The Dlﬁerenhal Form of Maxwell's
Equcmons and the Electromagnehc
Wave Equahon nagh
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V-1 Introduction

In Chapter 39 we sought to make the existence of electromagnetic waves plausi-
ble by showing that such waves are consistent with Maxwell’s equations as
expressed in Table 38-3. Here we seek to start from Maxwell’s equations and
derive from them a dlﬂerentml equation whose solutions will describe electro-
magnetic waves. We will show dnet,ll} that the speed ¢ of such waves is given by
..lt.q 39-19, or ¢ = 1/\/—0;;9 ' _
-~ We fulluwed a similar pmgram in bupplementa: y Topic 111 for mechanical
waves on a stretched string, Starting from Newton’s laws of motion we derived

“a differential equation (Eq. 111-1) whose solutions (I3q. 111-2) described such
waves. We showed further that the speed v of these waves is given by luq. 111-3,

or v = \/}"/p

In Table 38-3 we umtt, Maxwel! 3 equatmnb as

asE T e Ul
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kil i fE dl "-dfl—"a/dt sy fa it ' __(V—4)

' Supplementary Topma I to IV appear m Pa.rt. I
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 These equatlons are sald to be wntten in mtegral form The ﬁeld v&rmbles E aml -
B, which are usually the unknown quantitles appear in the mtegrands Only in
~ a few symmetric cases (see Sections 28- -6 and 34-2, for emmple) can we “factm.
_ﬁ'-them out.” In more general l)mblems we cannot do SO. | g |
The sltuatwn is mmewhat analogﬂus to computmg the densnty p of a b{}d"ﬂ' if we

;-'-,know its mass m and mlume In geneml theae are related by the 1 tegral-.
;__:equatton . | i MLl e o

' m -f p df
"Only if p IS a umstant m'er all [)El‘tb (}f the volume f'an we factor it out and write

: I‘o carry t}ut our ])tﬂgram 1t l::: desxrablc to ru,ast. Matwell s equatmns in the?:
fﬁrm of equalities that apply at cach pamt in space rather than as integrals that

apply to various regions of space. In other wmds ‘we wish to convert Maxwell’ :
-*-equatmns from the mtegral fonn of hqa V-1to4 into d@ﬁerentml form ' We wxlll_
_:'_'fthen be able tc relate I:. and B at 8 [mmt to the {,harge den31ty and current dens:ty'_

?-..V"'z “"0 OPGWN” V 5 % L
“To tranbmrm Machll’a equatmm m!;f; dlﬁermtml form we must deepm our

""_"'unde'rstandmg of vector methuda and m parm ula.r becﬁme fﬂmlllar with the
_-.Vﬁﬁt{]l’ ﬁl}ﬁrﬂtﬁr v : | G ot e T ity ; _ : ; .

~ In Section 29-7 we suw lmw to obtam the mm]mnents {Jf the (vector) electrc}-"
'_statm field E at any pomt fmm the (scalm) putentlal fum,tmn V(r y,z) by partral |
_._:dlﬂ'erentlatmn ’lhua Lt el |

alr . alr o aV_I;.

: E- .7' ?ﬂ-" E" “ -,"_'. @_’- and. E s -
:.so that the electrostatlc ﬁeld + e .. | - Ao
e aae ._ _E IE +jE ' + kF
'We can ﬁr.ﬁ.te I*q. V*-5 in win;ﬁct vectof n{}tatmﬁ as L
whére' v (“del’,’)'is _a.v.eictor t}[}érﬂt‘{_jr-_ dt,hm;d _a:s'_
".v"zn-q -{-Ji'+ki =R . (V-—;6)-_

« OB By 62 ,

'lhis operator is usdul in dealmg with scalar aml vee m*‘" fields (we Sections Iir-fs
and 18-7 for examples of such fields). Given any sealur field ¢ we may form a
vector field, called the gradient of '3 and written as gm‘ii ¥ or YV, simply by apply-

ing the operator ¥V to y. Given a vector field U = Ui 4+ ij + U,k we may
apply the operator V to it in two dtfferent Ways. One way is to take the dot
product of V and U, y:eldmg the malar ﬁeid LH.“t‘d the dwwgenw of U and written
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as dw U ﬂl‘ V U The mlu r way is tu take thL erma product {}f V and U yleldmg
the vacmr ﬁeld mlled the uul uf U and wrltten curl U ur v x U These ﬁpem-

tmns may be aummanzed as.

Erad;b V\b.__li_!_.,_z __f :
e e g 6.1: .' 63
T dw U v U . a( j + _‘1{_ " aU

Lml U V x U “‘(

(8U aU '
X k 6U aU

ng that grad \b and curt U are veotora whel ean dw U lS a bC&lﬂI‘ Tﬁé student
fal gain some. fmmhauty with these operations by the fﬂllamng exermses (1) |

=pve that mrl {grad ¢) = 0 and (2) prove that div (curl U) =0. :
Another frequently ouurmg operator is V2 (“del bqua.red”) It. 1S szmply

.-V -V, or, ﬂ.b the btutlent can .ahow from kq. V-6,

5 9 32"'_"'

-l vg =V-V B e O
e L% g +_ + il

Whenwe apply v? _t'o a, 's'ca;lal' ﬁeld d/, We- obtain

ij 7 32‘&._ 02 / ()2¢ . (V--IO)

Low, 9, 8,

' VﬂU o -- wioid -frid el 'k--""""“'“"""' o . | ﬂ V"“'ll
i M e e +J | 3y_’7"]; o azﬂ 2 AN
As &n Pxercu,e the st.udent can show that curl (curl U) V*U + gmd (dw U)

'. _ﬂ.'rV—3 Maxwell’s Equohons m Dlﬂ‘eremml Form——l

~ In this section we show how to cast the ﬁrst two of Maxwell’s equatmns (KEqgs.
'.'V 1, 2) into differential form. Let us apply Eq. V-1 to a differential volume ele-
ment shaped like a rectangular pamllclempetl &ml ‘containing a point P at (and
L :neal) which an electric field exists (see Fig. V-1a). Point P is located at z, ¥, 2 1n
~ the reference fra.me of l‘lg V 1b and the edgen (}f the paralleleptped have lengths
d;r dy,anddz | i o |
- We can write the sur face area vectm for the rear face of the pa.ralleleplped as
CdS = —i dy dz. The minus sign enters because dS is defined to point in the
| _dzrectlon of the outward normal whwh is defined hy . F()I‘ the Iront face we

.' '_f_,have d‘a —H dy dz.
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¢ P(x,y,2)

.

| Flg. V-1

if the electnc ﬁeld at the rear face is l'.., that at the front face, which is a dlstance

dx AWAY from the rear face, is E + (0E/dx) dz, the latter term representmg t,he
change in E associated with the change dzr in r.

The flux through the entire surface of the parallelepzped is § E - dS and the
| contnbutmn ta thls ﬁux due te these two faces alone s

(E) (—--‘i dy dlz) + (E -4 P-E dz:) H—i.- dy:.:dz)
4500 d:z: dy dz aF h i) =dz dy dz wd (E - i)
5 3 e O =
= d:r dy dz ‘?_‘?_'_
6.1:

With aimllar contnbutmna from the other four faceq the total electrzc flux becomes

ok, 6E‘ OE,
g )

Ed dzdy d
F.4 S.ryz(ax ay 0z

Ftt:m Eq. V-8 ..wa__: may write tlhia a..s . ' ._ . _ _
f E ds = d:t: dy dz dw B (V-12)

Now the rtght—hand bule ()f Eq. V-1, whmh gives the charge endosed hy the

surfaw may be written in geneml as ¢ = f p dr and, in part:cular for the differ-
ential valume elem&nl at P, as T |

Q“Pd-rdydz ot vl 5y ol (V=-—13) _

';-where p is the Lhurge [wr umt vulume at P huhst:tutmg fuqs V——12 and 13 into
oq. V 1 and mncelmg the commun factor d.r dy dz, we have ﬁnally

wh:ch is ’\’[ax“ell 3 ﬁmt equatum (lt.q V 1 ) m d:f’ferentml fﬂl‘lll

Umng the same tedmlque we can E\Ipl‘(‘.‘ib Muxwell’ | semnd equ&tmn (I
V~— 2) in dlﬂ'erentml form as |

dwﬂ s (V-15)
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V—4 Muxwell's Equaimm in Ddhrenﬁol Fonn—-ll

- We now seek to transform Maxwell’s third and fourth equations (qu V-3 4)
mto differential form. We start by applying Eq. V-3 to a differential surface
element of rectangular shape at a point P in some region of a magnetic field, as
shown in Fig. V-2a. The point P is located at z, y, z in the reference frame of Fig.

{b)

. ﬁg- -#"_'!
'V-2b and the sides of the rectangle, which is']:ara.llel_ta the z-y plane, have lengths
dr and dy. Going around the path, as shown by the arrows, we have

fﬂdl =B (-} dy) e ~(rear side)
Lol +B-(+idr)  (left side)
o+ (B e d:x:) (+jdy)  (front side)

' +(B +%'-’-ay)-(-sdx), ~ (right side)
A SR i) -

where B is the magnet:c mductwn at P
Collecting terms we obtain

fﬂ dl--d;z:dy éEj'-—éEi'
'3 o NOE G O

| “dxdy[m(ﬂ J)""“”’;(B i]

1 - =drd - V—lﬁ
4 i y(@x By) L ( )

_ NG'W in the right-hand mda ef Eq. V-3 1 is the current en{tlﬂaed by the pa.th and
d@g/dt is the change in electric flux thmugh the enclosed surface. Hence, if
- J is taken to represent the current denmty and dS(= k dz dy) the surface area

vectﬂr ‘we can wrlte R |

%) --ds = J-(kdzdy) = dz 'd_yJ; s (V-17)
and e e ey T« Lo
d‘f’#_ _9E, . dS = ?—E (kd.«td_})

& W B

dd s aﬁ, 2 e R
e m d di o | St E o V_lg)
e - :
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_' Substltutmg hqs V 16, 17 and 18 :mto Eq V 3 and cancelmg the cmnmm factarf_.;i
'd.c a, e get e SR s sl i
Sl V-——-19

We emﬂd have pmceeded exactly as abwe 1[ we. had started w:th a rectaﬁgla
‘parallel to the Y-z plane or one parallel to the z-z plane. Each rectangle would
have gwen us a different cemponent of an arbntrar:ly oriented differential surfacez.;
at P. Equatmn V-19 is obvmmly the z-ct}mponent equatwn correspondmg ta- '_
kEq. V-3. I we multiply it by k and add to it the two similar vector equations,
which may be obtained by cyclically permuting z, y, z and i, j, k, correspondmg
| t{} the .r-cﬁmp0nem and y-companent equatmns we ob’!;am La it s

curl B = Mu + eﬁaF/aa), e

- which is the t.hlrd Maxwell equatmn in dlﬁ'arential form 1
leiiarlys Btartmg with Eq. V-4, we may bht}w that

| whlch is the fourth Maxwell equﬁ.tmn in dlﬁerentlal f{)rm - |

- We have derived four differential equatmnb (see V-22 to V—25 bel ow) from the '
four integral equations (V-1 to V-4). It can be shown that the integral equations
can be derived fmm the d:ﬁermtzai equatmns that 3& th& twu sﬂs ef equatlmm L
- are equwa!ent s - | F | i

V—-—S The era Eqummn

We have now obtained fmm thmr mtegml form the four basic eqummns of
_ﬂiecimmagnemm Maxwell’s equatmns in differential ferm Cﬂrrespﬂndmg w’.._..
ine mtegml equatmns hq& V-1, 2, 3, and 4 respestwﬁly, we hme .

