
IV POLYMER IN FIBER FORMATION 

Polymer properties have been discussed in the preceeding chapters. The de- 
scription was given from the point of view of those properties which are accessible 
analytically, using more or less standard characterization techniques. The dynam- 
ics of the process require us to take another look at  polymer properties, a look 
from a different angle. It is necessary to be able to understand how a polymer 
behaves within the complex maze of changes and transformations taking place ei- 
ther simultaneously or during a very short span of time. The specifics of the fiber 
formation process put more stringent demands on some polymer properties, which 
for other methods of processing may be less important or outright not essential. 
There is also a question whether the behavior of polymer in the fiber formation 
process can be predicted on the basis of analytically accessible characterization. 
Answers to such questions will be sought in the following considerations. 

IV. 1 Melting of polymer 

The question to be posed initially regards the temperature at which the polymer 
ought to be processed. To answer this question, two aspects must be considered: 

Przmo - polymer viscosity must be within a range allowing processing: the 
polymer must be extruded through an appropriately sized capillary without the 
use of excessively high pressure to drive the extrusion. 

Secundo - if the polymer is able to crystallize, or to form some kind of molec- 
ular aggregates, then the processing temperature must be higher than the equilib- 
rium melting point (or an equivalent transition point). Otherwise, control of the 
development of crystallinity (or other structural units) in the fibers may become 
impossible. 

Determination of the relationship between crystallization and melting temper- 
atures, as described in chapter 11, resolves this question, as does the determination 
of the relationship between melt viscosity, on one side, and shear rate and temper- 
ature, on the other side. If a polymer is heated to its equilibrium melting point, 
then all the crystals melt. However, the notoriously high viscosity of polymers 
does not allow for a very quick "randomization" of the molecular conformation. 
This "randomization" process may be helped by mechanical means, particularly 
by shearing forces. Additional elevation of temperature beyond equilibrium melt- 
ing point by some twenty degrees centigrade may also be recommended. In the 
case that a polymer does not meet the above specified requirements for minimum 
of melting temperature, then methods of fiber formation other than from the melt, 
ought to be considered. Namely, one may escape to formation from solution. The 
upper limit of melting temperature depends on the thermal stability of the polymer 
under consideration. For the majority of industrial processes of fiber formation, 
the residence time of polymer at  melt temperature ranges between some twenty 
and thirty minutes. Thus, polymer must be able to withstand the temperature for 
such a length of time. Again, if a polymer does not meet this requirement, fiber 
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formation from solution should be considered. 
Polymer degradation rarely displays a strong transition point in the rate - 

temperature relationship. Therefore, the reader must be warned about many 
"grey areas" and difficult decisions as far as this aspect of processing is concerned. 

At this point it is important to note that substantial differences in the behav- 
ior of polymers do exist. In practically all cases, exposure of the polymer to an 
elevated temperature ought to be in absence of oxygen (air). Almost all polymers 
are prone to some oxidation at  elevated temperature. The oxygen molecules usu- 
ally become randomly built-in along the molecule chains. An addition of atoms 
or groups changes the molecule symmetry, and thereby affects polymer crystal- 
lizability and crystallization kinetics. Often polymers are sensitive to moisture 
at  elevated temperature; this concerns primarily polycondensation type polymers 
which may hydrolyze. Hydrolysis reduces the molecular mass, while in polycon- 
densation reactions high molecular mass is difficult to obtain. Also, changes of 
molecular geometry may result from reactions with water molecules. Some poly- 
mers may show a tendency to increase their viscosity with increasing residence time 
at  high temperature. Polymers obtained as a result of polycondensation reactions 
are more apt to such a behavior. A cross linking reaction is often responsible for 
the viscosity increase; increase of elastic flow component usually accompanies such 
an increase of viscosity. 

Proper chemical stabilization of the polymer may prevent or reduce the changes, 
generally referred to as degradation, to some acceptable level. This is, however, a 
domain of polymer chemistry, and as such is outside of the scope of this book. 

Practically all "virgin" polymers do contain some amount of cross linked mate- 
rial. The cross linked material is usually recognizable as gel inclusions, rather than 
an "impurity" homogeneously distributed throughout the polymer. The presence 
of cross links is often the result of side reactions typical of organic synthesis. The 
gel content in the polymer represents an important reason for breaks of polymer 
stream during fiber formation. Quantitatively, the process discontinuity is in di- 
rect proportion to  the amount of cross linked material present in the polymer. It 
seems that both the increase of melt elasticity and the material inhomogeneity 
are responsible for the negative effects. The increased discontinuity of a process 
represents, naturally, a very strongly negative economic factor. 

A somewhat "special problem" are the polyolefines. The nature of the stere- 
ospecific (Ziegler-Natta and similar) catalysts is such that it is more economic to 
obtain high, rather than low, molecular mass polymers. This fact led to the very 
common practice that polymers are polymerized to a high molecular mass (usually 
in the neighborhood of one million Daltons) and later degraded to smaller mole- 
cules. Since shear degradation in extrusion is expensive because of high energy 
consumption, the process is usually aided by the addition of peroxides. 

The reactions between peroxides and polyolefines lead initially to formation of 
cross links. Only during the later stages do the cross link points decompose with 
the resulting chain scission. It may be easily established analytically that the re- 
actions are usually incomplete: there are residual peroxides, as well as a number of 
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cross links. Such raw materials may pass for some low grade fibers. Processing of 
highly cross linked polymers may not be done under a positive control; melt elas- 
ticity increases very substantially, as may be seen from a comparison of calculated 
and experimental relaxation times.70a 

Naturally, an increase of elasticity has its influence on the polymer process- 
ability. The cross links do not seem to be evenly distributed, but instead form gel 
aggregates which often may even be observed microscopically in polarized light. 
Analytically, the gel content is determined gravimetrically by pressure filtration 
of very diluted (0.25 to maximum 0.5 per cent) polymer solution through a filter 
of 0.24 to 0.5 p m  pore diameter. Molecular mass and viscosity of the polymer at 
hand will determine the actual experimental conditions within the given ranges. 

The molten polymer is usually transferred to a so called spinning block or spin- 
ning beam which, aside from the metering pump and spinnerette, also houses a 
filter for polymer melt. The filter is usually located as close to the spinnerette entry 
as possible and consists of a sintered metal plate supported on a perforated metal 
disc. The filters are to retain accidental mechanical contaminants, as well as in- 
sufficiently dispersed delustrants (usually titanium dioxide) , pigments, stabilizers, 
etc. 

Because the polymer must pass through the small and tortuous channels of 
the filter, it becomes subjected to large shearing forces. The shearing forces, if 
not excessive, are beneficial to fiber formation process. One of the characteristic 
properties of polymers is memory. The term memory means that different speci- 
mens originating from the same polymer may possess somewhat different proper- 
ties, depending on the history of shearing and heat treatment to which they were 
subjected.’?’ It is believed that the reason underlying the phenomenon of memory 
are frozen stresses3 However, a particularly strong influence are entanglements of 
the polymer chain. And, naturally, all these are highly dependent on relaxation 
time. It has been determined that entanglements of polymer chains determine 
physical and rheological properties of melts and solids3 

Recent years have brought an increase in research activity on polymer chain 
entanglements, and as a result, some quantitative solutions have become a~a i l ab le .~  
One may quote as one of the more general formulations the finding by Elias’ that 
the Hooke number, 

(IV.1) g b  H e = -  
E&b 

is proportional to the inverse square of the density of entanglements, pe.  Here d b  

is tensile strength at break, &b is strain at  break, and E is tensile modulus (initial). 
The entanglement density is: 

(IV.2) 

where N A  is Avogadro’s number, p is density of amorphous polymer, Mc is critical 
molar mass above which entanglements can form, and Me is average molar mass 
between the points of entanglement. The value of Me may he determined from the 



IV.2. THE SPINNERETTE 103 

plateau of the relationship between the shear modulus and molecular mass6 The 
values of entanglement density, along with the molecule conformation (character- 
istic ratio), may also be calculated from the chemical structure of a p01ymer.~ The 
calculated values are in quite fair agreement with those determined experimentally, 
though the experimental results have relatively large uncertainty too. 

It is also well known that flow can either cause transformations like crystal- 
lization, mixing, and demixing, which normally result from temperature change, 
or may shift the temperature at  which the transformation takes place.8 

Determination of the exact changes in the molecule conformation and entangle- 
ments due to polymer flow is very complex. Therefore, there is still disagreement 
between some of the results published. It is known, however, that besides the flow 
intensity, as described by strain or strain rate, entanglements depend strongly on 
the type of flow, and on the geometry of the duct.*1’ 

IV.2 The Spinnerette 

The spinnerette (or spinning jet) is the element of fiber formation hardware 
which serves to shape the polymer melt, or solution, into ”infinitely long” cylin- 
ders. Since the heart of the spinnerette is the capillary, everything that applies 
to flow in a capillary also applies to flow in spinnerettes. The side phenomena 
which result mainly from the shearing action on the extruded polymer, have a 
strong influence on certain engineering tasks and on the behavior of the polymer 
in the subsequent processing stages. Ultimately, the shearing applied influences 
the final fiber properties. Here we have a certain similarity between the influence 
of spinnerette and filter on the processing performance of the polymer and on the 
final result, on the fiber properties. 

The shearing a polymer experiences in the spinnerette influences the morphol- 
ogy of polymer melt. Some light on these influences is shed by the work of Han 
and Kim.8 Fig. IV.l shows an essential result obtained by Han and Kim: the rela- 
tionship between pressure exerted by the polymer on the wall of the reservoir and 
capillary versus distance from the entrance to the capillary. The plot shows clearly 
the pressure loss in the entry to the capillary and the normal pressure present in 
the polymer at  the exit from the capillary. 

The exit pressure for a given geometry of the extrusion arrangement and con- 
ditions is Pe, = a+P. In this case a and p are constants characteristic for the 
material. The true shear stress at  the wall may be calculated from the slope of 
the straight portion of the axial pressure profile, e.g. like in figure IV.l. 

(IV.3) 

In view of the above, it is clear that evaluation of the capillary flow data with 
the use of the common equation (equation 111.4) or in the version suggested by 
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From figure IV.l, one may see the magnitude of the pressure drop in the entry 
to the capillary for different shear rates. Figure IV.2 shows an influence of the 
ratio of reservoir over capillary diameters on the exit pressure. The repercussions 
of the flow pattern are far reaching indeed. Comparison of figure IV.2 with figures 
111.17 and 111.18 is quite instructive. 

Apparently the geometry has a strong influence on the vortices formed around 
the entry. The influence becomes insignificant above some value of reservoir to 
capillary ratio; for polyethylene investigated, this significant ratio is above 12, 
for other polymers may be somewhat different. The influence of conical entry 
to capillary, and of the magnitude of the cone angle on the process of extrusion 
was investigated, to some extent, by Direct measurements of pressure in 
the capillary, entry cone, and reservoir were conducted, similarly as in the earlier 
work by Han. It has been found that the magnitude of the pressure loss in the 
conical entry to the capillary depends on the cone angle. The minimum value 
seems to be reached in the entry of ninety degrees. However, the large scatter 
of the experimental data makes this minimum uncertain. The differences in the 
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Figure IV.2: Relationship between exit pressure drop and ratio of reservoir to capillary 
diameter ratio. After Han and Kim.* 

pressure loss for angles ranging from sixty to one hundred eighty degrees are small 
indeed. On the other hand, for angles of thirty degrees the pressure rises some 
twenty to thirty per cent, and for those of fifteen degrees, the pressure drop almost 
doubles. 

The angle of the entry cone has significant influence on the exit pressure. In 
this case, the results for angles between sixty and one hundred and eighty degrees 
are similar, within large data scattering. For small angles, fifteen to thirty degrees, 
the exit pressure reaches values as low as one half of the results for large entrance 
angles. These results are in full agreement with those published elsewhere.12 The 
data by Hang tend to indicate that the exit pressure for low cone angles and for 
high cone angles would be the same a t  shear rates of around 1500 s-'. Other 
investigations1>13 do not confirm such behavior, though carried out a t  shear rates 
as high as 7500 s-'. 

The results obtained by Hang show a difference in the behavior of high density 
and low density polyethylenes. Perhaps a different level of elastic flow component 
is responsible for this. 

It must be added that the Poiseuille equations for flow in capillaries (equations 
111.3 to 111.5) are valid for Newtonian fluids, characteristic of strictly parabolic 
velocity profile, or in other words for power law fluids with the exponent equal 
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unity. A generalization based on the power law leads to the velocity distribution 
along the capillary radius asI7 

V ( T )  = V(0)  [l - (i) (n+l ) /n]  (IV.6) 

where V ( T )  is velocity at  radius T ,  T is position along the radius, R is capillary 
radius, and n represents the power law coefficient. Furthermore, the relationship 
between the polymer flow and the extrusion driving pressure may be presented in 
a general form as 

The velocity gradient then becomes 

( A P  R)  'In 
- i ( : ) r= ,=  -[w1 

(IV.7) 

(IV.8) 

In the above equations 1 stands for the capillary length. 
All of the equations for capillary flow as given above are valid for infinitely long 

capillaries. In the capillaries of finite length, and such we have in spinnerettes, the 
effective pressure, AP,, is different from the pressure really applied, A P ,  and the 
difference may be given as 

(IV.9) 

where Vo = Q/nR2 is the average flow velocity, m is a coefficient dependant on 
the velocity profile, for Newtonian fluids m = 1, for polymer melts it may be taken 
as m = 1.2, p is polymer density, SR is recoverable strain, t is transit time. 

Viscoelastic fluids require also a longer time to develop stable flow. This trans- 
lates naturally to an extended capillary length. Zahorski2* has derived a correction 
for the capillary length in the form 

where A1 is the additional capillary length needed, 1, is the length of capillary 
needed to achieve stable flow of Newtonian (viscous) fluid, APu is the driving 
pressure for extrusion of viscous fluid, p l l  - p22 is normal stress difference. There 
is, however, a problem with the determination of the I, value; the equation derived 
for the purpose by GoldsteinZ7 is inapplicable for viscoelastic fluids. 

Thus, it may be seen that calculation of the capillaries for viscoelastic fluids 
may not be so simple, or so accurate. It may be necessary to apply special solutions 
involving constitutive equations for the specific case on hand. 

A relatively large effort has been devoted to determining the influence of various 
modes of flow, as well as of the flow intensity, on the resulting polymer morphol- 
ogy, and ultimately on the corresponding polymer proper tie^.^>^^-^^ The results 
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obtained thus far and the conclusions offered by various authors are not entirely 
coherent. There are only few points to be stressed with some certainty. Namely: 

The effect a flow has on the polymer depends on the polymer type, e. g. 
noncrystallizable, block copolymer (thermoplastic elastomers), thermotropic 
liquid ~rystal1ine.l~ 

The effect of flow depends on its mode and geometry, e. g. shear, elonga- 
tional, c u r ~ i l i n e a r . ~ ~ ~ ~  

Orientation caused by shear relaxes faster than it might be measured by any 
reliable technique. l3>l5 

In extensional flow, the polymers with flexible chains seem to be oriented 
to a degree too small to be measurable by any proper, currently available 
techniques. ' 
Liquid crystalline polymers do not become oriented in a shear flow, while 
they become strongly oriented in extensional f10w.151138 

In melt shearing of A-B-A copolymers, the hard segments become little 
elongated. 

