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2
Thermodynamics of Dilute 
Polymer Solutions

2.1 POLYMER SOLUTIONS AND THERMODYNAMICS

For a given polymer, there are solvents that dissolve the polymer well and solvents
that do not dissolve the polymer. The former solvents are called “good solvents”
and the latter “nonsolvents”. Table 2.1 lists a typical good solvent and a nonsolvent
for polystyrene, poly(methyl methacrylate), and poly(ethylene glycol). Polymer
Handbook11 has a long list of solvents and nonsolvents for many polymers. The
concentration of the polymer in the good solvent can be as high as 100%, yet the
solution remains clear and uniform. Adding a nonsolvent to the solution causes
the polymer to precipitate, if the nonsolvent mixes with the good solvent. A solvent
with an intermediate quality dissolves the polymer to some extent.

Like low-molecular-weight solutes, a polymer dissolves in a solvent when solva-
tion lowers the free energy. A good solvent lowers the free energy substantially. A
nonsolvent increases the free energy.

Amorphous polymers (transparent in the solid state; to be precise, it is not a
solid but rather a supercooled liquid) are usually easy to dissolve in the good sol-
vent. In contrast, crystalline and semicrystalline polymers (opaque in the solid
state) are sometimes not easy to dissolve. Within a crystallite, polymer chains are
folded into a regular, thermodynamically stable arrangement. It is not easy to un-
fold the chain from the self-locked state into a disordered state in solution even if
the latter state is thermodynamically more stable. Heating may help the dissolution
because it facilitates the unfolding. Once dissolved, polymer chains take a random-
coil conformation unless the chain is rigid.
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Thermodynamic properties of the polymer solution depend on how “good” the
solvent is for the polymer as well as on the polymer itself. The interaction between
the solvent and the polymer and the degree of polymerization dictate the properties,
as we will see in the following sections of this chapter. We will examine the mean-
field theory to understand the features of polymer solutions that are distinctly
different from those of the other solutions. We will then examine static light scatter-
ing and size exclusion chromatography. These techniques belong to the most often
used experimental methods to study dilute polymer solutions and to characterize
the polymer in a state isolated from other polymer molecules. Our attention will be
directed to understanding the measurement principles.

As we have learned in Section 1.8, there are a few concentration regimes in the
polymer solution. Chapter 2 will primarily focus on the thermodynamics of dilute
solutions, that is, below the overlap concentration, although we will also look at
how the thermodynamics of the solution deviates from that of the ideal solution
with an increasing concentration. Properties characteristic of nondilute solutions
will be examined in detail in Chapter 4.

2.2 FLORY–HUGGINS MEAN-FIELD THEORY

2.2.1 Model

2.2.1.1 Lattice Chain Model Dissolution of a polymer into a solvent lowers the
free energy of the polymer–solvent system when the enthalpy decreases by dissolu-
tion or, if it does not, when the product of the temperature and the entropy of mix-
ing is greater than the enthalpy of mixing. Miscibility is much lower in polymer–
solvent systems because adding solvent molecules to the polymer does not increase
the entropy as much as it does to the low-molecular-weight solutes. Solvents that
dissolve a given polymer are often limited to those that preferentially surround the
polymer chain. We will learn in this section how small the entropy gain is in
the polymer–solvent mixture. We will also learn what phenomena characteristic
of polymer solutions are expected. 

Miscibility of the polymer with a given solvent is well explained in the mean-
field theory.3 The theory is an extension of the lattice fluid theory originally devel-
oped to explain the miscibility of two low-molecular-weight liquids. Flory
pioneered the application of the mean-field lattice fluid theory to polymer solutions.
The simplest version of this lattice chain theory is generally referred to as 
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TABLE 2.1 Good Solvents and Nonsolvents for Some Polymers

Polymer Crystallinity Good Solvent Nonsolvent

Polystyrene Amorphous Toluene Methanol
Poly(methyl methacrylate) Amorphous Tetrahydrofuran Methanol
Poly(ethylene glycol) Crystalline Water (cold) Ether
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Flory–Huggins mean-field theory. A similar mean-field theory successfully de-
scribes thermodynamics of polymer blends and, with some modifications, diblock
copolymers and their blends with homopolymers. 

The mean-field theory for the polymer solution compares the free energy of the
polymer–solvent system before mixing and the free energy after mixing. We con-
sider a simple situation: the polymer is a monodisperse homopolymer and is in an
amorphous state or in a liquid state (melt) before mixing.

The Flory–Huggins theory uses the lattice model to arrange the polymer chains
and solvents. We have looked at the lattice chain model in Section 1.4 for an
excluded-volume chain. Figure 2.1 shows a two-dimensional version of the lattice
model. The system consists of nsite sites. Each site can be occupied by either a
monomer of the polymer or a solvent molecule (the monomer and the solvent mole-
cule occupies the same volume). Double occupancy and vacancy are not allowed. A
linear polymer chain occupies N sites on a string of N–1 bonds. There is no prefer-
ence in the direction the next bond takes when a polymer chain is laid onto the lat-
tice sites (flexible). Polymer chains consisting of N monomers are laid onto empty
sites one by one until there are a total nP chains. Then, the unoccupied sites
are filled with solvent molecules. The volume fraction � of the polymer is related
to nP by

(2.1)

and the number of the solvent molecules nS is given by

(2.2)

See Table 2.2 for summary.

nS � nsite(1 � �)

nP � nsite� � N

Figure 2.1. Lattice model for polymer solution. Gray sites are occupied by polymer chains,
and white sites are occupied by solvent molecules.
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Before mixing, the polymer occupies the volume of nPNvsite and the solvent oc-
cupies the volume of nSvsite, where vsite is the volume per site. The total volume
nsitevsite does not change upon mixing (incompressible). Thus, the enthalpy of mix-
ing �Hmix in the constant-pressure process is equal to the change in the internal en-
ergy, �Umix, and the Gibbs free energy change �Gmix is equal to the Helmholtz free
energy change �Amix.

2.2.1.2 Entropy of Mixing Flory counted the number of possible arrangements
of nP chains on nsite sites and compared it with the number of arrangements on nPN
sites before mixing, that is, in the melt. Thus, he obtained the entropy of mixing
�Smix per site as

(2.3)

This expression is similar to the entropy of mixing for two gaseous substances. The
difference is that the volume fraction appears in the argument of logarithm, in place
of the mole fraction. Note that the first term is divided by the chain length. The di-
vision by a large N makes �Smix small, especially at low concentrations (� « 1; the
second term is near zero) compared with �Smix for N � 1 (mixture of two solvents).
The division also makes �Smix asymmetric with respect to � � 1�2. As shown in
Figure 2.2, longer chains decrease �Smix at low � and shift the maximum to the
right. At N � 100, the plot is already close to the one for N � � in which the en-
tropy of mixing is determined by solvent molecules only.

We can show that �Smix given by Eq. 2.3 is greater than the entropy of mixing
for an ideal solution of nP solute molecules and nS solvent molecules (Problem 2.1).
The difference is due to a greater number of conformations a polymer chain can
take when the requirement that all the sites be occupied by the monomers is lifted. 

2.2.1.3 � Parameter The entropy of mixing is small for polymer–solvent
systems, especially at low concentrations. Therefore, the change in the interactions
upon mixing (� enthalpy of mixing) governs the miscibility. The interactions we
are considering here are short-ranged ones only, typically van der Walls interactions
(also known as dispersions), hydrogen-bonding, and dipole–dipole interactions. 

The lattice fluid model considers interactions between nearest neighbors only.
The interactions reside in the contacts. We denote by �SS, �PP, and �PS the interac-
tions for a solvent– solvent (S–S) contact, a polymer–polymer (P–P) contact, and a
polymer–solvent (P–S) contact, respectively. Mixing the solvent and polymer
changes the overall interaction energy through rearrangement of contacts. 
Figure 2.3 illustrates the change in the two-dimensional rendering of the lattice.

��Smix  
�(kB  

nsite) �
�

N
 ln� 	 (1 � �) ln (1 � �)  Flory –Huggins
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TABLE 2.2 Lattice Chain Model

Volume Fraction Number of Molecules

Polymer � nP � nsite��N
Solvent 1 � � nS � nsite(1 � �)
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Before mixing, there are four P–P contacts and four S–S contacts between a total of
eight sites. Mixing replaces two P–P contacts and two S–S contacts with four P–S
contacts. The interaction energy on these eight bonds changes from 4�SS 	 4�PP to
4�PS 	 2�SS 	 2�PP. The difference is 4�PS � 2(�SS 	 �PP). Per newly created P–S
contact, the change is �PS � (�SS 	 �PP)�2. The � (chi) parameter, also called
Flory’s � parameter or Flory–Huggins � parameter, is defined as the product of
the lattice coordinate Z and the energy change reduced by kBT:

(2.4)

A positive � denotes that the polymer–solvent contacts are less favored com-
pared with the polymer–polymer and solvent–solvent contacts (see Fig. 2.4). A
negative � means that polymer–solvent contacts are preferred, promoting solvation
of the polymer. In general, � decreases its magnitude with an increasing tempera-
ture because of kBT in the denominator, but the pair interactions also depend on the
temperature in a manner characteristic of each polymer–solvent system. In a
hydrogen bonding pair, for instance, � usually changes from negative to positive
with increasing temperature.

� � Z [�PS � (�PP 	 �SS) � 2] � kBT
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Figure 2.2. Entropy of mixing per site, �Smix�(kBnsite), plotted as a function of polymer
volume fraction �. The number adjacent to each curve denotes N.
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Figure 2.3. Change in the contacts between nearest neighbors when a polymer chain mixes
with solvent molecules.



There are nsite sites, each with Z bonds. The product Znsite is twice as large as the
total number of bonds in the mixture because Znsite counts each bond twice. Thus,
Z�2 is the number of bonds per site. In the two-dimensional square lattice, the num-
ber is 2. In the three-dimensional cubic lattice, it is 3.

2.2.1.4 Interaction Change Upon Mixing For a site occupied by a monomer, two
of its Z neighbors are always adjacent monomers on the same chain, except for the
chain ends. Other monomers on the same chain are also likely to occupy some of the
other neighbors. The mean-field theory neglects this fact and calculates the change
in the interaction, �Umix, by mixing NnP � nsite� unconnected monomers and
nS � nsite(1 � �) solvent molecules at random. The probability for a given bond to be
a P–P contact is �2, the probability for the S–S contact is (1 � �)2, and the probabil-
ity for the P–S contact is 2�(1 � �). Thus, the change �Umix in the internal energy is

(2.5)

The change per site is

(2.6)

As shown in Figure 2.5, �Umix maximizes at � � 1�2. The sign of �Umix is the
same as that of �.

�Umix depends on the interaction through �. A system with the same � has the
same �Umix. For instance, a mixture with �PP � �1 and �PS � �SS � 0 is thermo-
dynamically equivalent to a mixture with �PP � �SS � 0 and �PS � ��1�2.

Another way to arrive at Eq. 2.5 in the mean-field approximation is to tally all
the contacts before and after the mixing. Table 2.3 lists the probability for a bond in
the polymer–solvent system to be a P–P, P–S, or S–S contact before and after the
mixing. The average contact energy is ��PP 	 (1 � �)�SS before the mixing. After
the mixing, it changes to �2�PP 	 2�(1 � �)�PS 	 (1 � �)2�SS. The difference is
�(1 � �)(2�PS � �PP � �SS). For a total Znsite�2 bonds, we obtain Eq. 2.5.

�Umix  
� (nsite 

kBT) � �� (1 � �)  Flory –Huggins

�Umix �
Z nsite

2
 [�PS � (�PP 	 �SS) � 2]
2� (1 � �)
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P-S contacts
are preferred.

P-P & S-S
contacts are
preferred.

2 2

χ < 0 χ0 <

Figure 2.4. Negative � promotes mixing of polymer with the solvent, whereas positive �
prefers polymer–polymer and solvent-solvent contacts to polymer–solvent contacts.
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A solution with � � 0 is called an athermal solution. There is no difference be-
tween the P–S contact energy and the average energy for the P–P and S–S contacts.
In the athermal solution, �Umix � �Hmix � 0 regardless of �. We can regard that
the polymer chain is dissolved in a sea of monomer molecules. Note however that,
in an actual polymer–solvent system, the monomer before polymerization is chemi-
cally different from the repeating unit in the polymer. For instance, an oxyethylene
repeating unit (–CH2 –CH2 –O– ) in poly(ethylene glycol) is different from ethyl-
ene oxide or ethylene glycol.

2.2.2 Free Energy, Chemical Potentials, and Osmotic Pressure

2.2.2.1 General Formulas From Eqs. 2.3 and 2.6, the Helmholtz free energy of
mixing, �Amix � �Umix � T�Smix, per site is given as

(2.7)

For a total nsite sites,

(2.8)

or

(2.9)�Amix  
� (

 
kBT ) � nP ln� 	 nS ln(1 � �) 	 � nS�

�Amix  
� (

 
kBT ) � nP ln� 	 nS ln(1 � �) 	 � NnP 

(1 � �)

� Amix

nsitekBT
�

�

N
 ln � 	 (1 � �) ln (1 � �) 	 � � (1 � �) Flory–Huggins

Figure 2.5. Change in the interaction by mixing, �Umix�(kBTnsite), plotted as a function of
polymer volume fraction �. The plot is shown for a positive �.

TABLE 2.3 Probability of Nearest-Neighbor Contacts

Probability Probability
Contact Energy Before Mixing After Mixing

P–P �PP � � 2

P–S �PS 0 2� (1 � �)
S–S �SS 1 � � (1 � �)2
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The following identities are useful:.

(2.10)

(2.11)

The chemical potential difference ��P of the polymer chain between the solution
and the polymer melt is calculated from Eqs. 2.9 and 2.10 as

(2.12)

where �Gmix � �Amix was used. Likewise, the chemical potential difference ��S of
the solvent molecule between the solution and the pure solvent is calculated from
Eqs. 2.8 and 2.11 as 

(2.13)

Then, with Eq. 2.A.4 (v* = vsite in the lattice chain model), the osmotic pressure �
is given as

(2.14)
�vsite

kBT
�

�V

nsitekBT
�  

�

N
� ln(1 � �) � � � ��2  Flory–Huggins
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Figure 2.6. Chemical potential ��P of the polymer chain plotted as a function of ln� for the
ideal solution (dashed line) and for nonideal solutions of � � 1�2, � � 1�2, and � � 1�2.
An increase in N inflates the deviation of the solid lines from the dashed line.
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where V = vsite nsite is the volume of the solution. Membrane osmometry and vapor
pressure osmometry measure the osmotic pressure (Appendix 2.A).

2.2.2.2 Chemical Potential of a Polymer Chain in Solution When ,
Eq. 2.12 is rearranged to

(2.15)

The first term is the chemical potential of the ideal solution. N(� � 1) is just a con-
stant and therefore irrelevant to the further discussion. N[(1 � 2�)� 	 ��2] repre-
sents the nonideal part. Figure 2.6 illustrates how ��P changes with �. At low
concentrations, ��P�kBT � ln �, and the solution is nearly ideal. As � increases,
the nonideal term increases its magnitude. The shape of the plot depends primarily
on whether � � 1�2. When � � 1�2 on the one hand, the nonideal terms are posi-
tive and the plot deviates upward compared with the ideal solution. When � � 1�2
on the other hand, the leading term in the nonideal part is negative and therefore the
plot deviates downward. At higher concentrations, the positive second-order term
lets the plot eventually cross the line for the ideal solution. The nonideality
minimizes at � � 1�2.

The deviation from the ideal solution is magnified by N. A small difference of �
from 1�2 shows up as a large nonideality when N is large. Thus the polymer solu-
tions, especially those of high-molecular-weight polymers, can be easily nonideal.
When � � 1�2, in particular, N(1 � 2�) can be easily as large as to cause a dip in
the plot of ��P.

Equations 2.7, 2.14, and 2.15 serve as a starting point for further discussion of
thermodynamics of the polymer solution in the lattice fluid model. Another ap-
proach to the thermodynamics based on these equations is given in Appendix 2.B.

The Flory–Huggins theory neglects the chain connectivity, the chain rigidity, and
the shape of the monomer. Modifications to the Flory–Huggins theory are possible
by taking into account these effects.12,13 The chain rigidity can be incorporated by
giving preference to straight bonds over angled ones, for instance.

2.2.3 Dilute Solutions

2.2.3.1 Mean-Field Theory In this subsection, we consider dilute solutions. When
� « 1, ln(1–�) � �� � (1�2)�2 � (1�3)�3 � 
 
 
 . Then, Eq. 2.14 is rewritten to

(2.16)

In the low concentration limit, Eq. 2.16 gives the osmotic pressure �ideal of the ideal
solution:

(2.17)�ideal �
nsite�

NV
 kBT

�V

nsite 
kBT

�
�

N
	 �1

2 � ���2 	 1
3�

3 	 
 
 
     Flory–Huggins, dilute solution

��P�(kBT) � ln � 	 N [� � 1 	 (1 � 2�)� 	 ��2]  Flory–Huggins

N » 1



Thus the ratio of � to �ideal compared at the same concentration is

(2.18)

The ratio is often called the (osmotic) compressibility.
Figure 2.7 shows ���ideal as a function of �. Three curves with � � 0.4, 0.5,

and 0.55 are plotted for chains of N � 100. The upward or downward deviation of
� from �ideal depends on whether � � 1�2. When � � 1�2, the solution is close to
ideal. A small enthalpic penalty (� � 1�2 � 0; P–S contacts are disfavored) of mix-
ing is compensated by the entropy of mixing, which gives rise to the coefficient 1�2
in the linear term of Eq. 2.18. When � � 1�2, the entropy of mixing is not suffi-
cient to offset the increase in the interaction due to unfavorable polymer–solvent
contacts. Then, the polymer–polymer contacts are promoted, effectively lowering
the osmotic pressure. At higher concentrations, the positive (N�3)� 2 drives �
above �ideal. When � � 1�2, in contrast, the entropy dominates, and � � �ideal in
the entire range of � (Problem 2.6). As � decreases and turns negative, the
polymer–solvent contacts are favored also in terms of the interaction. Then, � is
even greater. It is apparent in Eq. 2.18 that the deviation from �ideal is magnified by
N. The nonideality is large in polymer solutions.

2.2.3.2 Virial Expansion To compare the theory with experiments, � needs to
be expressed in terms of mass concentration c, typically in g�L or mg�L. Using the
identity

(2.19)c �
M

NAN
 

�

vsite

�

�ideal
� 1 	 N ��1

2 � ��� 	 1
3�

2 	
 
 
�
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Figure 2.7. Osmotic compressibility (���ideal) plotted as a function of � for the ideal solution
(dashed line) and nonideal solutions with N � 100 and � � 0.4, 0.5, and 0.55 (solid lines).
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where M�(NAN) is the mass of the monomer (not molar mass), ��(NAkBT) is, in
general, expanded in a power series of c:

(2.20)

In this virial expansion, A2 is the (osmotic) second virial coefficient, and A3

is the third virial coefficient. A positive A2 deviates � upward compared with that
of the ideal solution (�ideal�(NAkBT) � c�M). When A2 � 0, the solution is close to
the ideal solution in a wide range of concentrations. Figure 2.8 illustrates how �
deviates from that of the ideal solution, depending on the sign of A2. The meanings
of A2 and A3 will become clearer when we express them in the lattice model by
comparing Eqs. 2.18 and 2.20:

(2.21)

(2.22)

Table 2.4 summarizes the relationship between A2 and �. A2 is a measure of the
nonideality of the solution. A2 � 0 when the entropy of mixing compensates repul-
sive polymer–solvent interactions or attractive polymer–polymer interactions. 