' dw B = ﬁ E = _. | P (V-23)
mﬂ -B = M(J + -Ea Biu ‘at), T | -..Wf“?@)
curl E c -—ﬁﬁ/at } C o '{V_._'zs}”'

which me fmzr mupied part;ai daﬂ'emntml equatmm They appiy at meh pf}m&: :
- of space in an electromagnetic field. |
~ We will now derive the wave EQH&U{}H mr ei&gtmmagnetm wmes in free spﬁ.ce
in free apace the charge density p and the currem danmty j are 2€ro, SO that Lhe-"‘-
Maxwell equamma there become e | Bt B e :

P, dwﬁum—ﬂ
__ de = ﬁ |
* e eins oWl *-_—-.BB.-/at:
o e e B poca IE/l.

Let us take the curl of the equat:nn ff)r curl l:. we nbtam

ol curl ﬁml-E 2 éhri -?E = -=—' f—- gurl B.
| ot ot
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| But from abﬁve m:l B meﬂ({?E/ét), 30 that
| ' ' 8213

= (V-26)

curl eurl ]L 'mmfr-a

From the exercise in V-2, we kn{)w timt, u.ul eurl }:. = —V2E + grad div E and
from above that div E --0 lhub e b L |

n:'url curl E = -*\7211. i ; T ey .(V?-?a?_)’
_'(‘embmmg hqa. V- 26 mid Vw27 we {)btam ﬁilaliy
Vﬁh i #ﬂfﬂ “55-5 el iy C e (Vf28¢1)

The student, pmceedmg as abwe bh{}lﬂd be able L@ aimw that B b&tiSﬁﬁS the same

| equatmn or
| | d EB

v - m
. : ar

(V-28b)

Equatmng V-28 are the eqtmtmm ilf elmiz @Mﬁgmtw wave motion. Being vector
equations, they are equivalent to six scalar equations, one for ea{:h component of

E and of B. | | -
lhere are many mlutmnn of }um V= 3-"8, mrrmpmdmg to dlﬁemnt kinds of

electmmagneLm W&V@b“'"lﬁ&ﬂﬁ ' p}m;i*i and cylindrical waves bemg three
examples. Let us consider ) bi}liitii}ﬁ in whz; h two ¢ ng;{m@mb of E and two ﬁf -

B vam:ﬁh Lhat s, 1n wiut*h - 0 | _

Ed; e Eﬁhﬂa‘ et Lﬁ;ild fﬁ BH = {)
E quatmns V-28 are aatmﬁﬁ{i for these fa.mimm%mm For the 1 ﬂmzw&mshmg com-
ponents, E, and B,, Eqgs. _V—_-—z&s i_{—:{me’:e to {_w E q. V- M 3 |

B PR B v T i
e AR A fPS L W S,

gx* dy* &} f} z
and e '- _ 0
'6""3 533; s’?B - 0’B, - ’ ¥
i sl 8 Rt i e ? -_ V--205
§£3 5 oy’ o f?z i éﬁ | {_ )

If we m&,ke the additmnai awmﬁmmﬁ *h&iy fw and B, are functions of z ﬁ,ﬂd ¢
mli the mnyliﬁtd mwv {*mmuw‘; m 17 i%‘hﬁ“‘a namely
3‘*2Ey_". . fﬁ‘*‘fﬁ;ﬁ o R afﬁ

Jho€g ——— ang ——— = Ho€g 1. - (V-209¢

is similar to Eq. 1111 for the mbymﬁﬁg string.

A solution to these equations, as the student may verify by substitution, is

il Eﬁuﬁm .ﬁ%xi.{ﬁ:ﬁt ---_-.mi} bis s = | {V;Slﬂﬁ)
and " e puil _
B, = Busin (kr — wt). _ | (V-30b)

We interpfe't lgs. -VHB'O as an &]eétmmagnﬁtic wave traveling in the positive
z-direction, as in Fig. 39-11, with a speed ¢ = w/k. The student can show that
substituting luq. V-30a into kq. V-29a (or Eq. V-30b into Eq. V-290) yields

c. = w/k '.m.--.l/.‘\/a;t‘a,

which (see Eq. 39-15) gives the speed of electromagnetic waves in free space.






Cha pter 26

1. Two free pmnt charges +q zmd +4q are a distance | apart. A third Lhmge is 80
plated that the entire system is in equihbrmm Bmd the location, magmimﬁal and
sign of the third dmrge ' _

2. If the balls of Fig. 26-7 are Londmtmg, what h&ppfﬁb to them &,ﬁer one is dm«
charged? Find the new equilibrium separation. -

3. Two identical conducting spheres, having charges of opposite sign, at&.mct. each
other with a force of 0).108 nt when separated by 0.5 meter. The spheres are connected
by a conducting wire, which is then removed, and thereafter repel each mher wath a
force of 0.036 nt. What were the initial charges on the spherea‘?

4. A particle of « -harge —¢ and mass m moves in a circular orbit about a ﬁmd {'harge |
+Q. (a) Hhﬁw mat the ‘“distance cubed < pem}d gqumedn law, = :

| lb:ﬂ' fn?ﬂ

r

i8 mtmhed Nota that the pmpmtmnam} constant dependa on the pmyerty {q}m) of
the mbitmg partmle (b) What is the mrresp@ﬂdmg s&tuahan when the fﬂme i8 gmw-
t&tmnal rather than &!ectrwai ?. | - | :

5. An electron is prmected with an mitial speed ef 3. 24 X 108 meterfﬂeﬂ d:rectly*
- toward a proton which is essentially at rest. If the electron is initially a very great
distance from the proton, at what distance f rom the proton is its speed msmnt.anemmly
equal to twiee its initial value?  (Hint: Use the w ork-energy theorem.)

6. A “‘dipole” is formed from a rod of length 2« and two charges, +q and —g. Two
such d:poies are oriented as shown in Fig. 26-9, their centers being wparamd by the

l«—za >-i s BTH r——za—nl

H+q o —q @——— +q
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distan_r;te £. ({a) Calculate the force exerted on the left dipolé‘. (b) For R > a, show
that the magnitude of the force exerted on the left dipole is approximately given by

3p?
A

= 2xeg R

where p = 2¢a is the “dipole moment.”

- Chapter 27

I. A uniform vertical field E is established in the space between two large pamllel-

plates. In this field one suspends a small conducting sphere of mass m from a string of
length . Find the period of this pendulum when the sphere is given a charge 4-q if
the lower plate is charged positively; is charged negatively. _ '

2. A charge g = 3.0 X 1078 coul is 30 cm from a small dipole along its perpendiéul&r
bisector. The magnitude of tli’e‘ f_i:}rce_: on the charg"e':'{ié 50 X _1(];“'-3 ‘nt. Show on a
diagram (a) the direction of the force on the charge, (b) the direction of the force on the
dipole, and (c¢) determine the magnitude of the force on the dipole.

3. A thin glass rod is bent into a semicircle of radius 2. A charge +Q is uniformly
- distributed along the upper half and a charge —Q is uniformly distributed along the

lower half, as shown in Fig. 27-25. Find the electric field E at P, the center of the

semicircle.

4+
+ PR R B A

Flg. 27-25 . . L S g SYLee

4. A “semi-infinite” insulating rod (Fig. 27-26) carries a constant charge per unit
length of A.  Show that the electric field at the point P makes an angle of 45° with the
rod. This result is independent of the distance X. | o
8. Find the frequency of oscillation of an electric dipole, of moment p and rotational

inertia 7, for small amplitudes of oscillation about its equilibrium position in a uniform

el&c_tric_ field of strength E. | ; |
- 6. An electric dipole of moment p is placed parallel to an electric field line along the

y-axis in 8 nonuniform electric field (Fig. 27-27). 'The magnitude of the field E varies
| unifﬁ_mn_iy along the y-direction as shown. (a) Show that the magnitude of the force
on the dif?ﬁl& 8 pdE/dy. (b) What is the direction of the force? = e

-9 @+q
o avaow e .
ty@ = @ -gq
!.,(_ - 2a -
Fig. 27-27 T ' ' Fig. 27-28

7. One type of “electric quadrupole’ is ._f{;r__med_-by four charges located at the vertices
of a square of side 2a. Point P lies a distance R from the center of the quadrupole on a
line parallel to two of sides of the square as shown in Fig. 27-28. For R >> g, show that
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E . 3(2q¢2) £

_ _4ﬂb'R" e

 (Hint: Treat the quadrupole as two dipoles.)

unapter 28

1. It is found experimentally that the electric field in a large region of the earth’s
atmosphere is directed vertically down. At an altitude of 300 meters the field 18 60
~ volts/meter and at an altitude of 200 meters it is 100 volts/meter. Find the net

amount of charge contained in a cube 100 meters on edge located between 200 and
300 meters altitude. Neglect the curvature of the earth. " el i
2. Suppose that an electric field in some region is found to have a constant direction
 but to be decreasing in strength in that direction. What do you conclude about the

3. Two concentric conducting spherical shells have radii Ry = 0.145 meter and

Rs = 0.207 meter. The inner sphere bears a charge —6.00 X 10-%2 coul. An electron

escapes from the inner sphere with negligible speed. Assuming that the region between
~ the s‘ﬁi’lerf_és is a vacuum, compute the speed with which the electron strikes the outer
S dlere - e w0 e FSFI M S o LSl DAED Wk

4. (a) Two identical nonconducting spheres have radius r and are fixed with their
centers a distance K > 2r apart. If each sphere has a total charge ¢ uniformly dis-
tributed on its surface, what is the magnitude of tie electric force that either sphere
exerts on the other? (b) Suppose instead that the spheres are conductors, the same
total charge on each still being ¢. Will the electric force that either sphere exerts
on the other in this case be greater than, less than, ~r equal to the force in case (a)?
Explain. - . . . : > el e e _
5. The spherical region a <r <b carries a charge per unit volume of p = A/r,
where A is constant. At the center (r = 0) of the enclosed cavity is a point charge Q.
/hat should the value of A be so that the ‘electric field in the L

‘regiona <r <b ll_a;s'(_:onstant-magnitude?

