

I11 - where flow i s  unstable, uneven, spurting exit of polymer while pressure has 
a ”saw tooth” relation with time, 

IV ~ large deformations of extrudate: uneven diameter, spiral, ”porous surface” 
and pressure mostly constant with time. 

V - behavior very similar to that in region IV. 

Ha t~ ik i r i akos~~  believes that the critical factor in formation of the ”shark skin” 
is acceleration of the melt in the region of the capillary exit. The acceleration 
subjects the polymer stream to extensional forces with increasing extension rate, 
reaching around 1 to 3s-l. The large extensional flow causes slip at the wall of 
the capillary. The situation may be aggravated by large stresses at  the entry to 
the capillary. As discussed above, the entry stresses are smaller in conical entries, 
particularly with small cone angles. This point agrees with the quite generally 
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m E R R Q w  

Figure 111.16: A general representation of the relationship between extrusion pressure 
and Aow rate  in a capillary extrusion. Section I - extrudate with smooth surface. Section 
II - extrudate with surface distortions (”shark skin”). Section III - iinsteady (oscillatory) 
or surt flow. Section IV  and V - extrudate with major distortions. After Molenaar and 
Koopman’’ 

known experience (see figure 111.16). However, long standing common knowledge 
is that the geometry of the capillary entrance affects the instabilities (see figure 
III.17), and in the entry region, the polymer is subjected to extensional forces. 
Here Hatzikiriakos and Dealy’s theory agrees with the facts, however the suggested 
formalization does not reflect it. 

Hatzikiriakos and  deal^^^ have developed a model which describes the frac- 
ture phenomena, as represented in figure 111.16, quite well. The model has been 
developed under the following assumptions: 

Viscosity is independent of pressure. 

In the low flow branches. the flow is isothermal. 

Elasticity of the fluid is not taken into account. 

Lubrication approximation is used as creeping flow is assumed. 

For the high flow branch, flat velocity profile (plug flow) is assumed. 

Empirical slip models are used, so slip velocity is taken as being dependant 
on actual stress (the stress history is neglected). 

Flow above the capillary entry is neglected. 

Normal stresses are calculated from empirical relationships. 

The authors57 conclude that the two most important factors contributing to 
the melt fracture are compressibility of the melt and slip on the capillary walls. 
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Figure 111.17: Onset of capillary Aow instability (critical shear rate) in relation to the 
angle o f  capillary entrance cone.'* 

The authors also suggest that melt elasticity, if accounted for, might improve the 
agreement between the calculated and experimental results. 

Molenaar and K o o p m a n ~ ~ ~  base their model on the mechanism of relaxation 
oscillation, according to the earlier suggestion by Wei1L5' To describe the fracture 
phenomenon , the authors arrive at  two coupled differential equations with one 
parameter: 

where 

dQ* P* - F*(AQ*)  
dt* & 

-- - 

- = -AQ* dP* 
dt* 

K Q? 
c P,2 

& Z -  

(111.198) 

(111.199) 

(111.200) 

is a parameter. The notation here is Po means a characteristic pressure (taken as 
equal to lo7 Pa) ,  t is time, t* is dimensionless time given by 

(111.201) 

C - A X h  (111.202) 

A is cross sectional area of the barrel, h is the hight between the plunger and 
the capillary entry, x is melt compressibility, Q; is the inlet flow rate (constant), 
Qe( t )  is extrudate flow rate. The flow rates are scaled with Q; so that in the 
dimensionless form one has 

Qe ( t )  
Q:( t )  - 

Qi 
(111.203) 
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and 
AQ(t) 

Qi 
A Q * ( t * )  f - (111.204) 

while 

AQ Q e ( t )  - Qi (111.205) 

Naturally, Qi 1. P ( t )  is pressure in the barrel as a function of time. In its 

(111.206) 

F is the characteristic material function which may be taken from a constitutive 
equation of the polymer and of the appropriate boundary conditions. One may 
write the following relationship between the change of pressure with time to the 
change of the total mass in the barrel: 

where AQ = Q e ( t )  - Qi. 
Further, one may write 

The dimensionless material function is then 

Equation 111.198 has only one parameter 

(111.207) 

(111.208) 

(111.209) 

(111.210) 

