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5.1 Introduction

Sometimes machine parts are subjected to pure
torsion or bending or combination of both torsion and
bending stresses. We shall now discuss these stresses in
detail in the following pages.

5.2 Torsional Shear Stress

When a machine member is subjected to the action
of two equal and opposite couplesacting in parallel planes
(or torque or twisting moment), then the machine member
issaid to be subjected totorsion. The stressset up by torsion
isknown astorsional shear stress. It iszero at the centroidal
axis and maximum at the outer surface.

Consider ashaft fixed at one end and subjected to a
torque (T) at the other end asshowninFig. 5.1. Asaresult
of thistorque, every cross-section of the shaft is subjected
to torsional shear stress. We have discussed above that the
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Torsional and Bending Stresses in Machine Parts ® 121

torsional shear stress is zero at the centroidal axis and maximum at the outer surface. The
maximum torsional shear stressat the outer surface of the shaft may be obtained from the following
equation:

% _ % _ ? 0,
where T = Torsional shear stressinduced at the outer surface of the shaft or maximum
shear stress,

r = Radius of the shaft,
T = Torque or twisting moment,
J = Second moment of area of the section about its polar axis or polar moment of
inertia,
C = Modulus of rigidity for the shaft material,
| = Length of the shaft, and
0 = Angleof twistinradianson alength .

Y

A
Y

Fig. 5.1. Torsional shear stress.

The equation (i) is known astorsion equation. It is based on the following assumptions:

1. Thematerial of the shaft is uniform throughout.

2. Thetwist along the length of the shaft isuniform.

3. Thenormal cross-sections of the shaft, which were plane and circular before twist, remain
plane and circular after twist.

4. All diameters of the normal cross-section which were straight before twist, remain straight
with their magnitude unchanged, after twist.

5. The maximum shear stressinduced in the shaft due to the twisting moment does not exceed
itselastic limit value.

Notes: 1. Sincethetorsional shear stress on any cross-section normal to the axisis directly proportional to the
distance from the centre of the axis, therefore thetorsional shear stress at adistance x from the centre of the shaft
isgiven by

A

X

= |la

x
2. From equation (i), we know that
T

=X o T:rxi
J r r
For a solid shaft of diameter (d), the polar moment of inertia,
‘]:|XX+|Y\(:£Xd4+£Xd4=£Xd4
64 64 32
T = ixExdin 2= wrxd?
32 d 16
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In case of a hollow shaft with external diameter (d,) and internal diameter (d;), the polar moment of
inertia,

[
|

d
= o [[@)*~ (@) andr = 2

-
1]

T g 2T [ (dg) = (d)*
rxﬁt(do)—(du]xd—o—mx{ T ]

% X T (dg)? (1— k)

(Substituting, k=3 j
do
3. Theexpression (C x J) iscalled torsional rigidity of the shaft.

4. The strength of the shaft means the maximum torque transmitted by it. Therefore, in order to design a
shaft for strength, the above equations are used. The power transmitted by the shaft (in watts) is given by

27 N.T ( 27 N)
P = =T.0 o=
60 60
where T = Torque transmitted in N-m, and

o = Angular speed in rad/s.

Example 5.1. A shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the
shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear
stressas 70 MPa.

Solution. Given: P =100 kW = 100 x 103 W ; N=160r.p.m; Toax=125T i T=70MPa
=70 N/mm?

Let Trean = Mean torque transmitted by the shaft in N-m, and

d = Diameter of the shaft in mm.
We know that the power transmitted (P),

2N . Toean 271X 160 X Ty

100 x 10° = =16.76T, .,

60 60
T, = 100 x 10%16.76 = 5966.6 N-m

A Helicopter propeller shaft has fo bear torsional, tensile, as well as bending stresses.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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and maximum torque transmitted,
Toex = 1.25 % 5966.6 = 7458 N-m = 7458 x 10° N-mm
We know that maximum torque (T,,),

I
7458 x 108 = — xtxd3 :_6 x70xd3=13.75d3

T 16 1
d3 = 7458 x 103/13.75 =542.4 x 10° or d=81.5mm Ans.

Example 5.2. A steel shaft 35 mmin diameter and 1.2 m long held rigidly at one end has a
hand wheel 500 mmin diameter keyed to the other end. The modulus of rigidity of steel is 80 GPa.
1. What load applied to tangent to the rim of the wheel produce a torsional shear of 60 MPa?

2. How many degrees will the wheel turn when thisload is applied?
| =1.2 m= 1200 mm; D = 500 mm or

Solution. Given : d =35 mmorr = 17.5 mm;
R =250 mm ; C = 80 GPa= 80 kN/mm? = 80 x 103 N/mm?; t = 60 MPa= 60 N/mm?

1. Load applied to the tangent to the rim of the wheel
Let W =Load applied (in newton) to tangent to the rim of the wheel.

We know that torque applied to the hand wheel,
T = WR=Wx 250 = 250 W N-mm

and polar moment of inertia of the shaft,

T
J= 2 ><d4— - (35)4—14734>< 10% mm*
We know that % = %
250 W 60 3
W 9D, _ 60 x 147.34 x 10 — 2020 N Ans.
147.34x10° 175 17.5x 250

2. Number of degreeswhich the wheel will turn when load W = 2020 N is applied
0 = Required number of degrees.
We know that % = g
o = T _  250x2020x1200 _ 0.05° Ans.
C.J 80x10°x147.34x10°
Example 5.3. A shaft istransmitting 97.5 kW at 180 r.p.m. If the allowable shear stressin the
material is 60 MPa, find the suitable diameter for the shaft. The shaft is not to twist morethat 1° in

Let

a length of 3 metres. Take C = 80 GPa.
Solution. Given : P =97.5 kW = 97.5 x 103 W ; N = 180 r.p.m. ; T = 60 MPa = 60 N/mm?

0=1°=n/180=0.0174rad ;| =3 m=3000 mm ; C =80 GPa= 80 x 10° N/m?2 = 80 x 103 N/mm?
T = Torque transmitted by the shaft in N-m, and

Let
d = Diameter of the shaft in mm.

We know that the power transmitted by the shaft (P),

27 N.T 2rnx180xT
3 = = =
97.5x 10 60 &0 18.852T
T = 97.5 x 10%18.852 = 5172 N-m = 5172 x 10° N-mm

Now let usfind the diameter of the shaft based on the strength and stiffness.
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1. Considering strength of the shaft
We know that the torque transmitted (T),

5172 % 10° = — xTx = — x 60 x d® = 11.78 o
16 16 '
d® = 5172 x 10%11.78 =439 x 10° or d=76mm ()

2. Considering stiffness of the shaft
Polar moment of inertia of the shaft,

T
- — 4 — 4
=3 x d*=0.0982d
T C.8
We know that 3 = T
3 3 6
5172 x 10 _ 80 x10°x 0.0174 or 52.7>:10 — 0464
0.0982 d* 3000 d
d* = 527 x10%0.464 = 113.6 x 10° or d =103 mm ..(ii)

Taking larger of the two values, we shall provide d = 103 say 105 mm Ans.