6. A solid insulating sphere carries a uniform charge per unit vol-
ame of p. Let r be the vector from the center of the sphere to a
‘general point P within the sphere. (a) Show that the electric field

at P is given by E = or/3ep. (b} A spherical “cavity”’ is removed
from the above sphere, as shown in Fig. 28-25. Using superposition o
concepts show that the electric field at all points within the cavity = Fig. 2825

is E = pa/3eg (uniform field), where a is the vector connecting the | e
center of the sphere with the center of the cavity. Note that both these results are
independent of the radii of the sphere and the cavity. ' M |

Chapter 29

1. What is the _ﬂ}mrgﬂg_de'nﬂity_on the surface of a f{iﬁ(liih{.i‘ng sphei’e of rﬁdit{a 0.15
meter whose potential is 200 voits? ] _ =T

2. _T_wo identical m_riducting _a,phe'fes of 'rﬁtl_i_us r o= 0.15 meter are separated by a
distance ¢ = 10.0 meters. What is the charge on each sphere if the potential of one is
+1500 volts and if the other is —1500 volts? | |

3. Two condhéting spheres, one of radius 6.0 em and the other oi 'radiuls 12.0 cm,
each have a charge of 3 X 1078 coul and are very far apart. If the spheres are con-
nected by a conducting wire, find (@) the direction of motion and the magnitude of the
charge transferred and (b) the final charge on and potential of each sphere.
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4_ In th& rettangle shown in Fzg' 29 29 the sides have iengths 5.0 {'m and 15 0 cm
g - -5 0 X 107%coul and g2 = +2.0 X 107 %coul. (a) What is the E!B("H‘i(‘ p{)temial
| ~at corner B? At corner A? (b) How much work is involved

7§ in moving a third charge g3 = +3.0 X 10~% coul Jrom Bto A
along a diagonal of the rectangle? (¢) In this process, is

, external work converted into electrostatic potential energy or
Fig. 29-29 vice versa? Explain. }

_ 5. Sh{}w that the p{)tentlal energy of an assembiy {}f four
charges, each of Lharge q, in the eanﬁguratwn of a trlangulﬂr pyrannd ‘@o On an edge 3
| iﬂ 6 X fgg/ﬂﬂ Mﬂn S Gui ] ey i
6. Tgts.z'ee thargea {}f +U i c{mi E&Lh are pl&{ ed on the comer (}f an éqm]aterai tri-

angi 2, 1.0 mneter on a snie 1l energy is supphed at the rate {}f 1. U kw haw many days
would be mqulred w move {me of the Lhargts Onto the mldpmnt of the lme ioining the

otirer ma? s L S R _
e bhﬁ‘ﬁ ﬂgmg tht, fmt t,hat an eﬁettmst&tu, hdd 1S a. wnsenatwe held that one
cannot {,wate an electric field in which all the lines of force are stmlght pamllei lmes
whose demity (number per umt Ll‘ﬂSS—SELthHﬂi urm) dmngﬂs in a uim{tmn at right
angies to the hs;{:s of force. . | |

8. Tuo Eme ﬁ%amgea are p&railei w the Z-8XI1S; one af charge per umt ir‘:ngth +}\ 1548
dwtance a to the ﬁght of this axis, and the other, ﬂf charge per unit length —) is a
distance ¢ to the left of this axis (the !nms and z-axis bemg in the same ;}Lilutﬁ %ketah -

some Uf ﬁhe suriaces of uimgmtmtml

9. A particle of (pwnwe) charge Q 18 aasumed m hmt, & ﬁxed pasmon a,t P’ A |
aemnd particle of mass m and (negative) charge —¢ moves at constant &petd in a
circle of radius ri, centered at £. Derive an expression for the work W that must be
done by an external agent on the second particle in order to increase the radius of the
circle of Hl(}il{}ﬁ centered at P, to rs. lixpress W in terms of quantities Lh_ubi,n from

aMONYE m, ry, 72, ¢, &, und ¢ only.

19. A particle of charge Q is kept in a fixed position at a point P and a second partwle S
of mass m, having the same Lliﬂi‘gb ¢/, 18 initially held at rest a dibt&ﬂtﬁ 7 from £. The
second purticle is then rdeawd and is repelled from the first one, Uetermine its
?eimity at the instant it is a dwtanu refrom P. Let Q = 3.1 X H;“"ﬁ coul, m =
B 0 }(‘ 10“"ﬁ kg, ry = 9.4 )( 1071 meie ,and-rp = 25 X 107* metu "

l! A pﬁrtzdt, of mass m, thargt g > ), m:d amtml killtilt e,nergy }x is pmwt ted |
-'_:(fmm ”mﬁmty” } tﬂwmd a hemy nucleus uf |lu.rgi, ), asalmml to have a med pus:tmn =

_V ’(vaits} o

jh e
x {meters)

Fig. 29-30
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mour rf.,fewnm fmme “(a) Ii the “aim is perff-r' o llﬂ‘ﬁ z*lc;ﬁe to the Lent&r !Df the_-
-ﬂuc]eus is the pa,rtmla wlmn it comes mstaﬁtanmu&!y to rest? (b). Wlth a particular:_;.
- ".-lmpﬂrfeﬂ aim the particle’s ¢ losest approach to the nudeus i3 twace ‘the dlstanﬁe dﬁt&!’*__"-;.
 mined in pal{; (a) I)e,t{,rmm{»: the speed Gf the partidc ﬂ,t tms Ll{}sest diatﬂncﬁ ﬁf_-___:.'-;;_
'-,--'-.&F-'Pmavh S e T nGg o s e Ae bl SRR G o
1% The eimtnc p{}tentmi varies alﬂng th,e .z:waxm a,s ahﬂwn in the gmph (}f Flg 29—3{;}
FGI‘ eaeh of th& mtervals shown (1gm}re the behavmr at t,he end pamts af the mt.ervals);;_;n
'3-;'::._-:§f‘i’f-é__dete?rmzne th& ,z:-cmnpanem of the eleutrm ﬁeid ‘&Hd plat E‘ va T i
13, A {,hargt, per ‘unit length A is distnbuted umfnrmty along a strmght-—lme aegment;:-__;f:
flﬂ ng,th fa) Df,te rmine the electrostatic pt}tential (chosen to be zero at mﬁmty) at._}'f:"‘f."}
ﬂ pmnt P a dlsmmt y from one end of the charged segment and in line W“h it (see Fig.

2‘3 al). (b} Um., the result of (@) to wmpute the com pfmult of the ﬁ,lﬂatrm ﬁeld 1nt&n~{-_.fg.-

'-.i:?'}:f:_*'if-".?':.'_sity at P mn th{* y-dlre:;twn (along the lme) (c) I}etemxme thf* compt}ﬂent ﬁf__thﬁ ele{:-f;-._i
'-_t ric ﬁe lii mte nsi ty at £ ina direction perpe ndlc u 131‘ m t he 8 tmfg h t 'me o
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14 ()n 1) thlr‘a md ﬁf lang,! h L lymg a,long th{-*- x-auﬁ w1th (}Ilﬂ end at tht, Grlgm (:r 0),
as in F 1g' 9-32,. there is distributed a rharge per unit length gwen by h = kx, where kis
a cnnstant (@) l‘akmg the elevtmstam pntentml at infinity to be zer0, ﬁnd V at the

'_'_pmnt P on tht Y-axis. (b) l}ﬂtumme the. ve:twa! {*ﬂmpﬂnent Ey, 0f the ﬁlectrlc ﬁeld_
| Entwsztv at P from thv result of part (a) and alse by direct {*a,lm!atiﬂn,, (o) ‘Why
i;:vannat F Yz the h{}l‘ld{}lit&l mmpnmnt of the elwtrw held ut P be f{mﬁd uamg the reault |

Hh{m timl thb (apftmtum ¢ of t,m v, uppumtdy s*hmi.,ud m{,tal sphuﬂﬂ ﬁf the BaIm’*
.r&dim when far updrt iy onec-half the aap.a,u*ttlmt*ﬁ of one lSﬂ]ﬂ.t{;‘d ﬁpherﬁ “

il l‘m.. miﬁ Hic E:p}l{,l"{‘b radii ¢ and b, are connec ited by a ‘thin wire. Therr Bepar&f
_ ._’mon is large mm}mrbd with their dimmensions. A charge @ is put {}ntﬂ thiﬁ system.

