26—1 Elen:tmmagneﬂsmmﬁ. ?‘mviaw; | .
" The science of electricity has its roots in the observation, known to Thales
of Miletus in 600 B.c., that a rubbed piece of amber will attract bits of straw. '

The study of magnetism goes bhick to the observation that naturally occur-
ring ‘‘stones’ ' (that 1s, magnetite) will attract iron. ‘These two sciences de-
veloped quite separately until 1820, when Hans Christian Oersted (1777

1851) observed a connection between them, namely, that an electric current

in a wire can affect a magnetic compass needle (Section33-1). .. =~
The new science of electromagnetism was developed further by many
workers, of whom one of the most important was Michael Faraday (1791~
) James Clerk Maxwell (1831-1879) to put the laws of electro-
magnetism in the form in which we know them today. These laws, often
called Mazwell's equations, are displayed in Table 38-3, which the student

may want to examine at this time. These laws play the same role in electro-
magnetism that Newton’s laws of mo tion and of gravitation do in mechanics.

1867). It fell to James C

Although Maxwell's synthesis of electromagnetism rests heavily on the
work of his predecessors, his own contribution is central and vital. Maxwell
deduced that light is electromagnetic in nature and that its speed can be

found by making purely electric and magnetic measurements. Thus the
science of optics was intimately connected with those of electricity and of
~ magnetism. The scope of Maxwell"s'equatiéns'is remarkable, including as it
does the fundamental principles of all large-scale electromagnetic and optical

devices such as motors, cyclotrons, electronic computers, radio, television,
microwave radar, microscopes, and teleseopes. .« . & ;
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The development of classieal electromagnetism did not end with Maxwell.
The English physicist Oliver Heaviside (1850-1925) and especially the Duteh
physicist H. A. Lorentz (1853-1928) contributed substantially to the clari-
fication of Maxwell’s theory. Heinrich Hertz (1857-1894)* took a great
step forward when, more than twenty years after Maxwell set up his theory,
he produced in the laboratory electromagnetic ‘‘Maxwellian waves’ of a kind
.that we would now ecall short radio waves. It remained for Marconi and
others to exploit this practical apphcatmn of the electromagnetic waves of
Maxwell and Hertz. _. 'ﬁ e :
 Present interest in eleetromdgnethm takes tm} forms. At the level of
engineering applications Maxwell's equations are used constantly and
universally in the solution of a'wide variety of practical problems. At the
level of the foundations of the theow there is a continuing effort to extend its
scope in such a way that electrf:-m%gnetwm is revealed as a special case of a
more general theory. Such a theory w ould also include (say) the theerles of
gravitation and Of quantum physies. This grand ayﬂtms;m has not yet been
achleved '

26—2 Electric Churge

The rest of this chapter deals with electric charge and its relationship to
matter. We can show that there are two kinds of ehargu by rubbmga glass
rod with silk and hanging it from a long silk thread as in Fig. 26-1. If a
second glasb rod is rubbed with silk a.nd held near the mtsbﬁd and of the first
rod, the rods w il repel each other. On the {}th@r hmd a hard-rubber rod
mbbed with fur will atiract the glasg rod. TWG hmdﬂ-mbber rods rubbed with
fur mll repei each other. We explain these facts by saying that rubbing a
rod gwe it an electric charge and that the charges on the two rods exert
mrc&s on each other. Ciea_zi} ‘th{* charges on the glm& amd on thp hard rubber
must be different in nature. o |

‘Benjamin anklm (I”OCMNQ ), who, am{mg his {}ther a{,hlevemems was
the first %merman physm::.t named th& kmd of elmtnmtv that appears on
the glas&, pasztwe and the kmd that appea,rs on the hard rubber negatwe
_the:»,f* names have remamed to this day. We can sum up thes:e experlments
' by saying that like charges repel and unlike chmges' attmct ' . |

Flectrlc effects are not limited to glass rubbed with silk or to hard mbber
rubbed W 1th fur. »my subbt&nce zubbed with any cher under suitable
condmom w il btcame {*harged to some extent; b} mmparmg the unknown
Lharge with 2 tharged glass rod or a chaz‘ged hazrd-—rubbu I’{}d 1t (za.n be la,beled

as either positive or negative. | : | | _

The modern view of bulk matter is that in itb m}rm@l or neutml sﬁ&te it
‘contains equal amounts of positive and negatwe eleetrlczt} If two bodies
like glass and silk are rubbed together a small amount of charge 1S tmnw
ferred from one to the other, upf«ettmg the electric zwutmhty of each. In this
case the glass would become positive, the silk negative.

o o3

~ * “Heinrich Hertz by F. and E. Mnrrimn Scientific American, December 1957.
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i

- {thread
Fig. 26~1 Two pmltwely {:harged e C")
glass rods repel each other. -'

26--3 Conductors tmd Insulnimﬁ

L‘x meta md held m the hand and rubbed wath fur Wﬂl Imt seem m d&“ p

a charge It 1s pasmble to charge such rod, h{)‘ﬁ ever, if it is fus maheu with
‘a glass or hard-rubber handle and if the met&l is n@t t{mchrd mth th{_, hands
- while rubbing it. 'Ihe explanatlm is that memls the humaﬁ ,ba}u y, and the

mrt‘a are conduetars of electricity and thdt glaﬂs hard mbher z.h btica ete.,
are mm&zwn {alm c&l]ed dielecmcs) o - .

In mnductara electric charges are free ‘m mave ?hmugh the matwml

whereas in insulators they are not. th@ugh the*e are no pmfﬁ:ﬁt mwmmi g,
the insulating &bihty of fused quartz is about 10%° times as great as that of
copper, so that for many practical purposes some materials behave as ﬂ‘ they
were perfect insulators. ' '

' In metals a fairly subtle exper iment called the Hall effect (See e C‘f*n“;n 33 -&)
shows that only negative charge is free to move. Positive charge is as im-
mobile as it is in glass or in any other dielectric. The actual charge carriers in
metals are the free elecimns When 1qelated atoms are combined to form a
metallic solid, the outer electrons of the atom do not remain attached to
individual atoms but become free to move throughout the 1olume of the
solid. For some canductors uoh as ele(,trolytes beth pomtn ¢ and negatn e
charges can move. |
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A elaee of materials called eemzcenductms 1S mtermedlate between eenduetors and
‘insulators in its ability to conduct electricity. Among the elements, silicon and
~germanium are well-known examples. In semleendueters the electrical conductivity
ean often be greatly increased by adding very small amounts of other elements: traces
of arsenic or boron are often added to silicon for this purpoee Semieendueters have
many practical applications, among which is their use in the construction of tran-
sistors. The mode of action of semiconductors cannot be described adequately with-

out some underetendmg of the b&SI{E principles of quantum physms

g Ceuiemb‘e faw e

| Lmrlee %uguetm de Coulomb (1 436—-1806) in 1785 first meesured eleetrieal
attractions and repulsions quantitatively and deduced the law that governs

them Hie epperems shown in Fig. 26-2, resembles the hanging rod of

 Fig. 26— i ekeept thet the eharges in Flg 26*2 are eenﬁned to small epheree
__'e andb o _ e

~ If @ and b are eherged the eleetme feree on a wﬂl tend te twmﬁ the sus-

-'penezen fiber. Coulomb eaneeled out this twisting effect by tummg the

- suspension head through the angle 8 needed to keep the two charges at the

particular dlste.nee ap&rt in which he was interested. The angle 8 is then a

- relative measure of the electric force acting on cherge a. The device of

Fig. 26-2 is ea}}ed a torsion belance, a similar arrangement was used later hy
Cevendieh to measure gre.v:ztatmnal ettractlens (Section 16-3). |

. Ceulemb S ﬁrst expemmental reeults can be represented by

Fi is ‘the maﬂ*mtede of the ferce the,t eets on each ef the two chargesaand b;
r is their distance epert These forces, as \"eﬁ.vton s third law requires, act
| aleng the line joining the che rgee but pomt in epp031te direetions Note that_ '
‘the magnitude of the feree on eeeh eharge 1S {:}1e same, emn theugh the
'-_'f‘herges may be {iﬁez‘ent - = - : | '
Coulomb also studied how The eleetuedi f(}i ce varied w r{h the wlah\ o b‘i’é
of the charges on the spheres of ‘his torsion balance. For e: xample, if we touch
a eharged congucting sphere to an emetly emiler but uneharged ﬂeeduetmg
‘sphere, the original charge must div ;de equeﬂy hetween the epheze-« By
eueh feehmguee Coulomb extended the mveme equale re!afmmth m P

~ - @yl

’ i
2

X

' szel )

'

_'h.}ieze g; aﬁd {'_fg are zeletwe measures of the ehe*‘ges on spheree a and b.
L uation “fﬁﬂ- 1, which is called Coulomb’s law, holds only for charged objects
W Hme sizes are meeh smaller than the d}h‘{cﬂlﬂ bem een them. V» e often sav

._ ﬂ}{lﬁ if; ﬂf}l a% {ifii";’ 1{}2 lu”flf {;{{ ?‘g@q | | e o

| rmlemh law resemi les the inverse squere Iaw ef g,,mwta,men which was
mieedv more than 100 vears old at ihe time of Coulomb’s ehperzmeme q
plays tbe role of m in that law. In gmwtv hex -ever, the forces are always
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attractive; this eer“espcmds to the fa{‘t that there are two kmda of electricity
but (apparently) only one kind of mass. | | L
Our belief in Coulomb’s law does not rest quanhtatw ely on (oulomb S
. ~experiments. h}%mn balance measurements are difficult to make to an
- accuracy of better than a few per cent. Such ‘measurements could not, for

~ example, convince us that the exponent in Eq. 26-1 is exactly 2 and not, say,

201 In Sectmn 28-5 we show-that C Gulamb S lmx can also be ded_uced from
‘an mdirect e\perzment W hzch sh(ms that the expon@nt in Eq "’hw—l 119""-
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bem een  the hmzts of apprommately 2 000000002 and . 999999998 Smal[
wonder that w e usually assume the exponent to be exﬂctly 2

Mtheugh we have estabhshed the physma,l ceneept of electrle charge ue_' |
haver not yet deﬁned a unit in which it may be measured. It is possible to do
80 Ugez ot mne lzy by puttmg equal cha,rgea g on the spheres ef a torsion balance
~and by measuring the magnitude F of the force that acts on each when the

‘charges are a meaeured dletanee r apart. One could then define q to have a
unit value if a unit force acts on ea,ch eherge when the charges are separated
hy e umt distance and one can give a name to the unit of charge so defined.*
o ez pz*leumi rea sons hiu ing to do w Ith the accumcy of measurements, the?
unit of char ge in- the mks sy -~tem 18 not deﬁned using a torsion balance but is
dem ed from the unit of alactrie current. If the ends of a long wire are
eermeeted to the termm{m of a bebterv 1t 1S common knnwledge that an
electric ¢ urrent ¢ is set up in the wire. We Vlsuallze this current as a flow of
dm:[ ge. The ml\a unit of current is the ampere (abbr amp). In Section 34-4'
we deeerzbe the epemtlenal procedures n terms of w hich the ampere 1S
deﬁned o ' '
The mks uut ef eharge 18 the coulomb (abbr ceul) A caulomb 8 deﬁned as
the emeum of chmge that flows threugh a gwen cros.s* section of a wire m 1 second
1f there s a stead Y current of 1 ampere n the wire. In S‘ymbole | |

where ¢ is in eoulembe 1f ; is in emperes e,nd t is in seconds. Thus 1f a wire
1S eenneeted to an insulated metal sphere, a charge of 10°° coul can be put
on fhe sphere if a eurrent of 1.0 amp exists in the w3 re for 10 sec.

contains equal ammmts of peeitwe and negative glectricity. What is the magnltude"'
g of these che‘rges? A copper atom has a posttive nuclear eharge of 4. 6 )( 10"
coul and a negative electronic eharge of equel magnitude.

?:P Emmple n A copper penny has a mass of 3.1 gni. Belng electncal‘y neutrel
£

:- - _I_,ur""
g-.'. H"'_,,a-

The number N of eepper eteme in a penn} 1S feund from the ratio -+

where N ¢ IS %vegedre S number m t‘he E_n_e;se of the coin, and M the atemlc weight
of copper. Thlr:, vields, sei%. ing for N,

(6 0 X 107 etems/mele)(3 gm)
64 gm/mole

A7
Iy =

= 2. 9 >< 1(} etems
The eherge q is _ | _ |
ﬁg ' ( >< 1-{}““13 eeul fetem)(z 9 >-< 1(]22 atoms) 1 3 }( 1()” ceul o /

In a i{}{’-'ﬁ att lilﬁwolt [1ght bulb the current is 0.91 amp. The student. sheuld verih
| thd,t it wemd take 40 hr for a cherge of this dmeunt to pass threugh thlS bulb oY

= 2 ) hze 0 ‘zeme is the beele fer the deﬁmtien ef the unit ef charge called the smweuiemb
However, in this book we do not use thls unit or the eystems of units of which it is a part;
see Appendix L, however. | |
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_ Equatu}n 26—1 can be ertten as an equality by msertmg a constant Qf Pl‘t}-'
.,.=-p@rt10nal1ty Instead {}f wrltmg this mmplv as, say, k, it is usually written
~in a more camplet wa,y as 1/4reg or - |

1o

Pmoper. 0 L0 )

.:Certam Pquatmns that are derwed from Eq 2b 3, but are u%ed more {them

~ than it is, will be 81mpler in form if we do this. | o

Lo ln the mks Hvstem we can measure qi, gz, 7, and F in Eq. ‘76*3 in w %h thm'
_._._{do not depend fm Ceulomb s law. Numbers with units can be aamgned 0
chem ‘There is no choice a.bout the so-called permatti ity constant €g; it must
~ have that value which makes the right-hand side of Eq 26**3 equa,l to the
-.left—hand side. Thls (measured) value turns out to be * -

= R 8:_)418 X 10 12 C()Lllzf nt-m

. _'_.In this book the Value 8.9 X 1072 (:Dul?' ‘nt-m® will be accurate enough for
all problems. For direct application of Coulomb'’s law or in any problem in
~ which the quantltv 1 /4'“0 occurs we may use, w 1th aufﬁuent accuracy for
! thls b{}{}k | i - | |
il /4 'eo' = 90 X 1-9 nt—m2 f-mlz- |

| oy
o xample Let the total pos:twe and the total negatwe charges in a, copper
/ /penny be sepamted to a distance such that their force of attraction 1s 1 0 =30
" _nt) Hew far a,part must they be? . | =

o 1 g2 ' | |

%

4w 6{} ?‘2

- 'Puttlng 4114?2 q (see Example 1) and solmng for o melds

e P : 9 2 /coul?
T___qle/‘iﬂo 13X10“c0ul\/90>(10 nt-—m cou

= 4.5 nt
=5 8 X 10g meters = 3 6 )< 10° miles.

