
167

3
Dynamics of Dilute Polymer Solutions

3.1 DYNAMICS OF POLYMER SOLUTIONS

In the first two chapters, we learned about thermodynamics (free energy, osmotic
pressure, chemical potential, phase diagram) of polymer solutions at equilibrium
and static properties (radius of gyration, static structure factor, density correlation
function) of dissolved polymer chains. This chapter is about dynamics of polymer
solutions. Polymer solutions are not a dead world. Solvent molecules and polymer
chains are constantly and vigorously moving to change their positions and shapes.
Thermal energy causes these motions in a microscopic world.

Solution dynamics deals with the motion of molecules dissolved in a solvent. A
typical mode of motion is center-of-mass diffusion. A nonuniform concentration
distribution is leveled to a uniform distribution as the solution approaches the equi-
librium state. Viscosity of the solution is another form of dynamics. Slowly moving
solute molecules increase the viscosity more than fast moving molecules. 

Center-of-mass diffusion and viscosity are universally observed in all fluids in-
cluding pure solvents. What makes the polymer solution dynamics distinctly differ-
ent from the dynamics of other solutions is the numerous degrees of freedom for the
internal motion of each solute molecule. As we learned in Chapter 1, polymer chains
can take many different conformations. They are incessantly switching from one to
another, thereby changing the shape of the polymer chain. In small molecules, the
internal motions such as vibration (changes in the bond lengths, bond angles, and di-
hedral angles) and rotation are observed at frequencies typically between 1 GHz and
100 THz. The motions are resonant. In contrast, the change in the conformation of
the polymer chains occurs at much lower frequencies (radio, audio, and lower fre-
quencies) in addition to the resonant vibrational motions at the high frequencies.
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Solvent viscosity makes the motion overdamped and therefore relaxational. Differ-
ent modes of motion are observed over an extended range at the low frequencies.

A small change in the thermodynamic properties of the solution, as represented
by A2, leads to a shift in the dynamics, typically the time scale of motion and de-
pendence on the concentration and the molecular weight. It often happens that the
shift in the dynamic properties is more pronounced compared with the shift in the
static properties. Thus, how the time scale depends on the polymer concentration,
the molecular weight, and the temperature gives us an important piece of informa-
tion on the state of the polymer molecules, especially their interactions with the sol-
vent molecules.

In Chapter 3, we will learn about the dynamics of an isolated polymer chain in
the dilute solution limit and the first-order change in the dynamics with polymer
concentration. We will also learn typical experimental methods to investigate the
dynamics—dynamic light scattering and viscosity. The dynamics of polymer solu-
tions above the overlap concentration will be discussed in Chapter 4, along with
their thermodynamics.

3.2 DYNAMIC LIGHT SCATTERING
AND DIFFUSION OF POLYMERS

3.2.1 Measurement System and Autocorrelation Function

3.2.1.1 Measurement System Motions of polymer molecules in solution can be
conveniently studied by using dynamic light scattering (DLS). It is also called
quasi-elastic light scattering (QELS) and photon correlation spectroscopy
(PCS). Measurement at a single scattering angle gives information on the dimen-
sion of the polymer molecule in the solution with reasonable accuracy. Unlike its
static version, DLS does not rely on the excess scattering. There is no need to cal-
culate a small difference in the scattering intensity between the pure solvent and a
dilute solution. The signal from the slowly moving polymer is unambiguously sepa-
rated from the signal that originates from the rest of the solution. The principle of
DLS has been utilized in some commercial particle-sizing systems for many years.
The measurement and data analysis are automated. Users need only to prepare
clean solutions by filtration. In recent years, DLS has been also used as an on-line
detector in size exclusion chromatography (SEC). In this section, we will learn how
the signal obtained in DLS is related to the dimension and motions of solute mole-
cules and other dynamic modes.

As shown in Figure 3.1, a DLS system requires an autocorrelator on top of a
regular SLS system. The light-scattering intensity from the polymer solution is not
a constant. Figure 3.2a illustrates how the intensity (I) varies with time (t). I(t) fluc-
tuates around its mean 〈I 〉. It may appear completely random (white noise) and
therefore meaningless, but it is not. Motions of the polymer molecules and the
solvent molecules contribute to a change of I(t) with time. The noisy signal then
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carries the information on the motions and other fluctuations. The autocorrelator
uncovers the embedded information.

3.2.1.2 Autocorrelation Function The autocorrelator calculates the average of
the product of two scattering intensities I(t) and I(t � �) measured at the two times
separated by �. Here � is called the delay time. The average 〈I(t)I(t � �)〉 is a func-
tion of � and is called the autocorrelation function of I(t) or the intensity-intensity
autocorrelation function. The autocorrelator converts I(t) into 〈I(t)I(t � �)〉.

What the autocorrelator calculates is the average of I(t)I(t � �) with respect to t
over a long period TA. We assume that the long-time average is equal to the ensemble
average— the average with respect to the configuration of the system or, simply put,
the average over all possible positions and shapes of the molecules in the solution:

(3.1)

This assumption, in general, is called ergodicity. It is one of the few hypotheses in
statistical mechanics. We cannot prove it but believe it is correct. Note that, if the
system is at equilibrium, the ensemble average does not change with time and
therefore 〈I(t)I(t � �)〉 � 〈I(0)I(�)〉.

The autocorrelation function of I(t) in panel a of Figure 3.2 is shown in panel b.
When � � 0, 〈I(t)I(t � �)〉 � 〈I 2〉. With an increasing �, I(t � �) becomes more ir-
relevant to I(t), and 〈I(t)I(t � �)〉 decays to an asymptotic level called a baseline.
The baseline level is 〈I 〉2; when I(t � �) and I(t) are irrelevant, 〈I(t)I(t � �)〉 � 〈I(t)〉
〈I(t � �)〉 � 〈I 〉2.

〈I(t)I(t � �)〉 � lim
TA:�
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Figure 3.1. Dynamic light scattering measurement system. The pulse-amplifier discrimina-
tor converts the analog signal of the photodetector, I(t), into a digital signal, which is further
converted by the autocorrelator into the autocorrelation function of the signal.



3.2.1.3 Photon Counting The scattering intensity I(t) can be measured as an
analog quantity I that varies continuously with time t. More often than not, I(t) is
measured as pulses. Each pulse corresponds to a photon that reaches the photode-
tector. For this purpose, a photomultiplier or an avalanche photodiode is used in a
photon-counting mode. A pulse amplifier–discriminator eliminates ghost pulses of
a low height and converts each proper pulse into a pulse of a fixed height and width
to be led to the autocorrelator (see Fig. 3.1). With the use of pinholes of different
openings, the number of photons reaching the detector can be adjusted so that there
are not too many photons entering the photodetector in each time window (�1�s).
The intensity is now expressed as the number of pulses in each time window. It is a
nonnegative integer.

3.2.2 Autocorrelation Function

3.2.2.1 Baseline Subtraction and Normalization Because the scattering inten-
sity I(t) fluctuates around its mean 〈I 〉, it is convenient to separate its fluctuating
component �I(t) as

(3.2)I(t) � 〈I 〉 � �I(t)
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Figure 3.2. a: Light scattering intensity I(t) fluctuates around its mean 〈I 〉. b: Autocor-
relation function 〈I(t)I(t � �)〉 is obtained as the long-time average of I(t)I(t � �) with respect
to t for various delay times �. The autocorrelation function decays from 〈I2〉 to 〈I 〉2 over time.
The amplitude of the decaying component is 〈�I 2〉.
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Figure 3.3. Baseline-subtracted, normalized intensity autocorrelation function g2(t) (a) and
the absolute value of the baseline-subtracted, normalized electric-field autocorrelation
function, �g1(t)� (b).

By definition, 〈�I(t)〉 � 0. Then, the autocorrelation function is rewritten to

(3.3)

The autocorrelation of �I(t) is lost to zero with an increasing �. When � : �, 〈�I(t)�I
(t � �)〉 � 〈�I(t)〉 〈�I(t � �)〉 � 0. The decaying component in 〈I(t)I(t � �)〉 is 〈�I(t)�I
(t � �)〉. The initial height of the decaying component is 〈�I 2〉 � 〈I2〉 � 〈I〉2 (see Fig. 3.2).

Division of 〈I(t)I(t � �)〉 by 〈I 〉2 leads to

intensity autocorrelation
function

(3.4)

where fc is called the coherence factor, defined as

(3.5)

and the second factor is the baseline-subtracted, normalized intensity autocorrela-
tion function:

(3.6)

The coherence factor depends, as the name suggests, on the coherence of the light
falling on the photodetector. The beam has a finite cross section, and different parts
of the beam may not have the same phase. If they have the same phase, the number
of photons will be distributed with a Poisson distribution. The variance of I is
then equal to the square of the mean, i.e., fc � 1. In general, 0 	 fc 	 1. Use of a
smaller pinhole increases fc at the expense of a weakening intensity. As shown in
Figure 3.3a, g2(�) is 1 at � � 0 and decays to zero as � : �.

g2(�) # 〈�I(t)�I(t � �)〉�〈�I2〉

fc # 〈�I2〉 � 〈I 〉2

  � 1 � fc 
g2(�)

〈I(t)I(t � �)〉�〈I〉2 � 1 � 〈�I(t)�I(t � �)〉�〈I 〉2

〈I(t) I(t � �)〉 � 〈I〉2 � 〈�I(t)�I(t � �)〉



3.2.2.2 Electric-Field Autocorrelation Function We consider the autocor-
relation function of the electric field Es(t) of the light scattered by solutes. As we
have seen in Section 2.4, Es(t) is a complex quantity. We introduce another normal-
ized autocorrelation function g1(�), which is defined as

(3.7)

It is known that g2(�) is related to g1(�) by21

(3.8)

Figure 3.3 compares g2(�) and �g1(�) �. It takes twice as long for �g1(�)� to decay to a
given level as it takes for g2(�).

Sometimes, g2(�) is defined as g2(�) # 〈I(t)I(t � �)〉�〈I 〉2. This g2 decays to 1 as
� : �. Then, �g1(�)�2 � [g2(�) � 1]�[g2(0) � 1].

3.2.3 Dynamic Structure Factor of Suspended Particles

3.2.3.1 Autocorrelation of Scattered Field We assume that the scattering vol-
ume contains nP identical small particles and consider the autocorrelation function
of Es(t) for the scattering by the volume. Examples include a suspension of col-
loidal particles. The autocorrelation of the scattering by a polymer solution will be
discussed in Section 3.2.6.

In Section 2.4, we considered light scattering by a chain of beads. Equation 2.53,
along with Eq. 2.52, was obtained without assuming that the beads were connected
to form a chain molecule. The same equation can therefore be used for a system of
nP particles, each consisting of a single bead. A photon detected at r and t was
scattered some time ago by one of the particles at r
m(m � 1, 2 , . . . , nP) at t0. The
electric field Es of the photon propagating in the direction of ks is given as

(3.9)

where the scattering event by particle 1 at r
1 and t0 was selected as a reference
point in space and time (Fig. 3.4). We take (r, t) to be the position and time of
detection.

Another photon detected at r and t � � is scattered by the particles at rn (n � 1,
2 , . . . , nP) at t0 � �. Motion of the particles makes r
m and rn in general different.
The reference point has moved to r1 as well, and the scattering occurs at t0 � �. The
incident light has changed its phase, since it hit particle 1 at r
1 and t0. We take into
account the phase shift due to the change in the scattering by the reference. We find

 � Esm 
exp[i( ks �r �  ki�r
1) � i�(t � t0)] �

nP

m�1
exp(�ik�r
m)

 Es(r, t) � Esm exp[i (ks �(r � r
1) � � (t � t0))] �
nP

m�1
exp [ik �(r
1 � r
m)]

g2(�) � �g1(�) � 2

g1(�) #
〈E*

s(t)�Es(t � �)〉
〈E*

s(t)�Es(t)〉
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the electric field of this second scattering is given as

(3.10)

Then, the autocorrelation function of Es(r, t) is

(3.11)

where r
m was rewritten to rm(t) and rn to rn(t � �). Strictly speaking, r
m � rm(t0)
and rn � rn(t0 � �), but we can replace t0 by t because the time difference between
the scattering and the detection, t � t0, is much smaller compared with �. The statis-
tical average of Eq. 3.11 is

(3.12)

The last transformation is allowed because the system is stationary. The autocor-
relation function for � � 0 is

(3.13)〈E*
s(r, t)�Es(r, t)〉 � �Esm �2  〈 �

nP

m,n�1
exp[ik�(rm(0) � rn(0))] 〉

 � �Esm �2   〈 �
nP

m,n�1
exp[ik�(rm(0) � rn(�))] 〉

 〈 E*
s(r, t)�Es(r, t � �)〉 � �Esm �2  〈 �

nP

m,n�1
exp[ik�(rm(t) � rn(t � �))] 〉

E*
s(r, t)�Es(r, t � �) � �Esm �2 �

nP

m,n�1
exp[ik�(rm(t) � rn(t � �))]

 � Esm 
exp[i( ks �r �  ki�r
1) � i�(t � t0)] �

nP

n�1
exp(� ik�rn)

� i�(t � t0 � �)] �
nP

n�1
exp(�ik�rn)

 Es(r, t � �) � Esm 
exp[i (ki�(r1 � r
1) � i ��)] exp[i (ks �r � ki�r1)

rn
ki

ks

incident
beam
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rḿ

Es(r,t+  )τ

Es(r,t)

detector

r1

r1́

Figure 3.4. Scattering by the mth particle at t and by the nth particle at t � � can be cor-
related. The two photons reach the detector at different times separated by �.



3.2.3.2 Dynamic Structure Factor From Eq. 3.7, division of Eq. 3.12 by 
Eq. 3.13 gives

(3.14)

It is convenient to introduce dynamic structure factor S(k, �), defined as

(3.15)

Then,

(3.16)

As we have separated the static structure factor S(k) into S1(k) and the rest (see
Eq. 2.60), we can separate S(k,�) into two parts:

(3.17)

with the single-particle dynamic structure factor defined as

(3.18)

It is apparent that the dynamic structure factor for � � 0 is identical to the static
structure factor:

(3.19)

for a system of particles suspended in a liquid.

3.2.3.3 Transition Probability The ensemble average in Eq. 3.15 is taken with
respect to the positions of the particles at t � 0 and t � �. Rewriting rm(0) to r
m and
rn(�) to rn, it is expressed as

(3.20)

where (r
1 , . . . , r 
np; 0) is the joint density distribution for the nP particles at time 0,
and is the joint probability for the particles todr1 . . . drnP

P(r1 , . . . , rnP
; r
1 , . . . , r
nP

; �)

�P(r1 , . . . , rnP
; r
1 , . . . , r
nP

;  �) (r
1 , . . . , r
nP
; 0)

 S(k, �) �
1

nP
2 �

nP

m�1
�

V
  dr
m �

nP

n�1
�

V
  drn �

nP

i, j�1
exp[ik�(r
i � rj)] 

S(k, 0) � S(k ),  S1(k, 0) � 1

S1(k, �) � 〈exp[ik�(r1(0) � r1(�))]〉 single - particle
dynamic structure factor

S(k, �) � S1(k, �) � 〈(nP � 1) exp[ik�(r1(0) � r2(�))]〉

� g1(�)� � S(k, �) � S(k, 0) normalized electric -field
autocorrelation function

S(k,�) � 〈 1

nP
�
nP

m,n�1
exp[ik�(rm(0) � rn(�))] 〉 dynamic structure factor

suspension of particles

� g1(�)� �
〈 �

nP

m,n�1
exp[ik �(rm(0) � rn(�))] 〉

〈 �
nP

m,n�1
exp[ik�(rm(0) � rn(0))] 〉

.
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move from into a (nP-dimensional) volume at in
time �. The transition probability satisfies the normal-
ization condition:

(3.21)

Integration of gives the number of particles in volume V:

(3.22)

In a homogeneous solution, the particles are uniformly distributed in V at t � 0, i.e.,
� . The transition probability depends only on the displace-

ment ( , etc) and is an even function of the displacement. Then,

(3.23)

where the sign in the exponential function has been changed. The even function
makes S(k,�) a real function.

If each particle moves independently, the second term in Eq. 3.17 disappears:

(3.24)

Independent motions are typically observed at low concentrations. The single-
particle (nP � 1) version of Eq. 3.20 is

(3.25)

where P(r, r�; �) is the single-particle transition probability. If the solution is homo-
geneous at time 0, i.e., (r�; 0) � 1�V, then

(3.26)

which is the single-particle version of Eq. 3.23. Equation 3.26 means that �g1(�)� �
S1(k, �)�S1(k, 0) � S1(k, �) is the Fourier-transform of the transition probability
P(r, r
; �).

Motion of the particles can be caused by an external flow and diffusion. In the
flow, solvent molecules move together with the particles. Diffusion occurs regardless

S1(k, �) � �
V

  dr exp[ik�(r � r
)] P(r, r
; �) single -particle
dynamic structure factor

S1(k, �) � �
V

  dr
 �
V

  dr exp [ik�(r � r
)] P(r, r
; �)(r
; 0)

S(k, �) � S1(k, �)

P(r1 � r
1 , . . . , rnP
� r
nP

; �)

S(k, �) �
1

nP
 �

nP

n�1
�

V
  d(rn � r
n) �

nP

i, j�1
exp[ik�(rj � r
i 

)] P(r1 � r
1 , . . . , rnP
�r
nP

; �)

r1 � r
1

nP  
� VnP (r
1 , . . . , r
nP

; 0)

�
nP

m�1
�

V
  dr
m (r
1 , . . . , r
nP 

; 0) � nP

(r
1 , . . . , r
nP 
;  0)

�
nP

n�1
�

V
  drn P(r1 , . . . , rnP

;  r
1 , . . . , r
nP 
;  �) � 1

P(r1 , . . . , rnP
; r
1 , . . . , r
nP

; �)
r1 , . . . , rnP

dr1 . . . drnP
r
1 , . . . , r
nP



of the presence of the external flow. We look closely at the diffusion phenomena of
particles in a quiescent solution in the following subsection.

3.2.4 Diffusion of Particles

3.2.4.1 Brownian Motion When we place a blot of ink in still water, the colored
region expands with time but the color fades, eventually filling the entire water in
the container. The final state is a uniform concentration of the ink. Spreading of a
substance throughout accessible volume is called diffusion. The phenomena is
made possible by microscopic movement of water molecules.

Particles suspended in a liquid change their positions in the container by diffu-
sion. If a particle is much larger compared with the solvent molecules, we can re-
gard that particle to be suspended in a continuous medium of solvent. Figure 3.5
illustrates how the particle has traveled, starting at r
 at time t � 0, to reach r at
time t. The trajectory is random. The random motion of the particle is called a
Brownian motion. It was discovered by Scottish botanist R. Brown when he was
looking into an optical microscope to observe pollen on water. What he had thought
was a motionless, dead world turned out to be filled with vigorous and perpetual
movements. Later, it was found that a similar type of motion exists for suspensions
in a liquid. Solvent molecules collide randomly with particles all the time to change
the velocity of the particle, resulting in a random motion. The motions of the sol-
vent molecules are activated by thermal energy; kBT is sufficient to cause the
Brownian motion.

The Brownian motion is stochastic. There is no knowing in advance where the
particle will reach in a given time. What we can know is the transition probability
P(r, r
; t) for the particle to move from r
 at t � 0 to reach r at time t.

Polymer molecules in solution also display Brownian motion. Because the
polymer molecule is not a simple sphere, each polymer conformation has its own
diffusion characteristics. For rigid molecules, the shape of the molecule, spherical or
rodlike, for instance, makes a difference. For a linear flexible molecule, connectivity
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Figure 3.5. Trajectory of a Brownian particle. Starting at r
 at time zero, it moves to r in
time t. We cannot predict the displacement �r � r � r
.
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of monomers generates a specific pattern in its Brownian motion. Before we elabo-
rate on the motion of the polymer molecule (Section 3.4), we look at the Brownian
motion of a simple particle suspended in a continuous medium and obtain the transi-
tion probability.