(a) H{m nuch i*harge I’B&:id{‘ti on each sphtre? (b) Apply tlw deﬁmtmﬁ {}f e&p&mtance
_t@ show th.f,z,i ihe- apammnm of this system 18 C = 4weg (ai + b)

N uiuliit ul B[}lii"i lmi drops of liquid are charged to the same. p{}tvntml V. One
i Eargﬂ dmu IS t(mnmi hy {*mnhmmg these. ‘ahmx timt the p{}tfmtlui uf the larg& dmp 18
' 4 i"hmgeh {“, {{3, Qd &r{, p!,s,wed on. {*apmttur& uf vapﬁo:tane& (’h _(‘g, s reaspe{:twely,
'armngul in series as shown in Fig. 30-28. Switch 8 is then closed. W imt are the ﬁn&i
charges g1, 2', g3’ on the capacitors! &

5, When switch 8 is. thrown to the left in F i[,, su-vzg the pia.teg ef the capaclter of.
{,&pmltanw C ”"1 mquzr@ a- potential difference Vo, Cgand (3 are mitmlly uncha.rged
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The switch is now thrown to the nght - What are the final charges g1, ¢2, g3 on the |
cﬁrreapondmg fapaclt.crs" | ¢ | | o |

6. A geiger tube is made of two iong concentric metal cylinders with a gas of dielectric
constant « betweem them. Neglecting end effects, use Gauss’ law to calculate the
capac'itame of this configuration. The center rod has a radius a, the surrounding tube -
a radius b, and theslength { > b. g - o

7. A parallel plate capacitor has plates of area .12 m? and a se;::aratmn of 1.2 cm.

A battery charges the plates to a potential difference of 120 volts and is then discon-
nected. A dielectric slab of thickness 0.4 ¢m and dieleetric constant 4.8 is then placed

svmmetncaliy I;etu een the plates In terins of ¢y (a) find the Lapaut,an(,e befure the slab
13 1nserted. (4! what is the capacitance with the slab in place? (¢) what is the free charge
q before and «ter the slab is 1nserted? (d) determine the elec{m field strength in the
space betuﬂmg the plates and dielectric. (e) what is the eleetnc ﬁeld atrength in the
dlelectm'? (f) with the slab in plaw what is the putentlal difference across the p]ates"
- (g) hm» nmLh external Work . mlved in the process of mwrtmg the slab? | |

f'hapu’:r 31

| L A Bteady beam of alpEm pu.rtu,les (q Ze) travehng mth constant kmetlc energy
20 Me\ carries a current (). 25 X 107° ampere (a) If the beam is dlrected perpendicu-
lar to a plane surfa{,e how many alpha part:{,]es strike the surface in 3.0 sec? (b) At
'any instant, hou many alpha parttdes are there in a gwenh "()-vm length of the beam‘?:

(r) Through what potentlal dlﬁerence was lt.
| necessary to accelerate eac h alpha particle
~ from rest to bring it to an energy of 20 MeV'?

2. List similarities and differences between
the flow of charge and the flow of a fluid;
- between the flow of ¢ harge and the canduction

3 hxp!am W hy the momentum which con- ‘
duction electrons transfer to the ions in ¢
- metal conductor does not give rise to a reault -
~ant force on the conductor, L

Fiﬂ 3!—!0 B 4. A resistor is in UiL shape of a imncatet |

_ e nght, circular cone (Fig. 31-10). The enc

radil are a and b, the altitude is I. If the tapu is small, we may assume that the current

density is umform across any cross section. (a) Calculate the resistance of this object
(b) Show that your answer reduces to p(l/A4) for the special case of zero taper (¢ = b)

5. (fonductara A and B, havmg equal lengths of 40 meters and a cross-sectional area
of 0.10 m? are connected in series. A potentml of 60 volts is applied across the terminal
points of the connected wires.  The resistances of the wires are 40 and 20 ohms respec-
tively. Determine: (a) the remstiwties of the two wires: (b) the magnitude of the elec-
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tric ﬁeld in each wire; (c¢) the current dLnSlty in each wire; (d) the potentm.l difference
applied to each {,{mdmtor . e .

6. A l?50—watt radiant heater is constructed to operate a.t 115 valts (a;) What will
| be the current in the heater? (b) What is the resistance of the hea,tmg coil? (c) How
many kilocalories are created in our hour by the heater? .. v

7. An iron wire (diameter 1 mm, length 10 cm) 18 plat-ed in an eva.cuated chamber
‘Estimate the equilibrium temperature of the wire if it carries a current of 10 amp.
Assume that all heat transfer is by radlatmn and that the surface of the wire radiates
‘according to Eq. 47-2. Take the temmrature of the chamber walls w be V. C' Lmt
any addltumal aasumptmns that yﬁu use.

”Chapter 32

1. Two batteries having the same emf & but dlﬂerent mtemal remﬂtances ry and rs
are cﬁnnected in series to an external resistance B. Find the value of R that makes the
~ potential difference zero between the terminals of the first battery. | |

2. The section of clrcmt AB (3ee Fig 33—26) absorbs power P = 50. 0 watts and a

current 1 = 1.0 amp passes thmugh it in the indicated directwn (a) ‘What is the
potentlal difference between A and B? (b) If the element C dﬂes not bave mtemal
remstance what 18 lts emf 7 (c) What i3 ltB polarlty‘? | - o

e A
~ Fig. 32-26

| 3 Two hght bulbs Gne caf remstance R and the other of reﬂiatance r( < R), a.re con-
nmted (a) in parallel and (b) in series. Whlch bulb IS bnghter? | | |

4. N identical batterles of emf & and internal resistance r may be wnnected all in
series or all in parallel. bh(m that each armngement will gwe t.he same current m an
external resistor R if R | | -

5. Twelve res1st0rs eavh {}f remstance R ohms farm a cube (see Flg d"—-—-27) (a)
Find R4, the resistance of an edge. (b) Find Rpc, the equivalent resxstanee Bf a face.
(¢) Flnd R,w, __the equwulent rebxbtanve 01' the body d;aganal |

6. What lnternal connentmna (resmtora only) can aw(}unt f{}r the fact that there are
2 ohms resistance between any palr of the temnnais on a box with N termmals? (See
Fig. 32———-28) |
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_- ‘? & vultm-ﬁter and an ‘ammeter are used to detemnne two unknawn remstanees Rl'..j_'_'_
'and ffz, one detummatmn by each of the two methods shown in Fig. 32-29. The volt-
. memr l‘bﬂlﬂtam e 13 J{)’? {)hlllf:i dﬂd the auunf,ter resmtance i8 3.62 ohms; ln meth{}d (a) the
ammetw reada (} dl? amp and t}w valtmeter reads 28 1 V(}ltﬁ, whereas in methud (b) thef}:_}f
'.jmnmetur I’E&dﬂ {) dﬁﬁ am p and thu mltmeter .«3.5 7 VOltE Lempute R ; and Rg '

B = L g e P e - =1k - g by, et = o r R o | =r . . = i 1] . - i N o i - .
. 3, o - - e o - - =L . - 3 LR A, w— - . . ..
" = e " = < -, e i Lo, e .t . : . -t ™ = - . . E e . = e E- ¥ . =
= o o e, e L L X o, R = 1] o 5 . iy, pees | =R X = = . F
: e T 3 0L : e : = SRS = g e
- = 3/ oy 2, by T T o e ey ey L oy - Lt = L= L o o, X -
L "~ | e ] L T 4 ke - e 1 S
S "u a, - " - .t ="y - - S [ s [- . i
B o el , - : o : ol iy el et
- - o 3 = = h : -y
- e ¥ -7 i, - .y
; - = E 2
. 4 m
2 .

3 ) b . e X . . CEa o o il - I = e e o e i e o = L P
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o .| o et " - b - = - ' - - . Ty & - - = r - - R o S : A e - s ", e - .
LR L B e L & : ! 2 o o L - ol L L e Lo LU ~ L i ol e LY . =y e Sl ; !
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. & Aﬁ R(,f LIE‘Lmt is dm{ hazgﬁd hy Llosmg a swm,h at tlme t The lmtial puten..'.:;;:f,
":'ha! dlﬂt‘!"ﬁiwt BCross tlm e apaumr is 100 volts. If the potcntlal dtﬁerenoe has decreased_f:
-'_':t@ 1 {} wit aftcr E{} su*' H{a) what ml! the patentlai dlf’feren(e be 2() sec after t 0‘3"_
(fr) Wh&t 13 t!zu, tmw mmtant {}f the t-lrcmt‘? pdteaet A B Sal 0 e

9 A capw'ltm w:th {apautame (' i {) ,uf and mm&l st{}red energy Ug U 5 Jt}ule".'
8 dlﬂ(zllﬁrgtd thmugh a wmatam el = 1.0 X 10% ohms. (a) W hat is the mltial charge
on the cap&a itor?  (b) What is the {*lll’i‘tﬂt thr{mgh tht; re&ustor when the dlscha,rgg :
- starts? (r} l)eier:mm VL:, the mltagc across the e&pamtﬂr and Vg, the vo!tage ACross
"_fthe reﬁtﬁwr as a fum*tiun s:}f mm, (d) hxpreas the ratc uf J{)ule heatmg m the resmtﬂr,f',
'_'35 a function of time. G Geier pbaciaia g e 0
lQ In th& L"’ii‘(‘l.l!t {}f Pzg '3f}"'" "'12{3{} ‘H}ltS Ca 5{} ,uf Rl = 32 Rg --'_';-j';;
| su X mf* ﬂhilm Wath {’ vmnpiﬁtely unc hargﬁd ‘the su 1tch S is suddmly Llf}Sﬁd"_:-"
(= (f&} -u; !)etermme f{;r { =0 and = the furrents thmugh ¢ach resistor.
(b) E)raw quahmuw]y a graph of the putentm! {!mp Vaac ross Rz fromf =0tot = ».

A{e) Wh&t are #hc numer:ml values of V, at{ =0and{ = - (d) Give the physwﬂ.lr

meaning of “t = »’ and state a mugh hut. ngﬁms_am numerlcal lower bound :
'.'ae{,ﬁnda h:sr' “t .,.... ' in this case. e e e iR

t.“'.

| ( hapim‘ 33

i*artieiea l 2 amﬂ d fulima iim p:ﬂh&:« bh(]% n m Fsg .3% 25 .:1,3 they pass through the |
- magnetic field there, What can one eﬁnclude about

edch purti{*!e &

2. {a) What apecd W{mld a protﬂn need to circle
the ecarth at the equator, if the. earth’s magnetic
ficld is everywhere hurlz@ntal ‘there and directed
along longitudinal lines. .;.ke the magmtude of the_
earth's mug,neti(* field to be 0.41 X 10~ *weber/meter?
~at the equator.  (b) Draw tlm vd mt,y and magnetic
induction veetors mlrvapendmg to this situation.

