Chapter A

Capacitance and
Inductance

This chapter is optional.

The long road leading from the light bulb to the computer started
with one very important step: the introduction of feedback into elec-
tronic circuits. Although the principle of feedback has been under-
stood and and applied to mechanical systems for centuries, and to
electrical ones since the early twentieth century, for most of us the
word evokes an image of Jimi Hendrix (or some more recent guitar
hero) intentionally creating earsplitting screeches, or of the school
principal doing the same inadvertently in the auditorium. In the
cguitar example, the musician stands in front of the amp and turns
it up so high that the sound waves coming from the speaker come
back to the guitar string and make it shake harder. This is an exam-
ple of positive feedback: the harder the string vibrates, the stronger
the sound waves, and the stronger the sound waves, the harder the
string vibrates. The only limit is the power-handling ability of the
amplifier.

Negative feedback is equally important. Your thermostat, for
example, provides negative feedback by kicking the heater off when
the house gets warm enough, and by firing it up again when it
gets too cold. This causes the house’s temperature to oscillate back
and forth within a certain range. Just as out-of-control exponential
freak-outs are a characteristic behavior of positive-feedback systems,
oscillation is typical in cases of negative feedback. You have already
studied negative feedback extensively in Vibrations and Waves in
the case of a mechanical system, although we didn’t call it that.

A.1 Capacitance and inductance

In a mechanical oscillation, energy is exchanged repetitively between
potential and kinetic forms, and may also be siphoned off in the
form of heat dissipated by friction. In an electrical circuit, resistors
are the circuit elements that dissipate heat. What are the electrical
analogs of storing and releasing the potential and kinetic energy of a
vibrating object?” When you think of energy storage in an electrical
circuit, you are likely to imagine a battery, but even rechargeable
batteries can only go through 10 or 100 cycles before they wear out.
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In addition, batteries are not able to exchange energy on a short
enough time scale for most applications. The circuit in a musical
synthesizer may be called upon to oscillate thousands of times a
second, and your microwave oven operates at gigahertz frequencies.
Instead of batteries, we generally use capacitors and inductors to
store energy in oscillating circuits. Capacitors, which you've already
encountered, store energy in electric fields. An inductor does the
same with magnetic fields.

Capacitors
A capacitor’s energy exists in its surrounding electric fields. It is
AI |7 proportional to the square of the field strength, which is proportional
to the charges on the plates. If we assume the plates carry charges
a/The symbol for a capaci- that are the same in magnitude, +q and —¢q, then the energy stored

tor. in the capacitor must be proportional to ¢*. For historical reasons,

we write the constant of proportionality as 1/2C,

|
Ec = —¢°
_ “"he
(] ? 2 The constant (' is a geometrical property of the capacitor, called its

capaclitance.

Based on this definition, the units of capacitance must be coulombs
b / Some capacitors. squared per joule, and this combination is more conveniently abbre-
viated as the farad, 1 F = 1 C?/J. “Condenser” is a less formal
term for a capacitor. Note that the labels printed on capacitors
often use MF to mean puF, even though MF should really be the
symbol for megafarads, not microfarads. Confusion doesn’t result
from this nonstandard notation, since picofarad and microfarad val-
ues are the most common, and it wasn’t until the 1990’s that even
millifarad and farad values became available in practical physical
sizes. Figure a show the symbol used in schematics to represent a
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c/Two common geometries capacitor.
for inductors. The cylindrical
shape on the left is called a Inductors
solenoid. Any current will create a magnetic field, so in fact every current-
carrying wire in a circuit acts as an inductor! However, this type
_{Cm)_ of “stray”’ inductance is typically negligible, just as we can usually
ignore the stray resistance of our wires and only take into account
d/The symbol for an induc- the actual resistors. To store any appreciable amount of magnetic
tor. energy, one usually uses a coil of wire designed specifically to be

an inductor. All the loops’ contribution to the magnetic field add
together to make a stronger field. Unlike capacitors and resistors,

:jj practical inductors are easy to make by hand. One can for instance
-Ef.__ spool some wire around a short wooden dowel, put the spool inside

