CHAPTER 3

PROTEINS AND PROTEIN METABOLISM

1. All proteins contain the

- (A) Same 20 amino acids
- (B) Different amino acids
- (C) 300 Amino acids occurring in nature
- (D) Only a few amino acids

2. Proteins contain

- (A) Only L- α amino acids
- (B) Only D-amino acids
- (C) DL-Amino acids
- (D) Both (A) and (B)

3. The optically inactive amino acid is

- (A) Glycine (B) Serine
- (C) Threonine (D) Valine

4. At neutral pH, a mixture of amino acids in solution would be predominantly:

- (A) Dipolar ions
- (B) Nonpolar molecules
- (C) Positive and monovalent
- (D) Hydrophobic

5. The true statement about solutions of amino acids at physiological pH is

- (A) All amino acids contain both positive and negative charges
- (B) All amino acids contain positively charged side chains
- (C) Some amino acids contain only positive charge

- (D) All amino acids contain negatively charged side chains
- 6. pH (isoelectric pH) of alanine is

(A)	6.02	(B)	6.6
(C)	6.8	(D)	7.2

- Since the pK values for aspartic acid are 2.0, 3.9 and 10.0, it follows that the isoelectric (pH) is
 - (A) 3.0 (B) 3.9
 - (C) 5.9 (D) 6.0
- 8. Sulphur containing amino acid is
 - (A) Methionine (B) Leucine
 - (C) Valine (D) Asparagine
- 9. An example of sulphur containing amino acid is
 - (A) 2-Amino-3-mercaptopropanoic acid
 - (B) 2-Amino-3-methylbutanoic acid
 - (C) 2-Amino-3-hydroxypropanoic acid
 - (D) Amino acetic acid

10. All the following are sulphur containing amino acids found in proteins except

- (A) Cysteine (B) Cystine
- (C) Methionine (D) Threonine
- 11. An aromatic amino acid is
 - (A) Lysine (B) Tyrosine
 - (C) Taurine (D) Arginine

12. The functions of plasma albumin are

- (A) Osmosis (B) Transport
- (C) Immunity (D) both (A)and (B)

Amino acid with side chain containing basic groups is

- (A) 2-Amino 5-guanidovaleric acid
- (B) 2-Pyrrolidine carboxylic acid
- (C) 2-Amino 3-mercaptopropanoic acid
- (D) 2-Amino propanoic acid

An example of α-amino acid not present in proteins but essential in mammalian metabolism is

- (A) 3-Amino 3-hydroxypropanoic acid
- (B) 2-Amino 3-hydroxybutanoic acid
- (C) 2-Amino 4-mercaptobutanoic acid
- (D) 2-Amino 3-mercaptopropanoic acid

15. An essential amino acid in man is

- (A) Aspartate (B) Tyrosine
- (C) Methionine (D) Serine

16. Non essential amino acids

- (A) Are not components of tissue proteins
- (B) May be synthesized in the body from essential amino acids
- (C) Have no role in the metabolism
- (D) May be synthesized in the body in diseased states

17. Which one of the following is semiessential amino acid for humans?

- (A) Valine (B) Arginine
- (C) Lysine (D) Tyrosine

18. An example of polar amino acid is

- (A) Alanine (B) Leucine
- (C) Arginine (D) Valine

19. The amino acid with a nonpolar side chain is

- (A) Serine (B) Valine
- (C) Asparagine (D) Threonine

20. A ketogenic amino acid is

- (A) Valine (B) Cysteine
- (C) Leucine (D) Threonine

- An amino acid that does not form an αhelix is
 - (A) Valine (B) Proline
 - (C) Tyrosine (D) Tryptophan

22. An amino acid not found in proteins is

- (A) β-Alanine (B) Proline
- (C) Lysine (D) Histidine
- 23. In mammalian tissues serine can be a biosynthetic precursor of
 - (A) Methionine (B) Glycine
 - (C) Tryptophan (D) Phenylalanine

24. A vasodilating compound is produced by the decarboxylation of the amino acid:

- (A) Arginine (B) Aspartic acid
- (C) Glutamine (D) Histidine

25. Biuret reaction is specific for

- (A) -CONH-linkages (B) -CSNH₂ group
- (C) $-(NH)NH_2$ group (D) All of these

26. Sakaguchi's reaction is specific for

- (A) Tyrosine (B) Proline (C) Arginine (D) Cysteine
- 27. Million-Nasse's reaction is specific for the amino acid:
 - (A) Tryptophan (B) Tyrosine
 - (C) Phenylalanine (D) Arginine

Ninhydrin with evolution of CO₂ forms a blue complex with

- (A) Peptide bond (B) α -Amino acids
- (C) Serotonin (D) Histamine
- 29. The most of the ultraviolet absorption of proteins above 240 nm is due to their content of
 - (A) Tryptophan (B) Aspartate
 - (C) Glutamate (D) Alanine

30. Which of the following is a dipeptide?

- (A) Anserine (B) Glutathione
- (C) Glucagon (D) β-Lipoprotein

31. Which of the following is a tripeptide?

- (A) Anserine (B) Oxytocin
- (C) Glutathione (D) Kallidin

32. A peptide which acts as potent smooth muscle hypotensive agent is

- (A) Glutathione (B) Bradykinin
- (C) Tryocidine (D) Gramicidin-s
- 33. A tripeptide functioning as an important reducing agent in the tissues is
 - (A) Bradykinin (B) Kallidin
 - (C) Tyrocidin (D) Glutathione

34. An example of metalloprotein is

- (A) Casein (B) Ceruloplasmin
- (C) Gelatin (D) Salmine

35. Carbonic anhydrase is an example of

- (A) Lipoprotein (B) Phosphoprotein
- (C) Metalloprotein (D) Chromoprotein

36. An example of chromoprotein is

- (A) Hemoglobin (B) Sturine
- (C) Nuclein (D) Gliadin

37. An example of scleroprotein is

- (A) Zein (B) Keratin
- (C) Glutenin (D) Ovoglobulin

38. Casein, the milk protein is

- (A) Nucleoprotein (B) Chromoprotein
- (C) Phosphoprotein (D) Glycoprotein

39. An example of phosphoprotein present in egg yolk is

- (A) Ovoalbumin (B) Ovoglobulin
- (C) Ovovitellin (D) Avidin
- 40. A simple protein found in the nucleoproteins of the sperm is
 - (A) Prolamine (B) Protamine
 - (C) Glutelin (D) Globulin

41. Histones are

- (A) Identical to protamine
- (B) Proteins rich in lysine and arginine
- (C) Proteins with high molecular weight
- (D) Insoluble in water and very dilute acids

42. The protein present in hair is

- (A) Keratin (B) Elastin
- (C) Myosin (D) Tropocollagen

43. The amino acid from which synthesis of the protein of hair keratin takes place is

- (A) Alanine (B) Methionine
- (C) Proline (D) Hydroxyproline
- In one molecule of albumin the number of amino acids is
 - (A) 510 (B) 590
 - (C) 610 (D) 650
- 45. Plasma proteins which contain more than 4% hexosamine are
 - (A) Microglobulins (B) Glycoproteins
 - (C) Mucoproteins (D) Orosomucoids
- 46. After releasing O₂ at the tissues, hemoglobin transports
 - (A) CO₂ and protons to the lungs
 - (B) O_2 to the lungs
 - (C) CO_2 and protons to the tissue
 - (D) Nutrients

47. Ehlers-Danlos syndrome characterized by hypermobile joints and skin abnormalities is due to

- (A) Abnormality in gene for procollagen
- (B) Deficiency of lysyl oxidase
- (C) Deficiency of prolyl hydroxylase
- (D) Deficiency of lysyl hydroxylase

48. Proteins are soluble in

- (A) Anhydrous acetone(B) Aqueous alcohol
- (C) Anhydrous alcohol (D) Benzene

49. A cereal protein soluble in 70% alcohol but insoluble in water or salt solution is

- (A) Glutelin (B) Protamine
- (C) Albumin (D) Gliadin

50. Many globular proteins are stable in solution inspite they lack in

- (A) Disulphide bonds (B) Hydrogen bonds
- (C) Salt bonds (D) Non polar bonds
- 51. The hydrogen bonds between peptide linkages of a protein molecules are interfered by
 - (A) Guanidine (B) Uric acid
 - (C) Oxalic acid (D) Salicylic acid

52. Globular proteins have completely folded, coiled polypeptide chain and the axial ratio (ratio of length to breadth) is

- (A) Less than 10 and generally not greater than 3-4
- (B) Generally 10
- (C) Greater than 10 and generally 20
- (D) Greater than 10

53. Fibrous proteins have axial ratio

- (A) Less than 10
- (B) Less than 10 and generally not greater than 3–4
- (C) Generally 10
- (D) Greater than 10

54. Each turn of α -helix contains the amino acid residues (number):

- (A) 3.6 (B) 3.0
- (C) 4.2 (D) 4.5
- 55. Distance traveled per turn of α-helix in nm is

(A)	0.53	(B)	0.54
(C)	0.44	(D)	0.48

56. Along the α -helix each amino acid residue advances in nm by

(A)	0.15	(B)	0.10
(C)	0.12	(D)	0.20

57. The number of helices present in a collagen molecule is

(A)	1	(B)	2
(C)	3	(D)	4

- 58. In proteins the α -helix and β -pleated sheet are examples of
 - (A) Primary structure (B) Secondary structure
 - (C) Tertiary structure (D) Quaternary structure

59. The a-helix of proteins is

- (A) A pleated structure
- (B) Made periodic by disulphide bridges
- (C) A non-periodic structure
- (D) Stabilised by hydrogen bonds between NH and CO groups of the main chain

60. At the lowest energy level α-helix of polypeptide chain is stabilised

- (A) By hydrogen bonds formed between the H of peptide N and the carbonyl O of the residue
- (B) Disulphide bonds
- (C) Non polar bonds
- (D) Ester bonds

Both α-helix and β-pleated sheet conformation of proteins were proposed by

- (A) Watson and Crick
- (B) Pauling and Corey
- (C) Waugh and King
- (D) Y.S.Rao

62. The primary structure of fibroin, the principal protein of silk worm fibres consists almost entirely of

- (A) Glycine (B) Aspartate
- (C) Keratin (D) Tryptophan

63. Tertiary structure of a protein describes

- (A) The order of amino acids
- (B) Location of disulphide bonds
- (C) Loop regions of proteins
- (D) The ways of protein folding

64. In a protein molecule the disulphide bond is not broken by

- (A) Reduction
- (B) Oxidation
- (C) Denaturation
- (D) X-ray diffraction

65. The technique for purification of proteins that can be made specific for a given protein is

- (A) Gel filtration chromotography
- (B) Ion exchange chromatography
- (C) Electrophoresis
- (D) Affinity chromatography

66. Denaturation of proteins results in

- (A) Disruption of primary structure
- (B) Breakdown of peptide bonds
- (C) Destruction of hydrogen bonds
- (D) Irreversible changes in the molecule

67.	Ceruloplasmin is		77.	A lipoprotein inversely related to th
	(A) α_1 -globulin	(B) α_2 -globulin		incidence of coronary artherosclerosis is
	(C) β-globulin	(D) None of these		(A) VLDL (B) IDL
68.	The lipoprotein wi	th the fastest electro-		(C) LDL (D) HDL
		ind the lowest triglyc-	78.	The primary biochemical lesion in ha mozygote with familial hypercholester
	(A) Chylomicron	(B) VLDL		olemia (type IIa) is
	(C) IDL	(D) HDL		(A) Loss of feed back inhibition of HMC
69.		ociated with activation		reductase
	of LCAT is			(B) Loss of apolipoprotein B
	(A) HDL	(B) LDL		(C) Increased production of LDL from VLDL
	(C) VLDL	(D) IDL		(D) Functional deficiency of plasma membran
70.	The apolipoprotein	which acts as activator		receptors for LDL
	of LCAT is		79 .	In abetalipoproteinemia, the biochemico
	(A) A-I	(B) A-IV		defect is in
	(C) C-II	(D) D		(A) Apo-B synthesis
71.	The apolipoprotein	which acts as actiator		(B) Lipprotein lipase activity
	of extrahepatic lip			(C) Cholesterol ester hydrolase
	(A) Apo-A	(B) Apo-B		(D) LCAT activity
	(C) Apo-C	(D) Apo-D	80	Familial hypertriaacylglycerolemia i
72	The apolipoprote	in which forms the		associated with
/	integral componen			(A) Over production of VLDL
	(A) B-100	(B) B-48		(B) Increased LDL concentration
	(C) C	(D) D		(C) Increased HDL concentration
				(D) Slow clearance of chylomicrons
73.	integral componen	ein which from the		
	•		81.	For synthesis of prostaglandins, th
	(A) B-100	(B) B-48		essential fatty acids give rise to a fatt
	(C) A	(D) D		acid containing
74.		which acts as ligand		(A) 12 carbon atoms (B) 16 carbon atoms
	for LDL receptor is			(C) 20 carbon atoms (D) 24 carbon atoms
	(A) B-48 (C) A	(B) B-100 (D) C	82.	All active prostaglandins have at least on double bond between positions
75.	Serum LDL has beer	n found to be increased		(A) 7 and 8 (B) 10 and 11
	in			(C) 13 and 14 (D) 16 and 17
	(A) Obstructive jaund	ice	00	
	(D) I la matta tanu It		ōJ.	Normal range of plasma total phospha

- (B) Hepatic jaundice
- (C) Hemolytic jaundice
- (D) Malabsorption syndrome
- 76. A lipoprotein associated with high incidence of coronary atherosclerosis is
 - (A) LDL (B) VLDL
 - (C) IDL (D) HDL

- е S
-)r-
 - G
 - ne

al

is

e

- >lipids is
 - (A) 0.2–0.6 mmol/L (B) 0.9–2.0 mmol/L
 - (C) 1.8-5.8 mmol/L (D) 2.8-5.3 mmol/L

84. HDL₂ have the density in the range of

- (A) 1.006-1.019 (B) 1.019-1.032
- (C) 1.032–1.063 (D) 1.063-1.125

85.		poproteins ge of	hav	e tl	ne c	lensity i	in the	
		0.95–1.006 1.019–1.06						
86.	IDL	have the d	ensity	y in	the	range o	f	
	• •	0.95–1.006 1.019–1.03		• •				
87.	Asp	oirin inhibits	the c	activ	vity o	of the en	zyme:	
		Lipoxygenas Phospholipc						
88.	A ′s	uicide enzy	/me/ i	is				
		Cycloxygen Phospholipc			-			
89.		adipose	tissu	Je	pro	stagla	ndins	
		rease		(D)				
	• •	Lipogenesis Gluconeoge		• •	•	,	ic	
00		optimal pl			-			
70		1.0–2.0					/3111 13	
		5.2-[]6.0		• •	5.8			
91.	Рер	osinogen is	conv	erte	d to	active p	pepsin	
	by	·					•	
	• •	HCI		• •		salts		
	• •	Ca++	_	• •		erokinase		
92.		optimal pl	l for			yme ren	nin is	
	• •	2.0 8.0		• •	4.0 6.0			
03		optimal pl				vme trv	ncin ic	
73.		1.0–2.0			2.0		5111 15	
	• •	5.2–6.2		• •	5.8			
94.		optimal p posin is	H for	• the	e en	zyme cł	nymo-	
	(A)	2.0		(B)	4.0			
	(C)	6.0		(D)	8.0			
95	Try by	psinogen is	conv	erte	ed to	active t	r yp sin	
	1	E . I.		(D)	D.1	L.		