As results from the above considerations, the onset of ”shark skin” (region I1 
in figure 111.16) depends only on the constitutive equation. The spurting portion 
of the curve (region 111) is described by self excited oscillation of relaxation of a 
material which is able to dissipate energy, though energized in a constant way. The 
shape of the curve depicting the pressure function, Q e ( t ) ,  depends on the material 
properties described by the function F * .  Therefore the behavior in region 111 
depends on the elasticity. Similarly as in region 11, in region TV two different 
stress values correspond to every shear rate. The high shear rate is in the center, 
the low shear rate, at the wall. This may result in a relatively smooth surface, but 
major distortions of the extriidate are also likely. The nature of the distortions may 
depend on a large number of factors related to the material and to the geometry 
of the hardware. 
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Figure 111.18: Exit pressure in relationship to  shear stress. The transition point coincides 
with the onset of Aow instability. After €fan and Lamonte.62 

It has been noticed that if the angle of the capillary entrance cone is small (fig- 
ure 111.17 and III.18),12)24 the flow instability starts at  higher shear rates (critical 
shear rate, $cr).  This is consistent with equation 111.179. The solution suggested 
by Molenaar and K ~ o p r n a n ~ ~ ,  in its principle, seems to be more suited to explain 
the effect of entry geometry. The formalization of the geometric factor still needs 
additional investigations. 

Figure 111.18 shows the results of very interesting investigations by Han and 
Lamonte.62 The results seem to show convincingly that the elastic properties of a 
material are quite essential in considerations of flow instabilities. 

V i n ~ g r a d o v ~ ~  has determined that flow instabilities appear when stress reaches 
a critical value, that lies between 0.1 and 0.5 MPa.  This value is valid for both 
shear and extensional deformation, provided that in extension this is the true 
stress. Vinogradov finds that the value holds for all the polymers known and is 
little dependent on molecular mass and temperature. 

If one translates this to deformation rate, then, obviously, the molecular mass 
and temperature dependence will appear. The critical stress value is, in physical 
terms, dictated by the fact that the polymer is unable to accommodate more of 
reversible deformation. The critical stress value coincides with t,he exhaustion of 
the possibilities to further extend the entangled chain segments connecting dif- 
ferent molecules. This is equivalent to the inability to accumulate much more of 
reversible deformation. In effect, at  the critical stress, the polymer is forced to 
a glassy state where it becomes brittle. At this stage, polymers loose adhesion 
to their boundary surfaces, like capillary walls or plates of rotational rheometers. 
The last phenomenon causes the spurts from the capillary, the jumpy stress on 
rotational instruments. In this authors opinion the Vinogradov’s suggestion seems 
to be correct, in principle, though the limits for critical behavior appear to vary 
in a wider range, depending on the viscoelastic character of the polymer and on 
actual processing conditions. 
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In the last ten years or so, the attention of researchers has been turned toward 
the direction which may be termed as the questioning of the notion of zero ve- 
locity in a capillary flow. Besides the work quoted above, more evidence of slip 
on capillary walls has been published. J. Barone and c o - w ~ r k e r s ~ ~  described a 
mechanism of local reversible molecular coil tj stretch mechanism taking place 
in the boundary layer at the capillary wall. This mechanism is responsible, on a 
molecular scale, for an oscillation of stress at  the wall and wall slip at  the exit of 
the capillary. This mechanism is considered to be responsible for the formation of 
"shark skin". The coefficient of friction between the polymer and capillary wall has 
an influence on the magnitude of the effect. A low friction, e . g .  achieved through 
a fluorocarbon coating, at  the wall in the exit section of the capillary reduces the 
shark skin effect. Such a coating also reduces die swell. 

Ril. E. Machay and D. J. Henson7' found that polystyrene slips at  stainless steel 
walls at  all shear rates. The authors were unable to find a theory which would 
fit the data. They believe that the number of molecules adsorbed at the stainless 
surface is in a dynamic equilibrium, and this determines the slip behavior. 

A. D. Yaring and M. D. Graham7' have developed a model of the slip at  
polymer - solid interface. The model shows a fair agreement with published ex- 
perimental data. 

111.8 Molecular Rheology 

The abbreviated discussion of rheology given above treats materials as a con- 
tinuum. This, however, does not exhaust the problem. It is important to realize 
that ultimately it is the molecular structure of the material that rules over the 
properties, and certain questions may be answered only through considerations of 
the molecular structure. 