E a plastic aspirin bottle with the leads hanging out, and fill the bottle

| _____;?_mg with epoxy to make the whole thing rugged. An inductor like this,

in the form cylindrical coil of wire, is called a solenoid, ¢, and a
stylized solenoid, d, is the symbol used to represent an inductor in

€ / Some inductors. a circuit regardless of its actual geometry.
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How much energy does an inductor store? The energy density is
proportional to the square of the magnetic field strength, which is
in turn proportional to the current flowing through the coiled wire,
so the energy stored in the inductor must be proportional to 2. We
write L /2 for the constant of proportionality, giving

L

EL = 512

As in the definition of capacitance, we have a factor of 1/2,
which is purely a matter of definition. The quantity L is called the
inductance of the inductor, and we see that its units must be joules
per ampere squared. This clumsy combination of units is more
commonly abbreviated as the henry, 1 henry = 1 J/A% Rather
than memorizing this definition, it makes more sense to derive it
when needed from the definition of inductance. Many people know
inductors simply as “coils,” or “chokes,” and will not understand
you 1if you refer to an “inductor,” but they will still refer to L as the
“inductance,” not the “coilance” or “chokeance!” Femmmmmmmemmme——e— e

‘Identical inductances in series example 1
If two inductors are placed in series, any current that passes through —O00D— Q0D

the combined double inductor must pass through both its parts. Thus

by the definition of inductance, the inductance is doubled as well. In L=3+l5
general, inductances in series add, just like resistances. The same kind _ |
of reasoning also shows that the inductance of a solenoid is approxi- f/Inductances in series add.

mately proportional to its length, assuming the number of turns per unit
length is kept constant.

Identical capacitances in parallel example 2 @z cicoeclivoeew

When two identical capacitances are placed in parallel, any charge de- : _rlﬁ_ :

posited at the terminals of the combined double capacitor will divide C1 T == CZ: C=C1+Co
itself evenly between the two parts. The electric fields surrounding o [

each capacitor will be half the intensity, and therefore store one quarter

the energy. Two capacitors, each storing one quarter the energy, give g/ Capacitances in  parallel
half the total energy storage. Since capacitance is inversely related to add.

energy storage, this implies that identical capacitances in parallel give

double the capacitance. In general, capacitances in parallel add. This

IS unlike the behavior of inductors and resistors, for which series config-

urations give addition.

This is consistent with the fact that the capacitance of a single parallel-
plate capacitor proportional to the area of the plates. If we have two
parallel-plate capacitors, and we combine them in parallel and bring
them very close together side by side, we have produced a single ca-
pacitor with plates of double the area, and it has approximately double
the capacitance.

Inductances in parallel and capacitances in series are explored (1)
in homework problems 4 and 6.

AN

A variable capacitor example 3 (2)
Figure h/1 shows the construction of a variable capacitor out of two par-
allel semicircles of metal. One plate is fixed, while the other can be ro-

h/ A variable capacitor.
tated about their common axis with a knob. The opposite charges on the P
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j/ A series LRC circuit.

kK/A mechanical analogy for
the LRC circuit.

two plates are attracted to one another, and therefore tend to gather in
the overlapping area. This overlapping area, then, is the only area that
effectively contributes to the capacitance, and turning the knob changes
the capacitance. The simple design can only provide very small capaci-
tance values, so in practice one usually uses a bank of capacitors, wired
in parallel, with all the moving parts on the same shatft.

Discussion Questions

A  Suppose that two parallel-plate capacitors are wired in parallel, and
are placed very close together, side by side, so that their fields overlap.
Will the resulting capacitance be too small, or too big? Could you twist
the circuit into a different shape and make the effect be the other way
around, or make the effect vanish? How about the case of two inductors
in series?

B Most practical capacitors do not have an air gap or vacuum gap
between the plates; instead, they have an insulating substance called a
dielectric. We can think of the molecules in this substance as dipoles that
are free to rotate (at least a little), but that are not free to move around,
since it is a solid. The figure shows a highly stylized and unrealistic way
of visualizing this. We imagine that all the dipoles are intially turned side-
ways, (1), and that as the capacitor is charged, they all respond by turning
through a certain angle, (2). (In reality, the scene might be much more
random, and the alignment effect much weaker.)