- (A) Enterokinase (B) Bile salts
- (C) HCl (D) Mg⁺⁺

96 Pepsin acts on denatured proteins to produce

- (A) Proteoses and peptones
- (B) Polypeptides
- (C) Peptides
- (D) Dipeptides
- 97. Renin converts casein to paracasein in presence of
 - (A) Ca⁺⁺
 (B) Mg⁺⁺
 (C) Na⁺
 (D) K⁺
- 98. An expopeptidase is
 - (A) Trypsin (B) Chymotrypsin
 - (C) Elastase (D) Elastase
- 99. The enzyme trypsin is specific for peptide bonds of
 - (A) Basic amino acids
 - (B) Acidic amino acids
 - (C) Aromatic amino acids
 - (D) Next to small amino acid residues

100. Chymotrypsin is specific for peptide bonds containing

- (A) Uncharged amino acid residues
- (B) Acidic amino acids
- (C) Basic amino acid
- (D) Small amino acid residues

101. The end product of protein digestion in G.I.T. is

- (A) Dipeptide (B) Tripeptide
- (C) Polypeptide (D) Amino acid
- 102. Natural L-isomers of amino acids are absorbed from intestine by
 - (A) Passive diffusion (B) Simple diffusion
 - (C) Faciliated diffusion (D) Active process

103. Abnormalities of blood clotting are

(C) Gout

- (A) Haemophilia (B) Christmas disease
 - (D) Both (A) and (B)
- 104. An important reaction for the synthesis of amino acid from carbohydrate intermediates is transamination which requires the cofactor:
 - (A) Thiamin (B) Riboflavin
 - (C) Niacin (D) Pyridoxal phosphate

105. The main sites for oxidative deamination are

- (A) Liver and kidney
- (B) Skin and pancreas
- (C) Intestine and mammary gland
- (D) Lung and spleen

106. A positive nitrogen balance occurs

- (A) In growing infant
- (B) Following surgery
- (C) In advanced cancer
- (D) In kwashiorkar

107. The main site of urea synthesis in mammals is

- (A) Liver (B) Skin
- (C) Intestine (D) Kidney
- 108. The enzymes of urea synthesis are found in
 - (A) Mitochondria only
 - (B) Cytosol only
 - (C) Both mitochondria and cytosol
 - (D) Nucleus
- 109. The number of ATP required for urea synthesis is

(A) 0	(B) 1
-------	-------

- (C) 2 (D) 3
- Most of the ammonia released from L-αamino acids reflects the coupled action of transaminase and
 - (A) L-glutamate dehydrogenase
 - (B) L-amino acid oxidase
 - (C) Histidase
 - (D) Serine dehydratase

111. In urea synthesis, the amino acid functioning solely as an enzyme activator:

- (A) N-acetyl glutamate (B) Ornithine
- (C) Citrulline (D) Arginine
- 112. The enzyme carbamoyl phosphate synthetase requires
 - (A) Mg⁺⁺ (B) Ca⁺⁺
 - (C) Na⁺ (D) K⁺

113. Control of urea cycle involves the enzyme:

- (A) Carbamoyl phosphate synthetase
- (B) Ornithine transcarbamoylase
- (C) Argininosuccinase
- (D) Arginase
- 114. Transfer of the carbamoyl moiety of carbamoyl phosphate to ornithine is catalysed by a liver mitochondrial enzyme:
 - (A) Carbamoyl phosphate synthetase
 - (B) Ornithine transcarbamoylase
 - (C) N-acetyl glutamate synthetase
 - (D) N-acetyl glutamate hydrolase

115. A compound serving a link between citric acid cycle and urea cycle is

- (A) Malate (B) Citrate
- (C) Succinate (D) Fumarate

116. The 2 nitrogen atoms in urea are contributed by

- (A) Ammonia and glutamate
- (B) Glutamine and glutamate
- (C) Ammonia and aspartate
- (D) Ammonia and alanine

117. In carcinoid syndrome the argentaffin tissue of the abdominal cavity overproduce

- (A) Serotonin (B) Histamine
- (C) Tryptamine (D) Tyrosine
- 118. Tryptophan could be considered as precursor of
 - (A) Melanotonin (B) Thyroid hormones
 - (C) Melanin (D) Epinephrine
- 119. Conversion of tyrosine to dihydroxyphenylalanine is catalysed by tyrosine hydroxylase which requires
 - (A) NAD (B) FAD
 - (C) ATP (D) Tetrahydrobiopterin
- 120. The rate limiting step in the biosynthesis of catecholamines is
 - (A) Decarboxylation of dihydroxyphenylalanine
 - (B) Hydroxylation of phenylalanine
 - (C) Hydroxylation of tyrosine
 - (D) Oxidation of dopamine

The enzyme dopamine β-oxidase which catalyses conversion of dopamine to norepinephrine requires

- (A) Vitamin A (B) Vitamin C
- (C) Vitamin E (D) Vitamin B_{12}

122. In humans the sulphur of methionine and cysteine is excreted mainly as

- (A) Ethereal sulphate
- (B) Inorganic sulphate
- (C) Sulphites
- (D) Thioorganic compound

123. Small amount of urinary oxalates is contributed by the amino acid:

- (A) Glycine (B) Tyrosine
- (C) Alanine (D) Serine

124. The amino acid which detoxicated benzoic acid to form hippuric acid is

- (A) Glycine (B) Alanine
- (C) Serine (D) Glutamic acid
- 125. The amino acids involved in the synthesis of creatin are
 - (A) Arginine, glycine, active methionine
 - (B) Arginine, alanine, glycine
 - (C) Glycine, lysine, methionine
 - (D) Arginine, lysine, methionine

126. Chemical score of egg proteins is considered to be

(A) 100 (B) 60 (C) 50 (D) 40

127. Chemical score of milk proteins is

- (A) 70 (B) 65
- (C) 60 (D) 40

128. Chemical score of proteins of bengal gram is

(A) 70 (B) 60 (C) 44 (D) 42

129. Chemical score of protein gelatin is

(A) 0 (B) 44 (C) 57 (D) 60

130 Chemical score of protein zein is

(A)	0	(B)	57
(C)	60	(D)	70

- 131. Biological value of egg white protein is
 - (A) 94 (B) 83 (C) 85 (D) 77

132. Net protein utilisation of egg protein is

(A)	75%	(B)	80%
(C)	91%	(D)	72%

- 133. Net protein utilization of milk protein is
 - (A) 75% (B) 80% (C) 86% (D) 91%
- 134. A limiting amino acid is an essential amino acid
 - (A) That is most deficient in proteins
 - (B) That is most excess in proteins
 - (C) That which increases the growth
 - (D) That which increases the weight gain

135. The limiting amino acid of rice is

- (A) Lysine (B) Tryptophan
- (C) Phenylalanine (D) Tyrosine

136. The limiting amino acid of fish proteins is

- (A) Tryptophan (B) Cysteine
 - (D) Threonine

137. Pulses are deficient in

(C) Lysine

- (A) Lysine (B) Threonine
- (C) Methionine (D) Tryptophan

138. A trace element deficient in the milk is

- (A) Magnesium (B) Copper
- (C) Zinc (D) Chloride

139. A conjugated protein present in the egg yolk is

- (A) Vitellin (B) Livetin
- (C) Albuminoids (D) Ovo-mucoid

140. The chief protein of cow's milk is

- (A) Albumin (B) Vitellin
- (C) Livetin (D) Casein

(34)

141.	A water soluble vi	tamin deficient in egg is
	(A) Thiamin	(B) Ribofalvin
	(C) Ascrobic acid	(D) Cobalamin
142.	Pulses are rich in	
	(A) Lysine	(B) Methionine
	(C) Tryptophan	(D) Phenylalanine
143.	Milk is deficient in	n
	(A) Vitamin B ₁	(B) Vitamin B ₂
	(C) Sodium	(D) Potassium
144.	Milk is deficient in	ı
	(A) Calcium	(B) Iron
	(C) Sodium	(D) Potassium
145.	When net protein the requirements	utilization (NPU) is low, for proteins are
	(A) High	(B) Moderate
	(C) Low	(D) Supplementary
146.	Protein content of	human milk is about
	(A) 1.4%	(B) 2.4%
	(C) 3.4%	(D) 4.4%
147.	Protein content of	cow's milk is about
	(A) 2.5%	(B) 3.5%
	(C) 4.5%	(D) 5.5%
148.	Protein content of	f soyabean is about
	(A) 30%	(B) 40%
	(C) 50%	(D) 60%
149.	Lipid content of eg	gg white is
	(A) 12%	(B) 33%
	(C) 10–11%	(D) Traces
150.		daily allowance (RDA)
	of proteins for an	
	(A) 70 gms	(B) 50 gms
	(C) 40 gms	(D) 30 gms
151.	The basic amino c	
	(A) Lysine	(B) Bile acids
	(C) Glycine	(D) Alanine
152.	The daily calorie normal adult fem	requirement for the ale is about
	(A) 1500	(B) 2100
	(C) 2500	(D) 2900

153.	In the total proteins,	the	percentage	of
	albumin is about			

(A)	20–40	(B)	30–45
(C)	50–70	(D)	80–90

154. In the total proteins percentage of α_1 globulin is about

(A)	0.2–1.2%	(B)	1.2–2.0%
(C)	2.4-4.4%	(D)	5.0-10.0%

155. In the total proteins the percentage of γ globulin is about

(A)	2.4-4.4%	(B)	10.0-21.0%
(C)	6.1–10.1%	(D)	1.2-2.0%

156. Most frequently the normal albumin globulin ratioratio (A : G) is

(A)	1.0:0.8	(B)	1.5 : 1.0
(C)	2.0:1.0	(D)	2.4 : 1.0

- 157. In Thymol turbidity test the protein involved is mainly
 - (A) Albumin (B) α_1 -Globulin
 - (C) α_2 -Globulin (D) β Globulin
- 158. In quaternary structure, subunits are linked by
 - (A) Peptide bonds (B) Disulphide bonds
 - (C) Covalent bonds (D) Non-covalent bonds
- 159. Molecular weight of human albumin is about
 - (A) 156,000 (B) 90,000 (C) 69,000 (D) 54,000
- 160. At isoelectric pH, an amino acid exists as
 - (A) Anion (B) Cation
 - (C) Zwitterion (D) None of these

161. A disulphide bond can be formed between

- (A) Two methionine residues
- (B) Two cysteine residues
- (C) A methionine and a cysteine residue
- (D) All of these

162 A coagulated protein is

- (A) Insoluble
- (B) Biologically non-functional
- (C) Unfolded
- (D) All of the above

163.	At a pH below the isoelectric point, an amino acid exists as
	 (A) Cation (B) Anion (C) Zwitterion (D) Undissociated molecule
164.	An amino acid having a hydrophilic side chain is
	(A) Alanine(B) Proline(C) Methionine(D) Serine
165.	An amino acid that does not take part in α helix formation is
	(A) Histidine (B) Tyrosine (C) Proline (D) Tryptophan
166.	A protein rich in cysteine is
	(A) Collagen (B) Keratin (C) Haemoglobin (D) Gelatin
167.	Primary structure of proteins can be determined by the use of
	(A) Electrophoresis(B) Chromatography(C) Ninhydrin(D) Sanger's reagent
168.	Electrostatic bonds can be formed between the side chains of
	 (A) Alanine and leucine (B) Leucine and valine (C) Asparate and glutamate (D) Lysine and aspartate
169.	Sanger's reagent contains
	 (A) Phenylisothiocyanate (B) Dansyl chloride (C) 1-Fluoro-2, 4-dinitrobenzene (D) Ninhydrin
170.	The most abundant protein in mammals is
	(A) Albumin (B) Haemoglobin (C) Collagen (D) Elastin
171.	Folding of newly synthesized proteins is accelerated by

- (A) Protein disulphide isomerase
- (B) Prolyl cis-trans isomerase

- (C) Chaperonins
- (D) All of these

172. Primary structure of a protein is formed by

- (A) Hydrogen bonds (B) Peptide bonds
- (C) Disulphide bonds (D) All of these

173. α -Helix is formed by

- (A) Hydrogen bonds
- (B) Hydrophobic bonds
- (C) Electrostatic bonds
- (D) Disulphide bonds

174. Glutelins are present in

- (A) Milk (B) Eggs
- (C) Meat (D) Cereals

175. Aromatic amino acids can be detected by

- (A) Sakaguchi reaction
- (B) Millon-Nasse reaction
- (C) Hopkins-Cole reaction
- (D) Xanthoproteic reaction

176. Two amino groups are present in

- (A) Leucine (B) Glutamate
- (C) Lysine (D) Threonine

177. During denaturation of proteins, all of the following are disrupted except

- (A) Primary structure (B) Secondary structure
- (C) Tertiary structure (D) Quaternary structure
- 178. All the following are branched chain amino acids except
 - (A) Isoleucine (B) Alanine
 - (C) Leucine (D) Valine

179. An -OH group is present in the side chain of

- (A) Serine (B) Arginine
- (C) Lysine (D) Proline

180. Edman's reagent contains

- (A) Phenylisothiocyanate
- (B) 1-Fluoro-2, 4-dinitrobenzene
- (C) Dansyl Chloride
- (D) tBOC azide

(36)

181. Edman's reaction can be used to

- (A) Determine the number of tyrosine residues in a protein
- (B) Determine the number of aromatic amino acid residues in a protein
- (C) Determine the amino acid sequence of a protein
- (D) Hydrolyse the peptide bonds in a protein

182. Inherited deficiency of β -glucosidase causes

- (A) Tay-Sachs disease
- (B) Metachromatic leukodystrophy
- (C) Gaucher's disease
- (D) Multiple sclerosis

183. Tay-Sachs disease results from inherited deficiency of

- (A) Arylsulphatase A
- (B) Hexosaminidase A
- (C) Sphingomyelinase
- (D) Ceramidase

184. The largest alpolipoprotein is

- (A) Apo E (B) Apo B-48
- (C) Apo B-100 (D) Apo A-I

185. Apolipoprotein B-100 is synthesised in

- (A) Adipose tissue (B) Liver
- (C) Intestine (D) Liver and intestine

186. Apolipoprotein B-48 is synthesized in

- (A) Adipose tissue (B) Liver
- (C) Intestine (D) Liver and intestine

187. Apolipoproteins A-I and A-II are present in

- (A) LDL only
- (B) LDL and VLDL
- (C) HDL only
- (D) HDL and chylomicrons

188. Apolipoprotein B-48 is present in

- (A) Chylomicrons (B) VLDL
- (C) LDL (D) HDL

189. Apolipoprotein B-100 is present in

- (A) Chylomicrons (B) VLDL only
 - (C) LDL only (D) VLDL and LDL

190. Apolipoproteins C-I, C-II and C-III are present in

- (A) Chylomicrons(B) VLDL(C) HDL(D) All of these
- 191. Apolipoprotiens C-I, C-II and C-III are present in all of the following except
 - (A) Chylomicrons (B) VLDL
 - (C) LDL (D) HDL

192. Apolipoprotein A-I acts as

- (A) Enzyme activator (B) Ligand for receptor
- (C) Both (A) and (B) (D) None of these

193. Apolipoprotien B-100 acts as

- (A) Enzyme activator (B) Ligand for receptor
- (C) Both (A) and (B) (D) None of these

194. Apolipoprotein C-II is an activator of

- (A) Lecithin cholesterola acyl transferase
- (B) Phospholipase C
- (C) Extrahepatic lipoprotein lipase
- (D) Hepatic lipoprotein lipase

195. Nascent chylomicron receives apolipoproteins C and E from

- (A) VLDL remnant (B) VLDL
- (C) LDL (D) HDL

196. Terminal transferase

- (A) Removes nucleotides from 3' end
- (B) Adds nucleotides at 3' end
- (C) Removes nucleotides from 3'end
- (D) Adds nucleotides at 3'end

197. S1 nuclease hydrolyses

- (A) DNA of somatic cells
- (B) DNA of sperms
- (C) Any double stranded DNA
- (D) Any single stranded DNA

198. Positive nitrogen balance is seen in

- (A) Starvation
- (B) Wasting diseases
- (C) Growing age
- (D) Intestinal malabsorption

199. Alanine can be synthesized from Glutamate and *a*-ketoglutarate (A) (B) Pyruvate and glutamate (C) Pyruvate and α-ketoglutarate (D) Asparate and α-ketoglutarate 200. All of the following are required for synthesis of alanine except (A) Pyruvate (B) α -ketoglutarate (D) Pyridoxal phosphate (C) Glutamate 201. All of the following statements about aspartate are true except (A) It is non-essential amino acid (B) It is a dicarboxylic amino acid (C) It can be synthesized from pyruvate and glutamate (D) It can be converted into asparagine 202. Glycine can be synthesized from (B) Choline (A) Serine (D) All of these (C) Betaine 203. All of the following are required for synthesis of glutamine except (A) Glutamate (B) Ammonia (C) Pyridoxal phosphate (D) ATP 204. A coenzyme required for the synthesis of glycine from serine is (A) ATP (B) Pyridoxal phosphate (C) Tetrahydrofolate (D) NAD 205. All of the following statements about proline are true except (A) It is an imino acid (B) It can be synthesized from glutamate (C) It can be catabolised to glutamate (D) Free proline can be hydroxylated to hydroxyproline 206. A protein rich in hydroxyproline is (A) Prolamin (B) Procollagen (C) Collagen (D) Proinsulin

207. All the following statement about hydroxyproline are true except

- (A) There is no codon for hydroxyproline
- (B) It is present in large amounts in collagen
- (C) Free proline *cannot* be hydroxylated to hydroxyproline
- (D) Hydroxylation of proline residues is catalysed by a dioxygenase
- 208. All of the following are required for hydroxylation of proline residues except
 - (A) Ascorbic acid (B) Glutamate
 - (C) Ferrous ions (D) Molecular oxygen
- 209. Cysteine can be synthesized from methionine and
 - (A) Serine (B) Homoserine
 - (C) Homocysteine (D) Threonine

210. Methionine is synthesized in human body from

- (A) Cysteine and homoserine
- (B) Homocysteine and serine
- (C) Cysteine and serine
- (D) None of these

211. Hydroxylation of phenylalanine requires all of the following except

- (A) Phenylalanine hydroxylase
- (B) Tetrahydrobiopterin
- (C) NADH
- (D) Molecular oxygen

212. Non-Protein amino acids are

- (A) Ornithine
- (B) β-alanine
- (C) γ-amino butyric acid
- (D) All of these

213. The amino acid that undergoes oxidative deamination at significant rate is

- (A) Alanine (B) Aspartate
- (C) Glutamate (D) Glutamine
- 214. Allosteric inhibitor of glutamate dehydrogenase is
 - (A) ATP (B) ADP
 - (C) AMP (D) GMP