As seen in the expansion of ��(NAkBT) � (c�M)[1 	 A2Mc 	 A3Mc2 	

 
 ],
the magnitude of A2Mc tells how much thermodynamics of the solution deviates
from that of the ideal solution. A solution with a greater A2M will develop a

A3 � 1
3 
(NAvsite)2(N�M)3

A2 � �1
2 � ��NAvsite(N�M)2

�

NAkBT
�

c

M
	 A2c2 	 A3c3 	
 
 
   virial expansion

Figure 2.8. Osmotic pressure � plotted as a function of polymer concentration c for the
ideal solution (dashed line) and nonideal solutions with A2 � 0, �0, and �0 (solid lines).
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	 ��ideal �1/2
0 ��ideal �1/2
� ��ideal �1/2



nonideality at a lower mass concentration. Separately in Section 1.8, we defined the
overlap concentration c*. We expect that c�c* gives another measure of the nonide-
ality. It is then natural to expect

(2.23)

This equality applies to a sufficiently good solvent only in which A2M dominates
over the third term. Because c* � (M�NA)�Rg

3 (Eq. 1.108) and Rg � b(M�Mb)� with
Mb being the molecular weight of the segment, c* � Mb

3��(NAb3M 3��1). With Eq.
2.23, we obtain

(2.24)

The exponent on M is �1�5 or �0.23. We thus find that A2 decreases with M, but
its dependence is weak. This dependence was verified in experiments.14

Likewise the virial expansion of ���ideal in terms of � allows us to find the
overlap volume fraction �* as �* � [N(1�2–�)] �1. This result is, however, wrong.
We know that �* should rather be �N � 4�5 or �N �0.77 for real chains in a good sol-
vent. Here, we see a shortcoming of the mean-field theory.

2.2.4 Coexistence Curve and Stability

2.2.4.1 Replacement Chemical Potential As � exceeds 1�2 and increases fur-
ther, A2 becomes negative and its absolute value increases. The unfavorable poly-
mer–solvent interaction can be sufficiently strong to cause the solution to separate
into two phases. We will examine the phase diagram of the solution in the mean-
field theory for a system of a fixed volume.

In the lattice model, we cannot change nP and nS independently. A polymer
chain, when added to the system, replaces N solvent molecules, thereby holding the
total volume unchanged. It is convenient to introduce a replacement chemical po-
tential �� rep # ��P � N��S. It is the change in the free energy of the solution
when the polymer increases its concentration by removing N solvent molecules and
placing a polymer chain. From Eqs. 2.12 and 2.13, ��rep is expressed as

(2.25)

This ��rep is also calculated directly from �Amix (Eq. 2.7) using

(2.26)

because an increase in nP (increase in �) implies a decrease in nS at constant V.
The plot of ��rep�(kBT) is shown in Figure 2.9 for N � 100. The three lines are

for � � 0.595, 0.605, and 0.615. When the plot has a dip as for � � 0.615, the
solution can be unstable. In the range of � where the tangent to the plot of ��rep has

��rep

kBT
� � 

nP
 
�Amix

kBT �
T,V

�
N

nsite
 



�
 
�Amix

kBT

��rep

kBT
� ln� 	 1 � N � N ln(1 � �) 	 �N(1 � 2�)

A2 �
NAb3M3��2

Mb
3�

 � M3��2

A2 
M �

1

c*

80 THERMODYNAMICS OF DILUTE POLYMER SOLUTIONS



FLORY–HUGGINS MEAN-FIELD THEORY 81

a negative slope, the solution is unstable; As a polymer chain is brought into the sys-
tem, its chemical potential drops, thereby promoting further influx of the polymer.
This situation is not physical, and, therefore, a negative slope in ��rep indicates
instability. In Figure 2.10, the system is stable in the range of a positive slope
(� � �A or �B � � in the figure) and unstable in the other range (�A � � � �B).

2.2.4.2 Critical Point and Spinodal Line The boundaries to the instability, �A

and �B, can be found from ���rep��� � 0. They are the two roots of the quadratic
equation in the lattice model:

(2.27)

The instability condition is given as

(2.28)
1

�
�

N

1 	 �
� 2
N

1

�
�

N

1 	 �
� 2
 N
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Figure 2.9. Replacement chemical potential �� rep�(kBT), plotted as a function of � for 
N � 100 and 
 � 0.595, 0.605, and 0.615. At 
 � 0.595, the plot is an increasing function of
�. At 
 � 
c � 0.605, the plot has a stagnant point at � � �c. At 
 � 0.615, the tangent to
the plot is negative in 0.060 � � � 0.135.
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φ
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Figure 2.10. The solution is unstable between �A and �B, where ��rep decreases on
increasing �. 



The same condition can be obtained from the stability of an open system that al-
lows nP and nS to change independently (Problem 2.10).

We can regard Eq. 2.27 as expressing 
 at the stability– instability boundary as a
function of �. The dependence is indicated by a curve in Figure 2.11. The curve is
asymmetric because N » 1. The unstable region (Inequality 2.28) is indicated by the
shaded area. The curve that separates the stable region from the unstable region min-
imizes to 
c at � � �c. This point is called the critical point. When 
 � 
c, Eq. 2.27
has two roots, �A and �B, given as the intersections of the curve with the horizontal
line at 
, and the plot of ��rep(�) has a dip, as seen in the curve of 
 � 0.615 in Fig-
ure 2.9. When 
 � 
c, there is only one root: � � �c. The horizontal is tangential to
the curve at � � �c. The plot of ��rep(�) has a stagnant point at � � �c indicated
by a circle on the curve of 
 � 0.605 in Figure 2.9 and has a positive slope every-
where else. When 
 � 
c, Eq. 2.27 does not have real roots, and ��rep is an increas-
ing function of � in the entire range, as for the curve of 
 � 0.595 in Figure 2.9. The
solution is stable in the whole range of �. The line that separates the stable region
from the unstable region is called the spinodal line. It is represented by Eq. 2.27.
Table 2.5 summarizes the behavior of ��rep(�) and stability of the solution.

2.2.4.3 Phase Separation When 
 � 
c and �A � � � �B, the instability sepa-
rates the solution spontaneously into two phases with different polymer volume
fractions �1 and �2 (�1 � �2). The latter are determined from the condition that
��P and ��S be the same between the two phases. Both the polymer chain and the
solvent molecule are free to leave one of the phases and enter the other phase
(dynamic equilibrium). Figure 2.12 shows ��rep, ��P, and ��S on a common �
axis. As proved in Problem 2.10, the region of the negative slope in ��P and the re-
gion of the positive slope in ��S (i.e., (���S��nS)nP

� 0) coincide. Because
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cχ

cφ
φAφ Bφ

χ

unstable

stable

Figure 2.11. Plot of 
 at ���rep��� � 0 as a function of �. The curve minimizes to 
c at �c.
When 
 � 
c, the derivative is zero at �A and �B. The solution is unstable in the shaded
region above the curve and stable in the other region.

TABLE 2.5 � parameter and stability


 ��rep(�) Stable Unstable


 � 
c always increasing everywhere —

 � 
c stagnant at � � �c � � �c � � �c


 � 
c having a dip � � �A, �B � � �A � � ��B
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��P(�1) � ��P(� 2) and ��S(�1) � ��S(�2), the two phases have the same ��rep.
At �1 and �2, replacing N solvent molecules with a polymer chain or the other way
around does not change the overall free energy. It can be shown that the average of
��rep(�) for � between �1 and �2 is equal to ��rep(�1) � ��rep(�2) (Problem
2.11). Therefore, the two shaded parts in Figure 2.12 have an equal area. This situa-
tion is the same as the constant-pressure line for the vapor-liquid coexistence in the
isothermal process of a single-component system (Maxwell construction). We can
find �1 and �2 from this equality of the areas. It is, however, easier to find �1 and
�2 from ��P(�1) � ��P(�2) and ��S(�1) � ��S(�2), although solving these two
equations simultaneously requires numerical computation.

When 
 � 
c and � is either between �1 and �A or between �B and �2, the solu-
tion is still stable (���rep��� � 0). The chemical potential of either the polymer
chain or the solvent molecule is, however, higher than the counterpart at �1 and �2:
In �1 � � � �A, ��P(�) � ��P(�1) � ��P(�2), as seen in Figure 2.12. The poly-
mer chain is ready to move into one of the two phases with �1 and �2, if they exist,
to lower its chemical potential. In �B � � � � 2, ��S(�) � ��S(�1) � ��S(� 2).
The solvent molecule is ready to move into one of the two phases. The solution will
separate into two phases with �1 and �2 if the separation lowers the overall free
energy of the system.

Now we examine whether the free energy decreases by the phase separation. For
this purpose, we plot in Figure 2.13 the free energy �Gmix given by Eq. 2.7 with
�Gmix � �Amix as a function of �. We compare �Gmix for the single-phase solution
at � and a two-phase solution with �1 and �2. Equation 2.26 tells that the slope
of the curve is essentially ��rep. Together with the result of Problem 2.11, we find
that the curve has a cotangent line at �1 and �2 (Problem 2.12). The inflexion
points of the curve are at �A and �B where ���rep��� � 0 or �2�Gmix���2 � 0.
Between �1 and �2, the curve is located higher than the cotangent line. 

Figure 2.12. Plot of ��rep, ��P, and ��S  1000, vertically displaced for easy comparison,
when ��rep has a dip. The three curves share �A and �B, which give the local maximum and
local minimum of each curve. The two parts in the shaded area have an equal area. The
chemical potential is equal between �1 and �2 for each of ��rep, ��P, and ��S.

φ1 φ2φΒφΑ
φ

∆   Pµ

∆   repµ

∆   Sµ
× 1000



In the two-phase solution, the volumes V1 and V2 of the two phases are deter-
mined by the distance of � to �1 and �2 (lever rule):

(2.29)

When � � �2, V1 is zero and the whole solution is in phase 2; When � � �1,
V2 � 0. Adding the polymer to a single-phase solution of �1 creates a new phase
with �2. The lever rule requires that the two-phase solution with � in the range of
�1 � � � �2 have �Gmix on the cotangent line in Figure 2.13 (Problem 2.13).
Therefore, the solution in that range, even if it is in the stable region of �, can lower
the total free energy by separating into two phases.

The phase separation in the stable region does not occur spontaneously, however.
Therefore, we say that the solution with �1 � � � �A or �B � � � �2 is
metastable. The separation requires an external perturbation, such as stirring or the
presence of dust particles. Fortunately, these perturbations are usually present in the
solution. Therefore, a solution in the range of �1 � � � �2 separates into two
phases spontaneously or not, as illustrated in Figure 2.14. Many domains in the
two-phase solution coalesce into two macroscopic domains.

2.2.4.4 Phase Diagram Figure 2.15 shows the curve for �1 and �2 and the
curve for �A and �B. The figure is essentially the phase diagram of the solution in

V1

V2
�

�2 	 �

� 	 �1
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Figure 2.13. Free energy of mixing �Gmix, plotted as a function of � when ��rep has a dip.
The difference between �Gmix and the cotangent at �1 and �2 is magnified.

Figure 2.14. Polymer solution with � between �1 and �2 separates into two phases with �1

and �2. The multiple domains coalesce into two macroscopic phases.
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the Flory–Huggins mean–field theory. The two curves share the apex at �c and 
c.
The lower curve for �1 and �2 demarcates the single-phase regime from the two-
phase regime and therefore is called the coexistence curve (or a binodal line). The
upper curve (spinodal line) is for �A and �B. Above the spinodal line, the system is
unstable and spontaneously separates into two phases. Above the coexistence curve,
the phase-separated state is thermodynamically more stable than the single-phase
state is. Solutions in the two regions between the two curves are metastable.

A solution with 
 � 
c is in a single phase in the entire range of concentrations.
When 
 � 
c, the solution has a miscibility gap. Usually we cannot prepare a sin-
gle-phase solution with � between �1 and �2. The phase with �1 is a solution satu-
rated with the polymer (the concentration of polymer cannot be higher), and the
phase with � 2 is a solution saturated with the solvent (the concentration of solvent
cannot be higher). 

Now we look at how 
c and �c change with N. From Eq. 2.27 and �
��� � 0,
we obtain

(2.30)

at

(2.31)

Figure 2.16 shows how 
c approaches 1�2 with an increasing N and how �c

approaches zero. Both of them decrease in N 	1�2.
Solid lines in Figure 2.17a are the spinodal lines for N � 32, 100, 316, and 1,000.

The critical point on each spinodal line is on the curve given by 
c � 1�[2(1 	 �c)2]

�c �
1

1 � N1�2 � N	1�2


c �
(1 � N1�2)2

2N
� 1

2 � N	1�2

Figure 2.15. Spinodal line and the coexistence curve in the mean-field theory. The solution
is unstable in the darkly shaded region, metastable in lightly shaded region, and stable in the
other region.
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(dashed line). As N increases, the spinodal line approaches the ordinate and the hori-
zontal at 
 � 1�2. Figure 2.17b shows corresponding coexistence curves. Both the
spinodal lines and the coexistence curves are skewed toward �c « 1 because N » 1.
For N � 1 (mixture of two small-molecule liquids), �c � 1�2 and 
c � 2. The spin-
odal line and the coexistence curve are symmetric with respect to �c � 1�2.

The theta condition refers to the critical condition in the long-chain limit,
N : �. A solvent that gives the theta condition to a given polymer is called a theta
solvent. In the mean-field theory, a solvent that provides the polymer with 
 � 1�2
is the theta solvent. In general, theta condition is determined from A2 � 0 (see
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Figure 2.16. As N increases, 
c approaches 1�2, and �c decreases to zero.

Figure 2.17. Spinodal lines (a) and coexistence curves (b) for N � 32, 100, 316, and 1,000.
The open circles indicate the critical point for each N. It approaches 
 � 1�2 and � � 0
along the dashed line as N increases.
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Eq. 2.21). When it has a molecular weight dependence, its high molecular weight
limit gives the theta condition. In the mean-field theory, the condition is independ-
ent of the molecular weight.

A solvent with 
 sufficiently smaller than 1�2 (A2 is positive and sufficiently
large), including negative 
, is called a good solvent. A solvent with 
 � 1�2
(A2 � 0) is called a poor solvent. As 
 increases, the solvent becomes unable to
dissolve the polymer. Then, it is called a nonsolvent. Figure 2.18 illustrates
the ranges of these solvents together with the phase diagram. Along the horizontal
line of 
 � 1�2, A2 � 0. Note that, in the theta solvent, polymer chains with a finite
length (all polymers have a finite length) are still dissolved in the solvent in the en-
tire range of concentrations. For a polymer solution to separate into two phases, A2

has to be sufficiently negative, especially when its molecular weight is low.

2.2.5 Polydisperse Polymer

Almost all the polymer is polydisperse. We consider here the osmotic pressure of
the solution of a polydisperse polymer.

Before mixing the polymer with the solvent, the polymer is already a mixture
consisting of ni chains of Ni beads for component i. This mixture is further mixed
with nS solvent molecules. The entropy of mixing of the polydisperse polymer with
nS solvent molecules is obtained as

(2.32)	�Smix  
� (kB 

nsite) � � 

i

�i

Ni

 ln �i � (1 	 �) ln (1 	 �)

Figure 2.18. Good solvent (A2 � 0, 
 � 1�2), theta solvent (A2 � 0, 
 � 1�2), and poor
solvent (A2 � 0, 
 � 1�2).
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where �i � niNi�nsite, � � �i�i (the sum is with respect to i), and nsite � nS �
�i(niNi). The energy of mixing is the same; we can naturally assume that P–P inter-
actions are the same between chains of different lengths. Then, the free energy of
mixing per site is

(2.33)

Following the method we used in Section 2.2.2, the chemical potential of the sol-
vent molecule, ��S, is calculated, from which we obtain the osmotic pressure
(Problem 2.14):

(2.34)

In the dilute solution limit, the solution is ideal:

(2.35)

It is now apparent that the osmotic pressure counts the total number of polymer
chains. Colligative properties such as the osmotic pressure give, in general, a
measure for the number of independently moving species per unit volume of the
solution.

If we force the ideal solution of the polydisperse polymer to have the osmotic
pressure of a solution of a monodisperse polymer consisting of 〈N 〉 beads dissolved
at volume fraction �, then

(2.36)

which leads to

(2.37)

Thus we find that 〈N 〉 is the number average of Ni. The molecular weight estimated
from the measurement of the osmotic pressure and Eq. 2.20 in the dilute solution
limit is therefore the number-average molecular weight.

In Eq. 2.35, the nonideal terms depend on � only. Then polydispersity affects the
ideal solution part, but not the nonideal part, in the Flory–Huggins mean–field theory.

〈N 〉 �

�
i

�i

�
i

�i  
�Ni

�

�
i

Ni 
ni

�
i

ni
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i

�i

Ni

�
�

〈N 〉

�idealV

nsite 
kBT

� �
i

�i

Ni

�V

nsite 
kBT

� � 

i

�i

Ni

	 ln(1 	 �) 	 � 	 
�2 polydisperse

�Amix  
� (nsite 

kBT) � � 

i

�i

Ni

 ln�i � (1 	 �)ln(1 	 �) � 
�(1 	 �)  polydisperse
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2.2.6 PROBLEMS

Problem 2.1: Calculate the entropy of mixing �Smix,id for an ideal solution that
consists of nP � nsite��N solute molecules and nS � nsite(1 	 �) solvent mol-
ecules. Compare it with �Smix given by Eq. 2.3. [Note: the entropy of mixing
for a rigid-chain polymer and a solvent is given approximately by �Smix,id, be-
cause dissolution does not provide the polymer molecule with an additional
freedom in the conformation compared with the state without solvent, except
for the orientational freedom. The latter is negligible compared with the free-
dom a flexible chain would acquire when mixed with solvent molecules.]

Solution 2.1: The entropy of mixing is given as

where xP � (��N)�(1 	 � � ��N) and xS � (1 	 �)�(1 	 � � ��N ) are
the mole fractions of the polymer and solvent, respectively. Then,

With Eq. 2.3,

Let F(x) # x ln(��x) � (1 	 � � x) ln(1 	 � � x), where x # ��N ranges
between 0 (N � �) and � (N � 1). Simple algebra shows that dF�dx �
ln[��(x(1 	 � � x))] is always positive. Then, with F(�) � 0, F(x) � 0 for
all 0 � x � �. Therefore, �Smix,id � �Smix.

Solid lines in the figure below show the plot of �Smix,id for N � 1, 3, 10,
and 100. Dashed lines are �Smix for N � 1, 3, 10, and 100. For N � 1, �Smix,id

� �Smix. For the other values of N, �Smix,id is smaller compared with �Smix.
As N increases, the plot of �Smix,id approaches zero in the entire range of �. In
contrast, �Smix for flexible chains remains finite in the limit of N : �. For
the rodlike molecule with a large N to dissolve (to make �Amix negative),
�Hmix must be negative.