For simplicity, imagine inserting just one electric dipole into the vacuum
gap. For a given amount of charge on the plates, how does this affect
the amount of energy stored in the electric field? How does this affect the
capacitance?

Now redo the analysis in terms of the mechanical work needed in order
to charge up the plates.

A.2 QOscillations

Figure j shows the simplest possible oscillating circuit. For any use-
ful application it would actually need to include more components.
For example, if it was a radio tuner, it would need to be connected to
an antenna and an amplifier. Nevertheless, all the essential physics
is there.

We can analyze it without any sweat or tears whatsoever, sim-
ply by constructing an analogy with a mechanical system. In a
mechanical oscillator, k, we have two forms of stored energy,

1. .
Eﬁpring = 5;”32 (1)
1
K = imﬂz (2)

In the case of a mechanical oscillator, we have usually assumed
a friction force of the form that turns out to give the nicest math-
ematical results, F' = —bv. In the circuit, the dissipation of energy
into heat occurs via the resistor, with no mechanical force involved,
so in order to make the analogy, we need to restate the role of the
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friction force in terms of energy. The power dissipated by friction

equals the mechanical work it does in a time interval At, divided by
At, P=W/At = FAz /At = Fv = —bv?, so

rate of heat dissipation = —bv? . (3)

self-check A

Equation (1) has x squared, and equations (2) and (3) have v squared.
Because they're squared, the results don’'t depend on whether these
variables are positive or negative. Does this make physical sense? o
Answer, p. 196

In the circuit, the stored forms of energy are
L5

Ec = — 1
050 (1)
1|
E; = ELﬂ , (2')
and the rate of heat dissipation in the resistor is
rate of heat dissipation = —RI? . (3"

Comparing the two sets of equations, we first form analogies between
quantities that represent the state of the system at some moment

In time:
x> q
v I
self-check B
How is v related mathematically to x? How is / connected to g7 Are the
two relationships analogous? > Answer, p. 196
Next we relate the ones that describe the system’s permanent
characteristics:
k—1/C
m < L
b R

Since the mechanical system naturally oscillates with a period
T = 2m\/m/k , we can immediately solve the electrical version by

analogy, giving
T'=2rx'LC

Rather than period, 7', and frequency, f. it turns out to be more
convenient if we work with the quantity w = 27 f, which can be
interpreted as the number of radians per second. Then

1
W= ——

vVLC
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Since the resistance R 1s analogous to b in the mechanical case,

we find that the @ (quality factor, not charge) of the resonance
is inversely proportional to R, and the width of the resonance is
directly proportional to R.

' Tuning a radio receiver example 4
A radio receiver uses this kind of circuit to pick out the desired station.
Since the receiver resonates at a particular frequency, stations whose
frequencies are far off will not excite any response in the circuit. The
value of A has to be small enough so that only one station at a time
IS picked up, but big enough so that the tuner isn't too touchy. The
resonant frequency can be tuned by adjusting either L or C, but variable
capacitors are easier to build than variable inductors.

' A numerical calculation example 5
The phone company sends more than one conversation at a time over
the same wire, which is accomplished by shifting each voice signal into
different range of frequencies during transmission. The number of sig-
nals per wire can be maximized by making each range of frequencies
(known as a bandwidth) as small as possible. It turns out that only a
relatively narrow range of frequencies is necessary in order to make a
human voice intelligible, so the phone company filters out all the ex-
treme highs and lows. (This is why your phone voice sounds different
from your normal voice.)

> If the filter consists of an LRC circuit with a broad resonance centered
around 1.0 kHz, and the capacitor is 1 uF (microfarad), what inductance
value must be used?

> Solving for L, we have

1

- Cw?

1
(10—6 F)(27t x 103 s—1)?
—25x 103 F 'g?

Checking that these really are the same units as henries is a little te-
dious, but it builds character:

The result is 25 mH (millihenries).