3.2.4.2 Diffusion Coefficient We learned about random walks in Section 1.2 to
describe an ideal chain. The random walk on the cubic lattice (Fig. 3.6) shares
stochastic nature of the whereabouts with the Brownian motion of the particle in
solution. We can apply the results obtained for the ideal chains to the motion of the
random walker.

Let t1 be the time of each step and b the displacement. The mean square dis-
placement of N steps in time t � Nt1,

(3.27)

is proportional to the total time t. The ratio of the mean square displacement to the
time, divided by 6 for the three dimensions, gives, in general, the diffusion
coefficient D:

(3.28)

For the random walker on the cubic lattice,

(3.29)

The last equality proves that the ratio is the same for the whole motion of N steps
and for the single-step motion. To estimate D, we can use either an N-step motion
or a single-step motion. The results should be identical as long as the step motions
are mutually independent (Markoffian).

D �
Nb2

6Nt1
�

b2

6t1
 random walk, 3D

D �
〈[r(t) � r(0)]2〉

6t
 diffusion coefficient

〈[r(t) � r(0)]2〉 � Nb2  mean square displacement

b

r(0)

r(t)

Figure 3.6. Random walk on a cubic lattice (two-dimensional rendering). In each step, the
walker moves a distance of b randomly. Starting at r(0), the walker moves to r(t) in N steps.



3.2.4.3 Gaussian Transition Probability We learned in Section 1.2 that the
transition probability becomes Gaussian in the limit of small b and large N. The
Gaussian probability given by Eq. 1.18 gives the transition probability P(r, r
; t) for
the Brownian motion by replacing (2/3)Nb2 by 4Dt:

(3.30)

The motion of the particle whose transition probability is given by this equation is
called diffusion or a Wiener process.

The probability is independent for each of x, y, and z directions in the isotropic
solution. In the x direction, for instance,

(3.31)

and P(r, r
; t) � Px(x, x
; t)Py(y, y
; t)Pz(z, z
; t).
The transition probability Px(x, x
; t) is essentially a normal distribution of a ran-

dom variable x � x
 with a zero mean and a variance of 2Dt. Therefore,

(3.32)

These equations apply also to a particle that diffuses along a one-dimensional path.
The mean square displacement 〈(x � x
)2〉 is proportional to t. Figure 3.7 shows
how Px broadens with time. The plots are given as a function of (x � x
)�b for
4Dt�b2 � 0.1, 1, and 10, where b is a unit length. Initially (t : 0), the particle is at
x
, i.e., P(x, x
; 0) � �(x � x
).

〈x � x
〉 � 0, 〈(x � x
)2〉 � 2Dt 1D diffusion

Px(x, x
; t) � (4�Dt)�1�2 exp�� 
(x � x
)2

4Dt �

P(r, r
; t) � (4�Dt)�3�2  exp��
(r � r
)2

4Dt � Gaussian transition probability
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Figure 3.7. Broadening of the distribution with time for the position of a one-dimensional
Brownian particle. Plots are for 4Dt�b2 � 0.1, 1, and 10.
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For the three-dimensional diffusion, the displacement r � r
 satisfies

(3.33)

because 〈(r � r
)2〉 � 〈(x � x
)2〉 � 〈(y � y
)2〉 � 〈(z � z
)2〉 � 3 � 2Dt.

3.2.4.4 Diffusion Equation It is easy to find that Px(x, x
; t) given by Eq. 3.31
satisfies the one-dimensional diffusion equation:

(3.34)

The initial condition is Px(x, x
; 0) � �(x � x
). Likewise, P(r, r
; t) given by
Eq. 3.30 satisfies the three-dimensional diffusion equation:

(3.35)

where is the Laplacian. It is also written as �2/�r2.
The initial condition is P(r, r
; 0) � �(r � r
).

3.2.4.5 Concentration The meaning of the transition probability P(r, r
; t)
will be clearer when we look at the local concentration profile of the particles,
c(r, t), at position r and time t. It is the mass of the particles in a small volume
around r, divided by the volume. The volume contains sufficiently many particles.
With P(r, r
; t), we can write

(3.36)

The particles we find at r and t have come from all different positions in the sys-
tem. At time zero, the particles were at r
 with concentration profile c(r
,0)
(Fig. 3.8). They have migrated to r with the probability of P(r, r
; t). Integration of

c(r, t) � �P(r, r
; t) c(r
, 0) dr


�2 � �2��x2 � �2��y2 � �2��z2

�P

�t
� D�2P 3D diffusion equation

�Px

�t
� D 

�2Px

�x2  1D diffusion equation

〈r � r
〉 � 0, 〈(r � r
)2〉 � 6Dt 3D diffusion

Figure 3.8. Transition probability P(r, r
; t) accounts for a change from the initial concen-
tration profile c(r
, 0) to the final concentration profile c(r, t). The concentration is indicated
by the gray level.

P(r,r´;t)
c(r´,0) c(r,t)



c(r
, 0)P(r, r
; t) with respect to r
 gives the concentration profile c(r, t) at time t. It
is easy to show that c(r, t) satisfies the same diffusion equation as Eq. 3.35:

(3.37)

The initial concentration profile is c(r, 0).

3.2.4.6 Long-Time Diffusion Coefficient In various experiments and com-
puter simulations, the mean square displacement 〈(r � r
)2〉 is often measured or
calculated as a function of time t. If the double logarithmic plot of 〈(r � r
)2〉
versus t has a slope of 1, we can say that the relevant motion is diffusional. It of-
ten happens that the proportionality is reached only after a sufficiently long
time. It is therefore customary to define the diffusion coefficient in the long-time
limit:

(3.38)

for dynamics in three dimensions. The denominator is 2 � (dimensions) � t. This
diffusion coefficient is called the long-time diffusion coefficient. The dynamics
may have different diffusion coefficients in other time scales, or it may not be diffu-
sional. The plot of 〈(r � r
)2〉 versus t will tell the nature of the dynamics. We will
see variations of dynamics in different time scales in Sections 3.4 and 4.3.

In Section 1.5, we learned that the mean square end-to-end distance 〈RF
2〉 of a

wormlike chain becomes proportional to the contour length as the chain becomes
longer. The tendency for 〈(r � r
)2〉 to become proportional to t in a long time is
parallel to the tendency for 〈RF

2〉 of the wormlike chain.

3.2.5 Diffusion and DLS

3.2.5.1 Dynamic Structure Factor and Mean Square Displacement Here we
learn how �g1(�)� obtained in DLS gives an estimate of the diffusion coefficient. We
are concerned with dilute solutions here. Hence, �g1(�)� � S1(k, �).

In Eq. 3.26, we use the Taylor expansion at low scattering angles: exp[ik ·(r � r
)] �
1 � ik ·(r � r
) � (1�2)[k · (r � r
)]2 �· · · . Then S1(k, �) is transformed to

(3.39)

where 〈r � r
〉 � 0, and 〈(x � x
)2〉 � 〈(y � y
)2〉 � 〈(z � z
)2〉 � 〈(r � r
)2〉�3,
〈(x � x
)(y � y
)〉 � 0, and so forth were used. This �g1(�)� � S1(k, �) is rewritten to

(3.40)

If plots of ln �g1(�) ��k2 vs. � measured at different angles overlap each other, then k is
already sufficiently small. Typically, k � (size of the particle) 	 1 qualifies as small k.

〈(r � r
)2〉 � �6 ln�g1(�) � � k2 small k

S1(k, �) � 1 � 1
6  k

2〈(r � r
)2〉 � · · · 	 exp
� 1
6 k

2〈(r � r
)2〉�

D � lim
t : �

〈(r � r
)2〉
6t

 long -time diffusion coefficient

�c

�t
� D�2c
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The mean square displacement in time � is evaluated by using Eq. 3.40. The
slope in the plot is equal to 6D. It is, however, more common to follow the ap-
proach described below.

3.2.5.2 Dynamic Structure Factor of a Diffusing Particle More often than not,
the particles move according to the diffusion equation. The transition probability is
given by Eq. 3.30. Then

(3.41)

Thus, � g1(�) � is an exponentially decaying function with a decay constant of Dk2. It
is customary to first introduce the decay rate � of � g1(�) � by

(3.42)

and then relate � to k2 as

(3.43)

for the diffusional motion. It is apparent that �g1(�)� decays faster at a higher scatter-
ing angle. 

The procedure to obtain the diffusion coefficient D is as follows. First, measure
the autocorrelation function at different angles. Second, obtain � as the negative of
the slope in the semi-logarithmic plot of �g1(�) � as shown in Figure 3.9. Third, plot

� � D k2 decay rate for diffusion

�g1(�) � � exp (���)

 ��(4�D�)�3�2 exp��
(r � r
 � i k�2D�)2

4D�
� D� k2� dr � exp(�D� k2)

 S1(k, �) ��exp[ik�(r � r
)](4�D�)�3�2 exp��
(r � r
)2

4D�
� dr

1

0
τ

|g1|

τ

ln|g1|
slope = −Γ

0

exp(−Γ   )τ

a

b

Figure 3.9. When �g1(�) � decays in a single exponential (a), the plot of ln �g1(�)� is a straight
line with a slope of �� (b).



� as a function of k2. The plot should be approximated by a straight line through
the origin (see Fig. 3.10). The slope of the line is D. We can show that conversely, if
the measured � versus k2 is on a straight line through the origin, then the dynamics
is diffusional (Problem 3.3).

When the suspension is not spherical or, in general, is a particle with an internal
structure such as a linear polymer chain, the decay rate deviates from the one given
by Eq. 3.43 at higher scattering angles. The diffusion coefficient defined in the low
k limit refers to the overall displacement of the molecule, i.e., the motion for the
center of mass.

3.2.6 Dynamic Structure Factor of a Polymer Solution

3.2.6.1 Dynamic Structure Factor The electric field of the light scattered by a
volume that contains nP chains (nP » 1), each consisting of N beads, can be written
in the same way as Eq. 3.15. The dynamic structure factor is now given as

(3.44)

which is decomposed into two parts:

(3.45)

where S1(k, �) is the single-chain dynamic structure factor:

(3.46)S1(k, �) �
1

N �
N

i, j�1
〈exp[ik �(r1i 

(0) � r1j(�))]〉 single-chain
dynamic structure factor

S(k, �) � S1(k, �) �
nP

N �
N

i,j�1
〈exp[ik�(r1i(0) � r2j(�))]〉

S1(k, �) �
1

NPN �
NP

m, n�1
 �

N

i, j�1
〈exp[ik�(rmi 

(0) � rnj(�))]〉 dynamic structure factor
polymer solution
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k2

Γ
slope = D

Figure 3.10. Decay rate � of �g1(�) �, plotted as a function of k2. If the particles move by dif-
fusion, the plot is on a straight line through the origin with a slope equal to the diffusion co-
efficient D.
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At � � 0, the dynamic structure factors are identical to the static structure factors
(Eqs. 2.59 and 2.60):

(3.47)

Thus, �g1(�)� � S1(k, �)�S1(k, 0) when each polymer chain moves independently of
other chains at low concentrations.

3.2.6.2 Long-Time Behavior In a short time scale, S1(k,�) exhibits a compli-
cated pattern, reflecting complex motions of different parts of the polymer chain.
Over a long time, however, the motion is simplified. It is dominated by the transla-
tion of the chain as a whole in the solution for any conformation. We can prove the
dominance of the center-of-mass motion as follows.

In Eq. 3.46, the displacement r1i(0) � r1j(�) between bead i at time 0 and bead j
at time � on chain 1 consists of three parts:

(3.48)

where r1G(0) and r1G(�) are the center of mass positions of the chain at time 0 and �,
respectively. The three parts are represented by three vectors in Figure 3.11. Ini-
tially, the three parts are correlated. As � increases, the chain conformation becomes
randomized, and the three vectors become more irrelevant to each other. For in-
stance, r1i(0) � r1G(0) becomes uncorrelated to r1G(�) � r1j(�) regardless of i � j
or not. Thus the statistical average of the square is

(3.49)

The first and third terms are equal to Rg
2 by definition. Only the second term grows

with time because of diffusion of the chain as a whole. After a long time, the

 � 〈[r1G(�) � r1j(�)]2〉

 〈[r1i(0) � r1j(�)]2〉 � 〈[r1i(0) � r1G(0)]2〉 � 〈[r1G(0) � r1G(�)]2〉

r1i(0) � r1j(�) � [r1i(0) � r1G(0)] � [r1G(0) � r1G(�)] � [r1G(�) � r1j(�)]

S(k, 0) � S(k),  S1(k, 0) � S1(k)

r1i(0)

r1j(  )

r1G(0)

r1G(  )τ

τ

Figure 3.11. The polymer chain moves its center of mass and changes its orientation and in-
ternal arrangement. The displacement between monomers i and j, r1i(0) � r1j(�), is decom-
posed into three parts indicated by the arrows. Only the center-of-mass distance keeps grow-
ing with time.



second term becomes dominant. Thus,

(3.50)

and therefore �g1(�)� gives the center-of-mass diffusion coefficient.
The above discussion applies only to a long time. In a short time, ln �g1(�)� may

exhibit non-k2 behavior. In Section 3.4, we will learn in more details how S1(k,�)
depends on k and � for a bead-spring model.

3.2.7 Hydrodynamic Radius

3.2.7.1 Stokes-Einstein Equation To drag a particle suspended in a viscous
medium at a constant velocity v, a constant force of F � �v must be applied to the
particle (Fig. 3.12). The coefficient � is called the friction coefficient. Einstein
showed that the diffusion coefficient D of the particle in a quiescent solution at
temperature T is related to � by

(3.51)

This equation is the simplest form of the so-called fluctuation-dissipation theorem.
The diffusion, which is a typical equilibrium phenomenon, is related to the friction,
a typical energy dissipation phenomenon.

Stokes showed that the friction coefficient for a sphere of radius RS is given by

(3.52)

in a solvent of viscosity �s. The viscosity of a fluid expresses how difficult it is to
flow the fluid. We will learn the exact definition of viscosity in Section 3.3.1. Com-
bining the above two equations gives the Stokes-Einstein equation:

(3.53)

The radius RS is called the Stokes radius. The diffusion is faster at a higher temper-
ature, in a less viscous solvent, and for a smaller particle.

D �
kBT

6��sRS

 diffusion coefficient of a sphere

� � 6��s RS

D �
kBT

�
 Nernst –Einstein equation

� 6 ln�g1(�) ��k2 � 〈[r1i(0) � r1j(�)]2〉 : 〈[r1G(0) � r1G(�)]2〉
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F =   v

v

ζ

Figure 3.12. A particle moving at a constant velocity v in a viscous liquid needs to be pulled
by force F � � v.
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We now extend the concept of the Stokes radius to nonspherical suspensions and
molecules (Fig. 3.13). Once the center-of-mass diffusion coefficient D is measured
for the suspension or the molecule, we can introduce the hydrodynamic radius
RH by

(3.54)

For the spherical suspension, RH � RS. We can regard RH as another quantity to
characterize the dimension of the molecule.

3.2.7.2 Hydrodynamic Radius of a Polymer Chain For a linear chain molecule,
RH is proportional to Rg and RF. Therefore, RH � N �, where � � 1�2 in the theta sol-
vent and � 	 0.59 or 3�5 in the good solvent. We can prove the proportionality, as
shown below.

When all of the N monomers in the polymer chain move, each monomer re-
ceives a friction from the solvent. The overall friction, however, is not proportional
to N but rather is proportional to N�. Because � 	 1, N � 	 N. The friction of the
chain molecule is smaller than the friction nonbonded, independently moving N
monomers receive. It is explained as follows. The motion of one of the monomers
accompanies motions of adjacent solvent molecules in the same direction, and their
effect propagates to another monomer to facilitate its motion in the same direction
in an otherwise stagnant solvent (Fig. 3.14). This interaction is called hydro-
dynamic interaction. It is different from the other interactions we have seen so far.
It exists only when the particles move. Static properties such as the osmotic pres-
sure are not affected by the hydrodynamic interactions. They only affect dynamic
properties, such as diffusion, but do so strongly.

Oseen found that the magnitude of the hydrodynamic interaction between two
particles at r and r
 is proportional to �r � r
��1. The interaction decays only alge-
braically with a small exponent of �1 and therefore is long ranged. In a chain mol-
ecule, all monomers affect all other monomers because they are close to each other.

RH �
kBT

6��sD
 hydrodynamic radius

RHRS = RH

RH

sphere ellipsoid linear chain

Figure 3.13. For the center-of-mass motion, an ellipsoid with a hydrodynamic radius RH re-
ceives the same friction as a sphere of radius RH does. Likewise, a linear chain with a hydro-
dynamic radius RH diffuses with the same diffusion coefficient as the sphere of radius RH.



In Section 3.4.6, we will learn that 1�RH of the chain molecule is given as the aver-
age of the reciprocal of the distance between two monomers on the chain:

(3.55)

The average is taken with respect to possible positions of the two monomers m and
n (m � n) and then with respect to m and n that run over all monomers of the chain.

Here we calculate RH of a chain with a Gaussian conformation. Using the Gaussian
distribution given by Eq. 1.34, 〈�rm � rn�–1〉mn for a given m and n is calculated as

(3.56)

The average of �n � m��1�2 with respect to m and n is calculated as

(3.57)

Thus, RH is given by

(3.58)

RH is quite small compared with RF: RH�RF � (3��2)1�2�8 	 0.271. RH is smaller
than Rg: RH�Rg � (3�8)�1�2 	 0.665. Thus, RH 	 Rg 	 RF for a chain with a
Gaussian conformation.

The real chain has RH 	 bN �, since 〈�rm � rn� –1〉mn 	 b –1�n � m �–�. More exact
results for polymer chains in a good solvent were obtained in the renormalization

1

RH
� � 6

� �
1�2 1

b
�

8

3
 N�1�2 � 8� 2

3� �
1�2 1

bN1�2

N�2�N

0
dn�N

0
dm�n � m ��1�2 � 2N�2�N

0
2n1� 2 dn � (8�3)N�1�2

� (2� �n � m �b2� 3)�3�24� � �n � m �b2� 3 � (6��)1�2b�1�n � m ��1�2

〈 1

�rm � rn � 〉
mn

 ���

0
(2� �n � m �b2� 3)�3�2  exp ��

3r2

2�n � m �b2 � 4�r2
 

1

r
  dr

1

RH
� 〈 1

�rm � rn � 〉 hydrodynamic radius
of a polymer chain
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1

2

solvent

motion of
solvent

molecules

Figure 3.14. Movement of particle 1 generates the motion of solvent molecules, which
eases the motion of particle 2 in the same direction. Thus, the hydrodynamic interaction re-
duces friction.
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group theory and will be given in Section 3.4. The relationship, RH 	 Rg 	 RF, is
the same as for the Gaussian chain.

Table 3.1 compares various measures of the dimension for chains with an ideal-
chain conformation (or at the theta condition), excluded-volume chains, and rodlike
molecules. The latter will be considered in Section 3.5.

Figure 3.15 shows examples of RH measured by using DLS for different molecu-
lar weight fractions. Panel a was obtained for polystyrene in 2-fluorotoluene at

Table 3.1 Various Measures of the Chain Dimension

Polymer Chain RH�Rg RH�RF RF�Rg

Ideal/theta solvent* 0.665 (�(3�8)�1/2) 0.271 (�(3��2)1�2�8) 2.45 (�61�2)
Real (good solvent) 0.640 0.255 2.51
Rod-like 31�2�(ln(L�b)–� )** 1�[2(ln(L�b)–�)]** 3.46 (�121/2)

*Chains with an ideal-chain conformation.
**Depends on the rod length L and rod diameter b. � 	 0.3.
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Figure 3.15. Hydrodynamic radius RH of different molecular weights of a polymer. a: Poly-
styrene in 2-fluorotoluene at 42.6°C (good solvent). (From Ref. 30.) b: Poly(�-methyl
styrene) in cyclohexane at 30.5°C (theta solvent). (From Ref. 31.)