Example5.4. A hollow shaft isrequired to transmit 600 kW at 110 r.p.m., the maximum torque
being 20% greater than the mean. The shear stressis not to exceed 63 MPa and twist in a length of
3 metres not to exceed 1.4 degrees. Find the external diameter of the shaft, if theinternal diameter to
the external diameter is 3/8. Take modulus of rigidity as 84 GPa.

Solution. Given : P = 600 kW = 600 x 103W; N=110rp.m.; T, =12T . ;1=63MPa
=63 N/mm?; | =3m=3000mm; 6=14xn/180=0.024rad; k=d/d, =3/8;C=284GPa
=84 x 10° N/m? = 84 x 10° N/mm?

Let T ean = Mean torque transmitted by the shaft,
External diameter of the shaft, and
Internal diameter of the shaft.

o o
non

Conveyor belt
carries soil away

Control cab houses
operator

Powerful hydraulic rams

Cutting head push cutting head forward

roller

Cutting teeth made Archimedean screw lifts soil onto
fo tungsten carbide conveyer belt

A tunnel-boring machine can cut through rock at up fo one kilometre a month. Powerful hydraulic
rams force the machine’s cutting head fowards as the rock is cut away.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that power transmitted by the shaft (P),
20 N.Tren 2 x 110X T ean
= =1152T
60 60 mean
. Tpean = 600 x 10%/11.52 = 52 x 10 N-m = 52 x 10° N-mm
and maximum torque transmitted by the shaft,
Toex = 12T, = 1.2 x 52 x 106 = 62.4 x 10° N-mm
Now let usfind the diameter of the shaft considering strength and stiffness.
1. Considering strength of the shaft
We know that maximum torque transmitted by the shaft,

600 x 10° =

T = 1_’:3 x 7 (d)3 (1— K4
T 3 3 4 3
62.4% 10° = 3 X 63x ()" |1~ | | | =1212(d)
(d)® =624 x10%12.12=5.15 x 10° or d,=172.7 mm

2. Considering stiffness of the shaft
We know that polar moment of inertia of ahollow circular section,

4
_ T 4 4 T 4 di
J=—|(d)" -(d) |=—(d 1-| 1+
X [0 - @)*] 32<0){ (dH
4
L 4 4 T 4 3 4
=—(d 1-k)=—(d 1-|-— = 0.0962 (d
2 (@) -k 32<0){ [8” (do)
We also know that
T_Co
J |
6 3 6
62.4x10 :84><10 x 0.024 or 648.6><410 — 0672
0.0962 (d,)* 3000 (do)

. (d)* = 648.6 x 106/0.672 = 964 x 10° or d =176.2mm
Taking larger of the two values, we shall provide
d, = 176.2 say 180 mm Ans.

5.3 Shafts in Series and Parallel

()

(i)

When two shafts of different diameters are connected together to form one shaft, it is then
known as composite shaft. If the driving torque is applied at one end and the resisting torque at the
other end, then the shafts are said to be connected in series as shown in Fig. 5.2 (). In such cases,
each shaft transmits the same torque and the total angle of twist is equal to the sum of the angle of

twists of the two shafts.
Mathematically, total angle of twist,
Gl GJ,
If the shafts are made of the same material, thenC, = C, = C.

oo Th Tl _T[h 1
cy cCl, clJ I,

0=0,+6,
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Top



Contents

126 = A Textbook of Machine Design

Z /T
® > 9 @ < @ (-

Tle— |} ———te—— 1, ——> T,
lj ——

[, ——>
(a) Shafts in series. (b) Shafts in parallel.

Fig. 5.2. Shaftsin series and parallel.
When thedriving torque (T) isapplied at thejunction of the two shafts, and the resi sting torques
T, and T, at the other ends of the shafts, then the shafts are said to be connected in parallel, as shown
in Fig. 5.2 (b). In such cases, the angle of twist is same for both the shafts, i.e.

0, =6,
o Tl =T2I2 E=|_2x&xﬁ
Cl‘Jl C2 ‘J2 T2 Il CZ ‘JZ
and T=T,+T,
If the shafts are made of the same material, then C, = C,.
T_b,
T2 Il ‘JZ

Example 5.5. A steel shaft ABCD having a total length of 3.5 m consists of three lengths
having different sections as follows:

AB is hollow having outside and inside diameters of 100 mmand 62.5 mmrespectively, and BC
and CD are solid. BC has a diameter of 100 mm and CD has a diameter of 87.5 mm. If the angle of
twist isthe same for each section, determine the length of each section. Find the value of the applied
torque and thetotal angle of twist, if the maximum shear stressin the hollow portionis47.5 MPa and
shear modulus, C = 82.5 GPa.

Solution. Given: L =3.5m; d, =100 mm; d = 625 mm; d, = 100 mm; d, = 87.5 mm;
T =47.5MPa=47.5N/mm?; C =825 GPa= 82.5 x 10° N/mm?

The shaft ABCD isshown in Fig. 5.3.

A B C D
T — T i
103mm'J____________'10$mm__—————87.:mm———

~— < —SE R

< 35m -

Fig. 5.3

Length of each section
Let [, I, and |, = Length of sections AB, BC and CD respectively.
We know that polar moment of inertia of the hollow shaft AB,
T T
J = 2 [(d)*—(d)T = 2 [(100)* - (62.5)4] = 8.32 x 106 mm*
Polar moment of inertia of the solid shaft BC,

= gy & 4_ 6 mm?
J, = 35 (@)*= 55 (100)*= 982 x 10°mm
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and polar moment of inertia of the solid shaft CD,

T
J, = 3_"2 (dy)* = =5 (87.5)*=5.75 x 10° mm*

32
We also know that angle of twist,
6=T.1/C.J

Assuming the torque T and shear modulus C to
be samefor all the sections, we have

Angle of twist for hollow shaft AB,

6, =T.1,/C.J,
Similarly, angle of twist for solid shaft BC,
0, =T.1,/C.J,
and angle of twist for solid shaft CD,
6, =T.1,/C.J, ' _—-_
Sincetheangle of twist issamefor each section, Machine part of a jet engine. _
therefore Notg : This plgture is given as additional information
and is not a direct example of the current chapter.
0, =6,
T.I T.l L 3 832x10°
—L = 2 o == =0847 ()
c.J, C.J, l, J, 9.82x10
Also 0, = 6,
6
T Ty |_1:i:8.32><10621_447 i)
C. Jl C. J3 |3 J3 575%x10
Weknow that |, + 1, +1,=L=3.5m=3500 mm
l, |1+ L + ks = 3500
bl
I1(1+ 1 + 1 j=3500
0.847 1.447
|, x2.8717 = 3500 or |, =3500/2.8717 = 1218.8 mm Ans,

From equation (i),

|, =1,/0.847 =1218.8/ 0.847 = 1439 mm Ans.
and from equation (ii), |, =1,/1.447=1218.8/ 1.447 = 842.2 mm Ans.
Value of the applied torque
We know that the maximum shear stressin the hollow portion,
T = 47.5 MPa = 47.5 N/mm?
For a hollow shaft, the applied torque,

LI [(do)“ - <di)4} _ T s [(100)“ - <62.5)4}
16 d, 16 100

7.9 x 106 N-mm = 7900 N-m Ans.