This is actually quite a large inductance value, and would require a big,
heavy, expensive coil. In fact, there is a trick for making this kind of
circuit small and cheap. There is a kind of silicon chip called an op-
amp, which, among other things, can be used to simulate the behavior
of an inductor. The main limitation of the op-amp is that it is restricted
to low-power applications.
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A.3 Voltage and Current

What i1s physically happening in one of these oscillating circuits?
Let’s first look at the mechanical case, and then draw the analogy
to the circuit. For simplicity, let’s ignore the existence of damping,
so there is no friction in the mechanical oscillator, and no resistance
in the electrical one.

Suppose we take the mechanical oscillator and pull the mass
away from equilibrium, then release it. Since friction tends to resist
the spring’s force, we might naively expect that having zero friction
would allow the mass to leap instantaneously to the equilibrium
position. This can’t happen, however, because the mass would have
to have infinite velocity in order to make such an instantaneous leap.
Infinite velocity would require infinite kinetic energy, but the only
kind of energy that is available for conversion to kinetic is the energy
stored in the spring, and that is finite, not infinite. At each step on
its way back to equilibrium, the mass’s velocity is controlled exactly
by the amount of the spring’s energy that has so far been converted
into kinetic energy. After the mass reaches equilibrium, it overshoots
due to its own momentum. It performs identical oscillations on both
sides of equilibrium, and it never loses amplitude because friction is
not available to convert mechanical energy into heat.

Now with the electrical oscillator, the analog of position is charge.
Pulling the mass away from equilibrium is like depositing charges
+q and —qg on the plates of the capacitor. Since resistance tends
to resist the flow of charge, we might imagine that with no fric-
tion present, the charge would instantly flow through the inductor
(which is, after all, just a piece of wire), and the capacitor would
discharge instantly. However, such an instant discharge is impossi-
ble, because it would require infinite current for one instant. Infinite
current would create infinite magnetic fields surrounding the induc-
tor, and these fields would have infinite energy. Instead, the rate
of How of current is controlled at each instant by the relationship
between the amount of energy stored in the magnetic field and the
amount of current that must exist in order to have that strong a
field. After the capacitor reaches ¢ = 0, it overshoots. The circuit
has 1ts own kind of electrical “inertia,” because if charge was to stop
Howing, there would have to be zero current through the inductor.
But the current in the inductor must be related to the amount of
energy stored in its magnetic fields. When the capacitor 1s at ¢ = 0.
all the circuit’s energy is in the inductor, so it must therefore have
strong magnetic fields surrounding it and quite a bit of current going
through it.

The only thing that might seem spooky here is that we used to
speak as if the current in the inductor caused the magnetic field,
but now it sounds as if the field causes the current. Actually this is
symptomatic of the elusive nature of cause and effect in physics. It’s
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|, The inductor releases en-
ergy and gives it to the black box.

equally valid to think of the cause and effect relationship in either
way. This may seem unsatistying, however, and for example does not
really get at the question of what brings about a voltage difference
across the resistor (in the case where the resistance is finite); there
must be such a voltage difference, because without one, Ohm'’s law
would predict zero current through the resistor.

Voltage, then, is what is really missing from our story so far.

Let’s start by studying the voltage across a capacitor. Voltage is
electrical potential energy per unit charge, so the voltage difference
between the two plates of the capacitor is related to the amount by
which its energy would increase if we increased the absolute values
of the charges on the plates from ¢ to g + Agq:

Ve = (Equ.&q - Eq)/ﬁ\q
B AFE¢
— Aq

A1,
~ Ag \ 20"
q

C

Many books use this as the definition of capacitance. This equation,
by the way, probably explains the historical reason why C' was de-
fined so that the energy was inversely proportional to C for a given
value of C': the people who invented the definition were thinking of a
capacitor as a device for storing charge rather than energy, and the
amount of charge stored for a fixed voltage (the charge “capacity”)
is proportional to C.