42.6°C (good solvent),30 and panel b was obtained for poly(�-methyl styrene) in
cyclohexane at 30.5°C (theta condition).31 In the two panels of the figure, the plots
are on a straight line, in agreement with the predicted power relationship, RH � N –�.
The exponents � obtained in the fitting are 0.567 and 0.484, slightly smaller than
the values predicted for the two environments.

3.2.8 Particle Sizing

3.2.8.1 Distribution of Particle Size It is all but impossible that every solute
molecule or particle has exactly the same hydrodynamic radius in a given solution.
There is always a distribution in RH, as illustrated in Figure 3.16. The peak position
and width of the distribution vary from sample to sample. The distribution in RH

leads to a distribution in the diffusion coefficient and therefore a distribution in the
decay rate � of �g1(�) �. Then, �g1(�) � is not a simple exponential decay.

A particle with � contributes to the measured �g1(�) � with exp(–��). Therefore,
the measured �g1(�)� is a superposition of exp(���) with different values of �:

(3.59)

where G(�) represents the contribution of each � and is normalized, i.e.,
�G(�)d� � 1. The magnitude of the electric-field autocorrelation function is pro-
portional to the scattering intensity (I � E 2). After normalization to g1(�), each con-
tribution from a different � is still weighted by the scattering intensity of particles
that exhibit the decay rate of �. Thus, G(�) is the scattering intensity-weighted
distribution.

3.2.8.2 Inverse-Laplace Transform The distribution makes �g1(�) � deviate from
a single exponential decay, as illustrated in Figure 3.17a. Conversely the analysis of
the deviation allows estimation of G(�). Mathematically, �g1(�) � is the Laplace
transform of G(�), as Eq. 3.59 shows. Then, the procedure to estimate G(�) from

�g1(�) � ��G(�) exp (���) d �
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Figure 3.16. Suspension of particles with different diameters.
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�g1(�) � is inverse-Laplace transform. There are computer program packages avail-
able for the procedure. Among others, CONTIN32 has been most frequently used
and implemented in commercial DLS measurement systems. The result of the
transformation is displayed in �G(�) on a logarithmic scale of � (Fig. 3.17b). The
following equation explains why �G(�) is plotted, not just G(�):

(3.60)

The autocorrelator computes �g1(�) � for a finite range of �, from �min to �max.
Therefore, G(�) can be estimated only in a finite range of �. Usually, the lower and
upper limits of the integral in Eq. 3.59 are 1��max and 1��min, respectively.

3.2.8.3 Cumulant Expansion The inverse-Laplace transform is a convenient
analysis method when the distribution is broad, especially bimodal or trimodal.
When the distribution is narrow and �g1(�) � is close to a single exponential decay, a
simpler analysis method, called a cumulant expansion, is more useful. In this
method, ln �g1(�) � is approximated by a polynomial of �, typically of the second or-
der. The first two coefficients represent the mean and the variance of �:

(3.61)ln �g1(�) � � �〈�〉� 	 1
2 
〈
�2〉 � 

2 � 1
6 
〈
�

 

3〉� 
3 	 · · · cumulant expansion

�g1(�) � � ��G(�) exp( � ��) d ln �

τ
ln

|g
1|

0

monodisperse

polydisperse

lnΓ

ΓG
(Γ

)
inverse-
Laplace
transform

a

b

Figure 3.17. a: In a suspension of monodisperse particles, the plot of ln �g1� is a straight
line (dashed line). Polydispersity of the particle size deviates ln �g1� (solid line) from the
straight line. b: The inverse Laplace transform of �g1(�)� gives the distribution of the decay
rate �.



where 
� � � � 〈� 〉 and the averages are weighted with G(�):

(3.62)

Problem 3.8 proves this expansion. In the absence of distribution, i.e., 
� � 0, the
second- and higher-order terms disappear, and ln �g1(�) � is a straight line. Curve-
fitting of the measured ln �g1(�) � by a polynomial gives an estimate of 〈�〉 and
〈
�2〉. As found in Problem 3.10, the diffusion coefficient estimated from 〈�〉 for a
solution of a polydisperse polymer is a z-average diffusion coefficient. Often, we
use a simple symbol of � for 〈�〉. 

3.2.8.4 Example Figure 3.18 shows an example of g2(�) (�g1(�) � on the right
axis) obtained by a commercial particle-sizing system (Beckman-Coulter, N4Plus)
for a 6.9 g/L solution of a polystyrene standard (Mw � 1.7 � 105 g/mol) in toluene
at 30°C (� � 632.8 nm). The scattering angles were 14.0, 20.5, 26.7, and 65.6°. On
a logarithmic scale of the ordinate, g2(�) [and �g1(�) �] is mostly straight at the four
scattering angles, indicating a narrow distribution in G(�). In the particle-sizing
system, the distribution of � is converted to a distribution Gd of the apparent parti-
cle diameter dapp by dapp � kBT�[3�s(��k2)]. In the small k limit and the low con-
centration limit, dapp � 2RH. Figure 3.19 displays Gd(dapp) on the logarithmic scale
of dapp, obtained from the �g1(�) � data in Figure 3.18. As expected, the CONTIN
analysis returns a single peak. The peak position and width are the same within ex-
perimental errors for the measurements at the four angles, indicating that the decay

〈�〉 � ��G(�)  d�, 〈
�2〉 � �
�2G(�)  d� , . . .
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Figure 3.18. Example of autocorrelation functions g2(�) and �g1(�)� obtained in DLS meas-
urements at four scattering angles for a dilute solution of polystyrene in toluene. The two
autocorrelation functions differ in the ordinate scale only.
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of g2(�) is due to the center-of-mass diffusion of the polystyrene molecules and that
the measurement was carried out in the range of a sufficiently small k. In fact,
kRH � 0.056 at � � 26.7°, for instance. Displaying Gd(dapp) in place of G(�) or the
distribution of the diffusion coefficient is handy when results from measurements in
different solvents and/or at different temperatures need to be compared. 

3.2.9 Diffusion From Equation of Motion

Here we look at the diffusion from another perspective. We will obtain the diffu-
sional behavior, i.e., 〈[r(t) � r(0)]2〉 � t, from the equation of motion.

A particle suspended in a liquid receives a random force f(t) when solvent mole-
cules collide with the particle. We assume that the random force has the following
statistical properties:

(3.63)

(3.64)

where A is a constant yet to be determined. The random force is, on average, zero. It
loses its memory instantaneously [�(t � t�)]. The force at a given time has nothing to
do with the force at the next moment. Figure 3.20 shows an example of such a force
(white noise).

In a viscous solvent, the motion of the particle is overdamped. Then, the equa-
tion of motion of the particle has the friction term and the force term only:

(3.65)� 

dr
dt

� f(t)

〈f(t)�f(t�)〉 � A�(t � t�)

〈f(t)〉 � 0

14.0°

20.5°

26.7°

65.6°

dapp / nm

100 101 102 103

Figure 3.19. CONTIN analysis results for the autocorrelation functions shown in Fig. 3.18. The
distribution of the apparent diameter dapp is plotted as a function of dapp in a logarithmic scale.



The mean square displacement in time t is calculated from

(3.66)

We exchange the order of the integration and the averaging:

(3.67)

With Eq. 3.64,

(3.68)

The mean square displacement is proportional to t. The particle makes a diffusional
motion on all time scales. We also find that the average displacement is zero:

(3.69)

For the mean and variance of the displacement to be identical to those of the dif-
fusion with diffusion coefficient D, 6D � A/� 2. Thus,

(3.70)

Thus, the random force satisfies

(3.71)〈f(t)�f(t�)〉 � 6kBT� �(t � t�)

A � 6D� 
2 � 6  

kBT

�
 � 

2 � 6kBT�

〈r(t) � r(0)〉 �
1

�
�t

0
dt〈f(t)〉 � 0

〈[r(t) � r(0)]2〉 �
1

� 
2
�t

0
dt1�t

0
dt2 

A�(t1 � t2) �
A

� 
2
�t

0
dt1 �

A

� 
2

 t

〈[r(t) � r(0)]2〉 �
1

� 
2
�t

0
dt1�t

0
dt2〈f(t1)�f(t2)〉

〈[r(t) � r(0)]2〉 �
1

� 
2

 〈�t

0
f(t1) dt1 ��t

0
f(t2) dt2 〉
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Figure 3.20. Example of a random force f(t) (its x component) with zero mean and no memory.

f(t)

0 t
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The magnitude of the random force is greater for a particle with a larger friction
coefficient, typically a larger particle. This random force satisfies the require-
ment of the equipartition law: thermal energy per degree of freedom is kBT�2
(Problem 3.13).

3.2.10 Diffusion as Kinetics

3.2.10.1 Fick’s Law Here, we look at the diffusion from a phenomenological
point of view. The treatment in Sections 3.2.4 and 3.2.9 needs tracing each particle
and therefore is microscopic.

We consider a container consisting of two parts that hold the solutions of the
same solute at different concentrations (see Figure 3.21). The concentration is uni-
form in each part. As soon as the partition is quietly removed, the solute starts to
move from the right compartment where the concentration is higher to the left com-
partment where it is lower. The distinct boundary becomes fuzzy. After a long time,
the concentration becomes uniform throughout the container. The figure shows also
a snapshot of the concentration profile during the equilibration process. There is a
natural tendency for the system to become uniform as it maximizes its entropy
toward the equilibrium. A spatial variation in the concentration c(r) promotes a
transfer of the solute from the more concentrated region to the less concentrated
region.

The rate of transfer is called a flux (also called a flow; but it is necessary to
avoid confusion from the macroscopic flow of the fluid). The transfer occurs in the
absence of the solvent flow as well as in the presence of the solvent flow. The flux
is defined as the mass of the solute that moves across a unit area in a unit time. The
direction of the flux is the same as that of the velocity v(r) of the solute molecules.
By definition, the flux j(r) is related to v(r) by

(3.72)j(r) � c(r)v(r)

c

c

c

time x

x

x

x

Figure 3.21. When the partition is removed, solute molecules move from the higher-concen-
tration zone to the lower-concentration zone. The concentration profiles before the partition
removal, during equilibration, and at equilibrium are shown on the right.



Figure 3.22 will help us understand this relationship. The solute molecules in a
cylinder that has a base of a unit area and a height of �v� pass the base in the next
unit time. The mass of solute molecules in the cylinder, c �v�, is by definition equal
to � j �. In the following, we consider a quiescent solution.

The local concentration variation is represented by the concentration gradient
�c(r). In one dimension, it is �c/�x (Fig. 3.23). When �c is sufficiently small, the
flux j(r) is proportional to �c(r) (Fick’s law). In the absence of the concentration
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unit
area

v

j

|v|
Figure 3.22. Flux j is defined as the number of solute molecules that pass the cross section
of a unit area in a unit time. The solute molecules in the cylinder of height �v� pass the cross
section in the next unit time.

0

0

0
x

c

x

x

∂c/∂x

flux a

b

c

j

Figure 3.23. Concentration gradient causes a flux. The illustration is for one dimension. a:
Profile of concentration c. b: Concentration gradient �c��x. c: Flux j.



DYNAMIC LIGHT SCATTERING AND DIFFUSION OF POLYMERS 195

gradient, there is no flux. On reversal of the sign of �c, j also changes its sign. We
introduce the diffusion coefficient D as the proportionality constant in

(3.73)

The minus sign is necessary to account for the transfer from the high-c region to the
low-c region. In one dimension, the flux is negative when �c/�x � 0 as indicated in
the figure. We will soon find that the diffusion coefficient defined in this way is
equivalent to the one we defined microscopically in Section 3.2.4. The diffusion
that follows this equation is called a Fickian diffusion. 

3.2.10.2 Diffusion Equation The other equation that relates j and c is from the
conservation of mass. We consider a small fixed volume V (Fig. 3.24). The rate of
change in the total mass of the solute in the volume, V(�c/�t), is equal to the nega-
tive of the integral of the surface-normal component of j over the surface of the
volume:

(3.74)

Note that j · dS accounts for the mass of the solute molecules that leave the volume
through a small area dS. The minus sign is needed because a positive j · dS means
an outflow. By Green’s theorem, the surface integral is converted to the volume in-
tegral. In the limit of small V,

(3.75)

Combining the two equations, we obtain the law of mass conservation:

(3.76)
�c

�t
	  ��j � 0 mass conservation

�
surface

j�dS � �
V
��j dr � V ��j

V 

�c

�t
� ��

surface
j�dS

j � �D�c Fick’s law

V

dS j

Figure 3.24. Flux j and the surface normal dS on a sphere of a small volume V.



With Fick’s law, we can obtain the diffusion equation:

(3.77)

which is identical to Eq. 3.37. The phenomenological definition of the diffusion
coefficient is equivalent to the microscopic definition of the diffusion coefficient.

3.2.10.3 Chemical Potential Gradient With Eq. 3.72, Fick’s law can be rewrit-
ten to 

(3.78)

where c° is a reference concentration. We recall that D � kBT�� (Eq. 3.51). In a so-
lution of a uniform temperature, Eq. 3.78 is converted to

(3.79)

In the right-hand side, kBT ln(c�c°) is the chemical potential in an ideal solution.
This equation dictates a balance in the forces acting on the solute molecule at r.
The friction �v(r) is balanced by the chemical potential gradient, resulting in the
velocity v(r) of the solute molecule. The chemical potential gradient causes a trans-
fer of matter from a higher potential to a lower potential, just as a force on the
particle moves it.

3.2.11 Concentration Effect on Diffusion

3.2.11.1 Self-Diffusion and Mutual Diffusion When each suspension or solute
molecule is moving independently, the diffusion is a single-particle phenomenon.
The latter is observed in the dilute solution limit where there are no other solute mol-
ecules in the neighborhood. When other solute molecules are nearby, the diffusion is
strongly affected by the other solute molecules. The second terms in Eqs. 3.17 and
3.45 are not negligible any more. What DLS measures is S(k, �), not S1(k, �). Only
when c « c*, S(k, �) is equal to S1(k, �). Otherwise, the apparent diffusion coefficient
D estimated from the slope of �g1(�)� depends on c. We will learn how the apparent
D depends on c.

To have an intuitive understanding of the concentration effect, we consider a sus-
pension of hard spheres. Suppose that a portion of the suspension acquires tem-
porarily a higher concentration than the surrounding, as shown in Figure 3.25a. The
particles in the locally concentrated region tend to move away from each other, re-
sulting in the collision of black particles with white particles (Fig. 3.25b). Upon
collision, the particles bounce back, although the motion is overdamped in a vis-
cous environment (Fig. 3.25c). When we trace the motion of each black particle,
the collision makes the square displacement smaller compared with the one in the
absence of collisions. The effect of the local concentration fluctuation is, however,

� v(r) � ��[kBT  ln (c(r)�c�)]

v(r) � �D� ln (c�c�)

�c

�t
� � ��j � D���c � D�2c
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transmitted farther by the white particles because of the collisions. When we trace
the distance between the black particle and the white particle, the collision in-
creases the distance more quickly compared with the counterpart in the absence of
collisions.

The first concept, tracing each particle, is for the self-diffusion, and the second
for the mutual diffusion. The self-diffusion coefficient Ds is defined for the mo-
tion of a given particle as

(3.80)

and the mutual diffusion coefficient Dm is defined for the motion of two particles as

(3.81)

At sufficiently low concentrations, both Ds and Dm are equal to D0, the diffusion
coefficient of an isolated solute (Problem 3.14). With an increasing concentration,
Ds tends to decrease but Dm tends to increase (Fig. 3.26). There are exceptions.

3.2.11.2 Measurement of Self-Diffusion Coefficient What is measured in DLS
is Dm. DLS cannot measure Ds because it does not distinguish one solute from an-
other. It is necessary to use other more specialized techniques such as forced
Rayleigh scattering (FRS), fluorescence recovery after photo-bleaching
(FRAP), and pulsed-field gradient nuclear magnetic resonance (PFG-NMR).

The details of the instruments for the first two optical methods are explained, for
instance, in Ref. 33. In short, FRS creates a temporary diffraction grating by inter-
secting two beams (write-beam) split from a strong, short-wavelength laser at a low
angle. The polymer molecules must be labeled with a fluorescent dye. The grating
is an alternate pattern of ground-state molecules and excited-state molecules. After
the write-beam is turned off, a weak read beam is fired onto the grating to monitor

Dm � lim
t : �

〈[r1(t) � r2(0)]2〉
6t

  mutual diffusion coefficient

Ds � lim
t : �

〈[r1(t) � r1(0)]2〉
6t

  self-diffusion coefficient

Figure 3.25. A temporary local congestion of spherical particles is dispersed by diffusion
and collisions. Black spheres (in a) move to collide with white spheres (b) and bounce back
(c). Propagation of the local concentration fluctuation (in a) is carried faster and farther by
the white spheres (c).

a b c



the decay in the intensity of the diffracted beam as the polymer chains diffuse to
diminish the contrast. The decay rate gives an estimate of the self-diffusion coeffi-
cient. In FRAP, typically a circular spot beam bleaches the dyes attached to polymer
chains. After the laser is turned off, the unbleached polymers sitting outside the spot
diffuses into the circular domain to recover a uniform dye distribution. The build-up
transient of the dye concentration in the circle gives an estimate of the self-diffusion
coefficient. However, instruments that use these techniques are not commercially
available.

In PFG-NMR, a pulsed gradient magnetic field is applied across a sample in
phase to a spin-echo RF pulse sequence. The amplitude of the free induction decay
is given by S1(q, �) with q � ��g, where � is the magnetogyric ratio of the nucleus
measured, � is the duration of the gradient field, g is the field gradient, and � is
the separation between successive field pulses. By changing the field gradient, the
scattering function is measured at different wave vectors, allowing the user to
estimate Ds.

Although Ds cannot be measured in DLS, a closely related tracer diffusion
coefficient Dt can be measured. In the tracer diffusion, the motion of a labeled
solute called a probe or a tracer is traced selectively. A second solute called a
matrix is added to the solution and its concentration is varied, whereas the concen-
tration of the probe molecules is held low. The matrix must be invisible, and the
probe must be visible. We can give a large contrast between the matrix and probe
by choosing a pair of solvent and matrix that are nearly isorefractive, i.e., having
the same refractive index. Then, the light scattering will look at the probe mole-
cules only. For instance, we can follow the tracer diffusion of polystyrene in a
matrix solution of poly(dimethyl siloxane) in tetrahydrofuran.

3.2.11.3 Concentration Dependence of the Diffusion Coefficients Now we
consider the effect of the concentration on the diffusion coefficients quantitatively.
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Dm

Ds

D0

c0

Figure 3.26. As the solute concentration c increases, the mutual diffusion coefficient Dm

usually increases and the self-diffusion coefficient Ds decreases. In the low concentration
limit, Dm and Ds are equal to D0.
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First, we consider the concentration effect on the self-diffusion coefficient. Other
molecules tend to interrupt the otherwise free diffusion of a given solute molecule.
In effect, the presence of other molecules increases the friction coefficient:

(3.82)

where �0 is the friction coefficient in the dilute solution limit, and �0�1 (�0) is the
first-order concentration coefficient. Then,

(3.83)

The self-diffusion coefficient decreases linearly with c at low concentrations.
For the mutual diffusion coefficient, we start with generalizing Eq. 3.79 to an

equation that applies to nonideal solutions:

(3.84)

In terms of flux,

(3.85)

Now we use the virial expansion for � (Problem 2.9):

(3.86)

Its gradient is given as

(3.87)

Then,

(3.88)

where Eq. 3. 82 was used for �. Thus, Dm changes with c as

(3.89)

with a linear coefficient kD given by

(3.90)kD � 2A2 
M � �1 � vsp  linear coefficient

Dm � D0(1 	 kDc 	 · · ·)  low concentrations

j�� 

kBT

�
 (1	 (2 A2 

M� vsp)c 	 …) �c � �
kBT

� 0

 [1	(2A2 
M ��1� vsp)c 	 …]�c

�� � kBT [c�1 	 (2A2 
M � vsp) 	 …]�c

� � kBT [ln(c�c�) 	 (2A2M � vsp)c 	 …]

j(r) � �
c(r)

�
�� (r)

�v(r) � ���(r)

Ds �
kBT

�
�

kBT

�0

 (1 � �1c 	 · · ·)

� � �0(1 	 �1c 	 · · ·)



In a sufficiently good solvent, 2A2M � �1 	 vsp and therefore Dm increases with c.
As the solvent quality becomes poorer, A2 decreases and therefore kD becomes
eventually negative.