This suggests that it is not pOSSlble to upset the electrical neutmhtv of gross objects
by any very large amount. What would be the force between the two charges if they
were placed 1.0 meter apart‘? . | ey o <

If more than two charges are present Eq. 26-3 holds for every pmr of
charges. Let the charges be g1, g2, and g3, ete.; we calculate the force e'certed'
' onany one (say ¢;) by all the others from the vector equa.tion : o

F =F12 +Fy +F1_,, + e - (26~4)

' 'where Fi,, for example is the force e'-:erted on q; by qa.

m

* For practical reasons this value is not act.ually measured by dlrect. apphcatmrii m
Eq 26—3 but in an eqmvaient. a.lthough more clrcmt.ous way that. is descnbed in Sectmn
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'P Example 3. Figure 26-3 &haws thme clmrges 01, 93, and ¢;. What force acts on
¢:? Assume that @ =—10X 10“‘”‘ coul, ¢ = _+30 X 10—° caul gs == --20 X
10—¢ coul ris = 15 cm, 713 = 10 ﬁm and § = 30” e

Fig 26-3 Example 3. Slmwmg the fﬁr{:e& ex-
erted on q; by ¢z and qa sty

me Eq 26~3 lgnermg the SlgHS of the charges smce we are mter&sted enly in the
magmtudes of the f{}rces . . L

(9 0 X 1@5 m-amgmt}ulg}(l 0 X 10“‘5 mul)(3 0 X 1()"‘“‘5 mul}
~ _ 15X 10**1 meter)?
12mt7= | | '

o (O f) }fi 10¥ nt-m? c:::sul**} 1.0 X 10~ ¢ coul)(2.0 X 10""ﬁ caul)
ﬂ-nd }'}33 e e . | y el 9
. . . ' (1 0 >~’ 1!} met.er\

o b &\ﬂt e

The dzfécméﬁs Fh and Fy; are as shown in the ﬁgure | o
The components of the zemlmm f@rce F1 a{zti ng on gy (S% Eq 2M ) &re -

le"‘z _FIEJL‘ ‘i‘ FIE;E Fw + F;g ‘Sln_ﬁ '

=1 nt —iu (1 8 m)mﬁ 30°) = 2.1nt

M

ﬁ,-';fid_. | Fly Fm;- e me w= 0 s Fm Q-ﬁb@

= (] 8 nt)(ms 30“) ._.1 6 rzt

ihe student sh{m}d fmd the mmmtude m‘ F smd tm angie it maLesa mth the T-8.Xi8.
| e 4

26—5 'Cii&ig}e 1 Qwﬁﬁ‘fﬁéé . _ |
In F r&nl{lm s day electric #h&rge was thought of as a c(}mmuaus ﬂmd an
idea that was useful for many purposes. The atomic theory of matter, how-
ever, has shown that fluids themselves, such as water and air, are not con-
tinuous but are made up of atoms. Experiment shows that the “electric

fAuid”’ is not mntmuou& either but that it is made up of integral muitiples
of & eertam min:mum electm‘: charge This fundamental charge, to which
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we give the symhﬂl ¢, has the magmtude 1.60210 X 10~ ~19 ¢oul. Any physi-
cally existing charge g, no matter What Lts ongm can be written as ne where
n is a positive or a negativeinteger. =~

- When a phymca.l property such as chan f' emsts in dlscrete ”packets”
rather than in continuous a.mount.s the pmperty is 3a1d to be quantized.
Quantization is basic to modern physms The existence of atoms and of
'pa.rticles like the electron and the proton indicates that mass is quantized
also. Later the student wﬂl learn that several other propertz.es prove to be
quantlzed when sultably exammed on the atomm scal&, among them are
energy and angular momemum | . --

- The qua?ﬁum of charge e 1S 80 Emall that the “grammess” of electrlcity does
'not show up in large»scale expenments just as we do not realize that the air
we breathe is made up of atoms. In an Ordmary 110-volt, mﬂ-watt light
bulb, for example 6 x 1013 elementary ch&rges enter and leme the ﬁlament
every ﬂecond .

 There exists today' m:; theory tha.t predlcts the qu&ntma.tmn of cha.rge {or
the quantlzatmn of mass, that is, the existence of f undamental partlcles such
as protons, electrons, pions, ete.). Even assuming qua.ntlza,tmn the classi-
cal thec)ry of eﬁectmmagnetlsm and l\ew’of)man mechanics are mr*omplete_
in that they do not correctly descrlbe the behavior of charge and matter on
the atomic scale. The classical thec}ry of eieetmmagnetxsm for example
jdescnbes correctly what happens when a bar ‘magnet 1s thmsﬁ thmugh 8
closed copper loop; it fmls however, if we wmh to expl&m the magnetlsm of
the bar in terms of the atoms that make itup. The more detmled theorze‘s of
quamum physw:, a.rve needed for thx.s and smxﬂar pr(}blems .

26-6 Chmga ﬂﬁd Maﬁar :"

Matter as we ordinarily experience it can be rega,rded as mmpased oi thre-e _
kinds of elementary particles, the proton, the neutron, and the electm:n
‘Table 261 shows their masses and charges Not-e that the masses of the
neutron and the pmton are approxmmtely equ&l but that the electmn 1S
'flxghter bvafactor ofabaut 1840 - o -
Atoms are made up of 8 d@nse posmvely aharg&d nudﬁm surmundﬁd by a

 Table 26-1

~ PROPERTIES OF THE PROTON, THE NEUTRON, AND THE KLECTRON

P Ty o

Particle | Symbol | Charge - -.Mm k-
Proton | p 3¢ | 1 67252 }x 10"‘3? kg
Neutron | n - b _1.67482 % 10~% kg-
o Tlaabeen Lbooem o lf '9.1991-“)(_1(_3““ kg
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Fig. 264 An atom suggesting the ele{,tron CIOUd and abme an enlarged view of the
~ pucleus. :

cloud of electrons; see Fig 26—4. The nucleus varies in radius from about
1 X 107!° meter for hydrogen to about 7 X 10~'® meter for the heaviest
atoms. The outer dlameter of the electron cloud, that is, the diameter of the
the atom, lies in the range 1-3 X 10"‘”’ meter, aboub 105 times larger than
the nuclear dlameter ' ' ' G

$. The dlstance r between the electron and the proton in the h ydrogen
ut 5.3 X 10~" meter. What are the magnitudes of (a) the electrlcal force
the gravitational force between these two particles? |

A ~ Sy _ _ . 4
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~ From Coulomb’ law | P gl Wi -
- .F 1 thh lessi e
' 41!'6?0 2 Tl oo el L |
(9 0 X 109 nt-rn*/ooulg)(l 6 X 10“’”19 eoul}2
e -5 3 >< 10"“ o:rr—:-i:,er)2 L
' -- 81 >< 10"E nt b

T e gremtatronel foree is gwen ba Eq lﬁ~—-l or S :

.

mime

il F -G
(6 7 )( 10"'“ nt—m*/kgz)(g 1 )( 10""31 kg)(l 7 >< lO"’ﬂ kg)

= 3 7 >< 10"4"' nt
| ooe the eleetrloel foree 1e ebout 1()39 trmes stronger then the gremtatlonel foree A 4' .

The srgmﬁcance of Coulomb S law goes far beyond the descrlptlon of the |
forces acting betw een charged balls or rods. This law, ‘when mcorporated’

_mto the structure of quantum physws oorrectly descrrbes (a) the electric

forces that bind the electrons of an atom to its nueleue (b) the forces that
bind atoms together to form moleeules and (c) the forces that bmd atoms or
- molecules together to form solids or liquids. ‘Thus most of the forces of our
- daﬂy eXperlence that are not grawtetlonal 1n nature are eleetrlcal A force
tra,nsmltted by a steel cable is basically an electrltal force because, if we pass
- an 1magmary plane through the cable at rlght angles to it, it is. only the
attractive electrical mteretomlc forces acting between atoms on opposite
sides of the plane that keep the cable from pa.rtmg ‘We ourselves are an
essembly of nuclel and electrons bound together in a stable eonﬁguretlon by"-
Coulomb forees b e - | | ..

In the atomic nuoleus we eneounter a neir forc;e W hwh 1S nerther orav ita-
tional nor electrical in nature. This strong attractive force, W hich binds
together the protons and neutrons that make up the nucleus, is called simply
the nuclear force If this force were not preeent the nuoleue would fiy apart at
once because of the strong Coulomb repulsmn force that acts between 1ts
protons. The nature of the nuclear force 1s only partrelly underf:tood today
and forms the central problem of present—day resea.rchee in nuclear phyews

g Examﬁlo 8w hat repulsue Coulomb foree exists between teo protons in a
pucl e*w’ o£ fron? Assume a seperatlon of 4 0 )-( 10"'15 meter G e |
F /Cm Coulomb’s law, - /

F i

41req r2 ~ e . _
O 0 X 109 nt-— 2/ooul?)(l 6 }( 10~19 eoul)* :
(4 0 X 10#15 meter)? _

F =

= 14 nt.
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This enormous repulsive force must be -Iﬁf;f}re._"than'a’amp‘ensaa?ed“fmf-by the strong
attractive nuclear forces. This example, combined with Example 4, sh ows that
nuctear binding forces are much stronger than atomic binding forces. Atomic binding

forces are, in turn, much stronger than gravitational forces for the same particles
. 4

separated by the same distance,
The repulsive Coulomb forces acting between the protons in a nucleus make the
nucleus less stable than it otherwise would be. The spontaneous emission of aloh,
particles from heavy nuclei and the phenomenon of nuclear fission are evidences of
- The fact that heavy nuclei contain significantly more neutrons than protons is still
another effect of the Coulomb forces. Consider Fig. 26-5 in which a particular atomic
.'spﬂeciesf.i}sgr'éprésémed__'by-af_ circle, the coordinates being Z, the number of protons in
the nucleus (that is, the atomic number), and N, the number of neutrons in the nucleus
(that is, the neutron number). Stable nuclei are represented by filled circles and radio.
active nuclei, that is, nuclei that disintegrate spontaneously, emitting electrons or
~a-particles, by open circles. Note that all elements (iron, for example, for which
Z = 26; see arrow) exist in a number of different forms, called isotopes. @

 Figure 26-5 shows that light nuclei, for which the Coulomb forces are relatively
unimportant,* lie on or close to the line labeled “N' = 2" and thus have about equal
numbers of neutrons and protons. The heavier nuclei have a pronounced néutron:

excess, U having 92 protons and 238 — 92 or 146 neutrons.t In the absence of

Coulomb forces we would assume, extending the N = Z rule, that the most stable

nucleus with 238 particles would have 119 protons and 119 neutrons. However, such
a nucleus, if assembled, would fly apart at once because of Coulomb repulsion. Rela-

at lig

tive stability is found only if 27 of the protons are replaced by neutrons, thus dilutin g

the total Coulomb repulsion. Even in U?® Coulomb repulsion is still very important

because (a) this nucleus is radioactive and emits a-particles, and (b) it may break

up into two large fragments (fiasion) if it absorbs a neutron; both processes result in

separation of the nuclear charge and arecoulamb repulsion effects. Fi gfam 26-5

~ We have pointed out that matter, as ‘we ordinarily experience it, is made up of

electrons, neutrons, and protons. Nature exhibits much more variety than this,

however. No fewer than 28 distinct elementary particles are now known, most of

them having been discovered since 1940, either in the penetrating cosmic rays that o

come to us from beyond our atmosphere or in the reaction products of giant cyclotron-

Appendix E, which lists some properties of these particles, shows that, like the more
familiar particles of Table 26-1, their charges are quantized, the quantum of charge

again being e. An understanding of the nature of these particles and of their relation-

- v

“hips o each other is perhaps the most significant research goal of modern physics.

~ *Coulomb forces are important in relation to the strong nuclear attractive forces

only for large nuclei, because Coulomb repulsion occurs between every pair of protons in
the nucleus but the a;t;-t,mc-tiﬁe_._nuclear___r_‘ orce does not. In U%8 for example, every proton
exerts a force of repulsion on each of the other 91 protons. However, each proton (and
neutron) exerts a nuclear attraction on only a small number of other neutrons and protons
that happen to be nearit. As we proceed to larger nuclei, the amount of energy associated
with the repulsive Coulomb forces increases much faster than that associated with the
attractive nutiIEar forces. e e o = ol Shgase T
t The superscript in this notation is the mass number 4 (= N + Z). This is the total
number of particles 'in_:':'tfh'émjble'us.-_ Ll e e o |
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26—7 Churge is Conserved - I e

When a glass rod is mbbed w:th sﬂk a positive charge appears on the rod
Measurement shows that a negative ﬂharge of equal magnitude appears on
the silk. This suggests that rubbing does not create charge but merely
- transfers it from one object to another, dlsturbmg shghtly the ‘electrical
neutr ahty of each. This hypc»thesxs of the conservation of charge has stood up
under close experimental serutiny both for large-scale events and at the
atomlc and nuclear level: no exceptions ha.ve ever been found. L

“An interesting example of charge conservation comes about when a,n__f_
electron (charge = *-e) and a pomtmn (charge = -+¢) are brought close to
each other The two particles may simply dlsappear convertlng all their
rest mass into energy accordmg to the well-known E = mc? relatmnshlp, ;
'thls anmkdatwn pmcess was described i in Section 8-9. The energy appears_ i

in the form of two Opp031tely dlrected gamma rays, whlch are similar in
| ,character to X-rays The net charge 1S Zero both before and a.fter the -
“event so that charge is conserved Rest mass is not conserved bemg

tumed completely into energy. - o
- Another example of charge conservatmn is) found in radloactwe decay f)f.

. whlch thefollmmng process is typmal o =

The radmactwe parent” nucleus U238 contmns 92 pmwns (that is, lts,_ .
atomic number Z =02} It msmtegrates spontane(}usly by emlttmg an a-
particle (He 7l = 2) transmutmg itself into the nucleus Th?3¢ with Z = 90
Thus the amount of charge present before dlsmtegram(m (—l—92¢3) is the same--
- as that present after the dlsmtegratmn e -
A final example of charge conservatwn is found in nuclear reactmns of- i
‘which the bombardment of Ca* with cyc]otron-accelerated protons isf":‘j_’
‘typical. In a particular collision a neutmﬂ may emerge fmm the nucleus '
leavmgSc asa“resxdual”ﬂucleus = e e

oe _'..-_"C 7 + p - Se‘“ 9F T ’

The sum of the atomlc numbers befare the reactwn (2(} + 1) is Macnh equa.l
to the sum of the ammm numbers aft&r the rea,&tmn (21 0) Agam charge

18 mnserved
QUES T ONS

1 ‘1 ou are gwen two metal sphereﬂ mt}unted on p{)rtable msulatmg aupports F md a
way to give them equal and opposite charges. You may use a glass rod rubbed with silk
but may not touch it to the 3pheres Do the spheres have to be of equal size for your
method to work? | e 3

2. A f:harged md attracts bits of dry cark dust whlch after teuchmg the md often
jump violently away from it. Explmn s |

3. If a charged glass rod is held near one end of an msulated uncharged metal md as in
Fig. 266, electrons are drawn to one end, as shown. Why does the flow of electrons cease?
There is an almost lnexhaustlble supply of them in the metal rod.
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4. In Flg 26—-6 dOEH any net electrl- L
cal foree act on the metal rod’ Ex .