In the case of an inductor, we know that if there is a steady, con-
stant current flowing through it, then the magnetic field is constant,
and so is the amount of energy stored; no energy is being exchanged
between the inductor and any other circuit element. But what if
the current is changing” The magnetic field is proportional to the
current, so a change in one implies a change in the other. For con-
creteness, let’s imagine that the magnetic field and the current are
both decreasing. The energy stored in the magnetic field is there-
fore decreasing, and by conservation of energy, this energy can’t just
co away — some other circuit element must be taking energy from
the inductor. The simplest example, shown in figure 1, is a series
circuit consisting of the inductor plus one other circuit element. It
doesn’t matter what this other circuit element is, so we just call it a
black box, but if you like, we can think of it as a resistor, in which
case the energy lost by the inductor is being turned into heat by
the resistor. The junction rule tells us that both circuit elements
have the same current through them, so I could refer to either one,
and likewise the loop rule tells us Vinductor + Viiack box = 0, so the
two voltage drops have the same absolute value, which we can refer
to as V. Whatever the black box is, the rate at which it is taking
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energy from the inductor is given by |P| = |V, so
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which in many books is taken to be the definition of inductance.
The direction of the voltage drop (plus or minus sign) is such that
the inductor resists the change in current.

There’s one very intriguing thing about this result. Suppose,
for concreteness, that the black box in figure | is a resistor, and
that the inductor’s energy is decreasing, and being converted into
heat in the resistor. The voltage drop across the resistor indicates
that i1t has an electric field across it, which is driving the current.
But where is this electric field coming from? There are no charges
anywhere that could be creating it! What we’ve discovered is one
special case of a more general principle, the principle of induction: a
changing magnetic field creates an electric field, which is in addition
to any electric field created by charges. (The reverse is also true:
any electric field that changes over time creates a magnetic field.)
Induction forms the basis for such technologies as the generator and
the transformer, and ultimately it leads to the existence of light,
which is a wave pattern in the electric and magnetic fields. These
are all topics for chapter 6, but it’s truly remarkable that we could
come to this conclusion without yet having learned any details about
magnetism.

The cartoons in figure m compares electric fields made by charges,
1, to electric fields made by changing magnetic fields, 2-3. In m/1,
two physicists are in a room whose ceiling is positively charged and
whose floor is negatively charged. The physicist on the bottom
throws a positively charged bowling ball into the curved pipe. The
physicist at the top uses a radar gun to measure the speed of the
ball as it comes out of the pipe. They find that the ball has slowed
down by the time it gets to the top. By measuring the change in the
ball’s kinetic energy, the two physicists are acting just like a volt-
meter. They conclude that the top of the tube is at a higher voltage
than the bottom of the pipe. A difference in voltage indicates an
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m / Electric fields made by charges, 1, and by changing magnetic fields, 2 and 3.

electric field, and this field is clearly being caused by the charges in
the floor and ceiling.

In m/2, there are no charges anywhere in the room except for
the charged bowling ball. Moving charges make magnetic fields, so
there is a magnetic field surrounding the helical pipe while the ball
is moving through it. A magnetic field has been created where there
was none before, and that field has energy. Where could the energy
have come from? It can only have come from the ball itself, so
the ball must be losing kinetic energy. The two physicists working
together are again acting as a voltmeter, and again they conclude
that there i1s a voltage difference between the top and bottom of
the pipe. This indicates an electric field, but this electric field can’t
have been created by any charges, because there aren’t any in the
room. This electric field was created by the change in the magnetic

field.

The bottom physicist keeps on throwing balls into the pipe, until
the pipe is full of balls, m/3, and finally a steady current is estab-
lished. While the pipe was filling up with balls, the energy in the
magnetic field was steadily increasing, and that energy was being
stolen from the balls’ kinetic energy. But once a steady current is
established, the energy in the magnetic field is no longer changing.
The balls no longer have to give up energy in order to build up the
field, and the physicist at the top finds that the balls are exiting the
pipe at full speed again. There is no voltage difference any more.
Although there is a current, Al /At is zero.

