CHAPTER 5

Vitamins

1. Vitamins are

- (A) Accessory food factors
- (B) Generally synthesized in the body
- (C) Produced in endocrine glands
- (D) Proteins in nature

2. Vitamin A or retinal is a

- (A) Steroid
- (B) Polyisoprenoid compound containing a cyclohexenyl ring
- (C) Benzoquinone derivative
- (D) 6-Hydroxychromane

3. β-Carotene, precursor of vitamin A, is oxidatively cleaved by

- (A) β-Carotene dioxygenase
- (B) Oxygenase
- (C) Hydroxylase
- (D) Transferase

4. Retinal is reduced to retinol in intestinal mucosa by a specific retinaldehyde reductase utilising

- (A) NADPH + H^+ (B) FAD
- (C) NAD (D) NADH + H^+

5. Preformed Vitamin A is supplied by

- (A) Milk, fat and liver
- (B) All yellow vegetables
- (C) All yellow fruits
- (D) Leafy green vegetables

- 6. Retinol and retinal are interconverted requiring dehydrogenase or reductase in the presence of
 - (A) NAD or NADP (B) NADH + H^+
 - (C) NADPH (D) FAD

7. Fat soluble vitamins are

- (A) Soluble in alcohol
- (B) one or more Propene units
- (C) Stored in liver
- (D) All these

8. The international unit of vitamin A is equivalent to the activity caused by

- (A) 0.3 µg of Vitamin A alcohol
- (B) 0.344 µg of Vitamin A alcohol
- (C) 0.6 µg of Vitamin A alcohol
- (D) 1.0 µg of Vitamin A alcohol

9. Lumirhodopsin is stable only at temperature below

- (A) -10°C (B) -20°C
- (C) -40°C (D) -50°C

10. Retinol is transported in blood bound to

- (A) Aporetinol binding protein
- (B) α_2 -Globulin
- (C) β-Globulin
- (D) Albumin

11. The normal serum concentration of vitamin A in mg/100 ml is

- (A) 5–10 (B) 15–60
- (C) 100–150 (D) 0–5

12. One manifestation of vitamin A deficiency is

- (A) Painful joints
- (B) Night blindness
- (C) Loss of hair
- (D) Thickening of long bones

13. Deficiency of Vitamin A causes

- (A) Xeropthalmia
- (B) Hypoprothrombinemia
- (C) Megaloblastic anemia
- (D) Pernicious anemia

14. An important function of vitamin A is

- (A) To act as coenzyme for a few enzymes
- (B) To play an integral role in protein synthesis
- (C) To prevent hemorrhages
- (D) To maintain the integrity of epithelial tissue

15. Retinal is a component of

- (A) Iodopsin (B) Rhodopsin
- (C) Cardiolipin (D) Glycoproteins

16. Retinoic acid participates in the synthesis of

- (A) Iodopsin (B) Rhodopsin
- (C) Glycoprotein (D) Cardiolipin

17. On exposure to light rhodopsin forms

- (A) All trans-retinal (B) Cis-retinal
- (C) Retinol (D) Retinoic acid

18. Carr-Price reaction is used to detect

- (A) Vitamin A (B) Vitamin D
- (C) Ascorbic acid (D) Vitamin E

19. The structure shown below is of

- (A) Cholecalciferol
- (B) 25-Hydroxycholecalciferol
- (C) Ergocalciferol
- (D) 7-Dehydrocholesterol

20. Vitamin D absorption is increased in

- (A) Acid pH of intestine
- (B) Alkaline pH of intestine
- (C) Impaired fat absorption
- (D) Contents of diet

21. The most potent Vitamin D metabolite is

- (A) 25-Hydroxycholecalciferol
- (B) 1,25-Dihydroxycholecalciferol
- (C) 24, 25-Dihydroxycholecalciferol
- (D) 7-Dehydrocholesterol
- 22. The normal serum concentration of 25-hydroxycholecalciferol in ng/ml is
 - (A) 0–8 (B) 60–100
 - (C) 100–150 (D) 8–55
- 23. The normal serum concentration of 1,25dihydroxycholecalciferol in pg/ml is
 - (A) 26–65 (B) 1–5 (C) 5–20 (D) 80–100
- 24. The normal serum concentration of 24,25dihydroxycholecalciferol in ng/ml is

(A)	8–20	(B)	25–50
(C)	1–5	(D)	60–100

25. A poor source of Vitamin D is

- (A) Egg (B) Butter
- (C) Milk (D) Liver
- 26. Richest source of Vitamin D is
 - (A) Fish liver oils (B) Margarine
 - (C) Egg yolk (D) Butter

27. Deficiency of vitamin D causes

- (A) Ricket and osteomalacia
- (B) Tuberculosis of bone
- (C) Hypthyroidism
- (D) Skin cancer

28. One international unit (I.U) of vitamin D is defined as the biological activity of

- (A) 0.025 µg of cholecalciferol
- (B) 0.025 µg of 7-dehydrocholecalciferol
- (C) 0.025 µg of ergosterol
- (D) 0.025 µg of ergocalciferol

29. The β -ring of 7-dehydrocholesterol is cleaved to form cholecalciferol by

- (A) Infrared light
- (B) Dim light
- (C) Ultraviolet irridation with sunlight
- (D) Light of the tube lights

30. Calcitriol synthesis involves

- (A) Both liver and kidney
- (B) Intestine
- (C) Adipose tissue
- (D) Muscle
- 31. Insignificant amount of Vitamin E is present in
 - (A) Wheat germ oil (B) Sunflower seed oil
 - (C) Safflower seed oil (D) Fish liver oil

32. The activity of tocopherols is destroyed by

- (A) Commercial cooking
- Reduction (B)
- (C) Conjugation
- (D) All of these

33. The requirement of vitamin E is increased with greater intake of

- (A) Carbohydrates
- (B) Proteins
- (C) Polyunsaturated fat
- (D) Saturated fat

34. Vitamin E reduces the requirement of

- (A) Iron (B) Zinc
- (C) Selenium (D) Magnesium

35. The most important natural antioxidant is

- (A) Vitamin D (B) Vitamin E
- (D) Vitamin K (C) Vitamin B₁₂

36. Tocopherols prevent the oxidation of

- (A) Vitamin A (B) Vitamin D
- (C) Vitamin K (D) Vitamin C

37. Creatinuria is caused due to the deficiency of vitamin

(A) A	(B)	Κ
-------	-----	---

(C) E (D) D

38. All the following conditions produce a real or functional deficiency of vitamin K except

- (A) Prolonged oral, broad spectrum antibiotic therapy
- Total lack of red meat in the diet (B)
- (C) The total lack of green leafy vegetables in the diet
- (D) Being a new born infant

39. Vitamin K is found in

- (A) Green leafy plants (B) Meat
- (C) Fish (D) Milk

40. Function of Vitamin A:

- (A) Healing epithelial tissues
- (B) Protein synthesis regulation
- (C) Cell growth
- (D) All of these

41. Vitamin K₂ was originally isolated from

- (A) Soyabean (B) Wheat aram
- (C) Alfa Alfa (D) Putrid fish meal
- 42. Vitamin synthesized by bacterial in the intestine is
 - (A) A (B) C
 - (C) D (D) K
- 43. Vitamin K is involved in posttranslational modification of the blood clotting factors by acting as cofactor for the enzyme:
 - (A) Carboxylase (B) Decarboxylase
 - (C) Hydroxylase (D) Oxidase

44. Vitamin K is a cofactor for

- (A) Gamma carboxylation of glutamic acid residue
- (B) β -Oxidation of fatty acid
- (C) Formation of γ-amino butyrate
- (D) Synthesis of tryptophan

45. Hypervitaminosis K in neonates may cause

- (A) Porphyria (B) Jaundice (C) Pellagra
 - (D) Prolonged bleeding

46. Dicoumarol is antagonist to

- (A) Riboflavin (B) Retinol
- (C) Menadione (D) Tocopherol

47. In the individuals who are given liberal quantities of vitamin C, the serum ascorbic acid level is

- (A) 1-1.4 μg/100 ml
- (B) 2-4 µg/100 ml
- (C) 1-10 µg/100 ml
- (D) 10-20 µg/100 ml
- 48. The vitamin which would most likely become deficient in an individual who develop a completely carnivorous life style is
 - (A) Thiamin (B) Niacin
 - (C) Vitamin C (D) Cobalamin
- 49. In human body highest concentration of ascorbic acid is found in
 - (A) Liver (B) Adrenal cortex
 - (C) Adrenal medulla (D) Spleen

50. The vitamin required for the formation of hydroxyproline (in collagen) is

- (A) Vitamin C (B) Vitamin A
- (C) Vitamin D (D) Vitamin E
- 51. Vitamin required for the conversion of phydroxyphenylpyruvate to homogentisate is
 - (A) Folacin (B) Cobalamin
 - (C) Ascorbic acid (D) Niacin

52. Vitamin required in conversion of folic acid to folinic acid is

- (A) Biotin (B) Cobalamin
- (C) Ascorbic acid (D) Niacin

53. Ascorbic acid can reduce

- (A) 2, 6-Dibromobenzene
- (B) 2, 6-Diiodoxypyridine
- (C) 2, 6-Dichlorophenol indophenol
- (D) 2, 4-Dinitrobenzene

54. Sterilised milk lacks in

(A) Vitamin A	(B)	Vitamin D
---------------	-----	-----------

(C) Vitamin C (D) Thiamin

55. Scurvy is caused due to the deficiency of

- (A) Vitamin A (B) Vitamin D
- (C) Vitamin K (D) Vitamin C

- 56. Both Wernicke's disease and beriberi can be reversed by administrating
 - (A) Retinol (B) Thiamin
 - (C) Pyridoxine (D) Vitamin B₁₂
- 57. The Vitamin B, deficiency causes
 - (A) Ricket (B) Nyctalopia
 - (C) Beriberi (D) Pellagra
- 58. Concentration of pyruvic acid and lactic acid in blood is increased due to deficiency of the vitamin
 - (A) Thiamin (B) Riboflavin
 - (C) Niacin (D) Pantothenic acid