An 1:18111.;1,’(@:1 rod is said to carry;;; -
. lectric charge. How could you __——rm
verify this and determine the sl En of (Gges iass

6. Why do Pleetroqtatlc e'{perlments

A person standing on an 1nsu—-'..- s

lated conductor. Is the mnduetor
discharged completely? ' e
R. (a) A positively charged glass

 Fig. 2_6—5

we conclude that the object is neg- | _
atively charged? (b) A positively charged gla s rod rfpels 8 suepended Gb]ect sz we

mnﬂ*ludP that the object is positively charged? . o -
Is the Coulomb force that ene charge exerts on anotber ch&nged 1f ather charges

are bmught nearby? | - |
10. The quantum of eharge is 1 60 >< 10‘"‘9 mul Is _t‘h_e"re 'a'carrespondmg_'S.l_ngl,e-- qu_an— |
o s = &0 T e b s =i
11. Verify the f mt hat the decay schemea fﬁ)r the elementary'--ﬁarti_cles in Appendix E
are com:stent mth charge cmiservatmn : - e e
12. What does it mean to say thab a ph} su:al quantltv is (a‘) 'qué;n't'ized 't}r'_ ('b)--ctjﬁSe%?ed? ..
Give some examples. - - i
13. A nucleus U* 0 sphts mto ‘m 0 identzcal parts Are the IIU.CIEI so pmdueed hkely '
to be stable or mdmactwe" a0 .

PROBLEMS

1, Pmtans in the cosmzc my% strlke the e&r’th s upper atm{}sphere at a rate, &nged
over the earth’s surface, of 0.15 pmtﬁns /em®-sec. - What total current does the earth receive
from bevond its atmﬂsphere iﬂ the f@rm af mmdmt cosSmic my protons? ‘The earth 5

radius is 6.4 X 10° meters.

5 X 10_‘-""?'-(:91_51 Caleulate the magnitude and direction of the force on each charge.
| 3. Twe slmﬂar balls of mass m are hung from silk threads of

length ! and aarry ‘similar ch&rges g as in Fig. 26-7. Asau_m e that
f is so small that tan # can be replaced by its a,1:)131‘433&3‘11ﬂa’c«ss:?--i*a'rqt‘r%;-?,lI
sin 6. To this appﬁ}}{lnl&tif}ﬂ shaw that A

. A e -

where z is the separation between the balls If E 120 cm, m =
10 gm, and = = 5.0 em, whatisg? - o |
a4 Aqqume that each ball in Problem 3 ] is lasmg cha.rge at the mte
of 1.0 X 1072 coul/sec. At ‘what instantaneous relative speed
(- dx, dt) do the balls appmach each other lmtlally‘?

. Three small balls, each of mass 10 gm, are suspended Sep-
ara.t,ely from a common point by silk threads, each 1.0 meter

75& A point charge of +3 0 )-( Iﬂ”ﬁ mul i 12 cm dmtant fmm a , second pﬂrmt Bharge i}f
P
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lmg Th& balls are 1dentwa.i!y charged and hang at the corners Of an eqmlaterai tnangle
0.1 meter long on a side. What Is the charge oneach ball? e |
6. In Fig. 26-8 what 18 the reaultant force on the charge in the lmn er left corner i}f the
. nquare"’ &ssurne that ¢ = l 0 >< 10~ coul and G = 5 0 tm.. -

Flg.. 26-ﬂ

7 ?1 eh&rge Q 18 placed at earh of tm Gppmitﬁ ﬁGTHFI‘S nf a bquare* ﬁ\ charge g 18 plamd
at emh nf the other two c{}mera (a) If the resultant el&fztrma} force on Qi 1S zero, htm &re
Q and g related? (b) C{}ﬂld q be Phﬁsm to make the resultant force on every Lharge zero?
8 How far apart must two protons be if the elecrrlchl I‘Pp{ilhi‘ﬂ?e fﬁree a.ctmg on mthe*ﬁ'

'Gne is equal to its welght? _ ¢ . S
9. (a) What equal positive chargeq w:)uld have to be placed on the ear‘th H.Ild on the momt
to neutralize their gravitational attraction? (b) Do vou need to kmm the lunar ch.stance to
~ solve this pmt}lem" (¢) How manv p(}undﬂ of hvdmgen would be ne eded m pr{mda, .f.he
- positive charge calculated ina? e - - .
~ 10. A certain charge Qis to be diwd?d into two parts q a.nd Q — q What is thﬁ rel itmn-
- sth of Q to ¢ if the tmu parts, pla.c#d a gwen dmtance apar ‘are to have a maximum
Coulomb repulsion? . = - el | |

- 11. Each of two mﬂail Spheres 18 chargﬁd poszltlwiv the cf:mbmed t:*harge bemg 5.0 X
1072 coul. If each sphere is rem*lled from the other by a force of 1.0 newton when the
ﬂ;p‘iernﬁs are 2.0 meters apart, how is the total charge &istrlbutﬁd between the spherea’

212 Two equ.ii positive peint vharges are separated by a dﬁta.rrce 2a. A point test

- charge is located in a plane which is normal to the line joining these Phﬂ.rgeﬂi and midway

between them. {a) Calculate the radius r of the circle of sy mmetry in this plane for which

the ft:;rce on thP test charge has a maximum va.lue (b) What is the Lill‘?ﬂtl(}ﬂ of this force,
assuming a pomtwe test charge o : |

- 13. A cube of edge a carries a pmnt charge g at each corner. (ﬁ) Show t.h_a,t_-: :t,he_‘_m_&gni'--

- tude of the resulmnt fﬁrce on any one t:::f the charges is o

U028l

e0a®

. (b) W hat 18 the dzrectmn (:;f F rel&twe tf} the euw edgﬁs |
14, Estimate raughlv the number of coulombs of pﬁmtwe marga in a g;la.ss of water.

15, () Hew manv electrons would have to be removed from a. penny to leave it with a
charge of +10 coul" (b) W hat f raci‘*ﬁn r.:)f the eieftrons in th? penny dms this mrreupond
. m‘-’ - |

18 The radms o a copper nuc}em is ‘about 1 9 X 10""‘13 em. Caleulate t.he denmtv of
the matﬁnai that makes up the nucleuq D{}&H }(H.H' answer seem reasonable? (The atomic
' 'm«elght of aoppe-r 13 64 gm/mﬂle 1gnme the mass of the electmns n mmpﬁrlsan to that of
- thﬁ HU{’EEHE) . | S _ fH : S _

~17. In the mdmactwe dec'ay cf [‘""33 (see Fq 26~5) the ceriter of fhe emergmg a-particle
'_"'Ja at a certain instant, 9 X 107!® meter from the center of the residual nucleus Th>*

At this instant (a) what is the force on the c-particle and (b) what is its acceleration?



The Electnc Fleld

CHAPTER 27'

- 27~ 1 The Elecmc Faeld

With every point in ﬂpace near the earth we can :a,sqeela,te a4 gmz*iiati{?MI
ﬁeld 3trength vector g (see Eq. 16w12) “This is the gmmtatmna,l acceleratlen
that a test body, placed at that point and rele&sed would experience Im
18 the mass of the b{}d} and F the gr&wtatmnal force actmg onit, g18 gwen by

(2(*1)

ThIS is an e:{ample of a vect,or ﬁeld Far pomta near the surface of the ,_eart,_h_, :
the field is often taken as uniform; that is, g is the same forallpomts, -
. The flow of water in a river prov ides another example of a vector field,
called a flow field (see Section 18-7). Every pmnt in the w ater has aqsamated _'
with it a vector quantity, the v elocity v with w hich the w ater flows past the."__.._
point. If g and v do not change with time, the corresponding fields are
described as stationary. In the case. of the river note ‘that even th{mgh the:
water is moving the vecter v at an} pomt dc-es not change W 1th tzme for'.-__
. steady—ﬂow conditions. i - <o
~ Thespace surroundmg a charged rod 1S aff ected by the presenee ef the rod
and we speak of an electric field in this quce In the same way we %peak of
a magnelic ﬁeld n the space around a bar magnet In the clafssma,l theory

o0 electmmagnetlsm the electrlc and m&gnetle fields are central conceptq -

~ Before Faraday’'s time, __the force acting between charged partlcles was
't,hought of as a direct and 1nstantane(ms m{emctmn between the two.
‘particles. ThlS actwn-atma-dzstame view was alm hpld fer m&gnetic ‘and for
| grawtatmnal { orees.. Todav we. prefer fa thmk m terms of electmc ﬁelds a<~:._.

follows: e | -- - -

- 1 1 hdrge g, in Fzg 24-—1 sets up an electnc ﬁeid in the spar::? amund ;tself
- This field is suggested by the shading in the ﬁgure later we shall show hm& to'
| represent electrlc ﬁ&ldb rnore mncretel e

nh gy
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 Fig.27-1 Charge ¢ sets up a field
* that exerts a force F on charge ¢9.

2 The ﬁeld act.s on: charge qg, thlb shows up n the force F that Q2 ex—_'
perlences

" The freld plays an mtermedlary role in the forces between charges There -
are two separate problems: (a) calculating the fields that are set up by gwen |
dlstmbutlons of charge and (b) calculatmg the force:s that gwen ﬁelds mll'

exert on chm ges placed in them W e thmk m terms of T -

eharge # ﬁeld
-_and m}t asin the actlon-at-a-dlstance pomt Of view, in terms of
. charge ﬁ charge

In Flg 2( 1 we can also 1magme tha,t, 2 sets up a ﬁeld and that this ﬁeld acts
on ¢, pmducmg a force —F on it. The situation is completely symmetrlcal

'_'each charge bemg unmersed in a field associated with the other charge.

* H the onl} pmblem n electromagnetlsm was that of the forces between
statmnarv cha,rges the ﬁeld and the actmn—at—a-d}stance pomts of view
""Would be perrectly equlv alent. Suppose however, that ¢; in Flg 27-1
'_quddenlv accelerates to the rlght How qmckly does the charge 92 leam
‘that ¢, has moved and that the-force which it (g2) expemences must increase’

Electmm&gnetm them} predlcts that g2 learns about ¢;’s motion by a ﬁeld-
disturbance that emanates from ¢;, traveling with the. speed of light. The
action-at-a-distance point of view requires that information about ¢;’s
acceleration be communicated instantaneously to gq; this is not in accord
W ith expenmfrnt Accelerating electrons in the antenna of a radio transmitter
_'j:mﬂuenee electrons in a distant recen*mg antenna only after a tlme 1 ,f’ c where I_
~ 1s the separation of the antennas and c is the speed of hght 2 | '
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- Te kdeﬁn._e the electric field {}peratidnally, we place asmalltestbody Cﬂ,rry-
- ing a test charge_-%j-(assumed_pos’itive:er_c(}nv-enience) at the point 1n space
that is to be examined, and we measure the electrical force F (if any) that
acts on this body. The electric field strength E at the point isdefinedas *
Here E 1s a vector b.ec'ause F is (j:n__e,_ q_g_'being_a“sfcaﬁ,lar._. g he:d_irec_ﬁiﬁn of E
is the direction of F, that is, it is the direction in which a resting positive

it 'y

charge plamd at the péiﬁt’w@ﬂld "tfen@ci't_-ci___ mt}ye; .

<

The definition of gravitational field strength g is much like that of electric field

~ strength, except that the mass of the test body rather than its charge is the property

of interest. Although the units of g are usually written as meters/sec’, -th'ey:t:_ﬁuldzl_

“also be written as nt/kg '('Eq.i'_27~+1); those for E are nt/ coﬁl_(Eq.-'27é-2)'.' “Thus both

~ gand E are expressed as a force divided by = property (mass or Cha"rge)_ of the test

'» Example 1. What is the magnitude of the electric field strength E such that an

electron, placed in the field, would experience an electrical force equal to its weight?

From Eq. 27-2, replacing go by e and F by mg, where m is the electron mass, we have

el AL X 104"?‘_-31 kg)(Q.S.meters/sec?)'" lapn
BT soa0 Meoal - s
456X 10Mnt/coul.

This is a vér}' weak electric field. Which ﬁfa'}f will E -haﬁré tepmntlfthﬁ electrm ffjrce_.'
s to cancel the gravitational force? na . e =

- In applying Eq. 27-2 we must use a t(_-:-st. charge assmall as p(ii'ssiblel._ Alarge test
 charge might disturb the primary charges that are responsible for the field, thus

£

changing the very quantity that we are trying to measure. Equation 27-2 should,
strictly, be replaced by e e L e v o
| E = hm -—- o - P .(27""3)

- __ %0 Go e _ -
This equation instructs 'u"s_td--use_"aismall'e_f ;and'sm'all:_éf_-'test.chai‘gé_ qo, evaluating t_h'e' '
ratio F/qo at every step. The electric field E is then the limit of this ratio as the size
of the test charge approaches zero. o

27-3 Lines of Fﬁrce e - i |

The concept of the electric field as a vector was not a'pj:jif'é_cia.téd_ by Michael
~ Faraday, who always thought in terms of lines of force. The lines of force

 still form a convenient way of visualizing electric-field patterns. We shall
.'_'use._them for this purpose but we shall ncﬂ;-emp_l_(.‘i}f”:_t'hém"qu'ﬂén.titatiiﬂyf

~ * This definition of E, though conceptually sound and quite appropriate to our present
 purpose, is rarely carried out in practice because of experimental difficulties. E is normally
~ found by calculation from more readily measurable quantities such as the electric po-
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The mmneﬁsmp between the (1magmary) lines of farce and the. electrle__.__
_ﬁeid strength vector zs thxs - |

1 The tangent to a lme caf force a.t any pmnt gwes the dzrectwn {}f E at thati
2 The lmes Of for('e are drawn SO that the number of lmes per unit cross-

:"..."sectlonal area is pmp@rtmnal to the maqmtude of E. Where the lines are close
together E Is iara‘? and where they are far apart E is small. |

It 1S nat obwetn_ *hat it is pasmble to draw a contmuous set Gf lmes to mﬂ:et
| these r&quirements TIndeed, it tums out ‘that if Coul{)mb s ldw a*ere not'
true it would not be possible to dO S0; see Problem e

Figure 2 z*"-? shows the lines of force for a umform sheet of positive charge.
We a.ssume that the qheet 18 mﬁmtely large, w hlch for a sheet of finite dimen-
 sions, is. equwalent £¢] conmdermg only those pomts whose dlstance from the
‘sheet is small e{)mpared to the distance to the nearest edge of the sheet A
positive test charge, released in front of such a sheet, would move away from__
the sheet amng a {)H‘pﬁﬂdiﬂlﬂ&r line. Thus the electric field strength: vector
at any point near the sheet must be at rwht amrles to the sheet. -The lines of
force are umfermlv spaced, which means that E has the same ‘magnitude for:
“all points near the sheet.
(F igure 273 shows the iines of force f or a negatwew charged sphere From
symmetry, the lines must lie along radii.. They point inward becauseé a free
positive charge would be acaelerated in this direction. The electric: field E is
- not constant bui decreases with increasing distance from the charge. Thm 1S
evment in the lines of fore e, which are farther apart at grmter distances.
From symmetry, E is the same for all pamts that lle a given distame f rom the

center of the ch&rgé; 5

:P Emmpie 2 En F}E}, 2?~—~3 iit}%*'d_des E #"&I’}‘f _with the_diém_ﬁge'? fmm tﬁé"éeﬁtér
Supp(}se thai fs- IH:,E'E {}ragimﬁn on thﬁ- qphere ‘Draw an lmaglmry concentrm

sphere of radius r: the number of lines per unit cross-sectional area at every point {m ;
the sphere is ﬁ_ f%m Since E 18 pmpmtmml to this, we can write tha,t

E-@:?rz'

We derwe an exact relationship in Section 27-4. H{}W should E v&ry mth dlstanee_" '
from an mﬁmt&h ong umfstts m cvimuer af chai ge T e S bl

RETADED
BE e s e "~ Fig. 27-2 Lines of force for a section of an
P T ‘infinitely large shaet of positive charge.
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Lines af ff::rce fm- a negatwely P e o B
charged sphere -' S et

Figures '; ~—~L and 27 -—-5 show the hnes of fo arce fﬁr twc equa,! hke chargecs and
for two equal unlike cha,rges, rerapeetn ely. \hehaa ¥ amdm:gs we have
said, used lines of force a great deal in his thm ung Thpy wwe more real
for him than they are for mc:st scwntlsts a,nd enfrmeers mdav It 1:: posszble

y

Fig. 27-4 Lines of force for two eqqual positive charges.