Changes in entanglement density due to perturbations in flow, (e. g. tum- 
bling of coiled molecules in shear flow) do not necessarily lead to orientation 
effects, but they certainly do lead to an increase in strength.13 

Experience tells us that the quality of fibers and the ease of processing increase 
with increasing length of spinnerette capillary. But it also increases with increas- 
ing shear rate in the ~api1lary.l~ The effect is most likely related to the increasing 
number of entanglements due to shear rate. The increased relaxation in long cap- 
illaries probably reduces the stresses to which the entangled chain segments are 
subjected, but without reducing the number of entangled chains. In effect, the 
die swell decreases, so the required attenuation of the fiber diameter is smaller. 
However, the mechanical strength of the fibers increases markedly with increasing 
shear rate in the capillary. Shear rates as high as 7500s-' have been used with a 
substantial success. Nevertheless, in application of the high shear rates and large 
capillary length, one meets an overpowering challenge: the requirement of high 
extrusion pressures. Thus, technologically reasonable solutions will dictate where 
the right compromise lies. Besides, the critical shear rate, which is a complex 
result of polymer nature, geometry of equipment, and extrusion conditions, im- 
poses another limitation on the intensification of the process. The phenomenon of 
extrudate fracture has been discussed in section 111.8. 

IV.3 Forces Acting in Quench Zone 

An analysis of the forces acting on the filaments in the quench zone was con- 
ducted by Ziabicki and co-workers in the early sixties and later summarized in his 
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 book^.'^^'^ The force balance has been determined to be 

where F stands for force, and the subscripts are: e - external (drawing)] g - 
gravity, r - rheology, i - inertia, s - surface, and a - aerodynamic. 

The external force is, naturally, the force applied by the take-up rollers or 
aerodynamic jet. The question is: how large a force needs to be applied for a 
given process? This is the answer expected from the examination of the entire 
force balance. 

The gravity force may be presented as 

Fg = 9- ( l -  x cosx 
P 

(IV. 12) 

In equation IV.12 the notation is: g - acceleration due to gravity, PO - density 
of the surrounding, p - density of filament, x - angle between the filament and 
the horizontal. For the vertical formation, x is 90", provided that the path of the 
spinline is not altered, e. g. by a cross flow quench air. For horizontal spinning, 
wet processes included, x equals 0. However, the line is normally deformed either 
by gravity or by buoyancy. The deformed line usually assumes a form of hyperbolic 
cosine (chain curve). Much more serious inaccuracy of equation IV.12 is connected 
with the change of filament density from that of a melt (or solution) all the way 
to a semicrystalline solid. As the changes of density are difficult to  express in a 
form of a function, exact solutions need to involve numeric integration to take care 
both of the density changes and of the potential changes of the angle x .  

In case of vertical formation path, the gravity force acts in the same direction 
as drawing force. In horizontal configuration, some components of the gravity 
force may act in the same direction as gravity force, though on some sections of 
the spin line the force components may act in the opposite direction. All of the 
remaining forces act in the direction opposite to the drawing force. 

The force needed for acceleration of the material (the force of inertia) has been 
described as 

Pi(.) = P Q (?I V - $0 Vo) N P &(I' - $0 Vo) (IV.13) 

where x is distance from the spinnerette, p stands for polymer density at  point 
2, while PO is initial polymer density, V is filament velocity at  point x, and is 
initial polymer velocity, $ represents a coefficient describing the velocity profile, 
the subscript 0 indicates a parabolic profile, for a flat velocity profile $ equals 
unity. Since the overwhelming majority of the spinning path has a flat, or nearly 
flat, profile it is justified to simplify the equation to IV.13.2 However, similarly 
as in the case of gravity, the changes of filament density are difficult to depict 
in the form of a function. Therefore, analytical solutions of equation IV.13 must 
be considered as quite inaccurate. The force of inertia is, naturally, acting in the 
direction opposite to the drawing force. 
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The surface force results from the interfacial tension between the filament sur- 
face and the surrounding medium, and from the change of filament curvature. 

F, = T I/ [fi - R 6(2)] (IV.14) 

Here Y represents interfacial tension, R is fiber radius, while other notation is as 
above. Due to changes of temperature of the melt, surface tension may change by 
some ten per cent. For accurate results, temperature correction should be in place. 
In case of fiber formation from solution, changes of temperature may be not quite 
as large, but changes of polymer - solvent composition may have a much larger 
effect on surface tension and the appropriate corrections should by no means be 
neglected. 

The forces of material deformation (the rheology force) have been treated by 
Ziabickil6>I7 in a very schematic and sketchy fashion. As may be seen from fig- 
ure IV.3, the deformation forces are quite dominant in the process and must be 
considered much more seriously. 
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Figure IV.3: Forces acting on a filament in quench zone. Medium fast process. Details 
in text. Note the different scales on the force axis. 

The next section on melt drawing reviews the status of that knowledge as of 
now. 
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The same may be said about the aerodynamic forces. The matter is consid- 
erably more complex than originally depicted by Ziabi~ki.’~)’’ The magnitude of 
the forces present in industrial fiber formation, particularly a t  moderate and high 
velocities, brings them to a level comparable to the rheology forces. The flow of a 
large volume of air through the fiber paths, sometimes consisting of substantially 
more than a thousand filaments, makes things much more complex. These prob- 
lems are discussed in the chapter on engineering physics. Figure IV.3 presents 
forces acting on a filament in an industrial process of fiber formation with final 
velocity in excess of 4000 m/min. The last point on the graph corresponds to 955 
m/min. The polymer used was polypropylene of weight average molecular mass of 
230 000. The data were collected during a detailed process analysis. Total external 
drawing force applied was 0.025 N per filament. The data for rheology forces result 
from the force balance, while all the other data result from calculations based on 
measured process parameters. For better visualization of the relative magnitude of 
the various forces, as well as for visualization of the shape of the curves, different 
scales have been put on the force axis. 

IV.4 Diameter Attenuation 

Upon leaving the spinnerette, the polymer stream is usually extended, which 
leads to a decrease of the filament diameter. It would be exceedingly difficult to 
extrude fibers of the final diameter, or the diameters would have to be very, very 
coarse indeed. The extension, as will be discussed below, has several more rea- 
sons and/or consequences than just diameter attenuation. The extension process 
brings, naturally, a question: will the filament break or not? Molten polymer, or 
polymer solution, intuitively are not expected to be able to withstand any signifi- 
cant stresses. 

Nitschmann and SchradeI8 attempted to explain the extension- attenuation 
process in fiber formation by taking advantage of the Trouton studieslg on ex- 
tension of amorphous liquids. The work of Nitschmann and Schrade led to  the 
construction of an interesting instrument, a kind of balance, for determination of 
extensional viscosity of polymer solutions. Determinations of extensional viscos- 
ity of casein fiber dope* and of solution of nitrocellulose, using Nitschmann and 
Schrade’s “balance”, gave interesting insight into the problems. It was found that 
elongational viscosity in its dependence on deformation rate, or on the stresses in- 
volved, shows quite different behavior than shear viscosity. This pioneering work, 
however interesting and important, brought more new questions than answers. 

The important findings were that the extensional (Trouton) viscosity depends 
on the extension rate, similarly to shear viscosity. The similarity includes the fact 
that the relationship is not necessarily linear. In the nonlinear region, the shear 
and extension behavior are not necessarily parallel, or even similar. In both cases, 
though, when certain limiting value of deformation rate is exceeded, one observes 

~ 

*solution for fiber formation 



IV.4. DIAMETER ATTENUATION 111 

flow instability. It has been noticed also that as the filament diameter decreases 
(the extension increases), the filament is able to withstand higher force, extensional 
viscosity increases. The most striking observation was this: extensional viscosity 
showed a minimum in its dependence on stress (for casein fiber dope ranging from 
some 27 to 33 KPa, depending on the load, it is on rate of extension). 

The first man-made fibers were obtained from polymer solutions; rupture of the 
filaments often led to break-up of the polymer stream into droplets. There were 
several attempts to devise a notion of spin,nabiZity2a-22 , mostly involving viscosity 
and surface tension. In practice, however, the tests of spinnability were difficult 
to reproduce, i m p r a ~ t i c a l , ~ ~  and therefore will not be elaborated on here. 

The literature in the subject of elongational rheology and its application to 
fiber formation is sizeable. In 1979, C. J. S. P e t ~ - i e ~ ~  devoted to the subject a 
quite extensive and detailed monograph. Many of the suggestion$ appear under 
names that are notable in the field of rheology. Yet, the problems of elongational 
flow in fiber formation is deemed far from being solved. V. Tirtaatmadja and T. 
Sridhar150 have tested experimentally application of various constitutive equations 
to extensional flow. Out of the models, Oldroyd - B, Gieskus, Perne, and White 
- Metzner with application of multiple retardation times, the best result obtained 
was extensional viscosity within the correct order of magnitude. This is by far not 
enough. To cope with the large number of proposals which often represent very 
interesting exercises in theory of rheology, we shall look at  the phenomenological 
picture of fiber formation, and on this basis we shall present those solutions which 
seem to be in the best agreement with the science of rheology, as well as with the 
process realities. We shall try to propose those solutions which appear to carry 
the better promise. Figure IV.4 represents the events covered by the term "melt 
drawing". Section A of the figure gives a schematic pictorial representation, while 
section B presents a concretization of the scheme in the form of the pertinent 
analytical data collected in an commercial process of rather fast fiber formation 
(4070 m/min final fiber velocity) from polypropylene. 

One may assume that after passing through filters; the polymer is "stripped of 
its memory". In reality, the history goes back to the moment of polymerization, 
but the intensive shearing may be able to reduce, or overpower, the remnants of the 
previous history to a negligible level. If so, than the meaningful history starts with 
the moment the polymer enters the spinnerette, the counter bores leading to the 
capillaries. As the introducing channels usually have a conical section leading to 
the capillary proper, the polymer is subjected to shearing and to extensional25i26 
deformation, which are superimposed on each other (see also sections 111.6 and 
111.7). The elongational deformation imposed in the conical entry to the capillary 
relaxes to some extent in the cylindrical section of the capillary. Nevertheless, upon 
exit from the capillary the remaining elongation relaxes further, and together with 
the change of the parabolic velocity profile to a flat one, this causes the polymer 
stream to  swell. There is a strain, or force, applied on the other end of the polymer 
stream. 

In the example given in Figure IV.4 B, at  the exit of the spinnerette, the stress 
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Figure IV.4: A:  Schematic representation o f  polymer Aow in fiber formation. B: Di- 
ameter change (dashed lines) and crystallization (full drawn lines) against distance (fine 
lines) from spinnerette and against time (heavy lines). Analytical data from a commercial 
process. 

exerted by the drawing represents 14.5 per cent of the pressure needed to push the 
polymer through the cylindrical section of the capillary. It is true that the process 
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is quite fast, for slower processes the stress may fall down to 5, or even 3 per cent. 
However, for some processes, especially those faster ones, it may reach even 20 
per cent. The range of stress cannot be considered negligible, and it should be 
taken into account in the capillary flow calculations as a negative pressure. The 
drawing stress, whatever its level, is insufficient to prevent the extrudate swelling 
completely, though it may diminish it. From the point of the maximum swell, 
begins the diameter attenuation. The attenuation process normally continues until 
final take-up of the ready fibers. 

IV.4.a Basic Mechanics of Drawing 

The initial portion of attenuation, by definition, proceeds according to the laws 
of elongation, extension, or stretching, depending on the preferred nomenclature. 
The initial segment of the process, where melt rheology ought to rule, ends when 
the polymer starts to crystallize. The initial stages of crystallization may also be 
possibly treated according to the melt rheology rules, but the material properties 
change quite dramatically and fast. Larger crystallization nuclei and small crys- 
tallites in the process of growing may act as points of cross linking. In the latter 
case the material would change from rheodictic into arrheodictic, and it would be 
subject to somewhat different rules of rheology; studies of these problems are in 
their infancy.13' 

When the crystallization process is completed, or nearly so, the material may 
be deformed according to the principles of plastic deformation. If one examines 
the course of crystallization in figure IV.4 B, then it is easy to find two "yield" 
segments, which may be read as a kind of change in the mechanism of diameter 
attenuation due to change of the material properties. 

It is necessary to stress that the described process is accompanied by cooling, 
and in the depicted case, the cooling was rather intensive. And that is the way it 
is with almost all fiber formation processes, down to the start of crystallization, or 
other phase transition. The only exception may represent some wet process. How- 
ever, the process of crystallization, as all other processes of phase transformation 
are, is exothermic. Exothermic is also plastic deformation. Thus, from the onset 
of crystallization, the processes are never isothermal. 

It is necessary to point to the difference of interpretation of the process in terms 
of distance from spinnerette face and in terms of time. The curves plotted against 
time are usually smoother. The most striking may be a comparison between the 
crystallization process taking 35 cm distance (from 28 to 63 cm) but taking only 
120 ms. 

Among the more important efforts on a theoretical solution to the problem of 
material strength in extension, one must certainly quote that by M. Reiner and A. 
F r e ~ d e n t h a l . ~ ~  These authors extended the material strength theory on the basis 
of the maximum of distortional energy by M. T. Huber and H. Hencky. The static 
concept of distortional energy, Eo, has been substituted with the dynamic concept 
of the power of distortion, dEo /d t .  Further, the authors recall the representation 
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of the different forms of mechanical energy, as proposed by K. Weissenberg (figure 
IV.5). From the figure, it is evident that the sum of energies a t  any point of the 
triangular area, EK + Ep + E D ,  must equal the work of the external forces. The 
distortional energy is then, EO = Ep + ED.  

Figure IV.5: Representation of the body conditions upon an input o f  energy, according 
to K.  Weissenberg as cited in ref. 29. 

As the first condition, the Huber-Hencky theory states that failure by dis tort ion 
is governed by the  m a x i m u m  value of t he  elastic energy of distortion. The modified 
formulation by Reiner and Freudenthal is given the following form 

T T T 

d E D  d t  (IV.15) 1 dt d E p  d t  = 1 % d t  - 1 dt 
t =O t = O  t = O  

The kinetic energy influences the strength only in case of impact. In such cases, 
the kinetic energy becomes transformed into hydrostatic tension, which may lead 
to a failure. The second condit,ion of the Huber-Hencky theory concerns cases when 
the rate at  which the energy is transformed exceeds the ability of the material to 
be strained, e. 9. if the magnitude of tensile stress caused exceeds the actual 
cohesion of the material. 

Equation IV.15 implies that certain amount of the distortional energy may be 
dissipated during the time of the event. The dissipation is due to a viscous orland 
plastic flow. In case the rate at  which the distortional energy is delivered equals 
the rate at  which the energy is dissipated, 

(IV. 16) 

then there is practically no limit to the amount of the distortional energy which 
might be supplied to the material without causing a failure. This is a case of creep. 
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By taking advantage of the Maxwell body, the authorsz9 arrive at  the following 
basic equations: 

(.).- 1 dA = -(L)-(-) d P  - (&) x ($) 3 E  d t  A 
(IV.17) 

The distortional energy is given as 

T 2 T 2 
E ~ = G / $ ( $ )  1 d t + & / ( ; )  d t =  

t=O t=O 

2 

- - L[(;)2- 6 E  (2)’] +& ( 5 )  dt (IV.18) 
t=o 

In the above equations we have: P - force, A - area of cross section, E - modulus, 
77 - viscosity, 1 - length, subscript 0 denotes initial value. Stress, (T = P/A, as a 
function of time needs to be determined by taking advantage of equation IV.17. 
Reiner and Freudenthal derive equations for several cases of deformation; for us, 
two of them may be interesting: constant velocity of strain and constant force. 