Figure 3.27 shows an example of the concentration dependence of Dm in a
theta solvent condition.31 The light-scattering autocorrelation functions were
measured for solutions of poly(�-methyl styrene) fractions of different molecular
weights in the theta solvent of cyclohexane at 30.5°C. The first-order concentra-
tion coefficient is negative because A2 � 0 at this temperature and therefore 
kD � �(�1 	 vsp) � 0.

So far, we have assumed that the solvent remains quiescent while the solute mol-
ecules move. There is, however, always a backflow of solvent molecules into the
space originally occupied by the solute. This effect is to decrease Dm�D0 by vspc,
where vspc is the fraction of the volume occupied by the polymer in solution. Then,

(3.91)

3.2.12 Diffusion in a Nonuniform System

In some systems, the chemical potential depends explicitly on r, not only through
c(r). An example is charged colloidal particles in an electric field. Here, we con-
sider diffusion of particles in an external field such as an electric field. We limit the
discussion to the low concentration limit. 

kD � 2A2M � �1 � 2vsp with backflow correction
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Figure 3.27. Mutual diffusion coefficient Dm of poly(�-methyl styrene) in a theta solvent at
different concentrations in the dilute regime. The molecular weight of the polymer is indi-
cated adjacent to each plot. (From Ref. 31.)
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When a stationary external field is applied, the chemical potential has an extra
term UE(r) due to the field:

(3.92)

Charged particles will experience UE(r) � (charge) � (electrostatic potential at r),
for instance. The diffusion equation is rewritten to

(3.93)

We can immediately obtain the equilibrium distribution ceq(r) from �ceq 	
ceq�UE�kBT � 0 as

(3.94)

which is the Boltzmann distribution for particles with space-dependent energy of
UE(r).

3.2.13 PROBLEM

Problem 3.1: We consider a walk on a cubic lattice. Its ith step motion 
ri in
step time t1 satisfies

where p � 1 is a constant. What is the mean square displacement in N steps?
Can we define the long-time diffusion coefficient? If yes, what is it?

Solution 3.1: The mean square displacement of N steps is

For N » 1, 〈
r2〉 � b2(2p 	 1)N. Therefore, the long-time diffusion coeffi-
cient D can be defined. It is

Problem 3.2: Use the definition of S1(k, �) (Eq. 3.26) and the diffusion equa-
tion for P(r, r�; �) (Eq. 3.35) to show that S1(k, �) � S1(k, 0) exp(�Dk2�).

D �
〈
r2〉
6Nt1

�
b2(2p 	 1)

6t1

 � Nb2 	 2(N � 1)pb2 � b2[(2p 	 1)N � 2p]

 〈
r2〉 � �
N

i, j�1
〈
ri�
rj〉 � �

N

i�1
〈
ri

2〉 	 �
N�1

i�1
〈
ri	1 �
ri〉 	 �

N

i�2
〈
ri�1 �
ri〉

 〈
ri�
rj〉 � �b2

pb2

0

(i � j)

( �i � j � � 1)

(otherwise)

 〈
ri〉 � 0

ceq(r) � const. � exp(�UE(r)�kBT )

�c

�t
� D��(�c 	 c�UE  

� kBT)

� � kBT � ln(c �c�) 	 UE(r) � kBT



Solution 3.2: From Eqs. 3.26 and 3.35,

Integral by parts yields

The solution of this differential equation is given as

Problem 3.3: Use Eq. 3.26 to show that

without relying on the Taylor expansion.

Solution 3.3: By definition,

Because

we obtain

 � �
�2

�k2  S1(k, �)�
k�0

 � �
�2

�k2 �dr exp[ik �(r � r�)] P(r, r�; �)�
k�0

 〈(r � r�)2〉 � ��dr  

�2

�k2   exp[ik�(r � r�)]�
k�0

P(r, r�; �)

(r � r�)2 � �
�2

�k2   exp[ik �(r � r�)]�
k�0

〈(r � r�)2〉 � �dr(r � r�)2
 P(r, r�; �)

〈(r � r�)2〉 � �
�2

�k2 S1(k, �)�
k�0

S1(k, �) � S1(k, 0) exp(�Dk2�)

 � �Dk2�drP(r, r�; �) exp[ik�(r � r�)] � �Dk2S1

 � D�drP(r, r�; �) (�k2 exp[ik�(r � r�)])

 
�

��
 S1(k, �) � D�drP(r, r�; �)�2

 

 exp[ik�(r � r�)]

 � �dr exp[ik�(r � r�)]D�2P(r, r�; �)

�

��
 S1(k, �) � �dr exp[ik�(r � r�)] 

�

��
 P(r, r�; �)
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Problem 3.4: The viscosity of water is 0.893 cP at 25°C and 0.355 cP at 80°C.
How much faster is the diffusion at 80°C compared with 25°C for a particle
suspended in water?

Solution 3.4:

Problem 3.5: For the same number of monomers, which conformation has
stronger hydrodynamic interactions, flexible or semirigid?

Solution 3.5: Flexible chain; For the same pair of monomers separated by a
given distance along the chain contour, the spatial distance between them is
shorter in the flexible chain than it is in the semirigid chain.

Problem 3.6: Use Eq. 3.55 to calculate RH,star of a star polymer consisting
of nA arms that have a conformation of a Gaussian chain with N1 segments of
length b. What is gH # (RH,star�RH,lin)2, where RH,lin is for a linear chain of nAN1

segments? Compare gH with gg defined as the ratio of the mean square radii of
gyration for the same pair of polymers (Eq. 1.85).

Solution 3.6: We define rim and rjn in the same way as we did in Section 1.6.
RH,star

–1 � 〈�rim � rjn�–1〉 is calculated separately for rim and rjn on the same
arm and the pairs on different arms. For the pair on the same arm,

For pairs on different arms,

The two types of pairing occur with probabilities of 1�nA and 1 � 1�nA,
respectively. Then, RH,star is given by

The RH of a linear polymer with nAN1 segments is

1

RH,lin
� 8� 2

3 �
1�2 1

b(nAN1)1�2

 � 8� 2

3 �
1�2 1

bN1
1�2

 
(21�2 � 1)(21�2 	 nA)

nA

 
1

RH,star
� � 6

 �
1�2 1

b
�

8

3
 

1

N1
1�2

 
(21�2 � 1)(21�2 	 nA)

nA

� 

6 �
1�2

b 〈 1

�rim � rin � 〉 �
1

N1
2 �N1

0
dn�N1

0
dm(n 	 m)�1�2 �

8

3
 (21�2 � 1) 

1

N1
1�2

� 

6 �
1�2

b 〈 1

�rim � rin � 〉 �
1

N1
2 �N1

0
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dm�n � m ��1� 2 �

8

3
 

1

N1
1�2

D80�C
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�

273.15 	 80
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�

0.893 cP
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The ratio gH is

The following figure compares gH with gg:

gH # � RH,star

RH,lin
�

2

�
nA

[(21�2 � 1)(21�2 	 nA)]2
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Problem 3.7: What is the addition rule for Rg and RH when an a block with Rga

and RHa and a b block with Rgb and RHb are joined to form an a–b diblock
copolymer? Assume that the two blocks follow the same chain statistics.

Solution 3.7: The addition rule is

Problem 3.8: Derive Eq. 3.61 from Eq. 3.59.

Solution 3.8: From Eq. 3.59,

 �2��g1(�) ��1��G( � ) exp (���) d� �
3

	 3�g1(�) ��2��2G(� ) exp(���) d ���G( � ) exp(���) d�

� ��g1(�) ��1�� 3G( � )exp(���) d �
�3

�� 
3

  ln�g1(�) �

���g1(�) ��1��G( � ) exp (���) d ��
2

� �g1(�) ��1�� 2G( � ) exp(���) d�
�2

�� 2
  ln�g1(�) �

�

��
  ln�g1(�) � � ��g1(�) ��1��G( � ) exp(���) d �

Rg
1�� � Rga

1�� 	 Rgb
1��, RH

1�� � RHa
1�� 	 RHb

1��
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The derivatives at � � 0 are

Thus, the Taylor expansion of ln �g1(�) � at � � 0 is expressed as

Problem 3.9: Explain why �g1(�) � deviates upward from the straight line for a
polydisperse system?

Solution 3.9: In the final answer of Problem 3.8, the second-order term is al-
ways positive.

Problem 3.10: When the DLS measurement is carried out for a solution of a
polymer with a molecular weight distribution, how is G(�) weighted? What
average of diffusion coefficient does the initial slope of �g1(�)� give? Compo-
nent i of the polymer with molecular weight Mi is dissolved in the solution at
concentration ci. 

Solution 3.10: The excess scattering intensity Ii by component i is proportional
to ciMi (Eq. 2.118 with k � 0). Thus, the weight for the component in G(�)
is ciMi, and

where Di is the diffusion coefficient of component i. The initial decay rate is

The average of D is weighted by ciMi:

〈D〉 �

�
i

Di 
ci 

Mi

�
i

ci 
Mi

�
�

� t
 ln�g1(�) ��

��0
�

�ci 
Mi 

Di

�ci 
Mi

 k2

�g1(�) � � �
i

ci 
Mi  exp(�Di 

k2�)

ln�g1(�) � � �〈� 〉� 	 1
2 
〈
�2〉� 

2 � 1
6 
〈
�

 

3〉� 
3 	 · · ·

�3

�� 
3

 ln�g1(�) ��
��0

� �〈�
  

3〉 	 3〈� 
2〉 〈�〉 � 2〈�〉3 � �〈
� 3〉

�2

�� 
2

 ln�g1(�) ��
��0

� 〈�2〉 � 〈�〉2 � 〈
�2〉

�

��
 ln�g1(�) ��

��0
� ���G(�) d� � �〈�〉



Because ciMi is proportional to the product of the weight fraction and Mi, the
above average is a z-average.

Problem 3.11: DLS measurement is conducted for a dilute ternary solution of
two different polymers a and b in a non-selective solvent. The two polymers
are dissolved at concentrations ca and cb. The differential refractive index of
polymer a in the solvent is dn�dca and that of polymer b is dn�dcb. We
assume that the two polymers are monodisperse with molecular weights Ma

and Mb, and the decay rates in �g1(�)� measured for a binary solution of poly-
mer a (i.e., polymer a 	 the same solvent) and another binary solution of
polymer b are �a and �b, respectively. Find the apparent distribution G(� ) for
the ternary solution. What is �g1(�)� for the solution? Assume that the two
polymers are molecularly dispersed in the ternary solution.

Solution 3.11: G(�) � Ga� (� � �a) 	 Gb� (� � �b), where

Then,

and we obtain

Solution 3.12: In principle, the particle-sizing system should be able to find the
distribution of molecular weight M of a polymer in solution. Assume a
narrow distribution of M around given by

which is obtained from Eq. 1.102 with M � 	 
M ( « 1). The
diffusion coefficient D is related to M by D � where is theDD(M � M)��

�
M�M �M

M 2f (M) d ln M � (2M2� 2)�1�2  exp��

M2

2M2�2 � d
M

M

�g1(�) � �
� dn

dca
�

2

ca 
Ma  exp(��a�) 	 � dn

dcb 
�

2

cb 
Mb 

exp(��b�)

� dn

dca
�

2

ca 
Ma 	 � dn

dcb
�

2

cb 
Mb

 

G(�) �
� dn

dca
�

2

ca 
Ma�(� � �a) 	 � dn

dcb
�

2

cb Mb�(� � �b)

� dn

dca
�

2

caMa 	 � dn

dcb
�

2

cb Mb

Ga � � dn

dca
�

2

ca 
Ma, Gb � � dn

dcb
�

2

cbMb
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value of D for M � . Let 
D � D � 〈D 〉, where

What is 〈
D 2〉�〈D 〉2? 

Solution 3.12: With ,
. Then,

Because 

Thus,

Because � 2 � lnPDI from Eq. 1.106,

Note 〈
D2〉�〈D〉2 � 〈
�2〉�〈 �〉2.

Problem 3.13: Show that, when a particle of mass m receives a random force
f(t) with 〈f(t)〉 � 0 and 〈f(t) ·f(t�)〉 � 6kBT�� (t � t�), its average kinetic energy
satisfies the equipartition law: m〈v2〉�2 � (3�2)kBT [kBT�2 per degree of
freedom, (3�2)kBT for 3D].

Solution 3.13: The equation of motion of the particle (Langevin equation) is

Its solution is given as

v(t) � m�1�t

��

f (t1) exp [(� � m)(t1 � t)]dt1

f � m 

dv
dt

	 �v

〈
D2〉�〈D〉2 � �2  ln PDI � �
1
4 ln PDI
9
25 ln PDI

(theta solvent)

(good solvent)

〈
D2〉�〈D〉2 � � 2�2

〈
D2〉 � D2 � 2�(
M � M)2(2M2�2)�1�2  exp ��

M2

2M2�2 � d
M � D2 � 2�2


D � �D�
M � M,

〈D〉 � �D(1 � �
M � M)(2M2� 2)�1�2  exp ��

M2

2M2�2 � d
M � D

�
M �M)
	D(1 �D � D(1 	 
M �M)��M � M(1 	 
M � M )

〈…〉 # �… (2M 2�2)�1�2 exp��

M 2

2M 2�2 � d
M

M



Then,

which leads to m〈v2 〉�2 � (3�2)kBT.

Problem 3.14: Show that Dm defined by Eq. 3.81 becomes equal to D0 in the
dilute solution limit.

Solution 3.14: In the dilute solution limit, displacement of particle 1 has
nothing to do with particle 2. Thus,

When t : �, the first term is dominant. 

Problem 3.15: What is the diffusion equation for a suspension of particles
when there is a macroscopic flow in the fluid?

Solution 3.15: The flow adds a term to the flux j:

With Eq. 3.76,

Problem 3.16: A linear flexible chain is tethered to the surface of a spherical
molecule. The sphere-chain molecules are suspended in a solvent that is
isorefractive with the chain portion but not with the sphere portion. The sol-
vent is good to both the sphere and the chain. Answer the following questions
regarding the static and dynamic light scattering of the solution.

�c

�t
� D�2c � ��(cv)

j � �D�c 	 cv

 v(r)

 � 〈[r1(t) � r1(0)]2〉 	 0 	 〈[r1(0) � r2(0)]2〉

 � 〈[r1(t) � r1(0)]2〉 	 〈[r1(t) � r1(0)][r1(0) � r2(0)]〉 	 〈[r1(0) � r2(0)]2〉

〈[r1(t) � r2(0)]2〉 � 〈[r1(t) � r1(0) 	 r1(0) � r2(0)]2〉

 � 6kBT�m�2�t

��

dt1  exp [(2� � m)(t1 � t)] �
3kBT

m

 � 6kBT�m�2�t

��

d t1�t

��

d t2�(t1 � t2) exp[(� � m)(t1 � t 	 t2 � t)]

 〈v(t)2〉 � m�2�t

��

dt1�t

��

dt2 
〈f (t1)�  f(t2)〉 exp [(� � m)(t1 � t 	 t2 � t)]

208 DYNAMICS OF DILUTE POLYMER SOLUTIONS



VISCOSITY 209

(1) Are the apparent Rg and A2 estimated in the Zimm plot different from
those obtained for solutions of spherical molecules without a tethered
chain? If yes, what is the difference?

(2) How about D0 and kD in the expression of the mutual diffusion coefficient
Dm � D0(1 + kDc)?

Solution 3.16 (1): Because the scattering comes only from the spheres, Rg is the
same. Because A2,sphere « A2,linear , A2 is greater when a chain is tethered.

Solution 3.16 (2): D0 is smaller. There is now extra friction. kD is greater be-
cause of the greater A2.

Problem 3.17: In the preceding problem, another solvent that gives
(dn/dc)sphere 	 (dn/dc)chain � 0 (the refractive index of the solvent is exactly the
average of the refractive indices of the sphere and the chain) was used. The sol-
vent is good to both the sphere and the chain. Answer the following questions.

(1) Are the apparent Rg and A2 estimated in the Zimm plot different from
those obtained for solutions of linear chains without a sphere tag? If yes,
what is the difference?

(2) How about D0 and kD?

Solution 3.17 (1): Rg is slightly larger because of the sphere tag. A2 is smaller.

Solution 3.17 (2): D0 is smaller. kD is smaller.

3.3 VISCOSITY

3.3.1 Viscosity of Solutions

3.3.1.1 Viscosity of a Fluid Solutions of a high-molecular-weight polymer, even
at low concentrations, can flow only slowly. Addition of a small amount of the
polymer to the fluid can make it viscous, thereby preventing unwanted turbulence
in the flow.

Let us consider a fluid filling a space between two parallel plates, as illustrated
in Figure 3.28. The bottom plate does not move, but the top plate slides in the y
direction without changing the distance to the stationary plate. When the fluid
adjacent to the plate sticks to the plate (nonslip boundary condition), the fluid
moves in the same direction. Near the bottom plate, the fluid barely moves. How-
ever, with an increasing distance from the bottom plate, the fluid moves faster. As
long as the flow is sufficiently slow, the fluid flows parallel to the plates. In other
words, the velocity of the fluid has only an x component (vx). This flow mode is
called a laminar flow. We can regard the fluid as a stack of sheets, each sliding
against the sheet beneath it. The velocity of the sheet, vx, changes linearly with y,



the distance from the stationary plate. The gradient of vx with respect to y, �vx��y,
is called the velocity gradient.

To move the top plate at a constant velocity, a constant force must be applied in
the x direction. The same applies to any small volume of the fluid. We consider a
small disk parallel to the plates at distance y from the bottom plate (see Fig. 3.29).
The disk has a height of dy. The fluid on the lower base flows at vx, and the fluid on
the upper base flows at vx 	 (�vx��y)dy. To make this velocity difference possible,
a constant force needs to be exerted on the disk in the x direction. The force per
area is called shear stress and has a dimension of the pressure. The shear stress �yx

denotes the force per area in the x direction exerted across the plane normal to y. To
be precise, � is a tensor of the second rank. It is symmetric, that is, �yx � �xy, and
so forth. The regular pressure is expressed as �xx, �yy, and �zz. In the isotropic fluid,
�xx � �yy � �zz, and it is called hydrostatic pressure.

We next examine the relationship between �yx and �vx��y. When �vx��y � 0,
�yx � 0. If there is no velocity gradient, then no force exists. When flow direction
changes, both �yx and �vx��y change their signs. Therefore, �yx is proportional to
�vx��y when �vx��y is sufficiently small (Newtonian fluid):

(3.95)�  

�vx

�y
� �yx
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vx

y

x

stationary plate

moving plate

Figure 3.28. Fluid between a stationary bottom plate and a moving top plate. The velocity
of the fluid is parallel to the plates and is proportional to the distance from the bottom plate,
thereby generating a uniform velocity gradient.

vx

vx + (∂vx/∂y)dyσ yx

flowshear stress
a b

dy

Figure 3.29. A small, thin disk parallel to the plates in Fig. 3.28. a: A shear stress �yx must
be applied to the disk to have a different velocity between the upper base and the lower base.
b: Side view.
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The proportionality coefficient � is called the viscosity. Because �vx��y has a di-
mension of s�1 and �yx has a dimension of N/m2, the unit of � is N�s�m2 �
kg/(m�s) in the SI unit. In the cgs system, the unit is g/(cm �s), which defines
poise. Because most low-molecular-weight liquids have a viscosity of around 0.01
poise at room temperature, centipoise [cP; equal to 0.01 poise] is commonly used
for the unit of viscosity. Note that 1 cP � 10�3 kg/(m�s).