Discussion Questions

A  What happens when the physicist at the bottom in figure m/3 starts
getting tired, and decreases the current?
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A.4 Decay

Up until now I've soft-pedaled the fact that by changing the char-
acteristics of an oscillator, it is possible to produce non-oscillatory
behavior. For example, imagine taking the mass-on-a-spring system
and making the spring weaker and weaker. In the limit of small
k, it’s as though there was no spring whatsoever, and the behavior
of the system 1s that if you kick the mass, it simply starts slowing
down. For friction proportional to v, as we've been assuming, the re-
sult is that the velocity approaches zero, but never actually reaches
zero. This i1s unrealistic for the mechanical oscillator, which will not
have vanishing friction at low velocities, but it is quite realistic in
the case of an electrical circuit, for which the voltage drop across the
resistor really does approach zero as the current approaches zero.

Electrical circuits can exhibit all the same behavior. For sim-
plicity we will analyze only the cases of LRC circuits with L = 0 or

C = 0.
The RC circuit

We first analyze the RC circuit, n. In reality one would have
to “kick” the circuit, for example by briefly inserting a battery, in
order to get any interesting behavior. We start with Ohm’s law and
the equation for the voltage across a capacitor:

VrR=IR
Ve =q/C
The loop rule tells us
Ver+ Ve =0

and combining the three equations results in a relationship between

q and I:
1

RC

The negative sign tells us that the current tends to reduce the charge
on the capacitor, i.e. to discharge it. It makes sense that the current
1s proportional to g: if g is large, then the attractive forces between
the +¢g and —q charges on the plates of the capacitor are large,
and charges will low more quickly through the resistor in order to
reunite. If there was zero charge on the capacitor plates, there would
be no reason for current to flow. Since amperes, the unit of current,
are the same as coulombs per second, it appears that the quantity
RC must have units of seconds, and you can check for yourself that
this is correct. RC' is therefore referred to as the time constant of
the circuit.

=

How exactly do I and q vary with time? Rewriting I as Aq/At,
we have

Ag 1
At RCY
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0 1
t/RC

o/Over a time interval RC,
the charge on the capacitor iIs
reduced by a factor of e.

{W"—(m-

p/ An RL circuit.

This equation describes a function ¢(t) that always gets smaller over
time, and whose rate of decrease is big at first, when ¢ is big, but
cgets smaller and smaller as ¢ approaches zero. As an example of
this type of mathematical behavior, we could imagine a man who
has 1024 weeds in his backyard, and resolves to pull out half of
them every day. On the first day, he pulls out half, and has 512
lett. The next day, he pulls out half of the remaining ones, leaving
256. The sequence continues exponentially: 128, 64, 32, 16, 8, 4, 2,
1. Returning to our electrical example, the function ¢(t) apparently
needs to be an exponential, which we can write in the form ae’,
where e = 2.718... is the base of natural logarithms. We could have
written it with base 2. as in the story of the weeds, rather than
base e, but the math later on turns out simpler if we use e. It
doesn’t make sense to plug a number that has units into a function
like an exponential, so bf must be unitless, and b must therefore
have units of inverse seconds. The number b quantifies how fast the
exponential decay is. The only physical parameters of the circuit
on which b could possibly depend are R and C', and the only way
to put units of ohms and farads together to make units of inverse
seconds is by computing 1/RC. Well, actually we could use 7/RC
or 3m/RC, or any other unitless number divided by RC', but this
is where the use of base e comes in handy: for base e, it turns out
that the correct unitless constant 2s 1. Thus our solution is

t
d = (o €XP (—%)

The number RC, with units of seconds, is called the RC time con-
stant of the circuit, and it tells us how long we have to wait if we
want the charge to fall off by a factor of 1/e.

The RL circuit

The RL circuit, p, can be attacked by similar methods, and it
can easily be shown that it gives

R
[ = I,exp (—Et)

The RL time constant equals L/R.

'Death by solenoid; spark plugs example 6
When we suddenly break an RL circuit, what will happen? It might
seem that we're faced with a paradox, since we only have two forms of
energy, magnetic energy and heat, and if the current stops suddenly,
the magnetic field must collapse suddenly. But where does the lost
magnetic energy go? It can’'t go into resistive heating of the resistor,
because the circuit has now been broken, and current can't flow!