The large size and large length to diameter ratio of polymer chains are the 
reason for the tendency of molecules to coil into more or less tight bundles. The 
shape of the coils undergoes constant changes due to natural molecular motions. 
Therefore, only the average size of the molecule may be calculated or determined 
(e.g. via light scattering). The molecule size is given usually as the root m,ean, 
square e n d t o - e n d  distance,  ( L 2 ) ' / 2 ,  or as the root mean, square radius of g~ j ra t ion ,  
( f 2 ) 1 / 2 .  The two values of unperturbed coils, without any solvent penetration, are 
related to each other as follows: (L2)" = 6(r2)o.  The average shape of the molecule 
coil is somewhat elongated, kidney-like, rather than spherical. Increase in chain 
branching results in the coil shape changing to more spherical. With the increasing 
rigidity of the chains, the chain dimensions increase, eventually approaching the 
shape of a rod, e.g. polymers forming liquid crystals. 

In the unperturbed state, the radius of gyration of a polymer of given archi- 
tecture is a function of molecular mass: (r2)0 = K M .  For rod shape molecules, 
however, the relationship is (r2)' = K M 2 .  

Based on Zimm's theory, the relaxation time of a polymer, 8 ,  may be calculated 
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from the following relationship: 

M(7o - 7 s )  9 =  
(2.369 c R T )  

(111.21 1) 

where ~0 is zero-shear viscosity, qs is viscosity of solvent, c represents solution 
concentration, and M ,  R, T have the usual meaning. For undiluted polymers, sol- 
vent viscosity becomes zero and polymer concentration is to be substituted with 
polymer density. The constant of 2.369 has been found by Tschoegl3O to vary from 
n2/6 to 2.369 as the shielding parameter varies from zero (for vanishing hydrody- 
namic interaction in the free draining coil ) to infinity (for dominant hydrodynamic 
interaction). Temperature dependence of relaxation time is formulated as 

(111.212) 

where the subscript zero designates the data a t  the reference temperature of To. 
For polymers of low molecular mass (oligomers), up to a certain critical value 

of molecular mass, Mc,  zero-shear melt viscosity is directly proportional to weight 
average molecular mass, Mw. In a double logarithmic plot, this gives a straight line 
of slope equaling one. Above the critical molecular mass, however, the relationship 
is 

eta0 = KM:4 (111.213) 

How viscosity at  non-zero shear rates deviates from equation 111.213 may be 
seen from figure 111.19. The shear rate related deviations have not been quantified 
yet. 

The intersections of the line representing low molecular mass polymers (slope 
one) with the lines for non-zero shear rates indicate the points beyond which the 
polymer will be degraded due to the shear action. Based on this principle, another 
graph for polymer degradation may be constructed; an example is given in figure 

Temperature dependence of zero-shear viscosity may be described by the Ar- 

(111.214) 

where A, a constant and E is activation energy of flow. However, both the 
activation energy and the pre-exponential factor depend on temperature and time, 
and therefore the equation is not general. Another solution has been proposed by 
H. Leaderman and furthered by Ferry, Tobolsky, Staverman, Schwartl: the so 
called shift factor, usually represented by a. The equation represents indeed a 
time-temperature equivalence shift factor. The shift factor represents a means 
by which such curves as shear modulus versus temperature, or stress relaxation 
modulus 7iersus time and temperature, or viscosity iiersi~s temperature may be 
represented by a single master curve for each of the dependent variables. The 
effect of temperature change may be calculated by multiplying all values by a 

111.20.31 

rhenius type equation: 

70 = A, exp(E/R. T )  
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common factor, a ( T ) ,  which is a function of temperature and which represents the 
equivalence of time and temperature. 

In a = f ( T )  - f (To)  (111.21 5) 

where To is a reference temperature, a target temperature to which one attempts 

Figure 111.19: Relationship between melt viscosity and molecular mass of polyethylene, 
parameter: shear rate. M o  is the molecular mass beyond which the polymer will be 
degraded by respective shear rate. Data after H. P. Schreiber, E. B. Bagley, and D. C. 
West. 31 

to recalculate the data. 

interpretation of the shift factor. 
Interpretation of rheology through chain  entanglement^^^ gives the following 

(111.216) 

where 6 is relaxation time, E is modulus of elasticity, the subscripts stand for: 0 
related to the unit segment between entanglements, g at glass transition. From 
this equation one may also derive the WLF equation.65 

The most frequently used equation for the shift factor is: 

(111.21 7) 
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Figure 111.20: Degrading shear rate for polymer of a given molecular mass. Graph 
constructed on the basis of Figure 111.19 for p~lyethylene.~’ 

where the symbols have their customary meaning, and subscript 0 represents values 
at  the reference temperature. Other equations of frequent use are: 

-G(t. Po To a ,  7’) = G(T0, t )  
PT 

(111.2 18) 

(111.218 a )  

(111.218 b) 

(111.219) - J ( t .  PT a ,  T )  = J(T0, t )  
Po To 

“ T J ’ ( w / a , T )  = J’(To,w) (111.219 a )  
Po To 

(111.219 b)  

In equations 111.215 and 111.217, the meaning of the symbols is as throughout this 
chapter. 