For a case of constant velocity of strain the general equation has the form: 

- P = exp(-t / 6) [ 3 E- y: / exp(t/e) d t +  “1 (IV.19) 
A 1 + (w0 t / l o )  A0 

The integral given in equation IV.19 has no finite solutions and cannot be 
solved by convergent series. The following approximate solution is suggested for 
cases with 0 5 A1 5 10 

Here Q = w0 6 /20  and represents the elongation at  t = 6 .  In this case velocity is 
constant: v ( t )  = v0 = const. The time-strain function is 

(IV.21) 

The strain-stress function is given as 

where E = v t l l 0  = Alllo. The strain-load function has the form 

2 c;l2 x 5 )  - exp ( - $1 (IV.23) 
[ex.( - 1+2c,3/2 

3 E A0 ca(l + 24”)  
l + &  

P =  
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The time-energy function is 

(IV.24) 

According to the above derivations, rupture occurs if 

[lo (6 E EO)O.~] 
(3  r l )  

u0 [I - exp(-t/O)] = 

As a consequence, if 

(IV.24 a )  

(IV.24 b )  

(IV.25) 

All this means that the material can be strained indefinitely, SO to say. Defor- 
mation under constant load, when P = Po = const, represents another possibility 
of interest in connection with fiber properties (creep), and in connection with 
diameter attenuation. 

On integration of equation IV.17 one obtains 

(IV.26) 

where €0 = Po/(SEAo). Equation IV.26 may be simplified for commonly encoun- 
tered cases when A0 > A 2 0.5Ao as follows: 

A = &(l - %) (IV.27) 

When using this simplification one can obtain some important relationships. 
And so the time-velocity function is 

(IV.28) 
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Strain as function of time 

Stress-strain relationship 

1 
A1 u 

10 0 0  

- - --  - 

(IV.29) 

(IV.30) 

where u = P/A and uO = Po/Ao and by assumption P = PO = const. 
Energy as function of time is described by 

2 2 

(IV.31) 
1 1 t 

1 - ( E O  t / 6 )  ? 

Failure takes place if 

CJO = [I - (EO t / 6 ) ] ( 6  E Eo)'.' (IV.32) 

a t  
0.5 

t - 3 E A o  
- 0 -  ---(E) PO 

(IV.33) 

The main reservation to the above proposals of solution to the problem is the 
use of the shear viscosity and shear modulus. It is known that the extensional flow 
cannot be described on the basis of experiments in 

IV.4.b Extensional Flow Problems 

Development of extensional rheometry remains far behind shear analytical met h- 
ods. Reliable instruments have been developed only relatively recently. Under- 
standing of the basic nature, and consequently, interpretation of the experimental 
results still seem to be rather unsettled, at  best. 

A very substantial effort in the investigation of extensional flow has been in- 
vested by G. V. Vinogradov and the team of his co-workers. Significant and 
exciting results were presented in 1970.32133 

Vinogradov's team built its own rheometer and investigated high molecular 
mass noncrystallizable polymers to make the experimental work simpler, and to 
avoid complications due to crystallization. A very important element of these in- 
vestigations was determination of relaxation for every point of extension collected. 
The completeness of the data collected allowed evaluation exceeding the customary 
procedures, and in some ways was nonconventional. 

The extensional deformation has been formulated according to the method of 
Hencky, E = ln(l/lo). Here E is total deformation, 10 is initial length of the sample, 
1 is length of the sample at  some time t ;  E~ is elastic (reversible) deformation, while 
~i is irreversible deformation, ~i = ln(li/lo), where li is length of the fully relaxed 



118 CHAPTER IV. POLYMER IN FIBER FORMATION 

10 

10 

10 

Rupture 
l? 

(P 

0.000137 
4 

ttJ108 
W 

v) 
W a 

tz 
1 0 7  

1 0 6  

10 5 

0.5 1.0 
1 0 0  

STRAl N 

1 0 4  2! 0.5 1.0 1.5 2.0 2.5 

STRAl N 

Figure IV.6: True stress versus total strain for various strain rates (given as parameter). 
After G. V. Vinogradov et al.33. 

sample, E, = E - ~ i .  Extensional viscosity is < = u/ii,  where CT represents true 
stress and i i  stands for the rate of irreversible deformation. Modulus of elasticity 
is E = u / E , .  

From figure IV.6 - left, one may see that for low deformation rates, the true 
stress rises monotonically with strain to reach a plateau representing a constant 
value of stress at  E = t i  = const. With the increasing extension rate, the shape of 
the curves gradually change from convex toward stress axis, further to assume an 
S-shape, and further, at  still higher extension rates, the plateau region disappears, 
up to the point of rupture. For those conditions where the constant stress is 
observable, the time, t,, and deformation E ~ ,  where the const,ant stress begins, 
change rapidly with strain rates. This may be seen in figure IV.7. The onset of 
constant stress flow coincides with the maximum in the elastic deformation. 

Figure IV.8 presents extensional viscosity on total (top) and on irreversible 
deformation, deformation rate is given as a parameter. One may notice that for 
some deformation rates, viscosity reaches a constant value independent of defor- 
mation. Before the region of constant value is reached, viscosity may pass through 
a maximum. Such a maximum is located in the vicinity of the point where the 
reversible and irreversible deformations are equal. Initially, viscosity grows with 
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increasing strain nearly linearly, especially if the irreversible strain is considered. 
The same is true independently of the rate of strain. The length of the nearly lin- 
ear segment of the curve extends toward higher deformation as deformation rate 
increases. Eventually, a level of deformation rate is reached where the entire curve 
is linear, without a maximum, without a segment of constant viscosity. 
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Figure IV.7: Relationship between extensional viscosity and total strain (bottom), as 
well as  irreversible strain (top). Deformation rates given izs parameter. After G. V. 
Vinogradov and al.33 

Extrapolation of all the curves, irrespectively of the deformation rate, down to 
zero extension gives the Trouton viscosity, 6, which is equal to three times the zero 
shear viscosity. The extrapolated Trouton viscosity agrees with the relationship 
proposed by Kargin and S o g ~ l ’ o w a ~ ~  : 

c = SO(1 + E i )  (IV. 34) 

At low strain rates, viscosity of the constant, strain independent segment is 
equal to the Trouton viscosity; at  higher deformation rates, however, this does not 
hold true. 
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IRREVERSIBLE STRAIN 

TOTAL STRAIN 

Figure IV.8: Relationship between extensional viscosity and total strain (bottom), as 
well as irreversible strain (top). Deformation rates given as parameter. After G. V. 
Vinogradov et al.33 

Modulus of elasticity (figure IV.9) at low extension rates shows some similarity 
with the corresponding relationship for elongational viscosity. Namely, there is 
initially a maximum and a plateau, where the modulus does not change with 
extension. With increasing extension rate, the initial maximum disappears, but 
there is a segment of extension insensitive modulus. At  high extension rates, no 
region of constant modulus appears before a rupture takes place. 

Figure IV.10 and IV.l l  show the influence of extension on the stress relaxation, 
given as ln(c/co) against time. Comparison of the two figures shows the difference 
in the relaxation behavior between the material stretched at  the lowest and the 
highest deformation rates of those studied by Vinogradov et al. 

At this point, a new way for assessment of the relaxation process is introduced: 
namely, the notion of the initial time of relaxation, which is defined as the initial 
slope of relaxation time versus natural logarithm of the stress decay: 

(IV.35) 

In figure IV.12, the values of so obtained initial time of relaxation are plot- 
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Figure IV.9: Modulus of elasticity in relation to strain and strain rate (given as param- 
eter). After G. V. Vinogradov et al.33 

Figure IV.10: Stress relaxation versus time and strain for extension rate of l . l l w 3 s - ’ .  
Data from G. V.  Vinogradov et al.33 

ted against deformation for three deformation rates. It is noteworthy that some 
of the curves have maxima, and these maxima occur at values of deformation 
close to those encountered in the relationship between extensional viscosity and 
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I 

Figure IV.ll :  Stress relaxation versus time and strain for extension rate of 5.7.10-3~-1. 
Data from G. V. Vinogradov et  al.33 

deformation, which are indicated in the figure IV.12 by the arrows. 
Although the extensional deformation, as evident from the above quoted re- 

sults, cannot be treated in a simple Maxwellian fashion characterized by a single 
relaxation time, but rather with the entire spectrum, the authors use the linear 
formalism to describe the relation between the stress relaxation after the cessation 
of extension. 

M 

n = ~ l y e x p ( - t s )  ds 

0 

(IV. 36) 

The function N ( s ) ,  the relaxation frequency distribution, is calculated from o( t )  
using the first approximation method by A l f r e ~ . ~ ~  

dP 
t d l n t  

N ( s )  = -- (IV.37) 

where s = l / t .  If the calculations are conducted correctly, then it should result 
that 1”’” d s =  < (IV.38) 

M 

0 
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Figure IV.12: Initial time of relaxation for different levels of strain. Strain rate  given 
as parameter. After G. V. Vinogradov et  al.33 

If the value of the integral is smaller than (, then the spectrum is incomplete. 
Figure IV. 13 presents the dependence of the relaxation frequency distribution 

function on frequency and strain in a three dimensional graph. Figure IV.14 gives 
in the similar form of the three dimensional graph the relationship between the 
relaxation frequency distribution functions on frequency for constant viscosity flow 
at different deformation rates. 

Figure IV.13: Plot of relaxation frequency distribution in relation to  the frequency and 
t o  strain. El-om the  data  by G. V. Vinogradov and aJ.33 
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Figure IV. 14: Plot of the relationship between the relaxation frequency distribution and 
frequency for constant viscosity a t  different rates of deformation, from the data by G.V. 
Vinogradov et a1..33 

Another important result of the investigations by Vinogradov et ~ 1 . ~ ~  is the 
indication of the strength of polymer in relation to the processing conditions. 
The molten samples of polystyrene investigated in the extensional rheometer were 
“instantly” vitrified upon extension and tested for strength. Results of these ex- 
periments are shown in figures IV.15 and IV.16, where the rupturing stress is 
plotted against the total strain (figure IV.15), and the rupturing stress against the 
irreversible strain (figure IV.16). The arrows in figure IV.15 indicate the values of 
the total deformation where the maxima of viscosity are reached before a steady 
state had been reached. Both of the figures witness to the fact that the rate of 
deformation has a significant effect on the strength of the vitrified samples. This 
permits also the inference that similar increase of strength regards the melt prior 
to the vitrification. Vinogradov et al. suggest that the increase of strength is 
primarily due to the increase of reversible, high elastic strain. 

In a later publication, G. V. V i n ~ g r a d o v ~ ~  elaborates on the flow instability in 
extension. According to his findings, a stable extensional 00w may be realized as 
long as stress does not exceed the critical value of 0.1 to 0.5Pa - it is the same 
stress value as is for the shear experiments. 

The authors33 conclude that the total strain (or draw ratio, as it may be 
expressed) should not be regarded as the parameters determining orientation effect 
in the polymers. This is in full agreement with similar conclusions reached by other 
investigators at numerous other occasions. Vinogradov et  al. emphasize that once 
the extension process reaches steady state, there is no strength increase any more. 
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This value is essentially independent from temperature and molecular mass for 
a given homologous series. It must be noticed, however, that critical shear rate 
depends on temperature and molecular mass. 
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Figure IV.15: Relationship between the rupturing stress and total strain. Extension rate 
as parameter. The arrows indicate the deformation at which the maximum o f  viscosity 
was attained. After G. V. V i n ~ g r a d o v . ~ ~  
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Figure IV.16: Dependence of tensile strength on reversible strain. Extension rate as 
parameter. After G. V. V i n ~ g r a d o v . ~ ~  

At stresses and deformations below their critical values at  isothermal condi- 
tions, the extensional viscosity remains constant within a reasonably narrow range. 
Conversely, if the critical values are exceeded, a flow instability may appear. The 
fact that when the critical stress (or strain) values are exceeded, the ability of 
polymer to accumulate additional irreversible deformation is reduced can be an 
explanation for the preceeding statement. On the other hand, the accumulation 
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of reversible deformation is limited to ultimately reach a level corresponding to its 
relaxation ability. Consequently, the polymer passes into a forced rubbery state 
and will start to fracture. In the forced rubbery state, the polymer behaves as a 
cured elastomer, where an increase of the deformation rate causes the reversible 
tensile deformation to pass through a maximum, which indicates passing into a 
glassy state - a state of b r i t t l e n e ~ s . ~ ~  

Other  investigator^^^-^^ find, with substantial theoretical backing, that frac- 
tured flow of polymer melts shows significant dependence on extension rate and 
temperature. With increasing temperature, fracture starts at increasing extension 
rates. However, with significantly higher extension rates the fracturing disappears. 
The extension rate at which the fracture disappears increases with decreasing tem- 
perature. 

0 

Figure IV.17: Plot of the transient elongational viscosity as a function of the total strain 
and time calculated according to Marucci et al.43. The heavy lines indicate: SB - data 
calculated from spinning experiment, FD - determinations by the method of falling drop , 
FW - data calculated with falling weight method. EF - indicates beginning of the steady 
state (equilibrium) flow. Based on J .  Ferguson and N .  E. Hud~on .~ ’  

There is a substantial similarity between the observations by Vinogradov and 
the graph presented in figure IV.17 which gives a mapping of the transient elon- 
gational viscosity versus total strain and time. 
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Thanks to the work by J. Ferguson and N. E. and naturally to the 
underlying constitutive  equation^,^^-^^ we have a good visualization of the some- 
what “strange” results of the exhaustive experimental studies by Vinogradov et. 
a1.,33,36 as well as an understanding of the reasons behind the differences in elon- 
gational viscosity when measured by different techniques. I t  would be interesting 
to determine how the results of the determinations of elongational flow in hyper- 
boloid cone o r i f i ~ e s ~ ~ ~ i ~ ~ ~  would compare with the other data of figure IV.17. The 
work of Ferguson and Hudson47 also gives additional explanation of the transient 
shear flows discussed by Vinogradov. 

I t  is important to realize that the majority of the experimental techniques for 
the determination of elongational viscosity, as well as the majority of industrial 
processes involve only the transient flow region. Undoubtedly, this creates a diffi- 
cult situation if there is a necessity to relate laboratory analyses with the material 
behavior in any industrial process. 

Phan-Thien and Tanner4*l4’ have developed another linear model, with addi- 
tional improvements over the model of Marucci et u Z . ~ ~ .  Additionally, the model 
does accommodate nonisothermal cases: 

where 

which represents the exponent of the inverse of WLF equation, 

(IV.39) 

(IV.40) 

E is a constant on the order of 0.01, D is stretching tensor, 7 is stress tensor, B 
is relaxation time, G is modulus, and GI = G H (1 - [), where H is relaxation 
function, and [ is an adjustable parameter. Further, 

with L ,  the macroscopic velocity gradient and C = L - [ D, and finally t r 7  = 
[3kT/(Na2)] . (A)2, and (A)2 is mean square extension of the molecular entangle- 
ment network strand. 

The just given constitutive equation has been adapted for application to the 
fiber formation problem4’, giving the following set of equations: 

(IV.41) 
- 2 (1 - [ ) f iTi} = 2 ai dm d u  

d m  
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- (1  - &Pi} = -Oi - d u  
d m  d m  

N 

where ai = Oivo/L is Deborah number and 
The boundary conditions are given x: 

z=O, u= 1,  and 

(IV.42) 

Pi) = u (IV.43) 

N c qh(bfT2 - Pi)  = 1 
i= 1 

It is stipulated that the initial stress distribution does not affect the solution over 
the entire fiber path. This is the result of an assumption that at z = 0 Pi = 
0 and Ti = 1/N4k.  