59. Vitamin B₁ coenzyme (TPP) is involved in

- (A) Oxidative decarboxylation
- (B) Hydroxylation
- (C) Transamination
- (D) Carboxylation

60. Increased glucose consumption increases the dietary requirement for

- (A) Pyridoxine (B) Niacin
- (C) Biotin (D) Thiamin

61. Thiamin is oxidized to thiochrome in alkaline solution by

- (A) Potassium permanganate
- (B) Potassium ferricyanide
- (C) Potassium chlorate
- (D) Potassium dichromate

62. Riboflavin is a coenzyme in the reaction catalysed by the enzyme

- (A) Acyl CoA synthetase
- (B) Acyl CoA dehydrogenase
- (C) β-Hydroxy acyl CoA
- (D) Enoyl CoA dehydrogenase
- 63. The daily requirement of riboflavin for adult in mg is
 - (A) 0–1.0 (B) 1.2–1.7
 - (C) 2.0–3.5 (D) 4.0–8.0
- 64. In new born infants phototherapy may cause hyperbilirubinemia with deficiency of
 - (A) Thiamin (B) Riboflavin
 - (C) Ascorbic acid (D) Pantothenic acid

65.	Rib	oflavin deficier	ncy caus	ses	75.	Pel	lagra occurs in _l	pop	ulation dependent
	(A)	Cheilosis				on			
	(B)	Loss of weight				(A)	Wheat	• •	Rice
	(C)	Mental deteriora	tion			(C)	Maize	(D)	Milk
	(D)	Dermatitis			76.		-	whic	h nicotinamide act:
66.			found	in the deficiency		ase	coenzyme are		
	-	he vitamin				(A)	Dehydrogenases		
	• •	Riboflavin	(B) Th			(C)	Decarboxylases	(D)	Carboxylases
	(C)	Nicotinic acid	(D) Py	ridoxine	77.	Die	tary requireme	nt of	f Vitamin D:
67.				is found in defi-		(A)	400 I.U.	(B)	1000 I.U.
		ncy of the vitan				(C)	6000 I.U.	(D)	700 I.U.
		B ₁	(B) B ₂	£	78.	The	Vitamin which	doe	s not contain a ring
	(C)	Ū.	(D) B ₆	<u> </u>		in t	he structure is		
68.	The	e pellagra prevo				(A)	Pantothenic acid	(B)	Vitamin D
	• •	Riboflavin		antothenic acid		(C)	Riboflavin	(D)	Thiamin
	(C)	Niacin	(D) Py	ridoxine	79.	Par	ntothenic acid i	s a	constituent of the
69.		lagra is caused	due to	o the deficiency		coe	nzyme involved	l in	
	of					(A)	Decarboxylation	(B)	Dehydrogenation
	• •	Ascorbic acid	• •	antothenic acid		(C)	Acetylation	(D)	Oxidation
	(C)	Pyridoxine	(D) N	liacin	80.	The	precursor of Co	bA i s	5
70.				a monocarbox-		(A)	Riboflavin	(B)	Pyridoxamine
	-	acid derivativ				(C)	Thiamin	(D)	Pantothenate
	• •	Pyridine		/rimidine	81.	'Bu	urnina foot sy	nd	rome' has been
	(C)	Flavin	(D) A	denine			ribed to the def		
71.	Nia	icin is synthesiz	ced in t	he body from		(A)	Pantothenic acid	(B)	Thiamin
		Tryptophan	(B) Ty			(C)	Cobalamin	(D)	Pyridoxine
	(C)	Glutamate	(D) As	spartate	82.	Pvr	idoxal phospho	ate i	s central to
72.		proteins prese	nt in ma	aize are deficient		-	Deamination		
	in					(C)	Carboxylation		Transamination
		Lysine		nreonine	02		,	• •	s coenzyme for the
	(C)	Tryptophan	(D) Ty	vrosine	00.		ion of transami		-
73.	Nic	icin is present i	n m <mark>aiz</mark> e	e in the form of		(A)	Niacin		
	(A)	Niatin	(B) N	licotin		(B)	Pantothenic acid		
	(C)	Niacytin	(D) N	licyn		(C)	Pyridoxal phosph	ate	
74.	In	the body 1 r	ng of	niacin can be		(D)	Riboflavin		
		duced from	-		84	Vit	amin B. deficier	ιcv	may occur during
	(A)	60 mg of pyrido	kine		J -10		rapy with	~7	
	(B)	60 mg of tryptop				(A)	Isoniazid	(B)	Terramycin
	(C)	30 mg of tryptop				(C)	Sulpha drugs		Aspirin
	(D)	30 mg of pantot	henic aci	id		. ,	. 0	. /	

85. Deficiency of vitamin B₆ may occur in

- (A) Obese person (B) Thin person
- (C) Alcoholics (D) Diabetics
- 86. 'Xanthurenic acid index' is a reliable criterion for the deficiency of the vitamin
 - (A) Pyridoxal (B) Thiamin
 - (C) Pantothenic acid (D) Cobalamin
- 87. Epileptiform convulsion in human infants have been attributed to the deficiency of the vitamin
 - $(A) \quad B_1 \qquad \qquad (B) \quad B_2$
 - (C) B₆ (D) B₁₂

88. Biotin is a coenzyme of the enzyme

- (A) Carboxylase (B) Hydroxylase
- (C) Decarboxylase (D) Deaminase
- 89. The coenzyme required for conversion of pyruvate to oxaloacetate is
 - (A) FAD (B) NAD
 - (C) TPP (D) Biotin

90. In biotin-containing enzymes, the biotin is bound to the enzyme by

- (A) An amide linkage to carboxyl group of glutamine
- (B) A covalent bond with CO_2
- (C) An amide linkage to an amino group of lysine
- (D) An amide linkage to α-carboxyl group of protein
- 91. A molecule of CO₂ is captured by biotin when it acts as coenzyme for carboxylation reaction. The carboxyl group is covalently attached to
 - (A) A nitrogen (N_1) of the biotin molecule
 - (B) Sulphur of thiophene ring
 - (C) α -Amino group of lysine
 - (D) α -Amino group of protein
- 92. Consumption of raw eggs can cause deficiency of
 - (A) Biotin (B) Pantothenic acid
 - (C) Riboflavin (D) Thiamin

- 93. The cofactor or its derivative required for the conversion of acetyl CoA to malonyl-CoA is
 - (A) FAD (B) ACP
 - (C) NAD⁺ (D) Biotin
- 94. A cofactor required in oxidative decarboxylation of pyruvate is
 - (A) Lipoate
 - (B) Pantothenic acid
 - (C) Biotin
 - (D) Para aminobenzoic acid
- 95. The central structure of B₁₂ referred to as corrin ring system consists of
 - (A) Cobalt (B) Manganese
 - (C) Magnesium (D) Iron
- 96. The central heavy metal cobalt of vitamin B₁₂ is coordinately bound to
 - (A) Cyanide group (B) Amino group
 - (C) Carboxyl group (D) Sulphide group
- 97. Vitamin B₁₂ has a complex ring structure (corrin ring) consisting of four
 - (A) Purine rings (B) Pyrimidine rings
 - (C) Pyrrole rings (D) Pteridine rings

98. Emperical formula of cobalamin is

- (A) C₆₃H₈₈N₁₂O₁₄P.CO
- (B) $C_{61}H_{82}N_{12}O_{12}P.CO$
- (C) C₆₁H₈₈N₁₂O₁₄P.CO
- (D) C₆₃H₈₈N₁₄O₁₄P.CO

99. A deficiency of vitamin B₁₂ causes

- (A) Beri-Beri
- (B) Scurvy
- (C) Perniciuos anemia
- (D) Ricket

Vitamin B₁₂ deficiency can be diagnosed by urinary excretion of

- (A) Pyruvate (B) Methylmalonate
- (C) Malate (D) Lactate
- 101. Subacute combined degeneration of cord is caused due to deficiency of
 - (A) Niacin

(C) Biotin

- (B) Cobalamin
- (D) Thiamin

102. Vitamin required for metabolism of diols e.g. conversion of ethylene glycol to acetaldehyde is

- (A) Thiamin (B) Cobalamin
- (C) Pyridoxine (D) Folic acid

103. Both folic acid and methyl cobalamin (vitamin B_{12}) are required in

- (A) Deamination of serine
- (B) Deamination of threonine
- (C) Conversion of pyridoxal phosphate to pyridoxamine phosphate
- (D) Methylation of homocystein to methionine

104. Folic acid or folate consists of the

- (A) Base pteridine, p-amino benzoic acid and asparate
- (B) Base purine, p-amino benzoic acid and glutamate
- (C) Base pteridine, p-amino benzoic acid and glutamate
- (D) Base purine, p-hydroxy benzoic acid and glutamate

105. Folate as a coenzyme is involved in the transfer and utilization of

- (A) Amino group
- (B) Hydroxyl group
- (C) Single carbon moiety
- (D) Amido group

106. Folic acid deficiency can be diagnosed by increased urinary excretion of

- (A) Methylmalonate (B) Figlu
- (C) Cystathionine (D) Creatinine
- 107. Sulpha drugs interfere with bacterial synthesis of
 - (A) Lipoate (B) Vitamin E
 - (C) Tetrahydrofolate (D) Ascorbic acid

108. Folate deficiency causes

- (A) Microcytic anemia
- (B) Hemolytic anemia
- (C) Iron deficiency anemia
- (D) Megaloblastic anemia