T

Total angle of twist
When the shafts are connected in series, the total angle of twist is equal to the sum of angle of
twists of theindividual shafts. Mathematically, the total angle of twist,
0 =6,+6,+0,
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T.I . .
Sk T Tl Tk s
c.J, C.J, C.J ClJ)y 3 I

7.9><106{ 1218.8 . 1439 . 842.2 }

825x10° | 8.32x10° 9.82x10° 5.75x10°
7.9x10°
= = [1465 + 1465 + 146.5] = 0.042 rad
82.5x 10°x 10

= 0.042 x 180/ T = 2.406° Ans.

5.4 Bending Stress in Straight Beams
In engineering practice, the machine parts of structural members may be subjected to static or
dynamic loads which cause bending stress in the sections besides other types of stresses such as
tensile, compressive and shearing stresses.
Consider astraight beam subjected to abending moment M as shown in Fig. 5.4. Thefollowing
assumptions are usually made while deriving the bending formula.
1. Themateria of the beam is perfectly homogeneous (i.e. of the same material throughout)
and isotropic (i.e. of equal elastic propertiesin all directions).
2. Thematerial of the beam obeys Hooke's law.
3. The transverse sections (i.e. BC or GH) which were plane before bending, remain plane
after bending also.
4.  Each layer of the beam is free to expand or contract, independently, of the layer, above or
below it.

5. TheYoung's modulus (E) isthe samein tension and compression.
6. Theloadsare applied in the plane of bending.

Fig. 5.4. Bending stressin straight beams.

A little consideration will show that when abeam is subjected to the bending moment, the fibres
on the upper side of the beam will be shortened due to compression and those on the lower side will
be elongated due to tension. It may be seen that somewhere between the top and bottom fibres there
isasurface at which the fibres are neither shortened nor lengthened. Such asurfaceiscalled neutral
surface. The intersection of the neutral surface with any normal cross-section of the beam is known
asneutral axis. The stress distribution of abeamisshowninFig. 5.4. The bending equationisgiven

by

M _S_E
TV R
where M = Bending moment acting at the given section,
6 = Bending stress,
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I = Moment of inertia of the cross-section about the neutral axis,
y = Distance from the neutral axisto the extreme fibre,
E = Young's modulus of the material of the beam, and
R = Radius of curvature of the beam.
From the above equation, the bending stressis given by

cs—y><E
- R

Since E and R are constant, therefore within elastic limit, the stress at any point is directly
proportional toy, i.e. the distance of the point from the neutral axis.

Also from the above equation, the bending stress,

My M_ M
o= 'y z

Theratio I/y isknown as section modulus and is denoted by Z.

Notes: 1. The neutral axis of a
section always passes through its
centroid.

2. In case of symmetrical
sections such as circular, sguare or
rectangular, the neutral axis passes
through its geometrical centre and
the distance of extreme fibre from
the neutral axisisy=d/ 2, whered
is the diameter in case of circular
section or depth in case of square or
rectangular section.

3. Incase of unsymmetrical
sections such as L-section or T-
section, the neutral axis does not
pass through its geometrical centre.
In such cases, first of al the centroid
of the section is calculated and then
the distance of the extremefibresfor Parts in a machine.
both lower and upper side of the
section is obtained. Out of these two values, the bigger value is used in bending equation.

Table 5.1 (from pages 130 to 134) shows the properties of some common cross-sections.

Hammer strikes cartridge to make it

explode .
Revolving

chamber holds ~
bullets

—

Barrel X
Blade foresight

Vulcanized
rubber handle”

This is the first revolver produced in a production line using intferchangeable parts.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Example5.6. A pump lever rocking shaft is shown in Fig. 5.5. The pump lever exerts forces of
25 kN and 35 kN concentrated at 150 mm and 200 mm from the left and right hand bearing respec-
tively. Find the diameter of the central portion of the shaft, if the stressis not to exceed 100 MPa.

25 kN
J:i 600 mm
C D
B

Fig. 5.5

Solution. Given : 6, = 100 MPa= 100 N/mm?
Let R, and R; = Reactionsat A and B respectively.

Taking moments about A, we have
R % 950 = 35 x 750 + 25 x 150 = 30 000

R, = 30000/ 950 = 31.58 kN = 31.58 x 10° N

and R, = (25+ 35) —31.58 = 28.42 kN = 28.42 x 10° N

-. Bending moment at C
= R, x 150 = 28.42 x 10% x 150 = 4.263 x 10° N-mm

and bendingmomentat D = Ry x 200 = 31.58 x 10% x 200 = 6.316 x 10° N-mm

We see that the maximum bending moment
isat D, therefore maximum bending moment, M
= 6.316 x 10° N-mm.

Let d = Diameter of the

Contents

shaft.
.. Section modulus,
T
Z=—xd3
32
=0.0982d3
We know that bending stress ,
9 (Gb) The picture shows a method where sensors are
M used to measure torsion
100 = - Note : This picture is given as additional information
and is not a direct example of the current chapter.

_ 6316x10°  64.32x10°

©00982d®  d®
d3 = 64.32 x 108/100 = 643.2 x 10% or d = 86.3 say 90 mm Ans.

Example5 7. Anaxle 1 metrelong supported in bearingsat itsends carriesa fly wheel weighing
30 kN at the centre. If the stress (bending) is not to exceed 60 MPa, find the diameter of the axle.

Solution. Given: L =1 m= 1000 mm; W=30kN =30 x 10*N ; o, = 60 MPa= 60 N/mm?

The axlewith aflywheel isshownin Fig. 5.6.
Let d = Diameter of the axlein mm.

Top
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.. Section modulus, Flywheel

- 3 3 _Z Axle
z 32 x d?=0.0982d J
Maximum bending moment at the centre of the axle,
3
M :W.L=30><10 X1000:7.5><106N-mm L

4 4 lm ———
We know that bending stress (c,),

60 M _ 75x10° _ 76.4x10°
~Z 0.0982d3 d3
d® =76.4x10860=1.27 x 10 or d=108.3 say 110 mm Ans.

Example 5.8. A beam of uniform rectangular cross-section is fixed at one end and carries an
electric motor weighing 400 N at a distance of 300 mm 400 N
from the fixed end. The maximum bending stressinthe  7J«—300 mm 4,&
beamis 40 MPa. Find the width and depth of the beam,

if depth is twice that of width. —hf %
Solution. Given: W =400 N ; L = 300 mm; ¥ %
=40 MPa=40 N/mm?; h=2b
The beam isshown in Fig. 5.7. Fig. 5.7
Let b = Width of the beam in mm, and
h = Depth of the beam in mm.
.. Section modulus,

b

b.h* b(2b)? 2b% 4
Z= = = mm
6 6 3
Maximum bending moment (at the fixed end),
M = WL =400 x 300 = 120 x 10°* N-mm

We know that bending stress (c,),
M 120x10°x3 180 x10°

z 200 b
b3 = 180 x 10340 = 4.5 x 10% or b=16.5mm Ans.
and h=2b=2x16.5=33mmAns.