The final version of the equations for a fiber formation case is: 

where 
N 

C di/ai K ( T i  - Pi)  
i= 1 (IV.46) c - -  

N N 

C 4i [(I - 2 <)Ti + I Pi] + 3 C 4i 
i= 1 i=l 

I- 

Equations IV.44 to IV.46 present a set of first order differential equations. 
The needed input is take-up force, initial velocity, and flow rate. In terms of 
analytical preparations, full rotational and oscillatory determinations are needed. 
Also, very crucial is the knowledge of the relaxation function, though the author 
does not specify what type of relaxation and this segment of the work raises some 
questions. Solution of this set of equations gives stress distribution along the 
spinline, velocity profile and draw ratio. The draw ratio, if known, cannot be 
specified independently. 

Phan-Thien49 presents a test of the validity of the equation on data obtained 
for formation of fibers from low density polyethylene5' and poly~tyrene,~' both 
noncrystallizable polymers. The formation processes were very slow, far from 
the industrial level of intensity. The agreement between the calculated results 
and the data measured from the experiment are much better than any of those 
published earlier. Nevertheless, the discrepancies grow with the growing distance 
from spinnerette, similarly like in many other publications, to reach some ten to 
fourteen per cent. One must admit that the calculations are quite involved, as is 
the analytical preparation. 
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Several authors concede that solution of the “spinning problem” by way of the 
constitutional equations developed thus far is essentially unsuccessful.24~139-142 

IV.4.c Andigraphic Solution of Attenuation 

Another way of resolving the “spinning problem” is offered by this author in 
the framework of a complex treatment of all the unit processes taking place in the 
quench zone. 

When one considers a process with constant take-up force, then the force acting 
on any cross section along the spin line is constant, in the first approximation. The 
differences in force level are caused only by “the losses to the environment”, etc. 
Additionally, as the polymer stream emerges from the exit of the spinnerette, it 
is subjected to a drawing force which may be understood as a case of step stress 
excitation. The force superimposes on the effects of the forces applied earlier 
in the extrusion process. The step application of force is a precondition for the 
qualification of a process as creep. After scrupulous examination of all kinds of 
analytical data collected on many different fiber formation processes, we find that 
they do not resemble extensional rheometric data or plots. With this in mind, in 
addition to the lack of real success in describing the process by all means tried thus 
far, it has been assumed that the process of diameter attenuation in fiber formation 
is a process of creep. As the additional justification for such an assumption, it may 
be given that in the course of attenuation, there is no qualitative difference between 
fiber formation with constant take-up velocity and constant take-up force. This 
is the matter of long recognized “self regulation” of the mutually interdependent 
quench zone processes. In a drawing process, e.g. during rheometer testing, the 
extension of the material is by definition under strain excitation, the diameter 
reduction is uniform over its entire length, while the extending force increases with 
the growing strain. In reality, in fiber formation this is not the case, despite the 
fact that in fiber makers’ slang the operation is called melt drawing. K. Katayama, 
T. Amano, and K. N a k a m ~ r a ~ ~  quite long time ago observed during formation 
of fibers from polyethylene that diameter attenuation fits into the Kelvin-Voigt 
model, a model describing creep. 

Figure IV.18 presents the apparent extensional viscosity and strain plotted 
against time. The data were taken from the detailed analyses of several medium 
fast industrial processes, and they span from the maximum of the die swell to 
the end of crystallization. All of the cases presented in figure IV.18 show very 
distinct similarity: the extensional viscosity (non-isothermal, as it is in the pro- 
cess) is practically constant at  a very high level, possibly with a slight negative 
slope. According to Vinogradov, 3 3 1 3 6  this should be an indication of linearity of 
the system. Naturally, it is to be expected that shortly before the initiation of 
crystallization some kind of L‘havocll takes place in the polymer morphology. One 
cannot expect to describe adequately this segment of polymer history by a linear 
relationship. 

On the basis of the above assumptions, the empirical data may be used to 
calculate creep compliance as a function of time. From such a relationship one 
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Figure IV.18: Apparent extensional viscosity and strain obtained from analysis of sev- 
eral medium fast industrial processes of fiber formation. The time scale spans from 
the maximum of the die swell to the onset of crystallization. Polymer: polypropylene. 
Nonisothermal, “as is” data given. 

may calculate retardation distribution function which represents the essence of 
viscoelasticity and permits to depict all pertinent rheological functions: thus the 
title ”andigraphic” from QUTLY~Q&W = depiction, image, reflection. 

There are several methods available for calculations of the relaxation and retar- 
dation ~ p e c t r a . ~ ’  The finite difference operator approximation method by Yasuda, 
Ninomiya, and T ~ c h o e g l ~ ~  appears to be accurate and convenient, provided that 
the third order approximation equation is used. The needed equation is given as: 

+ J(h3  t )  - (h2 + h + 1) J(h2  t )  
(h2 - l ) (h  - 1) In h L(B’p*) = 

(IV.47) 

The notation here is: L - creep retardation spectrum, t - time, B - retardation 
time, h - finite difference time increment, p* - spectral shift factor given for several 
log h values in table IV.l. Time is commonly used in a logarithmic scale and so 
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is the time increment. Following T s ~ h o e g l ’ s ~ ~  notation in equation IV.47 ht really 
means log t + log h and h2t corresponds to log t + 2 log h etc. The value of h is 
usually selected so that its logarithm equals between 0.1 and 0.5. With decreasing 
value of h, the accuracy of the spectra increases but with h < 0.1 the sensitivity to 
error in the input data greatly increases, and this may eventually lead to increased 
uncertainty of the obtained retardation function. 

Table IV.l. 
Spectral shift for various finite differences for third order approximation. After 

N. W. Tschoeg131 

logh I 0.1 I 0.2 I 0.3 I 0.4 I 0.5 
B* I 2.139 I 1.550 I 1.150 I 0.878 I 0.689 

Once we have a retardation function, almost everything else may be calculated. 
The suggested way of process description is accurate. The retardation function 
is strongly affected by deviations in polymer chain structure and the suggested 
procedure provides data for the polymer one works with. There are, however, 
several points to be observed. 

According to Stavermann and S ~ h w a r t z l ~ ~ ,  the process of creep is inherently 
nonlinear. Following J. MarinCit.in 52 creep is customarily interpreted as consisting 
of three parts: 

1. Instantaneous creep, E O ;  

2. Transient creep, [ ~ ( t ) ] ,  which increases with time from zero to some finite 
equilibrium value; 

3. Steady state creep, [$f. t ] ,  proportional to time (see Figures IV.19 and 
IV.20). 

I 

TIME 

Figure IV. 19: Generalized schematic representation of compliance (or strain) versus 
time in response to step application of stress: creep behavior. 
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Figure IV.20: Extensional creep of polymethyl methacrylate; parameter: initial stress 
in MPa .  After J .  Marincit,in52 

The marks ‘(linear” or “equilibrium” in figure IV. 19 represent the strictly linear 
creep. The instant compliance (strain) is a nonlinear feature. The same is true of 
the steady state fluidity, 4 f . t ,  in figure IV.19 represented by the triangle contained 
between the lines tangent to the equilibrium compliance (dashed lines) and the 
full, measured compliance. The angle q5f represents the rate of steady state fluidity 
increase. 

If very large forces are applied, some “additional nonlinearities” in the creep 
behavior may be observed. In such cases one may escape to linearization of the 
data.52 Linearization of rheological functions is easiest and correctly done by ap- 
plication of various definitions of strain. 

According to K. WeissenbergS3, any function of the shape of the body which 
vanishes when the body is undeformed and which increases with increasing defor- 
mation may be used as a measure of strain. According to A. J. Stavermann and 
F. SchwartzlS2, the various commonly used definitions of strain are: 

(IV.48) 

E K  = 0.5(S2 - 1) Kirchho ff (IV.49) 

E H  = In6 Hencky (IV.50) 

E M  = 0.5 (1 - $) Murnaghan (IV.51) 

& c = 6 - 1  Cauchy 

where 6 = 6 which is equivalent to draw ratio. 
Cauchy’s strain is linear with the value of delta, Kirchhoff’s strain in relation to 

Cauchy’s increases with increasing delta. The remaining two functions, in relation 



IV.4. DIAMETER ATTENUATION 133 

to Cauchy’s, decrease with increasing delta, but Murnaghan’s strain has a stronger 
decrease, its maximum limiting value is 0.5. Zero point, naturally, is common for 
all of the quoted definitions of strain. 

When one calculates creep compliance, one uses, naturally, the initial stress 
and any of the given quoted strains. Murnaghan’s strain needs to be used for 
industrial fiber formation processes at  high speed and under high tension. For 
slower processes Hencky’s strain may be sufficient. Cauchy’s strain, possibly, may 
be applicable for very slow experimental ( “academic”) processes. Equation IV.47 
may be used with any of the strains, but one must remember to recalculate the 
results into Cauchy’s strain for use in generating other functions. 

Generally, equation IV.47 ought to be applied to the experimental data with 
a correction for the transition from shear to extensional flow. The problem has 
been worked on by many different authors. The more interesting experimental 
work appears to be that by J. R. Clermont, J. M. Pierrad, and 0. Scrivener,56 
and D. D. Goulden and W. C. M a ~ S p o r r a n . ~ ~  Attempts on a theoretical solution 
may be represented by work of R. Keunings, M. J. Crochet, and M. M. Denn.58 
The solutions offered do not seem to be quite yet ready for practical application. 

Measurement of the maximum diameter of the die swell is somewhat elusive, 
as it also depends markedly on the deformation history. On industrial formation 
machines measurements of the die swell are very difficult due to deep recess in 
mounting of the spinnerettes, often the access in impossible. The diameter, or the 
related filament velocity, is needed for calculation of strain. If there is an error 
in the die swell size it will automatically propagate an error in the time scale. 
It seems that when the correct theoretical solution of the flow transition will be 
known, obtaining correct data on die swell may be easier. 

The beginning of the attenuation process is usually considered to be at  the 
maximum of the die swell diameter. For the representation of the creep curve, 
however, it is necessary to push the zero t ime back to the point where polymer 
enters the conical entrance to the capillary. This means that the zero t ime is where 
the extensional flow starts first. In this way the zero tame, in comparison with the 
common notion of maximum of die swell, depends on the entire geometry of the 
capillary entry, on the length of the spinnerette capillary, as well as on the size 
and shape of the die swell. 

The back calculation of compliance, J ,  or strain, with the retardation distribu- 
tion function, L ,  on hand may be done with equation 111.140. Nonetheless, there 
are also necessary the instantaneous compliance. Jo, and the steady state fluidity 
function, 4f. In a classic way, one obtains those two values by the method shown 
in figure IV.19. This means that, Jo - equals instantaneous compliance at  time 
zero. The slope of the final section of the curve, $f, is usually taken as the steady 
state fluidity, +t(t) .  

The compliance back calculated from the retardation function represents only 
the transient flow portion, J ( t ) .  The steady state fluidity in more intensive fiber 
formation processes for large strains deviates from linearity a t  longer times, t .  
Therefore, the procedure of calculating instantaneous compliance and steady state 
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fluidity must be modified. The transient flow compliance, as it is calculated from 
the retardation function, is subtracted from the experimental compliance over 
no more than a 50% of the time span of the process studied. One may also 
begin the calculations at some distance from the first point available. The ob- 
tained values versus time give a new function which represents a straight line, 
the slope of which determines the steady state fluidity, 4f, and Jg is the in- 
tercept. In case of processes involving large strains the experimental curve at 
longer times invariably deviates from linearity, The process gradually changes 
from rheodictic to pseudo-arrheodictic behavior. The experimental compliance 
curve ceases to increase and reaches a more or less constant value which is typical 
for the arrheodictic behavior. The point where the steady state fluidity begins 
to deviate from linearity depends on the molecular mass of the polymer involved, 
as shown in figure IV.21. The molecular mass influence is likely to be rather 
indirect, caused really by the density and type of deep entanglements, or en- 
chainments. One may want to fit the final segment of the curve into some 
nonlinear function, usually 4;(t) = 1 - A x exp(ct). Such a treatment may im- 
prove the fit of the back calculated results to the point of virtual superposition 
of the experimental and back calculated curves. One may use one of the so- 
lutions suggested by T ~ c h o e g l ’ ~ ~ ,  though some of them require data not easily 
available. The most suitable might seem the prolongation method, however, the 
method appears to  be much more manipulative than the curve correction suggested 
above. It is true that the span of retardation times obtainable is very narrow but 
alteration of the spectrum seems objectionable. According to T ~ c h o e g l ’ ~ ~  the 
pseudo-arrheodictic behavior results from pseudo-crosslinks arising from strong 
and relatively durable entanglements, which are responsible for more than one 
viscoelastic mechanism reflected by multimodal distribution function. The data 
presented here may suggest that the observable effect of the pseudo-crosslinks is 
reflected by change of the steady state fluidity, rather than the transient flow 
reflected by the retardation spectrum. As it will be seen later in this chapter, 
the arrheodictic behavior is the “havoc in morphology” of the melt prior to the 
onset of crystallization. If long retardation times would be involved, they would 
be significantly longer than the times available in any fiber formation process. 

Here we come to the temperature dependence: currently all of the formation 
processes from melt are nonisothermal, and so are many processes of formation 
from solution. There is a wide choice of recalculation possibilities according to 
t e m p e r a t ~ r e . ~ ~ ? ~ ~ ’ ~ ~ ’ ~ ~  One may recalculate compliance according to (the same 
equation as 111.219): 

(IV.52) 

where subscript r indicates reference temperature or at reference temperature, a is 
temperature-time shift factor, p is polymer density.+ The retardation distribution 

+Data on certain physical properties of some polymers are given in the Appendix. 



IV.4. DIAMETER ATTENUATION 135 

function may be recalculated identically as compliance. 

(IV.52 a )  

The shift factor may be estimated either according to the equation 111.217 or 
equation 111.220 for polypropylene. For other polymers development of similar 
algorithms is highly advisable. Application of the recalculation procedures may 
be done in several different ways, or at several different stages. The two most 
obvious ways are: 

1. Recalculation of compliance, and obtaining the retardation spectra for non- 
isothermal and for isothermal conditions separately. 

2. Recalculation of the retardation function. 

The first method of the two appears marginally more convenient. Nevertheless, 
the recalculation must be taken as an approximate procedure, as it has been de- 
veloped for polymers of linear behavior. The extremely high viscosity immediately 
below the spinnerette is striking; one may simply presume that this is somehow 
connected with the transition from shear to extensional flow. We may recall one 
more time the comment by Stavermann and Schwartzl that creep is by its nature 
nonlinear; it may be that the degree of nonlinearity is artificially increased by  the 
process itself. Even though the function of the shift factor a versus temperature, 
as suggested here, appears to give results sufficientIy good for “technical applica- 
tions”, it might require a firm proof in a theoretical sense. Also, the recalculation 
is obviously only as good as reliable is the available shift factor - temperature 
function, and the whole function is needed for the purpose. Moreover, the regions 
where polymers crystallize always require an extrapolation. 

All the isothermal compliance curves quoted here were recalculated to 240°C. 
These curves show very rapid decrease of compliance at  the end of the curve. 

1 

MOLECULAR MASS i 0-5 

Figure IV.21: Influence of molecular mass on the strain at which the behavior ofpolymer 
in creep changes to arrheodictic. 
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One may pose a question whether this means that in an isothermal process such 
behavior would indicate an end of "spinnability" . 

Examples of practical application of the description of the rheology of fiber 
formation processes and confrontation of the calculated results with the experi- 
mental are given in the set of figures IV.22, IV.23, IV.24 and IV.25, pertaining to 
different industrial processes. 