.



668 2 THE ELECTRICWIELD - Chap. 27-

L
g

L5 e vi/x/imes of force for equal but opposite charges.

to sympatmze w1th Famday S pomt of v1ew Can we not almost ‘see” the
charges being pushed apart in Fig. 274 and pulled together in Fig. 27-5 by
the lines of force? The student should compare Fig. 27-5 with Fig. 18-15,
‘which represents i flow field. Flgure 27-6 shows a representation of lines of
force amund charged conductors usmg grass seeds suspended in an insulating
| hquld : |

~ Lines @f force give a vivid plcture of the way E varies thmugh a glven region of
space. However, the equations of electromagnetism (see Table 38—-3) are written in
terms of the electric field strength E and other field vectors and not in terms of the
lines of force. The electrlc field E varies in a perfectly continuous way as any path in
the field is traversed; see Fig. 27-7a. This kind of physical continuity, however, iS
different from the continuity of the lines of force, which has no real physical meaning.
To illustrate this point we assert that the lines of force need not be continuous but can
‘be drawn as in Fig. 27-7b. This figure agrees with the two propertxes of lines of force
laid down at the beginning of this sectlon ThlS pomt of view ha,s been especlally
,_emphasmed by Jaseph Slepzan bl & =

* See Amerwan Journal of Physu:s 19, 87 (1951)




Fig. 27-6 Photographs of the patterns of electric lines of force around (a) a charged
plate (compare Fig. 27-2), and (b) two rods with equal and oppoeite charges (compars
Fig. 27-5). The patterns were made by suspending grass seed in an insulating liqui¢.
(Courtesy Educational Services Incorporated, Watertown, Mass.) |

| . 669
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Lne dlrectlon of Eisona radlal lme fram q, pamtlng outward if g 13 pos1t1ve'
“and inward if ¢ is negative. " '

- 1o ﬁnd E for a gmup of pmnt charges (a) Calculate E, due to each charcre'
at the given point as if it were the only charge present. (b) Add these separately
| calculated fields xectonally to ﬁnd the resultant ﬁeld E at the pomt _In '

'equatmn form _ | L - |
E=Ei+ B TR I 1 2 $as i OTS) -

The sum isavect{)r sum, taken over all the cha,rges _ |
~Tf the charge distribution is a continuous one, the field 1t sets up at any
point P can be computed by div zdmg the charge into infinitesimal elements
‘dq. The field dE due to each element at the point in question is then calcu- -
lated, treating the elements as pomt charges The magmtude of dk (see
Eq.27-4)isgivenby e e Bl
e L B s 4 dq e o
dE’ “ ey, ,_(2_7,—.6)
4’5'50 7'2 ' . - '
'_-ﬁhere ris the dlstance fmm the charge element dq to the pomt P The re-
“sultant field at P is then found by addmg (that 1S, mtegratmg) the ﬁeld '

"’contnbutmns due to all the charge elements or, _
E: de e -",-(27-*?)

The mtegmtwn hke the sum in Eq 2:*5 is a vector operatmn in Example 5
we will see how such an mtegral 1S handled in a simple case. | |

I Example 3. An eiectnc d*zpole Flgure 27-8 shows 8 pes:atne and a negatwe -
charge of equal magnitude ¢ placed a distance 2a a,part a conﬁgumtmn called an elec-

' Fig.27-8 Example3.

L]
i

tric dipole. T‘ne pattem ef lmes {}f force 1s that. of Fag 2:-—5 ‘which alsa shows an

~ electric dipole. W hat is the field E due to these charges at point P, a distance r along

~ the perpendicular bisector of the line ]()mmg the eharge‘a‘? Asqume r>a.
Equatmn 27-5 gives the vector equatmn o |

where,-fmm Eq. 27-4.* o

E,=E = — 51

* Note that the r's in Eq. 27—4 and in this equation have different meanings.
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The vector sum of E1 a:.id Es pomts vertlcall} ciownward and has the magmtude

E"‘ 2E1 COSB
- Vo
From the ﬁgure We see that il 8
' - cdsﬂ e
WV a2 + r* -

Substltutmg the expressmns fOI' E1 and for cos @ 1nto that for E’ ylelds

SNt Y T
 4meo(a® + ?'2) Va? + fé' 4”"'5‘3 (‘12 23]

If r > a, we can neglect a in the denemmator thls equa.tzon then reduces to

1 (ZaMEO
4#&0 o

'(27;é&j

The essentlal properties of the charge dlstrlbutmn in Flg 27—-8 the ma.gmtude of
the charge ¢ and the separation 2a between the charges enter Eq. 27-8a only as a
product. This means that, if we measure E at various distances from the electric

- dipole (assuming r>> a), we can never deduce g and 2a separately but only the
product 2agq; if ¢ were doubled and a simultaneously cut in half the electrm field at
large distances from the dipole would not change.
~ The product 2aq is called the electric dipole moment p Thus we can rewr:te this
equat.mn for E, for dzstant pmnts alo-ng the perpmdwular bwector as

(27-8)

{ -'(see Problem 10) and the general
result for any distant point (see Problem 23) also contain the quantities 2a and ¢ only
as the product 2aq (= p). The variation of E mth rin the genera.l reault for distant
pomts is also as 1/r% as in Eq. 27-8b. |
- The dipole of Flg 27-8 is two equal and Oppomte charges pla:ced cl@se to each other
so that their separate fields at distant points almost, but not qmte cancel. On this
pomt of view it is easy to understand that E(r) for a dipole varies as 1/r% (Eq. 27-—86)
_Wher for a pomt charge E(r) drops oﬁ more. slowly, namely as 1/r2 (Eq 27—4) v

pl Flgure 27-9 shaws 8 charge 0 (-- +1 0 x 10°° cc:ul) 10 anirﬁm
B charge go (- +2.0 X 10~ coul). At what point op the line ]ouung° t.he two
thiy "' IS the electric ﬁeld strength zem‘?

The result for dlstant pomts along the dzpole azif

Fig. 27-9 Eﬁt&mple 4.

The pomt must lie between the charges because only here do the forces exerted by
¢1 and ¢: on a test charge oppose each other. If El is the electric field strength due
to 1 and Ez that due to ¢z, we must have -

or (see Eq¢'2_7-4) e e Bael
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where z 13 the dletance from Q1 end l equa.ls 10 cm. Solvmg for z ylelde

The student should supply the mmsmg steps On what. baele wee t.he eecend reet of
the resulting quadratic equation dieearded‘? - B

Example 5. Flgure 27-10 ehewe a rmg of charge q and of radm.s a. Caleulete E
fer points on the axis of the ring a distance z from its center. '

Consider a differential element of the ring of length ds, located at the top of the
ring in Fig. 27-10. It conte.ms an element of eherge gwen by .

d_q”é;-z

where 2xa is the clreumferenee of the rmg This element eets up a dlﬁerentzel electric
field dE at point P.

The resultant field E at P is found by mtegre.tmg the effects of all the elements that
make up the ring. From symmetry this resultant field must lie along the ring axis.
Thus only the component, of dE parallel to this axis contributes to the final result.
‘The component perpendicular to the axis is canceled out by an equal but opposite
eempenent established by the charge element on the epp081te side of the ring.

‘Thus the general vector tntegral (Eq 27-7)

E = de

o E=decose

X dE cos ¢
\ dE N\ ¢
it ¥
L e - N _
NN ]
oSN

Fig. 27-10 :-Exam'ples
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The quantity dE follows from Eq. 27-6, or

dE= Iﬂqu'=;i_!__(qu) o

drreg 12 4 \2ra al 4= :ﬁ
From Fig. 27-10 we have ees@ = - s
| pi S - \/ a2 + x2 '

Netmg thet for a gwen pemt P I hes the eame Ve.lue fer all eharge elements eed 1§
not a variable, we obtain | . _ | | _ |

"3;

q de
Ig) ‘\/ﬂ + z?

B = f dE’ cee& f ﬂﬂ (21re)

41r£g (271'{1)(&2 b .:c-*)ﬁ’é f ds

The integral is S%‘mphf -the---ﬁi'r-ﬂumference--o—f; th_e ring (.-ﬁ—--_-zmﬁ) L bithEte s e T

4‘5‘&0 (a +I2)% Ty

0? Forz> awe

Does thzs etpreselen fer E’ reduee te an expected result fer T
can neglect a in the denominator of thls equetlen yleldmg

E o Tt
41:'63 12

This is an expeeted result (cempere Fq 27-»-4) beeeuee at great eneugh dlstancee thef
ring behaves hke a pomt ehe.rge g . = .

| ' Example 5, Lme of che’rge Fi 1gure 27 11 shev&s a sectlen of an infinite line
of eherge W heee linear charge dens1tv (that is, t;he eharge per umt length measured

o . . | NN
X g y SO SE SR A I A tﬁ&f& E R 23 |

‘Fig. 27-11 Example 6. A section of an infinite line of charge.

in mul metei ) hae the constant v elue A. Cah, wlate t’he field E a distance y fl om the

line.
The mamntude of the field eontrlbutmn dﬁ r!ue to charge element dg (= Adr) is

given. using Eq. 2; 6, by =
gt s o fiffq I_'kaﬁr

- dregrs dmeg y: + 12
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The vector dE, as Fig. 27-11 shows, has the comporerts. .. ... .
| JE. = —dEsing and  dE, = dE cos®.

The minus sign in front of dE. indicates that dE; _pi_}inj;sx-{i'n the n__e.gati?{e: z difeﬁti_oh. -

The r and y components of the -r@u_l:tantj_yecwr;._E at_POi!{lt P '._.:31'3'.' given by

J:n:....-m

Gl e f B, =~ sn6dE  and. E = f dE, = _f Gl " i

P
o

£. must be zero because every charge element on the right has & corresponding
element on the left such that their field contributions in the r direction cancel.

-

Thu*s E tioi{;ité;-_ehtirely in the y direction. Because the contributions to Ey from the
right- and .lef.t'-hand_ha'lt*es of the rod are equal, we can write | sials Tl

g, =2 cosddb.
: r==0

Note that we have changed the lower limit of integration and have iﬂtr@d@cﬁdﬁ fa;é_.tor"",
of two. | - e - S, b
| Substirtuting the expression for dE into this equation gives
' s X == . dz
?‘ . 2#5(} r==0 ' y + "

F_rpm Fig. 27-11 we see that the quantit'ies 6 ﬁhd z are not iride;}eﬁdent, We must
eliminate one of themn, say Z. The relation between r and 0 is (see figure}

_ r = ytané.
Differentiating, we abtaiji' e idy = sec? 8 df.

' Substituting these -twd expressions leads finally to

2 'cc}sﬁdﬂ.

- 2meqy Vom0

and not on z. For example as z — + w, 8 — /2, as Fig. 27-11 shows. This
equation integrates readily to el e Mo AR

The student shauld-chélﬁk.;.__th_is sta?;gﬁr&f;ﬁly: noting that the limits must now be on ¢

iginfl =
Qmreny | | ls 2 eqt

P
peTat

The student may wonder about the usefulness of solving 2 problem involving Al
infinite rod of charge when any getual rod must have 2 fnite length (see Problem 15).
However, for points close eniough to finite rods and not near their ends, the equation
that we have just derived yields results that are so close to the correct values that the
difference can be ignored ‘n many practical situations. i+ ic usually unnecessary 0
solve exactly every geometry encountered in practical probiems. Indeed, if idealiza-
tions or approximations are not made, the vast majority of significant problems of
2]l kinds in physics and engineering canpot b2 solved at all. 4

R & 97-5 A Point Chﬁrgg_ in___qﬁfégligﬂr'ic.Field o
Y An electric field will exert a force on a charged particle given by (Eq. 27"' 2)

L F = Eq.
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Thls ferce will produce an aceeleratmn it vods T 1T /43 - -
_ e K F/m .

'where m is the mass of the partlcle We wﬂl consider two examples of the -
‘acceleration of a charged particle in a uniform electric field. Such a field can
be produced by connecting the terminals of a battery to two parallel metal
plates which are otherwise insulated from each other. If the spacing between
the plates is small compared with the dimensions of the plates, the field
‘between them wﬂl be. fairly uniform except near the edges. Note that in
calculating the motion of a partlcle In a field set up by external eharges the
field due to the particle itself (that is, its self-ﬁeld) 1S lgnered For example, '
the earth’s gravitational field can have no effect on the earth 1tself but only
on a second object, say a stone, placed in that field. -

7/Exam])]e 7. A partlele of mass m and charge q is plaeed at rest in a umferm '
electric ﬁeld ig. 27-—-12) and released ~ Describe its motion. o S

¥

-

- _Fig 27—1 2 A charge 13 releaaed from
rest in a umferm electric field set up
- between two oppositely charged metal |
| platES P; and Ps.

The metlen resemblee that of a bedy falhng in the earth s gravitational field. The

(eonatant) aeeeleratlen is gwea by
ﬁ\* BN b ! I N\ ‘;h | - = i
=

."".-- L pa” ) ; f e L
T . i A ,
|.:;__.-'.-"" E d
o : A

\The equatlens for umfermly aeeelerated motlen (Table 3-I) then apply With
vo = 0, they are | | ._

The kmetle energy attamed after mowng a dletance y is feund frem |
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This result alse follows dlrectly frem the work—energy theerem because a een,stent
force qE' eets over a d:stanee Y. o A% boviety Gl i A

' Example 8 De ﬂectmg an electrem beam Flgure 27—13 ehowe an electren of mass
m and charge e pre]eeted with Speed vo at ;fght angles to a uniform ﬁeld E Deecrlbe |

1ts motion. | e \I/ _ | ; o
L LB / A ; e

Fig. 27-13 Example 8 An elec- +++ _' .......H. o (x )

tronis pre]ected into a umferm elec- ' i b L “_}_,y 1% * | x

tric ﬁeld - vq 0 | S - — in
. | e

“The motion is like that of a projectile fired herlzentally In the eerth’e gravitational
field. The eenelderatmne of Sectlen 4—3 epply, the henzontal (:c) and vertleal ( y)
-motlene bemg glven by Lane o gt ol R

o AR T e o el v :
Ehmmatmgtylelde S e B T T (27-9)

fer the equa.tmn of the tra]eetory e | Lot
When the electron emerges fmm the platee in Fzg 27-—13 1t travel.s (neglectmg
grewty) in a straight line tangent to the parabola at the exit point. We can let it fall
on a fluorescent screen S placed some distance beyond the plates. Together with
other electrons fellemng the same path, it will then make itself v131b1e as & emall _
lummeue spot thle 18 the prmc1ple ef the electroetatie cathode—my osceuoscope

Example 9, The electnc ﬁeld between the 'pla.tes ef a eathode—rey eecﬂleeeepe i8
1.2 X 104nt/coul. What deflection will an electron expenence if it enters at right
angles to the field with a kinetic energy of 2000 ev (-- 3.2 )( 10‘“‘“ ]oule), a typleal
value? The deflecting aseembly is 1.5 cm long.