Considering equation III.215,63 a simpler, though not so general, way of de- 
termining the a-factor has been devised specifically for some polymers. For poly- 
propylene, equation 111.220 has been found to be quite satisfactory. It, like other 
equations of similar type, is based on experimental results. Such equations are 
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Figure 111.21: Dependence of the shift factor, a, on the ratio of temperatures. The 
relation has been devised for polypropylene on the basis of experimental data. 

convenient, especially when interpolations or extrapolations are needed. The ex- 
trapolated data are particularly convenient for considerations of crystallization, 
since rheological determinations below equilibrium melting point are rarely reli- 
able, or even possible. 

a = 4.129. . exp 12,4260 [ (a1 (111.220) 

Figure 111.21 presents the original data for various propylene polymers and 
their agreement with equation 111.220. 

Williams, Landell, and Ferry have developed an equation, usually called the 
WLF to calculate activation energy. This equation has been developed 
on the basis of considerations of the segmental motions in molecules. One of the 
many forms of the equation is 

(111.22 1) 

where the reference temperature is T, = Tg + 43. For the majority of crystallizing 
polymers, this equation is inapplicable as at  forty three degrees above glass tran- 
sition the polymers are solids. Another form of the WLF equation that may be 
used is: 

4120 T 
E(T) = 

(51.6 + T - Tg) 
(111.222) 

The activation energy so calculated is of acceptable accuracy for a temperature 
that is by no means higher than fifty degrees above glass transition, and preferably 
by no more than twenty degrees above glass transition. The activation energy so 
calculated may be used in equation 111.214. An empirically determined activation 
energy of flow gives a straight line which has one point in common with the WLF 
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Figure 111.22: Activation energy of flow as calculated from W L F  equation (dashed line) 
as compared to the activation energy calculated using equation III.223. 

hyperbolic equation: it is the point a t  glass transition temperature. The new 
equation has been found to hold well for polypropylene over the entire range of 
temperature, though its validity for other polymers needs to be e ~ t a b l i s h e d . ~ ~  Pos- 
sibly, the equation coefficients may be different for other polymers. The difference 
between the original WLF equation and the proposed modification may be seen 
in Figure 111.22. 

E ( T )  = Tg [334.29488 - 0.56625 (T - Tg)] (111.223) 

The equation yields the energy in Jlmol.  The activation energy may be used ei- 
ther with Arrhenius equation (111.214) or with another empirical equation, 111.224 
- 111.225, relating both temperature and shear rate. Again, equation 111.224 - 
111.225 has been corroborated with the experimental data on polypropylenes of 
a wide range of molecular masses; its validity for other polymers remains to be 
determined. . 

E A+ 
rlo = A, exp (IIT) 

where 

(111.224) 

(111.225) 

Here 1 and m are empirical constants which may be calculated by fitting experi- 
mental data into equations 111.214 and 111.223; correlation coefficients on the order 
of 0.999 or even 0.9999 are obtainable over six or eight decades of shear rates.33 
The coefficients in equation 111.223 have no general validity, since every polymer 
batch needs a separate determination. Nevertheless, these kinds of empirical cor- 
relations serve as exceptionally convenient algorithms for various interpolations, e. 
g. such as are often needed in computerized data evaluation or predictions where 
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Figure 111.23: Relationship between reduced viscosity and product o f  shear rate and 
zero-shear rate viscosity, a temperature independent function. After Vinogradov and 
Ma1 'kin.34 

the points must he generated very densely. On many occasions, the solutions 
backed by full theoretical justification are not broad enough to serve the purpose. 

Still another way of relating viscosity and temperature and shear rate is sug- 
gested by Vinogradov and Mal'kin,34 who find that the reduced viscosity (ratio of 
viscosity at  any shear rate over zero-shear rate viscosity) is a temperature inde- 
pendent function of the product of zero-shear rate viscosity and shear rate, ( T O + )  
as indicated in figure III.23.34 

The solution suggested by Vinogradov and Mal'kin must he treated as an 
empirical one, similarly to other proposals which lack sufficient theoretical backing. 