  � (1 	 � � � � N) ln(1 	 � � � � N)

 �Smix,id  
�(kB 

nsite) � �Smix  
� (kB 

nsite) � (��N ) ln N 

	 (1 	 � � ��N) ln(1 	 � � ��N)

 � (� �N) ln� � (1 	 �) ln(1 	 �) 	 (� �N ) ln N

	 (1 	 � � � � N) ln (1 	 � � � � N)

 � (� �N) ln(� �N) � (1 	 �) ln(1 	 �)

� (1 	 �)ln 
1 	 �

1 	 � � � �N

 	�Smix,id  
�(kB 

nsite) �
�

N
 ln 

� �N

1 	 � � � � N

	�Smix,id  
� kB � nP ln xP � nS ln xS � (nsite� �N) ln xP � nsite(1 	 �) ln xS
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Problem 2.2: We used Table 2.3 to calculate �Umix of a homopolymer with a
solvent. Use the same method to show that Eq. 2.6 holds for a binary solution
of an A–B copolymer (its volume fraction is �) and a solvent S in the 
mean-field approximation with the effective 
 parameter given as
xa
as � xb
bs 	 xaxb
ab. Here xa and xb are the mole fractions of monomers A
and B in the copolymer (xa � xb � 1), respectively, 
 js is the 
 parameter for
a binary solution of a homopolymer of j and solvent S, and 
ab is the 
 pa-
rameter for a binary mixture of the two homopolymers.

Solution 2.2:

Probability of Nearest-Neighbor Contacts

Probability Probability
Contact Energy before mixing after mixing

A–A �aa �xa
2 �2xa

2

A–B �ab 2�xax b 2�2xaxb

B–B �bb �xb
2 �2x b

2

A–S �as 0 2�(1 	 �)xa

B–S �bs 0 2�(1 	 �)xb

S–S �ss 1 	 � (1 	 �)2

The change in the average energy per bond is 

	 xa 
xb(2�ab 	 �aa 	 �bb)]

�� (1 	 �)[xa(2�as 	 �aa 	 �ss) � xb(2�bs 	 �bb 	 �ss)

� �as2� (1 	 �)xa � �bs2� (1 	 �)xb � �ss[(1 	 �)2 	 (1 	 �)]

�aa(�2 	 �)xa
2 � �ab(�2 	 �)2xaxb � �bb(�2 	 �)xb

2
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Then,

In terms of 
 parameter,

Comparison with Eq. 2.6 leads to 
 � xa
as � xb
bs 	 xaxb
ab.

Problem 2.3: Verify that Eq. 2.7 with �Amix � �Gmix and Eqs. 2.12 and 2.13
satisfy .

Solution 2.3:

Problem 2.4: The osmotic pressure of the polymer solution can also be obtained
by using the formula (see Appendix 2.B):

Use the identity ���nsite �	(��nsite )���� that applies to changes at a fixed
number of solute molecules to derive Eq. 2.14.

Solution 2.4: Use Eq. 2.7. At a fixed nP,

�
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� nP [ln� 	 (N 	 1)(1 	 �) � 
 N(1 	 �)2]

�Gmix � nP��P � nS��S

�Umix

nsite 
kBT

� � (1 	 �)(xa
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bs 	 xaxb
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 � xb(2�bs 	 �bb 	 �ss) 	 xaxb(2�ab 	 �aa 	 �bb)]

 �Umix �
Z nsite

2
 � (1 	 �)[xa(2�as 	 �aa 	 �ss)



Problem 2.5: Show that . The left-hand side is
the Gibbs free energy change in the process that “vaporizes” the polymer
in the condensed amorphous state into a total volume of V (�Vmix �
V(1 	 �)).

Solution 2.5: From Eqs. 2.7 and 2.14,

In the last equality, Eq. 2.12 was used.

Problem 2.6: Equation 2.18 tells that � � �ideal when 
 � 1�2 in the dilute
solution (� « 1). Use Eq. 2.14 to verify that it is also the case in the whole
range of �.

Solution 2.6: From Eq. 2.14,

Since f(0) � 0 and

in the whole range of � when 
 � 1�2, we find that f(�) � 0 for 0 � � � 1.

Problem 2.7: What is the free energy of mixing that corresponds to the virial ex-
pansion of the osmotic pressure given by Eq. 2.20? Also show that the �Amix

you obtained reproduces Eq. 2.7 with A2 and A3 given by Eqs. 2.21 and 2.22.

d  f

d�
�

1

1 	 �
	 1 	 2
 � �

� [1 	 2
 (1 	 �)]

1 	 �
� 0

(� 	 �ideal)V

nsite 
kBT

� 	ln (1 	 �) 	 � 	 
 �2 # f (�)

 � 
 N(1 	 �)2� �
nP��P

nsite 
kBT

�
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N
 �ln � 	 (N 	 1)(1 	 �)
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N
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 �2�

 
�Amix � �V(1 	 �)
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�
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Solution 2.7: At a constant cV, that is, at a constant nP,

With Eq. 2.20,

Integration with respect to c at constant cV yields

With Eqs. 2.19, 2.21, and 2.22, and neglecting the constant terms,

Equation 2.7 is expanded with respect to � as

The above two equations are identical except for the linear term that becomes
a constant term upon differentiation.

Problem 2.8: Show that and in the lattice
chain model, where vsp is the specific volume of the polymer in solution.

Solution 2.8: From Eq. 2.21,

where NAvsiteN is the molar volume of the polymer chain, and M is the molar
mass of the polymer. The ratio, NAvsiteN�M, is the reciprocal of the density of
the polymer. In the solution, it is the specific volume (vsp ), that is, the
increment in the solution volume when a unit mass of the polymer is added.
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Likewise,

Problem 2.9: Use the Gibbs-Duhem theorem

to find ��P for the virial expansion of � given by Eq. 2.20.

Solution 2.9: The Gibbs-Duhem theorem is rewritten to

From Eq. 2.A.4,

Combining the two equations yields

Here, nSv*�(nPM�NA) is the ratio of the total volume of the solvent to the total
mass of the polymer. Assuming that the volume V of the solution is given by

with vsp being the specific volume of the polymer in solution (see Problem
2.8), we find

where c � (nPM�NA)�V is the mass concentration of the polymer. Thus,

Upon integration,
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Problem 2.10: For a lattice fluid system that allows nP and nS to change inde-
pendently (total volume is not fixed),

gives the boundary of the stable state. Show that this condition is equivalent
to Eq. 2.27. Show also that ���P��nP and ���S��nS share the sign.

Solution 2.10: Because

, etc.

the second part of the condition always holds when the first part holds. From
Eq. 2.12, the first part is calculated as 

Rearrangement gives Eq. 2.27. Likewise,

is equivalent to Eq. 2.27.
Comparison of the above two equations yields

Because ����nP and ����nS have the opposite sign, ���P��nP and
���S��nS have the same sign.

Problem 2.11: Use Gibbs-Duhem equation (in Problem 2.9) to show that

where ��P(�1) � ��P(� 2) and ��S(�1) � ��S(� 2).

Solution 2.11: The Gibbs-Duhem equation 
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leads to

Using integral by parts,

Problem 2.12: Use the result of Problem 2.11 to show that the plot of �Gmix

has a cotangent line at �1 and �2 (see Fig. 2.13).

Solution 2.12: The slope of the line that connects the two points on �Gmix�
(nsitekBT) at �1 and � 2 is

where Eq. 2.26 and the result of Problem 2.11 were used. The last part of the
above equation is the slope of the �Gmix �(nsitekBT) at �1 and �2 according to
Eq. 2.26.

Problem 2.13: Use the lever rule to show that the two-phase solution has its
�Gmix on the cotangent line (see Fig. 2.13).

Solution 2.13: From Eq. 2.29, the total free energy of the two-phase solution is
given as 

which represents a straight line through the two points [�1, �Gmix(�1)] and
[� 2, �Gmix(� 2)] in the figure.

Problem 2.14: Derive Eq. 2.34 from Eq. 2.33.
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Solution 2.14: For a total nsite sites,

Using the identities

the chemical potential of the solvent molecule is calculated as

Then, with Eq. 2.A.4, the osmotic pressure is obtained as

Problem 2.15: Show that the chemical potential of component i of the poly-
disperse polymer in the solution is given as

Solution 2.15: First, we rewrite Eq. 2.33 into

Using the identities
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and

��i is calculated as

Problem 2.16: The osmotic pressure of the lattice polymer solution is, in gen-
eral, given in the virial expansion with respect to �:

Assume that the second virial coefficient B2 is susceptible to the environmen-
tal change but its effect on the higher-order coefficients (B3, B4, . . . ) is weak.
What are the values of B2 and � at the critical condition?

Solution 2.16: From Eq. 2.A.4,

As we have seen in Problem 2.10, the spinodal line is given by

Let . The plot of f(�) depends
on B2. The system is stable if f(�) � 0 for all � � 0. At B2 � B2c, the plot of
f(�) is tangent on the � axis at � � �c. The critical condition is therefore
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given as 

which leads to

,

2.3 PHASE DIAGRAM AND THETA SOLUTIONS

2.3.1 Phase Diagram

2.3.1.1 Upper and Lower Critical Solution Temperatures The quality of the
solvent for a given polymer can be changed either by changing the temperature
or by changing the mixing ratio of a good solvent to a poor solvent. When the
temperature is changed, it is customary to draw a coexistence curve on a tempera-
ture–composition plane.  We use the temperature for the ordinate in place of 
, be-
cause of convenience. Any scale can be used to represent the composition: mass
concentration, volume fraction, molar fraction, mass fraction, and so forth. 

There are different types of phase diagram. Figure 2.19a shows the most com-
monly observed diagram. The parabolic coexistence curve is inverted from the one
on the 
 	 � plane in the figures in Section 2.2 because increasing T decreases 
 in
general. The temperature at the critical condition is called the critical temperature.
The phase diagram has the critical temperature (Tc ) at the highest point on the co-
existence curve. Therefore, the critical temperature is referred to as the upper criti-
cal solution temperature (UCST). The phase diagram shown in Figure 2.19a is
called a UCST-type phase diagram. At high temperatures, the solution is uniform
and therefore transparent. At T � Tc the system has a miscibility gap. When cooled
to temperatures below the coexistence curve, the solution separates into two phases.
Each of the two phases is uniform, but they have different compositions. A poly-
mer–solvent system with a near-constant and positive �� � �PS 	 (�PP � �SS)�2
will yield a UCST. Note 
 � Z���kBT in Eq. 2.4.

An inverted phase diagram shown in Figure 2.19b is observed in some
polymer–solvent systems. Because Tc is at the lowest point on the coexistence
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curve, this Tc is called the lower critical solution temperature (LCST). The phase
diagram shown in Figure 2.19b is called a LCST-type phase diagram. A polymer
soluble in water due to hydrogen bonding usually has an LCST-type phase diagram
because the hydrogen bonding disrupts at higher temperatures. 

It can happen that the coexistence curve is closed and has both UCST and LCST,
as shown in Figure 2.20. The solution is in a single phase exterior to the loop but in
two phases within the loop.

It is common to all three types of the phase diagram that the system is in a single
phase at compositions close to the vertical line at � � 0 or the other vertical line at
� � 1. The majority component can always accommodate a small amount of the
minority component with a help from the entropy of mixing.

2.3.1.2 Experimental Methods The cloud-point method is commonly used to
determine the phase diagram. Let us consider a solution that has a UCST-type
phase diagram. We prepare solutions at different concentrations and bring them into
a single phase by heating. The solutions are then cooled slowly. In Figure 2.21, the
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Figure 2.19. Phase diagram of polymer solution on temperature–composition plane. a:
UCST-type phase diagram. b: LCST-type phase diagram. The critical point is at the apex of
the coexistence curve and is specified by the critical temperature Tc and the critical composi-
tion �c.

Figure 2.20. A phase diagram can show both upper and lower critical solution temperatures.
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polymer–solvent system changes its state along a vertical line. As the temperature
crosses the coexistence curve, the solution becomes turbid, indicating microscopic
heterogeneity. The point is called the cloud point. The turbidity is due to scattering
of light by a difference in the refractive index between the two phases. When left
for a sufficiently long time, the polymer–solvent system separates into two macro-
scopic phases, each of which is uniform and therefore transparent. The lighter
phase is now on top of the heavier phase. In some solutions, crystallization of the
polymer occurs simultaneously as the polymer-rich phase separates. The crystallite
that has grown from a solution may be clear. By connecting the cloud points meas-
ured for solutions of different concentrations, we can obtain the coexistence curve
and construct the phase diagram.

Naked eyes can easily detect the cloudiness. A more sophisticated method will
use a photodetector. A polymer solution in a single phase is prepared in a cuvette.
The intensity of the light transmitted through the solution, or the intensity of light
scattered, typically at 90°, is continuously monitored as the temperature is lowered
across the coexistence curve. The scattering intensity shoots up and the transmis-
sion drops as the solution becomes turbid.

Atactic polystyrene in cyclohexane is the most famous example of polymer solu-
tions that exhibit a UCST-type phase diagram. Figure 2.22 shows the phase dia-
grams for different molecular weights of polystyrene.15 For each molecular weight,
the critical point is at the highest point of the curve. As the molecular weight in-
creases, the critical temperature (Tc) becomes higher and the critical volume frac-
tion �c decreases. The extrapolate of Tc to infinite molecular weight is about
35.4°C. 

2.3.2 Theta Solutions

2.3.2.1 Theta Temperature For a given polymer–solvent system, the light-
scattering experiment at different concentrations gives an estimate of A2 at the
temperature of the measurement, as we will learn in the following section. In a sys-
tem that has a UCST-type phase diagram (Fig. 2.23a), the sign of A2 changes from

Figure 2.21. Cloud point is defined as the temperature at which the solution becomes turbid
as the solution in a single phase is brought into the two-phase regime. Illustration is given for
the UCST-type phase diagram.
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positive to negative as the temperature drops below a certain level. The temperature
at which A2 � 0 is called the theta temperature and expressed by T� or �. The sol-
vent at T� is a theta solvent for the polymer. The theta temperature thus defined is
identical to the extrapolate of Tc to infinite molecular weight of the polymer. The
latter is another definition of T�. In a solution of a polymer in g/mol of a finite
molecular weight with UCST, Tc � T�.

In polymer solutions with LCST, the critical temperature Tc is higher than T�

(Fig. 2.23b). The sign of A2 changes from positive to negative as the temperature
exceeds T�. 

The theta temperature is different for each combination of polymer and solvent.
Table 2.6 lists T� for some polymer solutions.11 Each system has its own theta tem-
perature, although it may not be reached in the liquid phase of the solvent or below
the decomposition temperature of the polymer. 

There is a slight molecular weight dependence of the temperature that renders
A2 � 0 when the molecular weight is not sufficiently high. The dependence is much
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Figure 2.22. Coexistence curves determined from the cloud-point method (circles) for solu-
tions of polystyrene of different molecular weights in cyclohexane. The abscissa is the vol-
ume fraction of polystyrene. The molecular weight of the polymer in g/mol is indicated adja-
cent to each curve. (From Ref. 15.)

TABLE 2.6 Theta Conditions

Polymer Solvent Temperature Type

polystyrene cyclohexane �35°C UCST
polystyrene trans-decahydronaphthalene �21°C UCST
poly(methyl methacrylate) acetonitrile �44°C UCST
poly(N-isopropyl acrylamide) water �30°C LCST
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smaller compared with the dependence of Tc on the molecular weight. Therefore,
the light-scattering experiments do not need to be repeated on polymer fractions of
different molecular weights to find T�. Measurement of A2 on a single fraction of
the polymer should suffice.

Figure 2.24 shows an example of A2 obtained in the light-scattering experiments
at several different temperatures near T� for a solution of polystyrene in cyclo-
hexane.16 Apparently, A2 � 0 at around 35.7°C for the solution. The temperature
agrees with the extrapolate of Tc within experimental errors.

2.3.2.2 Properties of Theta Solutions Solutions in the theta condition have
A2 � 0. When A2 � 0, the second-order term in ���ideal � 1 � A2Mc � A3Mc2

� 			 (Eq. 2.20) is absent. The nonideality of the solution does not become apparent
until the third-order term A3Mc2 becomes sufficiently large. The osmotic pressure is

T

Tc

10
φcφ

b

T

Tc

10
φcφ

a

Tθ

Tθ
A2 < 0

A2 > 0

A2 < 0

A2 > 0

Figure 2.23. Relationship between the theta temperature T� with the critical temperature Tc.
a: UCST-type phase diagram. b: LCST-type phase diagram. The second virial coefficient A2

changes its sign at T � T�.

Figure 2.24. Second virial coefficient A2 for polystyrene in cyclohexane at different temper-
atures near the theta temperature. (From Ref. 16.)
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close to that of the ideal solution in a wide range of concentrations. The near ideal-
ity of the theta solution is not limited to the osmotic pressure.

The chain dimension such as Rg and RF in theta solution increases with the mo-
lecular weight M just as the ideal chains do. Figure 2.25 shows an example ob-
tained for polystyrene in cyclohexane at 35.4°C.2 The data for Rg are plotted as
solid circles. For reference, Rg in the good solvent is plotted as open circles (same
as Fig. 1.37). The polymer chain in the theta solvent is shrunk compared with the
good solvent. The curve fitting (for M � 107 g�mol) gives

(2.38)

close to the predicted Rg 
 M 1�2.
In Section 1.4.2, we derived RF � bN 3�5 for an excluded-volume chain using

Flory’s method. Here, we use a similar method to derive RF � bN 1�2 for theta
chains. The difference in the free energy Ach of the chain is in the second term of
Eq. 1.63. For the theta chains, binary interaction is effectively absent (A2 � 0) and
therefore the leading term in the polymer–polymer interaction is b6R3(N�R3)3 �
b6N 3�R6, which is due to the ternary interactions. Then, Ach is given as

(2.39)

Ach minimizes when �(Ach�kBT )��R �R�RF
� 0, that is, RF � bN 1�2, reproducing the

experimental results. The relationship becomes questionable when N is large, how-
ever. See Problem 2.17.

The nature of the theta solvent can be better understood in the lattice chain
model. We choose the interaction with a solvent to be zero: �PS � �PP � 0. Then
 � �(Z�2)�PP�kBT. The theta condition,  � 1�2, is realized by �PP�kBT � �1�Z.

Ach

kBT
�

R2

Nb2 � b6
 

N3

R6

Rg  
� nm � 0.02675 � (M �(g �mol))0.5040  polystyrene in cyclohexane, 35.4�C
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Figure 2.25. Radius of gyration Rg of polystyrene in cyclohexane at the theta temperature
(35.4°C), plotted as filled circles as a function of molecular weight. Open symbols indicate
Rg of polystyrene in toluene and benzene (good solvents) and are the same as those in Figure
1.37. A slope of 1�2 is indicated in the figure. (From Ref. 2.)
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This negative interaction in the monomer–monomer contact promotes association
between monomers and contracts the polymer chain. The repulsive interaction due
to the excluded volume is compensated by the attractive �PP.

However, the Flory–Huggins theory is an approximate theory based on random
mixing of monomers. The interaction for the theta condition is slightly different in
the computer simulation on the cubic lattice:17

(2.40)

Figure 2.26 compares a plot of the root mean square end-to-end distance RF for
polymer chains on the cubic lattice for the theta chains with a plot for athermal
chains.18 The chain contraction in the theta condition is evident. The data for the
theta solution follow a power law of RF � N1�2 when N » 1.