- 215. Allsoteric activator of glutamate dehydrogenase is
 - (A) ATP (B) GTP
 - (C) ADP and GDP (D) AMP and GMP

216. Free ammonia is released during

- (A) Oxidative deamination of glutamate
- (B) Catabolism of purines
- (C) Catabolism of pyrimidines
- (D) All of these
- 217. An organ which is extremely sensitive to ammonia toxicity is
 - (A) Liver (B) Brain
 - (C) Kidney (D) Heart
- 218. Ammonia is transported from muscles to liver mainly in the form of
 - (A) Free ammonia (B) Glutamine
 - (C) Asparagine (C) Alanine

219. The major site of urea synthesis is

- (A) Brain (B) Kidneys
- (C) Liver (D) Muscles

220. Carbamoyl phosphate required for urea synthesis is formed in

- (A) Cytosol (B) Mitochondria
- (C) Both (A) and (B) (D) None of these

221. Cytosolic and mitochondrial carbamoyl phosphate synthetase have the following similarity:

- (A) Both use ammonia as a substance
- (B) Both provide carbamoyl phosphate for urea synthesis
- (C) Both require N-acetylglutamate as an activator
- (D) Both are allosteric enzymes

222. The following enzyme of urea cycle is present in cytosol:

- (A) Argininosuccinic acid synthetase
- (B) Argininosuccinase
- (C) Arginase
- (D) All of these
- 223. ATP is required in following reactions of urea cycle:

- (A) Synthesis of carbamoyl phosphate and citrulline
- (B) Synthesis of citrulline and argininosuccinate
- (C) Synthesis of argininosuccinate and arginine
- (D) Synthesis of carbamoyl phosphate and argininosuccinate
- 224. Daily excretion of nitrogen by an adult man is about
 - (A) 15–20 mg (B) 1.5–2 gm
 - (C) 5–10 gm (D) 15–20 gm
- 225. Maple syrup urine diseases is an inborn error of metabolism of
 - (A) Sulphur-containing amino acids
 - (B) Aromatic amino acids
 - (C) Branched chain amino acids
 - (D) Dicarboxylic amino acids

226. Cystinuria results from inability to

- (A) Metabolise cysteine
- (B) Convert cystine into cysteine
- (C) Incorporate cysteine into proteins
- (D) Reabsorb cystine in renal tubules

227. The defective enzyme in histidinemia is

- (A) Histidine carboxylase
- (B) Histidine decarboxylase
- (C) Histidase
- (D) Histidine oxidase

228. All the following statements about phenylketonuria are correct except

- (A) Phenylalanine cannot be converted into tyrosine
- (B) Urinary excretion of phenylpyruvate and phenyllactate is increased
- (C) It can be controlled by giving a lowphenylalanine diet
- (D) It leads to decreased synthesis of thyroid hormones, catecholamines and melanin

229. All the following statements about albinism are correct except

- (A) Tyrosine hydroxylase (tyrosinase) is absent or deficient in melanocytes
- (B) Skin is hypopigmented
- (C) It results in mental retardation
- (D) Eyes are hypopigmented

230. Glycine is not required for the formation of

- (A) Taurocholic acid (B) Creatine
- (C) Purines (D) Pyrimidines

231. Histamine is formed from histidine by

- (A) Deamination (B) Dehydrogenation
- (C) Decarboxylation (D) Carboxylation

232. DOPA is an intermediate in the synthesis of

- (A) Thyroid hormones
- (B) Catecholamines
- (C) Melanin
- (D) Catecholamines and melanin

233. All the following statements about pepsin are correct except

- (A) It is smaller than pepsinogen
- (B) It is formed by the action of HCl on its precursor
- (C) Its optimum pH is 1.0-2.0
- (D) It hydrolyses the C-terminal and N-terminal peptide bonds of proteins

234. Pancreatic juice contains the precursors of all of the following except

- (A) Trypsin (B) Chymotrypsin
- (C) Carboxypeptidase (D) Aminopeptidase

235. The only correct statement about chymotrypsin is

- (A) It is formed from trypsin
- (B) Carboxypeptidase converts trypsin into chymotrypsin
- (C) Its optimum pH is around 7
- (D) It hydrolyses peptide bonds involving basic amino acids

236. The portion of the antigen molecule which is recognized by antibody is known as

- (A) Hapten (B) Epitope
- (C) Complement (D) Variable region

237. All the following statements about haptens are true except

- (A) They have high molecular weights
- (B) They cannot elicit an immune response by

themselves

- (C) When combined with some other large molecule, they can elicit an immune response
- (D) Once an immune response develops, the free hapten can be recognized by the antibody

238. Antigens and haptens have the following similarity:

- (A) They have high molecular weights
- (B) They can elicit immune response by themselves
- (C) They can elicit an immune response only in association with some other large molecule
- (D) Once an immune response develops, free antigen and free hapten can be recognized by the antibody

239. The minimum number of polypeptide chains in an immunoglobulin is

- (A) Two (B) Four
- (C) Five (D) Six
- 240. Light chains of immunoglobulins are of following types:
 - (A) Alpha and kappa (B) Alpha and gamma
 - (C) Lambda and delta(D) Kappa and lambda

241 Immunoglobulins are classified on the basis of

- (A) Type of light chains
- (B) Type of heavy chains
- (C) Types of light and heavy chains
- (D) Molecular weight

242. The molecular weight of light chains is

- (A) 10,000–15,000 (B) 20,000–25,000
- (C) 25,000-50,000 (D) 50,000-75,000

243. The molecular weight of heavy chains is

- (A) 20,000–25,000 (B) 25,000–50,000
- (C) 50,000–70,000 (D) 70,000–1,00,000

244. Secretory component is present in

	(A)	lgA	(B) IgG
--	-----	-----	---------

(C) IgM (D) All of these

245. The variable region of light chains is the

- (A) N-terminal quarter (B) N-terminal half
- (C) C-terminal quarter (D) C-terminal half

246. The variable region of light chain is the

- (A) N-terminal quarter
- (B) N-terminal half
- (C) C-terminal quarter
- (D) C-terminal half

247. The variable region of light chains has

- (A) One hypervariable region
- (B) Two hypervariable regions
- (C) Three hypervariable regions
- (D) Four hypervariable regions

248. The variable region of heavy chains has

- (A) One hypervariable region
- (B) Two hypervariable regions
- (C) Three hypervariable regions
- (D) Four hypervariable regions

249. The most abundant immunoglobulin in plasma is

(A) IgA (B) IgG (C) IgM (D) IgD

250. The largest immunoglobulin is

(A)	lgA	(B)	lgG
(C)	lgΜ	(D)	lgD

251. The plasma concentration of IgA is

(A)	1–5 mg/dl	(B)	40–200 mg/dl
(C)	60–500 mg/dl	(D)	700-1,500 mg/dl

252. An immunoglobulin found in exocrine secretions is

(A)	lgA	(B)	lgG
(C)	lgΜ	(D)	lgE

253. Allergic reactions are mediated by

(A)	lgA	(B)	lgG
(C)	lgD	(D)	lgE

- 254. An immunoglobulin which can cross the placental barrier is
 - (A) IgA (B) IgM
 - (C) IgD (D) None of these

255. IgM possesses

- (A) Two light chains and two heavy chains
- (B) Four light chains and four heavy chains
- (C) Six light chains and six heavy chains
- (D) Ten light chains and ten heavy chains

256. The immunoglobulin having the longest half-life is

- (A) IgA (B) IgG (C) IgM (D) IgE
- 257. The half-life of IgG is
 - (A) 2–3 days (B) 5–6 days
 - (C) 8–10 days (D) 20–25 days

258. Recognition of antigen is the function of

- (A) Variable region of light chains
- (B) Variable regions of light and heavy chains
- (C) Constant region of heavy chains
- (D) Constant regions of light and heavy chains

259. The effector function of antibody is performed by

- (A) Variable region of light chains
- (B) Constant region of heavy chains
- (C) Variable regions of light and heavy chains
- (D) Constant regions of light and heavy chains

260. Complement system can be activated by binding of antigen to

(A)	lgA	(B)	lgD
(\cap)			1 1 4

(C) IgE (D) IgM

261. C1 component of classical complement pathway is made up of

- (A) Complements 1q and 1r
- (B) Complements 1q and 1s
- (C) Complements 1r and 1s
- (D) Complements 1q, 1r and 1s

262. The components of complement system are activated by

- (A) Microsomal hydroxylation
- (B) Phosphorylation
- (C) Glycosylation
- (D) Proteloysis

263. The component system forms a membrane attack complex made up of

- (A) Complements 1q, 1r and 1s
- (B) Complements 1, 2, 3 and 4
- (C) Complements 5b, 6, 7 and 8
- (D) Factors B and D

264. Factors B and D are required in

- (A) The classical pathway of complement fixation
- (B) The alternate complement pathway
- (C) Both (A) and (B)
- (D) None of these

265. The alternate complement pathway doesn't involve

- (A) Antigen-antibody complex
- (B) Complement 3
- (C) Factors B and D
- (D) Membrane attack unit

266. Antibody diversity arises from

- (A) Gene amplification
- (B) Gene re-arrangement
- (C) Alternative splicing
- (D) All of these

267. A light chain gene is constructed from the following segments:

- (A) Variable and constant segments
- (B) Variable, joining and constant segments
- (C) Variable, diversity and constant segments
- (D) Variable, joining, diversity and constant segments

268. In metabolic point of view, amino acids are classified as

- (A) Glycogenic
- (B) Ketogenic
- (C) Glycogenic or Ketogenic
- (D) All of these

269. Diversity segments are present in

- (A) Light chain genes
- (B) Heavy chain genes
- (C) Light and heavy chain genes
- (D) None of these

270. Constant segments of heavy chains are of

- (A) Five types (B) Six types
- (C) Seven types (D) Eight types

271. Gamma heavy chains are of

- (A) Two types (B) Three types
- (C) Four types (D) Five types

272. Gamma heavy chains are present in

(A)	lgA	(B)	lgG
(C)	lgΜ	(D)	lgD

- 273. Heavy chains in IgD are of following type:
 - (A) Alpha (B) Gamma
 - (C) Delta (D) Epsilon
- 274. On exposure to any antigen, the first antibody to be formed is of the following class:
 - (A) IgA (B) IgG (C) IgM (D) IgE
- 275. Constant segment genes of heavy chains are present in a cluster in which the first gene on side is
 - (A) Alpha (B) Gamma
 - (C) Delta (D) None of these

276. Cell-mediated immunity is the function of

- (A) B lymphocytes (B) T lymphocytes
- (C) Plasma cells (D) Basophils

277. The most abundant T cells are

- (A) Cytotoxic T cells (B) Helper T cells
- (C) Suppressor T cells (D) Memory T cells

278. T cells can recognise

- (A) Free antigens
- (B) Antigens bound to cells
- (C) Antigens bound to antibodies
- (D) Antigens bound to MHC proteins

279. MHC proteins are unique to

- (A) Each cell (B) Each organ
- (C) Each individual (D) Each species

280. MHC class I proteins are present on the surface of

- (A) B cells only (B) T cells only
- (C) Macrophages only(D) All cells

281. MHC class I proteins, in conjunction with antigens are recognised by

- (A) Cytotoxic T cells (B) Helper T cells
- (C) Suppressor T cells (D) Memory T cells

(42)

282. MHC class II proteins are present on the surface of

- (A) All cells
- (B) B lymphocytes only
- (C) Macrophages only
- (D) Macrophages and B lymphocytes

283. MHC Class II proteins, in conjunction with antigens, are recognised by

- (A) Cytotoxic T cells
- (B) Helper T cells
- (C) Suppressor T cells
- (D) Memory T cells

284. CD 8 is a transmembrane glycoprotein present in

- (A) Cytotoxic T cells
- (B) Helper T cells
- (C) Suppressor T cells
- (D) Memory T cells
- 285. CD 4 is a transmembrane glycoprotein present in
 - (A) Cytotoxic T cells (B) Helper T cells
 - (C) Suppressor T cells (D) Memory T cells
- 286. CD 3 complex and p 56^{kk} proteins are present in
 - (A) Cytotoxic T cells (B) Helper T cells
 - (C) Both (A) and (B) (D) None of these

287. Cytotoxic T cells release

- (A) Perforins
- (B) Interleukins
- (C) Colony stimulating factors
- (D) Tumour necrosis factor

288. Helper T cells release

- (A) Interleukins
- (B) Colony stimulating factors
- (C) Tumour necrosis factor
- (D) All of these

289. MHC Class III proteins include

- (A) Immunoglobulins
- (B) Components of complement system
- (C) T cells receptors
- (D) CD4 and CD8 proteins

290. Human immunodeficiency virus destroys

- (A) Cytotoxic T cells (B) Helper T cells
- (C) B cells (D) Plasma cells
- 291. In allergic diseases, the concentration of the following is increased in plasma:
 - (A) IgA (B) IgG
 - (C) IgD (D) IgE

292. IgE has a tendency to attach to

- (A) Basophils (B) Mast cells
- (C) Both (A) and (B) (D) None of these

293. Reaginic antibody is

- (A) IgA (B) IgG
- (C) IgD (D) IgE
- 294. Active immunity can be produced by administration of
 - (A) Killed bacteria or viruses
 - (B) Live attenuated bacteria or viruses
 - (C) Toxoids
 - (D) All of these

295. Passive immunity can be produced by administration of

- (A) Pure antigens
- (B) Immunoglobulins
- (C) Toxoids
- (D) Killed bacteria or viruses

296. Helper T cells release all the following except

- (A) Interleukins
- (B) Colony stimulating factors
- (C) Perforins
- (D) Tumour necrosis factor

297. IgG cleaved by papain into

- (A) Two light and two heavy chains
- (B) Two F_{ab} and one F_c fragments
- (C) Two pairs of one light and one heavy chain each
- (D) One F_{ab} and two F_c fragments

298. Bence-Jones protein is

- (A) An immunoglobulin
- (B) A dimer of heavy chains
- (C) A dimer of light chains
- (D) A dimer of one heavy and one light chains

299. Bence-Jones proteins possess all the following properties except

- (A) They are dimers of light chains
- (B) Their amino acids sequences are identical
- (C) Their N-terminal halves have variable amino acid sequences
- (D) Their C-terminal halves have constant amino acid sequences

300. A Zwitterion is

- (A) Positive ion (B) Negative ion
- (C) Both (A) and (C) (D) None of these

301. After accounting for SDA, the net gain of energy from 25 gm of proteins is about

- (A) 70 kcal (B) 100 kcal
- (C) 130 kcal (D) 200 kcal
- 302. After accounting for SDA, the net gain of energy from 25 gm of carbohydrates is about
 - (A) 70 kcal (B) 95 kcal
 - (C) 100 kcal (D) 105 kcal

303. After accounting for SDA, the net gain of energy from 100 gm of fat is about

- (A) 600 kcal (B) 780 kcal
- (C) 900 kcal (D) 1020 kcal

304. If proteins, carbohydrates and fats are consumed together:

- (A) The total SDA is the sum of individual SDAs of proteins, carbohydrates and fats
- (B) The total SDA is more than the sum of individual SDAs of proteins, carbohydrates and fats
- (C) Carbohydrates and fats lower the SDA of proteins
- (D) Proteins raise the SDA of carbohydrates and fats

305. After calculating the energy requirement of a person:

- (A) 10% kcal are subtracted on account of SDA
- (B) 10% kcal are added on account of SDA
- (C) 20% kcal are subtracted on account of SDA
- (D) 20% kcal are subtracted on account of SDA

- 306. The recommended energy intake for an adult sedentary Indian man is
 - (A) 1,900 kcal/day (B) 2,400 kcal/day
 - (C) 2,700 kcal/day (D) 3,000 kcal/day
- 307. The recommended energy intake for an adult sedentary Indian woman is
 - (A) 1,900 kcal/day (B) 2,200 kcal/day
 - (C) 2,400 kcal/day (D) 2,700 kcal/day
- 308. During pregnancy, the following should be added to the calculated energy requirement:
 - (A) 300 kcal/day (B) 500 kcal/day
 - (C) 700 kcal/day (D) 900 kcal/day
- 309. During first six months of lactation, the following increment in energy intake is recommended:
 - (A) 200 kcal/day (B) 300 kcal/day
 - (C) 550 kcal/day (D) 1,000 kcal/day

310. The proximate principles of diet are

- (A) Vitamins and minerals
- (B) Proteins
- (C) Carbohydrates and fats
- (D) Carbohydrates, fats and proteins

311. The limiting amino acid in wheat is

- (A) Leucine (B) Lysine
- (C) Cysteine (D) Methionine

312. The limiting amino acid in pulses is

- (A) Leucine (B) Lysine
- (C) Tryptophan (D) Methionine

313. Maize is poor in

- (A) Lysine
- (B) Methionine
- (C) Tryptophan
- (D) Lysine and tryptophan

314. The percentage of ingested protein/ nitrogen absorbed into blood stream is known as

- (A) Net protein utilisation
- (B) Protein efficiency ratio
- (C) Digestibility coefficient
- (D) Biological value of protein

315. Biological value of a protein is

- (A) The percentage of ingested protein/nitrogen absorbed into circulation
- (B) The percentage of ingested protein/nitrogen in the body
- (C) The percentage of ingested protein utilised for protein synthesis in the body
- (D) The gain in body weight (gm) per gm of protein ingested