109. Thiamin is heat stable in

- (A) Acidic medium (B) Alkaline medium
- (C) Both (A) and (B) (D) None of these

110. Thiamin deficiency includes

- (A) Mental depression (B) Fatigue
- (C) Beriberi (D) All of these

111. Thiamin diphosphate is required for oxidative decarboxylation of

- (A) α -Keto acids (B) α -Amino acids
- (C) Fatty acids (D) All of these

112. Loss of thiamin can be decreased by using

- (A) Unpolished rice
- (B) Parboiled rice
- (C) Whole wheat flour
- (D) All of these

113. Daily requirement of thiamin is

- (A) 0.1 mg/1,000 Calories
- (B) 0.5 mg/1,000 Calories
- (C) 0.8 mg/1,000 Calories
- (D) 1.0 mg/1,000 Calories

114. Thiamin requirement is greater in

- (A) Non-vegetarians
- (B) Alcoholics
- (C) Pregnant women
- (D) Both B and C

115. People consuming polished rice as their staple food are prone to

- (A) Beriberi (B) Pellagra
- (C) Both (A) and (B) (D) None of these

116. Riboflavin is heat stable in

- (A) Acidic medium (B) Alkaline medium
- (C) Neutral medium (D) Both (A) and (C)

117. FAD is a coenzyme for

- (A) Succinate dehydrogenase
- (B) Glycerol-3-phosphate dehydrogenase
- (C) Sphingosine reductase
- (D) All of these

118. Riboflavin deficiency can cause

- (A) Peripheral neuritis (B) Diarrhoea
- (C) Angular stomatitis (D) None of these

119. Pellagra preventing factor is

- (A) Thiamin (B) Riboflavin
- (C) Niacin (D) Pyridoxine

MCQs IN BIOCHEMISTRY

120. Niacin contains a

(A) Sulphydryl group(B) Carboxyl group(C) Amide group(D) All of these

121. NADP is required as a coenzyme in

- (A) Glycolysis (B) Citric acid cycle
- (C) HMP shunt (D) Gluconeogenesis

122. NAD is required as a coenzyme for

- (A) Malate dehydrogenase
- (B) Succinate dehydrogenase
- (C) Glucose-6-phosphate dehydrogenase
- (D) HMG CoA reductae

123. NAD is required as a conenzyme in

- (A) Citric acid cycle
- (B) HMP shunt
- (C) β -Oxidation of fatty acids
- (D) Both (A) and (C)

124. Niacin can be synthesised in human beings from

- (A) Histidine
- (B) Phenylalanine

(C) Tyrosine (D) Tryptophan

125. Daily requirement of niacin is

(A) 5 mg (B) 10 mg

(C) 20 mg (D) 30 mg

126. Niacin deficiency is common in people whose staple food is

- (A) Wheat
- (B) Polished rice
- (C) Maize and /or sorghum
- (D) None of these

127. In pellagra, dermatitis usually affects

- (A) Exposed parts of body
- (B) Covered parts of body
- (C) Trunk only
- (D) All parts of the body

128. Niacin deficiency can occur in

- (A) Hartnup disease (B) Phenylketonuria
- (C) Alkaptonuria (D) None of these
- 129. Pantothenic acid contains an amino acid which is
 - (A) Aspartic acid (B) Glutamic acid
 - (C) β-Alanine (D) β-Aminoisobutyric acid

130. Sulphydryl group of coenzyme a is contributed by

- (A) β-Alanine
- (B) β-Aminoisobutyric acid
- (C) Methionine
- (D) Thioethanolamine

131. Coenzyme A contains a nitrogenous base which is

- (A) Adenine (B) Guanine
- (C) Choline (D) Ethanolamine
- 132. The following is required for the formation of coenyzme A:
 - (A) ATP (B) GTP
 - (C) CTP (D) None of these

133. Coenzyme A is required for catabolism of

- (A) Leucine (B) Isoleucine
- (C) Valine (D) All of these
- 134. Deficiency of pantothenic acid in human beings can affect
 - (A) Nervous system (B) Digestive system
 - (C) Both (A) and (B) (D) None of these

135. Pyridoxal phosphate is a coenzyme for

- (A) Glutamate oxaloacetate transaminase
- (B) Glutamate pyruvate transaminase
- (C) Tyrosine transaminase
- (D) All of these
- 136. Pyridoxal phosphate is required as a coenzyme in
 - (A) Transamination (B) Transulphuration
 - (C) Desulphydration (D) All of these

137. Pyridoxal phosphate is a coenzyme for

- (A) Glycogen synthetase
- (B) Phosphorylase
- (C) Both (A) and (B)
- (D) None of these

138. Pyridoxine deficiency can be diagnosed by measuring urinary excretion of

- (A) Pyruvic acid (B) Oxaloacetic acid
- (C) Xanthurenic acid (D) None of these

139. Pyridoxine deficiency can be diagnosed by measuring the urinary excretion of xanthurenic acid following a test dose of (A) Glycine (B) Histidine (C) Tryptophan (D) Pyridoxine 140. Pyridoxine requirement depends upon

- the intake of
 - (A) Carbohydrates (B) Proteins
 - (C) Fats (D) None of these

141. Anti-egg white injury factor is

- (A) Pyridoxine (B) Biton
- (C) Thiamin (D) Liponic acid

142. When eggs are cooked

- (A) Biotin is destroyed but avidin remains unaffected
- (B) Avidin is inactivated but biotin remains unaffected
- (C) Both avidin and biotin are inactivated
- (D) Both avidin and biotin remain unaffected

143. Biotin is required as a coenzyme by

- (A) Anaerobic dehydrogenases
- (B) Decarboxylases
- (C) Aerobic dehydrogenases
- (D) Carboxylases

144. Biotin is a coenzyme for

- (A) Pyruvate carboxylase
- (B) Acetyl CoA carboxylase
- (C) Propionyl CoA carboxylase
- (D) All of these

145. Lipoic acid is a conenzyme for

- (A) Pyruvate dehydrogenase
- (B) α-Ketoglutarate dehydrogenae
- (C) Both (A) and (B)
- (D) None of these

146. Chemically, lipoic acid is

- (A) Saturated fatty acid
- (B) Unsaturated fatty acid
- (C) Amino acid
- (D) Sulphur containing fatty acid

147. Folic acid contains

- (A) Pteridine
- (B) p-Amino benzoic acid
- (C) Glutamic acid
- (D) All of these

148. Conversion of folate into tetrahydrofolate requires

- (A) NADH (B) NADPH
- (C) $FMNH_2$ (D) $FADH_2$

149. Riboflavin deficiency symptoms are

- (A) Glossitis (B) stomatis
- (C) Vomitting (D) Both (A) and (B)

150. Vitamin B₁₂ forms coenzymes known as

- (A) Cobamide (B) Transcobalamin I
- (C) Transcobalamin II (D) Both (B) and (C)

151. Methylcobalamin is required for formation of

- (A) Serin from glycine
- (B) Glycine from serine
- (C) Methionine from homocysteine
- (D) All of these

152. Absorption of Vitamin B_{12} requires the presence of

- (A) Pepsin (B) Hydrochloric acid
- (C) Intrinsic factor (D) Boh (B) and (C)

153. Intrinsic factor is chemically a

- (A) Protein
- (B) Glycoprotein
- (C) Mucopolysaccaride
- (D) Peptide

154. Chemically, Extrinsic Factor of Castle is a

- (A) Mucoprotein
- (B) Glycoprotein
- (C) Mucopolysaccharide
- (D) Cyanocobalaminm

155. Vitamin B₁₂ is

- (A) Not stored in the body
- (B) Stored in bone marrow
- (C) Stored in liver
- (D) Stored in RE cells

156. Vitamin B_{12} is transported in blood by

- (A) Albumin (B) Transcortin
- (C) Transcobalamin I (D) Transcobalamin II

157. Vitamin B_{12} is synthesized by

- (A) Bacteria only (B) Plants only
- (C) Animals only (D) Both (A) and (C)

158. Deficiency of vitamin B₁₂ can occur because of

- (A) Decreased intake of vitamin B_{12}
- (B) Atrophy of gastric mucosa
- (C) Intestinal malabsorption
- (D) All of these

159. Deficiency of vitamin B₁₂ can be diagonised by

- (A) Carr-Price reaction
- (B) Ames assay
- (C) Watson-Schwartz test
- (D) Schilling test

160. Gastyrectomy leads to megaloblastic anaemia within a few

- (A) Days (B) Weeks
- (C) Months (D) Years
- 161. Ascorbic acid is required to synthesise all of the following except
 - (A) Collagen (B) Bile acids
 - (C) Bile pigments (D) Epinephrine

162. Vitamin C enhances the intestinal absorption of

- (A) Potassium (B) lodine
- (C) Iron (D) None of these

163. Vitamin C activity is present in

- (A) D-Ascorbic acid
- (B) D-Dehydroascorbic acid
- (C) L-Ascorbic acid
- (D) Both A and B

164. Vitamin C is required for the synthesis of

- (A) Bile acids from cholesterol
- (B) Bile salts from bile acids
- (C) Vitamin D from cholesterol
- (D) All of these

165. Deficiency of vitamin C causes

- (A) Beriberi
- (B) Pellagra
- (C) Pernicious anaemia
- (D) Scurvy

166. An early diagnosis of vitamin C deficiency can be made by

- (A) Measuring plasma ascorbic acid
- (B) Measuring urinary ascorbic acid
- (C) Ascorbic acid saturation test
- (D) All of these
- 167. Daily requirement of vitamin C in adults is about
 - (A) 100 mg (B) 25 mg
 - (C) 70 mg (D) 100 mg
- 168. The vitamin having the highest daily requirement among the following is
 - (A) Thiamin (B) Ribovflavin
 - (C) Pyridoxine (D) Ascorbic acid
- 169. Anaemia can occur due to the deficiency of all the following except
 - (A) Thiamin (B) Pyridoxine
 - (C) Folic acid (D) Cyanocobalamin
- 170. A vitamin which can be synthesized by human beings is
 - (A) Thiamin (B) Niacin
 - (C) Folic acid (D) Cyanocobalamin
- 171. Laboratory diagnosis of vitamin B₁₂ deficiency can be made by measuring the urinary excretion of
 - (A) Xanthurenic acid
 - (B) Formiminoglutamic acid
 - (C) Methylmalonic acid
 - (D) Homogentisic acid