Equation 3.95 illustrates that, to realize the same velocity gradient, a fluid with a
greater � needs a larger shear stress. A greater force is needed to move the top plate
at the same velocity. The viscosity is a measure for the resistance of the fluid to
flow. The viscosity of the fluid sensitively depends on the temperature. Figure 3.30
shows the dependence for water, acetone, and cyclohexanone. The temperature
dependence of viscosity is listed in reference books34 for most organic solvents.

3.3.1.2 Viscosity of a Solution Now we learn how to express the concentration
dependence of the viscosity in solutions. When the concentration c, expressed in
g�L, is sufficiently low, the viscosity � of the solution is not much different from
the viscosity �s of the pure solvent. The ratio of � to �s is called the relative visco-
sity. Although the ratio is dimensionless, it is customary to use the symbol �r for
the relative viscosity. When c is low,

(3.96)

Figure 3.31 illustrates how �r changes with c. The linear coefficient [�] is called
the intrinsic viscosity. It can be obtained as the slope in the plot of �r as a function
of c in the low concentration limit:

(3.97)[�] # lim
c : 0

�r � 1

c
� lim

c : 0

� � �s

c�s
 intrinsic viscosity

�r #
�

�s
� 1 � [�]c � Kv 

c2 � · · · relative viscosity
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Figure 3.30. Viscosity � of water, acetone, and cyclohexanone at different temperatures.



The dimension of [�] is (concentration)�1. As we will learn in Section 3.3.3, how
[�] of the polymer solution depends on the molecular weight of the polymer gives a
hint on the conformation of the polymer. The second-order coefficient Kv can be
positive or negative.

Sometimes, the specific viscosity �sp, defined as �sp # �r � 1, is used:

(3.98)

The reduced viscosity �red refers to the ratio of �sp to c:

(3.99)

It has a dimension of (concentration)�1. Figure 3.32 illustrates how �red changes
with c.

�red # �sp  
�c �

� � �s

�sc
� [�] � Kv 

c � · · · reduced viscosity

�sp # �r � 1 �
� � �s

�s
� [�]c � Kv 

c2 � · · · specific viscosity
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ηr

1

c

Kv  > 0

slope = [  ]η

Kv  < 0

Figure 3.31. Relative viscosity �r plotted as a function of c. The slope in the low c limit
gives [�]. The plot deviates upward or downward, depending on the sign of Kv.

ηred

c

Kv  > 0

Kv  < 0

[  ]η

Figure 3.32. Reduced viscosity �red plotted as a function of c. The intercept is [�]. The
slope of the tangent at c � 0 gives Kv.
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The reciprocal of the intrinsic viscosity is often used to represent the overlap
concentration of a given polymer: c* � 1�[�] (Eq. 1.110). It means that we can ex-
pect the polymer solution at c* to be about twice as viscous as the pure solvent.

3.3.2 Measurement of Viscosity

Automated viscometers are commercially available. To measure the viscosity of liq-
uids in the centipoise range, it is, however, more common to use a capillary flow
viscometer, unless the measurement is routinely conducted. This classical method is
inexpensive, yet can measure the viscosity with a sufficient accuracy.

Figure 3.33 illustrates an Ubbelohde viscometer, an improved version of an
Ostwald viscometer. The main part on the left has a straight section of capillary and
a large cavity above the section. It is imperative that the capillary be straight and its
cross section be uniform. Markers are inscribed above and below the cavity.
A reservoir is on the bottom of the right side. A fluid is poured into the reservoir
and drawn into the cavity by suction. The upper level of the fluid must be raised
above the top marker, and the lower level of the fluid must be below the lower end
of the capillary. The capillary must be filled with the fluid. The viscometer is held
vertically. The suction is then released. As the fluid flows down, the upper level of
the fluid passes the top mark and eventually the lower mark as well. The time be-
tween these two events, called an efflux time, is recorded. Measurement is carried
out in a temperature-controlled bath.

capillary

markers

reservoir

cavity

Figure 3.33. Ubbelohde viscometer. The efflux time between the time when the liquid level
crosses the upper marker and the time when it crosses the lower marker is measured.



The measurement is based on the capillary flow. If the flow is slow and therefore
laminar, the velocity profile in the capillary is of a parabolic cone. The velocity
maximizes at the center line and declines to zero toward the wall (Fig. 3.34). The
Poiseuille law holds for the viscosity of the fluid and the pressure drop 	P along
the length l of the capillary (Fig. 3.35):

(3.100)

where r is the radius of the capillary and V is the volume of the fluid that flows in
time t. In the viscometer in Figure 3.33, V is the volume of the cavity between the
two markers.

The pressure difference can be generated by a liquid pump, but, in the capillary
viscometer in the vertical position, it is the gravity that causes 	P, which is given by

(3.101)

where 
liq is the density of the liquid, and g is the acceleration by the gravity. Equa-
tions 3.100 and 3.101 give the kinematic viscosity vkin defined as vkin # ��
 liq:

(3.102)

Note that �r 4g�(8V) is a constant for a given viscometer. The constant can be
determined by using a fluid of a known kinematic viscosity. Once calibrated, the

�kin #
�


liq

�
�r4g

8V
 t

	P � 
liq 
gl

� �
�r4t	P

8Vl
 Poiseuille flow
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Figure 3.34. Cross section of the flow in the capillary. The flow velocity is parallel to the
center line of the capillary. Velocity field is parabolic.
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kinematic viscosity can be measured for any fluid from the measurement of the
flow time. Together with the density, the viscosity of the fluid can be determined.
Alternatively, we can use the formula of

(3.103)

to obtain the viscosity �1 of a solution (density 
1) from the measurement of the ef-
flux time t1, if the efflux time t2 of a liquid with a known viscosity �2 and density 
2

is measured for the same viscometer. The density of the solution at a given concen-
tration can be estimated from the densities of the solvent and the polymer by
assuming additiveness of the volume.

If the fluid is too viscous, the elution takes too long. If it is too fluid, the flow
will be too fast, causing a nonlaminar flow. A given viscometer can be used for a
finite range of viscosity. To allow for the viscosity measurement of fluids in a wide
range of viscosity, Ubbelohde viscometers are available in different radii of the
capillary.

3.3.3 Intrinsic Viscosity

The intrinsic viscosity [�] is a quantity characteristic of a polymer. It represents an
increase in the solution viscosity when the concentration is raised to a certain level.
As expected, a polymer molecule with a greater dimension has a larger [�].

�1

�2
�


1t1


2t2

Figure 3.35. Flow in a vertical capillary. The pressure drop 	P over the length l of the capil-
lary by the gravity causes the flow.

2r

l

flow

∆P



Experimentally, it is expressed by Mark-Houwink-Sakurada equation:

(3.104)

where KM is a constant of the unit of L/g, and  is called a Mark-Houwink-
Sakurada exponent. Note that KM and  are different from polymer to polymer
and can depend on the solvent as well.

The classical method to determine KM and  of a given polymer is as follows.
First, prepare fractions of different molecular weights either by synthesis or by frac-
tionation. Next, make dilute solutions of different concentrations for each fraction.
Measure the viscosity of each solution, plot the reduced viscosity as a function of
polymer concentration, and estimate [�] for each fraction. Plot [� ] as a function of
the molecular weight in a double logarithmic scale. This method has been exten-
sively used to characterize polymer samples because the exponent  provides a
measure of the chain rigidity. Values of  are listed in Table 3.2 for some typical
shapes and conformations of the polymer. The value of  is around 0.7–0.8 for
flexible chains in the good solvent and exceeds 1 for rigid chains. In the theta sol-
vent, the flexible chain has  � 0.5.

Apparently,  is greater for a more extended conformation. It is reasonable because
a polymer molecule with a greater dimension for a given contour length will experi-
ence a greater friction to move in the solvent. We will obtain the formulas of [�] for
linear flexible chains in the theta solvent and the good solvent in the next section.

SEC equipped with a viscosity detector and a light-scattering detector in tandem
with a concentration detector (triple detector SEC) has been recently and increas-
ingly used to obtain the Mark-Houwink-Sakurada plot. Figure 3.36 illustrates the
scheme. The advantage is obvious. What is needed for the plot is only one polydis-
perse fraction of the polymer. As the polymer is separated by the SEC columns ac-
cording to its dimension, the eluent containing the polymer is immediately led to
the detectors in nearly simultaneous measurement of the solution viscosity, the con-
centration, the molecular weight, and the radius of gyration. Because the concentra-
tion is sufficiently low, the second- and higher-order terms are negligible in
Eq. 3.96. Then, the ratio of the viscosity of the eluent to that of the pure solvent
gives [�] with the information of the concentration to be obtained in the concentra-
tion detector. Figure 3.37 shows an example of such a measurement.35 The samples
were fractions of poly(vinyl neo-decanoate) prepared in radical polymerization and

[�] � KM 
(M�(g/mol)) Mark -Houwink -Sakurada equation
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Table 3.2 Mark-Houwink-Sakurada Exponents

Conformation 

Linear flexible (theta solvent) 0.5
Linear flexible (good solvent) 0.7–0.8
Rigid �1
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pulsed laser polymerization. The mobile phase was tetrahydrofuran. The slope  is
0.70 for most of the data, indicating a flexible chain conformation.

3.3.4 Flow Field

In Section 3.3.1, an example of flow fields was shown. We consider a flow v at r
given as

(3.105)

where � is the velocity gradient tensor defined as

(3.106)

Here, rx � x, for instance. In the example in Section 3.3.1, the flow field was a
shear flow in the x direction (Fig. 3.38a). Then, �xy � � is the only nonzero ele-
ment in �:

(3.107)� � �0 � 0

0 0 0

0 0 0
� shear flow

�� �
�v

�r�

  (, � � x, y, z)

v � � r

Iex(  )θ

c

light
scattering
detector

refractive
index
detector

viscosity
detector

–   sηη

[  ]η
M

M

[  ]η

columns

Figure 3.36. Size exclusion chromatography system with an on-line viscometer and a light-
scattering detector allows to create the Mark-Houwink-Sakurada plot without fractionating
the polymer somewhere else. The concentration is detected by a refractive index detector or
an ultraviolet absorption detector.



where the velocity gradient � is also called a shear rate. The flow field generated
by this � is

(3.108)

It is convenient to express [�] in terms of the shear stress. In the shear flow, the
shear stress changes from �yx � �s� for the pure solvent to �yx � 	�yx � �� for
the solution of concentration c (c « c*). Then, from Eq. 3.97,

(3.109)

When 	�yx is calculated up to the linear term of �, this equation gives �-independ-
ent intrinsic viscosity. The latter is called a zero-shear viscosity.

Another flow field often used in theories and experiments is an elongational
flow (Fig. 3.38b). Its � is given by

(3.110)� � ���̇�2 0 0

0 ��̇�2 0

0 0 �̇
� elongational flow

[�] �
	�yx

�c�s

�
	�xy

�c�s

v � ��y

0

0
� shear flow
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Figure 3.37. Example of the Mark-Houwink-Sakurada plot obtained in size exclusion chro-
matography. The sample is poly(vinyl neo-decanoate) in tetrahydrofuran. The data are along
the slope of 0.70, indicating that the polymer is a flexible chain. (From Ref. 35.)
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where is called the strain rate. The flow field generated by this � is

(3.111)

The two velocity fields satisfy the incompressibility requirement:

(3.112)

3.3.5 PROBLEMS

Problem 3.18: It is not easy to place the viscometer in the perfectly vertical po-
sition. Evaluate the error in the estimate of � when the viscometer is at angle
� « 1 from the vertical.

Solution 3.18: The pressure difference 	P is smaller. It is now 
 liqglcos�. Then,
Eq. 3.102 changes to

When � « 1, cos� � 1 � �2�2. The relative error in �kin is �� 2�2.

Problem 3.19: Measurement of the solution viscosity � at several different con-
centrations gives information on the state of the polymer chains in solution.

�kin �
�r4g cos �

8V
 t

div v � 0

v � ��(�̇�2)x

�(�̇�2)y

�̇z
� elongational flow

�̇

v

x

y
z

a b

x y

z

Figure 3.38. Typical flow fields. a: Shear flow. b: Elongational flow.



Answer the following questions for linear flexible polymer chains that show
[�] � M 0.8 when they are molecularly dispersed.

(1) Suppose two polymer chains form an aggregate at low concentrations in a
given solvent and behave as if they were a single chain of twice the mo-
lecular weight. How does this aggregate change [�]?

(2) Suppose the polymer chains are molecularly dispersed in the low con-
centration limit, but tend to form an aggregate of several chains with
an increasing concentration. We assume that each aggregate behaves as
if it were a single chain that has a molecular weight equal to the total
molecular weight of the aggregate. Sketch a plot of �red as a function
of c.

Solution 3.19:

(1) When molecularly dispersed, the intrinsic viscosity is [�]true � KMM1
0.8

,
where M1 is the molecular weight of the polymer chain. When dimers
(aggregates of two chains) are formed, the apparent intrinsic viscosity
changes to [�]app � KM(2M1)0.8 � 20.8 KMM1

0.8 � 1.74 � [�]true.

(2) When n-mers are formed, the apparent intrinsic viscosity changes to
[�]app � KM(nM1)0.8 � n0.8[�]true. The reduced viscosity is therefore,
�red � n0.8[�]true. With an increasing c, n increases. Then, �red increases.
The plot is similar to the curve for Kv � 0 in Fig. 3.32.
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c

[   ]η

Problem 3.20: A solution of a polydisperse polymer has component i dis-
solved at concentration ci. The intrinsic viscosity of component i is given
by [�]i.

(1) What is [�] of the polydisperse polymer?

(2) Each component follows the Mark-Houwink-Sakurada equation: [�]i �
KMMi

. What is the molecular weight Mv estimated by assuming that the
same equation applies to the polydisperse polymer, i.e., [�] � KMMv

�.
What is the relationship of this Mv to Mn and Mw?
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Solution 3.20 (1): For the solution of the polydisperse polymer,

which we equate to Then,

Thus,

Solution 3.20 (2): Then,

This Mv is another average molecular weight. For polymers with 0 �  � 1,
Mn � Mv � Mw.

3.4 NORMAL MODES

3.4.1 Rouse Model

3.4.1.1 Model for Chain Dynamics In Sections 1.2 and 1.3, we learned about
the conformation of the ideal chain and obtained the probability distribution of the
conformation. The distribution tells how many chains in the system have a certain
conformation at a given time. Each chain is moving and changing its conformation
all the time. The probability distribution also gives the distribution of the period in
which a given chain takes each conformation (ergodicity).

In this section, we learn how fast the conformation changes. To simplify the
seemingly complicated motions of the monomers, we employ the bead-spring
model of N beads with a spring force constant of ksp � 3kBT�b2. Figure 3.39 illus-
trates how the beads move to change the lengths and the orientations of the springs,
thereby reshaping the whole chain.

The Rouse model36 is the simplest version of the bead-spring model that can
treat the chain dynamics. The model assumes that the beads have no excluded vol-
ume (they are essentially a point) and that there are no hydrodynamic interactions

Mv � ��
i

ciMi
��

i

ci	
1�

KMMv
 �

�
i

ciKMMi


�
i

ci

[�] � �
i

ci[�]i � �
i

ci

�
i

ci[�]i � c[�] � [�]�
i

ci� � �s(1 � c[�] � · · ·).

� � �s�1 � �
i

ci[�]i � · · ·	

rN

r1

ksp

r2

rN−1

Figure 3.39. A polymer chain of a bead-spring model changes its conformation with time.



between the beads. The model was subsequently refined to account for these
effects. Unlike the later models, the Rouse model does not provide correct expres-
sions for the center-of-mass diffusion coefficient or the relaxation time for the con-
formation change. We will learn the Rouse model here in detail, because the way a
complicated motion of connected beads is simplified into different modes is note-
worthy and used in the later models with modifications. Furthermore, the Rouse-
like modes can be observed in solutions at high concentrations and in melts where
the hydrodynamic interactions are shielded.

3.4.1.2 Equation of Motion The elastic forces on the nth bead (n � 2, 3 , . . . ,
N � 1) are exerted by the two springs that connect the adjacent beads, as illustrated
in Figure 3.40. The spring between the (n � 1)th and the nth beads pulls the bead
with the force of k(rn�1 � rn). Likewise, the other spring pulls the bead with 
k(rn�1 � rn). In addition, the nth bead receives a random force fn that changes with
time t from nearby solvent molecules just as a single particle receives the random
force (Fig. 3.20). Thus, the equation of motion for the nth bead is given as

(3.113)

where � is the friction coefficient of each bead in the solvent. The mass term 
(mass � acceleration) is missing in this equation because the term is negligible on
the time scales of our concern (�s to s; the acceleration term is important at high
frequencies such as vibrational motion). The motion of the bead is overdamped. A
special care is necessary for the terminal beads (n � 1 and N ). Their equations of
motion are

, (3.114)

respectively. By introducing r0 � r1 and rN�1 � rN, the above two equations be-
come a part of the general equation:

(3.115)

� 

drn

d t
� ksp(rn�1 � rn�1 � 2rn) � fn(t) (n � 1, 2 , . . . , N) bead �spring model

� 

drN

d t
� ksp(rN�1 � rN) � fN (t)� 

dr1

d t
� ksp(r2 � r1) � f1(t)

�
drn

d t
� ksp(rn�1 � rn) � ksp(rn�1 � rn) � fn(t) (n � 2, 3 , . . . , N�1)
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Figure 3.40. Spring force on the nth bead. It is pulled by the two springs.
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The nature of the random force is the same as in Eqs. 3.63 and 3.71:

(3.116)

(3.117)

There is no relationship between the forces on difference beads (�nm � 1 only when
n � m). The random forces are needed to keep the chain in shape. Without the
random forces, the beads would move until all of them collapse onto a single point
and the elastic forces disappear.

3.4.2 Normal Coordinates

3.4.2.1 Definition We now need to solve the N equations in Eq. 3.115 simulta-
neously. The change in rn depends on rn �1 and rn�1, and the change in rn – 1 depends
on rn �2 and rn, and so forth. Motions of different beads are related to each other.
Solving these equations appears difficult, but use of the normal coordinates facili-
tates it. The ith normal coordinate qi(t) (i � 0, 1 , . . . ) is defined as a linear combi-
nation of rn(t):

(3.118)

The 0th normal mode is essentially the center-of-mass position, rG(t), of the N
beads:

(3.119)

Thus q0(t) represents the global motion of the bead-spring chain. All the other
normal modes represent internal motions. The first and second modes are

(3.120)

(3.121)

The superposition coefficient cos(in��N) is plotted in Figure 3.41 as a function
of n for N � 100 and i � 1, 2 , . . . , 8. To be precise, cos(in��N) is given for integral
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 r2(t) � · · ·� cos(2�) rN 

(t)��
1

N
 �cos 

2�

N
 r1(t)

q2(t) �
1

N
 �

N

n�1
cos 

2n�

N
 rn(t)

� cos 

2�

N
 r2(t) � · · ·� cos� rN  

(t)��
1

N
 �cos 

�

N
 r1(t)

q1(t) �
1

N
 �

N

n�1
cos 

n�

N
rn(t)

q0(t) �
1

N
 �

N

n�1
rn 

(t) � rG  
(t)

qi(t) �
1

N �
N

n�1
cos 

i n�

N
 rn(t)  normal coordinate
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values of n only (small dots on the curves). Figure 3.42 illustrates the sign of
cos(in��N) along the contour of the Rouse chain for i � 0 to 6. The zeroth mode is
the mean of all rn. In the first mode, the superposition coefficient changes its sign at
the midpoint along the chain contour. In the second mode, the coefficient is positive
in the first and last quadrants, and negative in the two middle quadrants. As i in-
creases, the sign alteration becomes more frequent. It is possible to give meanings
to these normal modes.

The meaning of the first mode, for instance, may become clearer by considering
another superposition coefficient: �2 for positive cos(in��N) and –2 for negative
cos(in��N). Then, q1 is the vector that connects the centroid of the beads in the first
half of the chain and the centroid of the beads in the second half of the chain (see
Fig. 3.43a). As the chain makes an overall tumbling motion, q1 changes its
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Figure 3.41. Coefficient cos(in��N) plotted as a function of n for N � 100. Curves for 
i � 1 to 8 are shown.