316. Net protein utilisation depends upon

- (A) Protein efficiency ratio
- (B) Digestibility coefficient
- (C) Digestibility coefficient and protein efficiency ratio
- (D) Digestibility coefficient and biological value

317. The gain in body weight (gm) per gm of protein ingested is known as

- (A) Net protein utilisation
- (B) Protein efficiency ratio
- (C) Digestibility coefficient
- (D) Biological value of protein

318. The following is considered as reference standard for comparing the nutritional quality of proteins:

- (A) Milk proteins (B) Egg proteins
- (C) Meat proteins (D) Fish proteins

319. Biological value of egg proteins is about

- (A) 70%
 (B) 80%
 (C) 86%
 (D) 94%
- 320. The following has the highest protein efficiency ratio:
 - (A) Milk proteins (B) Egg proteins
 - (C) Meat proteins (D) Fish proteins
- 321. The following has the lowest protein efficiency ratio:
 - (A) Maize proteins (B) Wheat proteins
 - (C) Milk proteins (D) Rice proteins

322. Protein content of egg is about

(A) 10%
(B) 13%
(C) 16%
(D) 20%

323. Protein content of meat is about

(A)	10%	(B)	13%
(C)	16%	(D)	20%

- 324. Protein content of rice is about
 - (A) 7%
 (B) 12%
 (C) 15%
 (D) 20%

325. The calorific value of wheat is about

- (A) 2.5 kcal/gm (B) 3.5 kcal/gm
- (C) 4.5 kcal/gm (D) 5.5 kcal/gm
- 326. For vegetarians, pulses are an important source of
 - (A) Carbohydrates (B) Proteins
 - (C) Fat (D) Iron
- 327. The amino acids present in pulses can supplement the limiting amino acids of
 - (A) Cereals (B) Milk
 - (C) Fish (D) Nuts and beans

328. Milk is a good source of

- (A) Proteins, calcium and iron
- (B) Proteins, calcium and ascorbic acid
- (C) Proteins, lactose and retinol
- (D) Proteins, lactose and essential fatty acids
- 329. Milk is a good source of all of the following except
 - (A) Essential amino acids
 - (B) Vitamin C
 - (C) Galactose
 - (D) Calcium and phosphorous

330. Milk is poor in

- (A) Cholesterol (B) Retinol
- (C) Calcium (D) Iron

331. Egg is rich in all of the following except

- (A) Cholesterol (B) Saturated fatty acids
- (C) Ascorbic acid (D) Calcium

332. A phosphoprotein present in egg is

- (A) Casein
- (C) Ovoglobulin (D) Ovovitellin

(B) Albumin

333.	Consumption of raw eggs can cause deficiency of
	(A) Calcium(B) Lipoic acid(C) Biotin(D) Vitamin A
334.	Egg is poor in
	 (A) Essential amino acids (B) Carbohydrates (C) Avidin (D) Biotin
335.	Cholesterol is present in all the following
	except
	(A) Milk (B) Fish
	(C) Egg white (D) Egg yolk
336.	Meat is rich in all of the following except
	(A) Iron (B) Fluorine
	(C) Copper (D) Zinc
337.	Kwashiorkor occurs when the diet is severely deficient in
	(A) Iron (B) Calories
	(C) Proteins (D) Essential fatty acids
338.	Clinical features of Kwashiorkor include all of the following except
	(A) Mental retardation (B) Muscle wasting
	(C) Oedema (D) Anaemia
339.	Kwashiorkor usually occurs in
	(A) The post-weaning period
	(B) Pregnancy
	(C) Lactation
	(D) Old age
340.	Marasmus occurs from deficient intake of
	(A) Essential amino acids
	(B) Essential fatty acids
	(C) Calories
	(D) Zinc
341.	Marasmus differs from Kwashiorkor in
	the which of these following respect
	(A) Mental retardation occurs in kwashiorkor but
	not in marasmus

(B) Growth is retarded in kwashiorkor but not in marasmus

- (C) Muscle wasting occurs in marasmus but not kwashiorkor
- (D) Subcutaneous fat disappears in marasmus but not in kwashiorkor

342. Energy reserves of an average well-fed adult man are about

- (A) 50,000 kcal (B) 100,000 kcal
- (C) 200,000 kcal (D) 300,000 kcal
- 343. During starvation, the first reserve nutrient to be depleted is
 - (A) Glycogen (B) Proteins
 - (C) Triglycerides (D) Cholesterol

344. Synthesis of the following enzymes is increased during starvation.

- (A) Digestive enzymes
- (B) Gluconeogenic enzymes
- (C) Urea cycle enzymes
- (D) Glucokinase

345. In hypoparathyroidism

- (A) Plasma calcium and inorganic phosphorous are low
- (B) Plasma calcium and inorganic phosphorous are high
- (C) Plasma calcium is low and inorganic phosphorous high
- (D) Plasma calcium is high and inorganic phosphorous low

346. The number of amino acid residues in calcitonin in

(A) 9 (B) 32 (C) 51 (D) 84

347. Calcitonin is synthesised in

- (A) Parathyroid glands
- (B) Thyroid gland
- (C) Pars intermedia of pituitary
- (D) Adrenal cortex

348. Plasma calcium is lowered by

- (A) Parathormone (B) Calcitonin
- (C) Aldosterone (D) Deoxycorticosterone

(46)

349. α Cells of Islets of Langerhans secrete

- (A) Insulin (B) Glucagon
- (C) Somatostatin (D) Cholecystokinin

350. A/G ratio is

- (A) Strength of proteins
- (B) ratio of serum proteins
- (C) ratio of ceruloplasmin
- (D) None of these

351. Insulin is made up of

- (A) A single polypeptide chain having 51 amino acid residues
- (B) A single polypeptide chain having 84 amino acid residues
- (C) A-chain having 21 and B-chain having 30 amino acid residues
- (D) A-chain having 30 and B-chain having 21 amino acid residues

352. The number of amino acid residues in preproinsulin is

- (A) 51 (B) 84 (C) 109 (D) 119
- 353. Pre-proinsulin contains a signal sequence having
 - (A) 9 amino acid residues
 - (B) 19 amino acid residues
 - (C) 27 amino acid residues
 - (D) 33 amino acid residues

354. The number of intra-chain disulphide bonds in pro-insulin:

- (A) One (B) Two (C) Three (D) Four

355. Pentagastrin is a

- (A) Naturally occurring form of gastrin
- (B) Inactive metabolite of gastrin
- (C) Active metabolite of gastrin
- (D) Synthetic form of gastrin

356. Secretion of gastrin is evoked by

- (A) Entry of food into stomach
- (B) Vagal stimulation
- (C) Lower aliphatic alcohols
- (D) All of these

357. Gastrin stimulates

- (A) Gastric motility (B) Gastric secretion
- (C) Both (A) and (B) (D) None of these

358. Secretin is made up of

- (A) 17 amino acids (B) 27 amino acids
- (C) 37 amino acids (D) 47 amino acids

359. Secretin causes all of the following except

- (A) Secretion of pancreatic juice
- (B) Secretion of bile
- (C) Inhibition of gastric secretion
- (D) Stimulation of intestinal motility

360. All of the following statements about cholecystokinin pancreozymin are true except

- (A) It is secreted by mucosa of small intestine
- (B) It stimulates secretion of pancreatic juice rich in enzymes
- (C) It stimulates contraction of gall bladder
- (D) It inhibits gastric motility

361. All of the following statements about pancreatic somatostain are true except

- (A) It is secreted by δ cells of islets of Langerhans
- (B) It stimulates the secretion of gastrin
- (C) It inhibits the secretion of secretin
- (D) It inhibits the secretion of cholecystokininpancreozymin

362. Histidine is converted into histamine by

- (A) Carboxylation (B) Decarboxylation
- (C) Methylation (D) Hydroxylation

363. Histamine is synthesised in

- (A) Brain (B) Mast cells
- (C) Basophils (D) All of these

364. Histamine causes all the following except

- (A) Stimulation of gastric secretion
- (B) Vasoconstriction
- (C) Pruritus
- (D) Increase in capillary permeability

365. H₂-receptors are blocked by

- (A) Diphenhydramine (B) Mepayramine
- (C) Pyrilamine (D) Cimetidine

366. Serotonin is synthesised from

- Serine (B) Phenylalanine
- (C) Tyrosine (D) Tryptophan

367. All the following statements about serotonin are true except

- (A) It causes vasolidatation
- (B) It causes bronchoconstriction
- (C) It is metabolized by monoamine oxidase
- (D) Its metabolite is 5-hydroxyindole acetic acid

368. All the following statements about angiotensin are true except

- (A) Its precursor is an α_2 -globulin
- (B) Its active form is an octapeptide
- (C) It is a vasodilator
- (D) It increases the secretion of aldosterone

369. Methyl dopa decreases blood pressure by

- (A) Inhibiting the synthesis of catecholamines
- (B) Antagonising the action of aldosterone
- (C) Stimulating the release of renin
- (D) Inhibiting the breakdown of angiotensin

370. Binding of gamma-aminobutyric acid to its receptors in brain increases the permeability of cell membrane to

(A) CI-	(B)	Na+
---------	-----	-----

(C) K+	(D)) Ca++
--------	-----	--------

- 371. Binding of acetylcholine to its receptors increases the permeability of cell membrane to
 - (A) Ca⁺⁺ (B) Na⁺
 - (C) K⁺ (D) Na⁺ and K⁺
- 372. All of the following are glycoproteins except
 - (A) Collagen (B) Albumin
 - (C) Transferrin (D) IgM

373. Sialic acids are present in

- (A) Proteoglycans (B) Glycoproteins
- (C) Both (A) and (B) (D) None of these

374. Hyaluronidase hydrolyses

- (A) Hyaluronic acid
- (B) Chondroitin sulphate
- (C) Heparin
- (D) Hyaluronic acid and chondroitin sulphate

375. The most abundant protein in bones is

- (A) Collagen type I
- (B) Collagen type II
- (C) Collagen type III
- (D) Non-collagen proteins
- 376. The most abundant collagen in cartilages is
 - (A) Type I (B) Type II
 - (C) Type III (D) Type IV
- 377. Collagen and elastin have the following similarity:
 - (A) Both are triple helices
 - (B) Both have hydroxyproline residues
 - (C) Both have hydrolysine residues
 - (D) Both are glycoproteins

378. Abnormal collagen structure is seen in all of the following except

- (A) I-cell disease
- (B) Osteogenesis imperfecta
- (C) Menke's disease
- (D) Ehlers-Danlos sydrome

379. I-cell disease results from absence of the following from lysosomal enzymes:

- (A) Signal sequence
- (B) Mannose-6-phosphate
- (C) Sialic acid
- (D) A serine residue

380. In I-cell disease, lysosomal enzymes

- (A) Are not synthesised
- (B) Are inactive
- (C) Lack signal sequence
- (D) Cannot reach lysosomes

381. Renal glycosuria occurs due to

- (A) Increased filtration of glucose in glomeruli
- (B) Increased secretion of glucose by renal tubular cells
- (C) Decreased reabsorption of glucose by renal tubular cells
- (D) Increased conversion of glycogen into glucose in tubular cells

382. Haematuria can occur in

(A) Haemolytic anaemia

(A)

- (B) Mismatched blood transfusion
- (C) Yellow fever
- (D) Stone in urinary tract
- 383. Haematuria can occur in all of the following except
 - (A) Acute glomerulonephritis
 - (B) Cancer of urinary tract
 - (C) Stone in urinary tract
 - (D) Mismatched blood transfusion
- 384. Chyluria can be detected by addition of the following to the urine:
 - (A) Sulphosalicylic acid (B) Nitric acid
 - (C) Acetic anhydride (D) Chloroform

385. Normal range of serum urea is

- (A) 0.6–1.5 mg/dl (B) 9–11 mg/dl
- (C) 20-45 mg/dl (D) 60-100 mg/dl

386. Normal range of serum creatinine is

(A) 0.6–1.5 mg/dl (B) 9–11 mg/dl (C) 20–45 mg/dl (D) 60–100 mg/dl

387. Standard urea clearance is

- (A) 54 ml/min (B) 75 ml/min
- (C) 110 ml/min (D) 130 ml/min

388. Maximum urea clearance is

- (A) 54 ml/min (B) 75 ml/min
- (C) 110 ml/min (D) 130 ml/min

389. Average creatinine clearance in an adult man is about

- (A) 54 ml/min (B) 75 ml/min (C) 110 ml/min (D) 130 ml/min
- 390. Inulin clearance in an average adult man is about
 - (A) 54 ml/min (B) 75 ml/min
 - (C) 110 ml/min (D) 130 ml/min
- Q391. Among the following, a test of tubular function is
 - (A) Creatinine clearance
 - (B) Inulin clearance
 - (C) PAH clearance
 - (D) PSP excretion test
- **392.** A simple way to assess tubular function is to withhold food and water for 12

hours and, then, measure

- (A) Serum urea
- (B) Serum creatinine
- (C) Urine output in one hour
- (D) Specific gravity of urine
- 393. Among the following, the most sensitive indicator of glomerular function is
 - (A) Serum urea
 - (B) Serum creatinine
 - (C) Urea clearance
 - (D) Creatinine clearance

394. All the following statements about inulin are correct except

- (A) It is completely non-toxic
- (B) It is completely filtered by glomeruli
- (C) It is not reabsorbed by tubular cells
- (D) It is secreted by tubular cells

395. Non-protein nitrogenous substances in blood include all of the following except

- (A) Urea (B) Uric acid
- (C) Creatinine (D) Inositol

396. Non-protein nitrogenous substances in blood are raised in

- (A) Starvation
- (B) Liver damage
- (C) Renal failure
- (D) All of these

397. Creatinine clearance is deceased in

- (A) Acute tubular necrosis
- (B) Acute glomerulonephritis
- (C) Hypertension
- (D) Myopathies

398. Serum amylase is increased in

- (A) Acute parotitis (B) Acute pancreatitis
- (C) Pancreatic cancer (D) All of these

399. Maximum rise in serum amylase occurs in

- (A) Acute parotitis
- (B) Acute pancreatitis
- (C) Chronic pancreatitis
- (D) Pancreatic cancer

400. Serum lipase is increased in

- (A) Acute parotitis (B) Acute pancreatitis
- (C) Infective hepatitis (D) Biliary obstruction
- 401. Which one of the following metabolites is not directly produced in the hexose monophosphate pathway?
 - (A) Fructose-6-phosphate
 - (B) Dihydroxy acetone phosphate
 - (C) CO_2
 - (D) Erythrose-4-phosphate
- 402. Which one of the following statements concerning glucose-6-phosphate dehydrogenase deficiency is correct?
 - (A) Young R.B.Cs, particularly reticulocytes, contain the highest enzyme activity cells show less enzyme activity
 - (B) Glucose-6-P Dehydroglucose deficiency leads to disfuction of many tissues
 - (C) G-6-p Dehydroglucose deficiency is due to a single deletion of a large sequence of DNA in the G-6-PD gene
 - (D) G-6-PD deficiency is precipitated by ingestion of drugs such as aspirin

403. The phenomenon of inhibition of glycolysis by O₂ is termed as

- (A) Red drop (B) Pasteur effect
- (C) Michaelis effect (D) Fischer's effect

404. Seratonin is derived in the body from the following amino acid:

- (A) Phenylalanine (B) Histidine
- (C) Tryptophan (D) Serine

405. Which amino acid is a lipotropic factor?

- (A) Lysine (B) Leucine
- (C) Tryptophan (D) Methionine

406. Which among the following is a nutritionally essential amino acid for man?

- (A) Alanine (B) Glycine
- (C) Tyrosine (D) Tryptophan

407. The essential amino acids

(A) Must be supplied in the diet because the organism has lost the capacity to aminate the corresponding ketoacids

- (B) Must be supplied in the diet because the human has an impaired ability to synthesize the carbon chain of the corresponding ketoacids
- (C) Are identical in all species studied
- (D) Are defined as those amino acids which cannot be synthesized by the organism at a rate adequate to meet metabolic requirements
- 408. Which among the following is an essential amino acid?
 - (A) Cysteine (B) Leucine
 - (C) Tyrosine (D) Aspartic acid
- 409. Which among the following is a basic amino acid?
 - (A) Aspargine (B) Arginine
 - (C) Proline (D) Alanine
- 410. This amino acid cannot have optical isomers:
 - (A) Alanine (B) Histidine
 - (C) Threonine (D) Glycine
- The amino acid which contains a guanidine group is
 - (A) Histidine (B) Arginine
 - (C) Citrulline (D) Ornithine

412. GABA(gama amino butyric acid) is

- (A) Post-synaptic excitatory transmitter
- (B) Post-synaptic inhibitor transmitter
- (C) activator of glia-cell function
- (D) inhibitor of glia-cell function

413. Sulphur-containing amino acid is

- (A) Glutathione (B) Chondroitin sulphate
- (C) Homocysteine (D) Tryptophan

414. The useful reagent for detection of amino acids is

- (A) Molisch reagent
- (B) Dichlorophenol Indophenol
- (C) Ninhydrin
- (D) Biuret
- 415. The amino acid which contains an indole group is
 - (A) Histidine (B) Arginine
 - (C) Glycine (D) Tryptophan