172. The molecule of vitamin A_1 contains

- (A) Benzene ring (B) β -lonone ring
- (C) β -Carotene ring (D) None of these

173. Precursor of Vitamin A is

- (A) α -Carotene (B) β -Carotene
- (C) γ -Carotene (D) All of these

174.	Two molecules of vitamin A can be formed from 1 molecule of
	 (A) α-Carotene (B) β-Carotene (C) γ-Carotene (D) All of these
175.	Conversion of β -carotene into retinal requires the presence of
	 (A) β-Carotene dioxygenase (B) Bile salts (C) Molecular oxygen (D) All of these
176.	Conversion of retinal into ritonal requires the presence of
	(A) NADH (B) NADPH (C) FADH ₂ (D) Lipoic acid
177.	Retinal is converted into retinoic acid in the presence of
	(A) Retinal oxidase (B) Retinal carboxylase(C) Retinene reductase (D) Spontaneously
178.	Vitamin A absorbed in intestine is released into
	(A) Portal circulation (B) Lacteals(C) Both (A) and (B) (D) None of these
179.	Vitamin A is stored in the body in
	 (A) Liver (B) Adipose tissue (C) Reticuloendothelial cells (D) All of these
180.	Rhodopsin contains opsin and
	(A) 11-cis-retinal(B) 11-trans-retinal(C) All-cis-retinal(D) All trans-retinal
181.	When light falls on rod cells
	 (A) All-cis-retinal is converted into all-trans-retinal (B) 11-cis-retinal is converted into 11-trans-retinal (C) 11-trans-retinal is converted into all-trans-retinal
	(D) 11-cis-retinal is converted into all-trans-retinal
182.	Conversion of all-trans-retinal into all- trans-retinol requires
	(A) NAD (B) NADH

(C) NADP (D) NADPH

183. Retinol isomerase is present in

- (A) Retina (B) Liver
- (C) Both (A) and (B) (D) None of these

184. Anti-oxidant activity is present in

- (A) β-Carotene (B) Retinol
- (C) Retinoic acid (D) All of these
- 185. One international Unit of vitamin A is the activity present in
 - (A) 0.3 μ g of β -Carotene
 - (B) 0.3 µg of retinol
 - (C) 0.6 µg of retinoic acid
 - (D) All of these
- 186. Daily requirement of vitamin A in an adult man can be expressed as
 - (A) 400 IU (B) 1,000 IU
 - (C) 5,000 IU (D) 10,000 IU

187. Vitamin B₆ includes

- (A) Pyridoxal (B) Pyridoxamine
- (C) Pyridoxine (D) All of these

188. An early effect of vitamin a deficiency is

- (A) Xerophthalmia
- (B) Keratomalacia
- (C) Prolonged dark adaptation time
- (D) Follicular hyperkeratosis

189. Nyctalopia is

- (A) Drying of eyes
- (B) Destruction of cornea
- (C) Blindness
- (D) Inability to see in dimlight

190. Rod cells possess a trans-membrane protein which is

- (A) Adenylate cyclase (B) Transducin
- (C) Rhodopsin (D) B as well as C

191. Provitamins A include

- (A) Retinal (B) Retionic acid
 - (D) All of these

192. Retinoic acid can

(C) Carotenes

- (A) Act as a photo receptor
- (B) Support growth and differentiation
- (C) Act as an anti-oxidant
- (D) None of these

122)					
193.	Pro tor:	•	con	e cell phototrecep-	202.	Ca (A)
	(A) (C)	lodine 11-cis-retinal		Opsin all-trans-retinal		(C) (B) (C)
194.	Ret of	inoic acid is invo	olve	ed in the synthesis		(D)
	(A) (C)	Rhodopsin Porphyrinopsin		lodopsin Glycoproteins	203.	Bo
195	Tra	nsducin is a				(A)
	(A) (C)	Signal transducer Trimer		Stimulatory G-protein All of these	204.	(C) C a
196.	Pro	ovitamin D ₃ is				(A)
	• •	Ergosterol 7-Dehydrocholeste	erol			(B) (C) (D)
197.		osterol is found	in		205.	Lev ph
177.	-	Animals Bacteria	(B)	Plants All of these		- (A) (B)
198.		provitamin D sy ngs is	nth	nesized in human		(C) (D)
	(A) (B) (C) (D)	Ergosterol 7-Dehydrocholeste Cholecalciferol 25-Hydroxycholec		erol	206.	Re the (A) (C)
199.	25-	Hydroxylation	of v	itamin D occurs in	207.	In I
	(A) (C)	Skin Kidneys		Liver Intestinal mucosa		(A) (B)
200.		oular reabsor _l reased by	ptic	on of calcium is		(C) (D)
	(B)	Cholecalciferol 25-Hydroxycholec Calcitriol All of these	alcif	erol	208.	Vit (A)
201.		rathormone is re n of	qui	red for the conver-		(B) (C)
	(A) (B)	Cholecalciferol int Cholecalciferol int		nydroxycholecalciferol i-hydroxycholecalcifer-	209.	(D) Int
	(C) (D)	ol 25-Hydroxycholec Cholesterol into 7-				(A) (C)

202. Calcitriol inhibits the conversion of

- A) Cholesterol into 7-dehydrocholesterol
- (B) Cholecalciferol into 1-hydroxycholecalciferol
- (C) Cholecalciferol into 25-hydroxycholecalciferol
- D) 25-Hydroxycholecalciferol into 1, 25- dihydroxycholecalciferol

203. Bowlegs and knock-knees can occur in

- A) Rickets (B) Osteomalacia
- C) Both A and B (D) Hypervitaminosis D

204. Calcification of soft tissues can occur in

- (A) Osteomalacia
- (B) Rickets
- (C) Hypervitaminosis D
- (D) None of these

205. Levels of serum calcium and inorganic phosphorus are increased in

- (A) Hypervitaminosis D
- (B) Hypoparathyroidism
- (C) Hypovitaminosis D
- (D) None of these

206. Requirement of vitamin E increases with the increasing intake of

- (A) Calories (B) Proteins
- (C) PUFA (D) Cholesterol

207. In human beings, vitamin E prevents

- (A) Sterility
- (B) Hepatic necrosis
- (C) Muscular dystrophy
- (D) None of these

208. Vitamin E protects

- (A) Polyunsaturated fatty acids against aperoxidation
- (B) Vitamin A and carotenes against oxidation
- C) Lung tissue against atmospheric pollutants
- (D) All of these

209. Intestinal bacteria can synthesise

- (A) Phyllogquinone (B) Farnoquinone
- (C) Both (A) and (B) (D) Menadione

210.	A water soluble form of vitamin K is				
	(A)	Phylloquinone	(B)	Farnoquinone	
	(C)	Menadione	(D)	None of these	
211.	Pro	thrombin time i	s pr	olonged in	
		Vitamin K deficier	су		
		Liver damage			
	• •	Both (A) and (B) None of these			
212		ynthetic form of		amin K is	
212.		Menadione			
	• •	Phylloquinone	• •		
213.	• •	/		etinol by retinene	
210.				of the coenzyme	
	(A)	NAD+	(B)	NADP+	
	(C)	NADH + H ⁺	(D)	NADPH + H+	
214.		inal exists as an ds in the	este	er with higher fatty	
	(A)	Liver	(B)	Kidney	
	(C)	Lung	(D)	All of these	
215.		inol is transpo nol attached to	rted	l to the blood as	
		α_1 -globulin			
		β-globulin		γ-globulin	
216.		otenes are tran	-		
		Minerals	• •	Proteins	
017		Lipids		Lipoproteins	
217.	pyr	idoxal are		complexes with	
	• •	lsoniazid	• •	Penicillamine	
		Rifampicin		Both (A) and (B)	
218.		the blood the ached to	vit	amin esters are	
	• •	α_1 -lipoproteins	• •	2 1 1	
		β-lipoproteins			
219.		percentage of esters is stored i		min A in the form e liver:	
	(A)	80	(B)	85	

(C) 90 (D) 95

220. The performed Vitamin A is supplied by foods such as (A) Butter (B) Eggs

- (C) Fish liver oil (D) All of these
- 221. The non-protein part of rhodopsin is
 - (A) Retinal (B) Retinol
 - (C) Carotene (D) Repsin
- 222. Lumirhodopsin is stable only at a temperature below
 - (A) −35°C (B) −40°C (C) −45°C (D) −50°C
- 223 The normal concentration of vitamin A in blood in I.V/dl:
 - (A) 20–55 (B) 24–60 (C) 30–65 (D) 35–70
- 224. Continued intake of excessive amounts of vitamin A especially in children produces
 - (A) Irritability (B) Anorexia
 - (C) Headache (D) All of these

225. Vitamin D_2 is also said to be

- (A) Activated ergosterol
- (B) Fergocalciferol
- (C) Viosterol
- (D) All of these

226. The poor sources of vitamin D:

- (A) Eggs (B) Butter
- (C) Milk (D) Liver
- 227. The activity of tocopherols is destroyed by
 - (A) Oxidation (B) Reduction
 - (C) Conjugation (D) All of these

228 Some tocopherols are

- (A) Terpenoid in structure
- (B) Dional in structure
- (C) Isoprenoid in structure
- (D) Farnesyl in structure