3. An electron is aceelerated thmugh a p(}tential
difference of 1000 volts and directed into a region
A% WK PR X between two parallel plates separated by 0.02 meter

g0 o dae ' with a voltage difference of 100 volts between them.

“Fil_g.;-‘ 33_;_25 ~If the electron enters moving perpendicular to the

- electric field between the plates, what magnetic field

i nﬂwmry perpendsi*ﬁiar to hnth the {*!eetmn path and the eiectrm field so Lhat the *
~electron travels in a straight line? e
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4 A pﬂﬂitwe pomt vharge Q tmvels ina strmght lme wmh eonstant speed through an
'-:'i__-'ev&cu&ted region in which there is a umform electric field E and a uniform magnetm. -
fieldB. (a) If Eis dlI‘PCtLd vertically up and the charge travels horizontally from north
to sauth wzth Epeed v, d@termme the. least V&luﬁ, of the magmtude of B and the eor-
fj._'-r&apond:ng dire{:tiun of B (b) Explmn why B is not umquely determmed when E and
'J'_-:j'v alone are given. ey buppﬂse ‘the Lh&.rge isa ‘proton W hi{,h enters the regmu after
'_.f"_f'-'_havmg been aceelemted thmugh a pot.entmi dsﬁ’erenca {}f -3 10 X 105 volts. If E=
1,90 X 105 volt /meter, wmput& the vahm of B in p&rt (a} (d) If in part (c) tha elec-f
f‘_f.t;rtc ﬁeld L is turned i.}ff determm& thﬁ mfim& ¥ af the cimle in whach the prﬁtan nOW |
5; A eertam gulvanomater has & ;ehmtance uf 73 3 ﬂhms 1t3 needle expenenc&& a full--f.
"._.':'f'geala deflection when a current 1.62 X 10~ —3 amp passes thmugh its coil.  (a) Determme'-;--
e value uf the auxilmr}, ?Pﬁiﬁtﬂ.ﬁ{}ﬁ mqmr&d u:; Gﬂnvert the galvanﬁmeter mtﬁ a volt-—lﬂ'
fha’ater that Iﬁ*’ﬂi“} 000 volt at fuil-—scale deﬁectmn How is it to be mnnected'? (b)
.'_:.-:-_':;L}Eti‘“lnlﬂﬁ the mlue of the aumlmry reslst&nce requlred to convert the galvanometer into
.:f'j_ﬂ';'.&n ammﬂ,s # that read&. (} (}5{}() ﬂmp at full-scale deﬂeetmn How 13 1t to be eﬁnnected?”*

6 Irz a h:m effeet expermient acurrent ﬁf 3 0 &mp lengthw:se in a canductor 1 0 cm'_
mde 4.0 cm long, and 107 % em thmk pmduced 4 transverse Hall Vﬂltage (&croas the
W ldth) of 1.0 X 1073 volt. when a magﬁetlc field of 1. 5 ueber/meter pa.ssed perpendmu-
l&rly thmugh the thm wnduct@r Pmm these data, find (a) the drift velocity of the'f
: Lharge carrzers and (b) the number uf caz ners per {,uhm Lentlmeter. ile) Show on &
dmgram the pﬁlarity of the Hall vultage with a given Lurrent and magnatlc ﬁeld dlrec-j
| -'t,mn aasmmug the Lharg,e {'arners ﬂJ’l‘; (negatwe) eleﬁtmna . ey

- 7 (a) What 13 the Lyulutrﬂn frequuwy of an eleetmn wn.h a,n energy 0f 100 ev m the;-'
__earth s magnetic field of 1.0 X 10~ 4 wd)ers/tneterﬂz? (b) What is the radius of curva-
_:"___ture uf tht. path 0f thls elf:-;t,tmn 1f 1ts velout} 13 perpendmular to the magnetm ﬁeld?

" _-Chapt&r 34

il lght wires Cut the page purpendiaulariy at the pomts shown in Flg 34*32 A
-__--”mre labeled with the integerk (k = 1,2, . . . 8) bears the Lurrent kzn F{)r thoae w:th

odd %, the {urrent ﬂ()“b up out (}f thL pagi‘ far | |
those with even k it ﬂ:m:s duun into the page

 Evaluate ¢'B - dl along the closed path shown m_.;;_ L s LN

‘the directlon Hldl{?ﬂ.tf‘d hy thc mngie armw he&d i o .4 //\6°}/
2. Two lang ﬁtr&tgl:t wires pass near one aﬁothﬁrf?_ Al 2 It .7

_ at rtght augles If the wires are free to move, .5 hi NS

describe Mmb hammns when t'urrents ure Bt.,nt""-_""”'.f_'.' ] -3

thmugh them. | s e e
_ 3. Suppose, in I‘lg M 2‘5 thu,t th&currents&maﬂ.
in the same direction. W hat i is the force per meter  \
i (magmtuda and dlreutwn) on any one wire? Inthe iy .
_analagous case of lmrallel motion Of charged partz-»: By wee g 'ﬂg'.” 34-32
_ L]&S in a plasma this is knmm as th& pmch 6ﬁE{,t o oy _
4 A l{mg stmtght mnduvtm has a circular cross section of mdms R and carries a
o > _,3_;._-.__:_:wrmnt 1. Inside the wnduvtﬁr there I8 & cylindrical hole
ool radius a whose mﬂs 8 purai[d to the conductor axis at
' -8 d:stance b frmn it. Use mptrpﬂﬁl&lﬂn ideas, and obtain
- an mprw&mn for the magnetic induction B inside the hole.

i e % A stmxght conductor is &pm into 1dentmai mmmmul&r
Fig. "?3,5__'_3'31- el ”mrns as shown in Fig. 34-33. What is the magnetm ﬁeld
o at the center C of the circular loop so-formed?

6. (a) A currtnt i ﬂOWE in a straight wzre of length L in ‘the d:mctmn shown in Flg
"*_?4%3441 Startmg from the Bmt-»b&v&rt law dttermme thes E'esuitmg mag‘netw mdm-




‘IB o SUPPLLMENTARY PROBLEMS

tion (Bp, Bq, Bg, Bs, r_especuvely-dxrectmn and magnitude in each case) at each of the
four points P, Q, R, S (all coplanar with the wire). (b) Using the results of part (a),
compute t.he maggetm induction B (magmtude and dlrectmn) resu]tmg at the pomt. r

ﬂ ﬂ 2

1 e UL T R —— e e e ' - T
‘;.’.".---_%..;;--.f" oy g

- L‘ L 2a } :
T : i1y a
e F .
i S5 9. . |

Fig 34-—34

from the current ﬂowmg as lndlmt,ed in the Bix-ﬁlded rectllmear cloaed loop shown in
Flg 34-345 (Everythmg drmm is meant to he in the same plane and all anglea are
' 7 : Use the Bwt—Savort law to calculate t,he magnetlc mductmn Bat C. the common
" -'center of t.he semmrcular arcs AD and HJ, of radii Rs and R, respectwely, formmg
part of the c:remt. ADJ HA ca.rrymg currenl, Z; a,s shoim n Fig 34-»35 - |

Fig 34-35 e Ll Fig 34—36
8 Comput.e the mugnetlc induction B at (', the common cemer of the urcula.r arcs
Bf the c:rcmt. carrymg current 1 the arcs ruttmg a b&f‘tt}r of angle 6, a8 sha“wn in Fig. |
9 (a) A lmg wire I8 bent. mto the shape ahou n in Pig d4 37 w:thout cmss-mntact
' ~_at P. Determine the ma.gmtude and direction

. of B at the center C of the circular portion when -
_,_'-tht, current i flows as indicated. (b) The circu- _-
~ lar part of the wire is rotated wltht_)ut distortion
about its (dashed) diameter perpendicular to
 the ﬁtrmght portion of the wire. The magnetic
~ moment associated with t,he -clrcular loop is
now m t.he d:rectmn 0! t.he current m the &tra:ght pari {}f the wire. Determine B at

C in this cm

Fiﬂ 34—37 s

Chapter 35 e __ | | . e _
- bhﬂw that emf has the Bame d:mensmn& as t.nne r&te of change ﬂf magnetm ﬁux

2. In Fig. 35-.59 { = 2.0 meters and v = 50 Lm /sec B is the earth’s magnetic held |
directed perpendtcularly out of the page and ‘having a magmtude 6.0 X 107° webers/m?
at that place. The remtance of the urcust. ADCB assumed constant (expla.m how
this may be achieved appmximawly) is B = 1.2 X 10~% ohms. (a) What is the emf
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induced in the circuit? (b) What is the electric field strength in the wire AB? (c)
What force does each electron in the wire experience due to the motion of the wire in
~ the magnetic field? (d) What is the nmgmmde and direction of the current in the wire?
' (¢) What force must an external agency exert in order to keep the wire mmrmg with this
constant velocity? (f) Compute the rate at which the external agency is doing work. -
(g) Compute the ra,t,e at which elect.rlcai energy is bemg converted mw heat energy

m. 35-39 Ao Fls 35-40

3 I' 1gure 35«4(} slmws txm qups Of wire havmg the mme axis. The Bmaller lmp 8
above the larger one, a distance which is large c{}mpared to the radius R of the larger
loop. Hence, with current ¢ flowing as indicated in the larger loop, the consequent
magnetic induction is nearly constant thruughout the plane area =r? bounded by the
mnullﬂ lmp Suppose now that r is not constant but is changing at the constant rate
| {.r /dt = v. (a) Determine the magnetic flux across the area bounded by the smaller

“ap as a fune tion of z. (b) Compute the emf generated in the smaller loop at the

siant whenz = NR. {e) l)eter:mne the direction of t.he mduced current ﬂﬁmng in
Lhe sn:mller iun;} if ¥ > 0. ' -

