CHAPTER 10

WATER & ELECTROLYTE BALANCE

 The total body water in various subjects is relatively constant when expressed as percentage of the lean body mass and is about

(A).	30%	(B)	40%
(C)	50%	(D)	70%

- 2.. The percentage of water contained in the body of an individual is less because of
 - (A) High fat content (B) Low fat content
 - (C) High protein content(D) Low protein content
- 3. In intracellular compartment the fluid present in ml/kg body weight is about
 - (A) 100 (B) 200 (C) 200 (D) 330
- 4. In extra cellular compartment, the fluid present in ml/kg of body weight is about

Pic		II/ Kg 01 00	ay weigh
(A)	120	(B)	220
(C)	270	(D)	330

5. Fluid present in dense connective tissue and cartilage in ml/kg body weight is about

(A)	10	(B)	20
(C)	45	(D)	55

 The total body water in ml/kg body weight in average normal young adult male is about

(A)	200	(B)	400
(C)	600	(D)	1000

- 7. The fluid present in bones which can not be exchanged readily because of relative avascularity is about
 - (A) 20 ml/kg (B) 25 ml/kg (C) 45 ml/kg (D) 60 ml/kg
- Water derived in gm from complete oxidation of each gm of carbohydrate is about
 - (A) 0.15 (B) 0.25
 - (C) 0.35 (D) 0.55
- 9. The oxidation of 100 gm of fat yields
 - (A) 50 gm water (B) 107 gm water
 - (C) 150 gm water (D) 200 gm water
- 10. Each gm of protein on complete oxidation yields
 - (A) 0.21 gm water (B) 0.31 gm water
 - (C) 0.41 gm water (D) 0.51 gm water
- 11. The daily total body water derived from oxidation of food stuffs is about
 - (A) 100 ml (B) 300 ml
 - (C) 600 ml (D) 1000 ml
- 12. The daily water allowance for normal infant is about
 - (A) 100–200 ml (B) 250–300 ml
 - (C) 330-1000 ml (D) 1000-2000 ml

13. The daily water allowance for normal adult (60 kg) is about

- (A) 200-600 ml (B) 500-800 ml
- (C) 800–1500 ml (D) 1800-2500 ml
- 14. Insensible loss of body water of normal adult is about
 - (A) 50–100 ml (B) 100-200 ml
 - (C) 300–500 ml (D) 600-1000 ml

15. The predominant cation of plasma is

- (A) Na⁺ (B) K+
- (C) Ca+ (D) Mg++

16. The predominant action of plasma is

- (B) Cl-(A) HCO₃-
- (C) HPO₄--(D) SO₄ - -

17. Vasopressin (ADH)

- (A) Enhance facultative reabsorption of water
- (B) Decreases reabsorption of water
- (C) Increases excretion of calcium
- (D) Decreases excretion of calcium

18. Enhanced facultative reabsorption of water by Vasopressin is mediated by

- (A) Cyclic AMP (B) Ca++
- (C) Cyclic GMP (D) Mg++

19. Action of kinins is to

- (A) Increase salt excretion
- (B) Decrease salt retention
- (C) Decrease water retention
- (D) Increase both salt and water excretion

20. The activity of kinins is modulated by

- (A) Prostaglandins
- (B) Ca++
- (C) Increased cAMP level
- (D) Increased cGMP level

21. An important cause of water intoxication is

- (A) Nephrogenic diabetes insipidus
- (B) Renal failure
- (C) Gastroenteritis
- (D) Fanconi syndrome

22. Minimum excretory urinary volume for waste products elimination during 24 hrs is

- (A) 200–300 ml (B) 200-400 ml
- (C) 500-600 ml (D) 800 ml

23. In primary dehydration

- (A) Intracellular fluid volume is reduced
- (B) Intracellular fluid volume remains normal
- (C) Extracellular fluid volume is much reduced
- (D) Extracellular fluid volume is much increased

24. An important cause of secondary dehydration is

- (A) Dysphagia
- (B) Oesophageal varices
- (C) Oesophageal varices
- (D) Gastroenteritis

25. Important finding of secondary dehydration is

- (A) Intracellular oedema
- (B) Cellular dehydration
- (C) Thirst
- (D) Muscle cramps

26. Urine examination in secondary dehydration shows

- (A) Ketonuria
- (B) Low specific gravity
- (C) High specific gravity
- (D) Albuminuria