A comparison of the two processes represented in Figures IV.22 through IV.24 
involves poly(propy1enes) of zero shear viscosity 193.6 and 148.8 Pas at 240°C. 
The second process was carried out with a substantially shorter quench zone, 
geometrically speaking, and with a greatly more intensive quench. The initial 
drawing stresses were 16.97 and 18.73 kPa,  respectively. 

It is important to stress that the magnitude of the force applied for drawing has 
a major influence on the creep process. The explanation of rheology through chain 
 entanglement^'^^ does justify the influence of initial force on the creep process, 
but more development work seems to be needed before a practical application 
might be possible. As may be seen from Figures IV.23 and IV.24, primarily the 
instantaneous strain and steady state fluidity are affected. The steady state fluidity 
is influenced to a smaller degree, but at  higher values of force the behavior is 
changing to arrheodictic, as mentioned above. From the work presented here one 
may see an influence of the initial stress on compliance and on the retardation 
function (figure IV.25). At lower initial stresses compliance is higher and it finds 
also a reflection in the retardation functions. 

Vinogradov and c o - ~ o r k e r s , ~ ~  as reported in section IV.4.b, figures IV.10 to 
IV.12, and particularly IV.13 and IV.14 suggest that the retardation function 
does not depend only on molecular mass or zero shear viscosity, but appears 
to depend also on the processing conditions. Both theoretical and experimental 
i n v e ~ t i g a t i o n s ' ~ ~ & ~ ~ f .  indicate with ever increasing strength that relaxation time, 
or relaxation spectrum, is not constant. In the case of solutions, irrespectively 
of solvent, it depends on the deformation rate. The influence of initial stress on 
compliance may be taken as a proven fact, though no quantitative description is 
yet available. 

There is a number of formulas to calculate relaxation time, proposed by dif- 
ferent a ~ t h o r s . ~ ~ ) ' ~ ~  All of the proposed equations are similar, the core of the 
equations is: 

8 = -  770 (IV.53) 

The retardation times, taken as the time corresponding to the maximum of the 
retardation spectrum determined for each of the processes studied and quoted 
here, range from about 0.35 s to about 0.52 s. These times differ substantially 
from the average relaxation and retardation times determined from the oscillatory 
shear experiments, where they range from 0.49 s to 0.73 s. The difference appears 
to be too large to be disregarded. The experimentally obtained retardation times 
agree well with the results of calculations according equation IV.53a. If a poly- 
mer contains cross linked material, the relaxation time increases. A similar effect 
may be expected in case of retardation time. Cross linking, often present in com- 

RT 
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mercial polymers elevates the relaxation time markedly. In fact, determination of 
relaxation time may serve, after a calibration, as an analytical procedure for the 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

TIME, s 

Figure Iv.22: Cauchy’s strain in a fiber formation. The dotted line is back calculated. 
Heavy lines: nonisothermal data for a process with rapid quench, the pseudo-arrheodictic 
segment not corrected for. Finer lines: process at still more rapid quench, polymer o f  
lower viscosity. Data corrected for the pseudo-arrheodictic flow segment. 

determination of cross linking. The creep retardation times for the polymers given 
in this chapter as examples are plotted in figure IV.26 against the corresponding 
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Figure IV.23: Murnaghan compliance for the process given in Figure IV.22, heavy 
lines. Top: isothermal, bottom: non-isothermal. Heavy lines: full drawn - experimental 
curve, dotted - transient Aow compliance, short dashed line - back calculated compliance 
(mostly superimposed with the experimental line). Fine lines: full drawn - linear steady 
state fluidity, &, and glassy (instantaneous) compliance, Jg (intercept), long dashed - 
actual fluidity Data not corrected for pseudo-arrheodictic behavior. 
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Figure IV.24: Murnaghan compliance for the process given in Figure IV.22, finer lines. 
Top: isothermal, bottom: nonisothermal. Heavy lines: full drawn - experimental curve, 
dotted - transient ffow compliance, short dashed line - back calculated compliance (fully 
superimposed with the experimental line). Fine lines: full drawn - linear steady state 
Auidity, $ t ,  and glassy (instantaneous) compliance, Js (intercept), long dashed - actual 
fluidity. Data corrected for pseudo-arrheodictic behavior. 
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Figure IV.25: Creep retardation functions: Left graph: for the process given in figure 
IV.23. Right graph: for the process given in figure IV.24. f i l l  drawn lines - isothermal 
T, = 240"C, dashed lines - nonisothermaJ. 

values calculated according to equation IV.53a. The deviations of the experimental 
results from the calculated line do not form any immediately apparent relationship 
to the initial extensional stress. 

ZlMM EQUATION, sec. 

Figure IV.26: Confrontation of the retardation times calculated from the Zimm equa- 
tion (equation IV.53a is represented by the diagonal line) with the values determined 
experimentally. Data for 240°C. 

1 
o = ( i m )  (%) (IV.53 a)  

Based on the results of the creep calculations described above any relationship 
between the initial stress and retardation time may not be confirmed. Perhaps 
the high speed of the processes, and consequently the small range of retardation 
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times obtainable do not permit such a relationship to be observed. 
It may also be necessary to assess the extent to which the data obtained in 

one process may be used to process manipulations. If the attempted changes in 
the conditions of formation are large, and if a correction accounting for the initial 
stress fails, a t  some point the retardation function may loose its validity even for 
approximate predictions; a new determination of the retardation function may be 
needed. 

In general, from an analysis of the results, one may conclude that the treat- 
ment of the $ber formation problem as a creep process is correct. The agreement 
of the calculated data with the measurements conducted during actual experi- 
ments is excellent. The small span of time obtainable for the retardation spectra 
was initially of a serious concern. However, the results and their good agree- 
ment with experiments seem to dispel the fear. The pseudo-arrheodictic segment 
of the process appears to be related to the polymer fluidity, rather than to the 
retardation spectrum. The process takes only a very short time and the longer 
retardation time cannot play terribly significant role here. At some 0.5 s to 0.8 s 
the retardation functions drop quite precipitously off. If the retardation function 
were responsibly for the pseudo-arrheodictic behavior then a second peak would 
be necessary. Attempts to use the prolongation method indicated that to explain 
the pseudo-arrheodictic behavior observed experimentally would require retarda- 
tion time unrealisticly long, compared to the time available in the process. The 
filaments are under tension during all the solidification process and beyond, and 
this may be the important factor to be considered here. 

IV.4.d Spinline Stability 

Stability of spinline represents an enormously important aspect of the economy 
of fiber manufacturing. It is not less interesting theoretically. It is of no surprise, 
then, that theoretical work on the subject started relatively early by J. R. A. 
Pearson and c o - w ~ r k e r s . ~ ~ - ~ ~  As a starting point, isothermal cases of Newtonian 
fluids were studied. It has been found that such fluids may be extended to a 
maximum draw ratio of 20.218. The effort appeared to be a good beginning for 
further studies. The isothermal spinning of Newtonian fluids per se has little 
practical meaning. 

Unfortunately, the subsequent years have brought a score of publications re- 
peating essentially the same work using slight modifications of the mathematical 
apparatus used. C. J. S. Petrie gives a quite extensive review of all those efforts.24 

There appeared several attempts to describe stability of spinlines of Non- 
Newtonian polymers.43 The theoretical considerations, using Maxwell fluid, lead 
to the conclusion that elasticity is beneficial to spinline stability. The results do 
not agree with the experimental determinations of fracture obtained during ex- 
tension of strands of polyethylene: the samples fracture below the values of i* of 
some 40 to 50s-1 and cease to fracture again above values of i* of 65 to 70s-l. 
(Nondimensional extension rate i* = 6% which is equivalent with the Weissenberg 
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number, Wi.) In the examples presented in this book, a spinline may be stable 
until the onset of crystallization when the Weissenberg number, calculated on the 
Henky's strain, reaches values close to seven, if advantage is taken of the maximum 
retardation time. If the retardation time corresponding to the maximum of the 
retardation function is taken, the corresponding values reach close to four. The 
beginning of change to arrheodictic behavior takes place at Weissenberg numbers 
0.36 and 0.391. In this case the Weissenberg number, Wi, was calculated with 
the retardation times at  the maximum of the spectrum and with Cauchy's strain. 
Clearly, it is difficult to see a relationship here. 

V i n o g r a d o ~ ~ ~ ) ~ ~  suggested that fracture, both in shear and in extension, occurs 
invariably between 0.1 and 0.5 MPa of true stress. The same author suggested 
that at  the same values of stress crystallization may be starting. Analysis of the 
cases presented in this book as examples, as well as of many other processes, does 
not support this relationship to spinline instability. The build-up of recoverable 
work until onset of crystallization is presented in figure IV.29. 

Jinan Cao65 finds that there is a maximum in the filament velocity gradient, 
and flow instability starts in the area past the maximum value. In the processes 
presented here, there are several maxima of velocity gradient: the first one is 
usually close, mostly prior, to the onset of crystallization, and the others occur 
during crystallization and toward the end of it. 

Malkin and Petrie'4g, in an extensive paper, review all the efforts in solving 
the problem of spinline stability published through 1997. In their conclusion, the 
authors state that the only useful criteria are: Vinogradov's notion that failure 
would take place only for Wi 2 0.5 (Wi = Weissenberg number), criteria result- 
ing from the work by Reiner and Fre~dentha l*~ (see equations IV.33 and IV.34). 
Development of the ability to predict filament breaks is still found to require a 
considerable effort. Confusing shear and extensional properties, relaxation and 
retardation times, appears to be a serious flaw in the treatments published thus 
far - these parameters are not inter~hangeable .~~ 

As important and as interesting as the topic is, we must still wait for a better 
solution to be able to take practical advantage of it. Perhaps the treatment of the 
fiber formation process as a case of creep experiment traveling with the velocity 
of polymer extrusion will allow for more definite solutions. 

IV.5 Crystallization in Extensional Flow 

The fact that polymers crystallize faster under influence of mechanical forces 
was noticed sometime in the forties.67 The shortest crystallization half times de- 
termined dilatometrically amounted to some thirty seconds. On the other hand, 
total residence time of polymer in a quench zone was ranging from some fifteen 
down to three seconds. Despite the short residence time, it was not unusual to 
find that the crystallinity reached in the quench zone was equal to that found in 
the final fibers. A difference in the accelerating effect of forces on crystallization 
of different polymers was also noticed. 
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Probably the first attempt to study the phenomenon was published by P. 
F 1 0 r y l ~ ~  in 1947. The work relates the temperature at  which the crystallization 
begins to the relative extension of the molecules. In quantitative terms, the work 
gives the following equation: 

(IV. 54) 

where h f  is the enthalpy of fusion per chain segment, f i b  is Boltzmann's constant, 
T: is, as usually, the equilibrium melting/crystallization temperature, T,i is initial 
(the highest) crystallization temperature, N is the number of segments per polymer 
chain, I stands for the length of a segment, ,B = (3/1Nl2)lI2, X is the extension of 
polymer chain (equivalent to draw ratio as X = 1 means no extension). 

Equation IV.54 is difficult to confront with experiments since the quantities 
obtainable experimentally are not easily translated into the parameters of the 
equation. 

Van der Vegt and Smit68 seem to have originated experimental studies of the 
influence of shear on the initiation of crystallization. The authors melted poly- 
propylene in a capillary rheometer, cooled it somewhat and extruded at  increasing 
shear stress. Initially, the polymers behaved normally, but after a certain value 
of stress had been exceeded, viscosity started to increase, sometimes rapidly. The 
increase of viscosity was attributed to the onset of crystallization. The shear stress 
and shear rate at  which the crystallization began depended on the temperature 
of the experiment. At 160"C, crystallization started at  some 1.2 s-l shear rate 
and about 45.7 k P a ,  while at  180°C the respective values were some 38 s-l and 
113.6 kPa.  

In a follow-up of the van der Vegt-Smit experiments, it has been determined'34 
from synchrotron X-ray diffraction that during extrusion, a "mobile mesophase" 
of hexagonal organization may form in capillaries, which under appropriate con- 
ditions, in terms of shear rate and/or temperature, may crystallize to freeze the 
capillary. Formation of such a mesophase does not take place in the entry to a 
capillary where the elongational flow predominates. 

Similar semiquantitative experiments were performed during fiber formation 
 experiment^.^' A flat plate X-ray camera had been installed on a fiber formation 
machine on which also temperature was measured with an infrared thermometer. 
It had been found, depending on the amount of draw, that the first sign of poly- 
propylene crystallization could be noticed at  filament temperature ranging from 
160to180" C. In polypropylene of molecular mass amounting to approximately 
450000, thirty five per cent of crystallinity was reached within 102 ms. 

The X-ray technique has been found very useful for the investigation of the 
onset of crystallization, and particularly for the development of orientation and 
other structural  feature^.^' I t  has been found essentially inapplicable for deter- 
mination of the crystallization kinetics - an immensely important aspect of the 
entire process of fiber formation. Another technique for the purpose has been 
developed, which may be called determination of the crystallization. history, or 
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CH for short.70 The principle of the method is based on the relationship existing 
between the crystallization temperature and the melting point. (See also section 
II.2.b.) The principle of the method is simple, the instrument needed is the rather 
common differential scanning calorimeter (DSC), possibly of fast response. High 
quality, high precision experimental work is needed, as well as rather extensive 
calculations. The last problem is easily solved by computers, once the proper 
programs are available. 

The following sequence of work is involved: initially one needs to perform as 
large as practical number of isothermal crystallizations, followed by immediate 
melting to determine the relationship between the crystallization temperature and 
the melting point. The equilibrium melting point is obtained at the same time. 
High accuracy data are needed, as the extrapolation to the equilibrium melting 
point is usually far reaching. As high as possible crystallization temperature is 
advisable, though caution is needed to avoid degradation of the polymer during 
a prolonged time at  an elevated temperature. A simple graph, like that in figure 
IV.27, may be obtained together with an equation: 

where 
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Figure IV.27: The relationship between crystallization temperatures and melting points 
in a propylene polymer. 

a Pm = - 
1 - b  

(IV.56) 

In many instrumental analytical techniques, one has to deal with a problem 
generally referred to as in,strumental lane broadening. This means that what theo- 
retically ought to be presented as a mathematical line in reality appears as a peak 
of some finite breadth. The most common reason for line broadening is the finite 
response time of the instrument and a finite rate of the investigated phenomenon. 
For example, if we melt a low molecular weight crystal in a DSC apparatus at  
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a given heating rate, the specimen requires some finite time to melt completely. 
Nevertheless, in that increment of time the instrument temperature climbs higher, 
and as a result we obtain a peak. The effect of process rate and of instrument 
response time superimpose to widen the broadening. In some processes, the poly- 
mer crystallization phenomena included, we have to deal with process/structure 
imperfections. A polymer chain with a slightly crippled structure, in comparison 
to its perfect half-brother, or just some more dense chain entanglements, may re- 
quire a slightly larger degree of undercooling to  crystallize and will also melt at  
lower temperature. This leads to an additional reason for peak broadening which 
is structure related and which may be specimen specific. 

Correction for peak broadening was applied first to X-ray diffractograms in the 
early forties. The technique used for the purpose was deconvolution. If we denote 
the original function as f ( t )  and its Fourier transform71 as 9, then 

(IV.57) 

If we then denote f ( t )  the true melting function, fb(t) the peak we obtain from 
the instrument, and f e ( t )  the experimental melting function, and 9, 9 b l  9, the 
respective Fourier transforms, then we may write a convolution equation: 

(IV.58) 

(IV.59) 

In practice, as a Fourier transform of a function we take the following representa- 
t i ~ n : ~ l  

and the coefficients of the transformed function are: 
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(IV.60) 

(IV.60 u )  

(IV.60 b)  

where m is the number of equally spaced discrete points representing the function, 
n is number of harmonic equations, preferably n 5 m/2. 