229. The methyl groups in the aromatic nucleus of a tocopherols are

- (A) 2 (B) 3
- (C) 4 (D) 5

essential

230.	Vitamin E stored in		240.	The number of nutritionally essential		
	(A) Mitochondria (C) Both (A) and (B)	(B) Microsomes(D) None of these		amino acids for man is(A) 6(B) 8(A) 10(B) 10		
231.		ts the polyunsaturated oxidation by molecular rmation of (B) Peroxide	241.	 (C) 10 (D) 12 Avidin is present in (A) Cow's milk (B) Park and 		
	(C) Trioxide	(D) All of these		(B) Raw egg(C) Green leafy vegetables(D) Greente		
232.		prevent the oxidation of		(D) Carrots		
	(A) Vitamin A (C) Vitamin K	(B) Vitamin D (D) Vitamin C	242.	(A) Proteins		
233.	truction in	ts enzymes from des-		(B) Proteins and calories(C) Proteins and vitamins(D) Proteins and minerals		
	(A) Muscles (C) Gonads	(B) Nerves (D) All of these	243.	Energy value in kilocalorie per gram of		
234.	Vitamin K regulate clotting factors: (A) VII	es the synthesis of blood (B) IX		fat in the body is (A) 1 (B) 4 (C) 9 (D) 18		
	(C) X	(D) All of these	244.	Which among the following is an essential		
235.	Ascorbic acid can	reduce		amino acid for man?		
	(A) 2, 4-dinitro ben(B) 2, 6-Dichloroph			(A) Alanine (B) Serine (C) Valine (D) Glutamic acid		
	(C) 2, 4-dibromobe(D) 2, 6-dibromo be		245.	Under what condition to basal metabolic rate goes up?		
236.	Sterilized milk is (A) Vitamin A (C) Vitamin C	devoid of (B) Vitamin B ₁ (D) Vitamin D		 (A) Cold environment (B) Hot environment (C) Intake of base forming foods (D) Hypothyroidism 		
237.	The symptoms of	scurvy are	246.	What is the major form of caloric storage		
	(A) Poor healing of(B) Loosening of tea(C) Anaemia(D) All of these			 in human body? (A) ATP (B) Glycogen (C) Creatine phosphate 		
238.	Kwashiorkor res			(D) triacylglycerol		
	 (A) Vitamin A defici (B) Vitamin D defici (C) Deficiency of m (D) Protein and calc 	iency	247.	The phosphoprotein of milk is(A) Lactalbumin(B) Lactoglobulin(C) Vitellin(D) Caein		

239. Which among the following fatty acids is an essential fatty acid for man?

(B) Oleic acid

(D) None of these

(A) Palmitic acid

(C) Linoleic acid

- Dictary deficiency of this vitamin leads to 248. night blindness:
 - (A) Retinol (B) Niacin
 - (C) Ascorbic acid (D) Cholecalciferol

249. A non essential amino acid is not

- (A) Absorbed in the intestines
- (B) Required in the diet
- (C) Incorporated into the protein
- (D) Metabolized by the body

250. The deficiency of Vitamin B_{12} leads to

- (A) Pernicious anaemia
- (B) Megablastic anaemia
- (C) Both (A) and (B)
- (D) None of these

251. Which among the following is a nutritionally essential amino acid for man?

- (A) Alanine (B) Glycine
- (C) Tyrosine (D) Isoleucine

252. The maximum specific dynamic action of food stuff is exerted by

- (A) carbohydrates (B) fats
- (C) proteins (D) vitamins

253. The essential amino acids

- (A) must be supplied in the diet because the organism has lost the capacity to aminate the corresponding ketoacids
- (B) must be supplied in the diet because the human has an impaired ability to synthesize the carbon chain of the corresponding ketoacids
- (C) are identical in all species studied
- (D) are defined as these amino acids which cannot be synthesized by the organism at a rate adequate to meet metabolic requirements

254. Fibre in the diet is beneficial in

- (A) Hyper glycemia
- (B) Hyper cholseteremia
- (C) Colon cancer
- (D) All of these

255 Sucrose intolerance leads to

- (A) Hyper glycemia (B) Glycosuria
- (C) Diarrhoea (D) Hypoglycemia
- 256. There can be intolerance with respect to the following sugar:
 - (A) Glucose (B) Lactose
 - (C) Maltose (D) Xylose

257. Milk contains very poor amounts of

- (A) Calcium (B) Phosphate
 - (D) Riboflavin

258. Egg contains very little

(A) Fat

(C)

(B) Proteins

Iron

- (C) Carbohydrates
- (D) Calcium and phosphorus

259. BMR (Basal Metabolic rate) is elevated in

- (A) Hyper thyroidism (B) Under nutrition
- (C) Starvation (D) Hypothyroidism

260. Soyabean proteins are rich in

- (A) Lysine (B) Alanine
 - (C) Glcyine (D) Aspartic acid

261. Corn and gliadin are low in

- (A) Lysine (B) Alanine
- (C) Glycine (D) Aspartic acid
- 262. What is the disease caused by thiamine deficiency?
 - (A) Nycalopia (B) Scurvy
 - (C) Rickets (D) Beriberi
- 263. Retinol and retinol -binding protein (RBP) bound with this protein:
 - (A) Albumin (B) Prealbumin (C) α_2 -globulin (D) β -globulin
 - $(C) \alpha_2$ -globulin (D) p-globulin
- 264. Megaloblastic anemia is caused by the deficiency of
 - (A) Folic acid (B) Vitamin B₆
 - (C) Iron (D) Protein

265. This vitamin acts as anti-oxidant:

- (A) Vitamin A (B) Vitamin D
- (C) Vitamin E (D) Vitamin K

266. Calcitriol is

- (A) 1-OH-cholecalciferol
- (B) 25-OH-cholecalciferol
- (C) 24, 25-diOH cholecalciferol
- (D) 1, 25-diOH cholecalciferol
- 267. 1-hydroxylation of 25-OH vitamin D₃ takes place in
 - (A) Liver (B) Kidneys
 - (C) Intestine (D) Pancreas

- **268.25-hydroxylation**of vitamin D3 takesplace in(A)Liver(B)(A)Liver(B)Kidneys(C)Intestine(D)Pancreas
- 269. Hydroxylation of 25-hydroxy cholecalciferol is promoted by
 - (A) Cytochrome a (B) Parathyroid hormone
 - (C) Cytochrome-b (D) CAMP

270. The egg injury factor in raw egg white is

- (A) Biotin (B) Avidin
- (C) Albumin (D) Calcium salts

271. The following has cyanide:

- (A) Vitamin B₁₂
- (B) Adenyl cobamide
- (C) Benzimidazole cobamide
- (D) Methyl cobamide

272. The human species can biosynthesize

- (A) Vitamin C (B) Vitamin B₁₂
- (C) Thiamine (D) Niacin
- 273. Retina contains this photosensitive pigment:
 - (A) Rhodopsin (B) Opsin
 - (C) Retinol (D) Melanin

274. Anti xerophthalmic vitamin is

- (A) Vitamin B_1 (B) Vitamin B_2
- (C) Vitamin B_6 (D) Vitamin A
- 275. One of the following is not a symptom of addison's disease.
 - (A) Hypoglycemia (B) Hyponatremia
 - (C) Hypokalemia (D) Hypochoremia

276. Gammaxane is an antimetabolite of

(A) Thiamine(B) Riboflavin(C) Pyridoxin(D) Inositol

277. Pyridoxin deficiency may lead to convulsions as it is needed for the synthesis of

- (A) GABA (B) PABA
- (C) EFA (D) SAM

278. Sulpha drugs are antimetabolities of

- (A) Vitamin K (B) Pyridoxin
- (C) Folic acid (D) Vitamin B₂

279. This abnormal metabolite may be responsible for the neurological manifestation of pernicious anemia:

- (A) Taurine (B) Methyl malonic acid
- (C) Xantherunic acid (D) Phenyl pyruvic acid

280. The vitamin in leafy vegetables:

- (A) D (B) K
- (C) A (D) Both (B) and (C)
- 281. Isonicotinic acid hydrazide given in the treatment of tuberculosis may lead to a deficiency of
 - (A) Vitamin A (B) Pyridoxin
 - (C) Folate (D) Inositol
- 282. Biotin is required for the reaction of CO₂ with
 - (A) Water
 - (B) Acetyl CoA
 - (C) NH₃
 - (D) Incorporation of carbon 6 in purine

283. A deficiency of folate leads to

- (A) Megaloblastic anemia
- (B) Aplastic anemia
- (C) Pernicious anemia
- (D) Hypochromic microcytic anemia

284. A deficiency of Iron leads to

- (A) Megaloblastic anemia
- (B) Aplastic anemia
- (C) Pernicious anemia
- (D) Hypochromic microcytic anemia

285. Corninoid coenzymes are coenzymes of

- (A) Vitamin B_{12} (B) Vitamin B_6
- (C) Vitamin B_2 (D) Vitamin B_1

286. Vitamin B₁₂ initially binds to the proteins known as

- (A) Transcobalamin I
- (B) R-Proteins
- (C) Transcobalamin II
- (D) Intrinsic factor of castle

287. Extrinsic factor of castle is

- (A) Vitamin B₁₂ (B) Glycoprotein
- (C) R-Proteins (D) Sigma protein

288.	Intr	rinsic factor o	f castle	eis	297
	• •	Vitamin B ₁₂ R-Proteins	• • •	Glycoprotein Sigma protein	
289.	Per	nicious mean	15		
		Prolonged Intermittent		Dangerous Idiopathic	298
290.	dec			ucleotides to D- s in prokaryotes	299
	(A) (B) (C)		pterin	dazole cobamide	300
291.	Bio	tin is also kn	own a	5	
	(C)	Anti egg white Rutin Both (A) and (I None of these	. ,	actor	
292.	Ang	gular stomate	osis is (due to	301
	(B)	Ariboflavinose Deficiency of V Deficiency of V Deficiency of f	/itamin (/itamin l		302
293.		e of the main actor for	functio	ons of Vitamin K is	
				ne formation of γ	303
	• •	Methylation of Carboxylation	δ-adena of biotir	osyl methionine 1 y tetrahydrofolate	
294.		othrombin t ministering	ime i	s prolonged by	304
	• •	Vitamin K Calcium	• •	Dicoumarol Prothrombin	305
295.	This	s vitamin acts	s as an	tioxidant.	
	• •	Vitamin A Vitamin E	• •	Vitamin D Vitamin K	
296.	This	s is a photo-le			306