- 27. The total calcium of the human body is about
 - (B) 200–300 g (A) 100–150 g (C) 1–1.5 kg (D) 2-3 kg
- 28. Daily requirement of calcium for normal adult human is

(A)	100 mg	(B)	800 mg
(C)	2 g	(D)	4 g

29. Normal total serum calcium level varies between

(A)	4–5 mg	(B)	9–11 mg
(C)	15–20 mg	(D)	50-100 mg

280

- 30. The element needed in quantities greater than 100 mg for human beings is
 - (A) Calcium (B) Zinc
 - (C) Selenium (D) Cobalt
- 31. The mineral present in the human body in larger amounts than any other cation is
 - (A) Sodium (B) Calcium
 - (C) Potassium (D) Iron
- 32. The percentage of the total body calcium present in bones is
 - (A) 1 (B) 11 (C) 55 (D) 99
- 33. The percentage of calcium present in extracellular fluid is
 - (A) 1 (B) 5
 - (C) 10 (D) 50
- 34. The physiologically active form of calcium is
 - (A) Protein bond
 - (B) Ionised
 - (C) Complexed with citrate
 - (D) Complexed with carbonate
- 35. The normal concentration of calcium in C.S.F is
 - (A) 1.5-2.5 mg/100 ml
 - (B) 2.5–4 mg/100 ml
 - (C) 4.5–5 mg/100 ml
 - (D) 9-10 mg/100 ml

36. Absorption of calcium is increased on a

- (A) High protein diet (B) Low protein diet
- (C) High fat diet (D) Low fat diet

37. Calcium absorption is interfered by

- (A) Protein in diet
- (B) Phytic acid in cereals
- (C) Alkaline intestinal pH
- (D) Vitamin D

38. Calcium absorption is increased by

- (A) Vitamin D (B) Vitamin C
- (C) Vitamin K (D) Vitamin E

- 39. In serum product of Ca x p (in mg/100ml) in children is normally
 - (A) 20 (B) 30 (C) 50 (D) 60
- 40. In ricket, the product of Ca x p (in mg/ 100 ml) in serum is below
 - (A) 30 (B) 50 (C) 70 (D) 100
- 41. In man, the amount of calcium in gms filtered in 24 hrs period by the renal glomeruli is
 - (A) 5 (B) 10 (C) 15 (D) 20
- 42. The percentage of the calcium eliminated in feces is
 - (A) 10–20 (B) 30–40 (C) 50–60 (D) 70–90
- 43. The maximal renal tubular reabsorptive capacity for calcium (Tmca) in mg/min is about
 - (A) 1.5 ± 0.1 (B) 4.99 ± 0.21 (C) 5.5 + 1.2 (D) 10.2 + 2.2
- 44. Renal ricket is caused by renal tubular defect (usually inherited) which interferes with reabsorption of
 - (A) Calcium (B) Phosphorous
 - (C) Sodium (D) Chloride
- 45. After operative removal of the parathyroid glands resulting into hypoparathyroidism the concentration of the serum calcium may drop below
 - (A) 11 mg (B) 10 mg
 - (C) 9 mg (D) 7 mg
- One of the principal cations of soft tissue and body fluids is
 - (A) Mg (B) S
 - (C) Mn (D) Co
- 47. The normal concentration of magnesium in whole blood is
 - (A) 0-1 mg/100 ml (B) 1-2 mg/100 ml
 - (C) 2-4 mg/100 ml (D) 4-8 mg/100 ml

48. The normal concentration of magnesium in C.S.F is about

- (A) 1 mg/100 ml (B) 3 mg/100 ml
- (C) 5 mg/100 ml (D) 8 mg/100 ml

49. The magnesium content of muscle is about

- (A) 5 mg/100 ml (B) 10 mg/100 ml
- (C) 21 mg/100 ml (D) 50 mg/100 ml

50. Intestinal absorption of magnesium is increased in

- (A) Calcium deficient diet
- (B) High calcium diet
- (C) High oxalate diet
- (D) High phytate diet

51. Deficiency of magnesium may occur with

- (A) Alcoholism
- (B) Diabetes mellitus
- (C) Hypothyroidism
- (D) Advanced renal failure

52. Hypermagnesemia may be observed in

- (A) Hyperparathyroidism
- (B) Diabetes mellitus
- (C) Kwashiorkar
- (D) Primary aldosteronism

53. Na⁺/K⁺-ATPase along with ATP requires

- (A) Ca (B) Mn
- (C) Mg (D) Cl
- 54. The principal cation in extracellular fluid is
 - (A) Sodium (B) Potassium
 - (C) Calcium (D) Magnesium