2.3.3 Coil-Globule Transition

As the solvent quality turns poorer to the polymer from the theta condition, poly-
mer–solvent contacts become more unfavorable, and the chain contracts even more.
Eventually, the random-coil conformation changes to a globular shape to minimize
the polymer–solvent contacts and maximize the contacts between monomers. The
chain dimension should be now proportional to N1�3, as expected for a packed
sphere. When N is sufficiently large, the change from Rg � bN 1�2 to bN1�3 is rather
abrupt; therefore, it is called coil-globule transition. Figure 2.27 summarizes how

�PP 
�kBT � �0.2693 theta condition, cubic lattice simulation
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Figure 2.26. End-to-end distance RF of self-avoiding walks on the cubic lattice, plotted as a
function of the number of bonds, N, of the chain. The solid line and the dashed line represent
the theta chains and athermal chains, respectively. The dash-dotted line has a slope of 1�2.
(From Ref. 18.)



the chain dimension changes with A2. It is not easy to observe the transition in
experiments because, as the intrachain attraction becomes stronger, the interchain
attraction becomes stronger as well, leading to formation of aggregates. Then, the
light-scattering measurements give the size of the aggregate, not a single chain
dimension.

Figure 2.28 is a rare example of a successful observation.19 It shows how Rg of
poly(N-isopropyl acrylamide) in water changes with the solvent quality. The solu-
tion exhibits an LCST-type phase diagram with T� � 30.5°C. At T « T� , the solvent
is good to the polymer and the chains are swollen. As T rises, the solvent quality
becomes poorer and Rg decreases. At T � Tc � 32°C, Rg is nearly independent of
temperature. A slight hysteresis was observed. 

Most protein molecules are globular. Strong interactions due to hydrogen
bonding and S–S linkage force the protein to take a specific structure close to a
globule.
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Figure 2.27. Molecular-weight (M) dependence of the radius of gyration Rg changes as the
solvent quality, and therefore the second virial coefficient A2, change.

Figure 2.28. Contraction and swelling of linear poly(N-isopropyl acrylamide) chains in
water by cooling and heating. The radius of gyration Rg is plotted as a function of tempera-
ture T. (From Ref. 19.)
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2.3.4 Solubility Parameter

The interaction between a polymer and a solvent is often expressed by a solubility
parameter. The solubility parameter �i of substance i is defined as

(2.41)

where �Ei
vap is the molar energy of vaporization and Vi is the molar volume of sub-

stance i. Figure 2.29 shows a partial list of the solubility parameter expressed in
(MPa)1�2 and (cal�cm3)1�2.11 Simple thermodynamics on the binary mixture gives
the  parameter expressed by the solubility parameters:

(2.42)

where subscripts S and P stand for solvent and polymer, respectively.
Equation 2.42 illustrates that the polymer and the solvent mix when their solu-

bility parameters are close and do not when they differ a lot. However, this is not al-
ways the case. For instance, polyethylene and 1,4-dioxane have similar solubility
parameters but do not mix partly because of crystallinity of polyethylene.
Poly(methyl methacrylate) dissolves well in tetrahydrofuran, although the solubility
parameters are greatly different. Furthermore, Eq. 2.42 is always positive. It fails to
describe specific interactions that may make  negative such as the hydrogen bond-
ing. We should regard Eq. 2.42 as one of the possible ways to describe  for some
polymer–solvent systems.

 �
VS

NAkBT
 (� S � � P)2 � 0.34

�i # (� E vap
i � Vi)1�2

Figure 2.29. Solubility parameters of some solvents and polymers, given in (MPa)1�2 and
(cal�cm3)1�2.
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2.3.5 PROBLEMS

Problem 2.17: We apply Flory’s method (Section 1.4) to find how much a
small deviation from the theta condition changes the end-to-end distance. For
this purpose, we express the free energy per chain that has an end-to-end dis-
tance R by

where � � 0 at theta. Treat the last term as a perturbation and evaluate its ef-
fect on RF.

Solution 2.17: At R � RF,

which leads to

Treat the second term as a perturbation:

where R was replaced by the unperturbed dimension, bN 1�2. Even when � is
close to zero, RF may deviate from bN 1�2 as N increases. The deviation
is more serious for high-molecular-weight fractions.

2.4 STATIC LIGHT SCATTERING

2.4.1 Sample Geometry in Light-Scattering Measurements

Light scattering has been widely used to characterize polymer chains in a solution.
We can find the weight-average molecular weight (Mw), the radius of gyration (Rg),
and the second virial coefficient (A2). We can also learn about the shape of the poly-
mer molecule—whether it is spherical, random-coiled, or rodlike. These quantities
are difficult to obtain with other methods. Commercial instruments are available.

Figure 2.30 shows a sample geometry. A cylindrical test tube containing a clear
polymer solution is immersed in a glass vat filled with a fluid that has a refractive
index close to that of the glass. The fluid is called an index-matching liquid and is
thermostatted. A coherent, collimated laser beam enters the index-matching liquid
through the vat and then into the test tube. Nearly all of the incoming photons travel
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straight through the index-matching liquid and the polymer solution, forming a
strong, unscattered (or forward-scattered) beam. The molecules in the beam path
scatter a tiny fraction of the photons in all directions. The intensity of the scattered
beam is detected by a photodetector, typically a photomultiplier, placed horizon-
tally at an angle � (scattering angle) from the forward-scattering direction. To pre-
vent streak scattering at the air-glass interface, the glass vat has a planar cut at each
side of the path of the direct beam.

Figure 2.31 is a top view of the sample geometry. The incident beam has a wave
vector ki. The wave vector is parallel to the propagation direction of the beam and
has a magnitude of 2��(��nsol), where ��nsol is the wavelength of light in the sol-
vent of refractive index nsol, with � being the wavelength of light in vacuum. The
wave vector ks of the scattered beam has nearly the same magnitude as that of ki. In
the static light scattering (often abbreviated as SLS) in which the molecules are
assumed to be motionless, the two magnitudes are exactly equal. In reality, motions
of the molecules make ks different from ki, but the change is so small (typically less
than 0.01 ppm) that we can regard �ki � � �ks �. The change in the wave vector upon
scattering is called the scattering vector. The scattering vector k is defined as

(2.43)

The inset of Figure 2.31 allows the magnitude of �k � � k to be conveniently
calculated as

(2.44)k �
4� nsol

�
 sin 

�

2
  scattering wave vector

k # ks � ki

photodetector

forward
scattered

beam

incident
beam

scattered
beam

θ

index-matching
liquid

polymer
solution

Figure 2.30. Schematic of the geometry around a sample cell in a light-scattering measure-
ment system. A photodetector detects the light scattered by a polymer solution in the beam
path into a direction at angle � from the forward direction. The vat is filled with an index-
matching liquid.



For the forward-scattered beam, k � 0. With an increasing �, k increases. Figure
2.32 shows how k changes with � for water (nsol � 1.331) at 25°C and He-Ne laser
(� � 632.8 nm) as a light source and for toluene (nsol � 1.499) at 25°C and Ar�

laser (� � 488.0 nm; there is another strong beam at 514.5 nm). For the first sys-
tem, k spans from 3.46 � 106 m �1 at � � 15° to 2.56 � 107 m �1 at � � 150°.

Two pinholes or two vertical slits are placed along the path of the scattered beam
to restrict the photons reaching the detector to those scattered by the molecules in a
small part of the solution called the scattering volume. The scattering volume is an
intersection of the laser beam with the solid angle subtended by the two pinholes
(Fig. 2.33).

Polymer molecules, especially those with a high molecular weight, scatter the
light strongly. In the following subsections, we will first learn the scattering by
small particles and then find why it is strong for the polymer molecules. We will
also learn what characteristics of the polymer molecules can be obtained from the
scattering pattern.

2.4.2 Scattering by a Small Particle

Small particles (solvent molecules and monomers constituting the polymer) sus-
pended in vacuum can scatter the light. They are called scatterers. An electromag-
netic wave, also called radiation, enters the isotropic particle to cause polarization
in the direction of the electric field of the incident wave (Fig. 2.34). The polariza-
tion is a displacement of the spatial average of the positively charged nuclei with
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Figure 2.31. Top view of the geometry around the sample cell. The wave vector ki of the in-
cident beam changes to ks when scattered. Two pinholes or two slits specify the scattering
angle. The inset defines the scattering wave vector k.
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respect to the negatively charged electrons. The polarization, oscillating with the
frequency of the radiation, serves as a broadcasting station that emits a weak radia-
tion in all directions. The scattered radiation has the same frequency as that of the
incident radiation. This mechanism of scattering is called Rayleigh scattering.

Figure 2.34 shows the relationship between the vertically polarized incident
beam of intensity I0 and the radiation scattered by the vertically polarized particle.
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Figure 2.32. The magnitude k of the scattering wave vector plotted as a function of the scat-
tering angle � for water at 25°C and � � 632.8 nm and for toluene at 25°C and � � 488.0 nm.

Figure 2.33. Scattering volume is an intersection of the laser beam with the solid angle sub-
tended by the two pinholes.
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At a distance r from the particle and at angle �� from the vertical, the intensity I of
the scattered light is given by

(2.45)

where � is the polarizability of the particle in SI unit and �0 � 8.854 � 10 – 12 F/m
is the electric permittivity of vacuum. Most measurement systems detect the light
scattered horizontally and therefore �� � ��2.

The polarizability � is proportional to the volume of the particle. The light scat-
tered by a single atom or a small molecule is too weak to be detected in the visible
range of light, even if the volume has many of these particles. A strong scattering
by these small particles can occur in the X-ray range, where � is sufficiently small.
To have a strong scattering in the visible range, the volume of the scatterer must be
sufficiently large. Then, it is necessary to take into account the interference between
the beams scattered by different parts of the scatterer. We will see this effect first
for a single polymer chain. The scatterer does not have to be filled like a solid
sphere to cause the strong scattering. A string of monomers can also scatter the
light strongly.

In Eq. 2.45, I�I0 
 ��4. The Rayleigh scattering is a lot stronger for light of a
shorter wavelength. The sky is blue because the scattering is stronger toward the
short-wavelength end of the visible spectrum. Each molecule of the atmosphere is
too small to scatter the visible light effectively. What we see as the blue sky is due
to density fluctuations in the atmosphere.

2.4.3 Scattering by a Polymer Chain

Scattering by a larger molecule is stronger, because beams scattered by different
parts of the molecule can interfere constructively. We consider here how the

I

I0
�

� 
2

 �4
 

�2

�0
2  

sin2��

r2   Rayleigh scattering, vacuum
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Figure 2.34. Vertically polarized beam causes polarization in the particle, which radiates
into different directions. Angle �� is defined as the angle between the electric field of the in-
cident bream and the scattering direction. The particle size is drawn much larger than it is
relative to the wavelength of light.
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interference affects the overall scattering intensity for a single polymer chain. We
model the chain as a sequence of N motionless monomers each of which scatters
the radiation. Figure 2.35a is a two-dimensional rendering of the polymer chain.
The incident light is a plane wave with a wave vector ki and an electric field Ei os-
cillating with an angular frequency � in the direction perpendicular to ki (any direc-
tion in the plane perpendicular to ki). At position r and time t, Ei is given by

(2.46)

where Ei0 is the complex amplitude of the field. The intensity of the light is calcu-
lated as the product of Ei0 and its complex conjugate. The photons on a plane per-
pendicular to ki are assumed to be all in phase (coherent). It means that their elec-
tric fields oscillate without a delay to each other. A laser beam has a large area of
coherence.

These photons enter the monomers to cause polarization on each of them. Be-
cause monomers are located at different positions along the beam path, the Ei

that causes the polarization at a given time is different from monomer to
monomer. Therefore, compared at the same time, the phase of the oscillating po-
larization is different for each monomer. The scattered radiation Esi caused by the
polarization on the ith monomer at ri at time ti and traveling with a wave vector
ks is given by

(2.47)

where Esm is the complex amplitude of the beam scattered by a single monomer and
propagating in the direction of ks. Note that Esi is one of many radiations emanating
from the ith monomer. The same phase of the plane wave that has caused Esi travels
further and causes Esj in the same propagation direction as Esi by polarization of the

Esi � Esm exp [i(ks 	(r � ri) � �  (t � ti))]

Ei � Ei0 exp [i(ki	r � � t)]

Figure 2.35. A polymer chain, on exposure to an incoming plane wave of radiation, scatters
light. (a) A beam path for the incoming light and a beam path for the scattered light are
drawn for two monomers i and j at ri and rj on the chain. The difference in the path length is
lj – li. b: Polarizations at monomers i and j as a function of time t. The phase difference is kilj

in the geometry in a.
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jth monomer at rj at time tj:

(2.48)

Figure 2.35b compares the change of the polarizations with time on monomers i
and j.

The photodetector detects the total amplitude of the radiation scattered by differ-
ent monomers. The total electric field of the scattered light is Es1 � Es2 �· · ·� EsN.
Before adding all of them, we first consider the sum of Esi and Esj:

(2.49)

where �ij is the phase difference between the two beams and given as

(2.50)

Now Esm[1 � exp(i�ij)] is the complex amplitude for Esi � Esj. Depending on �ij ,
1 � exp(i�ij) can vary widely. This phenomenon is called interference. Figure 2.36
shows how the real and imaginary parts of 1 � exp(i�ij) change with �ij.
When �ij � 0, �2�, �4� , . . . , we have 1 � exp(i�ij) � 2, and the amplitude
maximizes (constructive interference). When �ij � ��, �3� , . . . , in contrast,
1 � exp(i�ij) � 0, and the amplitude is zero (destructive interference). The interfer-
ence is in-between at other angles of �ij.

For the chain configuration in Figure 2.35a,

(2.51)

where c is the velocity of light, lj is defined in the figure, and is the unit vector
parallel to ki. Thus,

(2.52)�ij # (ks � ki)	(ri � rj) � k 	(ri � rj)

k̂i

� (tj � ti) � � lj  
�c � k lj � kk̂i	(rj � ri) � �ki	(ri � rj)

�ij # ks 	(ri � rj) � � (ti � tj)

Esi � Esj � Esm[1 � exp (i�ij)] exp [i(ks 	(r � ri) � � (t � ti))]

Esj � Esm exp [i(ks 	(r � rj) � � (t � tj))]
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Figure 2.36. Real and imaginary parts of 1 � exp(i�ij) are shown for � ij as a parameter. When
� ij � 2m� (m � 0, �1, �2, . . . ), 1 � exp(i� ij) � 2, and the interference is constructive.
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The �ij can also be calculated from the difference in the path length between the two
beams reaching the detector. The difference is lj � li as seen in Figure 2.35a. The
corresponding phase difference is �ij � (��c)(lj � li), which is equal to Eq. 2.52.

For 1 through N monomers,

(2.53)

Thus we find that the complex amplitude of the light scattered by the whole chain is
modified by a factor of �N

i�1exp(i�1i). The square of the magnitude of the factor de-
termines how the beams scattered by the N monomers interfere. Thus the intensity
of the light scattered by the whole chain is proportional to

(2.54)

If the monomers are isotropic particles with the same polarizability �, the intensity
I of horizontally scattered light (�� � ��2 in Eq. 2.45) is

(2.55)

At low angles, exp[ik ·(ri – rj)] � 1 and I�I0 is increased by a factor of N 2 com-
pared with a single monomer. The constructive interference between photons scat-
tered by different parts of the polymer chain causes this N 2 dependence. If each
part scatters the light independently, then I�I0 would increase only by a factor of N.

2.4.4 Scattering by Many Polymer Chains

The scattering volume contains many polymer chains. We consider here how these
chains collectively contribute to the total scattering intensity. We forget for now the
presence of solvent molecules as we did in the preceding section and assume that
the polymer chains are suspended in vacuum to scatter the light. To obtain the for-
mula for the scattering intensity by a single polymer chain, we did not invoke con-
nectivity of monomers. The formula, Eq. 2.55, can easily be extended to a system
of nP chains (nP » 1), each consisting of N monomers. We denote by rmi the position
of the ith monomer of the mth chain. Equation 2.54 now reads

(2.56)� �
nP

m�1
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N
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The first term is a contribution from two monomers on the same chain, and the sec-
ond term is a contribution from two monomers on different chains. There are vari-
ous chain configurations occurring simultaneously on different chains. The summa-
tions in Eq. 2.56 can therefore be replaced by statistical averages:

(2.57)

where nP(nP � 1) was approximated by nP
2 in the second term. The average in the

first term is taken with a statistical weight of a configuration for a single chain. The
average in the second term is taken with a weight of configurations for the two
chains. The latter configurations refer to the relative position of the two chains and
the monomer arrangement of each chain.

At low concentrations, polymer chains are sufficiently separated from each
other. Interference by monomers on different chains are cancelled out on the aver-
age; therefore, the second term is negligible compared with the first term. Thus, the
scattering intensity I(k) is given by

(2.58)

where the index “1” was dropped in r1i. The summation factor in Eq. 2.58 divided
by N is called the (single-chain) static structure factor S1(k):

(2.59)

In the absence of constructive interference between different monomers, only terms
with i � j would survive and therefore S1(k) would be equal to 1. The interference
makes S1(k) and I(k) depend on k. With S1(k), Eq. 2.58 becomes to
I(k)�I0 � (� 2��4)(���0)2r �2nP NS1(k). Note that uncorrelated nPN monomers in so-
lution have I(k)�I0 � (� 2��4)(���0)2r �2nPN. Thus we find that S1(k) indicates how
much the interference from different parts of the chain increases I(k).

The static structure factor (also called scattering function) that applies also to
finite concentrations is obtained from Eq. 2.57 as

(2.60)

The second term is due to correlations between different chains. Note that chains 1
and 2 have to be nearby to scatter beams that interfere constructively. At low
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concentrations, the statistical average for different chains is mostly zero, and S(k)
becomes identical to S1(k). The interference between different chains becomes
more significant with an increasing concentration.

2.4.5 Correlation Function and Structure Factor

2.4.5.1 Correlation Function We now find how the structure factor is related to
the local segment density �(r) defined by

(2.61)

The segment density (monomer density) counts the number of monomers per unit
volume locally. Integration of the right-hand side over the entire volume gives nPN,
which is the total number of monomers in volume V, as it should be. Thus
� � 〈�(r)〉 � nPN�V is the global segment density. Mathematically, �(r) itself can
be a continuous distribution, although the definition given here is for a discrete dis-
tribution of the monomers.

The pair distribution function is the statistical average of the product of the
densities at r1 and r2:

(2.62)

where the last equality holds for a macroscopically homogeneous solution (the
system can be microscopically heterogeneous, but after taking statistical average,
the system gains a translational symmetry). The pair distribution function depends
on r1 � r2. Then, 〈� (r)�(0)〉 is called the autocorrelation function (or correlation
function) of the segment density.

When the solution is isotropic in addition, 〈� (r)�(0)〉 � 〈�(r)�(0)〉 is a function
of the distance r � �r � only.

2.4.5.2 Relationship Between the Correlation Function and Structure Factor
The statistical average in the definition of the structure factor S(k) in Eq. 2.60 is
taken with respect to the pair distribution. With Eq. 2.62, Eq. 2.60 is rewritten to

(2.63)
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With the average density � � nPN�V, Eq. 2.63 leads to

(2.64)

Note that �(0)�� is the segment density at r � 0 normalized by the average. We
can therefore interpret 〈�(r)�(0)〉�� as measuring the average number of monomers
per volume at r when there is already a monomer at r � 0.

Equation 2.64 illustrates that the static structure factor, and hence the scatter-
ing pattern obtained in the light-scattering experiments, is the Fourier transform
(see Appendix A2) of the autocorrelation function of the local segment density.
S(k) indicates which wave vector components are present in the correlation
function.

If the local segment density were continuously distributed at a uniform density
�, then 〈�(r)�(0)〉�� � � and S(k) � (2�)3��(k). A uniform medium does not scat-
ter the light at all (or forward scattering only). Another view is that S(k) is essen-
tially the average of exp[ik · (r1 � r2)] weighted with the pair distribution function
〈�(r1)�(r2)〉.