Recalling that Kg_ vao , we can rewnte Eq. 27--9 89 LTy Sl m,, \/
e Kg

If z; is the henzental poe:tlon ef the far edge ef the plate y1 Wﬂl be the correepondmg
deflection (see Fig. 27-*13), OF & Fiil.n B . G s

N EEIl
6 10""19 eeul)(l 2% 10‘l nt/eeul)(l 5 )( 10""" meter)’
(4)(3 2 X 10~ joule)
=34 X 104 meter = 034mm

The deflection measured, not at the deﬂeetmg plates but at the ﬂuerescent screen, 13
much larger. | |

II
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| Example 10. A p{)Sltlve pomt tehrJ {}}1&1 ge Q’{y is placed halfway between tuo equa] |
‘positive charges ¢. - What force acts on it at or near this point P? T

From symmetry the force at the point is zero so that the particle is in equlhbrlum

the nature of the equilibrium remains to be found F1gure 27-14 (compare Flg 2:-—4)

= P 27-14 Example 10. The electrxc ﬁeld at four pom‘:s
—%  pear a point P whlch is centered between two equal posl-
tive charges Sene v b g | |

‘shows the E vectors for four points near P. If the test charge is moved along the z axis,
a restoring force is brought into play; however, the equilibrium is unstable for motion
in the r-y plane. Thus we have the three-dimensionsl equivalent of saddle point
equilibrium; see F;g 14-8. What is the nature of the equilibrium for a negative test
| charge‘? S L5 - e - - q

\ . 27-6" A Dlpole in an Electric Field | o |

Fq-’&n electrlc dipole moment can be regarded as a vecter P Whose magm-
tude p, _for a dlpole like that descrlbed n Example 3, is the product 2aq of the
magnitude of either charge q and the distance 2a between the charges. The

direction of p for such a dipolé i ls'f from the) negatwe to the positive charge.

The vector naiure of the electric dipole moment permlts us to cast many

_expressions involving electric dipoles into concise form, as we'shall see.

| Flgure 27-15a shows an electrlc dlpole formed by placmg two charges +q.
and —¢ a fixed distance 2a apart. The arrangement is placed in a uniform

external electric field E, its dlp@le moment p making arr angle 6 Wzth th;,s ﬁeld

5 -Wo equal and oppamie {Qrces F a.nd — F act as shown where =

ot LT ;ﬁ;wﬁ“
% w X o B F q E __
The net force 1s cle&rly Zero, but therﬁ 1S & net torque abeut aﬁ amiﬁ;lmugh
0 (see Eq. 12-2) gwen by iy e »ﬁi W 4
: kil m _ 2F (a sin 6) 2a:F sin 9 % T g ; S v
f‘c}mbmmg these twe equatmns and reca.llmg that (2&) (q) we ﬁbtam
2aqE sin 3 pE sin 6 ' T - (27-10)

Thus an electric dipole piaaed in an external electrm field E experiences a
torque tending to align 1t mth the ﬁeld Equatmn 2.{ 10 can be wrltten in

vector form as ﬁ 2 L g . _
pr oy eue (27-11)

7

the 4ppmpriate vectors bmng ::hcm nin Flg 27—_155
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- Fig. 27=-15 (a) An electric dipole in gt -
a umfﬂrm ‘external ﬁeld (b) AR e TR
thque view 1llur:tratmg T=pX E o '

(b)

W% (positive or negatn e) must be done b} an external agent to changflf
the orientation of an electric dipole in an external field. This work is stored
as potential energy U in the system consisting of the chpc)le and the arrange-
ment used to set up the external field. If ¢ in Flg 27-15a has the. initial

value 8o, the work reqmred to tum the dipole ams to an angle 8is gwen (qee
Table 12—2) from e | v

o
it

W here 7 1S the torque e*{erted b} the agent that does the W ork Cf::-mbm
this equatwn W 1th Eq. 27-10 yIE‘ldb " : |

'.-.i--:

*t?

A

PEF— cos 0}
e _ _ [ % -

Since we are mterested only in changes in pf}tentlal energv, we (,hmse theg_, :
reference Grlentatlon 6 t@ have any com'ement value, in thlS case 90“ ThlS '
gives _ =0 o | o -
ok  U=—pEeoss (27--12) '

_ U = i fan (27“1 3)
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Fm mp:c §1, An eleetlm dlpele ceneleta of tue oppeeite cherges of magmtm A
f;r = 10 ¢ 107 eoui separated by d = 2 0 em. The dipele 1S pleced in an e'(terna]
" feldof 1.0 X 10° nt/ coul.

- {a) What maximum ‘torque deee the ﬁeld exert on the dlpele" The nmu,mum
| tmfme is fntmd by putting 8 = 90° in Eq. ?r-IO DE = S A

pE ’%mﬁ = qu sind R s s “\f\e &
(1 0 X 10 ~%cou )(0 020 meter)(1.0 X 103 Iltf(’:(}ul)(sm 90 )
= 2.0 >< 10~ nt-m. |

uf)) How much work must an ‘external agent do to turn the dlpole end for en{* --
s tarting from a position of alignment {6 =:-(N2. Thew mk 1s the dzﬁerence n pf“tel’]eleﬂ:
-energy { between. the pee}tiene é? 180° and # = 0. From Eq. P Vi

. H? o L lggn - ol L{}e 2 (""pE COS 1805) : ( pE COS O)
_ -‘?pE = 20dF . ~. .
S = (2)(1.0 X 107 coul (0. 020 mete:)(l 0 X 10“‘ nt, C(}ul)

.H

Lm0 X A0 joule, s ¢ o i 4

"QUESTIONS

1. Name as many scalar ﬁelds and vector fields as you can. :

2. (a) In the gravitational attraction between the earth and a etene cen we say thet._'
the earth lies in the gravitational ﬁeld of the stone? (b) How i is the grm ltatlene.l ﬁeldlﬁ”

due to the ntene relefed to that due to the earth? : Bl o
L3 A peeltu ely cherged ball hange frem a long sﬂk tnreed We WISh to meaeure E at e._:'_
pemt in the same hermonfel p]ene as that of the hangmg eharge To do so, we put 8
positive teﬂ cheree o ‘at the peim a.nd meaeure F/q0. Wﬂl F / qu be leee then equal to er"_‘_
greater than E at ehe point in question? | : | v s

4. Taking into account the quantization ef electric charge (the emgle electmn pm-'
Vldmg the basic charge unit), how can we justify the precedure suggested by Eq. 27-3?

5. In F1g 27-5 the force on the lower charge points up and is finite. The erewdmg of' |
the llnes of force, however, suggests that E is infinitely greet at the sxte of this (point)
charge. ‘A eharge immersed in an infinitely great field should he,ve an mﬁmtely great force
‘acting onit. What is the eelutlen to this dilemma? | | - :

& Electrie lines of force never cross. Why? | = -

7. In Fig. 27-4 why do the lines of force around the edge ef the flgure appeer when.
extended backwards, to radiate uniformly from the center of the ﬁgure‘? _ :

- 8. Figure 27-2 shows that E has the same value for all points in frent of an 1nﬁn1te"-
unlferml} charged sheet. Is this reasonable? One might think thet the field sheuld b{, |
stronger near the sheet because the charges are so much closer. | 7

9. Two point charges of unknown magnitude and sign are a dlstance d epart 'lhe
electric field strength is zero at one point between them on the hne Jemmg them What- |
can you conclude about the charges? ' P _

IO Cempere the way ¥ varies with fer (a) a pomt cherge (Eq 27—4) (b} e. dzpole (Eq
27-—8&) and (¢) a quadrupele (Pmblem 18y, | | |

11. If a point charge ¢q of mass m is releaeed frem reet in a nonumferm ﬁeld wﬂl it feﬂee |
a line of force? 3 me -

12. Anelectric dlpole 1S pleeed ina nenumform electnc ﬁeld 1Is there a net feree onit? :

13. An electric dipole is placed at rest in a umferm externel electne ﬁeld as in F:g
27—-15a and released Dlecues its motion. |
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14. An electric d_ipole--has its dipole-_mqmen_t p aligned with.&.unifbm external eléc_tri_ﬁ-;
field E. (a) Is the equilibrium stable or unstable? “(b) Discuss the nature of the equilib-
rium if p-and E point in opposite directions. . - e

PROBLEMS

1. Sketch qualitatively the lines of force associated with a thin, circular, uniformly
charged disk of radius R. - (Hint: Consider as limiting cases points very close to the surface
and points very far from it.) Show thelinesonly in a plane containing the axis of the disk.

2. (a) Sketeh qualitatively the lines of force associated with three equal positive point
charges placed at the corners of an equilateral triangle. Use symmetry arguments and
limiting cases (see hint in Problem 1). Show the lines in the plane of the triangle only.
(b) Discuss the nature of the equilibrium of a test charge placed at the center of the tr-
angle. e i _ | | _

3. In Fig. 274 consider any two lines of force leaving the upper charge. If the angle
between their tangents for points near the charge is 6, it becomes 8/2 at great distances.
Verify this statement and explain it. (Hint: Consider how the lines must behave both
close to either charge and far from the charges.) | i S |
4. Assume that the exponent in Coulomb’s law is not “two™ but n. Show that for
n # 2 it is impossible to construct lines that will have the properties listed for lines of force
in Section 27-3. For simplicity, treat an isolafed péint charge. ¢ o
5. What is the magnitude of a point charge chosen so that the electric field 50 cm
away has the magnitude 2.0 nt/coul? o e
6. Two equal and opposite charges of magnitude 2.0 X 107 coul are 15 cm apart. (a)
What are the magnitude and direction of E at a point miaway between the charges? (b)
What foree (magnitude and direction) would act on an electron placed there?. B0 0
7. Two _pﬁint__; charges are a distance d apart (Fig. 27-16). Plot E(z), assuming

= 0 at

the left-hand charge. Consider both positive and negative values of z. Plot £ as positive
if E points to the right and negative if E points to the left. Assume ¢ = +1.0 X Fos

coul, g2 = +3.0 X 10" coul, and d = 10em.

qu g J g '
_ X - R e Y

Fig. 27-16 S . Fig.27-17

R. Three charges are arranged in an equilateral triangle as in Fig. 27-17. What is
the direction of the forceon +¢> _ G

9. Two point charges of magnitude +2.0 X 107" coul and +8.5 X 1078 coul are 12 cm
apart. (a) What electric field does each produce at the site of the other? (b) What force
acts on each? e o | 0 e

10. Aczrial field due to an electric dipole. In Fig. 27-8, consider a point a distance r from
the center of the dipole along tis axis. (@) Show that, at large values of r, the electric field is

1 p
E=——
_ 2mqr?
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W hwh is twi we f‘w m,h e given, t{}r the conditiem of meplﬁ 3 (b) What IS the dlrectlon
11 In Fig 97-8 .;twlime ‘that h{}th eharges are p{)smw (a) Show that E" at pc}mt P in .
tha.t hgur# ﬂ.ﬂﬂummg r 3> a,is given by - -

12q

4#&9

(b) What i3 the dlI‘LLtlﬂtﬂ of E’ {r.:) Iq It- reasan.lble th&t E’ shauld var} as r- here and as -

=3 for the dipole of Fig. 27-82.. ... - _
12. (a) In Fig. 27-18 locate the pmnt (ar pmnts) a.t whwh the E]L(‘:tl‘lc ﬁeld strength .8

zero. (b ) Sketch quahtatlvelv the lines of force. Ta,ke a = 50 em.

Fig. 27-18 S e '_"____._-':Fid'- 27""5._.7:_

13 V% hat is E in magmtude and dlrectlﬂn at the center cf the square of Flg 27—19" 7

.&ssume that ¢ = 1 0 X 108 coul a,nd a =5 0 cm.
14, Tuo pomt cuar ges of unknawn magmtude and 51gn are placed a dlstance d apart :

ta,) If it 1s po*-':s:bie to have E = 0 at any point not between the charges but on the line
joining them, ‘what are the necessar} condltmns and where is the point located? (b) Isit
possible, for any arrangement of two point charges, tc: find {wo points (nelther at 1nﬁn1tv)_ |

at which E = 0; if so, under what conditions? |
15, A thln nantonductlng rod of finite Iengt;h [ carries a total charge q, spread umformh |
a.lcmg 11: ‘R‘h{m that E at pmnt P on the perpendlcular blsecbor in Fig 27-20 is given by

Q#Eg}y *\,/32,1'., 442

R

Show that asl — <« thisresult appmaeﬂi&a that of E_xample.ﬁ;

T S S [ e o o e

 Fig. 2?-—20 3
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- 16. A thin nanc{mduetfng rod is bent to form the are of a circle of radius a auu subtends
an angle 6o at the center of the circle. A total charge ¢ is spread uniformly along its length.
Find the electric field strength at the center of the circle in terms of a, g, and 6p. = .'
17. A nonconducting hemispherical cup of inner radius a has a total charge ¢ spread
uniformly over its inner surface. ¥ind the electric field at the center of curvature. .

. 18. Electric quadrupole. Figure 27-21 shows a typical electric quadrupcle. It consists
of two dipoles whose effects at external points do not quite cancel. Show that the value of
E on the axis of the quadrupole for points distant r from its center (assur:e r >>a) 1s given

3Q

=

_ 4:11‘&{}?‘

w_here-Q (= 2¢a?) is called the quadmpole' moment of the charge distribution.

e = L gt
Sk e e QL-p .

. a
ST e

& T

- 19 An 'e'leétrcin is cﬁ-ﬁstf&ir_’;éiiftb move "ﬁlﬁng-thé-axis of the ring of t_;harge-it:- Eﬁcamplg 5.