55. The normal concentration of sodium (in mg/100 ml) of human plasma is

- (A) 100 (B) 200
- (C) 250 (D) 330

56. A decrease in serum sodium may occur in

- (A) Adrenocortical insufficiency
- (B) Hypoparathyroidism
- (C) Hyperparathyroidism
- (D) Thyrotoxicosis

57. Hypernatremia may occur in

- (A) Diabetes insipidus
- (B) Diuretic medication
- (C) Heavy sweating
- (D) Kidney disease
- 58. The metabolism of sodium is regulated by the hormone:
 - (A) Insulin (B) Aldosterone
 - (C) PTH (D) Somatostatin
- 59. The principal cation in intracellular fluid is
 - (A) Sodium (B) Potassium
 - (C) Calcium (D) Magnesium
- 60. The normal concentration of potassium in whole blood is
 - (A) 50 mg/100 ml (B) 100 mg/100 ml
 - (C) 150 mg/100 ml (D) 200 mg/100 ml
- 61. The normal concentration of potassium in human plasma in meq/I is about
 - (A) 1 (B) 2 (C) 3 (D) 5
- 62. The normal concentration of potassium in cells in ng/100 ml is about
 - (A) 100 (B) 200 (C) 350 (D) 440
- 63. Potassium content of nerve tissue in mg/ 100 ml is about
 - (A) 200 (B) 330 (C) 400 (D) 530
- Potassium content of muscle tissue in mg/100 ml is about
 - (A) 50–100 (B) 100–150
 - (C) 250–400 (D) 150–200
- 65. One of the symptoms of low serum potassium concentration includes
 - (A) Muscle weakness
 - (B) Confusion
 - (C) Numbness
 - (D) Tingling of extremities

- 66. Potassium metabolism is regulated by the hormone:
 - (A) Aldosterone (B) PTH
 - (C) Somatostatin (D) Estrogen
- 67. A high serum potassium, accompanied by a high intracellular potassium occurs in
 - (A) Adrenal insufficiency
 - (B) Any illness
 - (C) Gastrointestinal losses
 - (D) Cushing's syndrome

68. Hypokalemia occurs in

- (A) Cushing's syndrome
- (B) Addison's disease
- (C) Renal failure
- (D) Advanced dehydration
- 69. Cardiac arrest may occur due to over doses of
 - (A) Sodium (B) Potassium
 - (C) Zinc (D) Magnesium
- 70. The normal concentration of chloride in mg/100 ml of whole blood is about
 - (A) 200 (B) 250
 - (C) 400 (D) 450
- The normal concentration of chloride in mg/100 ml of plasma is about

(A)	100	(B)	200
-----	-----	-----	-----

- (C) 365 (D) 450
- 72. The normal concentration of chlorine in mg/100 ml of C.S.F is about
 - (A) 200 (B) 250
 - (C) 300 (D) 440
- 73. Hypokalemia with an accompanying hypochloremic alkalosis may be observed in
 - (A) Cushing's syndrome(B) Addison's disease
 - (C) Hyptothyroidism (D) Malnutrition

74. Hypercholremia is associated with

- (A) Hyponatremia (B) Hypernatremia
- (C) Metabolic alkalosis (D) Respiratory acidosis

75. The exclusive function of iron in the body is confined to the process of

- (A) Muscular contraction
- (B) Nerve excitation
- (C) Cellular respiration
- (D) Blood coagulation

76. The normal pH of the blood is

(A)	7.0	(B)	7.1
(C)	7.2	(D)	7.4

- 77. The normal concentration of bicarbonate in blood is
 - (A) 21 meq/L (B) 24 meq/L (C) 26 meq/L (D) 30 meq/L
- 78. At the pH of blood 7.4, the ratio between the carbonic acid and bicarbonate fractions is
 - (A) 1:10 (B) 1:20 (C) 1:30 (D) 1:40
- 79. A 0.22 M solution of lactic acid (pK_a 3.9) was found to contain 0.20 M in the dissociated form and 0.02 M undissociated form, the pH of the solution is