If N � 1 (only nonbonded small particles are present) and correlation between
scatterers is absent, that is, 〈�(r)�(0)〉�� � � (r), then S(k) � 1. The scattering is
uniform at all angles. This pattern is observed in the scattering by a solvent. The
wavelength � of visible light is too long to detect any correlations among small par-
ticles. On the length scale of �, 〈�(r)�(0)〉�� � �(r).

From Eq. A2.7, we find that the inverse-Fourier transform of S(k) gives the cor-
relation function of the segment density:

(2. 65)

In the isotropic solution, the above Fourier transform and inverse-Fourier transform
are

(2.66)

(2.67)

In practice, the relationships between the structure factor and the local monomer
concentration c(r) are more useful. The local concentration is related to �(r) by
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where M is the molecular weight of the polymer chain. The relationships between
S(k) and c(r) are

(2.69)

where c � 〈c〉 � MnP�(NAV ) is the average concentration, and

(2.70)

2.4.5.3 Examples in One Dimension Before leaving this subsection, we look at
the relationship between the density autocorrelation function and the structure fac-
tor for some examples in one-dimensional isotropic systems. Figure 2.37 shows
four pairs of 〈�(x)�(0)〉 and S(k). Isotropy makes the autocorrelation function an
even function of x. 

In panel a, 〈�(x)�(0)〉 is a constant plus a cosine function with a period of a. This
correlation function is observed when �(x) changes sinusoidally. The Fourier trans-
form converts the constant into �(k) and cos(2�x�a) into �(k–2��a). In part b,
〈�(x)�(0)〉 has a harmonic at k � 4��a. The density correlation is slightly distorted
from the cosine function.

Panel c shows 〈�(x)�(0)〉 that consists of more harmonics with a fundamental
wave vector being 1�4 of that shown in panels a and b. 〈�(x)� (0)〉 has a period
equal to the window of x shown, but, within the period, it looks like a decaying

〈c(r)c(0)〉 �
c M

(2�)3NAN
	S(k) exp (�ik	r) dk

S(k) �
NAN

c M
	

V
〈c(r)c(0)〉 exp(ik	r) dr

Figure 2.37. Segment density autocorrelation function 〈�(x)�(0)〉 and structure factor S(k) for
four examples of distribution in one dimension. The autocorrelation functions are cosine �
constant (a), with a harmonic (b), with more harmonics (c), and exponential decay (d).
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function. Panel d is for an exponentially decaying autocorrelation function with a
correlation length  for all x ! 0. Its Fourier transform is a Lorenzian: 1�[1 �
(k )2]. We notice that 〈� (x)� (0)〉 and S(k) in panel c resemble the counterparts in
panel d. In fact, we can construct exp(�x� ) by overlapping many cosine functions
as in panel c. S(k) 
 1�[1 � (k ) 2] tells how to overlap these cosine functions of
different k.

In the following subsections, we will examine the scattering from polymer
chains in three dimensions. Chain connectivity gives rise to a specific pattern in the
correlation and the scattering, depending on the conformation.

2.4.6 Structure Factor of a Polymer Chain

2.4.6.1 Low-Angle Scattering At low scattering angles, that is, when k is small,

(2.71)

Then, Eq. 2.59 is rewritten to

(2.72)

where was used. In this equation,

(2.73)

where , and the x direction is taken to be parallel to k. The isotropy of the
chain configuration [〈(xi – xj)2〉 � 〈(yi – yj) 2〉 � 〈(zi – zj) 2〉] was used in the last
equality. Thus S1(k) is further converted to

(2.74)

where Eq. 1.25 (N » 1) was used. It is usually rewritten to

(2.75)

The last expression compensates the neglect of the higher-order terms in Eq. 2.72 to
some extent.

We did not assume any specific chain conformation or a chain model to derive
Eqs. 2.74 and 2.75. The formulas apply to any chain conformation. When the recip-
rocal of the light-scattering intensity is plotted as a function of k2, the slope in the
small k limit is equal to Rg

2�3, as illustrated in Figure 2.38.

S1(k) �
N

1 � k2Rg
2� 3

 kRg�1, any conformation

S1(k) � N � k2 1

6N �
N

i, j�1
〈(ri � rj)2〉 � 	 	 	 � N(1 � k2Rg

2�3 � 	 	 	)

k̂ � k �k

〈[k 	(ri � rj)]2〉 � k2〈[k̂	(ri � rj)]2〉 � k2〈(xi � xj)2〉 � 1
3 
k2〈(ri � rj)2〉

〈ri � rj〉 � 0

S1(k) � N �
1

2N �
N

i, j�1
〈[k 	(ri � rj)]2〉 � 	 	 	

exp[ik	(ri � rj)] � 1 � ik	(ri � rj) � 1
2[k	(ri � rj)]2 �	 	 	
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2.4.6.2 Scattering by a Gaussian Chain It is possible to calculate S1(k) in the
whole range of k for a Gaussian chain without approximations. A continuous ver-
sion of Eq. 2.59 is needed for the definition of S1(k).

(2.76)

where the statistical average in the integrand is taken with respect to r and r�, the
spatial positions of the segments at distance n and n�, respectively, from the chain
end (Fig. 2.39). Because a partial chain between the two segments is also a Gaussian
chain (see Section 1.3 and Eq. 1.34),

(2.77)�  exp (�1
6 
k2

 �n � n� � b2)

�exp ��
3(r � r�)2

2 �n � n� � b2 �
〈exp[ik�(r � r�)] � �d(r � r�) exp[ik�(r � r�)](2� �n � n� � b2�3)�3�2

S1(k) �
1

N
�N

0
dn�N

0
dn� 〈exp[ik �(r � r�)]〉

1
/S

1(
k

)

0 k2

slope = Rg2/3

Figure 2.38. Reciprocal of the single-chain structure factor S1(k) plotted as a function of the
square of the scattering vector k has a slope equal to Rg

2�3 at low angles.

Figure 2.39. Scattering by two monomers at r� and r at distances n� and n along the chain
from its end interferes.
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r´

n

r

0

N



which is essentially the Fourier-transform of the Gaussian probability density.
Because the probability density is isotropic, its Fourier transform is also isotropic.
The double integral with respect to n and n� leads to

(2.78)

where f D(x) is called a Debye function and defined as

(2.79)

At x » 1, fD(x) � 2x �2. At x « 1, fD(x) � 1–x2�3, in agreement with Eq. 2.74.
Figure 2.40 shows N�S1(k) � N�S1(k) � [ fD(kRg)]�1 as a function of kRg. The slope
is 1�3 at low scattering angles and 1�2 at high angles.

The density autocorrelation function for two segments on the Gaussian chain is
given as

(2.80)

After some calculations (see Appendix 2.C), Eq. 2.80 with r� � 0 simplifies to

(2.81)

where u � (r�2Rg)2 and the error function Erfc(x) is defined by

(2.82)Erfc(x) # �	

x
exp(� t2) d t

1

  〈
(r)
(0)〉 �

N

� 
3�2

 
1

rRg
2  �(1 � 2u)Erfc(u1�2) � u1�2 exp(�u)]

1

  〈
(r)
(r�)〉 �

1

N
�N

0
d n�N

0
d n� (2� �n � n� � b2�3)�3�2 exp��

3(r � r�)2

2 �n � n� � b2 �

fD(x) � 2x�2�1 � x�2�1 � exp(�x2)�	 Debye function, Gaussian

S1(k) �
1

N
�N

0
dn�N

0
dn� exp��1

6 k2 � n � n� �b2� � N fD (kRg)
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Figure 2.40. Reciprocal of the static structure factor S1(k) of a Gaussian chain. N�S1(k) is a
linear function of k2 at both kRg « 1 and kRg » 1 but with different slopes.
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Now we examine 〈
 (r)
 (0)〉�
 in the small r and large r asymptotes. When
x « 1, Erfc(x) � � 1�2�2 � x. Then, at short distances,

(2.83)

This relationship can also be intuitively obtained in the following discussion. When
r � Rg, a partial chain of n segments is contained in the sphere of a radius r �
bn1�2�2. The average segment density within the sphere is

(2.84)

When x » 1, Erfc(x) � exp(�x2)[1�(2x) � 1�(4x3) � 3�(8x5)]. Thus, over long
distances, the correlation is lost exponentially:

(2.85)

Figure 2.41 is a plot of r2〈
 (r)
(0)〉�
. The prefactor r2 is for the surface area of
the sphere of radius r. Note that 4�r 2〈
 (r)
 (0)〉�
dr is the probability of finding
another segment at distance between r and r � dr from a given segment for this
isotropic autocorrelation function. When r « Rg, r 2〈
 (r)
(0)〉�
 is proportional
to r. When r » Rg, r 2〈
 (r)
(0)〉�
 
 r – 2 exp[�(r�2Rg )2]. The probability peaks at 
r�Rg � 0.74. The other segments can be most probably found at a distance of 
r � 0.74 � Rg.

1
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Figure 2.41. Probability distribution for the distance r of other segments from a given seg-
ment in a Gaussian chain. The segment density autocorrelation function 〈
 (r)
 (0)〉�
 multi-
plied by r 2 is plotted as a function of r�Rg. Short-distance and long-distance asymptotes are
indicated.



2.4.6.3 Scattering by a Real Chain At low-scattering angles, S1(k) of a real
chain is essentially the same as that of the Gaussian chain when plotted as a func-
tion of Rg, as we have seen in Section 2.4.6.1. At high angles, however, S1(k) of the
real chain does not follow k �2 dependence. Intuitively, S1(k) at large k can be ob-
tained from the pair distribution function of two segments within a sphere of radius
Rg. For the real chain with r � bn, Eq. 2.84 changes to

(2.86)

The correlation decays as r �4�3 (or r �1.31) with an increasing r at short distances in a
real chain, as opposed to r �1 in the Gaussian chain. Figure 2.42 compares
r2〈
(r)
(0)〉 for the real chain obtained in the computer simulation20 and the
Gaussian chain. What is plotted here is r2〈
(r)
(0)〉, which is proportional to
the probability of finding a segment at r from another segment at r � 0. At r « Rg,
the real chain has a slightly higher value (r0.69 vs. r1). The peak position relative to
Rg is greater for the real chain. The monomers are more spread in the real chain.
However, the difference is small. 

The Fourier transform of Eq. 2.86 by Eq. 2.66 gives

(2.87)

The integrand is valid only for r � Rg, but, at large k (kRg » 1), sinkr is a rapidly
varying function, especially for large r (r � Rg). Therefore, the contribution of
the integral from r � Rg is negligible, and we can use the same integrand from 

S1(k) �
4�

k
 b�1��r1��2 sin k r d r

1

  〈
(r)
(0)〉 �

n

r3 � r1��3b�1�   (r � Rg)

124 THERMODYNAMICS OF DILUTE POLYMER SOLUTIONS

r/Rg

0 1 2 3 4 5 6

r2 〈  
 (r

) 
  (

0)
〉, 

n
or

m
al

iz
ed

ρ
ρ

Gaussian
real chain

~r0.69

Figure 2.42. Comparison of r2〈
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distance, the real chain follows a power law of r0.69, as opposed to r1 for the Gaussian 
chain.
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r � 0 to 	:

(2.88)

See Appendix A3. At high angles, S1(k) 
 k – 1� � k – 5�3.
Figure 2.43 compares S1(k)�N � S1(k)�N obtained in the cubic lattice Monte

Carlo simulations for a real chain and the Debye function.5 At kRg � 1, S1(k)�N of
the real chain follows the Debye function, but, at large kRg, S1(k)�N deviates from
the Debye function (slope �2) and follows 
k �1.69 as predicted.

2.4.6.4 Form Factors The plot of S1(k) as a function of k2 at small k gives the
radius of gyration for any conformation, but, beyond that range, S1(k) depends on
the conformation. For a Gaussian chain, S1(k) follows the Debye function. Equa-
tions 2.59 and 2.76 allow us to calculate S1(k) for other conformations. Let us first
define a form factor P(k) by

(2.89)

It is also called a shape factor or an internal structure factor. For a Gaussian chain, it is

(2.90)PGaussian(k) � fD(kRg)

P(k) #
S1(k)

S(0)
�

1

N
S1(k) form factor

 �
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k
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k1��1  sin 
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0
r1��2 sin k r d r

Figure 2.43. Comparison of S1(k) of a self-avoiding walk on a cubic lattice obtained in com-
puter simulation with a Debye function. When S1(k)�N is plotted as a function of kRg, the
Debye function describes S1(k) of a self-avoiding walk at low angles, but they have different
dependences at high angles. The self-avoiding walk follows the power law of S1 
 k – 1.69 as
predicted by the theory. (From Ref. 5.)
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Let us calculate P(k) for a spherical molecule of radius Rs stuffed uniformly
with monomers that scatter light with the same intensity. Now we use Eq. 2.76 to
directly integrate with respect to r and r� in the sphere:

(2.91)

where the integral is carried out over the volume Vsp � (4��3)Rs
3 of the sphere.

After some calculations (Problem 2.19), we find that

(2.92)

For a rodlike molecule with length L, it can be shown that (Problem 2.20)

(2.93)

Figure 2.44 summarizes P(k) � P(k) for three polymer conformations of a sim-
ple geometry. Figure 2.45 compares PGaussian(k), Psphere(k), and Prod(k) plotted as a
function of kRg. The three factors are identical for kRg « 1 as required. At higher
kRg, the three curves are different.

We now calculate the form factor Pstar(k) for an nA-arm star polymer with a
uniform arm length N1. When calculating the average of exp[ik · (r � r�)], it is
necessary to distinguish two cases for r and r�: (1) being on the same arm and (2)
being on different arms. The former takes place with a probability of 1�nA. Then,

(2.94)

where the subscripts 1 and 2 correspond to the two cases, and 〈〈exp[ik·(r � r�)]〉〉
stands for the average of 〈exp[ik · (r � r�)]〉 with respect to the two monomers over

Pstar(k) �
1

nA
 〈〈exp[ik�(r � r�)]〉〉1 � �1 �

1

nA
�〈〈exp[ik�(r � r�)]〉〉2

Prod(k) � x�1�2x

0

sin z

z
 dz � � sin x

x �
2 with x � kL�2

Psphere(k) � [3x�3(sin x � x cos x)]2 with x � kRs

Psphere(k) �
1

Vsp
2 �

Vsp

dr�
Vsp

dr� exp[ik�(r � r�)] � � 1

Vsp
2 �

Vsp

dr exp(ik�r)�
2
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Figure 2.44. Polymers with a simple geometry and their form factors.



STATIC LIGHT SCATTERING 127

the length of the arm(s). Using, Eq. 2.78, we have

(2.95)

where Rg1
2 � N1b2�6 � Rg

2�(3 � 2�nA) is the mean square radius of gyration of the
arm, with Rg being the radius of gyration of the whole star polymer (see Eq. 1.84).
In the second average,

(2.96)

where r0 is the position of the core of the star polymer, and the average in the last
equation is calculated for a single arm as

(2.97)

Thus,

(2.98)

The difference in Pstar(k) between a 2-arm star (� linear chain) and a 6-arm star
is not as striking as the difference between a Gaussian chain and a rodlike mole-
cule. At low kRg, all the curves overlap (not shown), as required. At kRg1 » 1, the
second term becomes negligible, and the scattering comes mostly from two nearby
monomers on the same arm. The difference in Pstar(k) is, however, clearly seen in
the plot of (kRg)2Pstar(k) as a function of kRg. Figure 2.46 compares the form factor

Pstar(k) �
1

nA
 fD(kRg1) � �1 �

1

nA
��(kRg1)�2[1�exp(�(kRg1)2)]�2

 �
1

N1
�N1

0
d n exp( � 1

6 
k2nb2) � (kRg1)�2[1 � exp(�(kRg1)2)]

〈〈exp[ik�(r � r0)]〉〉 �
1

N1
�N1

0
d n 〈exp[ik�(r � r0)]〉 

� 〈〈exp[ik �(r � r0)]〉〉 〈〈exp[ik�(r0 � r�)]〉〉 � � 〈〈exp[ik�(r � r0)]〉〉 �2
〈〈exp[ik �(r � r�)]〉〉2 � 〈〈exp[ik �(r � r0) � ik�(r0 � r�)]〉〉
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Figure 2.45. Form factor P(k) for a spherical molecule, a rodlike molecule, and a Gaussian
chain, plotted as a function of kRg.
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for star polymers with nA � 2, 3, 4, 5, and 6. For nA � 3, (kRg)2Pstar(k) approaches
the asymptote of 14�9 at high kRg. For nA � 4, there is a peaking at around kRg �
2. The peaking, also observed in a spherical molecule, indicates the compactness of
the polymer molecule. 

2.4.7 Light Scattering of a Polymer Solution

2.4.7.1 Scattering in a Solvent We have assumed so far that polymer chains and
particles are suspended in vacuum. Now we consider the light scattered by a fluid
or, in general, a continuous dielectric medium of scattering volume V. Scattering by
particles suspended in a solvent is obtained from the Rayleigh scattering formula
for particles in vacuum. In a medium with a refractive index n, the wavelength is
��n and the electric permittivity is �0n2. In Eq. 2.45, we change � to ��n, �0 to � �
�0n2, and � to �ex, where �ex is the excess polarizability of the suspended particle
relative to the surrounding medium. The result is

(2.99)

In effect, � is replaced by �ex, but no other changes. The wavelength � refers to the one
in vacuum. The other equations (Eqs. 2.55 and 2.58) are rewritten in the same way.

It is more convenient to extend Eq. 2.99 to include spatial fluctuations in �ex.
Every part of the scattering volume has naturally occurring fluctuations in the den-
sity and, for solutions, also in the concentration, as illustrated in Figure 2.47. The
density and concentration are slightly different from place to place. The density
fluctuations and concentration fluctuations cause fluctuations in �ex through fluc-
tuations ��r in the relative electric permittivity �r � ���0 (also called dielectric

I

I0
�

� 
2

(� �n)4
 

�ex
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(�0n2)2  
sin2��
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� 2
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2  

sin2��

r2
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Figure 2.46. Plot of (kRg)2Pstar(k) of an nA-arm star polymer as a function of kRg. The num-
ber adjacent to each curve indicates nA.
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constant) because the latter is determined by the number of charges (electrons and
protons) in a unit volume. The Clausius-Mossotti equation gives the extra polariz-
ability d�ex due to ��r of a small volume dr at r as d�ex � �0��rdr, when �r is not
too large (which is the case in water and most organic solvents; Problem 2.24).
Note that d�ex can be either positive or negative depending on the sign of ��r. Be-
cause �r � n2 in the visible range of the spectrum, d�ex(r) � 2�0n�n(r)dr. As the
refractive index fluctuation �n is different from place to place in the volume, d�
also depends on r. Similar to the calculation of interference of light scattered by
different parts of a polymer chain in Section 2.4.3, we can calculate contributions
from different parts of the volume. The extension of Eq. 2.55 gives the total scat-
tering intensity I as

(2.100)

where the integrals are calculated over the scattering volume V (Fig. 2.33).

2.4.7.2 Scattering by a Polymer Solution Light-scattering study of a polymer is
usually carried out by first measuring the scattering intensity IS of the pure solvent
at different angles � and then repeating the procedure on polymer solutions to
obtain the scattering intensity I at different angles. The excess scattering (Iex) is de-
fined by Iex � I � IS (Fig. 2.48). Usually IS is flat, if V is constant, by the reason
explained in Section 2.4.5.