416. Sakaguchi reaction is answered by

- (A) Lysine
- (B) Ornithine
- (C) Arginine
- (D) Arginino succinic acid

417. The pH of an amino acid depends

- (A) Optical rotation (B) Dissociation constant
- (C) Diffusion coefficient(D) Chain length

418. When amino acids are treated with neutral formaldehyde, the pH of the mixture

- (A) Is not altered
- (B) Increases
- (C) Decreases
- (D) First increases then decreases

419. Which among the following has an imidazole group?

- (A) Histidine (B) Tryptophan
- (C) Proline (D) Hydroxy proline

420. The amino acid exist as Zwitter ions when they are in

- (A) solid state (B) acidic solution
- (C) alkaline solution (D) neutral solution

421. Plasma proteins are isolated by

- (A) Salting out (B) Electrophoresis
- (C) Flourimetry (D) Both (A) and (B)

422. After digestion amino acids

- (A) Are absorbed into portal circulation
- (B) Are absorbed into lymph
- (C) Are excreted to the extent of 50%
- (D) Converted into glucose in the intestine

423. Cysteine has the formula:

- (A) CH₃SH
- (B) H₂N—CH₂—COOH
- (C) HS-CH2-CH(NH2)-COOH
- (D) S-CH₂-CH(NH₂)-COOH
 - S-CH₂-CH(NH₂)-COOH

424. The compound having the formula

$$H_2N$$
—CO—NH—C H_2 —C H_2 —C H_2 —CH—COOH is

. NH₂

- (A) Lysine (B) Glutamine
- (C) Serine (D) Citrulline
- 425. An amino acid which contains a disulphide bond is
 - (A) Lysine (B) Methionine
 - (C) Homocysteine (D) Cystine

426. One of the following has a phenolic group:

- (A) Histidine (B) Hydroxy lysine
- (C) Seratonine (D) Hydroxy proline
- 427. An amino acid not containing the usual— COOH group is
 - (A) Alanine (B) Tryptophan
 - (C) Methionine (D) Taurine

428. Branched chain amino acids are

- (A) Cysteine and cystine
- (B) Tyrosine and Tryptophan
- (C) Glycine and Serine
- (D) Valine, Leucine and Isoleucine

429. A Zwitter ion is one which has in aqueous solution:

- (A) One positive charge and one negative charge
- (B) Two positive charges and one negative charge
- (C) Two negative charges and one positive charge
- (D) No electrical charges at all
- 430. The amino acid which gives yellow colour with Ninhydrin in paper chromatography is
 - (A) Tyrosine (B) Proline
 - (C) Tryptophan (D) Alanine

431. Hydroxylation of Proline and Lysine in a protein is effected by

- (A) Vitamin B_1 (B) Vitamin B_2
- (C) Vitamin B_6 (D) Vitamin C

432. Millon's test is for identification of

- (A) Tyrosine (B) Tryptophan
- (C) Proline (D) Arginine
- 433. Hopkins-Cole test is for identification of
 - (A) Tyrosine (B) Tryptophan
 - (C) Arginine (D) Cysteine

__СООН

434.	Coll	agen is very	rich in	I
	(A)	Glycine	(B)	Serine
	(C)	Aspartic acid	(D)	Glutamic acid
435.	All c	amino acids a	re opti	cally active except
	(A)	Glycine	(B)	Serine
	(C)	Threonine	(D)	Tryptophan
436.	natu			nino acids form in mino acids present
	(A)		• •	25
	(C)	40	(D)	35
437.		yme catalyze duces amino		rolysis of proteins of the form:
	(A)		(B)	
	(C)	DL	(D)	All of these
438.		ionizable gro ast.	oups o	f amino acids are
	(A)	1	(B)	2
	(C)		(D)	
439.	The	neutral amin	o acid	lis
		Lysine		Proline
	• •	Leucine	• • •	Histidine
440	. ,			aining hydroxyl
	gro			
	-	-	(B)	Isoleucine
	(C)	Arginine		Threonine
441.	The	sulphur conte	ainina	amino acid:
		-	(B)	
	• •	Methionine		
442.	• •	basic amino		
		Glycine		Leucine
	• •	Histidine	• • •	Proline
443	• •			synthesizes many
		mones:	VIIICII	symmesizes many
	(A)	Valine	(B)	Phenyl alanine
	(C)	Alanine		Histidine
444.	Ami	ino acids are	insolu	ble in
	(A)	Acetic acid	(B)	Chloroform
	(C)	Ethanol	(D)	Benzene

445.	The major end product of protein nitrogen
	metabolism in man is

(A)	Glycine	(B)	Uric acid
(C)	Urea	(D)	NH_3

- 446. An amino acid not involved in urea cycle is
 - (A) Arginine (B) Histidine
 - (C) Ornithine (D) Citrulline

447. NH₃ is detoxified in brain chiefly as

- (A) Urea (B) Uric acid
- (C) Creatinine (D) Glutamine

448. In humans, NH₃ is detoxified in liver as

- (A) Creatinine (B) Uric acid
- (C) Urea (D) Uronic acid

449. The body protein after eighteen years

- (A) Remains unchanged
- (B) Is decomposed only slightly at intervals of one month
- (C) Is in a constant state of flux
- (D) Is used only for energy requirement

450. The only known physiological methylating agents in the animal organism are

- (A) Choline and betaine
- (B) Choline and δ -adenosyl methionine
- (C) Betaine and δ-adenyosyl methionine
- (D) Dimehtyl glycine and betaine
- 451. In the synthesis of 1 molecule of urea in the Kreb's Hanseleit cycle, the number of ATPs required is
 - (A) 1 (B) 2
 - (C) 3 (D) 4

452. For biosynthesis of proteins

- (A) Amino acids only are required
- (B) Amino acids and nucleic acids only are required
- (C) Amino acid, nucleic acids and ATP only are required
- (D) Amino acids, nucleic acids, ATP, GTP, enzymes and activators are required

(52)

- 453. Transmethylation of guanido acetic acid gives
 - (A) Creatine phosphate
 - (B) Creatinine
 - (C) Choline
 - (D) n-methyl nicotinamide

454. The 2 energy rich compounds needed for protein biosynthesis are

- (A) ATP and GTP (B) ATP and UTP
- (C) ATP and CTP (D) ATP and TTP
- 455. The following ketoacid is involved in fixing dietary NH₃ into amino acid:
 - (A) Pyruvate (B) Oxalo acetate
 - (C) Oxalo succinate (D) α -keto glutarate

456. The metabolite which sustains urea cycle is

- (A) Ornithine
- (B) Citrulline
- (C) Carbamoyl phosphate
- (D) n-acetyl glutamate

457. Tetra hydroglolate can be freed from N⁵ methyl tetrahydrofolate only by

- (A) Nor epinephrine (B) Ethanol amine
- (C) Nicotinamide (D) Vitamin B₁₂

458. Neogenesis of methyl group is

- (A) The availability of methyl group form δ adenosyl methionine
- (B) The availability of methyl group from betaine
- (C) Interaction between N⁵ N¹⁰ methylene tetra hydrofolate with a NAD⁺ dependent reductase
- (D) Availability of methyl group from methyl B₁₂

459. More creatinine is excreted by

- (A) Adult males (B) Adult females
- (C) Children (D) Pregnant women

460. A growing peptide in a ribosome can not be shifted to the adjacent ribosome because

- (A) It is firmly attached
- (B) It will get the amino acid cleaved
- (C) The gap between the ribosomes is too big for a shift
- (D) The adjacent ribosomes have different composition

461. The first amino acid incorporated in a polypeptide in a ribosome of a human is

- (A) N formyl methionine (B) Methionine
- (C) Phenyl alanine (D) Hydroxy lysine
- 462. The first amino acid incorporated in a polypeptide in a ribosome of a bacterium is
 - (A) N formyl methionine (B) Methionine
 - (C) Alamine (D) Glycine
- 463. The integrator between the TCA cycle and urea cycle is
 - (A) Fumarate (B) Malate
 - (C) Pyruvate (D) Citrate

464. Bence jones proteinurial characterized by

- (A) Non-heat coagulability
- (B) Heat coagulability at 100°C
- (C) Heat coagulability at 45 to 60°C
- (D) Precipitation at 25°C

465. Bence Jones proteins may be excreted in urine of patients suffering from

- (A) Tuberculosis (B) Diabetes mellitus
- (C) Multiple myeloma (D) Hyperthyroidism

466. Xanthuric acid is an abnormal metabolite of

- (A) Xanthine (B) Uric acid
- (C) Tyrosine (D) Tryptophan

467. Two nitrogen atoms of Urea in the urea cycle come from

- (A) NH_3
- (B) One from NH_3 and one from aspartate
- (C) One from NH_3 and one from glutamate
- (D) One from NH_3 and one from alanine

468. Pyruvic acid can be obtained by transamination of alanine with

- (A) α keto glutaric acid
- (B) Acetoacetic acid
- (C) β-OH butyric acid
- (D) Phosphoenol Pyruvic acid
- 469. In the synthesis of 1 molecule of urea in the Kreb's Henseleit cycle the number of AMPs formed is
 - (A) 1 (B) 2
 - (C) 3 (D) 4

- _____
- 470. Formation of melanin from tyrosine requires the action of
 - (A) Dopa decarboxylation
 - (B) Diamine oxidase
 - (C) Peroxidase
 - (D) Tyrosinase

471. In one of the following the quality of the protein synthesized is affected:

- (A) Diabetes mellitus (B) Gont
- (C) Multiple myeloma (D) Primaquine sensitivity

472. Citrulline is an intermediate of

- (A) TCA cycle (B) Urea cycle
- (C) Pentose cycle (D) Calvin cycle

473. The semialdehydes are formed under the action of enzymes characterised as

- (A) Aldolases
- (B) Peptidyl lysyl oxidases
- (C) Collagenases
- (D) Elastases

474. Which of the following statement about the peptide bond is true?

- (A) It is a carbon-carbon bond
- (B) It has cis hydrogen and oxygen groups
- (C) It is planar
- (D) It has rotational freedom

475. Isoenzymes for a given reaction

- (A) Have different spedificities
- (B) Have identical affinities for the same substrate
- (C) Exhibit different electrophoretic motilities
- (D) Contain similar ratios of different polypeptide chains

476. The highest concentration of cystine can be found in

- (A) Melanin (B) Chondroitin sulphate
- (C) Myosin (D) Keratin
- 477. One round of Edman degradation of the peptide: H₂N— Gly—Arg—Lys—Phe— Asp— COOH would result in which of the following structures or their phenyl isothiocyanate derivatives?
 - (A) H₂N—Gly—Arg—COOH + H₂N—Lys— Phe—Asp—COOH

- (B) H₂N—Gly—Arg—Lys—Phe—COOH + Asp
- (C) H₂N—Arg—Lys—Phe—Asp—COOH + Gly
- (D) H_2N —Gly—Arg—Lys—COOH + H_2N —Phe —Asp—COOH

478. Which of the following techniques is used to separate proteins based upon differences in their mass?

- (A) Isoelectric focusing
- (B) Dialysis
- (C) SDS-gel Electrophoresis
- (D) Western blotting
- 479. The greatest buffering capacity at physiologic pH would be provided by a protein rich in which of the following amino acids ?
 - (A) Lysine (B) Histidine
 - (C) Aspartic acid (D) Valine
- 480. Which one of the amino acids could serve as the best buffer at pH 7?
 - (A) Glutamic acid (B) Arginine
 - (C) Valine (D) Histidine
- 481. Which one of the following statements concerning glutamine is correct?
 - (A) Contains three tetratable groups
 - (B) Is classified as an acidic amino acid
 - (C) Contains an amide group
 - (D) Migrates to the cathode during electrophoresis at pH 7.0
- 482. One of the given example is an amino acid:
 - (A) Oh-Lysine (B) Protein
 - (C) Leucine (D) Serine
- 483. The lone pair of electrons at one of the ring nitrogens in the given amino acid makes a potential ligand, which is important in binding the iron atoms in hemoglobin:
 - (A) Tryptophan (B) Threonine
 - (C) Histidine (D) Serine
- 484. The amino acid which is not optically active is
 - (A) Alanine (B) Glycine
 - (C) Glutamine (D) Lysine

485. Optically active compounds are capable of

- (A) Different reactions
- (B) Rotating plane of polarized light
- (C) Showing same chemical properties
- (D) None of these

486. The reference compound for absolute configuration of optically active compound is

- (A) Alanine (B) Lactic acid
- (C) Glyceraldehyde (D) Dihydroxy acetone

487. All the standard amino acids except the following have one chiral 'c' atom:

- (A) Threonine, Isoleucine
- (B) Isoleucine, Alanine
- (C) Threonine, Alanine
- (D) Alanine, Glutamine

488. The role of complement proteins:

- (A) Defense
- (B) Helps immunity of the body
- (C) Not predicatable
- (D) None of these

489. Optical isomers that are mirror images and non superimposable are called

- (A) Diastereomers (B) Evantiomers
- (C) dl isomers (D) Stereomers

490. Living cells have the unique ability to synthesize only _____ the form of optical isomer due to _____.

- (A) 'd' form, stereospecific enzymes
- (B) 'l' form stereospecific enzymes
- (C) 'd' form, DNA
- (D) 'L' form, DNA
- 491. Isoelectric pH of an amino acid is that pH at which it has a
 - (A) Positive charge (B) Negative charge
 - (C) No net charge (D) All of these

492. Albuminoids are similar to

- (A) Albumin (B) Globulin
- (C) Both A and B (D) None of these
- 493. Abnormal chain of amino acids in sickle cells anaemia is
 - (A) Alpha chain (B) Beta chain
 - (C) Gama chain (D) Delta chain

494. In prehepatic jaundice, protein flocculation test is

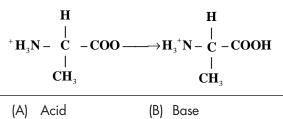
- (A) Normal/weekly positive
- (B) Usually positive
- (C) Negative
- (D) None of these

495. Side chains of all amino acids contain aromatic rings except

- (A) Pheynl alanine (B) Alanine
- (C) Tyrosine (D) Tryptophan
- 496. In Nitroprusside test, amino acid cystein produces
 - (A) Blue colour complex
 - (B) Red colour
 - (C) Yellow colour
 - (D) Purple colour

497. Bonds that are formed between two cysteine residues is

- (A) Disulphide (B) Peptide
- (C) Electrostatic (D) Hydrophobic


498. The acid amide of Aspartic acid is

- (A) Glutamine (B) Arginine
- (C) Aspargine (D) Ornithine
- 499. It is the only amino acid having an ionizing 'R' group with a pK' near 7 and is important in the active site of some enzymes:
 - (A) Arginine (B) Cystein
 - (C) Cystine (D) Histidine
- 500. Hemoglobin has a high content of this amino acid:
 - (A) Proline (B) Leucine
 - (C) Arginine (D) Histicline
- 501. A hexa peptide with 5 aspartic acid would have a net charge at pH 7:
 - (A) Neutral (B) Positive
 - (C) Negative (D) Not predictable
- 502. In the genetic disorder of cystinuria, the patient excretes large quantities of cystine in their urine and its low solubility causes crystalline cystine to precipitate as stones in kidneys. The remedy involves

ingesting Na HCO₃. Reaction of this treatment is

- (A) NaHCO₂ combines with cystine
- (B) NaHCO₃ raises the pH above the isoelectric point of cystine
- (C) NaHCO₃ prevents stone formation by hydrolysis of cystine to cysteine
- (D) None of these

503. In the following reaction, Alanine acts as a

(C) Zwitter ion (D) None of these

504. Amino acids excepting histidine are not good buffering agents in cell because

- (A) They exist as zwitter ions
- (B) Their pk and not in the physiological pH of a cell
- (C) Only Histidine has pk of its R group at 6.0 unlike the others which have at a different pH
- (D) None of these

505. At neutral pH Alanine has the following structure:

(A)
$$H_2N-C-COOH$$
 (B) $H_3^+N-C-CO\overline{O}$
 CH_3 CH_3
(C) $H_2N-C-CO\overline{O}$ (D) $^+H_2N-C-CO\overline{O}$
 CH_3

- 506. The amino acids in which the R groups have a net positive charge at pH 7.0 are
 - (A) Lysine, Arginine, Histidine
 - (B) Lysine, Aspargine
 - (C) Histidine, Aspargine
 - (D) Glutamine, Arginine

507. Apolipoproteins are

- (A) AI (B) AI1
- (C) C1 (D) All of these

- 508. The amino acid which has a pK near 4 and thus is negatively charged at pH 7 is
 - (A) Alanine (B) Glutamic acid
 - (C) Glutamine (D) Aspargine
- 509. The side chain of which of the following amino acid contain sulphur atom?
 - (A) Methionine (B) Threonine
 - (C) Leucine (D) Tryptophan
- 510. Which of the followings gives a positive test for Ninhydrin?
 - (A) Reducing sugars (B) Triglycerides
 - (C) Alpha aminoacids (D) Esterified Fats
- 511. In glutathione (a tripeptide) is present apart from Glutamic acid and cysteine:
 - (A) Serine (B) Glycine
 - (C) Leucine (D) Phenyl alanine