(A)	2.9	(B)	3.3
(C)	4.9	(D)	5.4

- 80. Important buffer system of extracellular fluid is
 - (A) Bicarbonate/carbonic acid
 - (B) Disodium hydrogen phosphate/sodium dihydrogen phosphate
 - (C) Plasma proteins
 - (D) Organic Phosphate
- The pH of body fluids is stabilized by buffer systems. The compound which will be the most effective buffer at physiologic pH is
 - (A) $Na_2HPO_4 pK_a = 12.32$
 - (B) $Na_2HPO_4 pK_a = 7.21$
 - (C) $NH_4OH pK_a = 7.24$
 - (D) Citric acid $pK_a = 3.09$

82. The percentage of CO₂ carrying capacity of whole blood by hemoglobin and oxyhemoglobin is

- (A) 20 (B) 40
- (C) 60 (D) 80

83. The normal serum CO₂ content is

- (A) 18–20 meq/L (B) 24–29 meq/L
- (C) 30-34 meq/L (D) 35-38 meq/L
- 84. The carbondioxide carrying power of the blood residing within the red cells is

(A)	50%		(B)	60%	
-----	-----	--	-----	-----	--

(C) 85% (D) 100%

- 85. Within the red blood cells the buffering capacity contributed by the phosphates is
 - (A) 5% (B) 10%
 - (C) 20% (D) 25%
- 86. The normal ratio between the alkaline phosphate and acid phosphate in plasma is

(A)	2:1	(B) 1:4
(C)	20 : 1	(D) 4:1

- 87. The oxygen dissociation curve for hemoglobin is shifted to the right by
 - (A) Decreased O_2 tension
 - (B) Decreased CO₂ tension
 - (C) Increased CO_2 tension
 - (D) Increased pH

88. Bohr effect is

- (A) Shifting of oxyhemoglobin dissociation curve to the right
- (B) Shifting of oxyhemoglobin dissociation curve to the left
- (C) Ability of hemoglobin to combine with O₂
- (D) Exchange of chloride with carbonate

89. Chloride shift is

- (A) H ions leaving the RBC in exchange of Cl-
- (B) CH leaving the RBC in exchange of bicarbonate
- (C) Bicarbonate ion returns to plasma and exchanged with chloride which shifts into the cell
- (D) Carbonic acid to the plasma

90. Of the total body water, intracellular compartment contains about

- (A) 50%
 (B) 60%
 (C) 70%
 (D) 80%
- 91. Osmotically active substances in plasma are
 - (A) Sodium (B) Chloride
 - (C) Proteins (D) All of these

92. Osmotic pressure of plasma is

- (A) 80-100 milliosmole/litre
- (B) 180–200 milliosmole/litre
- (C) 280-300 milliosmole/litre
- (D) 380-400 milliosmole/litre
- 93. Contribution of albumin to colloid osmotic pressure of plasma is about
 - (A) 10% (B) 50%
 - (C) 80% (D) 90%
- 94. The highest concentration of proteins is present in
 - (A) Plasma (B) Interstitial fluid
 - (C) Interstitial fluid (D) Transcellular fluid

95. Oncotic pressure of plasma is due to

- (A) Proteins (B) Chloride
- (C) Sodium (D) All of these

96. Oncotic pressure of plasma is about

- (A) 10 mm of Hg (B) 15 mm of Hg
- (C) 25 mm of Hg (D) 50 mm of Hg

97. Oedema can occur when

- (A) Plasma Na and Cl are decreased
- (B) Plasma Na and Cl are increased
- (C) Plasma proteins are decreased
- (D) Plasma proteins are increased

98. Colloid osmotic pressure of intracellular fluid is

- (A) Equal to that of plasma
- (B) More than that of plasma
- (C) More than that of plasma
- (D) Nearly zero

99. The water produced during metabolic reactions in an adult is about

- (A) 100 ml/day (B) 300 ml/day
- (C) 500 ml/day (D) 700 ml/day

100. The daily water loss through gastrointestinal tract in an adult is about

- (A) Less than 100 ml/day
- (B) 200 ml/day
- (C) 300 ml/day
- (D) 400 ml/day

101. Recurrent vomiting leads to loss of

(A) Potassium (B) Chloride

(C) Bicarbonate (D) All of these

102. Obligatory reabsorption of water

- (A) Is about 50% of the total tubular reabsorption of water
- (B) Is increased by antidiuretic hormone
- (C) Occurs in distal convoluted tubules
- (D) Is secondary to reabsorption of solutes

103. Antidiuretic hormone

- (A) Is secreted by hypothalamus
- (B) Secretion is increased when osmolality of plasma decreases
- (C) Increases obligatory reabsorption of water
- (D) Acts on distal convoluted tubules and collecting ducts