In Eq. 2.100, �n(r) has two components: �dn(r) and �cn(r). The former is due
to density fluctuations of the fluid that appears also in IS. The latter is caused by
concentration fluctuations of the polymer and is unique to the solutions. The excess
scattering Iex is due to �cn(r):

(2.101)
Iex
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 �
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Figure 2.47. Spatial variations of the local solvent density and the polymer concentration lead
to fluctuation in the excess polarizability � ex. The plot in b shows � ex along the white line in a.
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where the statistical average is taken with respect to the concentration fluctuations.
We set the reference for n to the refractive index of the solvent. The refractive index
fluctuation �cn(r) is related to the concentration fluctuation �c(r) by

(2.102)

where dn�dc is called the differential refractive index (or specific refractive in-
dex increment). It expresses how much the refractive index of the polymer solution
increases as the concentration c of the polymer increases. Each polymer–solvent
pair has its own value of dn�dc. It also depends on the temperature and the wave-
length. Roughly, dn�dc is approximated by

(2.103)

where npolymer and nsolvent are the refractive indices of the bulk polymer in the amor-
phous state and of the solvent, respectively, and vsp is the specific volume of the
polymer in the solution. If the volumes of the polymer and the solvent are additive,
vsp is the reciprocal of the density of the polymer.

Note that dn�dc can be positive or negative, depending on whether the polymer
has a higher refractive index than the solvent does. As we will see below, the
scattering intensity is proportional to (dn�dc)2. A greater contrast in the refractive
index between the polymer and the solvent gives a stronger scattering. In some
polymer–solvent systems, dn�dc is near zero, making the excess scattering near
zero. Then, the polymer is optically indistinguishable from the solvent. This condi-
tion is called index matching. A solvent isorefractive with the polymer makes the
polymer invisible. 

d n

dc
� (npolymer � nsolvent)vsp

�c  
n(r) �

d n

dc
�c(r)
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2.4.7.3 Concentration Fluctuations With Eq. 2.102, Eq. 2.101 is rewritten to

(2.104)

with �cc(k) being the Fourier transform for the correlation function of the concen-
tration fluctuations:

(2.105)

We consider �cc(k) in the limit of k � 0 and in the low concentration limit separately.
First, at k � 0,

(2.106)

where �ctot is the fluctuation in the overall concentration in the scattering
volume. It is not the local concentration fluctuation �c(r) � c(r) � 〈c〉 with
〈c〉 � Mnp�(NAV ) defined in Eq. 2.68. The scattering volume is not in any con-
tainer, and the solvent and solid molecules are free to leave the volume and enter
the volume from the surroundings. The system is open to exchange of matter. Now
we use the osmotic compressibility requirement for an open system in general:

(2.107)

The relationship can be obtained from the statistical mechanics for the open system
(Problem 2.25). From the virial expansion of � given in Eq. 2.20,

(2.108)

From Eqs. 2.106–2.108, we find

(2.109)

Next, we consider �cc(k) for a small k in the low-concentration limit. Because
〈�c(r1) �c(r2)〉 � 〈c(r1)c(r2)〉 � c2, Eq. 2.70 leads to

(2.110)〈�c(r1)�c(r2)〉 �
c M

(2�)3NAN
�S(k�)  exp[� ik��(r1 � r2)] dk��c2

�cc(0) �  

cV

NA
 � 1

M
� 2A2c �� � �	

�1

��

�c
� NAkBT � 1

M
� 2A2c � � � �	

〈�ctot
2〉 �

c kBT

V
 

�c

��
 osmotic compressibility requirement

�cc(0) � 〈��
V
dr1�c(r1)	

2 〉 � V2〈�ctot
2〉

�cc(k) # �
V
dr1�

V
dr2〈�c(r1)�c(r2)〉 exp[ik �(r1 � r2)]

Iex(k)

I0
�

4�  
2n2

�4r2
 � d n

dc �
2 

�cc (k)



Then, Eq. 2.105 leads to

(2.111)

where Eq. A1.8 was used. The second term is nonzero only at k � 0 (forward scat-
tering). Because Iex(k)�I0 � �cc(k), the negative sign for this term indicates how the
concentration fluctuations decrease the intensity of unscattered light. We neglect
this second term because it is not what is detected by the photodetector in the static
light scattering experiments. We thus find from Eq. 2.75 that, at small k,

(2.112)

Combining Eqs. 2.109 and 2.112, we obtain �cc(k) as

(2.113)

This expression applies to small scattering angles and low concentrations.

2.4.7.4 Light-Scattering Experiments From Eqs. (2.104) and (2.113), we fi-
nally obtain

(2.114)

Here we introduce the Rayleigh ratio R� according to

(2.115)

The Rayleigh ratio eliminates the geometry-dependent factors in Iex(k)�I0 such as
the scattering volume V(�) and the detector-sample distance r and retains the fac-
tors related to the solution only. In the actual measurement system, I0 and V(�) can-
not be measured correctly. Therefore, a pure solvent such as benzene and toluene is
used as a calibration standard. See Refs. 21 and 22 for details. With R�, Eq. 2.114 is
rewritten to

(2.116)

Hc

R�

�
1

M
 �1 � 1

3 
k2Rg

2 � 2A2Mc � � � �� static light scattering, monodisperse

Iex

I0
#

R�V

r2

Iex(k)

I0
�

1

NA
 
4�  

2n2

�4
 � d n

dc �
2 c V

r2  (1 � k2Rg
2� 3)�1� 1

M
� 2A2c � � � �	

�1

�cc(k) �
c V

NA
 (1 � k2 Rg

2�3)�1 � 1

M
� 2A2c � � � �	

�1

�cc(k) �
c MV

NAN
 

N

1 � k2Rg
2� 3

�
c V

NA
 M(1 � k2Rg

2 � 3)�1

�
c MV

NAN
S(k) � (2�)3c2V� (k)

�c2�
V
dr1�

V
dr2 

exp[ik�(r1 � r2)]

�cc(k) �
c M

(2�)3NAN
�S(k�) dk��

V
dr1�

V
dr2 exp[i(k � k�)�(r1 � r2)]
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where

(2.117)

The equations we derived in the above assume that the polymer in solution is
monodisperse. Usually, the polymer is polydisperse. M and Rg that we obtain in the
static light-scattering experiments are then averages of M and Rg. Below we find
what kind of averages they are.

For a monodisperse polymer, Iex�I0 � cM– (1�3)k2cMRg
2 in the low concentra-

tion limit. When the solution contains components of molecular weight Mi and
radius of gyration Rgi at concentration ci (c � �ci), the total excess scattering inten-
sity from all the components is

(2.118)

Because ci�c is the weight fraction of component i, �i (ci�c)Mi � Mw by definition.
For Rg

2, ciMi is proportional to the product of the weight fraction and Mi. Thus, the
average for Rg

2 is the z-average.

(2.119)

There is also an effect of the polydispersity on A2, but the effect is usually weak, as
we have seen in Section 2.2.3. 

2.4.7.5 Zimm Plot Here we learn how Mw, 〈Rg
2〉z, and A2 are evaluated in the

light-scattering experiments conducted on solutions of finite concentrations and at
finite scattering angles. The excess scattering intensity is recorded at different scat-
tering angles. The measurement is repeated for several concentrations of the poly-
mer at the same set of angles for a given polymer solution. The intensity data are
converted into Hc�R� and plotted as a function of sin2(��2) � const. � c. The con-
stant is arbitrary. The plot is called a Zimm plot. Open circles in Figure 2.49 illus-
trate the ideal data. Each dashed line represents a series of measurements at a con-
stant angle. Each solid gray line is for those at a constant concentration. The plot
looks like a lattice deformed by a shear. The data obtained at nonzero angles and
nonzero concentrations are extrapolated to � � 0 and c � 0, represented by two
solid dark lines with a common intercept. The intercept gives Mw

�1. The slope of
the c � 0 line is equal to (1�3)(4�n��)2Rg

2�Mw, where we write Rg
2 for 〈Rg

2〉z here.
The slope of the � � 0 line is equal to 2A2�const. Thus, the Zimm plot gives esti-
mates of Mw, Rg, and A2 with no need of other references. If the constant coefficient
on c is large, the sheared lattice can be inverted with the � � 0 line lying below the
c � 0 line. A negative A2 inverts the plot vertically (Problem 2.32).

An example of the actual data is shown in Figure 2.50. The data were obtained for
polyguanidine in tetrahydrofuran.23 The intercept gives Mw � 6.73 � 105 g�mol.

Hc

R�

�
1

Mw
 �1 � 1

3 
k2〈Rg

2〉z�2A2 
Mw 

c � � � �� static light scattering, polydisperse

Iex  
�I0 � 

i

ci  
Mi �

k2

3 
i

ci 
Mi 

Rgi
2 � c

i

 
ci

c
 Mi �1 �

k2

3
 
ci 

Mi 
Rgi

2

ci 
Mi

	

H #
1

NA

 � 2� n

�2
 
d n

dc �
2
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Figure 2.49. Schematic of the Zimm plot. Results obtained for solutions of different con-
centrations c at different scattering angles � are converted to Hc�R� and plotted as a function
of sin2(��2) � const. � c. The extrapolate to c � 0 has a slope of (1�3)(4�n��)2Rg

2�Mw.
The extrapolate to � � 0 has a slope of 2A2�const. The two extrapolates have a common
intercept of 1�Mw.

Figure 2.50. Example of the Zimm plot. Data were obtained for polyguanidine in tetrahy-
drofuran. (From Ref. 23.)
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The slope of the c � 0 line gives Rg � 99 nm, and the slope of the � � 0 lines gives
A2 � 2.59 � 10 – 3 (mol�cm3)�g2.

When the light-scattering data are available only for one concentration, but the
concentration is sufficiently low, we can regard that the line connecting the meas-
ured data as the c � 0 line in the Zimm plot. The intercept of the line gives Mw and
the slope gives Rg. 

A simpler alternative to estimate A2M is to measure Iex at a sufficiently low angle
(kRg � 1) for solutions of different concentrations and plot Iex�c as a function of c. The
plot is schematically explained in Figure 2.51. The data for low concentrations (c � c*)
will lie on a straight line. The ratio of the slope to the intercept is equal to –2A2M.

2.4.7.6 Measurement of dn�dc To have a good accuracy in the estimates of
Mw, 〈Rg

2〉z, and A2, dn�dc must be evaluated with a high accuracy because the rela-
tive error in dn�dc is doubled in the errors in Mw, 〈Rg

2〉z, and A2. The dn�dc is usu-
ally measured by using a differential refractometer for solutions of the polymer at
different concentrations in the dilute regime. Fitting the plot of �n as a function of
c by a straight line through the origin gives the estimate of dn�dc. The measure-
ment of dn�dc must be done at the same temperature and wavelength as those in the
light-scattering measurements.

Commercial instruments based on two different principles are available. One
uses a vertically divided cell.24 The top view is shown in Figure 2.52a. One of the
chambers contains a reference fluid, typically the pure solvent, and the other cham-
ber contains the sample solution. A laser beam passes the divided cell twice before
reaching a two-part photodetector. The detector is placed so that the beam hits the
two parts equally when the two chambers of the cell have the same refractive index.
A difference in the refractive index in the chambers deflects the beam, resulting in
unequal intensities on the two parts of the detector. Thus the imbalance of the two
intensities gives the refractive index difference �n.

A variant of this scheme is also used. A mirror is on a rotation stage. The mirror
is rotated so that the beam hits the two parts of the detector with the same intensity.
The angle of rotation gives the refractive index difference �n.

Figure 2.51. A plot of Iex�c as a function of c at sufficiently low scattering angles has an
intercept proportional to M and a slope proportional to �2A2M 2. The ratio gives an estimate
of A2M.

Iex/c

intercept ∝ M

slope ∝ −2A
2M 2

c



The other method uses an interferometer.25 In Figure 2.52b, a beam linearly po-
larized at 45° from vertical is split into two beams by a Wollaston prism. One of
the two beams passes a sample cell, and the other beam passes a reference cell.
When there is a difference in the refractive index between the two fluids, one of
the beams is delayed compared with the other, resulting in a phase shift. When the
two beams are coupled by another prism, they form a circularly polarized light. A
quarterwave plate converts it into a linearly polarized beam. With the analyzer (an-
other polarizer) adjusted to be extinct when there is no phase shift, the intensity of
light though the analyzer is proportional to the phase shift. The latter is propor-
tional to �n.

As an alternative, we can use a regular Abbe refractometer that reads the refrac-
tive index of a liquid for a typical light source of a sodium lamp (D line; � � 589.3
nm) at a given temperature. Unlike the differential refractometer, the fluid is ex-
posed to the atmosphere; therefore, this method is not suitable for a solution dis-
solved in a volatile solvent. 

2.4.8 Other Scattering Techniques

2.4.8.1 Small-Angle Neutron Scattering (SANS) Small-angle neutron scattering
(SANS) has become a preferred tool of research for a variety of polymer systems,
including pure and blend bulk polymers, phase-separated systems, miceller suspen-
sions, and solutions, especially concentrated ones. Unlike light scattering, it is
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Figure 2.52. Differential refractive index dn�dc is measured usually in one of two methods:
refraction (a) and interferometer (b).
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available only in a limited number of facilities around the globe. Labeling of poly-
mer by deuterium, that is, straight synthesis of the polymer using deuterated com-
pounds, is often required. SANS is therefore best suited where light-scattering
measurements fail, for instance, for opaque systems such as micellar suspensions in
which multiple light-scattering complicates the scattering pattern.

As in light scattering, SANS provides information on static structures of the sys-
tem, but the length scale is smaller. The range of the scattering vector is typically
from 0.02 to 3 nm�1, overlapping with the high end of the scattering vectors in the
light scattering (see Fig. 2.32). It is customary to use symbol q to denote the scat-
tering vector whose magnitude q is given by

(2.120)

where � is the de Broglie wavelength of neutrons and � is the scattering angle. The
particles that scatter neutrons are nuclei. The scattering intensity by each nucleus is
proportional to a scattering length b, which is different from nucleus to nucleus.
For a proton 1H, b � 0 and there is no change in phase upon scattering. With a deu-
terium D � 2H and most other nuclei that constitute polymers, b � 0 and the phase
shifts by � upon scattering.

We can imagine that each atom has a shield of area 4�b2 to block the incident
neutrons and scatter them in all directions. This area is called a scattering cross
section. The cross section of the entire sample is denoted by �. The coherent part
of the scattering intensity Icoh per unit solid angle d� at q is related to the position
ri and the scattering length bi of the ith nucleus by

(2.121)

where �coh is the coherent component of the scattering cross section. Incoherent
component does not interfere to take part in the structure factor. Equation 2.121 is
similar to the structure factor we obtained in the static light scattering. The contrast
factor dn�dc is now replaced by bi.

Now we apply the general formula to a solution of polymer. We consider that the
polymer consists of hydrogenated chains (regular chains) and deuterated chains,
both having the same distribution in the chain length. The coherent scattering by the
solution of total concentration c is given as

(2.122)

where m0 is the mass of a monomer, aH and aD are the scattering lengths
per monomer for hydrogenated and deuterated polymers, respectively, xH and xD are
their mole fractions in the polymer sample (without solvent), and S1(q) and S(q)
are the single-chain and total structure factors, respectively, as we defined earlier in

d Σcoh(q)

d�
�

MwcNA

m0
2  [(aH � aD)2xH 

xD 
S1(q) � (ap � as)2S(q)]

Icoh(q) �
dΣcoh(q)

d�
� 〈

i, j

bi 
bj  

exp [iq �(ri � rj)] 〉

q �
4�

�
 sin 

�

2



the sections on light scattering. The ap and as are defined as

(2.123)

where asH and asD are the scattering lengths of hydrogenated and deuterated
solvent molecules, respectively, and xsH and xsD are their mole fractions in the sol-
vent mixture (without polymer). Note that Mwc�m0

2 in Eq. 2.122 is the same be-
tween hydrogenated and deuterated chains, as long as the molar concentration is
common.

Extraction of S1(q) from I(q) is facilitated by contrast matching in which ap and
as are brought to be equal by choosing an appropriate isotopic mixture of the sol-
vents for a given isotopic mixture of the polymer samples. Because of the factor
xHxD, the scattering intensity maximizes for a 50:50 mixture of the isotopes. Once
we obtain S1(q), the methods used in the analysis of SLS data can be applied, in-
cluding the Zimm plot.

Example of SANS experiments is shown in Figure 2.53.26 The scattering inten-
sity from a hydrogenated dendrimer (xH � 1, xD � 0) normalized by its volume
fraction � is plotted as a function of the scattering vector. At high q, I(q) levels off
to a constant due to incoherent scattering. Mixtures of deuterated (D) and hydro-
genated (H) solvents with different mixing ratios were used as a solvent. Appar-
ently, the contract matching is reached at around 20% of the hydrogenated solvent
in this example. The concentration was sufficiently low for this compact molecule;
thus S1(q) � S(q). The coherent part of the scattering is close to 1�(1 � q 2Rg

2�3)
dependence.

ap � xHaH � xDaD, as � xsHasH � xsDasD
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Figure 2.53. Scattering intensity I in SANS divided by the polymer volume fraction �, plot-
ted as a function of the scattering vector q. The sample was a hydrogenated dendrimer in a
mixture of deuterated (D) and hydrogenated (H) solvents. The D-to-H mixing ratio is indi-
cated in the legend. (From Ref. 26.)
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2.4.8.2 Small-Angle X-Ray Scattering (SAXS) Small-angle X-ray scattering
(SAXS) is, in principle, the same as wide-angle X-ray diffraction (WAXD), broadly
used in crystallography. In SAXS, the scattering angles are low to allow investiga-
tion of structures over the length much longer than 1 Å. The mechanism of scatter-
ing discussed in Section 2.4.2 applies as it is. Unlike WAXD, the intensity of
scattered X-ray is weak. Therefore, a synchrotron radiation source that provides a
strong monochromatic beam is usually used. The scattering vector is given by the
same formula as the one used for SANS, with � being the wavelength of the X-ray.
Note that the relative electric permittivity is nearly equal to unity in the relevant
range of wavelength (to be precise, it is slightly smaller than 1). The magnitude of
the scattering vector is typically 0.2 to 4 nm – 1, much greater than the range avail-
able in static light scattering. Therefore, SAXS is suitable to study local structures
of polymer molecules. The form factor studied at a high q range gives, for instance,
an estimate for the diameter of a rodlike molecule.

2.4.9 PROBLEMS

Problem 2.18: A copolymer chain consisting of Na beads of monomer a and Nb

beads of monomer b has three single-chain structure factors: Saa(k), Sab(k),
and Sbb(k). They are defined as

where N � Na � Nb is the total number of beads in the chain and �i
l specifies

the monomer type:

By definition, �i
a � �i

b � 1. Assume that the copolymer chain follows the
Gaussian statistics and has a common segment length b. Find Saa(k), Sab(k),
and Sbb(k) for (1) a diblock copolymer and (2) a random copolymer in which
the two monomers are placed without correlation to the neighboring
monomers. Also evaluate each of Saa(k), Sab(k), and Sbb(k) in the small k limit
up to the order of k2.

Solution 2.18 (1):

 Saa(k)�
1

N 
N

i, j�1
〈exp[ik�(ri �rj)]�i

a�j
a〉�

1

N 
Na

i, j�1
〈exp [ik�(ri�rj)]〉�

Na
2

N
 fD 

(kRga) 

 �i
a � 1 for i � 1, . . . ,Na and �i

b � 1 for i � Na � 1, . . . ,Na � Nb

�i
l � �1

0
(the i th bead is l )
(otherwise)

Sll�(k) �
1

N 
N

i, j�1
〈exp[ik�(ri � rj)]�l

l�j
l�〉 (l, l� � a,b)



where Rgl
2 � b2Nl�6 (l � a, b) is the mean square radius of gyration of block l.