4. A LlﬁS{?d loop of wire consists of a pair of equal senuc:rcles radma 3. 7(} cm lymg
in mutually perpendicular planes. The Iﬂap was formed by fﬂldmg a carcular loop

along a diameter until the two halves became perpcnd:cular A uniform magneuc 5

field B of magnitude 760 gauss is directed [wrpc,ndu -ular to the fold dmmeter and makes
equal angles (45°%) w ith the planes of the semicircles as shown in Fig. 35-41a. (a) The
magnetic field 1s redﬁwd at a uniform rate to zero during a time interval 4. 50 X 107%

sec. Determine the magmtude of the induced emf and the &ense of the mduced current b

in the loop during this interval. () How'w ould the answers change if B is directed a8
shown in Fig. 35-41b, perpendu -ular to the dlrettion hral; gwen i'ur ﬂ. Emt at.ﬁl per-
pendu,uiar to the “fﬁid—dmmeter W

i=. i " = o - e e =
L e [ r T
- -

X X X X

' Flg 35—41 RO L Fig 35—-42

5 A lm’}p {;-f wire f}f area 1 is mnn{.uui o a rvmstum ¢ R The Imp is expoaed to &
time varying Il field (see Fig. 35-42). (u) l)ﬂ ive an vxpreﬁslon for tha nel charge
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transfe;'red thmugh the resistor between { = t1 ami L= Shnw that your answer is
pmportmnal to the difference fbg(tg} - @H(tl), and 13 Gtherwme mdependent of the
manner in whmh B 8 Lhangtng (b)) Suppose the changﬁ in ﬂux @3 (t3) — ®g(ty) is zero.

ot e ~ Does it then follow that no wuie heatmg owurred dur»
o mg this time mterval‘i’ N e |

£

ii=h. An electmmagnetw “eddy current” bral{e conmta-;‘--
-..._of a dlBk of mnductwlty o and thmkness € rotating]-.i_
~ about an axis through its center w1th a magnetic ﬁeld'_:;‘_
B applu,d perpendicuiar to the plane of the diSk overa
- small area a? (see Fig 35*43) If .the area a? is at a
. ' ~ distance r from the axis, find an appmx:mate expressmn"-l._
'_ fﬂr the mrque tendmg t(} Blow dawn the dlsk at the mst&nt 1ts angular veloc:ty equals w.

' Fig '3'5—-43

Chapter 36
_ Twa equal E{}lem}ldﬂ (mductanc& L) are w:red m af:':ries (a) If they are far apart
> '-shaw that the equivalent inductance is 2L, (b) If they are ”clase wound 3 show that
~ the equivalent inductance is either 2ero or 4L dependmg on Lhe d:rec tlon of the wmdmgs -
(Hmt They form aﬂmgle solenmd) e e
2. In the cxrcuzt shown in Flg 36*8 8 = 10 volts Rl -.50 {}hHlS R2 1{} ohmaj_ﬁ'_.
_f'_f-_and L = 5.0 henries. For the two separate GOHdlt!{}ﬂS ) SWitLh S just closed and
a1 smt{:h S closed for a very long time, ealculate (a) !;he currtnt 11 thmugh iy
~ (b) the current Ly thmugh Ra, (c) the current 7 ihrnugh the smtc (d) the v{)ltﬂ.ge-'
'_'{}"-acmsﬂ Rz, (e) the voltage across L and ( f) d:g /dt G Dl i

' L
e - e 3
at . 5 ;
% ! :
. pd -l : . =
o o

3 M I'zg ‘iﬁ-—ﬂ !:, = H}U V{Jltfs R; lt) sz !i ;m- zu Si fi;; = .:m 1 and L .Zh
Find the v‘amﬁ of 1, and 1y (a) nnmadmttly ﬂ.fti..r. b 1% ah;&ui (b} & i{mg time l&tﬁr (r)_.
| mxmediu.teiy &fte.r S iy t}pmmd agam (d) a ]ung mne Lm,r e | | .
§.K maxlal cﬁhla (umer radius a, fmtu mdiub b} 13 used m a.. Lr&mmmsmn hrm '
| bﬂtwat,n a battery & and a resistor 1. The E&ML zi{:t;-; as both a {*apa{*itf:)r and an
“inductor. ‘If the stored elettrw and nmgmtw mwrmm ui@ ugua! a}mw th&,t R mum be

'_ (T‘he quamiw &7? ﬂhms is asmnemnw {*u}lﬂi the maw {Ewr f reE sfﬁfw ;-

3, hach item {(a) ;,.mﬂmnh-ﬁhm meter/xwl}er (h) w}E* L Jmff (¢} coulomb-ampere/
farad, (d) kz!c}gmtmwit-meterv{henrywmnperv)‘E (e; {henry/ E%E‘m&}h is equal to one
of the items in the following list: meter, 3ewnd kilogram, dimensionless number,

_ ﬂewmn jﬂuiu, 'mlt; ﬁ}hm xmtt wuiomb ampere mi eF,; h_enry, farad. Give the
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Chapter 3y

1. A total chargp q 18, dlﬂtrlbuted umft}rmly ona diele{'trw rmg of radms r. M 'the
ring is rotated about an axis perpendmular to lts plane and thmugh its center at an -
_angu]a,r speed w, find the magmtude and dll‘&Cthl’l of its reault;ng magnetw mﬁment

. (a) What is the magnetm m{}ment due to the orbxtﬂl mot:on of an electmn in an
atom when the orbital angular momentum is one quantum unit (= A = 1.05 X 103
joule-sec). (D) The intrinsic spin magnetic moment of an electron is 0.928 X 10723
.ampﬁmetﬂ? ~ What is the difference in the magnetic potential energy U between the
states in which the ma.gnetw memem is aligned with and aligned in ‘the opposite direc-
tion to an external magnetlc field of . waber/metpr?? (¢) What absolute tempemture
'-'Wﬂuld be rt*qmred 50 that the Pnerg}r d:ﬁerﬁme m (b) W{}‘ll](l equal the mean thermal
'.eﬂergy BLAL - |

3. An electron trave!s in a mrcular mhlt abmt 8, ﬁxed posxtwp p(}mt fzharge in the
presence of a uniform magnetic field B directed normal to the planeof
its motion. The electric force has premﬁely N times the magnitude of =~
the magnetic force on the electron. . (a) Determine the two possible
angular speeds of the electron’s motion. (b) Evaluate these ﬂpeeﬂﬂ
numerically if B = 4.27 X 10° gauss and N = 1{)0

L a A s:mple bar magnet is suspended by a ﬂtrmg as shown in Fig
37—-23 If a uniform magnetic field B}d:rected parallel to the cmlmg
is then estahﬂlshed ghow the resuitmg orientation of atrmg and magnet |

5. An iron magnet contammg iron of relative permeablllty 5000 A2
has a flux path 1.0 meter lmg in the iron and an air gap 0.01 meter long ﬁa--i’? _23
" each with cross-sectional areas of 0.02 meter.2 What current is neces-
sary in a 500 turn coil wrapped amund the iron te gwe a flux density in ‘the air gap af |
1.8 webers/meterz? '

| Chapter 33

L Imtmlly the 900 uf capacltor is charged to 100 valts and the 10(} pf capamtﬁr is
uncharged in Fig. 38-13. (a) Descnbe in detail how one may charge the 100 uf capaci-
etk aan B tor to 300 volts using Si and. Sy ﬁppmprmteiy

) I)eacrlbe in detaﬂ the ma.ﬂa -i- spring meehan-
e iCﬂl ansalogy of this pmblpm

2 A 3eif-canszstem;y pmperty o} Ewa af Ehe M az-
well equations. Two adjacent pamlleiepnpeds ahare
e i o . COMMON face as shown in Fig. 38-14. (a} We

.. _' Fig, 3803 . & o . may apply e FE - dS = g to each of the two closed

- - .. surfaces sepamtelv Show that, from this alone,
it folli}ws that egf E as = q 13 auImnahmliy satz%ﬁad fm* the composite closed aurfaee
(b) Repeat using fB dS = 0

100t ==

oL par Brloml S804 - """-ng};«-a_e-ts

3. A self-consistency property of two of the M azwett equalwns Two adjacent closed
paths abeda and efcbe share the common edge bc as shown in Fig. 38-15. (a) We may
apply FE-dl = md@g/dt to eaeh of these closed ‘paths separately. Show that from



| -.22 . | SUPPLEMENTARY PR{}BLEMS

thls a.lone, f E dl = _-—-dtbg/dt i8 uutomaﬁm[éy Batlﬂﬁed for the compos.lte closed pa.th

o gl
Gbedeﬁ (b) Repeat using — fB d[ =7 + m__é_,tf S
#0 |

i Uamg the deﬁmtmna of ﬂux volume {-ha.rgf- denstty p, ﬂ.lld current denmty i w rzte
‘the four Maxwell equatmna in such a manner that all the ﬂuxea currentﬁ a.nd charges

. appear 6.8 volume or aurface mtegrala

Chapter 39

l A coaxial cablé is made nf a renter wire of l‘&dlllﬂ a Burmundod hy ) thm metal'
-_tube of radius b. The 3ubstam'e between the conductors i8 air. (a) Find the capaci-
- tance per unit length of this coaxial cable (H ind: Imagme equal but oppnslte ('hargea to
be on the wire and the tube). (b) Find the inductance per unit length of this cuaxlal
cable (Hmt Imagme a current 1 ﬂuwmg dewn the center wire and back along the tube.)

2. Startmg w:th Eqs .3()-1() and 39-13 shnw that E qatlsﬁos thé “wave eqtlatmn
| a*E a‘-’E '

£
et MO 0 &2

Does B also aatisfy the wave equation‘? j | |
8, Shﬁw that (a) through (d) helow’ satlsfy Fqs .39—1!) and 3{)-13 In each of these

A 8 a constant (a) E = Ac(z — ct), 3 = A(xr — ct) (b) E Ac(x + c.*!)15 'B
—-A(z + ct)“' (c) E = Afe(' "” . = Ae(’“‘“} (d) Acln (.t g ct), =
—A In (:r + ct) (e) Genera.hze these emmples | ﬂhﬁw that E = Acf(z — ct)

B Af(z — et) is a solution where f is any function of (:.r: — ct) W_ha_,t 18 the corre-

"__'_j-"}_"._-'smndlng situation for functions of (z + ¢f)?