Figure 3.42. Sign of the coefficient cos(in��N) for i � 0 to 6.
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orientation. Therefore, we can associate the change in q1 with rotation of the chain
as a whole, although q1 changes its length by rearrangement of the beads and thus
q1 can change its sign without overall rotation. With the actual coefficient,
cos(in��N), which changes gradually from 1 to �1, q1 still carries the characteris-
tics that it represents the overall chain orientation.

The next mode q2 can be viewed as the sum of the two vectors, one drawn from
the second quadrant to the first quadrant and the other one drawn from the third
quadrant to the fourth quadrant (Fig. 3.43b). Thus q2 is more sensitive to the local
details of the conformation compared with q1. As we move to q3, q4 , . . . , the mode
becomes increasingly sensitive to the local details and less sensitive to the overall
conformation. The last mode qN, defined as

(3.122)

represents the displacement of even-numbered beads relative to the odd-numbered
beads divided by N.

An example of q1, q2, . . . is shown in Figure 3.44 for a realistic conformation in
two dimensions (N � 32). We can see that the magnitude of the normal mode tends

qN  
(t) �

1

N
 �

N

n�1
cos(n�)rn(t) �

1

N
[�r1(t) � r2(t) � · · ·� (�1)NrN  

(t)]

Figure 3.43. Schematic of the first normal mode q1 (a) and the second normal mode q2

(b) for a chain conformation given.

Figure 3.44. Example of a bead-spring model in two dimensions. N � 32. The first six nor-
mal modes q1 through q6 are shown in the inset by vectors (zoomed by a factor of two for
easy observation). 
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to decrease with an increasing mode number i. We expect that qi(t) of a higher
mode number to change more quickly with time because the mode picks up more
localized motions, which do not have to wait for the whole chain to rearrange.

3.4.2.2 Inverse Transformation The normal coordinate is given as a linear com-
bination of the bead positions. Conversely, we can express rn as a linear combi-
nation of qi (i � 1, 2 , . . . ,N). From Eq. 3.118, we find

(3.123)

Use of the identity

(3.124)

leads Eq. 3.123 to

(3.125)

Note that the superposition coefficient for i � 0 and N is a half of the others. For n
� N, rN(t) is a half of the one given by this equation. We need to treat rN separately,
because the superposition coefficient, cos(in��N) in Eq. 3.118 is not symmetric.
Fortunately, the effect of the separate treatment is negligible when N » 1. In the fol-
lowing, we neglect this effect.

3.4.3 Equation of Motion for the Normal Coordinates in the Rouse Model

3.4.3.1 Equation of Motion The equation of motion for qi is obtained from
Eqs. 3.115 and 3.118 as

(3.126)
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In the second term,

(3.127)

Since

(3.128)

Eq. 3.126 is rewritten to

(3.129)

For later convenience, we introduce the friction coefficient �i for the ith mode by

(3.130)

and rewrite Eq. 3.129 to

(3.131)

Because ksp � 3kBT�b2, the force constant ki of the ith mode is given as

(3.132)

The random force gi for the ith mode is defined as
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It is now apparent that the equation of motion for qi does not depend on other qj

( j � i). Each mode is independent (decoupled). With the relaxation time �i defined as

(3.134)

Eq. 3.131 is further rewritten to

(3.135)

For the 0th mode, 1��0 � 0. Other �i are finite:

(3.136)

The relaxation time of the normal mode decreases with i as �i � �1�i2 in the Rouse
model. The higher-order mode relaxes more quickly.

3.4.3.2 Correlation of Random Force Statistical properties of the random force
gi are similar to the counterparts of fn:

(3.137)

(3.138)

The first part is obvious. The second part can be proved as follows:

(3.139)
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we obtain Eq. 3.138.
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3.4.3.3 Formal Solution Equation 3.135 is solved as

(3.141)

This equation includes i � 0:

(3.142)

Because 〈gi(t)〉 � 0, we find the statistical average of gi(t) is zero for all modes:

(3.143)

The average of qi(t) ·qi(0) is not zero, as we will see in the next subsection.
Before we look at the correlation of the end-to-end vector and the center-of-mass

diffusion for the Rouse model, we derive general formulas for them by using Eqs.
3.135 and 3.138 only. These equations are also valid in the modified versions of the
Rouse model. The assumptions specific to the Rouse model, such as ksp � 3kBT�b2

and the neglect of the hydrodynamic interactions, show up only in the expressions
for the parameters �i, ki, and �i. 

3.4.4 Results of the Normal Coordinates

3.4.4.1 Correlation of qi(t) Although the average is always zero (Eq. 3.143),
each qi(t) is in general nonzero and changes with time (Fig. 3.45). Here, we con-
sider how qi(t) is related to qj(0) (i, j � 0). When i � j, 〈qi(t) ·qi(0)〉 is the autocor-
relation. When i � j, 〈qi(t) ·qj(0)〉 is the cross-correlation. Because different modes
are irrelevant to each other, the cross-correlation is zero. We use Eq. 3.141 to

〈qi 
(t)〉 � 0 (i � 0, 1, . . .)

q0(t) � �0
�1�t

��

g0(t1) dt1

qi(t) � �i
�1�t

��

gi 
(t1) exp[(t1 � t)��i]dt1  (i � 0, 1, . . .)

Figure 3.45. Correlation between qi(t) and qj(0). qi(t) changes with time.

qi(t)

qj(0)qi(0)



calculate the correlation:

(3.144)

for i, j � 1, 2, . . .Thus

(3.145)

In the second case (i � j), either i or j can be zero; The internal motion is decoupled
from the center-of-mass motion. Equation 3.145 indicates that the autocorrelation
of qi(t) is lost exponentially with a relaxation time of �i.

We can obtain the mean square amplitude of qi(t) by setting t to 0 in the above
equation:

(3.146)

The higher-order mode has a smaller amplitude, as we will see in the Rouse and
other models.

3.4.4.2 End-to-End Vector In place of rN(t) � r1(t), we calculate rN�1(t) � r1(t)
as the end-to-end vector R(t) of the Rouse chain; the difference is negligible when
N » 1. From Eq. 3.125, R(t) is expressed by qi as

(3.147)

where cos(i��N) � 1 and cos[i(N � 1)��N] � (�1)i for N » 1 were used. Note
that R(t) is dominated by qi with a small i. As the chain conformation changes, R(t)
changes as well (Fig. 3.46). Its autocorrelation is calculated as

(3.148)
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The autocorrelation function of R(t) is dominated by the first normal mode, as we
will see in the Rouse and other models. Thus, R(t) loses its memory approximately
with a relaxation time of �1:

(3.149)

Experimentally, 〈R(t)�R(0)〉 can be measured in dielectric relaxation spectroscopy
for a polymer molecule that has a nonzero permanent dipole moment along the
chain backbone. Other normal modes can also be observed.

3.4.4.3 Center-of-Mass Motion From Eqs. 3.119 and 3.142, the center-of-mass
displacement in time t is calculated as

(3.150)

The mean-square displacement is then calculated as

(3.151)

It is proportional to t. The center of mass of the bead-spring chain makes a diffu-
sional motion on all time scales. From this equation, we obtain the center-of-mass
diffusion coefficient DG:

(3.152)

The centroid motion of the bead-spring chain is identical to the motion of a particle
that receives a friction of �0. The latter is also evident in Eq. 3.131 with i � 0.

3.4.4.4 Evolution of qi(t) In Section 3.4.4.1, we found that the autocorrelation
of qi(t) with qi(0) is lost over time. We find here the transition probability for qi(t)
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Figure 3.46. End-to-end vector R(t) changes as the chain conformation changes.



from qi(0). From Eq. 3.141,

(3.153)

Because 〈gi(t)〉 � 0, the average of qi(t) for a given qi(0) decays with a time con-
stant �i:

(3.154)

where subscript “0” denotes the average for a given qi(0).
Now we find the variance. It is calculated as follows.

(3.155)

At t � 0, 〈qi(t)〉0 � qi(0) and the variance is zero. At t : � , 〈qi(t)〉0 � 0 and the
variance becomes equal to the square magnitude of qi(t) (see Eq. 3.146).

We have calculated the average and variance of qi(t) for a given qi(0). It can
be shown that qi(t) follows a normal distribution. Then, the transition probability
P[qi, qi(0); t] for qi is given as

(3.156)

The probability distribution is shown for a few values of t��i in Figure 3.47. The
initial sharp peak at qi � qi(0) gives way to a broader peak at qi � 0.

3.4.5 Results for the Rouse Model

3.4.5.1 Correlation of the Normal Modes Now we apply the general formulas
obtained in the preceding subsection to the Rouse model. First, we study the corre-
lation of qi(t). It decays exponentially with a relaxation time �i, given by Eq. 3.136.
Figure 3.48 compares 〈qi(t) �qi(0)〉 for i � 1 through 6. Each 〈qi(t) �qi(0)〉 is normal-
ized by 〈q1

2〉, the square magnitude of the first mode. The decay of 〈q1(t) �q1(0)〉 is

	exp��
[qi � qi 

(0) exp (�t��i)]2

(6kBT�ki) (1 � exp(�2t��i))
�

P(qi, qi 
(0); t) � [(6
kBT�ki) (1 � exp(�2t��i))]�3�2

� (3kBT�ki)[1 � exp( � 2t��i)]

� 6�i
�1kBT�t

0
exp[2(t1 � t)��i] dt1 � (3�i

�1kBT �i)[1 � exp(�2t��i)]

� �i
�2�t

0
dt1�t

0
dt26�ikBT�(t1 � t2)exp[(t1 � t2 � 2t)��i]

〈[qi(t) � qi 
(0)exp(�t��i)]2〉 � �i

�2�t

0
dt1�t

0
dt2〈gi(t1)�gi 

(t2)〉 exp[(t1 � t2 � 2t)��i]

〈qi(t)〉0 � qi 
(0)exp(�t��i)

qi(t) � qi(0) exp (�t��i) � �i
�1�t

0
gi(t1) exp[(t1 � t)��i]dt1
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the slowest. The second normal mode loses its memory four times as fast (�2 �
�1�4) and the third mode nine times as fast (�3 � �1�9).

From Eqs. 3.132 and 3.146, the fluctuations of the normal coordinates are ob-
tained as

(3.157)

The decrease in the fluctuation for a higher-order mode is manifested in the declin-
ing intercept of the curves in the figure.

〈qi
2〉 �

Nb2

2
 2
 

1

i2   Rouse model

Figure 3.48. Autocorrelation function of qi(t) for i � 1 to 6, normalized by 〈q1
2〉. The

dashed line represents the autocorrelation of R(t), normalized by 〈R2〉.
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Figure 3.47. Transition probability qi (one of the x, y, and z components of qi) for a given
qi(0), plotted at t��i � 0.01, 0.05, 0.2, 1 and �. This example has qi(0) � 〈qi

2〉1�2.



3.4.5.2 Correlation of the End-to-End Vector With Eqs. 3.148 and 3.157, the
autocorrelation of the end-to-end vector is given as

(3.158)

In the summation, the second term (i � 3) has already only 1�9 of the intensity
compared with the first term (i � 1). The other terms are even smaller. The first
term dominates in the summation. We can then replace exp(– t��i) with exp(– t��1).
Because �i : oddi�2 � 
 2�8,

(3.159)

In Figure 3.48, the exact decay in 〈R(t) �R(0)〉�〈R2〉 is plotted as a dashed line.
Except for short times, 〈R(t) �R(0)〉 and 〈q1(t) �q1(0)〉 have the same decay rate.

3.4.5.3 Diffusion Coefficient From Eqs. 3.130 and 3.152, the center-of-mass
diffusion coefficient DG of the Rouse model is given as

(3.160)

which is equal to the diffusion coefficient of N connected beads, each of which
move with a friction coefficient � independently of the other beads.

3.4.5.4 Molecular Weight Dependence Because the Rouse model describes the
static conformation of a polymer chain in the theta condition, we expect that the
model can also describe the dynamics. However, this expectation is wrong.

In the Rouse model, the relaxation time �1 of the first mode is proportional to N2

(Eq. 3.136). The experimentally observed exponent for a polymer chain in a theta
solvent is 3�2. The discrepancy also exists in the molecular weight dependence of
DG. Experimentally, we observe DG � M�1�2 (Section 3.2.7) in the theta solvent.
In the Rouse model (Eq. 3.160), DG � N�1. The model fails to give the correct ex-
ponent. The shortcoming of the model is ascribed to the neglect of hydrodynamic
interactions. In the following subsection, we take into account the hydrodynamic
interactions. In Section 4.3, we will see an example in which the Rouse model can
describe the motion of polymer chains correctly.

3.4.6 Zimm Model

3.4.6.1 Hydrodynamic Interactions B. Zimm37 improved the Rouse model by
taking into account hydrodynamic interactions between beads. He successfully ob-
tained the expressions for the diffusion coefficient and the relaxation times that
agree with experimental results.

DG �
kBT

N�
  Rouse model

〈R(t)�R(0)〉 � Nb2exp (�t��1)

〈R(t)�R(0)〉 �
8Nb2



�

i :odd
 

1

i2  exp (�t��i)
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In the absence of the hydrodynamic interactions, the motion of the mth bead
does not affect other beads except through the spring force. With the hydrodynamic
interactions present, the velocity of one of the beads affects all the other beads
through the flow of solvent (Fig. 3.49). Alternatively, the equation of motion for rn

is written as

(3.161)

where Hnm is a second-rank tensor that represents how the velocity of the mth bead
affects the velocity of the nth bead through the solvent between them. In the ab-
sence of the hydrodynamic interactions, Hnm � (I��)�nm, where I is a unit tensor
(I� � �� with , � � x, y, z). Then, Eq. 3.161 reduces to Eq. 3. 115.

Usually, an Oseen tensor is used for Hnm. Its magnitude is reciprocally propor-
tional to 	rn � rm	 and is therefore a function of the chain conformation that changes
with time according to Eq. 3.161. Zimm decoupled Hnm from the rest of the equa-
tion and replaced it with its average at equilibrium (preaveraging approximation):

(3.162)

With the Oseen tensor,

(3.163)

where the statistical average is taken with respect to given n and m.

〈Hnm〉 �
I

6
�s

 〈 1

	rn � rm 	 〉
nm

drn

d t
� �

N

m�1
〈Hnm〉[ksp(rm�1 � rm�1 � 2rm) � fm] (n � 1, 2 , . . . ,N)

drn

d t
� �

N

m�1
 Hnm[ksp(rm�1 � rm�1 � 2rm) � fm] (n � 1, 2 , . . . , N)

Figure 3.49. Motion of the nth bead is affected by the motion of all the other beads through
the hydrodynamic interaction.
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The right-hand side depends on the chain conformation. We separately consider
a polymer chain in the theta solvent and a polymer chain in the good solvent. 

3.4.6.2 Zimm Model in the Theta Solvent For a polymer chain in the theta sol-
vent, the Gaussian chain model conveniently gives us an analytical expression of
Eq. 3.163. With Eq. 3.56,

(3.164)

Because of 	n � m	1�2 in the denominator, Hnm decays only slowly with an
increasing 	n � m	, that is, a distance between the two beads along the chain
contour. 

Equation 3.164 is not correct for n � m. It diverges as n and m approach each
other. Upon integration with respect to n and m, however, the singularity is
removed. We do not treat Hnn separately here. There is no need for that. The sum
of the hydrodynamic interactions from other beads far exceeds the friction a
given bead would receive in the absence of the hydrodynamic interactions. We
will discuss this problem later when we derive the center-of-mass diffusion
coefficient.

To convert Eq. 3.162 into equations of motion for the normal coordinate qi, we
first express rm �1 � rm�1 � 2rm and fm by the normal coordinates qi and gi. From
Eq. 3.125,

(3.165)

For gi, we use the same definition as Eq. 3.133 with �i�� given by Eq. 3.130. It does
not mean that �i is the same in the Rouse model and the Zimm model. We just use
the same formula in the Zimm model to express the random force in the normal co-
ordinates. As Eq. 3.125 is an inverse transform of Eq. 3.118, the following gives an
inverse transform of Eq. 3.133 (Problem 3.21):

(3.166)

With Eqs. 3.118, 3.165, and 3.166, Eq. 3.162 is transformed into

(3.167)
dqi
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� N �

N

j�0
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�2ksp
 j
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j�0
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 � 4(�1)m�1qN � �2�
N

j�0
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 3)1�2�s b	n � m 	1�2
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where

(3.168)

In Eq. 3.167, all of the equations appear to be coupled with each other. Fortunately,
they can be decoupled. It can be shown (Problem 3.22) that, when N » 1, hij is
approximated by

(3.169)

Then, we obtain

(3.170)

Formally, the normal modes of the Zimm model follow the same differential equa-
tions as those of the Rouse model (Eq. 3.131).

The spring force constant for the ith mode

(3.171)

is identical to the counterpart in the Rouse model (Eq. 3.132) because the hydrody-
namic interaction does not alter the equilibrium chain conformation. In the normal
coordinate, the two modes are different only in the friction coefficient. Now it is

(3.172)

A special care is needed for �0 (Problem 3.23)

(3.173)

Because Eq. 3.170 is identical to Eq. 3.131, we can use the general formulas in
Section 3.4.4 to obtain DG and �i for the Zimm model in the theta solvent. The
center-of-mass diffusion coefficient is obtained from Eqs. 3.152 and 3.173 as

(3.174)

Its molecular weight dependence is DG � N �1�2. Thus, the hydrodynamic interac-
tions increase the diffusivity of the chain, especially for a long chain, compared
with a group of N independently moving beads (Rouse model). The friction on a
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N



bead from the surrounding fluid is therefore much smaller than the sum of the hy-
drodynamic interactions the bead receives from the other beads. This result justifies
our neglect of Hnn in deriving Eq. 3.164.

The relaxation time �i of the ith mode is calculated from Eqs. 3.171 and 3.172 as

(3.175)

The Zimm model successfully describes the experimentally observed dependence:
DG � M�1�2, �1 � M3�2, and �i��1 � i�3�2.

3.4.6.3 Hydrodynamic Radius By definition of h00 (Eq. 3.168), we can express
DG as

(3.176)

where Eq. 3.163 was used. In the last line, 〈···〉 implies a twofold statistical average:
The first average is with respect to the positions of given beads n and m, and the
second averaging scans n and m. Thus, from the definition of RH (Eq. 3.54), it is
given in the preaveraging approximation by

(3.177)

Equation 3.55 was obtained in this way.

3.4.6.4 Zimm Model in the Good Solvent The Zimm model we used for the
theta chains needs a small modification when we apply it to the chains in the good
solvent. We must give up the numerical coefficients but can still obtain the expo-
nents that agree with experimental results. 

First, we work on hij. In place of 	n � m	 �1�2 in the preaveraged hydrodynamic
interaction between the nth and mth beads, we now have 	n � m	 �� with � � 3�5 or
0.59. We can show that hij is still diagonal, that is, hij � 0 for i � j, and the friction
coefficient �i � hii

�1 of the ith mode changes to (Problem 3.24)

(3.178)

(3.179)

Second, the force constant ki needs some change because the Gaussian chain
does not describe the conformation of the real chain. It can be obtained from

�0 � �sbN�

�i � �sbN�i1��  (i � 1, 2 , . . .)

1
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� 〈 1
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Eq. 3.146. Appendix 3.A.1 shows how to evaluate 〈qi
2〉 for the real chain. With

Eq. 3.A.5,

(3.180)

With these modified �i and ki, qi follows the same equation as in the Zimm model in
the theta solvent.

The center-of-mass diffusion coefficient is obtained from Eqs. 3.152 and 3.179 as

(3.181)

The relaxation time �i is calculated as

(3.182)

The Zimm model for the good solvent successfully describes the experimentally
observed dependence: DG � M�� , �1 � M3�, and �i��1 � i–3�.

According to a more elaborate calculation based on the renormalization group
theory,38

(3.183)

Results for DG, �1, �i��1 are summarized in Table 3.3. The table also shows
the results for the rodlike molecule (Section 3.5) and the M dependence of [�]
(Section 3.4.7).