In the small k limit,

Solution 2.18 (2): �i
a � 1 with a probability of Na�N for any i. Whether the bead i

is monomer a or b is independent of other factors and 〈�i
a〉 � Na�N. Therefore,

where Rg is the radius of gyration of the whole chain. Likewise,

Sbb(k) �
Nb

2

N
 fD (kRg), Sab(k) �

Na 
Nb

N
 fD(kRg)

�
Na

2

N
 fD(kRg) �  

Na
2

N3 
N

i, j�1
〈exp[ik�(ri � rj)]〉

 Saa(k) �
1

N 
N

i, j�1
〈exp [ik�(ri � rj)]〉 〈�i

a〉〈�j
a〉

 Sab(k) �
Na 

Nb

N
 �1 � 1

2 k2(Rga
2 � Rgb

2)�

 Saa(k) �
Na

2

N
 �1 � 1

3 k2Rga
2�, Sbb(k) �

Nb
2

N
 �1 �

1

3
 k2Rgb

2�,

 �
Na 

Nb

N
 � 1 � exp (�k2Rga

2)

k2Rga
2 � � 1 � exp (�k2Rgb

2)

k2Rgb
2 � 

 �
1

N
 �Na

0
dn exp�1

6 
k2 nb2��Na�Nb

Na

dn� exp��1
6  

k2n�b2�

 �
1

N
 �Na

0
 d n �Na�Nb

Na

dn�exp��1
6 
k2 (n� � n)b2�

 Sab(k) �
1

N 
N

i, j�1
〈exp [ik�(ri � rj)]�i

a�j
b〉 �

1

N 
Na

i�1
  

Na�Nb

 
j�Na�1

〈exp[ik�(ri � rj)]〉

 �
Nb

2

N
 fD 

(kRgb)

Sbb(k) �
1

N 
N

i, j�1
〈exp[ik�(ri � rj)]�i

b�j
b〉 �

1

N 
Na�Nb

i, j�Na�1
〈exp [ik�(ri � rj)]〉
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In the small K limit,

Real random copolymers may have a correlation between �i
l of different i.

Problem 2.19: Calculate the form factor for a spherical molecule.

Solution 2.19: Choose the polar axis along k. Then,

Then,

Problem 2.20: Calculate the form factor for a rodlike molecule.

Solution 2.20: Let � be the angle between k and the molecule.

[k(x � x�) # z, kx � y]

�
2

L2 �L

0
dx �x

0
dx� 

sin k(x � x�)

k(x � x�)

 �
1

L2 �L

0
dx�L

0
dx�

sin k(x � x�)

k(x � x�)

 Prod �
1

2L2  �L

0
dx�L

0
dx� ��

0
sin� d� exp [ik(x � x�)cos� ]

 Psphere(k) � �V�1�
v
dr exp (ik�r)�2 � [3(k RS)�3(sin kRS � kRS 

cos kRS)]2

 � 4�k�3(sin kRS � kRS cos kRS)

�
4�

k
 Im� Rs

ik
 exp (i kRS) 	

1

k2   (exp (i kRS) � 1)�

 �
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k
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0
r  dr exp (ikr) 

� 2��RS

0
r2

 d r  

2 sin kr
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 �
V

dr exp (ik�r) � �RS

0
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 dr��

0
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0
d
  exp (i kr cos�)

 Sab(k) �
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Nb

N
 �1 � 1

3 k2Rg
2�
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N
 �1 � 1
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Problem 2.21: Verify that the form factor of a two-arm star polymer (nA � 2 in
Eq. 2.98) reproduces the form factor of a Gaussian chain.

Solution 2.21: When nA � 2, with x � kRg1,

21/2Rg1 is the radius of gyration of the two-arm star polymer.

Problem 2.22: Show that Eq. 2.98 reduces to Eq. 2.74 when kRg « 1.

Solution 2.22: In Eq. 2.98, when k is small,

where Eq. 1.84 or Eq. 1.85 was used.

Problem 2.23: Compare the form factor of a sphere and that of a star polymer
by plotting (kRg )2Psphere (k) and (kRg)2Pstar (k) as a function of kRg. Consider
nA � 6, 10, and 20 for the number of arms of the star polymer.

Solution 2.23:

 �1 � �1 �
2

3nA
�(kRg1)2 � 1 � 1

3 (kRg)2

 Pstar(k) �
1

nA
 �1 � 1

3 (kRg1
)2� 	  �1 �

1
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��1 � 1

2 (kRg1)2�2

 � 2(21/2x)�2�1�(21/2 x)�2 �1 � exp(�(21/2 x)2)�� � fD(21/2kRg1)

 � x�2 �1 � 1
2  x�2�1 � exp (�2x2)��

 � 1
2 �2x�2�1 � x�2�1 � exp(�x2)�� 	 1

2x
�4[1 � exp(�x2)]2
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2 fD(x) 	 1

2 �x�2[1 � exp(�x2)]�2

� (kL 	 2)�1�kL

0
 
sin z

z
 dz � � sin(kL 	 2)

kL 	 2 �
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 �
2

k2L2  �kL

0
dy �y

0
dz 

sin z
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Problem 2.24: Clausius-Mossotti formula is given as

where v is the volume per molecule. Use this formula to derive d�ex �
�0�rdr.

Solution 2.24: The contribution to � from a small volume dr is given as

When a fluctuation �r in �r causes d� to fluctuate by d�ex,

Comparison of the above two equations leads to

when �r is close to unity.

Problem 2.25: Statistical mechanics for an open system gives the following re-
lationship between the mean square fluctuation in nP, the number of polymer
chains in volume V, and the mean of nP:

Derive Eq. (2.107) using this relationship and the Gibbs-Duhem theorem,
nPd�P 	 nSd�S � 0.

Solution 2.25: From the Gibbs-Duhem theorem,

Because

 ��S � �
Vm

NA

 
��P

�nP
� �

nS

nP
 
��S

�nP

〈nP
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��P
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�r

�r 	 2
 dr �  �0�rdr

d� 	 d�ex � 3�0 
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�r 	 �r 	 2
  dr

d� � 3�0 
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�r 	 2
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�r 	 2
 v �

�

3�0



where Vm is the molar volume of the solvent,

Thus we obtain

where nSVm	NA � V was used.

Problem 2.26: Show that

(another expression for Eq. 2.107).

Solution 2.26: From Eq. 2.105,

Then, with Eqs. (2.106) and (2.107),

Problem 2.27: For a diblock copolymer or a random copolymer consisting of
monomers a and b that have different contrasts to the solvent, the refractive
index fluctuation cn(r) due to concentration fluctuation has two parts:

where (dn �dc)l is the differential refractive index of homopolymer l (l � a, b),
and cl(r) � cl(r) � cl with cl � 〈cl(r)〉 denotes the concentration fluctuation
of monomer l. Following the procedure in Section 2.4.7.4, we find the
excess scattering intensity from the solution of the copolymer in the low
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concentration limit as

where

with �ab(k) � �ba(k). Because 〈cl(r1)cl�(r2)〉 � 〈cl(r1)cl�(r2)〉 � clcl �,

where c � ca 	 cb is the total concentration, M and N refer to the whole
chain, Nl is the number of l monomers in the polymer chain, and Sll�(k) is de-
fined in Problem 2.18. After eliminating the unscattered beam,

Answer the following questions assuming the whole chain follows the
Gaussian statistics.

(1) Show that, for the random copolymer, Eq. 2.114 (in the low concentration
limit) holds with dn/dc replaced by the effective differential refractive index
of the copolymer as a whole, (ca	c)(dn	dc)a 	 (cb	c)(dn	dc)b.

(2) What is the radius of gyration Rg,eff estimated from the linear relationship be-
tween k2 and the reciprocal of the scattering intensity in the small k limit for
the diblock copolymer?

Solution 2.27 (1):
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Solution 2.27 (2): In the small k limit,

with

Problem 2.28: In the preceding question, what happens to the light scattering of
the diblock copolymer solution if the solvent is selected so that (1) (dn/dc)a � 0,
(2) (dn	dc)b � 0, (3) (ca	c)(dn	dc)a 	 (cb	c)(dn	dc)b � 0?

Solution 2.28 (1): Rg,eff � Rgb (a is invisible).

Solution 2.28 (2): Rg,eff � Rga.

Solution 2.28 (3):

Note that Iex (0) � 0. The condition of the zero average differential refractive
index is sometimes called optical theta.

Problem 2.29: What is the scattering from a telechelic
molecule in which two identical small spheres are
attached to the ends of a flexible chain that is isore-
fractive with the solvent? Assume the flexible chain
follows the Gaussian statistics of N segments.

Solution 2.29: Two spheres are at ri and rj, separated by a distance between the
two Gaussian chain ends. The scattering comes from the two spheres only.
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Their structure factor is

Problem 2.30: What is the scattering from a telechelic
molecule in which two identical small spheres are
attached to the end of a rodlike molecule of length L
that is isorefractive with the solvent?

Solution 2.30: Two spheres are at ri and rj separated by L. The scattering comes
from the two spheres only. Let the angle between k and the rod be �.

Problem 2.31: What is the scattering from a spherical mole-
cule of radius RS uniformly coated with a layer of thickness
l? Assume that only the coated layer is visible, i.e., the inte-
rior of the sphere is isorefractive with the solvent, and l « RS.

Solution 2.31: The single-scatterer structure factor is

where N is the number of small molecules that coat the sphere surface.

Problem 2.32: Draw a sketch of the Zimm plot for a solution of a polymer with
the same MW and Rg but with A2 just the opposite in sign to the one shown in
Figure 2.49.

Solution 2.32:
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2.5 SIZE EXCLUSION CHROMATOGRAPHY AND CONFINEMENT

2.5.1 Separation System

Size exclusion chromatography (SEC) has been widely used since its introduction
during the 1960s. It offers a simple yet unbiased method to characterize the molec-
ular weight distribution of a polymer. Although it uses a flow system, the separation
principle and the analysis are based on a static property of the polymer molecules in
solution. We briefly look at the separation system here before learning the principle.

Figure 2.54 illustrates the separation system. A high-pressure liquid pump draws
a solvent called a mobile phase from the reservoir and pumps it into a column or
a series of columns at a constant flow rate. At one time, a small amount of a dilute
solution of polymer dissolved in the same solvent is injected into the stream from a
sample loop by changing the position of the injection valve. The column is packed
with porous materials, typically polymeric beads with many tiny through holes
(pores).

The polymer molecules are partitioned between the small confines of the pore,
called the stationary phase, and the interstitial space between the beads (mobile
phase). Polymer molecules with a dimension smaller than the pore size enter the
pore more easily than larger polymer molecules do. As the injected polymer
solution is transported along the column, low-molecular-weight components are
frequently partitioned to the stationary phase, whereas high-molecular-weight com-
ponents remain mostly in the mobile phase (see Fig. 2.55). Therefore, it takes a
longer time for the low-molecular-weight components to reach the column outlet.
The band of the polymer in the mobile phase is narrow when injected but spreads
according to the molecular weight distribution as the solution moves along the
column.

The liquid that comes off the column is called the eluent. A detector with a flow
cell is placed downstream to measure the concentration (mass	volume) of the poly-
mer in the eluent. A differential refractometer is most commonly used to measure
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Figure 2.54. Schematic of the size exclusion chromatography system.
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the difference in the refractive index between the eluent and the pure solvent
(Section 2.4.7). The difference is proportional to the concentration, with dn	dc
being the proportionality constant. If the polymer has an ultraviolet absorption but
the solvent does not, one can use an ultraviolet detector. The absorbance is propor-
tional to the concentration by Beer’s law.

Figure 2.56 shows the signal intensity of the detector plotted as a function of
retention time (tR), the time measured from the injection of the polymer solution.
The retention volume (VR), the cumulative volume of the fluid out of the column
since the injection, can also be used for the abscissa. The curve is called a retention
curve or a chromatogram. The height of a point on the curve above the baseline is
proportional to the concentration at a given retention time. The signal maximizes at
the peak retention time (tp). The integral of the curve is proportional to the total

Figure 2.55. Transport of polymer molecules in the size exclusion column. High-molecular-
weight (MW) components stay mostly in the mobile phase, whereas low-MW components
are partitioned to the stationary phase more frequently.
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Figure 2.56. Typical SEC chromatogram. The signal intensity proportional to the eluent
concentration is plotted.



amount of the polymer injected. The spread of the polymer band by the column is
translated into a broadened chromatogram. Because high-molecular-weight compo-
nents elute earlier, the time axis can be regarded as a reversed molecular weight
axis. 

SEC has other names. When the mobile phase is an organic solvent, SEC is also
called gel permeation chromatography (GPC). When it is aqueous, SEC is also
called gel filtration chromatography (GFC) or aqueous GPC.

2.5.2 Plate Theory

Plate theory is useful to explain the band broadening during the transport of poly-
mer molecules along the column. In the theory, the whole length of the column is
divided into Npl plates of an equal height. Each plate consists of the mobile phase
and the stationary phase. Figure 2.57 explains what is supposed to occur in the
plates. In each plate, the polymer molecules are partitioned between the two phases.
The mobile phase moves to the next plate in a given time t1 (plate height/linear
velocity of the mobile phase), whereas the stationary phase does not. The moved
mobile phase establishes concentration equilibrium with the stationary phase in
the next plate. Equilibration and transport of the mobile phase are repeated in all of
the plates each time. As a result, a completely excluded polymer (too large to enter
the pore) requires a time of t1Npl to reach the outlet. A lower-molecular-weight
polymer molecule needs a longer time to come out of the column.

When equilibrium is reached in the plate, the polymer concentration is cS in
the stationary phase and cM in the mobile phase. Their ratio is called the partition
coefficient K:

(2.124)K # cS  
	cM
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Figure 2.57. Plate theory in column chromatography.

flow

t1

stationary
phase

mobile
phase

Polymer molecules 
are partitioned 
between the two 
phases.

The mobiple phase 
moves to the next 
plate.

Partitioning occurs 
again in each plate.

plate
height



SIZE EXCLUSION CHROMATOGRAPHY AND CONFINEMENT 151

When the concentration is sufficiently low (cM « c*, overlap concentration), K does
not depend on cM but depends on the ratio of the chain dimension to the pore size. 

The partition ratio k� is defined as the ratio in the number of molecules be-
tween the two phases and given as

(2.125)

where VS and VM are the volumes of the two phases. The polymer molecules are
partitioned with a probability of k�	(1 	 k�) to the stationary phase and with a
probability of 1	(1 	 k�) to the mobile phase. Partitioning in each occurs independ-
ently of the other plates and of the equilibration at other times. If the retention time
of a particular polymer molecule is tR � t1(Npl 	 Nex), then this polymer molecule
has been partitioned Nex times to the stationary phase and Npl times to the mobile
phase before it reaches the outlet. Then,

(2.126)

From Eqs. 2.125 and 2.126, we find that K depends linearly on tR by

(2.127)

as seen in Figure 2.58, where t1Npl is the retention time for a completely excluded
component.

2.5.3 Partitioning of Polymer with a Pore

2.5.3.1 Partition Coefficient Figure 2.59 illustrates equilibrium of polymer
molecules between the pore space (stationary phase) and the surrounding fluid

K �
VM

VS
 � tR

t1Npl
� 1�

k� � Nex  
	 Npl

k� � KVS  
	 VM

tR

K

1

0
t1Npl t1Npl(1+VS/VM)

Figure 2.58. The partition coefficient K has a linear relationship with the retention time 
tR. At tR � t1Npl, K � 0 (total exclusion). K does not exceed 1 in SEC unless there is an at-
tractive interaction between the polymer and the pore surface.



(mobile phase). The concentration equilibrium is reached when the chemical poten-
tial of the polymer molecule becomes equal between the two phases. At low con-
centrations, the solution is ideal. The chemical potential of the polymer molecule
(�M) in the mobile phase of concentration (cM) is given by

(2.128)

where �° is the chemical potential in a reference state of concentration c° in the
ideal solution. When the polymer molecule is brought into the stationary phase, its
entropy changes by S and its enthalpy by H. The entropy change is related to the
decrease in the available space the centroid of the molecule can reach as well as the
decrease in the total number of conformations. Because of these geometrical re-
strictions, S � 0. The enthalpy change is due to interactions of the polymer mole-
cule with the pore surface and can be positive or negative. When the polymer chain
enters the pore, surface–monomer contacts replace some of the monomer–solvent
contacts, resulting in the enthalpy change. The chemical potential in the stationary
phase (�S) of concentration (cS) is then given by

(2.129)

The concentration equilibrium is dictated by �S � �M:

(2.130)

which gives the partition coefficient K � cS	cM:

(2.131)

Because of the specific nature in the three-way interactions between polymer,
surface, and solvent, there is hardly a universal method that allows us to predict H

K � exp � S

kB
�

H

kBT �

kBT ln(cS  	c�) � TS 	 H � kBT ln(cM  	c�)

�S � �� 	 kBT ln(cS  	c�) � TS 	 H

�M � �� 	 kBT ln (cM   
	c�)
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Figure 2.59. Polymer chains are partitioned between the stationary phase (pore space) and
the mobile phase (surrounding fluid).
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for a given combination of the polymer, surface, and solvent. In contrast, S is uni-
versal because it is determined by the geometrical confinement of the polymer mol-
ecule by the pore. In ideal SEC, the stationary phase is designed to provide purely
entropic effects for any combination of polymer and solvent as long as the solvent
is good to the polymer. Then, H � 0 and

(2.132)

Because S � 0, K � 1. With Eq. 2.127, we then find that tR ranges between t1Npl

and t1Npl(1 	 VS	VM).
In a different mode of chromatography, S is rather suppressed and the differ-

ences in H between different polymers are utilized to analyze the chemical com-
position of the polymer. If H � 0, the pore wall repels the polymer. Otherwise, it
adsorbs the polymer.

Recall that a polymer chain is described by a thin thread in the crudest approxi-
mation. This geometrical object interacts with the pore, another geometrical object.
The confinement effect is manifested in the partition coefficient and the change in
the chain conformation. We can expect an interesting relationship between the
chain and the geometry of the pore. However, the geometry in the porous medium
used in SEC is far from simple. The pore is rather highly tortuous. Theories have
been developed for some simple geometries such as a slit, a square tube, and a
cylinder.

2.5.3.2 Confinement of a Gaussian Chain We learn here how a Gaussian chain
changes upon confinement by various geometries such as a slit, a square tube, and a
cylindrical tube. It is possible to obtain a formula for the partition coefficient in
each of the three geometries.

We first recall that the Gaussian transition probability G(r, r�) given by Eq. 1.34
can be factored into three independent components Gx, Gy, and Gz, where Gz is
given by

(2.133)

for example, for chains with radius of gyration Rg. When the Gaussian chain is
brought into a slit of width d extending in x and y directions (Fig. 2.60), Gx and Gy do
not change because each component is independent. Only Gz experiences a change.
Casassa27 calculated Gz for a one-dimensional random walker starting at z� to reach z
after necessary number of steps without touching the slit walls. The result is

(2.134)

Figure 2.61 compares the two distribution functions for the chain end z when the
other end is at z� � d	2. Rg � d	4 was assumed.
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The partition coefficient Kslit is then calculated as the average of Gz(z, z�; N) with
respect to z and z�:

(2.135)

When Rg » d, the first term dominates:

(2.136)

It is now clear that Kslit decreases sharply as Rg increases and becomes comparable
to d.