The coefficients of the deconvoluted function are obtained according to the 
division of complex numbers: 

(IV.61) 
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(IV.61 u) 

It is common that deconvoluted functions may display L‘rumblingsll, that is, 
a series of maxima and minima located at  the left and right peripheries of the 
investigated peak. The only remedy available to limit such “rumblings” to an 
acceptably low level, or to a range sufficiently distant to be unimportant, is to 
limit the number of the harmonic equations used to calculate the final deconvoluted 
function. Generally, good operator’s judgment is necessary in such cases. 

The question of the proper deconvoluting function is not completely closed. 
This author finds that the best results were obtained with functions generated 
from controlled crystallization at  low rate of cooling (nonisothermal) and melting 
curve from the same controlled crystallization run. The critically important point 
is that the polymer must be the same as the sample investigated. The same is 
true of the determination of the T, = f (Tc)  relationship. It must be the same 
polymer batch. Even small differences between different samples of polymer are 
sufficient to wreck the accuracy, or even the entire sense, of the determination. For 
example, if fibers are investigated - fibers are to be used, not the pellets or melt 
prior to the extrusion. One needs to observe some differences in long periodicity 
due to molecular mass, polymer perfection, etc.12’ 

One may consider, and some special cases may require, the use of other func- 
tions for deconvolution. A combination of functions is possible. In the last case, 
e.g. two isothermal functions, a low and a high temperature, may be combined. 
The interpolated deconvolution function is simply a sum of the proper fractions, 
cp, of the Fourier coefficients: 

One must stress that there is some controversy regarding the crystallization - 
melting temperature relationship. It is true that at  low crystallization tempera- 
ture, the points do not follow a straight line. If the lowest range of temperature 
is of interest, a caution may be advisable. Some investigators suspect that the 
T,,, = f ( T c )  function is not represented by an exactly straight line, but it curves 
somewhat upwards. However, if the procedures just described are followed exactly, 
some of the potential errors may cancel themselves out. On the other hand, for 
the time being there is no other method which would permit analysis of the ex- 
tremely rapid process of crystallization. As will be seen below, the accuracy of the 
obtainable results is sufficiently high to satisfy even very demanding investigators. 

The relationship between crystallization and melting temperatures may be af- 
fected by cold drawing (plastic deformation). Experience, in agreement with the 
theory, shows that small extent drawing may be well neglected, as the discrep- 
ancies would not exceed the experiment’s error. More extensively drawn samples 
may present problems. The best choice, naturally, is utilization of specimens prior 
to any drawing operation. 
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The sequence of all the experimental DSC runs, aside from the determination 
of the crystallization - melting temperature relationship, is as follows: 

Melting of the polymer (fiber) specimen investigated (preferably at  10 to 
20 "Klmin,  depending on the response time of the instrument, up to a 
temperature of 20 to 40 OK above the equilibrium melting point and holding 
for some ten minutes to assure full melting. Higher molecular mass polymers 
may require more severe conditions. 

Crystallization at  a low cooling rate (2 to max. 5 "Klmin) ,  depending on 
the crystallization propensity of the investigated polymer. To shorten the 
run time, the initial forty to seventy degrees may be dropped at  as fast a 
rate as the instrument may safely handle, without losing full temperature - 
time control. 

Upon completion of the crystallization run, immediate melting of the speci- 
men at  the same heating rate as during the first melting operation. 

Naturally, all the baselines should be calculated to respect the baseline change 
due to the change of the heat capacity during the t r a n ~ i t i o n . ~ ~  

The procedure described above yields three scans. From the third scan (melt- 
ing curve) and the second scan (controlled crystallization curve), one obtains the 
deconvoluting function which is used to deconvolute the first melting curve (the 
first scan). 

A word of caution is needed. When investigating polymers which crystallized 
under the influence of forces, one may find some unexpected shapes of the crys- 
tallization curves, which will become evident in figures IV.29 and IV.30, where 
crystallization history curves are reproduced. 

Since the initial work of Flory15', there have been several attempts to solve 
theoretically the problem of crystallization under influence of fo r~es .~ ' -~*  Unfor- 
tunately, none of the suggested solutions could accommodate the determinations 
obtained from a substantial number of experimental data. Intuitively, and in an 
agreement with the sense of the Flory's stipulations, the most promising appeared 
to be the suggestion by Cahn72 and H i l l i a r ~ i ~ ~  that the stored work input is respon- 
sible for the accelerating effect. Confrontation of this idea with the experimental 
data shows that the stipulated relationship indeed has merit. 

AS it was shown in section IV.4.q from the retardation functions one may 
calculate the work input in creep, The work input, both the stored and the 
dissipated work, initially increases gently, then accelerates strongly at  some point, 
very much in line with the changes of velocity to which it is connected. Figure 
IV.28 illustrates the stored and the dissipated work during fiber formation plotted 
against time. The results beyond the onset of crystallization are not necessarily 
"legitimate" due to the presence of crystalline phase in the fluid. 

The word initiation of crystallizo,tion., similarly as the end of crystallization, 
may sound somewhat nebulous as the crystallization rate function is vanishing to 
zero at  both ends. For the sake of communication in real life, in this context we 
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Figure IV.28: Stored and dissipated (dashed lines) work in a process of fiber formation 
from polypropylene. Data to the beginning of crystallization versus time from die swell. 
Heavy lines : case from figure IV.23. Finer lines: case from figure IV.24. 

define the term as the point where the value of the rate function becomes larger 
that 0.001, or smaller than 0.001 for the beginning and the end of the process, 
respectively. 

To quantify the crystallization processes, the Fisher-Turnbull, or otherwise 
called, Hoffman-Lauritzen, equation (equation II.20), as imperfect as it is, is used. 
An accelerating coefficient for the nucleation term was calculated using the equa- 
tion coefficients as found from the least square fit of the quiescent, or "natural 
crystallization", curve obtained in a differential scanning calorimeter and a modi- 
fied equation 1.20 in the form given here as equation IV.63. An accelerating factor 
F, for the heat of fusion was calculated to obtain the agreement with the experi- 
mental strain accelerated curves. Figures IV.29 through IV.32 show the results of 
such operations for two cases. 

The factor correcting for the polymer flow, F,, does not add to the heat of 
fusion, as expected by Hilliard73, rather it multiplies it. The back calculated 
curves with an application of the experimentally, so to speak, determined factor 
superimpose exactly with the curve as obtained from the crystallization history 
determination. The accelerating factor a t  the point where crystallization starts 
may be presented according to the following relationship: 

(IV.64) 

In equation IV.64, Ws,ci stands for the work stored up to the point of initiation 
of the accelerated crystallization, Tci is the temperature at  which the quiescent 
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crystallization is initiated, and T:i is the initial temperature of crystallization under 
the influence of stored work. Other designations are as usual. When considering 
crystallization beyond the point of initiation, it is necessary to correct the stored 
work for the "freezing" of the nuclei or strains by the developing crystallinity. 
Finally, it leads to the following form for the correcting factor 

F, = exp( W s )  (1 - a )  (IV.65) 

The equations IV.64 and IV.65 hold well only for the point of crystallization 
initiation. The segment of the curve describing crystal growth does not describe 
the experimentally obtained crystallization curve. If the amount of crystallinity 
developed up to a given time, a,  is omitted in equation IV.65 then the correcting 
factor is strongly excessive and displaying some pulses coinciding with the be- 
ginnings of each crystallization peak. Introduction of the correction for freezing 
the work input by crystallization deepens the pulses. If a correcting factor calcu- 
lated according to equations IV.64 and IV.65 is applied to the whole temperature 
range of a crystallization, somewhat surprising results are obtained. Very sharp, 
extremely large peaks are obtained at  the beginning of each experimental peak. 
Equation IV.63, as originally developed by Fisher and T ~ r n b u l l ' ~ ~ ,  and in all its 
different later versions, essentially describes only nucleation. That the nucleation 
is the slowest link of the crystal growth, and as such determines the overall rate 
of the crystal growth is taken as an axiom. Here we may see that the rate of 
nucleation is extremely fast, almost in explosive bursts reaching values of lo3' or 
higher, reaching numbers which are substantially higher than the physical possi- 
bilities. However, the growth of the crystals follows substantially slower. Figures 
IV.29, and IV.30 represent four different cases evaluated as just described. The 
correlation is excellent with the point of initiation of crystallization. The rest 
of the process remains largely unknown. Additional description of the processes 
given in figures IV.29 and IV.30 is given in Table IV.2. 

Table IV.2. 
Conditions of the processes presented in figures 4,29 and 4,30. 

The first important conclusion to be reached is that the rate of nucleation may 
be substantially higher than the rate of crystal growth. Similar conclusions may be 
drawn from fitting the experimental unaccelerated crystallization curves into the 
Hoffman-Lauritzen equation. In some cases, the experimental curve lags somewhat 
behind the calculated (figure 11.9), but there the small differences may be often 
attributed to an experimental error, or to the imperfection of the equation. There 
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Figure IV.29: Crystallization rates (heavy lines) and nucleation rate  (finer line) during 
fiber formation versus temperature. Dashed line: accelerating factor from comparison 
with free crystallization curves. Dotted line: factor from equation IV.65. Dash-dotted 
line: stored work. Details in Table IV.2. 

is, however, no workable theory describing the rate of crystal growth, leave alone 
growth at strain accelerated conditions. 

There is a number of unanswered observations concerning the interrelations 
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Figure IV.30: Crystallization rates (heavy lines) and nucleation rate (finer line) during 
fiber formation versus temperature. Dashed line: accelerating factor from comparison 
with free crystallization curves. Dotted line: factor from equation IV.65. Dash-dotted 
line: stored work. Details in Table IV.2. 

between rheology and crystallization, they may be summarized as follows: 

One may notice that nucleation is invariably connected with a decrease of 
extension rate, and that this decrease is in some proportion to the size of 
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the nucleation peak. 

A large number of nuclei influences the rate of work storage, which seems to 
be connected to the point above. 

0 It may be admitted that the "excessive" nucleation in reality represents a 
nematic or smectic morphology, as described for the case of poly(ethy1ene 
terephthalate) Nevertheless, direct comparison of crystallization of poly- 
propylene and of PET calls for caution. Crystallization of PET is approached 
from temperatures lower than the glass transition, while crystallization of 
polypropylene is approached from the temperature of the melt. Polarity of 
PET may also be not without significance. 

Apparently great numbers of the formed nuclei must be either destroyed by 
the flow or "wasted" in some other way. 

Outside of the nucleation peaks, during crystal growth, the extension rate 
generally increases. One may suggest that the extensive nucleation forms 
a "homogeneous network", while crystal growth forms crystalline mats con- 
sisting of mosaic blocks which leads to some inhomogeneity. Points of stress 
concentration may lead to a partial break of the structure and to increase in 
strain. Similar changes in morphology may be responsible for the arrheod- 
ictic portion of the creep behavior. 

Interpretation of growth is only speculative. The stored work increases, in 
some cases very sharply, but crystal growth is by far not commensurate with 
it. One may even suppose that an increase of energy beyond some point 
slows the crystal growth. Analysis of the data of Table IV.2 indicates that 
total time of crystallization, t,,, is shorter for those processes which employ 
lower initial stress, go. At the same time one may notice, however, that the 
lower initial stress requires larger undercooling, TZ - T,i. 

The full crystallization times of the energy accelerated processes are short- 
ened 550 times to well over one thousand times. From the cases presented 
here one may infer that the higher acceleration takes place when the stored 
work does not increase too rapidly. 

Very often the accelerated crystallization process proceeds down to the same 
low temperature as unaccelerated process does, or even markedly lower. 

The development of a quantitative description of the growth kinetics, as diffi- 
cult as it may be, is indispensable for any further progress in the field. It appears 
that for progress in this area, consideration of chain entanglements and their in- 
fluence on the molecule mobility, transport, and extension of molecule segments 
might be e~sentia1.l~' Perhaps a flow equation would also give better agreement 
between the Fisher-Turnbull equation and quiescent experiments. 

There is one more observation of utmost importance, which appears to agree 
well with the above given findings: a fast crystallization process results in larger 
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crystallites, a slow process gives smaller crystallites. It is exactly opposite to the 
cases of crystallization of low molecular mass compounds. One may suppose that 
the stored work factor which accelerates nucleation represents relatively perma- 
nent changes in the morphology of molecules. On the other hand, more intense 
flow of the molecules past one another disturbs the growth process. This finding 
also explains some of the old observations of various processes and relationships 
between processing conditions and fiber properties. 

It is necessary to stress the good agreement between the results of such different 
analytical techniques utilizing many different instruments, both on various forma- 
tion machines and in a characterization laboratory. All these results underwent 
extensive mathematical treatment and all agree within one or two per cent, or one 
or two degrees in temperature deviation. This agreement serves as an indication 
of a great coherence, and thereby a great reliability, of the interpretive system. As 
will be seen in the following chapters, this coherence extends still much further 
than so far described. 

One may point to the disturbances in the beginning of the crystallization curve 
in figure IV.30 top. They might be taken as an artifact of determination of the 
crystallization history. In fact they are due to slight fluctuations in the stored 
work, which is only faintly visible in the figure due to large scaling factor. At any 
rate, even the disturbance has its justification. 

A recently published paper'53 describes an investigation of the crystallization 
of amorphous poly(ethy1ene terephthatale) under influence of strain. The process 
was monitored by synchrotron X - ray analysis. Contrary to many other papers 
of such type, the experiments were well designed, without "mixed up" variables. 
The work confirms almost all the findings reported above. The strain induced pro- 
cess requires a critical degree of chain segment orientation which is dependent on 
temperature and draw ratio. The draw ratio represents a substitute for the stored 
energy. In the experiments reported'53 the process of crystal growth below 125°C 
started invariably after cessation of strain and ran to completion according to the 
first order transformation wit,hin one second. The rate of crystallization appears to 
be insensitive to temperature, indicating activation energy of lkcaZ/(moZe x O K ) ,  
or less, which is in a strong contrast to some 40 kcaZ/(rnoZe x OK) for quiescent 
crystallization process. Above 125°C the process of relaxation is faster and the 
"oriented non-crystalline segments'' formed during straining below 125°C are not 
formed above the critical temperature. One may inject here that polypropylene 
usually has higher molecular mass and much higher melt elasticity, consequently 
the degree of acceleration of nucleation ought to be correspondingly higher. Also, 
the critical temperature for no- nucleation may be expected to vary with molecular 
mass. Nonetheless, direct comparison of crystallization of polypropylene and of 
PET calls for a caution. Crystallization of PET is approached from temperatures 
lower than glass transition, while crystallization of polypropylene is approached 
from the temperat,iire of the melt. Contrary to  polypropylene, PET is polar, and 
this is not without a significance. The auth01-s '~~ also anticipate the possibility 
that a network of nuclei, or a mesophase, hinder the molecule, or segment, mobility 
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thereby restricting the crystallization. 
One may conclude, as far as the smaller number of background data (rheology, 

crystallization history) permits, that the published presents a far reaching 
confirmation of the investigations of polypropylene crystallization described above. 

In summary, one may conclude that the theoretical solution of crystallization 
process is far from satisfactory. The available equations may be used as a working 
tool but only as far as the initiation of crystallization is concerned. The nucleation 
segment of the equation may be close to being correct, but the rest of the factors 
influencing kinetics still need to be defined. 