Example5.9. A castiron pulley transmits 10 kW at 400 r.p.m. The diameter of the pulleyis 1.2
metre and it has four straight arms of elliptical cross-section, in which the major axisis twice the
minor axis. Determine the dimensions of the arm if the allowable bending stressis 15 MPa.

Solution. Given: P=10kW =10 x 103 W ; N=400r.p.m; D = 1.2 m = 1200 mm or
R =600 mm; ¢, = 15 MPa= 15 N/mm?

Let T = Torque transmitted by the pulley.

We know that the power transmitted by the pulley (P),

10 % 10° = 2nN.T =21t><400><T —oT
60 60

10 x 10%/42 = 238 N-m = 238 x 10° N-mm

T
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Since the torque transmitted is the product of the tangential load and the radius of the pulley,
therefore tangential load acting on the pulley

3
- T _Z8X10_ a67 N
R 600

Since the pulley has four arms, therefore tangential 1oad on each arm,
W = 396.7/4=99.2 N
and maximum bending moment on the arm,
M = Wx R=99.2 x 600 = 59 520 N-mm
Let 2b = Minor axisin mm, and
2a = Mgoraxisinmm=2x 2b=4b ...(Given)
.. Section modulus for an élliptical cross-section,

zZ = % xazbzg (2b)2 x b = 1 b® mm?

We know that bending stress (c,),
M 59520 18943

=70 5
or b3 =18943/15=1263 or b=10.8mm
Minor axis, 2b =2x10.8=21.6 mmAns.
and major axis, 2a =2x2b=4x10.8=43.2mmAns.

5.5 Bending Stress in Curved Beams

We have seen in the previous article that for the straight beams, the neutral axis of the section
coincideswithits centroidal axisand the stressdistribution in the beamislinear. But in case of curved
beams, the neutral axis of the cross-section is shifted towards the centre of curvature of the beam
causing anon-linear (hyperbolic) distribution of stress, asshownin Fig. 5.8. It may be noted that the
neutral axisliesbetween the centroidal axisand the centre of curvature and always occurswithin the
curved beams. The application of curved beam principle is used in crane hooks, chain links and
frames of punches, presses, planers etc.

Stress
distribution Cross-section
R at X-X
! R
Ri Rn : !
|
|
(Centre of curvature) _v__v__Jl______L__

(0]

Fig. 5.8. Bending stress in a curved beam.

Consider acurved beam subjected to a bending moment M, as shownin Fig. 5.8. In finding the
bending stress in curved beams, the same assumptions are used as for straight beams. The general
expression for the bending stress (c,) in a curved beam at any fibre at a distance y from the neutral
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axis, isgiven by

My
%~ AelR -y
where M = Bending moment acting at the given section about the centroidal
axis,

A = Areaof cross-section,
e = Distance from the centroidal axisto the neutral axis=R-R,
R = Radius of curvature of the centroidal axis,
R, = Radiusof curvature of the neutral axis, and
y = Distancefrom the neutral axisto thefibreunder consideration. Itis
positive for the distances towards the centre of curvature and
negative for the distances away from the centre of curvature.
Notes: 1. The bending stress in the curved beam is zero at a point other than at the centroidal axis.
2. If thesectionissymmetrical such asacircle, rectangle, 1-beam with equal flanges, then the maximum
bending stress will always occur at the inside fibre.
3. If the section isunsymmetrical, then the maximum bending stress may occur at either theinside fibre
or the outside fibre. The maximum bending stress at the inside fibre is given by

_ M.y
% ~ Ale.R
where y, = Distance from the neutral axisto theinside fiore=R —R , and

R = Radiusof curvature of the inside fibre.
The maximum bending stress at the outside fibre is given by

M.y,
% =~ A.e.R
where y, = Distance from the neutral axisto the outside fibore=R - R, and

R, = Radius of curvature of the outside fibre.

It may be noted that the bending stress at the inside fibre istensile while the bending stress at the outside
fibre is compressive.

4. If thesection hasan axial load in addition to bending, then the axial or direct stress (c,,) must be added
algebraically to the bending stress, in order to obtain the resultant stress on the section. In other words,

Resultant stress, 6 =040,

Thefollowing table showsthe values of R and Rfor various commonly used cross-sectionsin
curved beams.

Table 5.2. Values of R, and R for various commonly used
cross-section in curved beams.

Section Values of R and R

h

|<_hT|_|N_>| Rn:loge[Ro]

R

R=R +—

|
. h
! 2

e ]

Contents
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Section Values of R, and R

Rﬁ[f:ﬁ]

|
|
|
!
= R=R +93
R

(252

| fe
/—>||/+T | A (AL R Jioge (o) -
|

| h(g + 20)
—— R.—> —R 4+ \1 " “0/
Wz 5| *R*3hen)
Ale— R———»
<—Ro
— }
e | | gt
D]
; |
[ H_LR—>| R—F?,+g
|A R,—»
Al gl
Py —

(b-t) +t;) +t.h

| .

[] e || el
| |
|

|
|
1 1. 1
| R, Zh2t+ = t2(b—t) + (b —t) to (h——t,)
| R=R+2 2 2
. ht+(b —t)(t +t,)
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Section Values of R and R
——— h —>
CN_Hi<:T_ I R, = ti(lg—t)+th
| B-1 |°9e[R+t‘J+t.Ioge[R°j
1 | | :
Il
T | | _|<—R—>i %h2t+%ti2(h—t)
A S T
e|<— >
}‘*R —
<—R0 4>|
= h iy |
e _HtiL_ | R,= t (B —t) +ty (b, —t)+th
_ C N | R+t Rt =
bT - _f | e TR s R e R
L |
|| | 1 N 1
aa |<_R—’I R:R+Eh2t+§ti (h_t)+(b°_t)to(h—§to)
}-— Lq t(g—t) +t, (b —t) + th
R
< R, =:

Example 5.10. The frame of a punch pressis shown in Fig. 5.9. Find the stresses at the inner
and outer surface at section X-X of the frame, if W= 5000 N.