4. Conslder the possiblhty of “sta.ndmg waves”

EwE (sm mt)(am kx)
B = Bm(cos mt)(ms kx)

- {a) Show that these satlﬁfy E qa 39 10 and 39- 13 if Enis smtably related to B,, and w
suitably related to k. What are these relatmnsh:ps‘? (b) Find the (mstantaneous)
Poynting vector. (c¢) Show that the time average pnv. er ﬂmt armss fmy area is zero.
(d) Descrlbe the flow of energy in this problem. * LN nEs o

5. An mrplane ﬂylng at a dtstance of 10 km from a radm transm:tter recelves g signal
of power 10.0 mwmwatt.s/meter (‘alculate (a) the (average) electnr field at the air-
‘ plane due to this signal: (b) the (average) magnetw ficld at the mrplane (¢) the total
power radiated by the transmitter, mummg the tranﬁmltter to radiate 130trﬁpwally

and the earth to be a perff'ct ahmrher C

6. A coaxial cable (mner radlus a, outer radtus b) 1s used as a tmnsmlssmn lme
| between & battery : and a I‘EBISH}!' R as shm&n in Flg 39-18. (@) © a{culate E, B for

‘.Ha..

Fig. 39-18
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a <r<h (b) Calculate the Poyntmg vector S fnr a <r <b. (c) By suitably
integrating the Poynting vector, show that the tota.l power ﬂﬁwmg across the annular
cross sectiona <r < b1s 82/ R. Is this rpamnable‘? (d) %how that the direction of S
is always from the battery to the resistor, no matter wh:eh way the battory i8 connected.

7. A long hollow cylmder (radius R, length ) carrws 8 um&)rm charge per unit area
of ¢ on its surface. An externally applied torque causes the cylmder to mtate at con-
stant acceleration w(t) = of. (a) Find B within the Pyhndor (treat itasa mlenmd)
(b) Find E at the inner surface of the cylinder. (¢) Find S at the inner surface of the
cylinder. (d) Show that the flux of S onter:ng the mtermr vnlume of the vylmder i8

= R’l
equal to — ("“r - ) (Cnm pare w1th Problem 18 ).
ol dt \ 2po | o |

1 A plane electromagnetic wave, wzth wava]ongth 3.0 meterﬂ travels in free space
in the +z-direction with its electric vector E, 6f amplitude 300 volts/meter, directed
along the y-axis. (a) What is the frequency v of the wave? (b) What is the direction
and amplitude of the B field associated with the wave? (¢) If E = Ey sin (kz — wt),
what are the values of k£ and w for this wave? (d) What is the time averaged rate of
energy flow per unit area associated with this wave? (e) If the wave fell upon a per-
fectly absorbing sheet of area A, what momentum would he delivered to. the sheet per .
. second and what is the radlatmn pressure exerted on the sheet? L -
Show that ¢E X B has the dimensions of mﬂmentum/voiume (The 1.ector_
-' e{;E X B may be used to com pute the momentum atored in the ﬁelds in the same man-

3 1 |
ner that the B@ﬁlar 2 euF’ HEse it may be uaed t0 cnmpute the energy stored in t.he

Zmo

‘ﬁelda) 5, ' i |

3. A partlele in the S{ﬁﬂ.l‘ system is under the combmed mﬂuence ef tbe sun 's gra.ﬂ-'-'_
tational attmctwn and the radiation force due to the sun's rays. Asaume tha.t the
particle is a sphere of density 1.0 gm /cm? and that all of the 1nmdent light is absorhed
(@) Show that all particles with radius less than snrne critical radlua, Ry, wﬂl be blﬁwn_'
~out of the solar system. (b) Calculate Ru ~ (¢) Does Rn depend on the dlsta.nce J’mm_ﬁf'
the earth to the sun‘? (See the appendlces for the necessary cnnatanta ) L

__'C-.hapter 41 .
1. When an electmn moves through a medium at a speed exceeding the speed of
light in that medium, it radiates electromagnetic energy (the Cerenkov effect, see S

tion 20-7). What minimum speed must an electmn have in a liquid of refmctwe mdex
1.54 in order to ra,dlate‘? - - e

2. Assume that the index of refraction of the earth’s atmﬂsphﬁro varies, I‘ch ﬂltitudel
only, from the value one at the edge of the atmosphere to somie larger value at the
surface of the earth. (a) Negieetmg the earth’s curvature, show that the apparent_
“angle of a star from the zenith direction is independent of how the refractive index of
the atmasphere varies with altitude and depends only on the value of n at the earth’s
-surface. (Hint: Compare a uniform atmosphere with one consisting of layers of
.'_-_mcreaszng refractwe index.) (b) How does the earth’s curvature affect the analysis?

3. A pmnt source is 80 cm below the surface of a body of water. Find the diameter
of the largest mrcle at the surfaee through which light can emerge fmm the water.

4, A pole extends 2.0 meters above the bottom of a swimming pool and 0.5 meters
&bove the water. Sunlight is incident at 45°. What is the length of the shadow of the
pole on the bottom of the pool? o s | _ o

5. A given menochromatic hght ray, initially in air, strikes the ﬁ{}”’ ﬁr:qm at P (see
Fig. 41-24) and is refracted there and at @ to such an extent that it just grazes the
right_«-hand prism surface after it emerges info air at §. (a) _Determine the index of



_Wﬂ'mctwn re?ahve to air, of the prlsm for thzs w aveiength in ‘éwms {}f the fmgie of
incidence 93 which gives rise to this situation. (b) Give a numerical upper bound for
the index of irei'm{:izlon of the prism. (¢) Show, by a ray diagram, what happfns 1f the
‘angle of meideme at P is singhtly greater than 6y, is qllghth less than 6;. bl o

6. Two perpendwuiar mirrors form the sides of a vessel filled with water, as sh-own In
Fig 41-25. A light ray is incident from above, normal to the water surface. (a) Show
‘that the emerging ray is parallel to the incident ray. - Assume that there are two refiec-
tions at the mirror surfaces. (b) Repeat the an&lyﬂis for the case of oblique incidence,
~ the ray iymg in the plane of the figure. (c¢) Using three msrr{}rs state ﬂnd prove the'

three-dnmenswna! anﬂ,iog tn this pmblpm | | | | |

Chap&m’ 42

1. How many images of himself can an @hsewer see in a rmm wheqe ﬂezlmg and twg
adjﬁcem walls are mirmra? Explain. 3 - iy |

2. A thin flat pl&te of glass is a distame b from & convex mifror. A point source of
'hght S I8 placed a dzatame a in front of the plate (see Fig. 42-33) so that its image in the
T ——— partlally reﬂectmg plate coincides with its image in the
& mirror. If b = 7.5 cm and the focal length of the mirror is
. : . —30 cm, find @ and draw the my d:agram

s 3. (a) A slmple magmﬁer (a mnvergmg lens) is uaed,
X .__"_dlrect]y in front of the eye to Pmmme an object. Draw a
- ray dmgram shmnng the final image {}1’1 the retina of the eye.
| _ () The smallest distance at which a normal eye can focus
Fig.‘ 42-—33 - upon an object 18 25 em. Use this result with your ray dia-

~ gram to prove that the (angular) magnification of a simple
m&gmﬁer is 25/f -+ 1, where f is the focal length of the magnifier lens. '

4. Two thin lens, one having f = +12.0 em and the other f = —10.0 cm, are sepa~ _'
rated by 7.0 cm. A small object is placed 43.5 cm from the eenter of the lens system on

the prmmp&l axis first on one Bnde arsd next on the nt,her side. Fmd the l{}mtmn of the
final image in each ease. ~ 2l

- 9. Show that a thin mnvergmg lens of focal length 1 follﬁwed by a thm dwergmg !ens
of focal length —f will bring paraliel light to a focus beyond the secend lens pmwded
that the separation of the lenses /. satisfies 0 < L < f.  (b) Does o
this property change if the lenses are mterchanged? _(c) Wha,t‘ |
happenswhenL=()? Ll e g

6. A concave and a convex lena are {'ut out of a plane paraliel
‘block of glass as shown in Fig. 42-—-34 ‘Discuss the geometry of a
beam of parallel rays incident (a) on the concave lens and (b) on

the convex lens as the distance between lBIlSEﬁ 18 increased from
contact to a large separation. | |

7. An object is placed 1.0 meter in front of a convergent lens of
_ focal length 0.5 meter, which is 2.0 meters in front of a plane S e
mirror. (a) Where is the final image, measured from the lens,  Fig. 42-34
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~ that weuld be seen by an eye leekmg toward the mirror through the lene? (b) Ia the
final 1image real or virtual? (¢) Ie the ﬁnal tmage erect or inverted? (d) What is the
- Ieteml magmﬁeatmn ?

. | Chapter 43

1. Ina double-ellt arrangement the dzetence between ellta is 5 0 mm and the slite are
1.0 meter from the screen. Two interference patterna can be seen on the screen, one
' -'due to l:ght of 4800 A and the other 6()(}0 ‘A, What is the eeparatlen on the eereen -

- between the third-order interference f ringes of the two different patterns? -

- 9. In Young's interference exponment in a large r:pple tank (see Flg 43—-»4) the
eeherent v:bmtmg sources are placed 12.0 em epart The d:etenee between maxima
2.0 meters away is 18. Ocm. If the epeed of rlpplee 18 25 0 em /sec ﬁnd the frequency
| ef the v:bmters . et WA R ¢t

'8, One slit of a douhle-sht errangement i8 eevered by a thin glaee plate ef refractive

= mdex 1.4, and the other by a thin glass plate of refractive index 1.7. " The pemt on the
~ gereen where the central maximum fell hefore the glaﬁe plates were inserted is now occu-
- pied by what had been the fifth bright fringe before. Aeeume A = 4800 A and that the

'. platee have the same thickness ¢ and find the value of t. GELJIRGERT

‘4. In Fig 4‘3—-25 the source emits menoehmmatle light of wavelength J\ S iﬁ'ﬂl'very
; _,lnarrew glit in an otherwise opaque screen I. A plane mirror, whose sufface includes

“the axis of the lens shown, is located a dietenee h below S. Screen I is at the focal
| 'plene of the lene (a) Find the eendltlen fer maxima end mlmma bnghtneee of { rmgee-

B 43;25_ ” Hiuba

_{-:'en, eereen II m terms of the ueuel engle 6 he wevelength k end the dletenee h (b) 'De

- frmgee eppeer enly m regien A (ebeve the axis of the lene), only in region B (belew the

o fe.me ef the !ene), er m beth regzene A end B‘? Explem (Hmt Lenmder the :mege ef
| 5 Let f;(t) = L41 em {wt -!- m) end fg{t) Azﬁlﬁ (wi + ¢2) Suppeee We went te
,_"_'_';:{eelcule.te the timeveverege ef then* preciuei . e as s

T’ f I{f)f ﬁ{t) dt T "“f e

.....