Because there is no confinement in the x and y directions, Gx and Gy do not
change. The mean square end-to-end distance does not change its x and y compo-
nents. Thus, the chain dimension R|| along the slit wall is given by

(2.137)

Confinement by a square tube extending in the x direction and having a square
cross section of length d changes each of Gy and Gz in the same way as the slit does

R||
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3 Nb2
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z x

y

Figure 2.60. Polymer chain confined to a slit of width d. The chain has a dimension of R||

along the slit walls. Its dimension in z direction is bound to d.

0 dz

Figure 2.61. Density profile of the end of the Gaussian chain when the other end is at 
z � d	2. The density is compared for the confined chain (solid line) in a slit of walls at z � 0
and z � d and the unconfined chain (dashed line). Rg � d	4 was assumed.
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on Gz (Fig. 2.62). Confinement in one direction contributes to decreasing the parti-
tion coefficient by a factor of Kslit. The confinement in the y and z directions results
in the partition coefficient of Kslit

2. The chain dimension along the x direction is un-
changed from that of the unconfined chain:

(2.138)

The three relationships in Eqs. 2.136–2.138 apply to other, non-Gaussian ideal
chains. When the ideal chain is sufficiently long, then Eqs. 2.134 and 2.135 also
apply.

The partition coefficient for a cylindrical pore was obtained similarly.27 Like-
wise, the partition coefficient was calculated for a rodlike molecule in some simple
geometries.28 Figure 2.63 compares the partitioning of a Gaussian chain and a rod-
like molecule in a cylindrical pore of radius Rp.29 The plot of K is given as a

R||
2 � 〈RFx

2〉 � 1
3Nb2

Figure 2.62. Polymer chain confined to a square tube of side d. The chain has a dimension
of R|| along the tube. Its dimensions in y and z directions are bound to d.
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Figure 2.63. Partition coefficients K of a Gaussian chain and a rodlike molecule in a cylin-
drical pore of radius Rp as a function of Rg	Rp. (From Ref. 29.)



function of Rg	Rp. At Rg � Rp, only 1 of about 470 Gaussian chains finds itself in
the pore. For the rodlike molecule (Rg � L	121	2; at Rg � Rp, the rod length is
31	2 � pore diameter), this odd is as large as 1 of 23 rods. The rod can align along
the pore channel to fit in.

2.5.3.3 Confinement of a Real Chain The Gaussian chain is folded back into a
dense packing of monomers when confined. In a real chain, overlay of monomers
into the same space is prohibited. We can therefore expect that the real chain is
more extended in the confined space compared with the free space. It is, however,
all but impossible to treat the confinement of the real chain theoretically. We do not
have a formula for the partition coefficient of the real chain even in simple confin-
ing geometries. Fortunately, it is possible to obtain an asymptotic functional rela-
tionship between S and the chain length N for sufficiently long chains in a simple
geometrical consideration.

We consider a real chain consisting of N monomers of size b and confined to a
cylindrical pore of diameter d. When the chain dimension Rg in the free solution is
smaller than the pore size, the chain does not feel much of the effect of the pore
wall. As Rg exceeds d, the chain must adopt a conformation extending along the
pore because of the excluded volume effect. As Rg increases further, the confined
chain will look like a train of spheres of diameter d (see Fig. 2.64). The excluded
volume effect prohibits the spheres from overlapping with each other. Therefore,
the spheres can be arranged only like a shish kebab. The partial chain within each
sphere follows a conformation of a real chain in the absence of confinement. The
number nd of monomers in the sphere is then given by

(2.139)

where n � 3	5 was used (we will use the value in this section). The confined chain
consists of N	nd spheres. The length R|| of the chain in the tube is then given as

(2.140)

Unlike a Gaussian chain, R|| increases linearly with N. Note that Rg refers to the ra-
dius of gyration of unconfined chains.

R
 || � d(N	nd) � d N(b 	d )5�3 � d(Rg  

	d)5�3

d � b nd
3�5
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Figure 2.64. Real chain confined to a cylindrical pore of diameter d. The chain is regarded
as a packed array of spheres of diameter d in one dimension. Within each sphere, the chain is
three-dimensional.
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Now we calculate the partition coefficient. The polymer chain consists of N	nd

spheres of size d. This sequence of self-avoiding spheres has the same end-to-end
distance in the three-dimensional space as the chain of N monomers does (Problem
2.33). Therefore, grouping the monomers into spheres of nd monomers does not in-
troduce an artificial change in the statistical property of the chain. How the spheres
are arranged in the three-dimensional space determines the overall conformation of
the chain. We imagine a cubic lattice and place the spheres on the grid points sepa-
rated by d. In the absence of the cylindrical pore, the number of possible grid points
available to place the next sphere is five (six minus one, one being the preceding
sphere; see Fig. 2.65 (a)). Thus the total number of the arrangement of the N	nd

spheres is roughly 5N	nd. The condition that the spheres do not overlap decreases the
total number, but the correction is small. Within the cylindrical pore, in contrast,
there is only one possibility to place the next sphere, once the second sphere is
placed (Fig. 2.65 (b)). There is only one possibility or two for the conformation of
the whole sequence of spheres. The partition coefficient is calculated as the ratio of
the possible numbers of arrangement:

(2.141)

Because K � exp(S	kB), the entropy change S is expressed as

(2.142)

The decrease in the entropy, �S, grows linearly with N, i.e., a longer chain ex-
periences a greater restriction on its conformation in the pore. It is interesting to see
that the same power law, �S � N, also applies to the ideal chain if we replace
5	3 � 1	� by 2. The proportionality to N is common between the ideal chain and
the real chain. This result is not a coincidence. If we follow the same discussion as
above to calculate K for the ideal chain, the number of arrangement for the spheres
in the pore is 2N	nd, as opposed to 6N	nd in the free solution. The ratio leads to
�S	kB � N	nd � (Rg	d )2. The confinement of the Gaussian chain gives the same
relationship: From K � Kslit

2 and Eq. 2.136, we find �S	kB � (Rg	d )2.

�S	 kB � �lnK � N	nd � N(b 	d)5�3 � (Rg  	d)5�3

K �
1

5N�nd

Figure 2.65. Conformation of a real chain. When the next sphere is attached to the growing
end, there are five possible positions in the absence of the cylindrical pore (a), but only one is
available within the pore (b).



How about the confinement by the slit? The spheres are arranged in the two-di-
mensional space. The number of arrangements is now 3N	nd. Then, �S follows the
same scaling relationship as Eq. 2.142 except the numerical coefficient. Figure 2.66
compares the partition coefficients of the Gaussian chain (solid line) and the real
chain (circles) with a radius of gyration Rg in a slit of width d. The coefficients for
the real chain were obtained in lattice computer simulations.5

The linear dimension of the chain in the slit is different from the counterpart in
the cylindrical pore. Because the confined chain follows the conformation of two-
dimensional excluded-volume chain,

(2.143)

Here we used the fact that, in two dimensions, the self-avoiding random walk has
an exponent of 3	4 in the relationship between RF and N (Problem 1.13). We can
also derive the above relationship by applying Flory’s method that we used to de-
rive the chain dimension in three dimensions (Problem 2.34).

As seen in the above examples, confinement lowers the number of dimensions
available to a polymer chain. In the Gaussian chain, on the one hand, the confine-
ment changes the confined components only. The root mean square end-to-end dis-
tance changes only by a numerical coefficient without changing the dependence of
RF on N. In the real chain, on the other hand, the decrease in the dimensionality
changes qualitatively the relationship between N and R|| from that in the free solu-
tion. The confinement manifests the excluded volume effect more prominently.

2.5.4 Calibration of SEC

We have learned in Section 2.5.2 that the retention time tR of SEC increases linearly
with K. We also learned in Section 2.5.3 that K � (1	5)N	nd for the partitioning of

R
 || � d(N	nd)3�4 � d(Rg  

	 d )5�4

158 THERMODYNAMICS OF DILUTE POLYMER SOLUTIONS

Figure 2.66. Partition coefficients K of a Gaussian chain (solid line) and a real chain (cir-
cles) with a radius of gyration Rg in a slit of width d. The data for the real chain were
obtained in the computer simulation (From Ref. 5).
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the real chain with a cylindrical pore. The porous material used in SEC has a tortu-
ous, interconnected pore structure. The pore resembles a cylindrical pore over a
short distance. 

Figure 2.67a is a plot of K � (1	5)N	nd as a function of N	nd. The plot of K0 for
the Gaussian chain with a cylindrical pore in Figure 2.63 is close to this plot when
the abscissa is changed to (Rg	Rp)5	3 � N and the ordinate is in linear scale. There-
fore, we can extend the use of K � (1	5)N	nd, originally derived for sufficiently
long chains, to shorter chains. The same plot in panel a, when the abscissa is in a
log scale (Fig. 2.67b), is nearly straight in the middle range of K. An SEC column
packed with such porous materials will have a linear relationship between tR and
logM in a certain range of the molecular weight M. The relationship is schemati-
cally depicted in Figure 2.68. The column is therefore able to resolve the molecular
weight distribution in the logarithmic scale, but in a limited range. Above the upper
threshold, tR becomes insensitive to M. This limit is called the exclusion limit.
Polymer chains with a molecular weight higher than the limit do not partition with
the stationary phase and travel the column straight through to elute in t1Npl. Below

Figure 2.67. Sketch of the partition coefficients K of a real chain as a function of the num-
ber of blobs, N	nd. In linear scale (a) and in semi-logarithmic scale (b) of N	nd. The shaded
region in (b) indicates a nearly straight portion of the plot.
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Figure 2.68. Calibration curve of a size-exclusion column. The column can analyze the mo-
lecular weight (MW) of the polymer only in the range indicated by the arrow.
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the lower threshold, tR becomes again insensitive to M. The pore size is too large to
distinguish the polymer chain by its dimension.

The packing material with a greater pore size effectively increases nd and shifts
the range of molecular weight that the column can analyze to a greater molecular
weight. The range can be broadened by mixing packing materials of different
pore diameters at the expense of the resolution. A so-called linear column is pre-
pared in this way. Another way is to connect columns of different pore diameters in
series.

To relate the retention time to molecular weight for a given series of columns,
we use molecular weight standards. They are commercially available. Manufactur-
ers supply the data of Mw, Mn, and Mp, where Mp, the peak molecular weight, is the
molecular weight at the peak of the SEC retention curve. A calibrated column can
convert the retention curve into the plot of the molecular weight distribution. 

2.5.5 SEC With an On-Line Light-Scattering Detector

Since approximately 1990, light-scattering detectors have been increasingly used
as an on-line detector in SEC, providing more detailed information on the poly-
mer chain conformation in the solution state. The detector has a flow cell with a
small cell volume and measures the scattering intensities at different angles. The
advantage of this scheme for characterization of polymer in solution is obvious.
As the column separates the polymer according to molecular weight, each frac-
tion is led to the light-scattering detector for instantaneous measurement of the
scattering intensities [Iex(�)], as illustrated in Figure 2.69. The concentration de-
tector such as a refractive index detector and an ultraviolet absorption detector
connected in series gives the estimate of the polymer concentration c. Then with
the preinput data of dn	dc, a Zimm plot is prepared for each fraction. The plot is
for one concentration only, but it is sufficiently low because of the band broaden-
ing (further dilution) by the SEC column of the already dilute injected solution.
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Figure 2.69. Use of an online light-scattering detector and a concentration detector in series
allows a Zimm plot for every eluent. Thus, the molecular weight and radius of gyration can
be estimated as a function of the retention time without using any standard.
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Thus A2Mc is negligible in Eq. 2.116. Because the measurement is instantaneous,
injection of a broad-distribution polymer sample results in a plot of the molecular
weight M and the radius of gyration Rg as a function of the retention time. Thus
we can obtain a plot of Rg as a function of M. In fact, Figure 1.38 was obtained in
this way.

This method eliminates the need to fractionate the polydisperse polymer on a
preparative scale and run the tedious light-scattering measurements for each frac-
tion. Figure 2.70 shows an example of SEC chromatograms for branched polyethyl-
ene.9 Panel a shows the refractive index signal n, which is proportional concentra-
tion, and the light-scattering intensity Iex at 90°. Because Iex � cM, the peak of Iex

appears ahead of the peak in n. Panel b shows the molecular weight M, and panel
c plots Rg. At both ends of the chromatogram, the concentration is low. The uncer-
tainty in the estimates of M and Rg are larger at both ends.

Furthermore, an on-line viscosity detector can be connected in tandem to the
concentration detector (and the light-scattering detector). As we will learn in Sec-
tion 3.3, the solution viscosity gives an important piece of information on the state
of polymer molecules in solution.
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Figure 2.70. Typical examples of chromatograms. The solution is branched polyethylene in
tetrahydrofuran. Top: light-scattering intensity Iex (LS; 90°) and refractive index difference
n (RI). Middle: molecular weight M. Bottom: radius of gyration Rg, plotted as a function of
the retention volume VR. (From Ref. 9.)



2.5.6 PROBLEMS

Problem 2.33: An excluded-volume chain of N monomers of size b has a dimen-
sion of RF � bN�. Grouping nd monomers into one “big monomer” makes a
chain of N	nd big monomers with excluded volume. Within each big monomer,
the chain is still an excluded-volume chain of monomer size b. Show that this
coarse-grained chain has the same dimension as that of the original chain.

Solution 2.33: The size of the big monomer is bnd
�. Therefore, the dimension of

the coarse-grained chain is (bnd
� )(N	nd)� � bN �, identical to RF of the origi-

nal chain. The choice of nd is arbitrary.

Problem 2.34: Flory’s method, we learned in Section 1.4 to find the dimension
of the real chain, can be extended to the confined real chain. Find the rela-
tionship between the dimension of the chain along the slit wall or the tube
wall, R ||, and the degree of polymerization N for the confinement by (1) a slit
of width d and (2) a tube of diameter d.

Solution 2.34 (1): The volume for a polymer chain confined to the slit is R||
2d.

Then, the monomer density is N	(R||
2d ). The interaction term in Eq. 1.63 is

now b3N 2	(R||
2d). The free energy Ach of the chain with a dimension of R|| is

Flory’s method given as

At its minimum,

Therefore,

which is identical to Eq. 2.143.

Solution 2.34 (2): In the tube, the volume for the polymer chain is R||d 2. Then,

At its minimum,

�
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Therefore,

which is identical to Eq. 2.140.

Problem 2.35: Repeat the preceding problem for the theta chains.

Solution 2.35 (1): The interaction term in Eq. 1.63 is b6N3	(R||
2d)2. The free en-

ergy Ach of the chain with a dimension of R|| is given as

At its minimum,

Therefore,

Solution 2.35 (2): The volume is R||d 2. Then,

At its minimum,

Therefore,

Note that these results for the theta chains are different from the chain dimen-
sions of ideal chains in the slit and the tube. The confined ideal chains have
the dimension of �N1	2 in both confining geometries. The difference between
the ideal chain and the theta chain shows up because of the third virial coeffi-
cient A3. Compensation of the excluded volume effect by the attractive poly-
mer–polymer interaction allows the theta chain to have the same dimension
as that of the ideal chain, but it is valid only in the three-dimensional free so-
lution. In spaces of a reduced dimensionality, the same attractive interaction
cannot mask the excluded volume.
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APPENDIX 2.A: REVIEW OF THERMODYNAMICS FOR
COLLIGATIVE PROPERTIES IN NONIDEAL SOLUTIONS

2.A.1 Osmotic Pressure

We briefly review here thermodynamics of a nonideal binary solution. The osmotic
pressure � is the extra pressure needed to equilibrate the solution with the pure sol-
vent at pressure p across a semipermeable membrane that passes solvent only. The
equilibration is attained when the chemical potential of the pure solvent be-
comes equal to the chemical potential �S of the solvent molecule in solute volume
fraction 
 at temperature T:

(2.A.1)

We separate the right-hand side into two parts:

(2.A.2)

where �S denotes the change in the chemical potential from . Colligative prop-
erties make �S negative. Because the volume of a liquid depends little on the
pressure,

(2.A.3)

with v* being the volume of the solvent molecule in the liquid phase. From Eqs.
2.A.1 to 2.A.3, we find

(2.A.4)

2.A.2 Vapor Pressure Osmometry

The colligative property shows up also in the vapor pressure of the solution. The
vapor pressure p of the solvent above the solution is lower than the vapor pressure
p* of pure solvent. The vapor phase is nearly ideal. Therefore, the chemical poten-
tial of the solvent molecule in the vapor phase is given by �°(T ) 	 kBT ln(p	p°),
where �°(T ) is the chemical potential at a reference pressure p°. The vapor– liquid
equilibrium for pure solvent is dictated by

(2.A.5)��(T ) 	 kBT  ln (p*
 �p�) � �*

S(T, p*)

� � �
�S

v*

�*
S 
(T, p 	 �) � �*

S 
(T, p) 	 �p	�

p
 
��*

S

�p
  dp � �*

S 
(T, p) 	 v*

 �

�*
S

�S 
(T, p 	 �,
) � �*

S 
(T, p 	 �) 	 �S

�*
S 
(T, p) � �S (T, p 	 �,
)

�*
S
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For a solution with a polymer volume fraction at 
, the equilibrium is given by

(2.A.6)

From Eqs. 2.A.2, 2.A.5, and 2.A.6, we find

(2.A.7)

Because and �S � �v*�,

(2.A.8)

The second term on the right-hand side is much smaller compared with the first
term. Thus,

(2.A.9)

This equation gives the principle of vapor pressure osmometry: In place of meas-
uring � directly, we can measure the drop in the vapor pressure of the solvent
above the solution to estimate �. 

APPENDIX 2.B: ANOTHER APPROACH TO THERMODYNAMICS
OF POLYMER SOLUTIONS

Once we have obtained the free energy or the chemical potential expressed as a
function of 
, we can forget that it was derived for a two-component incompress-
ible fluid consisting of polymer and solvent. We can neglect the presence of solvent
molecules and assume that polymer chains are suspended in “vacuum” at volume
fraction 
. The system is essentially a single-component nonideal gas whose free
energy is given by Eq. 2.7. Amix is then the free-energy change of “vaporization”
of polymer molecules from their liquid state. The osmotic pressure � can be ob-
tained directly from Amix (Problem 2.4). In this scenario, the interaction is present
only between two monomers of polymer: � � �Z �PP	(2kBT ).

The Gibbs free energy change Gmix is given by

(2.B.1)

where Vmix � V(1 � 
). It can be shown that this Gmix is equal to nP�P (Prob-
lem 2.5). Note that this Gmix is different from the one we find in the mixing of nP

polymer chains and nS solvent molecules at a constant total volume.

Gmix � Amix 	 �Vmix
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T

�*
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(T, p) � �*

S(T, p* ) 	 v*( p � p*)

kBT ln(p	p* ) � �S 	 �*
S(T, p) � �*

S(T, p*)
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APPENDIX 2.C: CORRELATION FUNCTION
OF A GAUSSIAN CHAIN

The segment density autocorrelation function the Gaussian chain is calculated as
follows.

(2.C.1)

We change the variable of integration from n� to m � n – n� and then exchange the
order of the double integral:

(2.C.2)

We change the variable of integration further from m to x where x2 � 3r2	(2b2m).
With u # 3r2	(2b2N) � r2	(4Rg

2) and m � Nu	x2, Eq. 2.C.2 is transformed to

(2.C.3)

Using integration by parts, the integral in the second term is changed to

(2.C.4)

Then,

(2.C.5)
1
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