Solution. Given : W =5000 N ; b; =18 mm; b, =6 mm; h =40 mm; R =25 mm;
R, =25+ 40=65mm
We know that area of section at X-X,

1
A= = (18 + 6) 40 = 480 mm?
2
The various distances are shown in Fig. 5.10. / fW
We know that radius of curvature of the neutral X

/
axis, % 10 VV
o) N[
2 |

A (Wj log, (Roj ~ (b - b)) 10—
R vt
(530
i (]'8><65_6><25) I (65) - (18-16) Secti 40t X—j(_
40 “\25 cenond /;11 dimensions in mm.
480 —13883mm Fig. 5.9

~ (255x 0.9555) — 12
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and radius of curvature of the centroidal axis,
R=R+ h (b + 2b,) _ o5, 40 (18 + 2x 6) mm
3 +by) 3(18+ 6)
=25+ 16.67 = 41.67 mm
Distance between the centroidal axisand neutral axis,
e =R-R =41.67-38.83=284mm
and the distance between the load and centroidal axis,
X =100 + R=100 + 41.67 = 141.67 mm
.. Bending moment about the centroidal axis,
M = W.x=5000 x 141.67 = 708 350 N-mm

The section at X-X is subjected to adirect tensile load of W= 5000 N and a bending moment of
M = 708 350 N-mm. We know that direct tensile stress at section X-X,

o = W 300 _ 1645 Njmm? =10.42 MPa
A 0
w
[e—— 40 —> :
< | x >
CN |
/ i: 100 N
| | Vi I w
< Vo —pre—> |
—
|1 fe— R—>
~—— &, —!
le——R ——>
- R, :I
All dimensions in mm.
Fig. 5.10
Distance from the neutral axisto theinner surface,
Y, =R, —R =38.83-25=13.83 mm
Distance from the neutral axisto the outer surface,
Y, = R,—R,=65-38.83=26.17mm
We know that maximum bending stress at the inner surface,
M.y .
o, = Yi _ 708350x13.83 _ 287 4 N/mm?
' A.e.R 480x284x25
= 287.4 MPa (tensile)
and maximum bending stress at the outer surface,
_ M.y, _708350x26.17 _ 209.2 N/mm?

%0~ Ae.R  480x 2.84x 65

= 209.2 MPa (compressive)
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.. Resultant stress on the inner surface
=0, + o = 10.42 + 287.4 = 297.82 MPa (tensile) Ans.

and resultant stress on the outer surface,
=0,—-0,,=10.42-209.2 =-198.78 MPa
= 198.78 MPa (compressive) Ans.

A big crane hook

Example 5.11. The crane hook carries a load of 20 kN as shown in Fig. 5.11. The section at
X-Xisrectangular whose horizontal sideis 100 mm. Find the stressesin theinner and outer fibres at

the given section.
Solution. Given: W=20kN=20x 103N ; R=50mm ;R =150mm;h=100mm;b=20mm
We know that area of section at X-X,
A = b.h =20 x 100 = 2000 mm?
The various distances are shown in Fig. 5.12.
We know that radius of curvature of the neutral axis,
h 100 100

R, = o [ = og (150) " 1098
e R e 50
and radius of curvature of the centroidal axis,

R=R +g=50+%=100mm

=91.07 mm

-. Distance between the centroidal axis and neutral axis,
e =R-R =100-91.07=8.93 mm
and distance between the load and the centroidal axis,
X = R=100 mm
*. Bending moment about the centroidal axis,
M =Wxx=20x10%x100=2 x 106 N-mm
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The section at X-X issubjected to adirect tensileload of W= 20 x 10° N and abending moment
of M =2 x 108 N-mm. We know that direct tensile stress at section X-X,

W 20x10°
c,=—=

= 2:
\ A 2000 10 N/mm¢ = 10 MPa

_+_ 100_’ All dimen}:ioons in mm.
20 V77

Section at X-X
All dimensions in mm.

Fig. 5.11 Fig. 5.12
We know that the distance from the neutral axisto theinside fibre,
y, = R,—R =9107-50=41.07 mm
and distance from the neutral axisto outside fibre,

Y, = R,—R,=150-91.07 = 58.93 mm

. Maximum bending stress at theinside fibre,
M.y 2x10°x41.07
oy =

i ~ A.e.R  2000x893x50
and maximum bending stress at the outside fibre,

M.y,  2x10°x5893
A.e.R, 2000x8.93x150
= 44 MPa (compressive)

=92 N/mm? = 92 MPa (tensile)

Cpp = = 44 N/mm?

.. Resultant stress at the inside fibre
=0, +06,; =10+ 92 =102 MPa (tensile) Ans.
and resultant stress at the outside fibre

= 6,— 0, = 10— 44 = — 34 MPa = 34 MPa (compressive) Ans.

Example 5.12. A C-clamp is subjected to a maximum load of W, as shown in Fig. 5.13. If the
maximumtensile stressin the clamp is limited to 140 MPa, find the value of load W.
Solution. Given : O(max) = 140 MPa = 140 N/mm?; R=25mm;R =25+25=50mm;
b =19mm;t=3mm;t=3mm;h=25mm
We know that area of section at X-X,
A =3x22+3%x19=123mm?
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Thevarious distances are shown in Fig. 5.14. We know that radius

of curvature of the neutral axis, X X W
(b — .h
- JCRDES } p”«so
(b —1)log, [ B ] 1 t10g.[ P 0
h Oe R Je E 25

_ 3(19-3)+3x25 \
(19 - 3) log, (252; 3) + 3109, (ggj N |
3 119
=31.64 mm T 22 [Z
<
and radius of curvature of the centroidal axis, Section of X-X
% Wt 4 % tiz (b —1t) All dlmz?;msni :;n mm.
h.t+t({-t)
Ix25°x3+1xF(19-3) 9375+ 72
25%x 3+ 3(19 - 3) T 5 a8
=25+82=33.2mm
Distance between the centroidal axisand neutral axis,
e =R-R =332-3164=156 mm
and distance between the load W and the centroidal axis,
X =50+R=50+33.2=83.2mm
Bending moment about the centroidal axis,
M =Wx=W=x83.2=83.2 WN-mm

le—25 —>

20— »y3le—25 o 50 .

CN 7
e i

B 123 123
T16x0.113+3x 0.693  3.887

R=R+

=25+

All dimensions in mm.

Fig. 5.14

The section at X-X is subjected to adirect tensile load of W and a bending moment of 83.2 W.
The maximum tensile stresswill occur at point P (i.e. at the inner fibre of the section).

Distance from the neutral axisto the point P,
y; = R,—R =31.64-25=6.64 mm
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Direct tensile stress at section X-X,
o, = W_W _ 0008w Nmm?
A 123
and maximum bending stress at point P,
_ M.y  832Wx664

O.. =
® A.e.R 123x156x25
We know that the maximum tensile stress O max?

140 = ¢, + 0, =0.008 W+ 0.115W=0.123 W
W = 140/0.123 = 1138 N Ans.
Note : We know that distance from the neutral axis to the outer fibre,
Y, = R,—R,=50-31.64 = 18.36 mm

. Maximum bending stress at the outer fibre,

=0.115W N/mm?

"~ A.e.R 123x156x50

M.y, 832Wx18.36

=016W

and maximum stress at the outer fibre,

= 6,~G,, = 0.008 W—0.16 W= — 0.152 W N/mm?