104. Urinary water loss is increased in

- (A) Diabetes mellitus
- (B) Diabetes insipidus
- (C) Chronic glomerulonephritis
- (D) All of these

105. Diabetes insipidus results from

- (A) Decreased insulin secretion
- (B) Decreased ADH secretion
- (C) Decreased aldosterone secretion
- (D) Unresponsiveness of osmoreceptors

106. Thiazide diuretics inhibit

- (A) Carbonic anhydrase
- (B) Aldosterone secretion
- (C) ADH secretion
- (D) Sodium reabsorption in distal tubules

107. Furosemide inhibits reabsorption of sodium and chloride in

- (A) Proximal convoluted tubules
- (B) Loop of Henle
- (C) Distal convoluted tubules
- (D) Collecting ducts

108. A diuretic which is an aldosterone antagonist is

- (A) Spironolactone (B) Ethacrynic acid
- (C) Acetazolamide (D) Chlorothiazide
- 109. In a solution having a pH of 7.4, the hydrogen ion concentration is
 - (A) 7.4 nmol/L (B) 40 nmol/L
 - (C) 56 nmol/L (D) 80 nmol/L
- 110. At pH 7.4, the ratio of bicarbonate : dissolved CO₂ is
 - (A) 1 : 1 (B) 10 : 1 (C) 20 : 1 (D) 40 : 1
- 111. Quantitatively, the most significant buffer system in plasma is
 - (A) Phosphate buffer system
 - (B) Carbonic acid-bicarbonate buffer system
 - (C) Lactic acid-lactate buffer system
 - (D) Protein buffer system
- 112. In a solution containing phosphate buffer, the pH will be 7.4, if the ratio of monohydrogen phosphate : dihydrogen phosphate is
 - (A) 4:1 (B) 5:1 (C) 10:1 (D) 20:1

113. pK_a of dihydrogen phosphate is

(A)	5.8	(B) 6.1
101		

- (C) 6.8 (D) 7.1
- 114. Buffering action of haemoglobin is mainly due to its
 - (A) Glutamine residues
 - (B) Arginine residues
 - (C) Histidine residues
 - (D) Lysine residues

115. Respiratory acidosis results from

- (A) Retention of carbon dioxide
- (B) Excessive elimination of carbon dioxide
- (C) Retention of bicarbonate
- (D) Excessive elimination of bicarbonate

116. Respiratory acidosis can occur in all of the following except

- (A) Pulmonary oedema
- (B) Hysterical hyperventilation
- (C) Pneumothorax
- (D) Emphysema

117. The initial event in respiratory acidosis is

- (A) Decrease in pH
- (B) Increase in pCO_2
- (C) Increase in plasma bicarbonate
- (D) Decrease in plasma bicarbonate

118. Respiratory alkalosis can occur in

- (A) Bronchial asthma
- (B) Collapse of lungs
- (C) Hysterical hyperventilation
- (D) Bronchial obstruction

119. The primary event in respiratory alkalosis is

- (A) Rise in pH
- (B) Decrease in pCO_2
- (C) Increase in plasma bicarbonate
- (D) Decrease in plasma chloride

120. Anion gap is the difference in the plasma concentrations of

- (A) (Chloride) (Bicarbonate)
- (B) (Sodium) (Chloride)
- (C) (Sodium + Potassium) (Chloride + Bicarbonate)
- (D) (Sum of cations) (Sum of anions)

121. Normal anion gap in plasma is about

- (A) 5 meq/L (B) 15 meq/L
- (C) 25 meq/L (D) 40 meq/L

122. Anion gap is normal in

- (A) Hyperchloraemic metabolic acidosis
- (B) Diabetic ketoacidosis
- (C) Lactic acidosis
- (D) Uraemic acidosis

123. Anion gap is increased in

- (A) Renal tubular acidosis
- (B) Metabolic acidosis resulting from diarrhoea
- (C) Metabolic acidosis resulting from intestinal obstruction
- (D) Diabetic ketoacidosis

124. Anion gap in plasma is because

- (A) Of differential distribution of ions across cell membranes
- (B) Cations outnumber anions in plasma
- (C) Anions outnumber cations in plasma
- (D) Of unmeasured anions in plasma

125. Salicylate poisoning can cause

- (A) Respiratory acidosis
- (B) Metabolic acidosis with normal anion gap
- (C) Metabolic acidosis with increased anion gap
- (D) Metabolic alkalosis