IV.6 Cold Drawing 

In 1932 W. H. Carothers and J. W. Hill" have described a "peculiar" property 
of as spun polyester fibers. Namely, the fibers could be drawn a t  temperature 
ranging from room temperature to somewhat elevated temperatures, but less than 
the lowest melting point, and when the fiber was subjected to a sufficiently high 
force its diameter decreased abruptly forming a characteristic "neck", resembling 

0 

STRAIN, X 

Figure IV.31: Initial (engineering) stress - strain curves for cold drawing o f  chlorinated 
poly(viny1 chloride) at various temperatures. The dashed curve encompasses onset of the 
yield point and natural draw ratio until end of necking. Data from F. H.  Muller". 

a bottle neck. A drawn specimen had a distinct boundary between the drawn, 
transparent, and undrawn, opaque sections of appropriately different diameters. 
This operation leads to fibers of uniform diameter possessing a structure orienta- 
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tion. 
The diameter attenuation in cold drawing is not limited to the neck area. Only 

the initial portion of the total cold drawing extension takes place in the neck, the 
reminder takes place past the necking zone. It is generally assumed that the cold 
drawing temperature spans from some distance below the glass transition point up 
to the “lowest detectable” melting point. In reality the temperature range, as well 
as some other parameters of cold drawing depend very strongly on the amount 
of crystallinity and morphology of the as spun fibers and on the conditions of 
the drawing process. Stress strain curves of a cold drawing process for different 
temperatures are shown in figure IV.31 The thick dashed line encompasses the 
necking area, from the onset of yield to the natural draw ratio. 

A few words need to be said about the semantics. The term cold drawing 
has been coined by the fathers of synthetic fibers and it may be a matter of 
needed courtesy to keep i t ,  despite the fact that the drawing is not necessarily 
cold. Other terms may be found in the literature of the subject: drawing with 
the neck format ion  or simply neck drawing, or a term derived from structural and 
property considerations plastic deformation. There may be some confusion created 
by the fact that in some circles, particularly those of the fiber industry, the term 
cold drawing has been reserved to mean the drawing at  a temperature below the 
glass transition for the polymer in question. 

IV.6.a Mechanism of Drawing 

The theoretical explanation of the discontinuous nature of cold drawing was the 
subject of numerous  publication^^^^'^ over many years. All of these works were 
based on the same principles of so called thin, filam,ent equation,s, which represent a 
simplification of the theories of hydrodynamics and rheology. Also, it was believed 
that the necessary condition for a necking to take place is that the relation between 
strain and force must have an “S” shape, with a distinct minimum before the force 
goes up again, beyond the first maximum (figure IV.33 A).  

This approach has been subjected to a convincing critique by S. Kase and 
M. Changg5, who started from the same assumptions as in the previous work. 
Consideration of inertia in their solution led to the realization that the obtained 
equations are equivalent with the equations used in the area of dynam,ic plasticity. 
The basic equation in nondimensional form is: 

(IV.66) 

Here q is nondimensional tensile force, X is elongational deformation, X is one 
dimensional space coordinate (Eulerian), and 7 it time. Upon substitution of 
Hookean elasticity, 

(IV.67) 

For q ( X ) ,  the authors” obtained the wave equation: 

q ( X )  = x - 1 

d2 X 
- =c1- d2 X 
dX2 a T 2  

(IV.68) 
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Figure IV.32: Schematic representation of the type of relationship between tensile force 
and extensional strain necessary for a neck formation. A. for “rheological” t h e o r i e ~ ~ ~ ’ ~ ~ ,  
B. for the  solution by S. Kase and M. Chang.g5 

C1 stands here for the inertia coefficient. Equation IV.68 is applicable to very 
fast plastic deformation problems, for example, determination of damage done by 
bullets. In the dynamic plasticity, the equation is used in somewhat different form: 

where 
d U  X=- 
dX 

(IV.69) 

(IV.69 u) 

(IV.70) 

where X is one-dimensional Langrangean space coordinate, 7 is time, u is dis- 
placement, p is material density, and 77 represents true compressive stress, X is 
infinitesimal deformation, 11 is wave velocity dependent on X .  Equation IV.68 
becomes equivalent to equations IV.69 - IV.70 when p in equation IV.69a is re- 
placed with C1. Then equation IV.69 represents the wave propagation at  a velocity 
dependent on X: 

(IV.71) 

At this point, Kase and Changg5 draw the analogy to a very strong impact 
imposed on an aluminum rod, which produces two waves (see figure IV.33). The 
elastic wave A is propagating with the speed of sound in the material. The plastic 
wave B is moving with velocity V represented by equation IV.69, much slower than 
velocity of sound. In the form of wave A,  the material is free of stress, between the 
waves A and B it is in an elastic compression, and it is in a plastic compression 
behind the yield form represented by wave B. 

Kase and Changg5 solved equation IV.69 numerically, the solution method 
is described in detail in the original paper. When for the solution was used a 
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Figure IV.33: Elastic wave A and plastic wave B propagating in an aluminum rod. 
Reproduced after Kase and 

Figure IV.34: Relationship between the extensional strain and the cross sectional area 
of a filament (both values nondimensional) resulting from equation JV.69 when constitu- 
tive function of figure IV.32B was used, including plasticity hysteresis. From Kase and 
Chang. 95 

constitutive curve, like that in figure IV.33A t,he resulting description of necking 
represented a smoothly wavy curve. When a constitutive equation of the form 
given in figure IV.32 B was used, a representation of an abrupt, step change of 
the cross section area resulted. Such a curve is reproduced in figure IV.34 The 
calculations were done for the case of poly(ethy1ene terephthalate) with the sound 
velocity in the polymer of u = 

The smoothness of the numerical calculation was greatly improved by the in- 
troduction of the plasticity hysteresis curve into the q l ( X )  function of figure IV.32 
Without the consideration of the plasticity hysteresis, the obtained curves showed 
excessive noise. 

The process of cold drawing still cannot be considered solved. Approximately 
at  the same time when Kase and Chang published their paper, A. I. Leonovg6 
published a derivation of the S-shape constitutive curve as resulting from surface 
tension. For now, there appears to be slightly too many theories that make sense 
and still lack of a definite one. Rather intensive work on the subject is being 
continued, new papers bring additional contributions, however, a definite solution 

= 1350 m/s.  
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appears to be still a number of years away. Oleinik and c o - w o r k e r ~ ~ ~ > ~ ~  find that 
the initiation of drawing yield is governed by several different mechanisms, which 
may well explain the difficulties in finding a general solution. Also, the majority of 
the work published, understandably, is concerned with drawing a t  relatively low, 
or very low, velocities, which are closer to testing conditions than to industrial 
cold drawing processes. 

Among the more interesting observations one is compelled to quote those by 
R. N. H ~ w a r d ~ ~ ~ ~ ~ ~ ,  which offer a relatively simple solution. According to this 
proposal, cold drawing, particularly the post yield part of it may be described by 
a combination of the Gauss equation 

utrue = Y + G, (A2 - i) 
and the Eyring equation 

1 dX - . -  A dt  m e x P [ ( s )  xsinh($)] 

which has been simplified for isothermal cases to 

= A exp( Ba) 
1 dX 
X dt  
_ . -  

(IV.72) 

(IV.73) 

(IV.73 u) 

where a stands for true stress, Y is yield stress (extrapolated), G, is the strain 
hardening modulus, X = 1/10 is extension ratio, a is a constant with dimension of 
volume, A and B are constants. The resulting new Gauss-Eyring equation is 

d [In (i x 2 )] = B [go - Gp (21 + $)] = In 
dX 

(IV.74) 

Here go is initial, "engineering" stress, and In has been named the localization 
index, as it determines if the rate of strain in a segment increases or decreases 
with the increasing strain under applied load or stress. At the beginning of the 
deformation at  A close to unity, equation IV.74 may be approximated by 

L ( k 1 )  = q.0 - 3Gp) (IV. 75) 

The constant B under isothermal conditions is equivalent to a,  and B together 
with G, and with the applied stress, no, determine the mode of deformation. 
Also, at  the beginning of a constant load or constant rate of extension, a0 may 
be identified with the yield stress. This is helpful in determining the ratio of 
Y/Gp. Necking has been determined by Considere"' and Vincent"' to occur 
when YfG, = 3. 

The localization index initially rises, at  the yield point it passes through zero 
and then turns negative above the critical value of A, designated as A,. Such a 
course of events is characteristic for a stable necking. On the other hand, with the 
decreasing strain rate the yield strain increases.' l o  
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The rate of strain in the neck rises initially and later starts to fall. The point 
where the rate of strain reaches the value it has in the undeformed material deter- 
mines the natural draw ratio, AD. This point coincides with the point where the 
engineering stress reaches again the value it has at the yield point. The value of 
A, may be calculated according to the equation: 

YfG,  = 2X + 1/X2 (IV. 76) 

The strain hardening modulus, G,, depends on the molecular mass and it is 
independent on crystallinity. Several a ~ t h o r s ' ~ ~ > ~ ' ~  have found that the materials 
with a higher molecular mass show a lower natural draw ratio and the molecular 
mass increases the strain hardening modulus.'09~100 

An approach similar to that by R. N. Howard has been taken later by other 
a ~ t h o r s ~ ~ ~ ) ' ~ ~  with basically similar conclusions. 

An interesting interrelation between the draw ratio, A, and temperature has 
been reported by Butler et The authors distinguish four drawing areas: 

1. At very small final strains, smaller than the yield point, the drawing tension 
and the location of the draw zone fluctuate, a nonuniform cross section fiber 
is obtained. 

2. At somewhat higher strains, one reaches a point "where the entire length of 
the fiber undergoes a drawing". If the final strain in this area is insufficiently 
high, the fiber may still show some diameter nonuniformities. The tension 
fluctuations are here less than in zone 1. The highest strain for this area 
produces the most uniform fibers, the necking is well defined, the tension 
fluctuations are at a minimum. 

3. As the strain is further increased, the extension takes place in the neck and 
beyond, therefore, a second stage of drawing is formed, (post yield draw). A 
wide range of draw ratios is possible in this area. 

4. With further increase of the draw ratio, the necking area becomes unstable. 
The obtained fibers may still be uniform and of a considerable strength. The 
drawing conditions here are poorly defined and the process is not under full 
control, as is the reproducibility. 

The delineation of the different drawing zones depends on the temperature, 
at lower temperatures, the transition between zones two and three shift toward 
higher draw ratios. In the view of the authors,'" if the draw ratio enters in the 
third area, the process should be conducted in two steps for optimum effects in 
the drawing operation: one strictly neck drawing to the natural draw ratio, and 
in a separate step the post yield drawing with a separate temperature and tension 
control. 

The above quoted continuum theories represent a fair approximation of the 
described process. Whether substantial further progress will be made on this path 
may be debatable. Kasai and Kakudo'" conducted a very detailed X-ray study of 
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the neck zone. A three millimeter thick rod was drawn to a ratio of 7.5. The neck 
area has been sectioned to 0.3 mm thick slices, and the so obtained specimens were 
investigated small segment by a small segment along the material stream lines with 
micro X-ray equipment. Naturally, only the fate of the crystalline portion of the 
material was studied. 

The process, in the investigated specimen started with aligning the a-crystallo- 
graphic axis nearly perpendicularly to the stream lines, and subsequently the c- 
crystallographic axis started to align along the stream lines. Similar conclusions 
had been reached earlier by Aggarval and co - workers'13 Initially, along the center 
line, the crystallite size remains unchanged, while in the side stream lines, the 
crystallite size increases. The degree of the increase becomes gradually larger when 
moving from the center to the specimen surface. In the later stages of the process, 
the crystallite size decreases, and when the orientation of the c- axis is almost 
exactly parallel, the crystallite size is about half of its original size. Similar work 
was performed later by Kuksyenko et aZ.'14 and the authors essentially reiterated 
the conclusions drawn by Kasai and Kakudo. 

Whatever conclusions have been reached"3v114, they relate to the highly crys- 
talline materials drawn under one set of conditions. The process for low crystalline 
materials is thus far not exactly known. Nonetheless, based on the above quoted 
studies one may doubt whether continuum theories may be the appropriate tool 
to describe the process. The structural aspects of cold drawing will be discussed 
in more detail in the chapter on fiber structure. 

From the structural studies, it results that the drawing process affects primarily 
the noncrystalline portion of the polymer. According the the classical rubber 
elasticity theory1I5, it is known that the drawing process decreases entropy; it is a 
decrease of the configurational entropy associated with the molecule orientation. 

-AS, = (2)  [hz + (a> - 31 (IV.77) 

where CY is the number of monomer units between entanglements, and X is the 
draw ratio. 

One of the effects of the entropy change is an increase of melting point due to 
drawing.l16 and Equation IV.75 has been combined116 with the equations for 
the melting point of folded chain crystals to yield 

where x is the degree of polymerization, and the remaining symbols have their 
traditional meaning. For polyethylene, the slope of the reciprocal melting point 
versus the drawing term, X2 + 2/X - 3, has been found to be 4.9 x lo-' deg K- l .  
This influence is so small that for the majority of the commercially drawn fibers 
it may easily be neglected. 

Very recent studies144 .4 relate the drawability, particularly the more exten- 
sive draw ratios, and the drawing performance to the aC relaxation corresponding 
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to the Peterlin's T, temperature (see section II.2.b). The a, relaxation indicates 
the onset of translational motion of the polymer chains along the c- crystalline 
axis. It is quite obvious that it must strongly depend on the structure of the poly- 
mer chain. Large side groups are able to suppress the translational motions down 
to zero, which results in so called crystal - j k e d  polymers144, or otherwise nonduc- 
tile crystals. Strong hydrogen bonds have a similar effect, like in nylons. High 
molecular mass polymers theoretically permit more extensive drawing. Chain en- 
tanglements also suppress the a, transition. Since long chains are more apt to high 
entanglements, the high molecular mass polymers not always may be drawn more 
intensively. Increase of temperature causes increase of the crystalline a, relaxation. 
Hu and Schmidt - R ~ h r ' ~ ~  stipulate that drawing involving chain translations is 
possible when the rate of a, transition is larger than 103/s. Nonetheless, extensive 
chain entanglement may suppress the drawability even a t  temperatures close to 
crystal melting. Strain rate has an effect similar to t e m p e r a t ~ r e , ~ ' ~ > ' ~ ~ - ~ ~ ~  acti- 
vation energies of extensional flow and the activation energy of a, relaxation are 
of a similar magnitude. 

According to Hu and Schmidt - R 0 h 1 - l ~ ~  drawing of polymers with nonductile 
or low ductile crystals is possible through deformation of amorphous areas, break- 
down of crystalline lamellae, partial unwinding of some chains from the mosaic 
block surfaces, and sliding of the fibrils, that is, by the mechanisms considered for 
the classical fiber formation processes. Depending on the polymer and a particular 
morphology, the maximum of the achievable drawing without chain translational 
motion may be taken as no more than seven times.144 

The extensive drawing is essential to the processes like solid state extrusion, 
gel - spun fibers or fibers formed from solution. 

IV.6.b Results of Cold Drawing 

As a result of cold drawing, the fiber density increases, and in connection with 
the changes of the entropy, the glass transition temperature also changes.'17 For 
poly(ethy1ene terephthalate), glass transition decreases with draw ratio to reach 
a minimum a t  X = 1.5, later it increases to reach a maximum a t  X = 2 to 2,5, 
then further decreases monotonically. The density decreases with the draw ratio 
to a minimum at X = 1,5,  where the glass transition has a maximum, but later 
the density increases monotonically with increasing draw ratio. At very high draw 
ratios, the density may start to decrease again; if so, this is due to a micro void 
formation. 