= 0.152 W N/mm? (compressive)

From above we see that stress at the outer fibreislarger in this case than at theinner fibre, but this stress

at outer fibreis compressive.

5.6 Principal Stresses and Principal Planes

In the previous chapter, we have discussed about the direct tensile and compressive stress as
well assimple shear. Also we have alwaysreferred the stressin aplanewhich is at right anglesto the

line of action of the force.
But it has been observed
that at any point in a
strained material, thereare
three planes, mutually
perpendicular to each
other which carry direct
stresses only and no shear
stress. It may be noted that
out of these three direct
stresses, one will be
maximum and the other
will be minimum. These
perpendicular planes
which have no shear stress
are known as principal
planes and the direct
stresses along these planes
are known as principal
stresses. The planes on
which the maximum shear

Field structure
(magnet)

Armature con-
taining several
coils

The ends of the coils

are arranged round
the shaft

Big electric generators undergo high forsional stresses.

stress act are known as planes of maximum shear.
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5.7 Determination of Principal Stresses for a Member Subjected to Bi-axial
Stress

When amember is subjected to bi-axial stress (i.e. direct stressin two mutually perpendicular
planes accompanied by a simple shear stress), then the normal and shear stresses are obtained as
discussed below:

Consider arectangular body ABCD of uniform cross-sectional areaand unit thickness subjected
to normal stresses ¢, and ¢, as shown in Fig. 5.15 (a). In addition to these normal stresses, a shear
stress T also acts.

It has been shown in books on * Strength of Materials that the normal stress across any oblique
section such as EF inclined at an angle 6 with the direction of 6,,, asshown in Fig. 5.15 (a), isgiven by

o, = %1 7;02 o ;GZ c0s 20 + T sin 20 ()

and tangential stress (i.e. shear stress) across the section EF,
1
w5 (6,—0,) SN 20 -1 cos26 (i)

Since the planes of maximum and minimum normal stress (i.e. principa planes) have no
shear stress, therefore theinclination of principal planesis obtained by equating T, = 0in the above
equation (ii), i.e.

% (6,—0,)SN20-1cos260=0

21
tan 20 = (i)
61— 63
G2
AAAAA
D T F C D T<e—F—— F C
T T T
P | 1 S > P\ T Sy .
Gl§ R — ;Gl Gl% T T T §61
= c, K6 T = = o, K0 =
2 My ol By
B M E T
A >t B A _ 1 o1 B
YYYYY
02
(@) Direct stress in two mutually (b) Direct stress in one plane accompanied
prependicular planes accompanied by by asimple shear stress.

asimple shear stress.

Fig. 5.15. Principal stresses for amember subjected to bi-axial stress.

We know that there are two principal planes at right angles to each other. Let 6, and 6, be the
inclinations of these planes with the normal cross-section.

From Fig. 5.16, we find that

2
sn2o =
\/((51— 0,)%+ 41
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F
. 27
sin26, = +
(06,—0,)%+ 417
. 27
and sin20, = —
\/(csl— 0,)%+ 41
Also cos20 = + 91~ %
(6,—0,)%+ 417
c0s20, = + 01_(:2 -
(op—0,)°+4r1 Fig. 5.16
6,— O
and cos 20, = 1 2

Joy—0,)2+ 47
The maximum and minimum principal stresses may now be obtained by substituting the values
of sin 26 and cos 26 in equation (i).
. Maximum principal (or normal) stress,
oy = LZGZ + % (6,— G,)%+ 412 (V)
and minimum principal (or normal) stress,

0;+0 1
Oy = ¥—5\1(61—62)2+41:2 (V)

2
The planes of maximum shear stress are at right angles to each other and areinclined at 45° to
the principal planes. The maximum shear stressisgiven by one-half thealgebraic difference between
theprincipal stresses, i.e.

_Su-0%p_1

(6,—0,)° + 4 1° (Vi)

A Boring mill.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Notes: 1. When amember is subjected to direct stressin one plane accompanied by asimple shear stress as shown
in Fig. 5.15 (b), then the principal stresses are obtained by substituting 6, = 0 in equation (iv), (v) and (vi).

o, = %+%[\/(01)2+ 41:2}
oy = %—%[\/(cl)ﬁ 412}
and Toox = %[\/(01)%412}

1T r—2 2 o
2. Intheabove expression of o, thevalueof - [ (0)*+41° J ismorethan 31 . Therefore the nature

of o, will be oppositeto that of 6,,, i.e. if 6,, istensile then 6, will be compressive and vice-versa.

5.8 Application of Principal Stresses in Desighing Machine Members

Therearemany casesin practice, in which machine members are subjected to combined stresses
due to simultaneous action of either tensile or compressive stresses combined with shear stresses. In
many shafts such as propeller shafts, C-frames etc., there are direct tensile or compressive stresses
due to the external force and shear stress due to torsion, which acts normal to direct tensile or com-
pressive stresses. The shaftslike crank shafts, are subjected simultaneously to torsion and bending. In
such cases, the maximum principal stresses, dueto the combination of tensile or compressive stresses
with shear stresses may be obtained.

The results obtained in the previous article may be written asfollows:

1. Maximum tensile stress,

Otmag = %*%[V(Gt)2+ a7

2. Maximum compressive stress,

Cotra) = G—2C+%[1/(cc)2+ 412]

3. Maximum shear stress,

e = 5 (007 47

where o, = Tensile stress due to direct load and bending,
o, = Compressive stress, and
T = Shear stress due to torsion.
Notes: 1. When 1 = 0 asin the case of thin cylindrical shell subjected in internal fluid pressure, then

Ot max) — Ot
2. When the shaft is subjected to an axial load (P) in addition to bending and twisting moments asin the
propeller shafts of ship and shaftsfor driving worm gears, then the stress due to axial load must be added to the
bending stress(c,). Thiswill givethe resultant tensile stress or compressive stress (c, or 6,) depending upon the

type of axia load (i.e. pull or push).

Example5.13. A hollow shaft of 40 mm outer diameter and 25 mminner diameter is subjected
to a twisting moment of 120 N-m, simultaneously, it is subjected to an axial thrust of 10 kN and a
bending moment of 80 N-m. Cal culate the maximum compressive and shear stresses.

Solution. Given: d; =40 mm; d =25 mm; T = 120 N-m = 120 x 103 N-mm; P = 10 kN
=10x 10°N ; M = 80 N-m = 80 x 10° N-mm

We know that cross-sectional area of the shaft,

T

A= %[(do)z_ (d)?]= A [ (40)% - (25)% ] = 766 mm?