- (A) Thiamine (B) Riboflavin
- (C) Niacin (D) Cholecalciferol

- 297. Convulsive episodes occur when there is a severe deficiency of
 - (A) Pyridoxine (B) Folic acid
 - (C) Thiamine (D) Riboflavin
- 298. Metastatic classification is seen in hypervitaminosis:
 - (A) A (B) K
 - (C) D (D) E
- 299. The anti vitamin for para aminobenzoic acid is
 - (A) Aminopterin (B) Dicoumarol
 - (C) Sulphonamides (D) Thiopanic acid
- 300. Several pantothenic acid deficiency in man has been reported to cause
 - (A) Burning feet syndrome
 - (B) Scurvy
 - (C) Cataract
 - (D) Xerophthalmia
- 301. Cholesterol is a precursor in the biogenesis of
 - (A) Vitamin A (B) Vitamin D
 - (C) Vitamin E (D) None of these
- 302. This vitamin is a potent antioxidant of vitamin A:
 - (A) Vitamin C (B) Vitamin E
 - (C) Vitamin K (D) Vitamin D
- 303. In retinal rickets, the following hydroxylation of Vitamin D₃ does not take place:
 - (A) 25 (B) 1 (C) 24 (D) 7
- 304. The following does not have phosphorous:
 - (A) Riboflavin (B) TPP
 - (C) NAD+ (D) COASH
- 305. Convulsions and delirium could be caused by a severe deficiency of
 - (A) Thiamine (B) Glutamate
 - (C) Niacin (D) Magnesium
- 306. Rice polishings contain this vitamin:
 - (A) Riboflavin (B) Niacin
 - (C) Thiamine (D) Vitamin B₁₂

307. In beri beri there will be accumulation of _____ in blood.

- (A) Aceto acetic acid (B) β -OH butyric acid
- (C) Pyruvic acid (D) Methyl malonic acid

308. Symptoms of pellagra are

- (A) Dermatitis and diarrhea only
- (B) Dermatitis and dementia only
- (C) Diarrhea, dermatitis and dementia
- (D) Diarrhea and elements only

309. Pyridoxine deficiency leads to

- (A) Megaloblastic anemia
- (B) Aplastic anemia
- (C) Hypochromic microcytic anemia
- (D) Permicious anemia

310. The significant ocular lesion in arbo flovinosis:

- (A) Keratomalacia
- (B) Bitot's spots
- (C) Vascularisation of the cornea
- (D) lachrymal metaplasia

311. Irradiation of foods raises the content of

- (A) Vitamin A (B) Vitamin D
- (C) Vitamin E (D) Vitamin K

312. An anti-vitamin for folic acid is

- (A) Amethoptesin (B) Dicoumarol
- (C) Pyrithoamine (D) Isoniazid

313. Thymine is

- (A) Water soluble vitamin
- (B) Fat soluble vitamin
- (C) Purine base
- (D) Pyrimidine base

314. The anti-vitamin for para amino benzoic acid is

- (A) Aminopterrin (B) Dicoumarol
- (C) INH (D) Sulphonamides

315. The sulphur-containing vitamins among the following B-Vitamin is

- (A) Thiamine (B) Riboflavin
- (C) Niacin (D) Pyridoxine

316. Taurinuria may be encountered in

- (A) Permicious anemia (B) Beriberi
- (C) Pellegra (D) Folate deficiency
- 317. The three vitamins which are specially required for proper nerve functions are acid:
 - (A) Thiamine, niacin and riboflavin
 - (B) Thiamine, folic acid, choline
 - (C) Thiamine, riboflavin, patothenic acid
 - (D) Thiamine, pyridoxin, vitamin B₁₂
- 318. This is a rich source for vitamin C.
 - (A) Rice (B) Milk
 - (C) Egg (D) Lemon
- 319. The following vitamin is involved in coenzyme function in transaminations:
 - (A) Nicotinamide (B) Pyridoxine
 - (C) Thiamine (D) Riboflavin
- 320. Methyl malonic aciduria is seen in the deficiency of
 - (A) Vitamin B_6 (B) Folic acid
 - (C) Thiamine (D) Vitamin B_{12}

321. Deficiency of Vitamin C leads to

- (A) Rickets (B) Scurvy
- (C) Night blindness (D) All of these

322. If no primer DNA was given, the following scientist could not have synthesized DNA.

- (A) Ochoa (B) Okazaki
- (C) Kornberg (D) Monod

323. Antisterility vitamin is

- (A) Vitamin B_1 (B) Vitamin B_2
- (C) Vitamin E (D) Vitamin K
- 324. All the following vitamins give rise to cofactors that are phosphorylated in the active form except
 - (A) Vitamin A (B) Vitamin B₁
 - (C) Vitamin D (D) Vitamin E

325. Molecular Iron, Fe, is

- (A) Stored in the body in combination with Ferritin
- (B) Stored primarily in the spleen
- (C) Excreted in the urine as Fe²⁺
- (D) absorbed in the intestine by albumin

326.		nans most easi ich of the follow	-	olerate a lack of nutrients?	335
	• •	Protein Carbohydrate	• •	lodine Lipid	
327.	A d	eficiency of vita	min	B ₁₂ causes	
	• •	Cheliosis Pernicious anemia	• •	Beriberi Scurvy	336
328.	ln a cau		efic	iency of vitamin D	
		Night blindness Rickets		Osteomalacia Skin cancer	337
329.	mo: wh	st likely become	de	g vitamins would ficient in a person etely carnivorous	338
	• •		• •	Niacin Vitamin C	
330.		ich of the fol arding Vitamin		ving statements true?	339
	(B) (C)	It is not an essentic It is related to toco It is a component o It is also known as	pher of rho	ol odopsin	340
331.		y activated py ends upon the p		ate carboxylase ence of	341
	(B) (C)	Malate and Niaci Acetyl CoA and bi Acetyl CoA and th Oxaloacetate and	iotin iami	17 1 1	
332.		ntothenic acid nzyme involved		a constituent of	342
	(A)	Acetylation Dehydrogenation	(B)	•	
333.		tin is involved in es of reactions?	whi	ch of the following	343
		Hydroxylation Decarboxylation			
334.		ich of the follo curssor of CoA?	win	g vitamins is the	344
		Riboflavin Thiamine		Pantothenate Cobamide	

335.	Vitamins that function as dinucleotide
	derivatives include all the following
	except

- (A) Thiamine (B) Niacin
- (C) Nicotinate (D) Vitamin B₂
- 336. Methyl malonic aciduria is seen in a deficiency of
 - (A) Vitamin B₆ (B) Folic acid
 - (C) Thiamine (D) Vitamin B₁₂
- 337. What is the disease caused by thiamine deficiency?
 - (A) Nyctalopia (B) Scurvy
 - (C) Rickets (D) Beriberi
- 338. Retinol and Retinol binding protein are bound with this protein:
 - (A) Albumin (B) Prealbumin
 - (C) α -globulin (D) β -globulin
- 339. Megaloblastic anemia is caused by the deficiency of
 - (A) Folic acid
 (B) Vitamin B₆
 (C) Iron
 (D) Protein

340. This vitamin acts as anti oxidant.

- (A) Vitamin A (B) Vitamin D
- (C) Vitamin E (D) Vitamin K

341. Calcitriol is

- (A) 1-hydroxy cholecalciferol
- (B) 25-hydroxy cholecalciferol
- (C) 24, 25-dihydroxy cholecalciferol
- (D) 1, 25-dihydroxy cholecalciferol
- 342. 1-hydroxylation of 25-hydroxy Vitamin D₃ takes place in
 - (A) Liver (B) Kidneys
 - (C) Intestine (D) Pancreas
- 343. 25-hydroxylation of Vitamin D₃ takes place in
 - (A) Liver (B) Kidneys
 - (C) Intestines (D) Pancreas
- 344. Hydroxylation of 25-hydroxy cholecalciferol is promoted by
 - (A) Cytochrome A (B) Panthyroid hormone
 - (C) Cytochrome b (D) cAMP

(130) 345. The egg injury factor in raw egg white is (A) Biotin (B) Avidin (C) Albumin (D) Calcium salts 346. The following has cyanide: (A) Vitamin B₁₂ (B) Adenyl cobamide Benzimidazole cobamide (C) (D) Methyl cobamide 347. The human species can biosynthesize (A) Vitamin C (B) Vitamin B₁₂ (C) Thiamine (D) Niacin 348. Retina contains this photo sensitive pigment. (A) Rhodopsin (B) Opsin (C) Retinol (D) Malanin 349. Antixerophthalmic vitamin is (A) Vitamin B₁ (B) Vitamin B_2 (D) Vitamin A (C) Vitamin B₆ 350. One of the following is not symptom of Addison's disease: (A) Hypoglycemia (B) Hyponatremia (C) Hypokalemia (D) Hypochloremia 351. Gammaxine is an antimetabolite of (B) Riboflavin (A) Thiamine (C) Pyridoxin (D) Inositol 352. Pyridoxine deficiency may lead to convulsions as it is needed for the synthesis of (B) PABA (A) GABA (C) EFA (D) SAM 353. Sulpha drugs are antimetabolites of (A) PABA (B) Pyridoxin (C) Vitamin B₂ (D) Pantothenic acid 354. This abnormal metabolite may be responsible for the neurological manifestation of pernicious anemia. (A) Taurine (B) Methyl malonic acid (C) Xanthurenic acid (D) Phenyl pyruvic acid