512. 2-Amino 3-OH propanoic acid is

- (A) Glycine (B) Alanine
- (C) Valine (D) Serine
- 513. All amino acids have one asymmetric carbon atom, except
 - (A) Arginine (B) Aspargine
 - (C) Histidine (D) Glycine
- 514. Number of amino acids present in the plant, animal and microbial proteins:
 - (A) 20 (B) 80
 - (C) 150 (D) 200
- 515. Immunoglobulins are characterized by their
 - (A) Heavy chains
 - (B) Molecular weight
 - (C) Light chains
 - (D) Electrophoretic behaviour
- 516. The bond in proteins that is not hydrolysed under usual conditions of denaturation:
 - (A) Hydrophobic bond (B) Hydrogen bond
 - (C) Disulphide bond (D) Peptide bonds
- 517. If the amino group and a carboxylic group of the amino acid are attached to same carbon atom, the amino acid is called
 - (A) Alpha (B) Beta
 - (C) Gamma (D) Delta

 (B) Serum enzyme (C) A complete extracellular enzyme (D) An inactivated enzyme (D) An inactivated enzyme (D) An inactivated enzyme (D) An inactivated enzyme (C) For some amino acids it is either of two (D) Neither L nor D 519. SGOT level in a adult is (A) 5-40 units/dl (B) 1-4 units/dl (C) 5-15 units/dl (D) 50-100 units/dl (A) Reductase (B) Hydrolase (C) Ligase (D) Oxidase (C) Ligase (D) Oxidase (A) Breakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma (D) Impaired renal function 	
 519. SGOT level in a adult is (A) 5-40 units/dl (B) 1-4 units/dl (C) 5-15 units/dl (D) 50-100 units/dl 520. Activity of ceruloplasmin shown in vitro: (A) Reductase (B) Hydrolase (C) Ligase (D) Oxidase 521. Increased serum alanine during fasting is due to (A) Breakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma 529. Cystine is synthesized from (A) Cysteine (B) Methionine (C) Arginine (B) Methionine (C) Arginine (B) Cysteine (C) Glycine (D) Arginine 531. NH₃ is removed from brain mainly be (A) Creatinine formation (B) Uric acid production (C) Urea formation 	0
 (A) Solution (B) Headonnis (C) 10-4 onnis (C) (B) Hydrolase (C) Ligase (D) Oxidase (D) Oxidase (D) Oxidase (E) Hydrolase (C) Ligase (D) Oxidase (D) Oxidase (D) Oxidase (E) Breakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma (D) Headonnis (C) I and (D) Headonnis (
 520. Activity of ceruloplasmin shown in vitro: (A) Reductase (B) Hydrolase (C) Ligase (D) Oxidase 530. The major constituent of the protein hair and keratin of skin: (A) Arginine (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma 530. The major constituent of the protein hair and keratin of skin: (A) Arginine (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma 530. The major constituent of the protein hair and keratin of skin: (A) Arginine (B) Cysteine (C) Glycine (D) Arginine 531. NH₃ is removed from brain mainly be (A) Creatinine formation (B) Uric acid production (C) Urea formation 	
 (A) Reakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma (A) Reakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma (A) Reakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Leakage of aminoacids to plasma (C) Urea formation (C) Urea formation 	
 521. Increased serum alanine during fasting is due to (A) Breakdown of muscle proteins (B) Decreased utilization of non essential amino acids (C) Glycine (D) Arginine 531. NH₃ is removed from brain mainly b (A) Creatinine formation (B) Uric acid production (C) Leakage of aminoacids to plasma (C) Glycine (D) Arginine 531. NH₃ is removed from brain mainly b (A) Creatinine formation (B) Uric acid production (C) Urea formation 	ins of
 (A) Decreased utilization of non essential amino acids (B) Decreased utilization of non essential amino (A) Creatinine formation (B) Uric acid production (C) Leakage of aminoacids to plasma (C) Urea formation 	
	ру
522. The following 4 amino acids are required for completion of urea cycle except 532. Mechanism by which NH ₃ is removed the kidneys is	from
(A) Aspartic acid(B) Arginine(A) Urea formation(C) Ornithine(D) Glycine(B) Uric acid formation	
523. Number of amino acids present in the dietary proteins:(C)Creatinine formation (D)(D)None of these	
(A) 22 (B) 23 533. Low density plasma proteins are rick (C) 20 (D) 19 (A) Chylomicrons (B) Chylomicrons (B) Chylomicrons (B) Chylomicrons (B) Chylomicrons (B) Chylomicrons (C) Chylomicrons Chylomicrons (C) Chylomicrons C) Chylomicrons C) Chylomicrons C) Chylomicrons C) C) C C) C C) C C) C) C C)	ch in
524. Urea synthesis takes place in (C) Triglycerides (D) Phospholipids	
(A) Blood(B) Liver534. Transcortins are(C) Kidney(D) Heart(A) Mucoproteins(B) Glycoproteins	
525. All followings are ketogenic aminoacids (C) Metalloproteins (D) Lipoproteins	
except 535. Proteins that carries Iron into diffe	erent
(A) Leucine (B) Isoleucine tissues is (C) Phenyl alanine (D) Glycine (A) Ceruloplasmin (B) Trans cortin	
526. The amino acid containing an indole ring: (C) Mucoproteins (D) Glycoproteins	
(A) Tryptophan(B) Arginine536. Naturally occurring amino acids have(C) Threonine(D) Phenylalanine(A) L-Configuration(B) D-Configuration(B) D-Configuration	
(C) Intreonine (D) Phenylalanine (A) L-Configuration (B) D-Configuration 527. Histidine is converted to histamine (C) DL-Configuration (D) None of these	
through the process of 537. Abnormal chain of aminoacids in s	
 (A) Transamination (B) Decarboxylation (C) Oxidative deamination (D) Urea cycle (A) β-chain (B) β-chain (C) γ-chain (D) r-chain 	

538.		lietary deficien otinate leads to		f tryptophan and	5
	• •	Beri Beri Anemia	• •	Xerophthalmia Pellegra	
539.		ich one of the fo ino acid?	ollow	ving is an essential	5
		Arginine Phenylalanine	• •	Tyrosine Proline	
540.		e of the followin ogenic:	ng a	mino acid is solely	5
	• •	Lysine Valine	• •	Alanine Glutamate	
541.		ng with CO ₂ , N d that is needed	•	nd ATP, the amino Jrea cycle is	5
	• •	Alanine Aspartate	• •	Isoleucine Glycine	
542.		electric pH of ar which it has a	n am	ino acid is that pH	5
		Positive charge No charge		Negative charge None of these	5
543.	niti	rogen atoms		ving contributes both purine and	
	(A)	imidine rings? Aspartate			5
	(C)	Carbamoyl phos CO ₂ Glutamine	phate		5
544.	Wh	ich amino acid	is a	lipotropic factor?	
	• •	Lysine Tryptophan	• •	Lecuine Methionine	5
545.		ich of the follo teine?	wing	g protein is rich in	
	· /	Elastine Fibrin		Collagen Keratin	5
546.		-chain of Hbs i		esent at 6 th position ad of glutamate in	5
		Cysteine	(B)	Valine	

(C) Aspartate (D) Glutamate

- 547. The amino acid which contains an indole group is
 - (A) Histidine (B) Arginine
 - (C) Cystine (D) Tryptophan
- 548. From two amino acids peptide bond formation involves removal of one molecule of
 - (A) Water (B) Ammonia
 - (C) Carbondioxide (D) Carboxylic acid
- 549. Polymers of more than 100 amino acids are termed
 - (A) Proteins (B) Polypeptides
 - (C) Both (A) and (B) (D) None of these

550. The example of globulins:

- (A) Leucosin (B) Tuberin
- (C) Oryzenin (D) Legunelin

551. The example of scleroproteins:

- (A) Glutamin (B) Giladin
- (C) Salmine (D) Elastin

552. The example of phosphoprotein:

- (A) Mucin (B) Ovovitellin
- (C) Ovomucoid (D) Tendomucoid

553. The example of metalloproteins:

- (A) Siderophilin (B) OREES mucoid
- (C) Elastin (D) All of these

554. The example of chromoprotein:

- (A) Salmine (B) Catalase
- (C) Zein (D) Gliadin
- 555. Deamination is _____ of amino group.
 - (A) Removal (B) Addition
 - (C) Supplementation (D) None of these

556. Proteins produce polypeptides from proteins by

- (A) Oxidizing (B) Reducing
- (C) Hydrolyzing (D) None of these

557. Proteins react with biuret reagent which is suggestive of 2 or more

- (A) Hydrogen bonds (B) Peptide bonds
- (C) Disulphide bonds (D) Hydrophobic bonds

(58)

- 558. The disulphide bond is not broken under the usual conditions of
 - (A) Filtration (B) Reduction
 - (C) Oxidation (D) Denaturation
- 559. Insulin is oxidized to separate the protein molecule into its constituent polypeptide chains without affecting the other part of the molecule by the use of
 - (A) Performic acid (B) Oxalic acid
 - (C) Citric acid (D) Malic acid
- 560. Each hydrogen bond is quite
 - (A) Weak (B) Strong
 - (C) Both (A) and (B) (D) None of these
- 561. A coiled structure in which peptide bonds are folded in regular manner by
 - (A) Globular proteins (B) Fibrous proteins
 - (C) Both (A) and (B) (D) None of these
- 562. In many proteins the hydrogen bonding produces a regular coiled arrangement called
 - (A) α -helix (B) β -helix
 - (C) Both (A) and (B) (D) None of these
- 563. Many globular proteins are stable in solution although they lack in
 - (A) Hydrogen bonds (B) Salt bonds
 - (C) Non-polar bonds (D) Disulphide bonds
- 564. Each turn of α-helix contains the number of amino acids
 - (A) 2.8 (B) 3.2 (C) 3.4 (D) 3.6
- 565. The distance travelled per turn of α-helix in nm is

(A)	0.34	(B)	0.44
(C)	0.54	(D)	0.64

- 566. α-helix is disrupted by certain amino acids like
 - (A) Proline (B) Arginine
 - (C) Histidine (D) Lysine

567. α -helix is stabilized by

- (A) Hydrogen bonds (B) Disulphide bonds
- (C) Salt bonds (D) Non-polar bonds

568. Foetal haemoglobin contains

- (A) Two α and two γ chains
- (B) Two β and two γ chains
- (C) Both (A) and (B)
- (D) None of these
- 569. When haemoglobin takes up oxygen there is a change in the structure due to the moving closer together of
 - (A) β-chains (B) β-chains
 - (C) γ -chains (D) α and γ chains
- 570. The hydrogen bonds in the secondary and tertiary structure of proteins are directly attacked by
 - (A) Salts (B) Alkalies
 - (C) Detergents (D) All of these
- 571. The hydrogen bonds between peptide linkages are interfered by
 - (A) Guanidine (B) Uric acid
 - (C) Salicylic acid (D) Oxalic acid
- 572. The digestability of certain denatured proteins by proteolytic enzymes
 - (A) Decreases (B) Increases
 - (C) Normal (D) None of these
- 573. The antigenic antibody functions of proteins by denaturation are frequently
 - (A) Not changed (B) Changed
 - (C) Both (A) and (B) (D) None of these
- 574. In case of severe denaturation of protein, there is
 - (A) Reversible denaturation
 - (B) Moderate reversible denaturation
 - (C) Irreversible denaturation
 - (D) None of these
- 575. When egg albumin is heated till it is coagulated, the secondary and tertiary structures of the proteins are completely lost resulting in a mixture of randomly arranged
 - (A) Dipeptide chains (B) Tripeptide chains
 - (C) Polypeptide chains (D) All of these

- 576. In glycoproteins the carbohydrate is in the form of disaccharide units, the number of units are (A) 50-100 (B) 200-300 (D) 600-700 (C) 400-500 577. The milk protein in the stomach of the infants is digested by (A) Pepsin (B) Trypsin (C) Chymotrypsin (D) Rennin 578. Achylia gastrica is said to be when absence of (A) Pepsin only (B) Both pepsin and HCl (C) HCl only (D) All of these 579. The pH of gastric juice become low in (A) Hemolytic anemia (B) Pernicious anemia (C) Both (A) and (B) (D) None of these 580. In small intestine trypsin hydrolyzes peptide linkages containing (A) Arginine (B) Histidine (C) Serine (D) Aspartate 581. Chymotrypsin in the small intestine hydrolyzes peptide linkages containing (A) Alanine (B) Pheynl alanine (C) Valine (D) Methionine 582. Carboxy peptidase B in the small intestine hydrolyzes peptides containing (A) Leucine (B) Isoleucine (C) Arginine (D) Cysteine 583. The transport of amino acids regulated by active processes of different numbers: (A) 1 (B) 2 (D) 4 (C) 3 584. The third active process for amino acids transport involves (A) Acidic amino acids (B) Basic amino acids (C) Neutral amino acids (D) Sulphur containing amino acids 585. The neutral amino acids for absorption need
 - (A) TPP (B) $B_6 PO_4$
 - (C) NAD⁺ (D) NADP⁺

586. If one amino acid is fed excess, the absorption of another is

- (A) Slightly accelerated
- (B) Moderately accelerated
- (C) Highly accelerated
- (D) Retarded
- 587. Under normal conditions, food proteins are generally readily digested upto the present
 - (A) 67 to 73 (B) 74 to 81 (C) 82 to 89 (D) 90 to 97
- 588. By overheating the nutritional value of cereal proteins is
 - (A) Increased (B) Decreased
 - (C) Unchanged (D) None of these
- 589. More than half of the protein of the liver and intestinal mucosa are broken down and resynthesised in
 - (A) 10 days (B) 12 days
 - (C) 15 days (D) 18 days
- 590. The half-life of antibody protein is about
 - (A) 4 weeks (B) 3 weeks
 - (C) 2 weeks (D) 1 week

591. Protein anabolism is stimulated by

- (A) ACTH (B) Testosterone
- (C) Glucagon (D) Epinephrine
- 592. The metabolism of protein is integrated with that of carbohydrate and fat through
 - (A) Oxaloacetate (B) Citrate
 - (C) Isocitrate (D) Malate
- 593. The building up and breaking down of protoplasm are concerned with the metabolism of
 - (A) Carbohydrate (B) Lipid
 - (C) Protein (D) Minerals
- 594. The amino acids abstracted from the liver are not utilized for repair or special synthesis but are broken down to
 - (A) Keto acids (B) Sulphur dioxide
 - (C) Water (D) Ammonia

595. The unwanted amino acids abstracted from the tissues are either used up by the tissue or in the liver converted into

- (A) Ammonia (B) Urea
- (C) Ammonium salts (D) Uric acid

596. Amino acids provide the nitrogen for the synthesis of

- (A) The bases of the phospholipids
- (B) Uric acid
- (C) Glycolipids
- (D) Chondroitin sulphates
- 597. The metabolism of all proteins ingested over and above the essential requirements is called
 - (A) Exogenous metabolism
 - (B) Endogenous metabolism
 - (C) Both (A) and (B)
 - (D) None of these
- 598. Sulphur containing amino acids after catabolism produces a substance which is excreted:

(A)	SO ₂	(B)	HNO_3
(C)	H_2SO_4	(D)	H_3PO_4

- 599. Ethereal sulphate is synthesized from the _____ amino acid.
 - (A) Neutral (B) Acidic
 - (C) Basic (D) Sulphur containing
- 600. The amino acids required for creatine formation:
 - (A) Glycine (B) Arginine
 - (C) Methionine (D) All of these
- 601. In human and other ureotelic organisms, the end product of amino acid nitrogen metabolism:
 - (A) Bile acids (B) Ketone bodies
 - (C) Urea (D) Barium sulphate
- 602. The end product of amino acid nitrogen metabolism in uricotelic organisms (reptiles and birds) is
 - (A) Bilirubin (B) Urea
 - (C) Uric acid (D) Biliverdin

- 603. The transaminase activity needs the coenzyme:
 - (A) ATP (B) $B_6 PO_4$ (C) FAD⁺ (D) NAD⁺
- 604. Transamination is a
 - (A) Irreversible process (B) Reversible process
 - (C) Both (A) and (B) (D) None of these
- 605. Most amino acids are substrates for transamination except
 - (A) Alanine (B) Threonine
 - (C) Serine (D) Valine
- 606 Oxidative conversion of many amino acids to their corresponding -ketoacids occurs in mammalian:
 - (A) Liver and kidney (B) Adipose tissue
 - (C) Pancreas (D) Intestine
- 607. The α-ketoacid is decarboxylated by H₂O₂ forming a carboxylic acid with one carbon atom less in the absence of the enzyme:
 - (A) Catalase (B) Decarboxylase
 - (C) Deaminase (D) Phosphatase
- 608. The activity of mammalian L-amino acid oxidase, an FMN flavo protein, is quite
 - (A) Slow (B) Rapid
 - (C) Both (A) and (B) (D) None of these
- 609. From dietary protein as well as from the urea present in fluids secreted into the gastrointestinal tract intestinal bacteria produce
 - (A) Carbondioxide
 - (B) Ammonia
 - (C) Ammonium sulphate
 - (D) Creatine
- 610. The symptom of ammonia intoxication includes
 - (A) Blurring of vision (B) Constipation
 - (C) Mental confusion (D) Diarrhoea
- 611. Ammonia intoxication symptoms occur when brain ammonia levels are
 - (A) Slightly diminished (B) Highly diminished
 - (C) Increased (D) All of these

- 612. Ammonia production by the kidney is depressed in (B) Alkalosis (A) Acidosis (C) Both (A) and (B) (D) None of these 613. Ammonia is excreted as ammonium salts during metabolic acidosis but the majority is excreted as (A) Phosphates (B) Creatine (C) Uric acid (D) Urea 614. Synthesis of glutamine is accompanied by the hydrolysis of (A) ATP (B) ADP
 - (C) TPP
 - (D) Creatin phosphate
 - 615. In brain, the major metabolism for removal of ammonia is the formation of
 - (A) Glutamate (B) Aspartate
 - (C) Asparagine (D) Glutamine
 - 616. Carbamoyl phosphate synthetase structure is marked by change in the presence of
 - (A) N-Acetyl glutamate
 - (B) N-Acetyl Aspartate
 - (C) Neuraminic acid
 - (D) Oxalate
 - 617. The biosynthesis of Urea occurs mainly in the Liver:
 - (A) Cytosol
 - (B) Microsomes
 - (C) Nucleus
 - (D) Mitochondria
 - 618. One mol. of Urea is synthesized at the expense of the _____ mols. of ATP.