The way out of this conundrum is to recognize that the open gap In
the circuit has a resistance which is large, but not infinite. This large
resistance causes the RL time constant L/R to be very small. The
current thus continues to flow for a very brief time, and flows straight
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across the air gap where the circuit has been opened. In other words,
there is a spark!

We can determine based on several different lines of reasoning that
the voltage drop from one end of the spark to the other must be very
large. First, the air’s resistance is large, so V = IR requires a large
voltage. We can also reason that all the energy in the magnetic field is
being dissipated in a short time, so the power dissipated in the spark,
P = 1V, is large, and this requires a large value of V. (/isn't large — it
IS decreasing from its initial value.) Yet a third way to reach the same
result is to consider the equation V; = Al/At: since the time constant is
short, the time derivative Al/At is large.

This is exactly how a car’'s spark plugs work. Another application is
to electrical safety: it can be dangerous to break an inductive circuit
suddenly, because so much energy is released in a short time. There
Is also no guarantee that the spark will discharge across the air gap; it
might go through your body instead, since your body might have a lower
resistance.

Discussion Questions

A A gopher gnaws through one of the wires in the DC lighting system
in your front yard, and the lights turn off. At the instant when the circuit
becomes open, we can consider the bare ends of the wire to be like the
plates of a capacitor, with an air gap (or gopher gap) between them. What
kind of capacitance value are we talking about here? What would this tell
you about the RC time constant?

A.5 Impedance

So far we have been thinking in terms of the free oscillations of a
circuit. This is like a mechanical oscillator that has been kicked but
then left to oscillate on its own without any external force to keep
the vibrations from dying out. Suppose an LRC circuit is driven
with a sinusoidally varying voltage, such as will occur when a radio
tuner 1s hooked up to a receiving antenna. We know that a current
will flow in the circuit, and we know that there will be resonant
behavior, but it is not necessarily simple to relate current to voltage
in the most general case. Let’s start instead with the special cases
of LRC circuits consisting of only a resistance, only a capacitance,
or only an inductance. We are interested only in the steady-state

vy
response. )d/\\/t\\/\\/ t

The purely resistive case is easy. Ohm’s law gives

NA NS

In the purely capacitive case, the relation V' = q/C lets us cal- \/ \/ \/ \_/
culate

Aq
I = A7 g/In a capacitor, the current
AV Is 90° ahead of the voltage in
=C A7 . phase.
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If the voltage varies as, for example, V(t) = V sin(wt), then the
current will be I(t) = wCV cos(wt), so the maximum current is
I = wCV. By analogy with Ohm’s law, we can then write

Fa .
Zc

where the quantity

Zo = L impedance of a capacitor]
wC

having units of ohms, is called the impedance of the capacitor at
this frequency. Note that it is only the mazimum current, I, that
is proportional to the mazimum voltage, V, so the capacitor is not
behaving like a resistor. The maxima of V and I occur at differ-
ent times, as shown in figure q. It makes sense that the impedance
becomes infinite at zero frequency. Zero frequency means that it
would take an infinite time before the voltage would change by any
amount. In other words, this is like a situation where the capaci-
tor has been connected across the terminals of a battery and been
allowed to settle down to a state where there is constant charge
on both terminals. Since the electric fields between the plates are
constant, there is no energy being added to or taken out of the
field. A capacitor that can’t exchange energy with any other circuit

component is nothing more than a broken (open) circuit.

self-check C
Why can’t a capacitor have its impedance printed on it along with its
v capacitance? > Answer, p. 196

W Similar math gives
t

Zr, =wL limpedance of an inductor|

at lower frequencies, since at zero frequency there is no change in

t the magnetic field over time. No energy is added to or released
\/ \/ \/ \/ from the magnetic field, so there are no induction effects, and the
inductor acts just like a piece of wire with negligible resistance. The

r/ The current through an in- term “choke” for an inductor refers to its ability to “choke out” high
ductor lags behind the voltage by frequencies.

a phase angle of 90 °.