355. Choline is not required for the formation of

- (A) Lecithins (B) Acetyl choline
- (C) Sphingomyelin (D) Cholic acid

356. Isonicotinic acid hydrazide given in the treatment of tuberculosis may lead to a deficiency of

- (A) Vitamin A (B) Pyridoxin
- (C) Folate (D) Inositol

357. Steroidal prohormone is

- (A) Vitamin A (B) Vitamin C
- (C) Vitamin D (D) None of these

358. A deficiency of folate leads to

- (A) Megaloblastic anemia
- (B) Aplastic anemia
- (C) Pernicious anemia
- (D) Hypochromic microcytic anemia

359. Deficiency of Iron leads to

- (A) Megaloblastic anemia
- (B) Aplastic anemia
- (C) Pernicious anemia
- (D) Hypochromic microcytic anemia

360. Corrinoid coenzymes are coenzymes of

- (A) Vitamin B_6 (B) Vitamin B_{12}
- (C) Vitamin B_2 (D) Vitamin B_1

361. Vitamin B₁₂ initially binds to the proteins known as

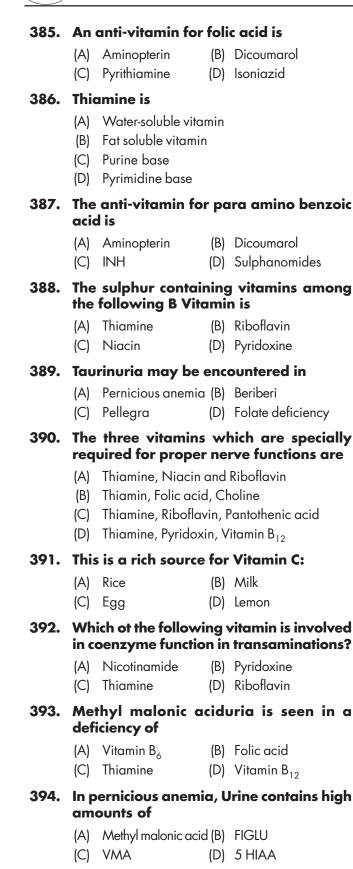
- (A) Transcobalamin I
- (B) R-proteins
- (C) Transcobalamin II
- (D) Intrinsic factor of castle

362. Extrinsic factor of castle is

- (A) Vitamin B₁₂ (B) Glycoprotein
- (C) R-proteins (D) Sigma protein

363. Intrinsic factor of castle is

- (A) Vitamin B₁₂ (B) Glycoprotein
- (C) R-proteins (D) Sigma protein


364. Pernicious means

- (A) Prolonged (B) Dangerous
- (C) Intermittent (D) Idiopathic

365. Reduction of D-ribonucleotides to D-deoxy ribonucleotides in prokaryotes requires

- (A) 5, 6 dimethyl benzimindazole cobamide
- (B) Thiredoxin
- (C) Tetra hydrobiopterin
- (D) Tetra hydrofolate