- Show that the electron can perform oscillations whose frequency is given by -

/ o
V-i:r'm_mﬁ i

joda
This formula holds only for small oscillations, that is, for z « g,in Fig. 27-10. (Hint:
Show that the motion is simple harmonic and use Eq. 15-11.) | e G
20. For the ring of charge in Example 5, show that the maximum value of E occurs at
921. Consider the ring of charge of Example 5. Suppose that the charge g is not distri-
buted uniformly over the ring but that charge qi is distributed uniformly over half the
circurnference and charge g2 13 distributed uniformly over the other halfie Letgi £ 02 = ¢
~ (a) Find the component of the electric field at any point on the axis directed along the axis
~ and compare with the uniform case of Example 5. (b) Find the component of the electric
~ field at any point on the axis perpendicular to the axis and compare with the uniform case
._beXam'plef). | et s e e o o -
92 A thin circular disk of radius a is charged uniformly so as to have a charge per unit
areaof o. Find the electric field on the axis of the disk at a distance r from the disk.

o
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23. Fteld due to an electrtc dzpole Shﬂw that the cﬂmponenta of E due to a dlp{}le are
glven at dastant pmnts by S LE e e R

= 3sz
4#60 (I + yz)%
o 1 p(2y - 3:2)
e reg (.r + yz)%
.Where x and y are coordlnates of a pomt in Flg 7-22. Show that this general result

mciudes the specm,l resuits of Eq 2"’-—86 and of Pmblem 10.

e
<

-'Hg‘.- 27—-22" |

24 What 18 the magmtude and dlrectlon of an electnc ﬁeld that wﬂl ba}.ance the weight-_
of (a) an electron and (b) an alpha particle?
25, A particle havmg a charge of —2.0 X 10~ 9 coul is aﬁted on by a downward electrlc
force of 3.0 X 107° newton in a uniform electric field. (a) What is the strength of the
electric field? (b) What 18 the magnztude and direction of the electric force exerted on a
proton pl.a,ved in this ﬁeld’ (c) What is the gravitational force on the proton" (d) What is
the ratio of the electric to the gramta.twnal forces in this case? |
- 26. (a) What i the acceleratmn of an electron in a umform electnc field of 105 nt/ coul": |
_(b) Haw long would 1t take for the electmn startmg from rest, to attain one-tenth the
| Speed of hght" (c) What conszderatwns limit the a.pphcabx.lity of ’\Tewtam&n mechamca
_1:0 such problems? | - - - _
27. An electron mct-vmg With a speed of 5 0 X ;.03 cm/ﬂec 13 shot parallel to an n electric
field of strength 1.0 X 10° nt/coul arranged so as to retard 1ts motion. (a) How far will
“the electron travel m the field before commg (mamentarﬂv) to rest, and (b) how much
time will elapse‘? (¢) If the electric field ends abruptly after 0.8 cm, what fraction of its
‘initial energy will the electron lose in tra.versmg it? | .
28. An electron is projected as in Fig. 27-23 at a speed of 6.0 X 10 meters;sec and 8t
an angle ﬁ of 45° E = 2.0 X 10 nt/coul (directed upward), d = . 2. 0 em, and ! = 10.0 em
(a) Will the electron strike either of the plates" (b) If it strlkes a pl&te where dﬂ&ﬂ it do 50?7
29. Dipole in a nonumform ﬂeld Denve an eXpressmn far dE /dz 31; a pmnt mldw ay
between two equal positive charges, where z is the distance from one of the charges, meas~
~ured al{mg the line joining them. Would there be a force on a small dipole placed at t,hm |
-pmnt 11:3 axis bemg ahgned with the z ams ? Recall that E = 0 at thlb p{)mt

Fig. 27-23
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P 30 0il dmp e:rpenment _R_. A. ‘V.[ﬂhka,n set up an apparatus (Flg 2:-24) in w thh a
' tiny, charged oil drop, placed in an electrm field E, could be “balanced” by adjusting E
~until the electne force on the drop w as equal and opposite to its weight. If the radius of
 the drop is 1.64 X 107 em and E at balance is 1. 92 X 10° nt/coul, (a) what charge is on
~_ the drop? (b) Why did Millikan not try to balance electrons in his apparatus instead of
oil drops? The density of the oil is 0.851 gm/ cm?®. (Whlhkan first measured the electronic

~ charge in this way. He measured the drop radius by observing the limiting speed that
‘the drops attsined when they fell in air with the el&ctrlc ﬁeld turned off. He charged
~ the oil drﬂps by 1rrad13,t1ng them mth burst.s of X-I‘&}S ) -

Microscope

'Fag 2?——24 Mﬂhkan s oil dmp apparatua Charged 011 dmps from atomwer ~1 fall thréugh
_the hﬁle in plateB | e e

31.Ina pamcula.r ea,rly run (1911), f\iilhkaﬂ obqerwd that %he fﬁui}‘ﬂ 1ng meaﬁured
charges, among athers, appeared at diﬁerent tlmes -::m a csmglﬁ dmp - | .

- 6.563 X __10-f19_cou1_ 13.13 X 10~ coul _' 19.71 % 10~ coul
8204 X 107" coul 16 48 X 10~ ¥ coul  22. 89 X 107 coul

. 11.50° X 10“19 cﬂul 18, 08 X i coul _ 26 13 X 1@“‘“Q coul - "‘“g

What v alue for the eiemenmr\ charge e can be deduced from these data | o

. 32. An electnie field E with an average magmtude of about 150 nt/ceul pmntq upu ard

- intheearth's atmosphere We wish to “float’’ a sulfur sphere malghmg 1.01bin this field
by charging it. (a) What charge (sign and magmtude) must be used? ( b) Why is the

~ experiment not practlcal‘? Give a qualitatne reason supp{}rted b} a very rough numerical

. "-calculatmn toprc:ve your point. e ' -
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| ‘_28.-'-1' . 'H;ux of the -.Eiect_ﬁ;:?Fiélg i3

Fluz (symbol &) is a _-pr'opemy of "a;,r}yf ife_c'tﬁr-_ﬁeld';- it refers to a hypothetical
surface in the field, which may be ”Clésed-:fir open. For a flow field the flux
(®,) is measured by the number of __'Strea;mlineé' that cut through such a sur-
face. For an electric field the flux (®p) is measured by the number of lines
of force that cut through such a surface. . .o =

For closed surfaces we shall see that &g is positive if the lines of force point
outward everywhere and negative if they point inward. Figure 28-1 shows
two equal and opposite charges and their lines of force. Cu rves Sy, S S 3, and

84 are the intersections with the plane of the figure of four hypothetical closed
surfaces. From the statement just given, ®z is positive for surface S; and
n_gfag;;-tivg tor Sy, The flux of the electric field is important because Gauss's
law, one of the tour basic eiqga.tir.ms of electr_ﬂmagne_tism (see Table 38-3), 1s _
expressed‘in terms of it. Although the concept of flux may seem a little
abstract at first, the si{-ude;} tml] soon see its value in solving problems.

- To define &g precisely, consider Fig. 28-2, which shows an arbitrary closed

surface immersed in an electric field. Let ':thﬂe':--S‘f;_.ifrf&tfe_._;be divided into ele-
mentary squares AS, each of which is small enough so that it may be con-
sidered to be plane. Such an element of area can be represented as a vector
+AS, whose magnitude is the area AS; the direction of AS is taken as the
At every square in Fig. 28-2 we can also construct an electric field vector

E. Since the squares have been taken to :be'__arb-itmrily-E.Small_,‘ E may be taken

as ;cmi_sla-ntﬁ}r all peims:i.n}a;gi_ven Squ-&re--,
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- A rf " . 4 1 _ . L i e {adir L}
i - K, i, . s S .
: o E s ; 3 ” e
3 e u T c L i |, = J, =y e v X
e =

| Fig 28-1 Two equal and oppﬂslte eharges The da.shed lmm répmséht hypothetical
.eiosed SHTf&f‘F‘E e o e - __ . | e

The v ectors E and &S that cha,racterize each csqu:al,re make an angle 6 with
each other. Figure 28-2b shows an enlarged view of the three squares on the -
surface of Fig. 28-%2¢ marked z. Y. and z. ’\T@te, that at x, 6 > 90°: at y, 6 =
- 90°: andat2€<’90° | a0 = >

A wmlquantltatwe dt,ﬁmtlﬂn of flux is

6

$e=cEAS, . o - (28-1)
which mstmcts us to a,dd up the scalar qua,ntltv E AS for {ill elements of area
- Into which the surface has been div 1ded For points such as r in Fi 1g. 28-2 the
contribution to the flux is negative; at y 1t 1s zero and at z it is positive.
Thus if E is everywhere outw ard, 8 < 90° E:AS will be positive, and &z for
the entire surface will be positive; see Flg 28-1, surface S;. If E is ev ery-

where ; inward; # > 60° E.AS will be negative, and $p for the surface will be

negative; see Fig. 28-1, surface S2. From Eq. 28-1 we see that the appro—
priate mks umt for ®¢ is the newton-meter? Jeonls - v

_ Th& exact definition of e]ectrw flux is mund n the dlﬁerentml hmit of Eq.



: 28~ 1 . 'Replacing- the sum -ové.r_ ; the surf abe- by an int:_egral " tﬁrer-f th-_e surf a_c*e--
ThlS sﬁrfq.ce integral mdica,tes thatthe -.'Sﬁr-fééé mn 'uneétidﬁ_ is to be d;md ed -

into infinitesimal elementsof area s and };hat' the scalar -qu&ntit_y E-dSis
to be evaluated for each él_efment_ and the sum taken for the entire surface.

. i @)

.?:*ﬂ-' 33“1 (@) A h}f}:}dth&tié_ﬁ! surfa,ce-ir_hmersed in ari':eléctri'c field. (b) Three el_ements_
of area on this surface, shown enlarged. | ' | | 9



Sec. 28-1 - F’Lm OF THE ELECTRIC FIELD DA Graste 0 1T89

tkA

-,.t-'ﬂ'. tg.-,FFI. 1'--!- ".";-

"""’?'r,ﬁ,, ..-.‘_‘

Kl e e

s

T '.:':-F S pEEc L T AR

Flg. 23-3 | mxample 1 A.cylindricai surface immersed in a uniform field ‘E"p&r&IIEI to
ﬁlt,saaus i 3 g S G i i

']’The mrcle on the mtegral mgn'.i;idiéaﬁéé _Ithat.thé suffé.ce- of integration _ig i
'__:closed surface | i e .

» Exampla 1 Figure 28 3 shows a hypothetzcal cylinder of radms R immersed m

‘a uniform electric field E, the cylinder axis being parallel to the ﬁeld W hat 1S fi) E
for this closed surface? | . _

 The flux ®& can be written as the sum of three term& an mtegral over (a) the left

_- c}f lmdez ca,p, (b) the cylmdncal surfacé a.nd (c) the right cap Thus L

ifEd&+ EdS+ FdS
s (ﬂ) ' '_

b} (c)

Fer the Ieft cap, the angle g fnr all pomts 18 180“ E has a cohzﬁ-tah't ?alue','.-.a'_rid__.‘the -
Vectors dS are ail parallel Thuf-a - .

where § (= ':rR*") s the cap area. Slmllarlv fOI‘ the nght eap

E- dS *T'ES
{c) '

the angle 8 for all 'pf;)in'ts_ being_ Zero herg, Fmallv fgr' thecvlmderwall
E_ dS 0
- B S - e
beea.use 9 - 90°, hence E dS 0 Eor all p{}mts on the cylmdrmal surfaee Thus
o Bs= —ES+0+ES=0. " 4

e Samilarly, a mrcle on a {1ne mtegral sxgn 1ndlcates 8 f:lased path It wﬂl be clea.r from
the context and from t'he &iﬁ’erentmi element (dS in thJs_ case) whether we are dea.l;ng
with a qurface mtegml or aline integral. ' | | o
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28-2 Gauss'slaw = 2

Gauxa law . whlch apphe*’-t to any’-clﬂsed h} p(}thetlcal surf&ce (called a

Gaussian wrface) gives a connection between @E for the surface and the net
charge ¢ en{'iosed bv the surfa,ce It 18

sl 0 o o@sy

-

The fact that <I>E pmves to be zem in Example i is predlcted b"v Gaubs ‘aw

because no chal ge is enclgqed bv the Gaussmn surface in Fig. 28-3 (¢ = 0).

N ote that g in Eq 28-3 (or in Eq. 28—1) is the net charge, taking its aige-— _

‘braic sign into account. If a surface encloses equal and opposite charges,
the flux &g is zero. Charge out51de the surface makes no contribution to the
~value of ¢. nor does the exact location of the inside charges aﬁeet this value.
Gauss’'s law can be uaed to evaluate E if the {ha,rge distribution is so

symmetric that by proper choice of a Gaussian ‘;urfaee we can easily evaluate '
the integral in Eq. 28-4. Conv ersely, if E i 18 known for all points on a gwen |

closed surface, Gauss's la“ can be used to compute the charge inside. If E
has an Gurxva,rd component for every point on a closed surface. &g, as Eq

- 28-2 shows, will be positive and, from Eq. 284, there must be a net pmlt‘we'

:charge within the surface (see Fig. 28-1, surface S;). If E has an inward
component for every pmnt on a clo&ed mrf&ce there must be a net negative

charge mthm the surface (see Flg 28 1, surface Sa). Surface \q in Fig. 28-1
encloses no eharge so that (rausb s law predmtfa that ¢ = 0. This 1s con-

sistent with the fact that ]meq of E pasa dlrectlv thmugh nurf ace Sg, the con-
tribution to the mtegr&l on one side c&ncehng that on the other. What

would be fhe \*alue of &g for qurfm*e Sy In Flg .28 1 ‘ﬂhl(‘h eneioqea both
'Chmgea | ' | | '

28-—3 Gnusm S Law and Cuulomb‘ Law -

L ()Lzlomb < law can be dedu(*ed from Gausq S hw and svmmetry considera-

tions. To do so, let us apph' Gauss's law to an isolated point charge ¢ as in

Fig. 28—4. Although Gauss's law holds for any surface whatever, ___mtormm
tion can most reddllv be extmcted f or a spherica al surface of radius r centered

Fig. 28—4 A spherical Gaussian surface of radius
' T su’rmunding a {)i}i;l_t._ (';harge q.
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on the charge. The advanta,ge of this surface is that, from svmmetrv E 'nust |
be normal to it and must have the same (as yet unkn@wn) magmtude fc:)r all
pomts on the surf&ce s e | o o

In Fig. 284 both E and dS at any pﬁmt on the Gaussmn surface are'_.
dlrected radially outward. _The angle between them is zero and the quan tity
E ds becomes mmply E dS Gauss s law (Eq 28—4) Lhus reduces to

| EoéE dS __ Gng dS "‘""q

* Because E is constam for all pmnt.s on the sp%ere 1t ca.n be factored fmm'
inside the mtegra.l sxgn leamng . . .
E(;E§ dS

| where the mtegral IS Smely the area of the sphere . ThlS equatmn glves
- - egE<4m-2) g -

' Equatmn 28“5 gwes the magmtude of the elecmc ﬁeld strength E at any
point a distance r from an isolated point charge g The dlrectmn Of E 1S
“already known fmm Symmetry | . L

- Let us put a second pomt charge qg at the pmnt at Wthh E 1S calculated
- The magmtude of the force th&t acts on 1t (see Eq 27-*‘3’) 1s

"Cc)mbmmg mth Eq 28-5 gwes o | _ o
- ‘ 1 9 -

2

. F "
| 41!'&.3 r
' whlch 1S premsely Coulemb’s law ‘Thus we have deduced Ceuiomb g law_.-___
;.from Gauss’s law and considerations of symmetry. ' . .
~ Gauss’s law is one of the tundamental equations of eleetromagnetlc theary
and 1S dlSpl&yed in Table 38-3 as one of Maxwell’s equations. Coulomb’s law
1S not listed in that table because, as weé have 3ust pmved it can be deduced

f1 rom Gauss s law and from smlple assumptzons about the symmetry of E due
to a pomt charge | . .

Ttis mterestlng to mte that wrmng the pmpartwmhty constant in let}mb & La.w £
as 1/4re; (see Eq. 26-3) permits a particularly simple form for Gauss s law (Eq. 28--3) =
If we had written the Coulomb law constant simply as k, Gauss’ S law would have to
‘be written as (1/4nk)Pr = q. We prefer to leave the factor 4 in Coulomb’s law so

that it will not appear in Gauss s law or in other much used relatlons tha* mil be de—-..:
rlved later | e

s The usefulness {}f Gauss's law depends on our ab:hty t.o ﬁnd a surfa.ce over uhmh

fmm symmetry, both E and 8 (see Fig. 28-2) have constant values. Then E cos 6 can be.
| factored out of the integral and E can be found simply, as in this example. o
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23-4 An Insuluted Conductur ' .