I
/\ /\ /\ / for an inductor. It makes sense that the inductor has lower impedance

The phase relationships shown in figures q and r can be remem-
bered using my own mnemonic, “eVIL,” which shows that the volt-
age (V) leads the current (I) in an inductive circuit, while the op-
posite is true in a capacitive one. A more traditional mnemonic is
“ELI the ICE man,” which uses the notation E for emif, a concept
closely related to voltage.

'Low-pass and high-pass filters example 7
An LRC circuit only responds to a certain range (band) of frequencies
centered around its resonant frequency. As a filter, this is known as a
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bandpass filter. If you turn down both the bass and the treble on your
stereo, you have created a bandpass filter.

To create a high-pass or low-pass filter, we only need to insert a capac-
itor or inductor, respectively, in series. For instance, a very basic surge
protector for a computer could be constructed by inserting an inductor
In series with the computer. The desired 60 Hz power from the wall
Is relatively low in frequency, while the surges that can damage your
computer show much more rapid time variation. Even if the surges are
not sinusoidal signals, we can think of a rapid “spike” qualitatively as
If it was very high in frequency — like a high-frequency sine wave, it
changes very rapidly.

Inductors tend to be big, heavy, expensive circuit elements, so a simple
surge protector would be more likely to consist of a capacitor in parallel
with the computer. (In fact one would normally just connect one side of
the power circuit to ground via a capacitor.) The capacitor has a very
high impedance at the low frequency of the desired 60 Hz signal, so it
siphons off very little of the current. But for a high-frequency signal, the
capacitor's impedance is very small, and it acts like a zero-impedance,
easy path into which the current is diverted.

The main things to be careful about with impedance are that
(1) the concept only applies to a circuit that is being driven sinu-
soidally, (2) the impedance of an inductor or capacitor is frequency-
dependent, and (3) impedances in parallel and series don’t combine
according to the same rules as resistances. It is possible, however,
to get get around the third limitation, as discussed in subsection .

Discussion Question

A Figure g on page 179 shows the voltage and current for a capacitor.
Sketch the g-t graph, and use it to give a physical explanation of the
phase relationship between the voltage and current. For example, why is
the current zero when the voltage is at a maximum or minimum?

B Relate the features of the graph in figure r on page 180 to the story
told in cartoons in figure m/2-3 on page 176.

You can download this book for free, or buy a printed copy, at lightandmatter.com. It's available under the Creative
Commons Attribution-ShareAlike license, creativecommons.org/licenses/by-sa/l1.0. (c) 1998-2005 Benjamin Crowell.

Section A.5 Impedance 181



Problems
Key

V' A computerized answer check is available online.
[ A problem that requires calculus.

x A difficult problem.

1 If an FM radio tuner consisting of an LRC circuit contains
a 1.0 pH inductor, what range of capacitances should the variable
capacitor be able to provide? Vv

2 (a) Show that the equation Vi, = L AI/At has the right units.
(b) Verify that RC' has units of time.
(c) Verify that L/R has units of time.

3 Find the energy stored in a capacitor in terms of its capacitance
and the voltage difference across it. v

4  Find the inductance of two identical inductors in parallel.

5 The wires themselves in a circuit can have resistance, induc-
tance, and capacitance. Would “stray” inductance and capacitance
be most important for low-frequency or for high-frequency circuits?
For simplicity, assume that the wires act like they're in series with
an inductor or capacitor.

6 (a) Find the capacitance of two identical capacitors in series.
(b) Based on this, how would you expect the capacitance of a
parallel-plate capacitor to depend on the distance between the plates?

7  Find the capacitance of the surface of the earth, assuming there
is an outer spherical “plate” at infinity. (In reality, this outer plate
would just represent some distant part of the universe to which we
carried away some of the earth’s charge in order to charge up the

earth.) v

8  Starting from the relation V = LAI/At for the voltage differ-
ence across an inductor, show that an inductor has an impedance
equal to Lw.

You can download this book for free, or buy a printed copy, at lightandmatter.com. It's available under the Creative
Commons Attribution-ShareAlike license, creativecommons.org/licenses/by-sa/l1.0. (c) 1998-2005 Benjamin Crowell.

182 Chapter A Capacitance and Inductance