126. Anion gap of plasma can be due to the presence of all the following except

- (A) Bicarbonate (B) Lactate
- (C) Pyruvate (D) Citrate

127. All the following features are found in blood chemistry in uncompensated lactic acidosis except

- (A) pH is decreased
- (B) Bicarbonate is decreased
- (C) pCO₂ is normal
- (D) Anion gap is normal

128. All the following statements about renal tubular acidosis are correct except

- (A) Renal tubules may be unable to reabsorb bicarbonate
- (B) Renal tubules may be unable to secrete hydrogen ions
- (C) Plasma chloride is elevated
- (D) Anion gap is decreased
- 129. All the following changes in blood chemistry can occur in severe diarrhoea except
 - (A) Decreased pH
 - (B) Decreased bicarbonate
 - (C) Increased pCO₂
 - (D) Increased chloride

130. During compensation of respiratory alkalosis, all the following changes occur except

- (A) Decreased secretion of hydrogen ions by renal tubules
- (B) Increased excretion of sodium in urine
- (C) Increased excretion of bicarbonate in urine
- (D) Increased excretion of ammonia in urine

131. Blood chemistry shows the following changes in compensated respiratory acidosis:

- (A) Increased pCO₂
- (B) Increased bicarbonate
- (C) Decreased chloride
- (D) All of these

132. Metabolic alkalosis can occur in

- (A) Severe diarrhoea
- (B) Renal failure
- (C) Recurrent vomiting
- (D) Excessive use of carbonic anhydrase inhibitors
- 133. Which of the following features are present in blood chemistry in uncompensated metabolic alkalosis except?
 - (A) Increased pH
 - (B) Increased bicarbonate
 - (C) Normal chloride
 - (D) Normal pCO₂

134. One joule is the energy required to

- (A) Raise the temperature of 1 gm of water by 1°C
- (B) Raise the temperature of 1 kg of water by $1^{\circ}\mathrm{C}$

- (C) Move a mass of 1 gm by 1 cm distance by a force of 1 Newton
- (D) Move a mass of 1 kg by 1 m distance by a force of 1 Newton

135. Organic compound of small molecular size is

- (A) Urea (B) Uric acid
- (C) Creatinine (D) Phosphates
- 136. Organic substance of large molecular size is
 - (A) Starch (B) Insulin
 - (C) Lipids (D) Proteins

137. Body water is regulated by the hormone:

- (A) Oxytocin (B) ACTH
- (C) FSH (D) Epinephrine
- 138. Calcium is required for the activation of the enzyme:
 - (A) Isocitrate dehydrogenase
 - (B) Fumarase
 - (C) Succinate thiokinase
 - (D) ATPase

139. Cobalt is a constituent of

- (A) Folic acid (B) Vitamin B₁₂
- (C) Niacin (D) Biotin

140. Calcium absorption is inferred by

- (A) Fatty acids (B) Amino acids
- (C) Vitamin D (D) Vitamin B_{12}

141. The average of pH of urine is

(A)	5.6	(B) 6.0
(C)	6.4	(D) 7.0

ANSWERS

1 5	0.4	0.5	4.0	5.0	4.0
1. D	2. A	3. D	4. C	5. C	6. C
7.C	8. D	9. B	10. C	11.B	12. C
13. D	14. D	15. A	16. B	17. A	18. A
19. D	20. A	21.B	22. C	23. A	24. D
25. A	26. B	27. C	28. B	29. B	30. A
31.B	32. D	33. A	34. B	35. C	36. A
37. B	38. A	39. C	40. A	41.B	42. D
43. B	44. B	45. D	46. A	47. C	48. B
49. C	50. A	51. A	52. B	53. C	54. A
55. D	56. A	57. A	58. B	59. B	60. D
61. D	62. D	63. D	64. C	65. A	66. A
67. A	68. A	69. B	70. B	71.C	72. D
73. A	74. B	75. C	76. D	77. C	78.B
79. C	80. A	81.B	82. C	83.B	84. C
85. D	86. D	87. C	88. A	89. C	90. C
91. D	92. C	93. C	94. C	95. A	96. C
97. C	98. B	99. B	100. A	101.B	102. D
103. D	104. D	105.B	106. D	107.B	108. A
109. B	110. C	111.B	112. A	113. C	114. C
115. A	116. B	117.B	118. C	119. B	120. C
121.B	122. A	123.B	124. B	125. C	126. A
127. D	128. D	129. C	130. D	131. D	132. C
133. D	134. D	135. A	136. D	137. A	138. D
139. B	140. A	141.B			