(A)	2	(B) 3
(C)	4	(D) 5

619. Urea biosynthesis occurs mainly in the liver involving the number of amino acids:

(A)	3	(B)	4
(C)	5	(D)	6

- 620. The normal daily output of Urea through urine in grams:
 - (A) 10 to 20 (B) 15 to 25
 - (C) 20 to 30 (D) 25 to 35

621. In severe acidosis, the output of urea is

- (B) Slightly increased (A) Decreased
- (C) Highly increased (D) Moderately increased

622. Uremia occurs in

- (A) Cirrhosis of the liver (B) Nephritis
 - (C) Diabetes mellitus (D) Coronary thrombosis

623. Clinical symptom in urea cycle disorder is

- (A) Mental retardation (B) Drowsiness
- (C) Diarrhoea (D) Oedema

624. The sparing action of methionine is

- (B) Cystine (A) Tyrosine
- (C) Arginine (D) Tryptophan
- NH⁺₄ aminates glutamate to form 625. glutamine requiring ATP and
 - (A) K+ (B) Na+
 - (C) Ca++ (D) Mg++

626. Glutathione is a

- (A) Dipeptide (B) Tripeptide
- (C) Polypeptide (D) None of these
- 627. All following are conjugated proteins except
 - (A) Nucleoproteins (B) Proteoses
 - (C) Metalloproteins (D) Flavoproteins
- 628. All α -amino acids have one asymmetric carbon atom except
 - (A) Arginine (B) Glycine
 - (D) Histidine (C) Aspartic acid
- Number of amino acids present in plants, 629. animals and microbial proteins:
 - (A) 20 (B) 80 (C) 150 (D) 200

630. Hydrated density of (HD) lipoproteins is

- (A) 0.94 gm/ml
- (B) 0.94-1.006 gm/ml
- (C) 1.006-1.063 gm/ml
- (D) 1.063-1.21 gm/l
- 631. The bond in proteins that is not broken under usual conditions of denaturation:
 - (A) Hydrophobic bond (B) Hydrogen bond
 - (C) Disulphide bond (D) Peptide bonds

632.	Plasma proteins act as					
	(A)	Buffers	(B)	Immunoglobulins		
	(C)	Reserve proteins	(D)	All of these		
633.	Gro	oup that reacts i	n th	e Biuret test:		
	(A)	Peptide	(B)	Amino group		
	(C)	Carboxylic group	(D)	Aldehyde group		
634.		iitroprusside tes duces a:	t, aı	mino acid cysteine		
	(A)	Red colour	(B)	Blue colour		
	(C)	Yellow colour	(D)	Purple colour		
635.		tein present in ucture known as		moglobin has the		
	(A)	Primary	(B)	Secondary		
	(C)	Tertiary	(D)	Quarternary		
636.		e <i>lectric</i> pH of an which it has a	am	ino acid is that pH		
		Positive charge Nil net charge		• •		
637.	Alb	uminoids are si	milc	ır to		
	(A)	Albumin	(B)	Globulin		
	(C)	Both (A) and (B)	(D)	None of these		
638.	Opi exc		all	aminoacids exist		
	(A)	Glycine	(B)	Arginine		
	(C)	Alanine	(D)	Hydroxy proline		
639.		teins that consti I elastin in body		e keratin, collagen e		
	(A)	Protamines		Phosphol proteins		
	(C)	Scleroproteins	(D)	Metaproteins		
640.	Sys	tematic name o	f lys	sine is		
	• •	Amino acetic acio				
	(B) 2,6 diaminohexanoic acid					
	• •	Aminosuccinic aci 2-Aminopropanoi		d		
	• •					
041.		e chains of all t tain aromatic ri		wing amino acids except		
		Phenyl alanine	-	-		

(C) Tyrosine (D) Tryptophan

- 642. Abnormal chain of amino acids in sickle cell anaemia is
 - (A) Alpha chain (B) Beta chain
 - (C) Delta chain (D) Gama chain
- 643. Number of chains in globin part of normal Hb:
 - (A) 1 (B) 2 (C) 3 (D) 4

644. The PH of albumin is

- (A) 3.6 (B) 4.7 (C) 5.0 (D) 6.1
- 645. Ninhydrin reaction gives a purple colour and evolves CO₂ with
 - (A) Peptide bonds (B) Histamine
 - (C) Ergothioneine (D) Aspargine

646. Denaturation of proteins involves breakdown of

- (A) Secondary structure(B) Tertiary structure
- (C) Quarternary structure(D) All of these
- 647. In denaturation of proteins, the bond which is not broken:
 - (A) Disulphide bond (B) Peptide bond
 - (C) Hydrogen bond (D) Ionic bond
- 648. The purity of an isolated protein can be tested by employing various methods.
 - (A) Solubility curve
 - (B) Molecular weight
 - (C) Ultra Centrifugation
 - (D) Immuno Ractivity
 - (E) All of these
- 649. More than one break in the line or in saturation curve indicates the following quality of protein.
 - (A) Non homogenity (B) Purity
 - (C) Homogeneity (D) None of these

650. A sharp moving boundary is obtained between the pure solvent and solute containing layer in

- (A) Chromatography
- (B) Immuno Reactivity
- (C) Ultra Centrifugation
- (D) Solubility curve

651. The antibodies raised against a pure protein will show only one sharp spike on this technique:

- (A) Solubility curve
- (B) Solvent precipitation
- (C) Molecular weight determination
- (D) Immuno electrophoresis

652. This technique takes the advantage of the fact that each protein has different pH at which it is electrically neutral i.e., its isoelectric pH:

- (A) Isoelectric focussing
- (B) Immunoel Ectro Phoresis
- (C) Chromatography
- (D) HPLC

653. The following technique makes use of the difference in net charges of proteins at a given pH:

- (A) Thin layer chromatography
- (B) Ion exchange chromatography
- (C) High performance liquid chromatography
- (D) Paper chromatography
- 654. The ratio of the distance moved by a compound to the distance moved by the solvent frent is known as its
 - (A) PI value (B) Linking number
 - (C) Rf value (D) Gold number

655. The movement of charged particles towards one of the electrodes under the influence of electrical current is

- (A) Gel filtration
- (B) Molecular sieving
- (C) Gas liquid chromatography
- (D) Electrophoresis
- 656. An anion exchange resin linked to cellulose backbone is
 - (A) DEAE cellulose (B) CM cellulose
 - (C) Sephadex (D) None of these
- 657. A cation exchange resin linked to cellulose backbone is
 - (A) CM-cellulose (B) DEAE cellulose
 - (C) Starch (D) Biogel

658. The sorting out of molecules according to size and shape may be adapted to protein purification in this technique:

- (A) Adsorption chromatography
- (B) Gel filtration chromatography
- (C) Paper chromatography
- (D) None of these

659. Frequently employed materials for the adsorption chromatography of proteins include

- (A) High capacity supporting gel
- (B) Starch blocks
- (C) Calcium phosphate gel alumina gel and hydroxy apatite
- (D) All of these

660. The solubility of most proteins is lowered at high salt concentrations is called as

- (A) Salting in process (B) Salting out process
- (C) Isoelectric focussing (D) None of these

661. Phenylalanine, ornithine and methionine are involved in the biogenesis of

- (A) Lysergic acid (B) Reserpine
- (C) L-Hyoscyamine (D) Papaverine

662. All the following diuretics inhibit the carbonic anhydrase except

- (A) Acetazolamide (B) Bumetanide
- (C) Furosemide (D) Ethacrynic acid

663. Protein is a polymer of

- (A) Sugars (B) Phenols
- (C) Amino acids (D) Carboxylic acids
- 664. All the following amino acids are optically active except
 - (A) Tryptophane (B) Phenylalanine
 - (C) Valine (D) Glycine

665. Proteinous substances which catalyze biochemical reactions are known as

- (A) Activators (B) Catalysts
- (C) Enzymes (D) Hormones
- 666. Insulin is a protein which controls
 - (A) Blood clotting

(C) Digestion

(D) Kreb's cycle

(B) Metabolic pathway

667.	Proteins which are responsible for defence mechanism are called					
	(A) Antimetabolites(B) Antibodies(C) Antimycins(D) Apoproteins					
668.	When the net charge on an amino acid is zero, the pH is maintained as?					
	(A) 4.5 (B) 11.2 (C) 7.0 (D) 9.1					
669.	Isoelectric point of amino acids is used for					
	(A) Crystallisation(B) Precipitation(C) Solubility(D) Reactivity					
670.	Xanthoproteic test is positive in proteins containing					
	 (A) Sulphur amino acids (B) α-Amino acids (C) Aromatic amino acids (D) Aliphatic amino acids 					
671	All α -amino acids give positive					
071.	(A) Million's test (B) Biurete test					
	(C) Xanthproteic test (D) Ninhydrine test					
672.	N-terminal amino acids of a polypeptide are estimated by					
	(A) Edmann reaction (B) Sanger's reagent(C) Formaldehyde test (D) Ninhydrine reaction					
673.	Million's test is positive for					
	(A) Phenylalanine (B) Glycine					
	(C) Tyrosine (D) Proline					
674.	Indole group of tryptophan responses positively to					
	(A) Glyoxylic acid(B) Schiff's reagent(C) Biuret test(D) Resorcinol test					
675.	Guanidine group of argentine gives positive test with					
	 (A) Lead acetate (B) Sakaguchi reagent (C) Tricholoroacetic acid (D) Molisch's reagent 					
676.	Thiol group of cysteine gives red colour with					
	(A) Sodium acetate					

- (B) Lead acetate
- (C) Sodium nitroprusside
- (D) Barfoed's reagent

677. Protein deficiency disease is known as

- (A) Cushing's disease
- (B) Fabry's disease
- (C) Parkinson's disease
- (D) Kwashiorkor and marasmus

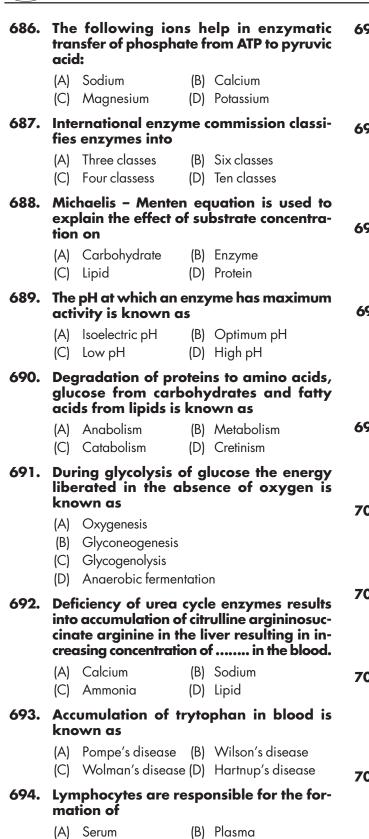
678. A vegetable source of protein is

- (A) Egg plant
- (B) Soyabean
- (C) Tree of the Heaven
- (D) Devil's dung
- 679. Oxaloacetate is converted to aspartic acid by
 - (A) Reductase (B) Oxidase
 - (C) Transminase (D) Catalase

680. Deficiency of biotin results in decrease in

- (A) Amino acid synthesis
- (B) Lipid synthesis
- (C) Kidney
- (D) Fatty acid synthesis

681. The precursor of bile salts, sex hormones and vitamin D is


- (A) Diosgenin (B) Cholesterol
- (D) Ergosterol (C) Campesterol

682 Unsaturated fatty acids is known as

- (A) Non-essential fatty acids
- (B) Essential fatty acids
- (C) Cerebrosides
- (D) Phospholipids

683 **Biuret test is specific for**

- (A) Two peptide linkage
- (B) Phenolic group
- (C) Imidazole ring
- (D) None of these
- 684. Most of calcium is present in bone, but 2% present in soft tissue and the blood is called
 - (A) Calcinated blood (B) Solidified blood
 - (C) Physiological blood (D) Colloidal blood
- 685. Calcium present with protein is known as free while in salt form is called as
 - (A) Bound
 - (B) Precipitated (C) Solid (D) Polymorphs

(C) Antibody (D) Calcium

- 695. Platelets contain an enzyme which has important role in clotting in blood. This enzyme is known as
 - (A) Cholinesterase (B) Transaminase
 - (C) Decarboxylase (D) Thrombokinase
- 696. Treatment of pentoses with a concentrated mineral acid yields a cyclic aldehyde known as
 - (A) Pentaldehyde (B) Cyclopental
 - (C) Hexaldehyde (D) Furfural
- 697. Isoelectric pH is that pH at which protein is electrically:
 - (A) Neutral (B) Anionic
 - (C) Cationic (D) None of these
- 698. About 6.25 g of haemoglobin is produced and destroyed in the body each day and the total amount of haemoglobin in a normal healthy 70 kg weighing male adult is

(A)	250 g	(B)	150 g
(C)	100 g	(D)	70 g

- 699. Pancreatic juice contains all of the following except
 - (A) Trypsinogen (B) Lipase
 - (C) Cholecystokinin (D) Chymnotrypsinogen
- 700. The milk protein in the stomach in an adult is digested by
 - (A) Pepsin (B) Rennin
 - (C) HCl (D) Chymotrypsinogen
- 701. Carboxypeptidase, an enzyme of pancreatic juice, contains
 - (A) Mn (B) Zinc
 - (C) Magnesium (D) Manganese
- 702. The zymogen from trypsinogen of pancreatic juice is converted to active trypsin by
 - (A) Peisin (B) Enterocrinin
 - (C) Enterokinase (D) Rennin
- 703. Inactive zymogens are precursors of all the following gastrointestinal enzymes except
 - (A) Carboxypeptidase (B) Pepsin
 - (C) Amino peptidase (D) Chymotrypsin

704. Rennin acts on casein of milk in infants in presence of

(A)	Mg ⁺⁺	(B)	Zn++
(C)	Co++	(D)	Ca++

- 705. All the following are true about phenylketonuria except
 - (A) Deficiency of phenylalanine hydroxylase
 - (B) Mental retardation
 - (C) Increased urinary excretion of p-hydroxyphenyl pyruvic acid
 - (D) Decrease serotonin formation

706. Which of the amino acid produces a vasodilator on decarboxylation?

- (A) Glutamin acid (B) Histidine
- (C) Ornithine (D) Cysteine

707. Neutral amino acid is

- (A) Leucine (B) Lysine
- (C) Aspartic acid (D) Histidine

708. The amino acid containing hydroxy group:

- (A) Glycine (B) Isoleucine
- (C) Arginine (D) Thereonine
- 709. The amino acid which synthesizes many hormornes:
 - (A) Valine (B) Phenylalanine
 - (C) Alanine (D) Histidine

710. Insulin degradation of disulfide bond formation is effected by

- (A) Pyruvate dehydrogenase
- (B) Xylitol reductase
- (C) Gutathione reductase
- (D) Xanthine oxidase

711. A protein reacts with biuret reagent which indicates 2 or more

- (A) Blood clotting (B) Peptide bond
- (C) Disulphide bonds (D) Hydrophobic bonds

712. In many proteins the hydrogen bonding produces a regular coiled arrangement which is called as

- (A) β-Helix (B) α-Helix
- (C) Both (A) and (B) (D) Spiral

713. The milk protein in the stomach of the infants is digested by

(A) Pepsin(B) Trypsin(C) Chymotrypsin(D) Rennin

714. Protein anabolism is stimulated by

- (A) ACTH (B) Testosterone
- (C) Glucagon (D) Epinephrine
- 715. The number of helices present in a collagen molecule is
 - (A) 1 (B) 2 (C) 3 (D) 4
- 716. Which bond is present in the primary structure of protein?
 - (A) Ester (B) Hydrogen
 - (C) Ionic bond (D) Peptide