Gauss s law can be used to make an lmpﬁrtant predmtlon namely: An'
e.rcess charge placed on an insulated conductc:vr resides entirely on 1ts outer sur-
face This hypothesis was shown to be true by experiment (see Section 28-5)
--_before e:ther Gauss’s law or Coulomb s law were advanced. Indeed the
_experimental proof of the hypothesm is the expemmental feundatmn ‘upon
- which both laws rest: We have already pointed out that Coulomb'’s torsion

- balanee experiments, although direct and convineing, are not capable of great
a,mumc;y . In show ing that the italicized h};‘p@thesm 1s predlcted by Gauss 8
lau we are f-;zmph reversing tHe historical situation. -

" FIgure 28-5 is a cross section of an insulated conductor of arbltrary shape
- _@arrymg an excess chargeq The dashed lines show a Gaussian surface that
~ lies a small dlstance below the actual surfa,ce of the conductor. Although the
(xausqmn aurface can ‘be as cl(}se to the actual surface as we e wish, it 1s im-
| -'3"porta,nt to L.eep 111 mmd that the Gaugsmn surfa,ce 15 mszde the con-
ductor. S . - |
- W"hen an excess charge 1s piaﬁed at mndz}m on an msuiated conductor, it
_ wﬂl set up electric fields inside the conductor. These fields act on. the charge
~ carriers of the conduct.@r and cause them to move, that s, they set up mtem&l
~ currents. These currents redlstrlbute the €XCEesS eharge in such a way that_-
the internal electric fields are automatically reduced in ma,gmmdL Even-
~ tually the electric ﬁelds ms:de the conductor become zero everywhere, the
__ '--.eurrent% diit(}m&tlﬁﬁ.ﬂ}f stop, and electrostatic conditions prevail. This
‘redls,trzbuh{m of charge normally takes place in a time that is negl:gible fm:..
most purposes. What can be said about the distribution of the exnew-_
'- ch&rge when %uf,h electmqtdtzc mndmom hm*e been achieved? .
I, atel ec f‘r%tatm ethbrmm E is zero everywhere mmde tlie wndu{*mr
1t mubt be zero for every point on the G&uﬁsmn surface. This means that the
~ flux &z for this surface must be zero. Gauss s law then predmtfa (see Eq.

'_-28*3) that there must be no net eharge inside the Gaussian surface. If the

excess charge g is not inside this surface, it can onlv be autmde 1t, that is, o
must be on thf act@mi surface* of the candust,ar |

Gauss:an- E
surface.
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/////////’///// _

Fig 23-—6 The entzre charge on the ba.ll 18 transferred to the outsuie of the can. Thlﬂ state—
| ment and the dlacuasmn of the first para.gra.ph of Sectlon 28—5 are st.rlctly correct only if t.he
can 18 prﬂvided w:th 8 conductmg hd whlch can be cloaed a.fter the ball 15 mserted

28-5 Expenmemal Proof af Gauss s :md Coulamb‘s Laws

Let us turn to the experlments that prme that the hypotheszb Of Sectmna- '-
28—4. is true. For a simple test, charge a metal ball and lower it with a silk
thread deep into a metal can as in Fig: 28-6. Touch the ball to the inside of
the can; when the ball is removed from the can, all its charge will have
vamshed When the metal ball touches the can, the ball and can together
form an “insulated conductor” to which the hypothesis of Section 28—4
‘applies. That the charge moves entirely to the outside surface of the can
can be shown by touching a small isulated metal object to the can; only_--i
on the outside of the can will it be possnble to pick up a charge. -

Benjamin F ranklm Seems to have been the first to notice that there can be no charge'_:_'_
-1ns:de an insulated metal can. In 1755 he wrote toa fnend =

1 electrified a silver pmt cann, on an electnc stand a.nd then lowered mw lt, :
cork-ball, of about an inch diameter, hanging by a silk string, till the cork touched =

~ the bottom of the cann. The cork was not attracted to the inside of the cann as it
~ would have been to the outside, and though it touched the bottom, yet when drawn
out, it was not found to be electrified by that touch, as it would have been by touch-

ing the outside. The fact T smgular You require the reason; I do not know
1t. |

About ten years later Franklin recommended t.hls s:ngular fact” to the attention
of his friend Joseph Priestley (1733-1804). In 1767 (about twenty years before
Coulomb’s experiments) Prlestley checked Franklin’s observation and, with remark-
~ able insight, realized that the inverse square law of force followed from it. Thus the
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indirect appmach 1S not only more acmmte t.han the dlrect a.ppmaeb of Sectmn 26—4 '
but was carried out earlier. |

Priestley, reasoning by analogy with grawtatmn, said that t.he fa.ct that no electrw. |
force acted on Franklin’s cork ball when it was surrounded by a deep metal can is
sumla: to the fact (see Section 16-6) that no. gravrtatmnal force acts on a mass inside
~ a spherical shell of matter; if gmv:tatzon obeys an inverse square law, perhapa the__
_elEctncal force does also. In Pnestley s words:

- May we nnt mj'er fmm tl:us Ithat is, Fra.nkhn 5 experment] that the attmctmn {)f |

- electnclty is subject to the same laws with that of gravitation and is therefore ac-
e cordmg to the squares of the dmtanceﬁ since it is easily demonstrated that were the
~ earth in the form of a shell a body in the mslde of lt wauld nﬁt be attmcted to Gm |
side more than a.nother" b = e -

Mmhael Faraday also camed out expenmenta deslgned to 3how thm; exce@s cha.rge -
resides on the outside surface of & conductor. In particular, he built a large metal-
_covered box which he mounted on insulating supports and eharged mth 9 powerful '
: electrostatlc generator In Faraday’s wards | . |

I want mto the cube and lived in it, and usmg hghted ca.ndles electmm&ters a,nd '
aII other tests of electrical states, I could not find the least influence upon them . . .
~ though all the time the outside of the cube was very powerfully charged, and large |
Sparks and bmshes were dartmg oﬁ' from every part of its outer surface T

_ Henry Cavendlsh (1731 1810) carried Gut an xmproved version of the
__exnenment of Fig. 28-6. With the instruments available to him, C‘avendlsh-:__' |
proved experimentally that the exponent in the force law lay, with high
= probablhty, between 2.02 and 1.98. Cavendish, however, did not publish his
results so that almost nobady knew a.bout them at the time. Maxwell re-
peated Cavendlsh’s experiment with more accuracy ‘and set these lzmits as
2. 00005 and 1. 99995 In 1936 thpton and Lawton repeated the experl—- :
ment agam they set, the probablhty limits as 2.000000002 and 1. 99999233&
- Flgure 28-7 is an idealized sketch of the apparatus of Plimpton and Law-
“ton. ' It consists in principle of two concentric metal shells A and B, the
-f ormer bemg 5 ft in diameter. The inner shell contmns a sensitive elec-
_trometer E connected so that it will indicate whether any charge moves be-
 tween shells 4 and 2 ' ' - T .
By throwmg sv. 1tch S to fhe lef t ) substanma.l charge can be placed on the -
~ sphere assembly. If any of t,hls charge moves to shell B, it Wlll have to pass
through the electrometer and will cause a deflection, whwh can be observed.
~optically using telescope T, mlrror M, and mndows w. e -
- However, when the sw:tch S is thrown alternately from left to rlght thus "
connectmg 1he shell assembly either to the battery‘ or to the gmund no effect
is observed on the galvanometer ThlS is the stmngegu expenmental evidence.
to date that the hypothes15 of Sectwn 28-4.- is correct. Knowing the sensi-
tivity of their electrometer, Plimpton and Lawton calaulated that the ex-
ponent in Coulomb s Iaw hes, mth high probablllty, betwe,en the hmlts--*}'

_already stated L
= _.f’”
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Fig. 2~7 The apparatus of Plimpton and Lawton.

28-6 Gauss'sI.uw—-SomeApplmuhons . |

Gauss’s law ca.n be used to calculate E if the symmetTyOf th'f"‘h&rge dlS..
tribution is high. One example of this, the calculation of E f or a point charge,
has already been discussed (Eq. 28-5). Here we present other examples. -

» Example 2. Spherically symmetric charge distribution. Figure 28-8-shows a -
sphericel distribution of charge of radius R. The charge density p (that is, the charge
per unit volume, measured in coul/meter?) at any point depends only on the distance
of the point from the center and not on the direction, a condition called spherical
symmetry. Find an expression for £ for points (a) outside and (b) inside the charge dis-
tribution. Note that the object in Fig. 28-8 cannot be a conductor or, as we have
~seen, the excess charge will reside on its surface. @~ - :
~ Applying Gauss’s law to a spherical Gaussian surface of redius r in Fig. 28-8a (see

Section 28-3) leads exactly to Eq. 28-5, or
f ey | R e o s - 28“"}

‘where ¢ is the total charge. Thus for points outside a spherically symmetric dis-



(b)

Fig. 28-8 Example 2. A spherically symmetric charge distribution, showing two Gauss-

ian surfaces. The density of charge,astheahadmg suggests, varies with distance from

tribu‘-t.;ian of ¢}1arge¢ theelectncﬁeldhas the i'alue'that it _wguld have if the ch_ﬁrge
were concentrated at its center. This reminds us that a sphere of mass m behaves

gravitationally, for outside points, as if the mass were concentrated at its center. At
the root of this similarity lies the fact that both Coulomb’s law and the law of gravita-
tion are inverse square laws. The gravitational case was proved in detail in Section

16-6; the proof using Gauss’s law in the electrostatic case is certainly much simpler.

~ Figure 28-8b shows a spherical Gaussian surface of radius r drawn inside the charge

distribution. Gauss's law (Eq. 28-4) gives

ey,

o _-gﬂé;E_-dS = eE(4nr?) = ¢

Ol : e Gor EEECIEb e E-—-— sy qﬁ.i i
. B e vl drey 7

in which :q‘f-'iﬁt that part of ¢ contained within the sphere of radius r. The part of ¢
'~ that lies outside this sphere makes no contribution to E at radius r. This corresponds,

in the gravitational case (Section 16-6), to the fact that a_sﬁherica,l shell of matter
~exerts no gravitational force on a body inside 1t. Ak e SR o e
- An interesting special case of a spherically symmetric charge distribution is a uni-

form sphere of charge. For such a sphere, which ‘would be suggested by uniform
‘shading in Fig. 28-8, the charge density p would have a constant value for all points
‘within a sphere of radius R and would be zero for all points outside this sphere. For
‘points inside such a uniform sphere of charge we can put e b g

8 Y Ly s

where $rR? is the volume of the épheri(ﬁél'c.harge.ai-st-rib'ufioh.. The e'icpre'ssién.ft}r- E
then becomes . |

B gy o ()
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This equation becomes zero, as it should, for r = 0. Note that Eqgs. 28-5 and 28-6
give the same result, as they must, for points on the surface of the charge distribution
(that is, if r = R). Note that Eq. 28-6 does not apply to the charge distribution of
Fig. 28-8b because the charge density, suggested by the shading, is not constant 1n
that case. | ._ g e s d =

Example 3. The Thomson alom model. At one time the positive charge in the

atom was thought to be distributed uniformly throughout a sphere with a radius of
about 1.0 X 10~'° meter, that is, throughout the entire atom. Calculate the elertric
field strength at the surface of a gold atom (Z = 79) on this (erroneous) assump-
tion. Neglect the effect of the electrons. -

The positive charge of the atom is Ze or (79)(1.6 X 107" coul). Equation 28-9
yields, for E at the surface, ] Yo

1 ¢

(9.0 X 10° nt-m?/coul?)(79)(1.6 X 10~ coul)
+ (10X 1077 mieter)® - =

Figure 28-9 is a plot of E as a function of distance from the center of the atom, using
Eqs. 28-5 and 28-6. We see that E has its maximum value on the surface and de-
creases linearly to zero at the center (see Eq. 28-6). Outside the sphere E decreases
as the inverse square of the distance (see Eq. 28-5). . . i

Example 4. The Rutherford, or nuclear, alom. We shall see in Section 287 that
the positive charge of the atom is not spread uniformly throughout the atom (see
Example 3) but is concentrated in a small region (the nucleus) at the center of the
atom. For gold the radius of the nucleus is about 6.9 X 107'* meter. What is the
electric field strength at the nuclear surface? Again neglect effects associated with
the atomic electrons. | Sl '

The problem is the same as that of Example 3, except that the radius 1s much
smaller. This will make the electric field strength at the surface larger, in proportion
to the ratio of the squares of the radii. Thus | ' |

| - | (1.0 X 107'° meter)?

w28 X 108 abfdoul. T o e
Thqis"- is_ an e-ﬁﬁrinéﬁs_ eléﬁtri_ﬁ' ﬁéld,--m.uéh -:étrongér' .'trha.n .cou':ld' be prodfuceéi and _ma,iri--
tained in the laboratory. It is about 10° times as large as the field calculated 1
Exutpleifhs i) =t ftacs Do 2 G boald ,enian dhaye s o] Slod gl ¥ eeum

’ ?ig. 28-9 Example 3. The electric
i o field due to the positive charge in a
mae e e OGRS 0 gold atom, according to the (erro-
o e  Deous) Thomson model.

o = I ia :
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#Fxample 5. Lme af charge Figure 28-10 shows a section of an infinite rod of
'charge the linear charge density A (that is, the charge per unit length, measured in
coul/meter) being constant for all points on the line. Find an exprese:xon for E at a
dlstance r from the line. | | |
From symmetry, E due to a uniform linear charge can anlv be radlally directed.
Ar-: a Gaussian surface we choose a circular cyhnder of radius r and length A, closed at
each end by plane caps normal to the axis. E is constant over the cylindrical surface
and the flux of E through this surface is E(2xrh) where 2xrh is the area of the surface.
There is no ﬂu:». through the circular caps because E here lies in the surface at every
point.. |

The ché,i'ge enclesed by the G&usman surface @f Fig 28—10 1S }\h Gauss S law:
(Eq 28-4),

eofE?dSI-# g,

then becomes Ll i . EaE(2rrh) =
s Sl g i bY i 5 i T g
e ek _ 211'5,37‘ - i L

The direction of E is radially outward for a line of positive charge. / |
~ Note how much simpler the solution using Gauss’s law is than that using integration
methcods as in Example 6, Chapter 27. Note too that the solution using Gauss’s law
is possible only if we choose our Gaussian surface to take full advantage of the radial
symmetry of the electric field set up by a long line of charge. We are free to choose
any surface, such as a cube or a sphere for a Gaussian surface. Even though
_Gauss s law holds for all such surfaces, they are not all useful for the problem at :
hand; only the cylindrical surface of Fig. 28-10 is appropriate in this case.

' Gauss s law has the property that it provides a useful techmque for calculation only

In problems that have a certain degree of svmmetry but In these problems the solu-
tions are strlkmglv simple. o | -

ng:filxamplc 6. A sheet of charge. Figure 28-11 shaws a portmn of a thm nonconduct—

tng, _inﬁmte sheet of charge, the surface charge density o (that is, the charge per unit
area, measured ! n coul/ meter’) bemg constant. What 18 E at a d:stance T m front of
the pla,ne" | | - . _ : |

A convenient Gaussian surface is a “pill box” af cmss-sectzonal area A and height

or, arranged to pierce the plane as shown. ]5' rom svmmetry,. E pomts at nght anglﬁ_
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" Fig. 28-11 'Ex&mple' 6. An 'inﬁnit_{f; o
sheet of charge pierced by a cylindri-
cal Gaus~’ ~ surface. The cross
section o. e cylinder need not be
circular, as shown, but can have an
arbitrary shape.

tothe end caps and away frr_}m therplaﬁe. Since E does not piercé the cylindrical

=. "ace, there is no contribution to the flux from this source. Thus Gauss’s law,
 «@PE-dS = q

. e A+ EA) == ¢4

where 04 15 the enclosed charge. This gives

E=_—.  (28-8)
" deg

.. ote that E is the same for all points on each side of the plane; compare Fig. 27-2.