Top



Torsional and Bending Stresses in Machine Parts = 149

.. Direct compressive stress due to axial thrust,
_ P _10x10°

%= AT 766
Section modulus of the shaft,

. _{M} _{M} _ 5325 mm’

=13.05 N/mm? = 13.05 MPa

T3 d, 32 40
Bending stress due to bending moment,
3
o, = M _80x10° _ 15.02 N/mm? = 15.02 MPa (compressive)

P77z 5325
and resultant compressive stress,

o, = 0, + 6, = 15.02 + 13.05 = 28.07 N/mm? = 28.07 MPa
We know that twisting moment (T),

L ECH I CHN :1X{M}:10650T

16 d, 16 40
120 x 10%10 650 = 11.27 N/mm? = 11.27 MPa

120 x 10°

. T
M aximum compressive stress
We know that maximum compressive stress,

(¢ 1 2 2
Oomg = ?C-FEI:\/(GC) +4r1 }

28.07

+ % [ J@son?+ 4 @127/ ]
14,035 + 18 = 32.035 MPa Ans.

Maximum shear stress
We know that maximum shear stress,

T = 2[00 +47 | = 1] (28.07)2 + 411277 | = 18 MPa Ans.

Example5.14. Ashaft, asshowninFig. 5.17, is subjected to a bending load of 3 kN, puretorque

of 1000 N-mand an axial pulling force of 15 kN. 3KN
Calculate the stresses at A and B. 7
Solution. Given : W = 3 kN = 3000 N : A ¥ .
T =1000 N-m = 1 x 108 N-mm; P = 15 kN ~Z-—— 50 mm Dia - — — — — — - |
=15x%x 10N ; d = 50 mm; x = 250 mm 1000 e
i B
We know that cross-sectional area of the shaft, 950 mm
i :
A==xd? Fig. 5.17
4
T
=2 (50)2 = 1964 mm?
.. Tensile stressdue to axial pulling at points A and B,
P 15x10°
6, = —=—2"" =764N/mm?=7.64MPa
A 1964

Bending moment at points A and B,
M = Wx =3000 x 250 = 750 x 10% N-mm

Contents
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Section modulus for the shaft,
-
3R
=12.27 x 103 mm3

3= T 3
z xd*= = (50

. Bending stress at points A and B,
M 750x10°

6. =— =72
b7 1227x10°
=61.1 N/mm?=61.1 MPa
Thisbending stressistensileat pointAand |
compressive at point B.
.. Resultant tensile stress at point A,
G, =0,+0,=611+7.64

This picture shows a machine component inside a

crane
=68.74 MPa Note : This picture is given as additional information and
and resultant Compl‘eSSive stress at poi ntB is not a direct example of the current chapter.

Gy = 6,—0,=61.1-7.64 =53.46 MPa
We know that the shear stress at points A and B due to the torque transmitted,
_ 16T  16x1x10°

T=—3 3
nd 7 (50)
Stresses at point A
We know that maximum principal (or normal) stress at point A,

o 1
Cpmag = 7’* +3 [,/(GA)2+ 4‘C2]

% ¥ % [ J(e8.74)2+ 4 (4074 |

= 34.37 + 53.3 = 87.67 MPa (tensile) Ans.
Minimum principal (or normal) stress at point A,

c 1
i) = 7’* -3 [\/(GA)Z +4 172] =34.37-53.3=-18.93 MPa

= 18.93 MPa (compressive) Ans.
and maximum shear stress at point A,

Tamag = 3 [\/(GA)2+ 4 rz] =1 [\/(68.74)2 +4 (40.74)2]

53.3MPaAns.

= 40.74 N/mm? = 40.74 MPa ( T=116><1:><d3)

Stresses at point B
We know that maximum principal (or normal) stress at point B,

_og 1 2 2
Oy = 7+§[ (og)°+4r1 ]
5346 1
—_— + —
2
26.73 + 48.73 = 75.46 MPa (compressive) Ans.

[ J(53.46)2+ 4 (40.74)? |
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Minimum principal (or normal) stress at point B,

Og(min) ~ 678 - % [\/ (0g)° + 4172]

26.73 -48.73 = - 22 MPa
= 22 MPa(tensile) Ans.
and maximum shear stress at point B,

Toomg = 3 [(0a)?+ 477 | = 1| (5346 + 4 (40.747? |
48.73 MPaAns.

Example 5.15. An overhang crank with pin and shaft is shown in Fig. 5.18. A tangential load
of 15 kN acts on the crank pin. Determine the maximum principal stress and the maximum shear
stress at the centre of the crankshaft bearing.

Crank pin ] /—I—\
15 kN_%_ | .
) /— Crank web @
|
140 mm i\Crank shaft |
N -T
+ / A \
—_—a——-—t— —— 80mm — —(— 4 —|—- — —|—
| + \ | /
N I /
p
<—120 mmJ '

Fig. 5.18
Solution. Given: W=15kN =15x 103N ; d=80 mm ; y =140 mm ; x = 120 mm
Bending moment at the centre of the crankshaft bearing,
M = Wxx=15x 10%x 120 = 1.8 x 105 N-mm
and torque transmitted at the axis of the shaft,
T =Wxy=15x10%x 140 = 2.1 x 106 N-mm
We know that bending stress due to the bending moment,

M 32M T 3)
_M_ wZ=—xd
o 7 T ( 32><
32x1.8x10°
= —_— =35.8 N/mm2=358 MPa
7 (80)

and shear stress due to the torque transmitted,
16T  16x21x10°

T re 20 N/mm?2 = 20.9 MPa
n T

Maximum principal stress
We know that maximum principal stress,

Cyra) = G—zt + % [«/(Gt)2+ 412}

38 1
5t [\/(35.8)2 +4 (20.9)2] ... (Substituting o, = ,)

179+ 27.5=454 MPaAns.
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Maximum shear stress
We know that maximum shear stress,

1. = )2+ a7 |=1](35872+4(209)
2 2

= 27.5MPaAns.

5.9 Theories of Failure Under Static Load

It has already been discussed in the previous chapter that strength of machine membersisbased
upon the mechanical properties of the materials used. Since these properties are usually determined
from simple tension or compression tests, therefore, predicting failure in members subjected to uni-
axial stressisboth simple and straight-forward. But the problem of predicting the failure stressesfor
members subjected to bi-axial or tri-axial stressesis much more complicated. In fact, the problemis
so complicated that alarge number of different theories have been formulated. The principal theories
of failure for amember subjected to bi-axial stress are asfollows:

1. Maximum principal (or normal) stress theory (also known as Rankine's theory).

2. Maximum shear stress theory (also known as Guest’s or Tresca' s theory).

3. Maximum principal (or normal) strain theory (also known as Saint Venant theory).

4. Maximum strain energy theory (also known as Haigh'stheory).

5. Maximum distortion energy theory (also known as Hencky and Von Mises theory).

Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the
material and brittle materials fail by fracture, therefore the limiting strength for these two classes of
materialsisnormally measured by different mechanical properties. For ductile materials, thelimiting
strength is the stress at yield point as determined from simple tension test and it is, assumed to be
equal in tension or compression. For brittle materials, the limiting strength is the ultimate stress in
tension or compression.