717. Sakaguchi reaction is specific for

- (A) Guanidine group (B) Phenolic group
- (C) Carboxylic group (D) None of these

718. With the exception of glycine all amino acids found in protein are

- (A) Isocitrate dehydrogenase
- (B) Fumarase
- (C) Succinate thiokinase
- (D) ATPase

719 In protein structure the α-helix and βpleated sheets are example of

- (A) Primary structure (B) Secondary structure
- (C) Tertiary structure (D) Quaternary structure

720. An essential amino acid in man is

- (A) Proline (B) Threonine
- (C) Asparagine (D) Tyrosine

721. An amino acid that does not form an αhelix is

- (A) Asparagine (B) Tyrosine
- (C) Tryptophan (D) Proline

722. The protein present in hair is

- (A) Elastin (B) Prolamine
- (C) Keratin (D) Gliadin

(B) Mg⁺⁺

723. Plasma protein can be separated by

- (A) Salting out with $(NH_4)_2SO_4$
- (B) Ultracentrifugation
- (C) Immuno electrophoresis
- (D) All of these

724. RNA does not contain

- (A) Uracil
- (B) Adenine
- (C) Hydroxy methyl cytosine
- (D) Phosphate

725. In mammalian cells, ribosomal RNA is produced mainly in the

- (A) Nucleus
- (B) Nucleolus
- (C) Ribosome
- (D) Golgi apparatus

726. Which co-enzyme is not involved in oxidative decarboxylation of pyruvic acid?

- (A) TPP
- (C) Biotin (D) CoA-SH
- 727. A polymeric unit of starch which has a branched structure is
 - (A) Glucose (B) Amylopectin
 - (C) Isomaltose (D) Amylose

728 The repeating unit in hyaluronic acid is

- (A) Glucuronic acid and Galactosamine
- (B) Glucuronic acid are glucosamine
- (C) Glucuronic acid and N-acetyl glucosamine
- (D) Glucuronic acid and N-acetyl galactosamine

729 The repeating disaccharide unit in celluslose is

- (A) Sucrose
- (C) Dextrose (D) Cellobiose

(B) Maltose

ANSWERS

2. A	3. A	4. A	5. A	6. A
8. A	9. A	10. D	11.B	12. A
14. C	15. C	16. B	17. B	18. C
20. C	21.B	22. A	23. B	24. D
26. C	27. B	28. B	29. A	30. A
32. B	33. D	34. B	35. C	36. A
38. C	39. C	40. B	41.B	42. A
44. C	45. C	46. A	47. A	48. B
50. A	51. A	52. A	53. D	54. A
56. A	57. C	58. B	59. C	60. A
62. A	63. D	64. C	65. D	66. C
68. D	69. A	70. A	71.C	72. B
74. B	75. A	76. A	77. D	78. D
80. A	81. C	82. A	83. C	84. D
86. B	87. B	88. A	89. A	90. A
92. B	93. C	94. D	95. A	96. A
98. D	99. A	100. A	101. D	102. D
104. D	105. A	106. A	107. A	108. C
110. A	111. A	112. A		114. B
116.C	117. A			120. C
122. B	123. A	124. A	125. A	126. A
				132. C
				138. A
	141.C			144. B
				150. A
				156. C
				162. D
				168. D
				174. D
				180. A
				186. C
				192. C
				198. C
				204. C
				210. D
				216. D
				222. D
				228. D
				234. D
				240. D
				246. A
248. D	249. B	250. C	251.C	252. A
	8. A 14. C 20. C 26. C 32. B 38. C 44. C 50. A 56. A 62. A 68. D 74. B 80. A 86. B 92. B 98. D 104. D 110. A	8. A 9. A 14. C 15. C 20. C 21. B 26. C 27. B 32. B 33. D 38. C 39. C 44. C 45. C 50. A 51. A 56. A 57. C 62. A 63. D 68. D 69. A 74. B 75. A 80. A 81. C 86. B 87. B 92. B 93. C 98. D 99. A 104. D 105. A 110. A 111. A 116. C 117. A 122. B 123. A 128. C 129. A 134. A 135. A 140. D 141. C 146. B 147. B 152. B 153. C 158. D 159. C 164. D 165. C 170. C 171. D 176. C 177. B 182. C 183. B 188. A 189. B 194. C 195. D 200. B 201. C	8.A $9.A$ $10.D$ $14.C$ $15.C$ $16.B$ $20.C$ $21.B$ $22.A$ $26.C$ $27.B$ $28.B$ $32.B$ $33.D$ $34.B$ $38.C$ $39.C$ $40.B$ $44.C$ $45.C$ $46.A$ $50.A$ $51.A$ $52.A$ $56.A$ $57.C$ $58.B$ $62.A$ $63.D$ $64.C$ $68.D$ $69.A$ $70.A$ $74.B$ $75.A$ $76.A$ $80.A$ $81.C$ $82.A$ $86.B$ $87.B$ $88.A$ $92.B$ $93.C$ $94.D$ $98.D$ $99.A$ $100.A$ $104.D$ $105.A$ $106.A$ $110.A$ $111.A$ $112.A$ $116.C$ $117.A$ $118.A$ $122.B$ $123.A$ $124.A$ $128.C$ $129.A$ $130.A$ $134.A$ $135.A$ $136.A$ $140.D$ $141.C$ $142.A$ $146.B$ $147.B$ $148.B$ $152.B$ $153.C$ $154.C$ $158.D$ $159.C$ $160.C$ $164.D$ $165.C$ $166.B$ $170.C$ $171.D$ $172.B$ $176.C$ $177.B$ $178.B$ $182.C$ $183.B$ $184.C$ $188.A$ $189.B$ $190.D$ $194.C$ $195.D$ $196.B$ $200.B$ $201.C$ $202.D$ $206.C$ $207.D$ $208.B$ $212.A$ $213.C$ $214.A$ $218.D$ $219.B$ $220.B$ $224.C$ $225.C$ <td>8. A9. A10. D11. B$14. C$$15. C$$16. B$$17. B$$20. C$$21. B$$22. A$$23. B$$26. C$$27. B$$28. B$$29. A$$32. B$$33. D$$34. B$$35. C$$38. C$$39. C$$40. B$$41. B$$44. C$$45. C$$46. A$$47. A$$50. A$$51. A$$52. A$$53. D$$56. A$$57. C$$58. B$$59. C$$62. A$$63. D$$64. C$$65. D$$68. D$$69. A$$70. A$$71. C$$74. B$$75. A$$76. A$$77. D$$80. A$$81. C$$82. A$$83. C$$86. B$$87. B$$88. A$$89. A$$92. B$$93. C$$94. D$$95. A$$98. D$$99. A$$100. A$$101. D$$104. D$$105. A$$106. A$$107. A$$110. A$$111. A$$112. A$$113. A$$116. C$$117. A$$118. A$$119. D$$122. B$$123. A$$124. A$$125. A$$128. C$$129. A$$130. A$$131. B$$134. A$$135. A$$136. A$$137. C$$140. D$$141. C$$142. A$$143. C$$146. B$$147. B$$148. B$$149. D$$152. B$$153. C$$164. C$$155. B$$158. D$$159. C$$160. C$$161. B$$164. D$$165. C$$166. B$$167. D$$170. C$$171.$</td>	8. A9. A10. D11. B $14. C$ $15. C$ $16. B$ $17. B$ $20. C$ $21. B$ $22. A$ $23. B$ $26. C$ $27. B$ $28. B$ $29. A$ $32. B$ $33. D$ $34. B$ $35. C$ $38. C$ $39. C$ $40. B$ $41. B$ $44. C$ $45. C$ $46. A$ $47. A$ $50. A$ $51. A$ $52. A$ $53. D$ $56. A$ $57. C$ $58. B$ $59. C$ $62. A$ $63. D$ $64. C$ $65. D$ $68. D$ $69. A$ $70. A$ $71. C$ $74. B$ $75. A$ $76. A$ $77. D$ $80. A$ $81. C$ $82. A$ $83. C$ $86. B$ $87. B$ $88. A$ $89. A$ $92. B$ $93. C$ $94. D$ $95. A$ $98. D$ $99. A$ $100. A$ $101. D$ $104. D$ $105. A$ $106. A$ $107. A$ $110. A$ $111. A$ $112. A$ $113. A$ $116. C$ $117. A$ $118. A$ $119. D$ $122. B$ $123. A$ $124. A$ $125. A$ $128. C$ $129. A$ $130. A$ $131. B$ $134. A$ $135. A$ $136. A$ $137. C$ $140. D$ $141. C$ $142. A$ $143. C$ $146. B$ $147. B$ $148. B$ $149. D$ $152. B$ $153. C$ $164. C$ $155. B$ $158. D$ $159. C$ $160. C$ $161. B$ $164. D$ $165. C$ $166. B$ $167. D$ $170. C$ $171.$

-					
253. D	254. D	255. D	256. B	257. D	258. B
259. D	260. D	261. D	262. D	263. D	264. B
265. A	266. B	267. B	268. D	269. B	270. D
271.C	272. B	273. C	274. C	275. D	276. B
277. B	278. D	279. C	280. D	281. A	282. D
283. B	284. C	285. A	286. D	287. B	288. B
289. D	290. B	291. D	292. C	293. D	294. D
295.B	296. C	297. B	298. C	299. B	300. C
301. A	302. B	303.B	304. C	305. B	306. B
307. A	308. A	309. C	310. D	311.B	312. D
313. D	314. C	315.B	316. D	317.B	318. B
319. D	320. B	321. A	322. B	323. D	324. A
325. B	326. B	327. A	328. C	329. B	330. D
331.C	332. D	333. C	334. B	335. C	336. B
337. C	338. A	339. A	340. C	341. D	342. B
343. A	344. B	345. C	346. B	347. B	348.B
349. B	350. B	351.C	352. C	353.B	354. C
355. D	356. D	357. C	358.B	359. D	360. D
361.B	362. B	363. D	364. B	365. D	366. D
367. A	368. C	369. A	370. A	371. D	372. B
373.B	374. D	375. A	376. B	377. A	378. B
379. D	380. B	381. D	382. D	383. D	384. D
385. C	386. A	387. A	388.B	389. C	390. D
391. D	392. D	393. D	394. D	395. C	396. B
397. D	398. B	399. B	400. A	401. B	402. A
403.B	404. C	405. D	406. D	407. B	408. B
409. B	410. D	411.B	412. B	413. C	414. C
415. D	416. C	417. B	418. C	419. A	420. D
421. D	422. A	423. C	424. D	425. D	426. C
427. D	428. D	429. A	430. B	431. D	432. A
433.B	434. A	435. A	436. A	437. B	438. B
439. C	440. D	441.C	442. C	443. B	444. D
445. C	446. B	447. D	448. C	449. C	450. C
451.C	452. D	453. A	454. A	455.B	456. C
457. D	458. C	459. A	460. C	461.B	462. A
463. A	464. C	465. C	466. D	467. B	468. A
469. A	470. D	471.C	472. B	473. A	474. B
475.B	476. D	477. C	478. C	479. B	480. D
481.C	482. B	483. C	484. B	485. B	486. C
487.C	488. D	489. B	490. B	491.C	492. C
493.B	494. A	495. B	496. B	497. A	498. C
499. D	500. D	501.C	502. C	503. C	504. C
505.B	506. A	507. D	508.B	509. A	510. C

511.B	512. D	513. D	514. A	515. A	516. C
517. A	518. D	519. A	520. D	521. A	522. D
523. C	524. B	525. D	526. A	527. B	528. A
529. A	530. B	531. D	532. D	533.B	534. A
535.B	536. A	537. B	538. D	539. C	540. A
541.C	542. C	543. A	544. D	545. D	546. B
547. D	548. A	549. A	550. B	551. D	552. B
553. A	554. B	555. A	556. C	557. B	558. D
559. A	560. A	561. A	562. A	563. D	564. D
565. C	566. A	567. A	568. A	569. A	570. B
571. A	572. A	573.B	574. C	575. C	576. D
577. D	578.B	579. B	580. A	581.B	582. C
583. C	584. C	585.B	586. D	587. D	588. B
589. A	590. C	591.B	592. A	593. C	594. D
595.B	596. A	597. A	598. C	599. D	600. D
601. C	602. C	603.B	604. B	605.B	606. A
607. A	608. A	609. B	610. A	611.C	612.B
613. D	614. A	615. D	616. A	617. D	618.B
619. D	620. C	621. A	622. B	623. A	624. B
625. D	626. B	627. B	628. B	629. D	630. B
631. D	632. D	633. A	634. A	635. D	636. C
637. A	638. A	639. C	640. B	641.B	642. B
643. D	644. B	645. D	646. D	647. B	648. C
649. A	650.C	651. D	652. A	653.B	654. C
655. D	656. A	657. A	658.B	659. C	660. B
661. A	662. D	663. C	664. D	665. C	666. B
667. B	668. C	669. B	670. C	671. D	672. A
673. C	674. A	675.B	676. C	677. D	678. B
679. C	680. D	681.B	682. B	683. A	684. C
685. A	686. D	687. B	688.B	689. B	690. C
691. D	692. C	693. D	694. C	695. D	696. D
697. A	698. D	699. C	700. A	701.B	702. C
703. C	704. D	705. C	706. B	707. A	708. D
709. B	710. C	711.B	712.B	713. D	714. B
715.C	716. D	717. A	718.B	719. B	720. B
721. D	722. C	723. D	724. C	725. B	726. C
727. B	728. C	729. D			

EXPLANATIONS FOR THE ANSWERS

- 12. A Albumin (mol. Wt. 69,000) is the major constituent of plasma proteins with a concentration 3.5–5.0 g/dl. It is exclusively synthesized by the liver. Plasma albumin performs osmotic, transport and nutritive function, besides the buffering action.
- 67. A Ceruloplasmin is a blue coloured, copper containing α²–globulin. Its normal plasma concentration is around 30 mg/dl and it is decreased in Wilson's disease.
- 103. D Defects in clotting factors cause abnormalities in blood clotting. Hemophilia A (defectantihemophilic factor *i.e.*, VII), hemophilia B or Christmas disease (defect-Christmas factor, *i.e.*, IX) are the major abnormalities known.
- 151. A Lysine, arginine, histidine. These are dibasic monocarboxylic acids.
- 212. A The amino acids which are never found in protein structure are collectively referred to as non-protein amino acids. However, the non-protein amino acids perform several biological functions. *e.g.*, ornithine, citrulline, thyroxine.
- 268. D Amino acids are divided into 3 groups based on their metabolic fats.
 - (a) Glycogenic: These amino acids can serve as precursors for the synthesis of glucose (or glycogen) *e.g.*, alanine, aspartate, glycine.
 - (b) Ketogenic: Fat can be synthesized from these amino acids *e.g.*, leucine, lysine.
 - (c) Glycogenic or ketogenic: The amino acids that can form glucose as well as fat *e.g.*, isoleucine, phenylalanine, lysine.
- 300. C Zwitterion (dipolar ion) is a hybrid molecule containing positive and negative ionic groups. Each amino acid has a characteristic pH (e.g., leucine pH 6.0), at which it exists as zwitterions.
- 350. B Albumin/Globulin (A/G) ratio expresses their relation in the serum concentration. The normal A/G ratio is 1.2 to 1.5:1, taking the concentration of albumin and globulins respectively in the range of 3.5-5.0 g/dl and 2.5-3.5 g/dl. The A/G ratio is lowered either due to a decrease in albumin 9liver disease)

or an increase in globulins (chronic infections).

- 421. D By salting out technique (using ammonium sulfate or sodium sulfate), the plasma proteins can be separated into 3 groups albumin, globulins and fibrinogen. Electrophoresis is the most commonly employed analytical technique for the separation of plasma (serum) proteins. Paper or agar gel electrophoresis with veronal buffer (pH 8.6) separates plasma proteins into 5 distinct bands namely albumin, $\alpha_1 \alpha_2$, β -and γ -globulins.
- 488. D Complement system is composed of about 20 plasma proteins that complement the functions of antibodies in defending the body from invading antigens. The complement system helps the body immunity by promoting phagocytosis, formation of antigen-antibody complexes and inflammatory reaction.
- 507. D Apolipoproteins or apoproteins are the (structural) protein components of lipoproteins and are closely involved in the metabolism of the later, *e.g.*, AI, AIII, B₁₀₀, C₁, CII
- 555. A The removal of amino group from the amino acids as ammonia is deamination. It may be oxidative or non-oxidative in nature. The NH₃ so liberated is used for synthesis or urea.
- 600. D The three amino acids glycine, arginine and methionine are required for creatine formation. Glycine combines
- 683. A Biuret test is answered by compounds containing two or more CO–NH groups i.e., peptide bonds. All protein and peptides possessing at least two peptide linkages i.e., tripeptide (with 3 amino acids) give positive biuret test. The principle of biuret test is conveniently used to detect the presence of proteins in biological fluids. The mechanism of biuret test is not clearly known. It is believed that the colour is due to the formation of a copper co-ordianated complex.
- 717. A Arginine, containing guanidine group, reacts with α-naphthol and alkaline hypobromite to form a red colour complex.