366.	Antirachitic vitamin is	376.	Cholesterol is a precursor in the biogenesis
	(A) Vitamin A(B) Vitamin D(C) Vitamin E(D) Vitamin K		(A) Vitamin A (B) Vitamin D
367.	Angular stomatitis is due to		(C) Vitamin E (D) None of these
	 (A) Ariboflavinosis (B) Deficiency of Vitamin C (C) Deficiency of Vitamin B₁ 	377.	Which of the vitamins is a potent anti- oxidant of Vitamin A?(A) Vitamin C(B) Vitamin E
	(C) Deficiency of Vitamin B₁(D) Deficiency of folate		(C) Vitamin K (D) Vitamin D
368.	One of the main functions of Vitamin K is the cofactor for	378.	In renal rickets, the following hydroxyla- tion of Vitamin D ₃ does not take place:
	 (A) Carboxylase for the formation of γ-carboxy glutamate 		(A) 25 (B) 1 (C) 24 (D) 7
	(B) Methylation by S-adenosyl methionine(C) Carboxylation by biotin(D) One carbon transfer by tetra hydrofolate	379.	Which of the following does not have phosphorous?
369.			(A) Riboflavin (B) TPP (C) NAD+ (D) CaASH
	(A) Vitamin K(B) Dicoumarol(C) Calcium(D) Prothrombin	380.	following Vitamin?
370.	This Vitamin acts as antioxidant:		(A) Riboflavin (B) Niacin (C) Thiamine (D) Vitamin B ₁₂
	(A) Vitamin A(B) Vitamin D(C) Vitamin E(D) Vitamin K	381.	
371.	This is photo labile vitamin:		(A) Aceto acetic acid
	(A) Thiamine(B) Riboflavin(C) Niacin(D) Cholecalciferol		 (A) Aceio aceiic acia (B) β-hydroxy butyric acid (C) Pyruvic acid
372.	Convulsive episodes occur when there is a severe deficiency of:		(D) Methyl malonic acid
	(A) Pyridoxine (B) Folic acid (C) Thiamine (D) Riboflavin	382.	(A) Dermatitis and diarrhea only
373.	Metastatic calcification is seen in hyper- vitaminosis:		 (B) Dermatitis and Dermentia only (C) Diarrhea and dermentia only (D) Diarrhea, Dermatitis and dementia
	(A) A (B) K	383.	
~~~	(C) D (D) E	303.	(A) Megaloblastic anemia
374.	acid is		<ul><li>(B) Aplastic anemia</li><li>(C) Hypochromic microcytic anemia</li></ul>
	<ul><li>(A) Aminopterin</li><li>(B) Dicoumasol</li><li>(C) Sulphanomides</li><li>(D) Thiopamic acid</li></ul>		<ul><li>(D) Pernicious anemia</li></ul>
375.	Severe patothemic acid deficiency in man has been reported to cause	384.	The significant ocular lesion in a ribofla- vinosis is
	<ul> <li>(A) Burning feet syndrome</li> <li>(B) Scurvy</li> <li>(C) Cataract</li> <li>(D) Xeropththalmia</li> </ul>		<ul> <li>(A) Keratomalacia</li> <li>(B) Bitot's spots</li> <li>(C) Vascularisation of the cornea</li> <li>(D) Lachrynal metaplasia</li> </ul>



- **395.** Anti sterility Vitamin is
  - (A) Vitamin  $B_1$  (B) Vitamin  $B_2$
  - (C) Vitamin E (D) Vitamin K
- 396. Biotin deficiency is characterized by the following except
  - (A) Muscular pain (B) Anaemia
  - (C) Nausea (D) Dermatitis

#### 397. Deficiency of thiamine causes

- (A) Beri beri (B) Scurvy
- (C) Night blindness (D) Rickets

#### 398. Deficiency of Vitamin D leads to

- (A) Rickets (B) Osteomalacia
- (C) Xeropthalmia (D) Both (A) and (B)

#### 399. The vitamin that is useful in cancer is

- (A) A (B) B complex
- (C) C (D) E

#### 400. Vitamin A over dosage causes injury to

- (A) Mitochondria (B) Microtubules
- (C) Lysosomes (D) E.R
- 401. Which is a pro vitamin or vitamin that has antioxidant properties?
  - (A) Beta carotene (B) Vitamin E
  - (C) Vitamin C (D) Vitamin D
- 402. The vitamin required for carboxylation reaction is
  - (A) Vitamin  $B_2$  (B) Vitamin  $B_6$
  - (C) Biotin (D) Vitamin B₁₂

#### 403. Biological activity of tocopherols has been attributed in part to their action as

- (A) Antioxidant
- (B) Anticoagulents
- (C) Provitamin
- (D) Carriers in electron transport system

#### 404. Biotin is essential for

- (A) Translation (B) Carboxylation
- (C) Hydroxylation (D) Transamination
- 405. Which of the following vitamin act as a respiratory catalyst?
  - (A)  $B_2$  (B) Pyridoxine (C)  $B_{12}$  (D) C

(132)

406. Metal in Vitamin B₁₂ is (B) Cobalt (A) Copper (D) Zinc (C) Iron 407. Whole wheat is an excellent source of (A) Vitamin D (B) Vitamin C (C) Vitamin A (D) Thiamine 408. Vitamin used in the treatment of homocystinuria is (A) B₁ (B) B₅ (D) B₆ (C) B₁₂ 409. Which of the following is not a component of coenzyme A? (A) Pantothenic acid (B) Adenylic acid (D) Sulfhydryl group (C) Acetic acid 410. The most active form of Vitamin D is (A) 25-Hydroxycholecalciferol (B) 1, 25-dihydroxycholecalciferol (C) 25-dihydroxyergocalciferol (D) None of these 411. The important part in the structure of flavoprotein is (B) Vitamin B₂ (A) Vitamin B₆ (C) Vitamin B₁ (D) Vitamin A 412. Vitamin essential for transamination is (A) B₁  $(B) B_2$ (C) B₆ (D) B₁₂ 413. The action of Vitamin K in formation of clotting factor is through (A) Post transcription (B) Post translation (C) Golgi complex (D) Endoplasmic reticulum 414. Vitamin necessary for CoA synthesis: (A) Pantothenic acid (B) Vitamin C (C) B₆ (D) B₁₂ 415. Cofactor for transamination is (B) Riboflavin (A) Thymine (C) Pyridoxine (D) Niacin

#### 416. During deficiency of thiamine the concentration of the following compound rises in blood and intracellular fluid: (A) Glycogen (B) Sugar (D) Pyruvic acid (C) Amino acids 417. The conversion of carotenoids to Vitamin A takes place in (A) Intestine (B) Liver (D) Skin (C) Kidney 418. Man cannot synthesize vitamin: (B) B (A) A (C) C (D) D 419. Vitamin A is required for the formation of a light receptor protein known as (A) Globulin (B) Lypoprotein (C) Chomoprotein (D) Rhodospin 420. Excessive vitamin A in children produces (A) Irritability (B) Anorexia (D) All of these (C) Headache 421. Tocopherols prevent the oxidation of (A) Vitamin A (B) Vitamin D (C) Vitamin K (D) Vitamin C 422. Vitamin K regulates the synthesis of blood clotting factors. (A) VII (B) IX (D) All of these (C) X 423. The colour of cyanomethmoglobin is (A) Pale yellow (B) Pink (D) Bright red (C) Brown 424. Transketolase activity is affected in (A) Bitoin deficiency (B) Pyridoxine deficiency

425. The hydrolysis of glucose-6-PO₄ is catalyzed by a phosphatase that is not found in which of the following?

- (A) Liver
- (B) Kidney
- (C) Muscle (D) Small intestine

- (C) PABA deficiency
- (D) Thiamine deficiency

#### 426. Vitamin $K_2$ was originally isolated from

- (A) Soyabean (B) Putrid fishmeal
- (C) Alfa alfa (D) Oysters
- 427. The following form of vitamin A is used in the visual cycle:
  - (A) Retinol (B) Retinoic acid
  - (C) Retinaldehyde (D) Retinyl acetate

### 428. Increased carbohydrate consumption increases the dietary requirement for

- (A) Thiamine (B) Riboflavine
- (C) Pyridoxine (D) Folic acid
- 429. Increased protein intake is accompanied by an increased dietary requirement for

- (A) Thiamine (B) Riboflavine
- (C) Folic acid (D) Nicotininic acid
- 430. The deficiency of which one of the following vitamin causes creatinuria?
  - (A) Vitamin E (B) Vitamin K
  - (C) Vitamin A (D) Vitamin  $B_6$
- 431. A biochemical indication of vitamin B₁₂ deficiency can be obtained by measuring the urinary excretion of
  - (A) Pyruvic acid
  - (B) Malic acid
  - (C) Methyl malonic acid
  - (D) Urocanic acid

#### ANSWERS

SWERS					
1. A	2. B	3. A	4. A	5. A	6. A
7. D	8. A	9. D	10. A	11.B	12.B
13. A	14. D	15.B	16. C	17. A	18. A
19. A	20. A	21.B	22. D	23. A	24. C
25. C	26. A	27. A	28. A	29. C	30. A
31. D	32. A	33. C	34. C	35.B	36. A
37. C	38. B	39. A	40. D	41. D	42. D
43. A	44. A	45. B	46. C	47. A	48. C
49. B	50. A	51. D	52. C	53. C	54. C
55. D	56. B	57. C	58. A	59. A	60. D
61.B	62. B	63.B	64. B	65. A	66.A
67. B	68. C	69. D	70. A	71. A	72. C
73. C	74. B	75. C	76. A	77. A	78. A
79. C	80. D	81. A	82. D	83. C	84. A
85. C	86. A	87. C	88. A	89. D	90. C
91. A	92. A	93. D	94. A	95. A	96. A
97. C	98. D	99. C	100. B	101.B	102.B
103. D	104. C	105. C	106. B	107. C	108. D
109. A	110. D	111. A	112. D	113. B	114. D
115. A	116. D	117. D	118. C	119. C	120. B
121. C	122. A	123. D	124. D	125. C	126. C
127. A	128. A	129. C	130. D	131. A	132. A
133. D	134. C	135. D	136. D	137.B	138. C
139. C	140. B	141.B	142. B	143. D	144. D
145.C	146. D	147. D	148.B	149. D	150. A
151.C	152. D	153.B	154. D	155. C	156. D
157. A	158. D	159. D	160. D	161.C	162. C
163. C	164. A	165. D	166. C	167. C	168. D
169. A	170. B	171.C	172. B	173. D	174. B
175. D	176.B	177. D	178.B	179. A	180. A
181. D	182. D	183.B	184. A	185.B	186. C
187. D	188. C	189. D	190. C	191.C	192. B
193. C	194. D	195. D	196. C	197. B	198. B
199. B	200. C	201.C	202. D	203. A	204. C
205. A	206. C	207. D	208. D	209. B	210. C
211.C	212. A	213. C	214. D	215. A	216. D
217. D	218.C	219. D	220. D	221. A	222. D
223. B	224. D	225. D	226. C	227. A	228. A
229. B	230. C	231.B	232. A	233. D	234. D
235.B	236. C	237. B	238. D	239. C	240. B
241.B	242. B	243. C	244. C	245. A	246. C

247. D	248. A	249. B	250. C	251. D	252. C
253.B	254. D	255. C	256. B	257. C	258. C
259. A	260. B	261. D	262. D	263.B	264. A
265. C	266. D	267. B	268. A	269. B	270. B
271. A	272. D	273. A	274. D	275. C	276. D
277. A	278. C	279. A	280. D	281. D	282. B
283.B	284. A	285. D	286. B	287. B	288. A
289. B	290. B	291. A	292. B	293. A	294. A
295.B	296. C	297. B	298. A	299. C	300. C
301. A	302. B	303.B	304. A	305. D	306. D
307. C	308. C	309. C	310. B	311. C	312. A
313. D	314. D	315. A	316. A	317. D	318. D
319. B	320. D	321.C	322. C	323. C	324. B
325. A	326. C	327. C	328. B	329. D	330. C
331.B	332. A	333. B	334. B	335. A	336. D
337. D	338.B	339. A	340. D	341. D	342. B
343. A	344. B	345.B	346. A	347. D	348. A
349. D	350. C	351. D	352. A	353. A	354.B
355. D	356. B	357. C	358. A	359. D	360. B
361.B	362. A	363.B	364. B	365. A	366. B
367. A	368. A	369. B	370. C	371.B	372. A
373.C	374. C	375. A	376. B	377. B	378.B
379. A	380. C	381.C	382. D	383. C	384. C
385. A	386. D	387. D	388. A	389. A	390. D
391. D	392. B	393. D	394. A	395. C	396. B
397. A	398. D	399. A	400. C	401.B	402. C
403.B	404. B	405. A	406. B	407. D	408. D
409. C	410. A	411.B	412. C	413.B	414. A
415.C	416. D	417. A	418. C	419. D	420. D
421. A	422. D	423. D	424. D	425. C	426. B
427. C	428. A	429. A	430. C	431.C	

#### EXPLANATIONS FOR THE ANSWERS

- 7. D The four fat soluble vitamins (A, D, E, K) are soluble in fats, oils and fat solvents (alcohol, acetone etc.). Their occurrence in the diet, absorption and transport are associated with fat. All the fat soluble vitamins contain one or more of isoprene units (5 carbon units). They can be stored in liver and adipose tissue.
- 40. D Vitamin A is essential to maintain healthy epithelial tissues and proper immunity. Retinol and retinoic acid functions like steroid hormones. They regulate protein synthesis and thus are involved in cell growth and differentiation. β-Carotene functions as an antioxidant and reduces the risk for heart attack, cancers etc.
- 77. A The recommended dietary allowances for vitamin D is around 400 I.U. In countries with good sunlight (like India), it is much lower. *i.e.*, 200 I.U. The good sources include fatty fish, fish liver oils, egg yolk.
- 110. D The earliest symptoms of thiamin deficiency include constipation, appetite suppression, nausea as well as mental depression, peripheral neuropathy and fatigue. Chronic thiamin deficiency leads to more severe neurological symptoms including ataxia, mental confusion and loss of eye coordination. Other clinical symptoms of prolonged thiamin deficiency are related to cardiovascular and muscular defects. The severe thiamin deficiency disease is known as Beriberi.
- 149. D Riboflavin deficiency is often seen in chronic alcoholics due to their poor diabetic habits. Symptoms associated with riboflavin deficiency include, glossitis, seborrhea, angular stomatitis, cheilosis and photophobia. Riboflavin decomposes when exposed to visible light.
- 187. D Pyridoxal, pyridoxamine and pyridoxine are collectively known as vitamin B₆. All three compounds are efficiently converted to the biologically active form of vitamin B₆, pyridoxal phosphate. This conversion is catalyzed by the ATP requiring enzyme, pyridoxal kinase.
- 217. D Isoniazid (anti-tuberculosis drug) and penicillamine (used to treat rheumatoid arthritis and cystinurias) are two drugs that complex with pyridoxal and pyridoxal phosphate resulting in a deficiency in this vitamin.

- 250. C The liver can store up to six years worth of vitamin  $B_{12}$ , hence deficiencies in this vitamin are rare. Penicious anemia is a megaloblastic anemia resulting from vitamin  $B_{12}$  deficiency that develops as a result a lack of intrinsic factor in the stomach leading to malabsorption of the vitamin.
- 291. A Biotin is also called anti-egg white injury factor because, egg white contains a protein called avidin, which combines with biotin in the intestinal tract and prevents absorption of biotin from intestines.
- 321. B Deficiency in Vitamin C leads to the disease scurvy due to the role of the vitamin in the posttranslational modification of collagens. Scurvy is characterized by easily bruised skin, muscle fatigue, soft swollen gums, decreased wound healing and hemorraging, osteoporosis and anemia.
- 357. C Vitamin D is a steroid prohormone. It is represented by steroids that occur in animals, plants and yeast. Active form of the hormone is 1, 25-dihydroxy vitamin D₃ (1, 25-(OH)₂D₃, also termed calcitriol). Calcitriol functions primarily to regulate calcium and phosphorous homeostasis.
- 398. D The main symptom of vitamin D deficiency in children is rickets and in adults is osteomalacia. Rickets is characterized by improper mineralization during the development of the bones resulting in soft bones. Osteomalacia is characterized by demineralization of previously formed bone leading to increased softness and susceptibility to fracture.

# This page intentionally left blank