. (Sueh a, prehlem rmght eriee :tf f 3 repreeente a mrreet end fg g veltege f 1 fg weuld then
be the instantaneous poeer) Show thet thie everege le equei te ene helf the det
o pmduet of the eeerespendmg phaeere o

o 6 Cenmder the pmblem ef determmmg the e'em .

A; em (ei + ¢a1) + Ag@ﬂl (wt %' éﬁe} 4* + An em (cﬁ + ¢n)

- -"fmm the phmr dmgrem t



2 . I b SUPPLEMENTARY ‘PROBLEMS
- (a) Show that the Eum may alwayﬂ be v«ntten ln the form

Bsmmt +Cc03wt

| (b) Show that B2 + C2 < (AI + A2 + g A,.)z.
(© When does the equallty sign in (b) hn]d? |

7. s thln ﬁlm of acetone (refractwe mdex 125) is floated on a thxck gla.ss pla.te' -
(refractwe index . 1.50). Plane hight waves of variable “ave]mgth are incident normal

to the film. When one views the reflected wave it is noted that mmplete destructive ;

_interference occurs at 6{)00 A and construrtwe interference at 7()()(} A (‘alwlate the
-thlckneﬂﬂ of the acetone flm, ... i s | Lt el R
8. We w:ﬁh to {:oat a, ﬂat pme of glass (n = 150) 'Mth a traHSparent materlal
(n = L, 25) 80 that llght of “avelength 6()00 A (m vacuum) mmdent ormally 1S nﬂt
~i’*ﬂ»ﬂﬁaﬁ*md How can this be done? - b e o
B nght of wavelength 6'3()() Ais mc;dvnt normally on a thm W edgp-shapod ﬁlm (}f 5

_'mi.m of refraction 1.5. There are ten brlght and nine da.rk frmgps over the length of _.
ﬁlmi By how much does the film thickness change over this length? e

' 10. Anwil drop (n = 1. '20) floats on a water (n = 1.33) surface and is observed fram- )
_ abmre by reflected light (see Fig. 43-26).. (a) Will the. outer (thinnest) regions of the
'dmp eﬂrreapm};d to a. bnght or a dark reglon? -(b) Approximately how thick is the oil

Gbserver 741

1 --__--__;-on -

Water
Fig 43-—-26

ﬁlm where t}ne observea the thll‘d blue regmn f rom thtz 0ntsldp of the dmp‘? ({;) Why do '_ -
...the eﬁlﬁrﬂ gradually dﬁappear as the oil thlckness bemmes lﬂ,rger’? -

. _.Ehap‘mr 44- L e

<4 e It can be showr: that, except for § = 0, a circular {}bsmcle pmdu(:es the same
-dlﬁmﬁtmn pattern as a mrcular hole of the same diameter _Furthermore, if there are
many such obstacles Ixcated randomly, then the lnterference effects vamgh leavmg only.
‘the diffraction associxted with a single i}hataf*lﬁ (a) E.axp!am why one sees a ring '
around the moon on s foggy day. (b) Pa%z mhu ihe size of the water dre}plet in the air
if ibe bnght ring aro: md the moon am}mm w Ezwe a dmmﬂer 1 5 tzmes thm m‘ the.-
- moon. -

2. A monochmmm 2 beam i}f m,mﬂel ligh 1S imi&ept on & “coliimating’”’ "a"-:}]ﬁ”ﬂf :
diameter z 3> A. Poi:it P lies in the geometrical shadow region on a distance screen, 88
shown in Fig. 44*-_1&53 Two ﬁbstacles shown in Fig. 44155, are placed in turn over the

'-wllxmatmg hﬂie A i3 an opaque circle mth a hole in 1t and B i3 the ”phﬂtegmphm: i
nagatwe” of 4. Uﬁmg superposition concepts, show that the mtenﬁ;ty at P i8 zden tmal:'

for each of th& twa diffracting objects A ﬂ.!id B (Bai’:fmei 8 prmczple)

3. An astronaut in a satellite claims hﬂ can just barely T&BGIVP two pmnt s{}ur{*es on
“the earth, 100 miles below him. What is their separation, assuming ideal mmlitmns‘?
Take A = 5500 A, and the pupil dmmeter to be 5.0 mm.

4, Under ldeal mnmtlcna estimnate the linear ﬂeparatmn of two ohjet ts on the planet -
Mars which can just be resolved by an observer on earth (a) using the na,ked eve,
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(a)

(b) using the 200-in. Mt. Palomar telescope. Use the following data: distance to
‘Mars = 50 million miles - diameter of pupil = 5.0 mm; wavelength of light = 5500 A.
& A double-slit system (slit separation d, slit width a) is driven by two loudspeakers
as shown in Fig. 44-16. By useofa variable delay line, the phase of one of the speakere

| Variable | eyt |
—1  delay ' ) )
~ line | ‘ |

Audio
source

may' be varied. "Des,{:'ribfe' in _deat.ail what changes c'jecu.r, in the :_izfitﬁ-nsify:pa;'t't_g_.mﬁ'ﬁt._.._i'a_r:g;e_
‘distances as this phase difference is varied from zero to 2. ‘Take both the '_:_in?tgar_f erence
and difiraction effects into account. Sy A

Chapter 45 "

1. A diffraction grating has a large number N of dlits, each of width d. Let I'max

denote the intensity at some principal maximum, and iet I denote the intensity of the

kth adjacent secondary maxima. (a) 1f k < N, show from the phasor diagram that,
approximately, Ie/Imax = 1/(k + $)*«’. (Com pare this with the single-glit formuia.)

(b} For those secondary _m_&xim_ﬁ-_"_i’«*h-ich_'__ lie ﬁfdugmf?ﬁidway': between two adjacent
.-:__:__prinf:ip&l maxima, show that roughly Ip/Imax = /N (o) Consider the centrai
_principal maximum end those adjacent secondary maxima for which k <« N. Show
~ that this part of the diffraction pattern quantitatively resembles that of one single slit

2. With light from a gaseous discharge tube incident normally on a grating with &
distance 1.732 X 16~ %cm between adjacent sht centers, a green line appears with sharp
maxima at measured transmission angies § = + 17.6°, 37.3°, —37.1°, §5.2°, and —65.0°.

{a) Compute the wavelength of the green line that best fits the data.

3. A narrow beam of monochromatic light strikes a grating at normal incidence and

produces sharp maxima at the tollowing angles from the normai: 6°40°, 13°30/, 20°20/,

- 35°40’. No other maxima appear at any angle between 0° and 35°40". The separa-

tion between adjacent slit centers in the grating is 5.04 X 104 em. (@) Compute the

wavelength of the light used. (b) Make the most complete quantitative statement that
~can be inferred from the above data concerning the width of each slit. |



e . SUPPLEMENTARY PROBLEMS
e Txyﬁ.;pect_ml lines h#ﬁc-\sfaveleﬁgth-ﬁ_i and _k..—{- A, respectively, where ﬁ){_« A,
Show that their angular separation A¢ in a grating spectrometer is given approximately
by A6 = AN/A/ (d/m)? — A% where d is the separation of _adj&cent slit centers and m is
. the order at which lines are observed. Notice that the angular separation is greater in
the higher orders. . L o e e G e
e A'diﬂfmqt_it}rirgmtiqgfiﬁ_;_m_a'dé"'Up of slits of width 3000 A with a QDO_O.A"Ee_ps;ration
between centers. The grating is illuminated by monochromatic plane waves, A =

- 6000 A, the angle of incidence being zero. (a) How many difiracted lines are there?

(b) What is the angular width of the spectral lines observed, if the grating has 1000 slits ?
(c) How is the angular width of the spectral lines related to the resolving power of the
o grating? o0 | L e e =
6. A diffraction grating has a resolving power R = 2/AN = Nm. (a) Show that the _
corresponding frequency range, As, that can just be resolved is given by Av = ¢/Nma.
- (b) From Fig. 45-1, show that the “times of flight”’ of the two extreme;rays differ by an
amount AL = Nd sin 6/c. - (c) Show that (a»)(At) = 1, this relation being independent
of the various greling parameters..: .. ..; 0\ e e
7. Consider an infinite two-dimensional square lattice as in Fig. 45-14b. One inter-
_.planar_.spaj'.ci'ng-_is obviously ag itself. (a) Calculate the next five smaller interplangr.é
~ spacings by sketching figures similar to Figure 45-16a. (b) Show that ‘your answers

~ where &, k are both relatively prime integers (no common integer factor other than
 unity). - . - R e
Chapter 46 cae o : L |
1. A beam of light is a mixture of plane polarized light and rgl{domly polarized light.
When it is sent through a Polaroid sheet, it is found that the trgnsmitted intensity can
| be_-var_ie'd,_-'lby',a f_s;t:tof__ of five depending on -thé"ﬂrie'htati{m of the Polaroid. Find the
relative intensities of these two components of the incident beam. e
2. It is desired to rotate the plane of polarization of a beam of plane polarized light
by 90°. (a) How might this be done using only Polaroid sheets? (b) How many sheets
are required in order that the total intensity loss is less than 5%? Assume that each

Polaroid sheet is ideal. i e e
3. A sheet of Polaroid and a quarter-wave plate are glued together in such a way

that, if the combination is placed with face A against a shiny coin, the face of the coin

can be seen when illuminated with light of appropriate wavelength. When the com-
bination'is placed with { ace A away from the coin, the coin cannot be seen. - Which

~component is on face A and what is the relative orientation of the components?
~ 4. A beam of right circularly polarized light is reflected from a mirror. (a) Is the

linear momentum of the light changed? (c) Has the direction of the associated angular

‘momentum oflight chnged? (&) Describe the reaotion “felt” by the mirror.