As the density increases with draw ratio, so increases the contents of the trans 
configuration of the polymer chains. The last fact indicates that initially the struc- 
ture is less oriented than in the undrawn material, while at  X > 2 the amorphous 
molecules become more and more oriented along the fiber axis and also become 
more densely packed. These results appear to be in good accord with the X- ray 
investigations. 

Glass transition is believed to be a phenomenon related to the relaxation, 



162 CHAPTER IV. POLYMER IN FIBER FORMATION 

a freezing/unfreezing of micro-Brownian motions, that is being explained either 
through the free volume theory or through changes in the configurational entropy. 
Recently the latter explanation seems to be gaining more acceptance. 

G. Adam and J. H. Gibbs118 give the following relationship between relaxation 
time, r ,  and configurational entropy, S,: 

A 
r= -  

T .  Sc 
(IV.79) 

Configurational entropy is considered to consist of two parts' l9 

s, = S c l  + s c 2  (IV.80) 

where Scl is the entropy associated with the configuration of the molecular chain 
and S c 2  is the entropy connected with the intermolecular interaction. Thus, Scl 
is this portion of configurational entropy, which is sensitive to orientation. 

A very significant effect of a cold drawing is the generation of heat. The amount 
of heat developed due to the mechanical work of drawing may be calculated from'20 

Here W D  - mechanical work of drawing, FD - drawing force, v - velocity of drawing, 
and t ,  is the time the material spends in the neck. 

Using the AGA Thermovision instrument, J. W. Maher et aZ.120 have investi- 
gated the temperature distribution in a necking zone (figure IV.35). The filament 
temperature starts increasing at the same point where the filament starts necking, 
but the hot spot, the area where apparently the maximum of heat is developed, 
is close to the beginning of the necking. It is removed from the beginning of the 
onset of necking by about one half of the radius of undrawn fiber. The tempera- 
ture decreases from this spot much faster toward the fiber surface and much slower 
along the fiber axis. 

HBER 

Figure IV.35: Schematic representation of the temperature distribution in necking. 
Temperature given in deg C. Polymer: polycarbonate. After J .  W. Maher et all2' 
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As there is no reservation to the interesting experimental results, it is difficult 
to reconcile them with the X-ray investigations of the changes in the crystalline 
structure mentioned above. There is no doubt that a very large role is being played 
by the heat losses. Although the authors devote much space to the estimation of 
such losses, the considerations appear to be grossly incomplete, especially, as no 
heat conduction within the filament was considered. One may suspect that the 
heat develops uniformly along the fiber radius, or perhaps even more toward the 
surface (in agreement with the X-ray results). The net result in the form of a hot 
spot in the center of the fiber seems to be the effect of the heat losses to the filament 
surface. As usual, heat transfer along the fiber axis is negligible; the extension of 
the temperature map downstream is a probable result of the mass movement and 
of the radial heat transfer. 

502!5' ' ' '3:O' ' ' '315' ' ' '410' ' * ' k5 '  ' ' '510' ' ' ' i 5 '  ' * '610 
DRAW RATIO 

Figure IV.36: Maximum temperature of necking zone during drawing of nylon 66 to 
various draw ratios. Drawing velocity in cm . s-l given as parameter. Data quoted after 
Badami et a1.l'' 

Exactly how large a role heat transfer plays in necking may be seen in an older 
work on a determination of the "wholesale" neck temperature in nylon 66.12? 
Figure IV.36 presents neck temperature as it depends on the draw ratio and the 
drawing velocity which is given as a parameter. The figure speaks very loudly 
about the paramount role of heat exchange in the process. The rate of drawing - 
ergo the heat development, and of the drawing velocity - ergo time for the heat 
transport. Naturally, a balance of these two decides about the final effect. 

Some portion of the drawing energy is spent on the bond rupturing. A study 
of bond rupture in polyethylenelZ1 shows that the total number of bonds broken 
in the polymer ranges from 5 x 1017 to  4 x lO"c~n-~ in drawing at  ambient 
temperature. Though, the values represent only to lo-' per cent of the 
total number of backbone bonds. The number is not large, but considering the 
associated decrease of molecular mass, it is not necessarily negligible. What is 
more important, in place of the broken bonds, various characteristic groups are 
formed, mostly carbonyl and vinyl, and it certainly does have an effect on the 
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fiber properties. It is necessary to take into account that the bond rupture process 
occurs mainly in the amorphous areas, that is, the tie and link molecules are broken 
- this weakens the fiber. Here the proportion of breaks to the total number of 
tie and link molecules is much larger. 

The real purpose of this additional operation in fiber formation, of cold draw- 
ing, is improvement of physical properties of fibers. As a result of cold drawing, 
the tensile properties of fibers increase, and this a t  the expense of transverse prop- 
erties; e.g., as the tensile strength goes up the abrasion resistance of fiber goes 
down. On the other hand, an undrawn fiber is mechanically fragile, its dimensions 
are unstable, it may be easily deformed. And this, from the utility stand point, is 
highly undesirable. The problem of effects of cold drawing on fiber properties will 
be discussed in more detail in chapter on fiber properties. 

IV.6.c Orient at ion 

The term orientation has already been mentioned above several times. Under 
this term we understand the description of the position of polymer crystals in 
relation to the fiber longitudinal axis. This is, however only a part of the notion, 
the crystalline orientation. The second part is amorphous orientation. 

The notion of amorphous orientation is somewhat more difficult to define, one 
may even call it little nebulous. As polymer crystallizes in lammelar fashion, 
each lamella contains two fold surfaces. The fold surfaces consist of noncrystalline 
polymer chains looping back and forth, from a crystalline segment and back to a 
crystalline segment. If the folds were perfectly regular, they would form semicir- 
cles and the average orientation between the two fold surfaces would be perfectly 
circular, or random, without a preferred directionality. 

In reality we have also tie molecules spanning from one lamella to another, a5 
well as stretches of polymer chains which, for one reason or another, are not in- 
volved in a crystalline lattice. Thus, when we speak of the amorphous orientation, 
we refer to the irregularities of the fold sites and of the other chain segments, or 
of whole chains, which are not involved in the crystalline lattice. This type of 
orientation cannot be measured directly and unambiguously with the analytical 
techniques available thus far. Only indirect methods are available. 

It is the degree of 
alignment of the c - crystalline axis with the fiber axis. Why the c - axis? Because 
the polymer chains are always aligned parallel, as accurately as the bond angles 
permit, to the c - crystalline axis. In some cases, the molecules assume a regularly 
coiled conformation, then the axis of the coil is aligned parallel to the c - axis. 

Direction of the crystalline axes may be determined from X-ray diffractograms, 
and is usually described by cos2 B. Since we normally deal with a multiplicity of 
crystals, we must speak of an average orientation (cos20). Here B is the angle 
between the c-axis and the fiber axis z.  This parameter is evaluated in terms of 
the orientation of the crystalline lattice plane normals, expressed also in terms of 
the cosine square. As the angles are used here the angles between the fiber axis 

The crystalline orientation is relatively easy to define. 
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and the normal to a set of hkl crystallographic planes (see figure IV.37). The 
direction of the normal, P, is specified by the angles 4 and $. 

Figure IV.37: Schematic representation of a crystalline c-axis orientation in relation to 
the fiber axis z as specified by the angle u. 

Orientation may be determined from X-ray diffractograms by use of the fol- 
lowing set of  relation^:'^^'^^^ 

(IV.82) 

(IV.83) 

(IV.84) 

Here the subscripts 1 and 2 refer to  the two considered planes, and p is the angle 
between a plane normal and b-axis. The values of p are normally determined 
from the crystallographic analysis, and they are usually tabulated in literature on 
crystallographic data. 

The determination of orientation by the (cos2 4) is limited, as for a perfectly 
parallel alignment it is unity and for c-axis normal (90deg) to  the fiber axis it 

2 (cos 0) = 1 - 
(1 - 2sin2 p 2 ) ( c o s 2  4,) - (1 - sin2 pl)(cos2 4 2 )  

sin p1 - sin2 p2 2 
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is zero. To move the description of the orientation closer to the physical real- 
ity, Hermans and P l a t ~ e k ’ ~ ~  have developed the so called orientation distribution 
function, f: 

(IV.85) 
3sin2 4 - 3(cos2 4) - 1 f=1--- 

2 
- 

2 
According to this designation, a perfect alignment of c-axis with the fiber 

axis gives f = 1, an orientation of c-axis normal (90deg) to the fiber axis gives 
f = -0.5, while a completely random distribution of the angles results i f f  = 0. 

The orientation angle, as well as the distribution function, may be determined 
in relation to all three Cartesian axes. In such case fz + f y  + fi = 0. 

Use of the orientation distribution function is particularly convenient for fibers 
with a low or moderate degree of orientation. 

Besides wide angle X-ray diffraction and low angle X-ray scattering, there are 
several other methods of determining orientation in polymeric materials. Perhaps 
the simplest in execution and the most commonly used is determination of the 
optical birefringence. The method is based on the measurement of the refractive 
index difference in both the direction of fiber axis and perpendicular to it. Never- 
theless, the birefringence is not a singular property determined by one factor only. 
In general, one may describe it as follows: 

(IV.86) An = q5iAni + An, + An, 

where 4 means volume fraction of different phase material. Birefringence may vary 
according to phase: crystalline, paracrystalline, amorphous, variable density, leave 
alone additives. Further, An, represents birefringence of form: it is variations 
arising on the boundaries of phases or when the electric field, or dipole, is distorted 
by whatever cause. An, represents changes of the birefringence due to strain, a 
factor influencing the birefringence very strongly. 

The orientation distribution function, f ,  (equation IV.85) is equal to the ratio 
of a specimen birefringe over the maximum obtainable birefringence for a given 
polymer. The last number represents a calculated quantity, which may be found 
tabulated in literature. Occasionally it happens, however, that highly drawn fibers 
show birefringence higher than the theoretical maximum. If this happens, it in- 
dicates invariably the presence of frozen internal stresses, and if so, the measured 
values must be deemed as quite useless. 

Separation of the different reasons for change in birefringence is very difficult, 
often outright impossible. This, in combination with the relative simplicity of 
the determinations cause this method of orientation determination to be highly 
overused, which leads to many misinterpretations. A method of “micro deter- 
mination” of birefringence, that is, variation of birefringence along fiber radius 
may offer some help in this respect. This method was proposed by Beier and 
Schollmeyer.lZ6 

Another way to determine orientation is by way of measurement of infrared 
(IR) dichroism. Certain bands in the IR spectrum, which are not affected by 
molecule conformation, may absorb polarized IR radiation selectively in a certain 

phase 
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plane. If such bands are present in a polymer, one may measure the ratio of 
intensity of polarized infrared light transmitted to the incident beam, when the 
measurements of the polarization direction are made in both perpendicular and 
parallel directions to the fiber axis. A dichroic ratio may be calculated as 

(IV.87) 

where I0 is the intensity of the incident beam, and Ill and I 1  are the intensities 
of the transmitted light parallel and perpendicular to the fiber axis. From the 
dichroic ratio, R, one may calculate the orientation function distribution: 

( R  - l)(R" + 2) 
= (R" - 1)(R + 2) 

(IV. 88) 

R", the dichroic ratio for the perfect orientation may be calculated when the 
dipole connected to a specific group in oriented polymer oscillates at  a right angle 
to  the polymer chain axis. 

Still another way of determining orientation is based on the fact that sound 
velocity in a material depends on the distances between atoms. Usually the dis- 
tances in the main chain backbone differ from the distances between atoms of 
the neighbor polymer chains. For determination of orientation, it is necessary to 
know the sound velocity parallel and perpendicular to the fiber axis for the case of 
perfectly oriented polymer. Velocity parallel for polymers usually ranges between 
some 7 and 10km/s. The parallel velocity is usually either calculated theoretically 
or just estimated. The general relationship for the velocities is:125 

(IV.89) 

In a completely random sample, when f = 0, according to equation IV.85 
(cos' 4) = 1/3. Substituting this value into equation IV.89 gives 

(IV. 90) 

In the above equations, c is velocity of sound, subscripts 1 1 ,  I, and o mean parallel, 
perpendicular, and randomly oriented, respectively. Since in all cases known SO 

far 3ci >> c? applies, then the value of perpendicular velocity calculated from an 
assumed value of parallel velocity and equation IV.90 is relatively little sensitive 
to the assumed value of parallel velocity, if it is the case. In view of this, equation 
IV.90 simplifies to: 

(IV.91) 
2c: 

c: = 3 
and equation IV.89 simplifies to 

1 1 - (cos'(T) _ -  - 
c2 C? 

(IV.92) 
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In the end, the orientation distribution factor is: 

f = l - -  c; (IV.93) 

All the methods described, besides X-ray, give orientation of both crystalline 
and amorphous material. All of the methods are more or less sensitive to any 
residual stresses. To separate the crystalline and amorphous components, one 
must have X-ray determination plus analysis by any of the other techniques. 

C2 

IV. 7 Annealing 

That crystals may be annealed, as well as what kind of changes the annealing 
process triggers, was mentioned in the section on polymer crystals. In fiber for- 
mation, advantage is taken of the annealing. Mostly it is done immediately after 
cold drawing, or sometimes it is considered even as an additional step of the cold 
drawing operation. The drawn fibers are crystalline structures which are oriented, 
and the orientation adds one more dimension to the annealing process. 

Oriented structures may be annealed in two different ways: with or without 
a dimensional restrain. If the annealing process is conducted without the di- 
mensional restrain, the fiber will shrink, and the shrinkage will increase with the 
increasing draw ratios and annealing temperature, but will decrease with increas- 
ing drawing temperature. If the shrinkage is prevented by mechanical restrain, 
there are still changes in the fiber structure that take place, though the changes 
will be somewhat different, and their influence on the material properties will also 
be different. 

A fiber annealed with restrain will, obviously, not shrink, but crystalline ori- 
entation will decrease, and amorphous orientation usually decreases even more. 
Without restrain, all other conditions being equal, the disorientations are much 
larger, particularly the crystalline one. 

The fiber’s succeptibility, if one may call it so, to annealing depends strongly 
on the relationship of the temperature of original crystallization and temperature 
of cold drawing on one side, and on the temperature and time of annealing on the 
other side. 

In some sense, annealing may be treated as a kind of “preshrinking”, a way to 
prevent fiber shrinkage in its final use. Such treatment, however, is accompanied 
by change of another fiber properties, like tenacity, moduli, especially the initial 
modulus, orientation, density, dying characteristic, etc .  A slight extension during 
annealing, sometimes treated as an additional drawing step, often prevents an 
excessive decrease of properties with a simultaneous gain in thermal stability of 
the fiber. 

Every annealing process, irrespectively of restrain or lack of it, always leads to 
an increase in crystalline melting point of the polymer. 

It may seem convenient to anneal fibers in a continuous operation with drawing, 
but this creates problems of its own. The annealing process is slow and therefore 
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it may be difficult to accommodate it in one line with the contemporary fast pro- 
cesses. A way to overcome such difficulties to some extent may be to apply a SO 

called heat shock. This means application of high temperature, often above crys- 
talline melting point, but over a short time. One may consider it as intensification 
of heat transfer to the fiber. In the same vein, a steam atmosphere may be applied 
in the annealing process.'28 Even liquids, like silicone oils and similar, have been 
applied for the same purpose.'2g 
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