111.9 Viscosity of Solutions 

Staudinger derived the following equations to describe the relationship between 
molecular mass of a polymer, solvent viscosity, and solution concentration, on one 
side, and viscosity of solution, on the other side: 

[v] Km M (111.226) 

where [q] is intrinsic viscosity defined as 

77 - 77s lim - 
c+o cs = [771 (111.227) 

77 is viscosity of polymer solution at  concentration c, s is the viscosity of pure 
solvent, Km represents a polymer characteristic constant, and M stands for the 
molecular mass. Staudinger's equation has been modified to improve its agreement 
in confrontation with experiment. In its present form, often called the Mark- 
Houwink equation, it has the following f ~ r m : ~ ' ~ ~ ~  

[77] = K M a  (111.228) 
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Figure 111.24: Shear stress as a function o f  shear rate for low to moderate concentrations 
o f  polyisobutylene in d e ~ a l i n . ~ ~  

Here Q is a constant assuming values between 0.5 and 1.0, depending on solvent 
- polymer interaction. A value of Q = 0.5 corresponds to a system very close 
to precipitation (so called theta solvent, and Q = 1 means very good solubility. 
Extensive tabulations of the values of K and a may be found in l i t e r a t ~ r e . ~ ~  

The Mark-Houwink equation is valid for diluted solutions only, where there 
is practically no interaction between the solute molecules. If one considers mod- 
erately or highly concentrated solutions as continuum systems, then all that has 
been said on rheology applies also to solutions. The difference may be that the 
general level of stresses is probably lower. In molecular terms, however, there are 
somewhat different problems involved. Unfortunately, the problems have not been 
fully solved yet. On the other hand, since polymer concentrations used in fiber 
formation range from under ten per cent to some sixty per cent, the behavior of 
concentrated solutions is technologically more interesting. 

Brodnyan, Gaskins and Philipoff38 have studied solutions of polyisobutylene 
in decalin. The quintessence of this work is presented in figure 111.24. Qualita- 
tively similar results have been obtained for other polymer solvent systems. As 
it is evident from figure 111.24, the shape of the shear stress-shear rate function 
changes with concentration. In order to predict viscosities of concentrated poly- 
mer solutions, one may use equation 111.211. However, knowledge of the relaxation 
time would be required, and usually this is not readily on hand. The attempts, 
which have been crowned with some success, to explain these variabilities have 
been based on the theory of free volume. 

Free i)olum,e may be loosely described as the empty space between molecules 
resulting from the irregular structure of the molecules filling a volume, or shortly, 
a molecule packing effect.39 The internal friction in liquids is related to the free 
volume, ' ~ f  .40 D~ol i t t l e ,~ '  based on empirical grounds, has proposed the following 
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description of the relationship between free volume and viscosity: 

rl = A exp(B V O / V ~ )  (111.229) 

Here 77 is viscosity of solution, wo is the occupied volume, vj is free volume, A and 
B are coefficients. The general dependence of solution viscosity on concentration 
has been given in graphic form by Tager and DrevaL3’ This curve is presented in 
figure 111.25. It is worth stressing the relatively small increase of viscosity with 
increasing concentration once somewhat higher concentration levels are reached. 
For elastic polymers the slope is particularly low. 

It is believed that solvents have larger free volume. Also, free volume is believed 
to be an additive property. Fujita and K i ~ h i m o t o ~ ~  assume the free volume of a 
solution to increase with increasing volume of solvent. Free volume depends also 
on the polymer concentration and on temperature of solution. Based on such 
considerations, these authors derived the following equation. 

in which 

(111.230) 

(111.230 a )  

where ~(2’4) is viscosity at  temperature T and volume fraction of solvent 4 ,  v(Tq5*) 
is viscosity at  the same temperature and another volume fraction of solvent 4*, 
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considered as a comparative standard, f (T4')  is free volume of solution at  stan- 
dard concentration, ,B'(T) = $7') - f ( T o ) , y ( T )  is a function specific for given 
polymer-solvent system, and f(T0) is free volume of solvent at  temperature To. 