3.4.7 Intrinsic Viscosity

3.4.7.1 Extra Stress by Polymers Adding a polymer to a solvent increases its
viscosity. Figure 3.50 illustrates a polymer chain in a shear flow. For the portion of

DG � 0.0829 
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�sRg
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�sb3N3�

kBT
 i�3� �
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kBT

�sbN�
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kBT

�s RF
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kBT

b2N2�
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Table 3.3 Models for Dynamics

Chain Hydrodynamic
Model Statistics Interactions DG �i [�]

Rouse ideal absent M�1 M 2�i2 M1

Zimm ideal present M�1�2 M 3�2�i3�2 M 1�2

Zimm real present M�� M 3��i3� M3��1

Kirkwood* rod present (lnM – a)�M M 3�[(lnM�a) M2�(lnM�a)
i(i � 1)]

*a represents a constant.



the chain closer to the moving plate to move faster compared with the other portion
of the chain closer to the stationary plate, extra stress needs to be applied. In an-
other word, flow becomes more difficult because of the polymer chain.

To estimate the intrinsic viscosity in the bead-spring model, we need to find how
much the stress tensor in the flowing fluid changes when a unit amount of the poly-
mer is added. At low concentrations, the increase in the stress tensor �� (, � � x,
y, z) due to the presence of bead-spring chains is given as

(3.184)

where cNA�M represents the number of the polymer chains in unit volume and
U is the internal energy of the bead-spring model. As illustrated in Figure 3.51,
an extra stress needs to be applied across the plane separating the nth bead
from the n � 1th bead in order to move the two beads with v(rn) and v(rn � 1),
respectively.

In the Rouse model, there is no excluded volume effect. In the Zimm model for
the theta solvent, the chain conformation is the same as that of the Rouse model.
For these two models, U is given by a sum of the elastic energy of the springs 
(Eq. 1.51), and therefore

(3.185)

which is equal to the negative of the spring force in Eq. 3.115. Then, Eq. 3.184
leads to

(3.186)��� �
cNA

M
 ksp �

N

n�1
〈�(rn�1 � rn�1 � 2rn) rn�〉

�U

�rn

� �ksp(rn�1 � rn�1 � 2rn)

��� �
cNA

M �
N

n�1
〈 �U

�rn

rn� 〉
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Figure 3.50. Portions of a polymer chain in shear flow experience different velocities de-
pending on the distance from the stationary plate.
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where r is the  component of r (rx � rx � x, for instance). We now use
Eqs. 3.125 and 3.165 to express the right-hand side in normal coordinates. Because
qi and qj are irrelevant if i � j,

(3.187)

Then, Eq. 3.186 is rewritten to

(3.188)

With Eq. 3.132 and 3.171, this equation is further rewritten to

(3.189)

It is now apparent that ��� � ���, as required. Although the last equation was
derived for the ideal chain conformations, it is also valid for real chains with an ex-
cluded volume.

3.4.7.2 Intrinsic Viscosity of Polymers In the absence of flow, the solution
is isotropic. Each component (x, y, z) of qi is independent. Then, 〈qi qi�〉 � 〈qi〉
〈qi�〉 � 0. Polymers do not add a stress. Our next job is to find how the flow
changes 〈qi qi�〉.

In the presence of flow, the bead at rn has an additional velocity �rn, as we
learned in Section 3.3.4 The equation of motion for the nth bead, given by
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Figure 3.51. The xz plane separating the n � 1th bead from the nth bead receives a stress in
y direction when the bead-spring chain is in a shear flow.
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Eq. 3.161, changes to

(3.190)

Note that �rn is a linear function of rn. With the preaveraging approximation for
Hnm and conversion to the normal coordinates, it is straightforward to see the equa-
tion of motion for the ith normal mode acquire an additional term:

(3.191)

Although we have used the Zimm model here, this equation is apparently valid for
the Rouse model as well. The off-diagonal elements of the tensor � couple different
components (x, y, and z) of qi, as we will see below, but qi of different i are still in-
dependent of each other.

Now we consider a steady shear flow: ��x��y � �xy � �, other elements are
zero, as given by Eq. 3. 107. This tensor couples qix and qiy:

(3.192)

where 〈qix giy � qiy gix〉 � 〈qix〉〈giy〉 � 〈qiy〉〈gix〉 � 0 and (�qi)y � 0, (�qi)x � �qiy

were used. The stationary solution (d〈qix qiy〉�dt � 0) of Eq. 3.192 is

(3.193)

When the flow is sufficiently slow, the solution is nearly isotropic. Then, 〈qiy
2〉 �

〈qi
2〉�3 � kBT�ki from Eq. 3.146, and we have

(3.194)

Then, from Eq. 3.189,

(3.195)

Finally, we obtain a general expression for the intrinsic viscosity. With Eq. 3.109,
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The explicit expressions for [�] for the three cases of the bead-spring model are:

1. Rouse model. With Eq. 3.136,

(3.197)

where the upper limit in the summation was replaced by � and �ii�2 � 
 2�6
was used.

2. Zimm model, theta solvent. With Eq. 3.175,

(3.198)

where �i i�3�2 � 2.612 was used.

3. Zimm model, good solvent. With Eq. 3.182,

(3.199)

The exponent is 0.8 for � � 3�5 and 0.77 for � � 0.59 (see Table 3.3). These
values agree with experimental results (Fig. 3.37).

3.4.7.3 Universal Calibration Curve in SEC In the Zimm model (theta and
good solvents), the intrinsic viscosity is essentially the ratio of the “volume” of the
polymer chain, RF

3, to the mass of each polymer chain, M�NA. The solvent viscos-
ity and the temperature do not show up explicitly in the final expression. Thus we
can define hydrodynamic volume Vhd by

(3.200)

There is a consensus that the retention time tR in SEC is determined by Vhd for a
given polymer fraction. The plot of [�]M�NA vs. tR obtained for different polymers
but with the same column fall on a single master curve. In fact, the data for the theta
condition and the data for rigid-chain polymers are also on the master curve obtained
for flexible chains in good solvents. The curve is called a universal calibration
curve. An example is shown in Figure 3.52.39 The existence of the curve proves that
the hydrodynamic volume governs the partitioning in the SEC column.

3.4.8 Dynamic Structure Factor

3.4.8.1 General Formula We consider in this subsection the dynamic structure
factor of a bead-spring model. For now we do not distinguish the three cases of the
model.
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We define rmn(t) # rn(t) � rm(0), the displacement of the nth bead at time t with
respect to the mth bead at time 0 (Fig. 3.53). Using Eq. 3.125, we find that rmn(t) is
given as

(3.201)

Because different modes are uncorrelated, the average of exp[ik �rmn(t)] for a
given m and n is

(3.202)

The last factor for i � N was incorporated into the product. The first factor repre-
sents the center-of-mass diffusion:

(3.203)

Using Eq. 3.B.7 in Appendix 3.B [� 2 � (3kBT�ki)�3 � kBT�ki; note Eq. 3.B.3;
� � �i; A � 2cos(in
�N ); B � 2cos(im
�N )], the ith factor in the N-fold product

〈exp[ik�(q0(t) � q0(0))]〉 � exp(�DGtk2)

	 �
N

i � 1〈exp�2ik�
cos 
i n


N
 qi(t)�cos 

i m


N
 qi(0)�� 〉

〈exp[ik�rmn(t)]〉mn � 〈exp[ik�(q0(t) � q0(0))]〉

� [(�1)nqN 
(t) � (�1)mqN 

(0)]

rmn(t) � [q0(t) � q0(0)] � 2 �
N�1

i�1
�cos

i n


N
 qi(t) � cos 

i m


N
 qi 

(0)�

244 DYNAMICS OF DILUTE POLYMER SOLUTIONS

Figure 3.52. Universal calibration curve of SEC. The plots of M[�] obtained for
poly(methyl methacrylate), poly(ethylene oxide), and polystyrene are on a master curve. The
mobile phase was dimethylacetamide. (From Ref. 39.)
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is transformed to

(3.204)

Thus,

(3.205)

At t � 0,

(3.206)

Combined,
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Figure 3.53. rmn(t) is the distance of the nth bead at time t from the mth bead at time 0.
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The dynamic structure factor of the chain is the average of the above equation with
respect of m and n:

(3.208)

The long-time behavior is simple. At t » �1, 1 � exp(– t��1) � 1, and therefore
the time-dependent factor is exp(–DGk2t) only. Then, S1(k, t) decays with a decay
rate of DGk2, indicating center-of-mass diffusion of the whole chain. This feature is
common to all of the three models.

The short-time behavior for t « �N is different:

(3.209)

The slope of ln S1(k, t) at t � 0 is

(3.210)

The initial slope may not follow �k2 dependence and is different from model to
model.
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Figure 3.54. Dynamic structure factor S1(k, t) is plotted as a function of t��1 for various val-
ues of kRg. Calculation was done by using the Zimm model for the theta solvent.
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Figure 3.54 shows how S1(k, t) changes with time t in the Zimm model for the
theta condition. For kRg � 0.7, ln S1(k, t) is almost straight over the entire range of
time; S1(k, t) decays with a constant rate of DGk2. With an increasing kRg, the plot
deviates from the straight line. The tangential to the curve is steep at near t � 0. At
long times, S1(k, t) decays with DGk2. Note that a small change in kRg results in a
large difference in the decay characteristics of S1(k, t).

The plots are similar in the Rouse model except that it takes a longer time (in
terms of t��1) for S1(k, t) to decay to a given level.

In the following, we examine the initial slope of ln S1(k, t) in the three models
for the bead-spring chain.

3.4.8.2 Initial Slope in the Rouse Model In the Rouse model, 〈exp[ik�rmn(0)]〉mn

� exp(�b2k2 	n � m 	�6) (Eq. 2.77). The denominator of Eq. 3.210 is equal to
N2fD(kRg), where the Debye function fD(x) is defined by Eq. 2.79. The numerator is
calculated as shown in Appendix 3.C. From Eq. 3.C.3,

(3.211)

The sum is calculated as follows:

(3.212)

where Eq. A4.1 was used. Thus,

(3.213)

Because coth x � x�1 � x�3 and fD(x) � 1 when x « 1, the initial slope of ln S1(k, t)
is �DGk2 at small k, the same as the long-time behavior. At large k, the slope is
�(1�2)DGk2(kRg)2, since coth x � x�1 � 1 and fD(x) � 2�x2 when x » 1. The initial
slope shows a crossover from ��k2 to ��k4 with an increasing kRg.

3.4.8.3 Initial Slope in the Zimm Model, Theta Solvent Equation 3.211 is valid
also in the Zimm model for the theta solvent because the equation depends on the
chain conformation only. However, Eqs. 3.212 and 3.213 are different. We evaluate
the sum in Eq. 3.211 for small k and large k separately. For small k,

(3.214)
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where Eqs. 3.172, 3.174 and A4.1 were used. Then, the second term in Eq. 3.210 is
negligible, just as in the Rouse model. The initial slope of ln S1(k, t) is –DGk2 at
small k.

For large k, the sum is evaluated as follows:

(3.215)

where Eq. A4.2 was used. Thus,

(3.216)

The initial slope of ln S1(k, t) is – (3
 1�2�8)DGk2kRg at large k.

3.4.8.4 Initial Slope in the Zimm Model, Good Solvent We cannot use Eq. 3.211
because the conformation is not Gaussian. We need to start with Eq. 3.210. For small
k, 〈exp[ik �rmn(0)]〉mn � 1. Therefore, the second term of Eq. 3.210 is

(3.217)

because of Eq. 3.124. Thus, the initial slope of ln S1(k, t) is –DGk2 at small k.
For large k, the denominator of the second term of Eq. 3.210 is estimated as

(3.218)

where the variable of integration was changed to x � bkm�. For the numerator, we
first evaluate the sum with respect to i:
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(3.219)

where Eq. A3.2 was used. Then, the numerator is dominated by the sum of 
	n � m	–� and therefore estimated as

(3.220)

Thus, the slope is approximated as

(3.221)

The initial slope of ln S1(k, t) is ��DGk2kRg at large k.
The initial decay rate of S1(k, t), the negative of the initial slope of ln S1(k, t),

is summarized in Table 3.4. The table includes the result for rodlike molecules
(Section 3.5).

3.4.8.5 Initial Slope: Experiments The initial slope of ln S1(k, t) is usually
measured in DLS. At low concentrations, 	g1(t)	 � S1(k, t). Therefore, the initial
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Table 3.4 Initial Decay Rate of 	g1(t) 	

Short Time

Model Long Time Small k Large k

Rouse DGk2 DGk2 (1/2)DGk2(kRg)2

Zimm, theta solvent DGk2 DGk2 (3
 1/2/8)DGk2(kRg)
Zimm, good solvent DGk2 DGk2 �DGk2(kRg)
Kirkwood (rod) DGk2 DGk2 (3/2)DGk2



decay rate �init of 	g1(t)	 defined as

(3.222)

is equal to the negative of the initial slope of ln S1(k, t).
Figure 3.55 shows �init obtained in DLS for dilute solutions of polystyrene in

various solvents that range from a good solvent to a near-theta solvent.40 In the or-
dinate, �init is reduced by D0k2, the rate at low angles. The abscissa is the dimen-
sionless kRH. The solid line in the figure was calculated by using Eq. 3.210 for the
Zimm model in the theta solvent. The data obtained in good solvents and theta sol-
vents lie on the theoretical curve. At kRH « 1, �init � D0k2. At kRH » 1, the master
curve has a slope of 1, in agreement with Eqs. 3.216 and 3.221.

3.4.9 Motion of Monomers

3.4.9.1 General Formula In the preceding subsections, we considered the
center-of-mass motion and also obtained a general formula for the statistical aver-
age of the Fourier transform of rmn(t) � rn(t) � rm(0). In this subsection, we look at
the motion of the beads (monomers) in different time scales. We first obtain expres-
sions for �[rmn(t)]2mn, the statistical average of the [rmn(t)]2 for given m and n, and
consider how the average changes with time in the short time. We will then exam-
ine how the mean square displacement of the beads �[rnn(t)]2 changes with time for
each model. The displacement of the beads is different from that of the center of
mass. In the long time scale (t » �1), they should be identical, but, in the short time
scale, the beads can move more quickly than the center of mass. In this subsection,
we consider primarily the Rouse chain and the Zimm model in the theta solvent.

�init � � lim
t : 0

 
ln	g1(t)	

t
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Figure 3.55. Initial decay rate �init of 	g1(t)	, reduced by its low-k asymptote D0k2, is plotted
as a function of kRH. The data obtained for polystyrene in various solvents are on a theoreti-
cal curve (solid line) obtained for the Zimm model in the theta solvent. (From Ref. 40.)
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For that purpose, we apply the formula

(3.223)

to Eq. 3.207 and obtain

(3.224)

where the mean square distance between the two beads is

(3.225)

for the ideal-chain conformation. We can use Eq. 3.125 to derive Eq. 3.224 directly
(Problem 3.26).

In the short time scale (t « �N), 1 � exp(�t��i) � t��i and therefore Eq. 3.224
reduces to

(3.226)

In the long time scale (t » �1), 1 � exp(�t��i) � 1 and therefore Eq. 3.224 reduces to

(3.227)

In the long time scale, the first term dominates, and 〈[rmn(t)]2〉mn becomes
indistinguishable from the center-of-mass diffusion, as expected. The mean
square displacement increases linearly with t in the two asymptotes. The motion
of the monomers is diffusional in the two asymptotes but with different diffusion
coefficients. Then, the motion cannot be diffusional in the intermediate time
range. 

3.4.9.2 Mean Square Displacement: Short-Time Behavior Between a Pair of
Monomers Before considering the mean square displacement of the same beads
(monomers) in Section 3.4.9.3, we look at the evolution of 〈[rmn(t)]2〉mn for a pair of
beads in the short time scale. Because �i is different between the Rouse model and
the Zimm model for the theta solvent, we treat them separately.
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In the Rouse model, kBT ��i � DG�2, and the second term in Eq. 3.226 is calcu-
lated as

(3.228)

where Eq. 3.124 was used. Thus, the overall short-time behavior is given as

(3.229)

There is a distinct difference between a different pair (m � n) and the same pair (m
� n; self-diffusion of each bead). For the same pair, 〈[rnn(t)]2〉nn � 6DG(N � 1)t
� 6(kBT��)t. It means that each bead moves freely with its own friction coefficient
as if the other beads were absent or not connected. For a pair of different beads, the
short-time mean square displacement increases as 6DGt, the same as the center of
mass diffusion. Different beads are uncorrelated.

In the Zimm model (theta solvent), kBT��i � (3·21�2�16)DG�i1�2 from Eqs. 3.172
and 3.174. Therefore, the second term in Eq. 3.226 is calculated as

(3.230)

When n � m, cos(2in��N) is a rapidly changing function of i. The sum will be
much smaller compared with the first term, �i – 1�2 � 2N1�2. Thus,

(3.231)

When n � m, the sum is dominated with the first term because cos[i(n � m)��N]
changes between positive and negative more rapidly compared with
cos[i(n – m)��N ]. From Eq. A3.3 in Appendix A3, we have

(3.232)

The hydrodynamic interactions allow the distance between a nearby pair of beads
to grow more rapidly compared with a distant pair. For the latter, the short-time
mean square displacement increases as in the Rouse model.

3.4.9.3 Mean Square Displacement of Monomers Now we trace the motion of
the same bead (m � n) in all time scales. From Eq. 3.224, the displacement of each
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monomer, 〈[rnn(t)]2〉nn, is given as

(3.233)

where rnn(t) � rn(t) � rn(0) is the displacement of the nth bead. We denote the av-
erage of 〈[rnn(t)]2〉nn with respect to n by 〈[rnn(t)]2〉 without subscript and calculate it
for the short, long, and intermediate time ranges. The average of cos2 (in��N) with
respect to n is 1�2. Thus,

(3.234)

In the short time (t « �N),

(3.235)

In the long time (t » �1),

(3.236)

In the intermediate time range, we need to deal with 1 � exp(�t��i) as it is.
In the following, we consider 〈[rnn(t)]2〉 for the Rouse model and the Zimm

model in the theta solvent separately. We will also briefly consider 〈[rnn(t)]2〉 for the
Zimm model in the good solvent.

1. In the Rouse model, �i � 2N� for i � 0. Then, the second term in the bracket
of Eq. 3.235 is

(3.237)

which is much greater compared with DG � kBT�N�. Thus, in the short time,
monomers move with a diffusion coefficient of kBT�� as if there were not con-
nected by springs:

(3.238)

as we have seen in Eq. 3.229.
For the long-time behavior, use of ki � 6� 2kBTi2�Nb2 (Eq. 3.132) yields
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Then, Eq. 3.236 is

(3.240)

For the intermediate time range, we use �i � �1�i2 to calculate Eq. 3.234 as fol-
lows:

(3.241)

We approximate the sum by an integral. Integral by parts yields

(3.242)

Thus,

(3.243)

Figure 3.56 illustrates how 〈[rnn(t)]2〉 changes with time t. The boundaries of the
three time regimes can also be obtained as an interaction between two lines that
correspond to the relevant sections and their extrapolates (Problem 3.27). The diffu-
sion characteristics show a crossover from the single-bead diffusion to the N-bead
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Figure 3.56. Mean square displacement of the beads on the Rouse chain, 〈[rnn(t)]2〉, is plot-
ted as a function of time t. The plot has three distinct regions. In t « �N and t » �1, the dynam-
ics is diffusional with diffusion coefficients NDG and DG, respectively. In the time range
between them, 〈[rnn(t)]2〉 � t1�2.
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diffusion. The latter is slower by a factor of N. Between the two diffusional asymp-
totes, the mean square displacement of the monomers on the Rouse chain increases
in a power of t1�2. The range of time that exhibits the power is roughly between �N

and �1. The mean square displacement is b2 and Nb2 at the two boundaries of the
range.