Although an infinite sheet of charge cannot exist physically, this derivation is still

useful in that Eq. 28-8 vields substantially correct results for real (not infinite) charge

sheets if we consider only points not near th  edges whose distance from the sheet is

:;?cﬁmparedto the dimensions of the sheet. = 1 R e
D7 xa_mp_ie T. ch_a;rged conductor. Figure 28-12 shows a conductor carrving on its

surface a charge whose surface charge density at any point is ¢; in general o will vary -
from point to point.. What is E for points a short distance above the surface?

Fig. 28-12 Example 7. ‘A charged insulated conductor,

showing a Gaussian surface. The cross section of the sur-
- face need not be circular, as shown, but can have an arbi-
Akrpaliape. 5 ieils TASUG B0l w8 M b
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The dlrectmn of E far points close to the surface is at right angles to the surface,
pointing away from the surface if the charge 18 positive. If E were not normal to the
‘surface, it would have a component lying in the surface. Such a component would
act on the charge carriers in the conductor and set up surface currents. Since there

are no such currents under the assumed electrostatlc cond:tmns E must be normal
to the surface.

The magnitude of E can be found from Gauss 8 lam usmg a small flat “pill box’’ of
~ cross section A as a Gaussian surface. Since E equals zero evervwhere inside the
conductor (see Section 28-4), the only contribution to ®g is t}erUgll the plane cap
Of area A that hes outs1de the conductar Gauss S law |

E@§E dS = q
Vosdotliss | - o 0 i Ay = g

where g A is the net charge mthm the Gaussmn surface. This welds |

€0

Comparison with Eq 28~8 shous that the electric field is fwice as great near a
conductor carrving a charge whose surface charge density is ¢ as that near a noncon-
ducting sheet with the same surface charge density. The student should compare
the Gaussian surfaces in Figs. 28-11 and 28-12 carefully In Fig. 28-11 lines of force
leave the surface through each end cap, an electric field existing on both sides of the
‘sheet. In Fig. 28-12 the lines of force leave only through the outside end cap, the
inner end cap being inside the conductor where no electric field exists. If we assume
the same surface charge density and cross-sectional area A for the two Gaussian
surfaces, the enclosed charge (= crA) will be the same. Since, from Gauss’s law,
the flux ®z must then be the %ame in each case, it follows that E (= ®g/A) must
be twice as large in Fig. 28-12 as in Fig. 28-11. It is helpful to note that in Fig.
' 28~11 half the flux emerges from one side of the surface and half from the other,
whereas in Fig. 28-12 all the flux emerges fram ‘3’?;*“ { ;;mde surf&ce -

~ 28-7 The Nuclear Model of the Atom

Ernest Rutherford (1871-1937) was ﬁrst']ed in 1911, to assume that the
atomic nucleus existed when he tried to interpret some experiments carried
~out at the University of Manchester by his collaborators H. Gelger and E.
Marsden.* The results of Examples 3 and 4 played an 1mportant part m
Rutherford’s analysis of these experlments '
~ These workers, at Rutherford’s suggestion, allowed a beam of a—partlcleﬂ t
to strike and be deflected by a thin film of a heavy element such as gold.
They counted the number of pamcles deflected through various a,ngles 0.
Figure 28-13 shows the experimental setup schematically. Figure 28-14
shows the paths taken by tvpical o-particles as they scatter from a gold
atom; the angles ¢ through which the a-particles are deflected range from
0 to 180""‘ as the chara,cter (}f the colhbmn varies from “gra.zmg” to “head-on Y

. See “The Btrth t)f the \uclear &tam E N da C Andrade, Sﬂfmﬁﬁﬂ Amenmn
\ovember 1956. See also Example 5, Chaptaer 10. ;. - - -
 t a-Particles are helium nuclei that are emitted spentaneoush b} some radmctwe

materials such as radium. The\ move with speeds of the order :}f one-thlrtleth tha.t of
light when so emitted.
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At the time of these experiments most phyew:ets believed in the so-called
“plum puddmg model of the atom that had been suggested by J. J. Thom-
son (1856- 10—10) In thls view (see anrnple 3) the positive charge of the
atom was thought to be spread out through the whole atom, that is, through

spheneal volume of radius about 107!° meter. The electrene were thought
to v Ibrate about fixed centers inside this sphere. |

{utherford show ed that this model of the atem was net consistent with
the a-scattering experiments and proposed instead the nuclear model of the
atom that we now accept. Here the positive charge is confined to a very
much smaller sphere whose radius is about 10T ~!* meter (the nucleus). The
electrons move around this nucleus and occupy a roughly spherical volume
of radius about 107'% meter. This brilliant deduction by Rutherferd laid
- the foundation for modern atomic and nuclear physics. |

The feature of the a-scattering experiments that attracted Rutherferd S
attention at once was that a few a-particles are deflected through very large -
dngles up to 180°. To smentlste accustomed to thinking in terms of the
' p]um puddmg model, this was a very surprising result. In Rutherford’s
words: AT quite the most incredible event that ever happened to me in
‘my life. Tt was almost as incredible as if you had fired a 15-inch shell at a
pl(—‘CE‘ of ti- sue paper and it came back and hit you.” '

The a- pertlf le must pass through a region in which the electric heid
atrength 1s very high indead in order to be deflected so strongly.* F‘xample '.
3 shows that in Thomson s model, the maximum electric field strength 1s
111 % 10™® nt couls Cempere this with the value calculated in Example 4
for a point on the surface of a gold nucleus (2.3 X 10°! nt ‘coul). Thus the
~deflecting force acting on an a—partwle can be up to 10° times as greet if the
positive charge of the atom is eempreesed into a small enough region (the
nucleus) at the center of the atoms. Rutherford made his hvpoethesis about
the existence of nuele1 enl\ after e much more detalled mathematical : analysis
than thdt gl\ en hele | |

QUESTIONS

A point charge is placed at tlie'ee'nte'r"ef a spherical Gaussian surface. I: &p eh anged
ta) lf the surface is replaced by a cube of the same volume, (b) if .he sphere is replaced by a
cube of one-tenth the volume, (¢) if the cherge 1'== moved off-center in the original sphere,
stl] remdinmg inside. (d) if the charge is moved just outside the original sphere, (¢) if a
second charge is plaeed near, and eutmde the erlgmel ephere and (/) if a second charge is
placed inside the Gaussian ﬂurfaee | s
2. By enaleg\ with &z, hee 1u».eulr.i vou deﬁne the flux &, of a gravitational field? What
is the flux of the earth's gravitational ﬁeld threugh the beundaneu of a room, assumed Yo
contain no metter" | - 3 . |
3. In Gauss's law,

B S

1s E the electric field intensity attributable to the charge ¢7

* The chance that a blg deﬂectzen can result from the combined eﬁ'eete of many small
deﬂect:ens can be eheu n to be very small.



Chap. 28 _ 'PROBLEMS e 703

4. Show that Eq. 18-3 illustrates what might be called Gauss's law for incompressible
ﬂmds or | W e e T i

‘B hedS - 0

5. A surface encloses an electric dipole. What can you say about &g for this surface?
6. Suppose that a Gaussian surface encloses no net charge. Does Gauss’s law require
that E equal zero for all points on the surface? Is the converse of this statement true, that
is, if E equals zero everywhere on the surface, does Gauss’s law require that there be no net
charge inside? 1
. Would Gauss’s law hold if the exponent in Coulomb’s law were not exactly two?

8 Does Gauss’s law, as applied in Section 284, requlre that all the ccnductmn electrons
in an insulated conductor reside on the surface?

9. In Section 28-4 we assumed that E equals zero EVEI‘}"“ here inside a conductor.
However, there are certainly very large electric fields mmde the conductor, at points close
to the electrons or to the nuclei. Does this invalidate the proof of Section 2847

10. It is sometimes said that excess charge resides entirely on the outer surface of a
conductor because like charges repel and try to get as far aw a) as possible fmm one an-
other. Comment on this plausibility argument. L |

'11. Is Gauss’s law useful in caleulating the field due to t,hree equal charges locat,ed at
the corners of an equilateral trlangle" Explain. - | ' |

12. The use of line, surface, and volume densities of charge to calculate the charge
contalned In an element of a charged object 1mphes a continuous distribution of charge,
whereas, in fact, charge on the mlcroscﬂplc scale is discontinuous. Hou then, 18 thls pm-—
cedure justified? e | ol Foari

13. IsE necessarlly zem msxde a charged rubber ballmn if the balloun 18 (a) Spherlcal or
(b) sausage-shaped? For e&ch shape assume the charge t{} be dlstrlbuted umfc;rm]v over
the surface. | . .- : | : .

14 A qphencal rubber halloon carries a charge thai 18 'uniformlv distributed over 1ts

sirface. How does E vary for p(}lnta (a) inside the balloon, (b) at the surface {)f the balloon,
and { f‘) ﬂutSIde the balloon, as the balloon 1z blownup?

15. As you penetrate a uniform sphere of charge, E should decrease because less charge
hes ms:de a sphere drawn through the observation point. On the other hand, E should
increase because you are closer to the center of thiq charge Which effect predominates
and why? | | i e i P

16. Given a sphéfricaih symmetric charge distribution (not of uniform density of charge),
is £ neceesan]v a maximum at the surface? ‘Comment on various pOSSlbﬂltleE

17. An atom is normally electrically neutral. Why then should an a—partxcle be de—
flected by the atom under any circumstances?

18. If an a-particle, fired at a gold nucleus, is deflected thmugh 135°, can you conclude
(@) that any force has acted on the a-particle or (b) that any net work has been done on it?

PROBLEMS

1. Calculate @z through a hemlsphere of radius R Th:, field 0f E is uniform and is
parallel to the axis of the hemisphere.. a ' |

2. In Example 1 compute $g for the cylinder if 1t 1s tumed SO that its axis is perpendlcu-
lar to the electric field. Do pot use Gauss’s law. | _

3. A plane surface of area A 1s Inclined so that its n{)rmal m&keﬂ an ang]e ¢ with a uni-
form field of E. Caleulate &g for thls surface. | |

. A point charge of 1.0 X 10™° coul is a¢ the center of A cubical Gaussxan surface (.50

rneter on edge. What is @ for the surface?
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5. Charge on an originally uncharged insulated conductor is separated by holding a
positively charged rod nearby, as in Fig. 28~15. What can you learn from Gauss's law
about the flux for the five Gaussian surfaces shown? The induced negative charge on the
- ' - conductor is equal to the pomtwe

charge on the rod.

6. “Gauss’s law for gravitation”

18

—, = dS =
4rG "4#G§g e ™

where m is the enclosed mass and
G is the universal gravitation
constant (Section 16-3). Derive
| _V-ewton’s--law of gra‘vitation from
e st e o st it e SRR et
Pige 28=13. . . i - 7. Figure 28—16 shoms a pomt
. - | charge of 1.0 X 107 coul at the
center of a spherical cawt) of radzus 3. 0 cm in a plece of metal. Use Gauss’s law to find
the electric field at point a, halfway from the center to the surface, and at pomt b.
- 8. An uncharged spherical thin metallic
shell has a point charge g at its center. Give
expressions for the electric field (a) inside the ¢
. _qheli and (b) outside the shell, using Gauss's
~ law. (c) Has the shell any effect on the field
due to ¢° (d) Has the presence of ¢ anv effect
on the shell? (e) If a second point charge is
held outside the shell, does this outside charge
experience a forece? (f ) Does the inside
- charge experience a force? (g) Is there a con-
tradiction with Newton's thlrd law here? =
9. Two large honcnnductmg sheets of p(}*i- .
- itive charge face each other as in Fig. 28-17.
What is E at points (a) to the left of the sheets e
(b) between them, and {c) to the right of the .
sheets? Assume the same surface charge den-
sity ¢ for each sheet. Consider only points A T TS
not near the edgee mhﬂse dmtance from the .\ "  '
sheets is small mmpared to the dimensions of t,he sheet (Hmt E at d,m p{nnt is the
vector sum of the separate electric ﬁeld «utrengths set up bx each sheet )
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706 | . GAUSS'S Law Chap. 28

prove (a) that £ = 0 for r > b and for r < a and (b) that between the cylinders  is given

. 18..1In Pmblem_'l_’?.a positron revﬁlves In & circular path of radius r, between and eon-
centric with the cvlinders. What must be its kinetic energy K? Assume g = 2.0¢cm,
6 =30cm,and X = 3.0 X 108 coullmetor s n o T e _. el
19. Along conducting cylinder carrying a total charge +¢ is surrounded by a conducting
cvlindrical shell of total charge — 2 15 shown in cross section in Fig. 28-22. Use Gauss's

B
B = e
-l

3 jf Fasty

Fig. 28-22

law to find (a} the electric field strength at points outside the conducting shell, (b) the
distribution of the charge on the éonduct.iﬁg'shéﬂ; and (¢) the electric field strength in the
region between the evlinders. List the assumptions made in arriving at your answers.

20. A thin metallic spherical shell of radius a carries a charge g,. Concentric with it is
another thin metallic spherical shell of radius b (b > a) carrying a charge g;. Use Gauss's
law to find the electric field strength at radial points r where (@) r < a; (b) a < r < b: (c)
F > b 1(d) Discuss the criterion one would use to determine how the 'th'a._rgeslaré di:st'?ibut;_ed

- on the inner and outer surfaces of each shell. | | o
21. A small sphere whose mass m is 1.0 X 107 gm carries & charge ¢ of 2.0 X 1078 coul.

It hangs from a silk thread which makes an angle of 30° with a large, charged conducting

~sheet asin Fig. 28-23. Calculate the ' | | |

surface charge density o for the sheet.

e

T T
-

‘T
e

 + ¥ +. %
Q

m

Fig. 2873
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'22. Equation 28-9 (E = o/e) gives the electiic field at points near a charged conducting
surface. Show that this equation leads to a familiar result when applied to a conducting -
~ sphere of radius r, carrying a charge g. | ; il

23. An e-particle, approaching the surface of a nucleus of gold, is a distance equal to
one nuclear radius (6.9 X 107'° meter) away from that surface. What are the forces on the
a-particle and ite acceleration at that point? The mass of the a-particle, which may be
treated here as a point, is 6.7 X 107 kg. . g o

24. A gold foil used In 2 Rutherford scattering experiment 1s 3 X 10~® em thick.
(@) What fraction of its surface area 1s “blocked out” by gold nuclei, assuming & nuclear
radius of 6.9 X 10~ meter? Assume that no nucleus is screened by any other. (b)
What fraction of the volume of the foil is-occupied by the nuclei? (c) What fills all the
rest of the space in the foil? iy ' | -

95 The electric field components in Fig. 28-24 are E; = bz”t, E, = E, = 0, in which
b = 800 nt/coul-m”%. --‘Calculate (a) the flux ®g through the cube and (b) the charge within
the cube. Assume thata = 10 cm. | i b

o Pl .\_ o

>

Fig. 28-24