Equation 111.230 may be simplified to a rectilinear form so the values of P'(T) 
and f(T$*) may be obtained more easily: 

(111.230 b)  

Validity of equation III.230b has been confirmed for many polymer-solvent 

Another approach to the problem has been offered by Kelly and B ~ e c h e , ~ ~  who 
systems. The rectilinearity appears to falter at  q5 larger than 0.5.39142-45 

assume the free volume of a polymer to be 

u f p  = 0.025 + 4.8.  10-4(T - Tg) (111.231) 

and the free volume of solvent as 

wf3  = 0.025 + CIS(" - Tgs) (111.232) 

The notation here is: w f p  stands for free volume of polymer, u f s  stands for free 
volume of solvent, the coefficient of 0.025 represents the relative free volume of 
the polymer at  glass transition, the value of 4.8 . 10-4(0K)-1 is the temperature 
coefficient of changes of the free volume, S is a temperature coefficient of the order 
of 10-3(0K)-1. Further, under the assumption of the additivity of free volumes, 
Kelly and Bueche obtain 

1nrl - = 4 Inp {& [0.025 + 4.8. - T,)] + B 

where p is density of the solution, 43 and &, volume fractions of solvent and 
polymer, respectively, and B is a parameter which also includes molecular mass. 
Equation 111.233 is in good agreement with experiment at  temperatures above 
glass transition temperature of the polymer. 

Several other equations for the dependence of viscosity on solution concentra- 
tion may be found in the l i t e r a t ~ r e . ~ ~ ) ~ *  

Molecular mass has an influence on the solution viscosity similar to that on the 
melt viscosity. An equation entirely analogous to that for melts (equation 111.213) 
may be written as 

77 = C P3.' K cm M3.4 (111.234) 

where P is degree of polymerization, and C and K are constants, c is the solu- 
tion concentration. The exponent m varies between 4 and 5.6; the higher val- 
ues are more likely to be valid at higher concentrations. For polymer below the 
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critical molecular mass, the slope is not constant and increases with increasing 
c o n ~ e n t r a t i o n . ~ ~ ~ ~ ’  

The influence of molecular mass on viscosity may also be obtained from equa- 
tion 111.211. 

Another important function is the viscosity as a function of temperature. The 
activation energy of flow has a nonlinear dependence on concentration3’ and on 
molecular ma~s .~ ’ - ‘~  Consequently, the WLF equation is inapplicable here. Ter- 
amoto, Okada, and F ~ j i t a ~ ~  have proposed a somewhat different relationship: 

(111.235) 

(111.235 a)  

where T and TO are experiment and reference temperature, respectively, f(4To) is 
free volume of solution at polymer volume fraction 4 and at reference temperature 
TO. The equation may be easily linearized by substituting (T - To)/lgaT = f(T), 
and in this way all of the important parameters may be estimated. 

There have been many different attempts to solve the relationship between 
viscosity, solution concentration, temperature, and molecular mass. Some of the 
theories agree with experiment only within limited ranges. The selection given 
here does not imply any particular preference. 

The character of the solvent used has an influence on the solution viscosity. 
This influence becomes even stronger below the glass transition temperature of the 
polymer. The solvent quality also influences how strongly temperature influences 
viscosity. Also, the quality of solvent influences the activation energy of solution 
f l ~ w . ~ ’  Viscosities of solutions do not necessarily depend on the viscosities of the 
solvents used. This is related to the changes of entropy upon dissolution. Vis- 
cosity is lower in those solvents which permit more flexibility of polymer chains. 
Naturally, the solvent viscosity will superimpose itself on the effect. 

In concentrated polymer solutions, molecular interactions are appropriately 
high. Longer times are needed to reach thermodynamic equilibrium. The sig- 
nificance of these phenomena increases with increasing polarity of the polymer 
molecules. Increase of viscosity with time is one of the common properties of 
the concentrated solutions. It is usually called aging or ripening of the solution. 
The rate of such a process depends both on temperature and on agitation, and 
on the whole thermal and shear history of the solution. In this case, the con- 
centration of polymer solutions is also important, the rate of viscosity increases 
is magnified by increasing   on cent ration.''^'^ Different polymer-solvent systems 
may behave quite differently. This makes it exceedingly difficult to determine the 
exact mechanisms involved in the processes of solution aging. Since the viscos- 
ity of solutions increases on aging, it may be generally assumed that some kind of 
molecular association takes place. Depending on the type of association, molecular 
entanglements, molecular mobility, the rate of equilibration varies widely. There 
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are no quantitative theories related to this problem, every polymer-solvent system 
must be studied separately. 
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