2. In the Zimm model for the theta solvent, kBT��i � (3·21�2�16)DG�i1�2. The
second term of Eq. 3.235 is calculated as

(3.244)

where the sum was approximated by the integral. This term is much greater com-
pared with the first term, DG. Thus, in the short time, monomers move with a diffu-
sion coefficient of (3�4)(2N)1�2DG. From Eq. 3.174, we find this diffusion coeffi-
cient is equal to 4(3��)1�2kBT�(6��sb) � 3.9 � kBT�(6��sb). Thus, the monomers
move as if there were not connected by springs and with a diffusion coefficient
about four times as large as that of a sphere of radius b:

(3.245)

The expression for 〈[rnn(t)]2〉 in the long time is the same as that of the Rouse
model, because ki is common between the two models. Thus, Eq. 3.240 holds as it
does for the Zimm model in the theta solvent. Note, however, that DG is different
between the two models.

For the intermediate time range, we use �i � �1�i3�2 to evaluate Eq. 3.234 as
follows:

(3.246)

We approximate the sum by an integral. Integral by parts yields

(3.247)

where �1�3 � �(1�3) � 2.679 (see Eq. A3.6). Thus,

(3.248)

Figure 3.57 illustrates how 〈[rnn(t)]2〉 changes with time t in the Zimm model.
The monomer motion is diffusional in the two asymptotes. Between them,
〈[rnn(t)]2〉 � t2�3.

〈[rnn(t)]2〉 � 6DGt � (2�1�3�� 2)Nb2(t��1)2�3  Zimm, theta
intermediate time

�
N
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1
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� 2
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6��sb
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�i

�
3 
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N
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3 
21�2

4
 DGN1�2



3. In the Zimm model for the good solvent, our discussion is limited to power
relationships. For the short-time behavior, we note kBT��i � i� �1DG. Then, in
Eq. 3.235,

(3.249)

which is much greater than DG. Therefore, the short-time behavior is given as

(3.250)

The bead moves as if it were not connected with other beads.
The expression for the long-time behavior is almost the same as that for the

other two models, namely,

(3.251)

For the intermediate time range, we evaluate the following:

(3.252)

By replacing the sum with an integral and using integral by parts, we obtain

(3.253)

The exponent 2�3 is the same as the one we obtained for the theta solvent condition.
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�
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Figure 3.57. Mean square displacement of the beads on the chain for the Zimm model in the
theta solvent, 〈[rnn(t)]2〉
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3.4.10 PROBLEMS

Problem 3.21: Show the inverse transform of Eq. 3.133:

Solution 3.21: We rewrite Eq. 3.133 to

This conversion has the same structure as Eq. 3.118 with (���i)gi replacing qi.
Then, we can apply the inverse transform, Eq. 3.125, as it is:

Because �0 � N� and �i � 2N� (i � 1)

Problem 3.22: Show that, in the Zimm model for the theta solvent,

Solution 3.22: From Eqs. 3.164 and 3.168,

The integral with respect to m is calculated as
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where the lower and upper limits of the integral are set to �� and �, because
frequent alterations of the sign in cos[ j(n � m)��N] and sin[ j(n � m)��N] at
large values of �n � m� make its contribution much smaller compared with the
contribution from small values of �n � m�. Equation A3.3 was used in the last
equality. Then,

Problem 3.23: Show that, in the Zimm model for the theta solvent,

Solution 3.23: From Eqs. 3.164 and 3.168,

The integral is calculated as

Problem 3.24: Show that, in the Zimm model for the good solvent,
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Solution 3.24:

The integral with respect to m is calculated as

where the lower and upper limits of the integral are set to �� and � , because
frequent alterations of the sign in cos[ j(n � m)��N] and sin[ j(n � m)��N]
at large values of �n � m� make its contribution much smaller compared with
the contribution from small values of �n � m�. Equation A3.2 was used in the
last equality. Then,

For h00,

The integral is calculated as
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Problem 3.25: Estimate DG and �1 for a polymer chain with RF � 100 nm in a
solvent of �s � 1.0 cP at 25°C using the Zimm model for the theta solvent.

Solution 3.25:

Problem 3.26: Use Eq. 3.125 to derive Eq. 3.224 directly.

Solution 3.26: From Eq. 3.125,

where term of qN was incorporated into the sum. The first term is the center-
of-mass diffusion. Here, we use Eqs. 3.145, 3.146, and 3.151. Then, the
above equation is rewritten to

At t � 0,

Thus, the evolution of 〈[rmn(t)]2〉mn from its value at t � 0 is given as
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Problem 3.27: Where are the intersections between two adjacent time ranges in
Figure 3.56?

Solution 3.27: Around �N: the time t at the intersection between Eqs. 3.238 and
3.243 is obtained from

Because N » 1, it is rewritten to 3DGt � (b2��2)(�t��1)1�2, which leads to

Thus we find that the first section extends to ��N.
Around �1: the time t at the intersection between Eqs. 3.240 and 3.243 is

obtained from

which is converted to

The boundary between the second and third sections is around �1.

Problem 3.28: Where are the intersections between two adjacent time ranges in
Figure 3.57?

Solution 3.28: Around �N: the time t at the intersection between Eqs. 3.245 and
3.248 is obtained from

Because N » 1, the first term on the right-hand side is negligible. Then,

Thus we find that the first section extends to ��N.
Around �1: the time t at the intersection between Eqs. 3.240 and 3.248 is

obtained from
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which is converted to

The boundary between the second and third sections is around �1.

3.5 DYNAMICS OF RODLIKE MOLECULES

3.5.1 Diffusion Coefficients

Dynamics of rodlike molecules is quite different from that of linear flexible chains.
The rodlike molecule exhibits a well-defined rotational motion in addition to the
center-of-mass motion (Fig. 3.58). The latter has two components: parallel to the
rod axis and perpendicular to the rod axis. The expressions for the translational
diffusion coefficients D� and D� in the directions parallel and perpendicular to the
rod axis and the rotational diffusion coefficient Dr were obtained by Kirkwood41

for a model that consists of N beads in a straight line.
The diffusion along the rod axis is one-dimensional, and the diffusion in the di-

rection perpendicular to the axis is two-dimensional, because the degree of freedom
is 1 and 2 in the two directions, respectively. The three-dimensional diffusion coef-
ficient DG of the center of mass is the isotropic mean of D� and D�, that is, DG �
(D� � 2D�)�3. It is expressed as

(3.254)DG �
kBT[ln(L�b) � �]

3��sL
  rodlike molecule

t � � � 2

6�1�3
	

3�2

�1 � 0.48�1
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D||

D⊥

Dr

L

b

Figure 3.58. Rodlike molecule of length L and diameter b. The center-of-mass translation
has two components, parallel and perpendicular to the rod axis, with the diffusion coef-
ficients D�� and D�. The rod can also rotate around the center with diffusion coefficient Dr.
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where L is the rod length, b is the rod diameter (b « L), and � is a constant. In the
numerator, ln(L�b) is the result of hydrodynamic interactions between different
parts of the rod; without its correction, DG � 1�L and thus DG would be equal to
the diffusion coefficient of N connected, independent beads (Problem 3.29). The
constant �, a result of the end effect, is around 0.3. The diffusion coefficients D�
and D� are

(3.255)

The diffusion is faster in the parallel direction than it is in the perpendicular direc-
tion. The difference is rather small; D� is only twice as large as D�.

From Eq. 3.254, we find that the hydrodynamic radius RH of the rodlike mole-
cule is given as

(3.256)

Because the denominator depends only weakly on L, RH increases nearly linearly
with molecular weight. The dependence is much stronger compared with a linear
flexible chain.

The rotational diffusion coefficient Dr was obtained as

(3.257)

and is related to DG by Dr � 9DG�L2. Note that Dr has a dimension of s – 1. The rota-
tional diffusion coefficient has an extremely steep dependence on the molecular
weight. A rod twice as long can rotate only at the rate of 1�8 of the shorter rod.

3.5.2 Rotational Diffusion

3.5.2.1 Pure Rotational Diffusion Here we consider the rotational motion of the
rodlike molecule in details. We do not pay attention to the center-of-mass position.
Let us define by u(t) the unit vector along the rod axis at time t and place the rodlike
molecule in the spherical polar coordinate system (Fig. 3.59). The orientation vector
u(t) is represented by the polar angle � and the azimuthal angle �. We define the
probability density �(�,�; t) for the distribution of u(t) in the same way as the con-
centration represents the population of solute molecules per volume. The probability
to find u(t) between � and � � d� and between � and � � d� is �(�,�; t)sin�d�d�.

The rotational part of the motion is described by the rotational diffusion equa-
tion for �(�,�; t):

(3.258)
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where the operator in the parenthesis is the orientational part of the Laplacian �2 in
the polar coordinate system. The solution of the diffusion equation is, in general,
given as

(3.259)

where is the spherical harmonic function (l � 0, 1, 2 , . . . ;m � – l, – l �
1 , . . . , l ) and alm(t) is the expansion coefficient. The same diffusion equation applies
to the transition probability P(�,�; ��,��; t) from (��, ��) to (�, �).

In some systems, �(�,�; t) does not depend on �. For instance, when we con-
sider how the probability density �(u; t) evolves for a rod with u(0) parallel to the
polar axis, the distribution is a function of � and t only. Another example is a rod-
like molecule that has a permanent dipole moment along the axis in an electric
field. The natural choice of the polar axis is the direction of the electric field. When
� depends on � and t only, the rotational diffusion equation is simplified to

(3.260)

Then, �(�,�; t) is expanded in only:

(3.261)

where Pl(x) is the lth Legendre polynomial (l � 0,1,2, . . . ). The first few functions
are P0(x) � 1, P1(x) � x, P2(x) � (3x2 – 1)�2.
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Figure 3.59. Rodlike molecule in the spherical polar coordinate system. The orientation of
the rod, u, is expressed by � and �.
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We apply Eq. 3.260 to consider how fast the correlation of the rod orientation is
lost. We place the polar axis in the direction of u(0) and consider how 〈u(t) ·u(0)〉 �
〈cos�〉 = 〈P1(cos�)〉 changes with time. The statistical average is calculated with a
weight of sin�. From Eq. 3.260,

(3.262)

where integration by parts was used twice. Likewise, we can show that (Prob-
lem 3.20)

(3.263)

Note that, at t � 0, 〈Pl(cos�)〉 � 〈Pl(1)〉 � 1. Then, 〈Pl(cos�)〉 relaxes with time ac-
cording to

(3.264)

with a relaxation time �l � [l(l � 1)Dr]–1. The lth orientational correlation is lost
with �l. 

Rotational motion of the rodlike molecule can be viewed as the motion of its end
point on the surface of a sphere with the rod as its diameter (Fig. 3.60). Over a short
period of time (Drt « 1), � « 1 and therefore 〈Pl(cos�)〉 � 〈cos�〉 � 〈1 � �2�2〉 � 1
� 〈�2�2〉. The right-hand side of Eq. 3.264 is � 1 � t��1 � 1 � 2Drt. Thus, 〈�2〉 �
4Drt. The end point makes a two-dimensional diffusion. Over a longer period of
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Figure 3.60. Rotational motion a rodlike molecule can be regarded as the motion of its end
point on the sphere surface.



time, however, the mean square displacement loses a meaning in the rotational
diffusion.

3.5.2.2 Translation-Rotational Diffusion We consider both the center-of-mass
translation and the rotation now. The transition probability from

at time 0 to at time t follows the diffusion equation:

(3.265)

where �u
2 represents the differential operator in Eq. 3.258. The diffusivity is now

anisotropic. The centroid diffusion constant D � D� uu � D�(I � uu) is not a sim-
ple scaler but a tensor of the second rank. Note that, in the polar spherical coordi-
nate system,

(3.266)

Therefore, D � D� in the direction of u, and D � D� in the direction perpendicular
to u. Upon integrating with respect to rG, Eq. 3.265 reduces to Eq. 3.258.

3.5.3 Dynamic Structure Factor

We consider the dynamic structure factor of a rodlike molecule. The long-time be-
havior is rather trivial. The orientational distribution will be averaged, and the cen-
ter-of-mass diffusion alone will survive. Then,

(3.267)

The short-time behavior in the small k limit is also given by this equation. To
consider the short-time behavior for large k, we first rewrite Eq. 3.46 into

(3.268)

where monomers m and n are distributed uniformly along the rod. For the short-
time behavior, we can write

(3.269)

where u is the rod orientation at time zero, xmn(0) is the distance between the two
monomers at time zero. The center-of-mass displacement in time t is �x along the

rm(t) � rn(0) � xmn(0)u � u�x � �v � rm�u
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rod axis and �v in the perpendicular direction. Rotation in time t is �u, and rm is
the distance of the mth bead from the center (see Fig. 3.61).

The center-of-mass motions in the two directions and the rotational motion are
mutually independent. For a given u,

(3.270)

We calculate each term separately. When k is large, exp(ik �u�x) is a rapidly vary-
ing function. Its average is contributed mostly from small �x. Then, we can regard
that the random variable �x is distributed with a normal distribution that has a zero
mean and a variance of 2D�t. Thus

(3.271)

where k� � k �u is the parallel component of k. Likewise, the random variable �v is
distributed with a two-dimensional normal distribution that has a zero mean and a
variance of 4D�t. Thus

(3.272)

〈exp(ik ��v)〉u � �


�


exp(ik��v)(4�D�t)�1 exp	�
�v2

4D�t 
 d�v � exp(�D�k�
2t)

 � exp(�D'k'
2t)

〈exp(ik�u�x)〉u � �


�


exp(ik'�x) (4�D't)�1�2 exp	�
�x2

4D't 
 d�x

�〈exp(ik��v)〉u〈exp(ik��u rm)〉u

〈exp(ik�[rm(t) � rn(0)])〉u � 〈exp[ik�uxmn(0)]〉u〈exp(ik�u�x)〉u

∆v

∆x

∆uu

rm(t)

rn(0)

Figure 3.61. Short time motion of the rodlike molecule consists of the center-of-mass
translation (�x and �v in the directions parallel and perpendicular to the rod axis) and
rotation �u.



where k�
2 � k2 � (k �u)2 is the square of the perpendicular component of k. Like-

wise, �u is distributed with a two-dimensional normal distribution that has a zero
mean and a variance of 4Drt. Thus

(3.273)

All combined,

(3.274)

Averaging with respect to rm cannot be done analytically. We evaluate the initial
slope of ln S1(k, t). It is equal to the initial slope of :

(3.275)

for given u and rm. Now we take the average with respect to u and rm. First, rm is
uniformly distributed in [–L�2, L�2]. Therefore, the average of rm

2 is L2�12. The
average of k�

2 with respect to u is calculated as

(3.276)

Then, 〈k�
2〉 � (2�3)k2. Thus the average of Eq. 3.275 is

(3.277)

With Dr � 9DG�L2,

(3.278)

Rotational motion makes the initial decay slightly faster at large k.
Unlike the linear flexible chains, the initial decay rate at large k is proportional

to k2 (Table 3.4). The difference is ascribed to the comparable diffusion coefficients
(including L2Dr � 9DG) in the five modes of motion in the rodlike molecule. In the
normal modes of a linear flexible chain, in contrast, higher-order modes have a
significantly shorter relaxation time compared with the first mode.
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�


exp(ik��urm)(4�Drt)�1exp	�
�u2

4Drt

 d�u
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3.5.4 Intrinsic Viscosity

In Section 3.3.3, we learned that the Mark-Houwink-Sakurada exponent greater than
1 indicates a stiffness in the chain conformation. Here, we consider the intrinsic vis-
cosity of the rodlike molecule. However, calculation of the excess stress is tedious.
We look at the result only. To the linear order of �, the excess stress ���� is given as

(3.279)

In the shear flow given by Eq. 3.107,

(3.280)

Then with Eq. 3.109, the intrinsic viscosity calculated from the zero-shear viscosity
is given as

(3.281)

The molecular weight dependent factor in [�] is (L3�M)(ln(L�b) � �) – 1. The
dependence is weaker than M2 because of the ln M term in the denominator
(Table 3.3).

3.5.5 Dynamics of Wormlike Chains

A wormlike chain is specified by the persistence length Lc and the contour length
Lp. However, it does not have a thickness. We need to give it a diameter b for the
chain to have a finite diffusion coefficient. The model is called a wormlike cylinder
(Fig. 3.62). The expressions for the center-of-mass diffusion coefficient and the in-
trinsic viscosity were derived by Yamakawa et al.42 in the rigid-rod asymptote and
the flexible-chain asymptote in a series of b�Lc and Lc�Lp. 
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Figure 3.62. Wormlike cylinder has a finite thickness b in addition to the nature of the
wormlike chain.



Figure 3.63 shows the intrinsic viscosity of poly(n-hexyl isocyanate) in toluene
at 25°C.43 The polymer is semirigid with Lp � 37 nm and b � 1.6 nm. The slope of
the tangent decreases from 1.4 to 0.8 with an increasing M. The locally rigid chain
follows the viscosity law of the flexible chain when the molecular weight is suffi-
ciently high.

3.5.6 PROBLEMS

Problem 3.29: Use the general formula, Eq. 3.55, to calculate the hydrody-
namic radius of a rodlike molecule with length L and diameter b. The average
between two beads at x and y on the rod measured from one of the ends is
calculated only for �x – y� � b.

Solution 3.29:

270 DYNAMICS OF DILUTE POLYMER SOLUTIONS

Figure 3.63. Intrinsic viscosity [�] of a semirigid polymer, plotted as a function of the
molecular weight M. The sample is poly(n-hexyl isocyanate) in toluene at 25°C. The
molecular weight dependence of [�] shows a cross-over from �M1.42 to �M 0.8 with an
increasing M. (From Ref. 43.)
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This rough method gives the same result as Eq. 3.256 to the leading order.

Problem 3.30: The Legendre polynomial Pl(z) satisfies the following differen-
tial equation:

Prove Eq. 3.263.

Solution 3.30: Using the integral by parts leads to

where and denote the first- and second-order derivatives of Pl(z). Use
of the above differential equation converts this equation into

APPENDIX 3.A: EVALUATION OF 〈qi
2〉eq

The amplitude of qi at equilibrium can be directly evaluated from its definition by
Eq. 3.118. Because it is an equilibrium property, it has nothing to do with the hy-
drodynamic interactions. It depends only on the chain statistics as shown below.
Here, we use the integral form of Eq. 3.118, that is,

(3.A.1)qi �
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to calculate 〈qi
2〉:

(3.A.2)

where integration by parts was used, and the last equality is due to the identity:
(�2��n�m)〈rn �rm〉 � �(1�2)(�2��n�m)〈(rn � rm)2〉. Now we use 〈(rn � rm)2〉 �
b2�n � m�2�. Then,

(3.A.3)

Here, we change the variables of integration from n and m to u � n � m and v � n
� m. Then,

(3.A.4)

When N » 1, the upper limit of the integral can be replaced by 
. Then, with Eqs.
A3.2 and A3.4,

(3.A.5)

Because of the approximations we used, 〈qi
2〉 vanishes when � � 1�2. The expo-

nents are correct, however, in the final result.
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APPENDIX 3.B: EVALUATION OF 〈exp[ik ·(Aq � Bp)]〉

We obtain a formula for the statistical average of exp[ik�(Aq � Bp)], where A and
B are constants, and three-dimensional Gaussian random variables p and q are dis-
tributed with fP(p) and fQ(q; p), respectively:

(3.B.1)

(3.B.2)

with

(3.B.3)

and

(3.B.4)

At t � 0, fQ(q; p) � �(q � p). At t : 
, q becomes independent of p.
The average is expressed as

(3.B.5)

First, the integration with respect to q is calculated as 

(3.B.6)

Then, the overall average is given as
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APPENDIX 3.C: INITIAL SLOPE OF S1(k, t)

We evaluate A # numerator in Eq. 3.210 for the ideal-chain conformation,
〈exp[ik� rmn(0)]〉mn � exp(�b2k2 �n � m ��6).

(3.C.1)

After integration with respect to m,

(3.C.2)
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The second term in the square bracket is negligible compared with N in both the
small k and large k limits. Therefore,
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