5.10 Maximum Principal or Normal Stress Theory (Rankine’s Theory)

According to thistheory, thefailure or yielding occursat apoint in amember when the maximum
principal or normal stressin abi-axial stress system reaches the limiting strength of the material ina
simpletension test.

Since the limiting strength for ductile materials is yield point stress and for brittle materials
(which do not havewell defined yield point) thelimiting strength isultimate stress, therefore according

Limestone Iron ore Oxygen is
Coke blown into
Pig iron and molten metal The molten steel can
scrap steel then be tapped off.
are poured
into converter

Waste gases
are removed

Converter pours out

____f"- ~.. molten steel

i

Mixed raw
maerials

Hot air |
blasted into’,
furnace

Molten steel fluid can be poured
by into moulds or cast while fuild
Molten slag removed " . Oxygen burns off carbon to

Iron Molten pig iron 4, the pig iron into steel

Pig iron is made from iron ore in a blast furnace. It is a brittle form of iron that contains 4-5 per cent carbon.
Note : This picture is given as additional information and is not a direct example of the current chapter.

Ladle
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to the abovetheory, taking factor of safety (F.S.) into consideration, the maximum principa or normal
stress (o,,) in abi-axial stress system s given by

Oyt . .
——, for ductile materials
F.S

Oy =
oy . .
= Es , for brittle materials
where Oy = Yield point stressin tension as determined from simple tension

test, and
6, = Ultimatestress.

Sincethe maximum principal or normal stresstheory isbased onfailureintension or compression
and ignoresthe possihility of failure dueto shearing stress, thereforeit isnot used for ductile materials.
However, for brittle materialswhich arerelatively strongin shear but weak intension or compression,
thistheory is generally used.

Note : The value of maximum principal stress (c,,) for a member subjected to bi-axial stress system may be
determined as discussed in Art. 5.7.

5.11 Maximum Shear Stress Theory (Guest’s or Tresca’s Theory)

Accordingtothistheory, thefailureor yielding occursat apoint in amember when the maximum
shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a
simpletension test. Mathematically,

Trox = ryt/F.S ()
where Trax = Maximum shear stressin abi-axial stress system,
Ty = Shear stress at yield point as determined from simple tension test,
and

F.S. = Factor of safety.
Since the shear stress at yield point in asimple tension test is equal to one-half the yield stress
in tension, therefore the equation (i) may be written as
(¢
_ wt

T = 5L FS
Thistheory ismostly used for desi g'jn'i ng members of ductile materials.

Note: The value of maximum shear stressin abi-axial stress system (t,,,,) may be determined as discussed in
Art. 5.7.

5.12 Maximum Principal Strain Theory (Saint Venant’s Theory)

Accordingtothistheory, thefailureor yielding occursat apoint in amember when the maximum
principal (or normal) strainin abi-axial stresssystem reachesthelimiting valueof strain (i.e. strain at
yield point) as determined from asimple tensile test. The maximum principal (or normal) strainina
bi-axial stress systemisgiven by

_%u_ %2

. fx T E Tl E
.. According to the above theory,

Ou _ Sw Oyt .
= — - =&€=
fr T E T m.E ExFS. ®
where 6, ad 6, = Maximumand minimum principal stressesin abi-axia stresssystem,

€ = Strain at yield point as determined from simple tension test,
1/m = Poisson’sratio,

E = Young'smodulus, and
F.S. = Factor of safety.
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From equation (i), we may write that
Oz _ Ont
m F.S
Thistheory is not used, in general, because it only gives reliable resultsin particular cases.

Oy —

5.13 Maximum Strain Energy Theory (Haigh’s Theory)

According to this theory, the failure or yielding occurs at a point in amember when the strain
energy per unit volumein abi-axial stress system reachesthelimiting strain energy (i.e. strain energy
at theyield point ) per unit volume as determined from simple tension test.

This double-decker A 380 has a passenger capacity of 5655. Its engines and parts should be robust
which can bear high torsional and variable stresses.

We know that strain energy per unit volume in abi-axial stress system,

1 20yX0
U, = 2E [(th)z +(02)* - %}

and limiting strain energy per unit volume for yielding as determined from simple tension test,

2
o
U2 = i (_ytj
2E \F.S.

According to the above theory, U, = U,

2
e i [(th)z + (6t2)2 - —2 O Gtz} = i [G—ytj

2E m 2E \ F.S.
2
204X0 o
or 6. )2+ (c.)2— £9ux O =[ yt J
(6" * (0) m F.S.

Thistheory may be used for ductile materials.

5.14 Maximum Distortion Energy Theory (Hencky and Von Mises Theory)

According to thistheory, thefailure or yielding occurs at apoint in amember when the distortion
strain energy (also called shear strain energy) per unit volumein abi-axial stress system reachesthe
limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a
simpletension test. Mathematically, the maximum distortion energy theory for yielding is expressed
as

2
(o
_ yt
(62 +(0,)* 20, %0, = ( F.S.j

Thistheory ismostly used for ductile materialsin place of maximum strain energy theory.

Note: The maximum distortion energy isthe difference between the total strain energy and the strain energy due
to uniform stress.
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Example 5.16. Theload on a bolt consists of an axial pull of 10 kN together with a transverse
shear force of 5 kN. Find the diameter of bolt required according to

1. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal
strain theory; 4. Maximum strain energy theory; and 5. Maximum distortion energy theory.

Take permissible tensile stress at elastic limit = 100 MPa and poisson’sratio = 0.3.
Solution. Given: P, =10kN ; P,=5kN ; Oya) = 100 MPa= 100 N/mm?; 1/m=0.3
Let d = Diameter of the bolt in mm.

.. Cross-sectional area of the bolt,

'
A= " x 02 = 0.7854 d2 mm?
We know that axial tensile stress,

10 == 12'273 kN/mm?
1 A 0.7854d d

and transverse shear stress,
T = EZ > 5= 63265 kN/mm2
A 07854 d d
1. According to maximum principal stresstheory

We know that maximum principal stress

01+ 0 1
Ou = 12 2+E[\/(01_02)2+4‘52]
+

1273 1 12.73}2 £6.365j2
= +- +4
2d? 2 d? d?
1
2

6.365
+ —
d2
6.365 1 15.365 2 - 15365 )
= 1+ =4+ 4 kN/m N/mm
d? { 2 } d? d?
According to maximum principal stresstheory,

Oy = Oyey OF % =100

d?2 = 15365/100 = 153.65 or d=12.4 mm Ans.
2. Accordmg to maximum shear stresstheory
We know that maximum shear stress,

R IL CEEA L EE MR BRCERL

1 (12.73)1 4(6.365j2 _1 6365
2 d? d? 2 d?

2 knimm? = 20
d? d?

According to maximum shear stress theory,

_ Se) 9000 _ 100
e = or IR =50
d? =9000/50=180 or d=13.42mmAns.
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3. According to maximum principal strain theory
We know that maximum principal stress,

o, 1 15 365
o, = 71 + 3 [J (csl)2 +4 12} = e ...(As calculated before)

and minimum principal stress,

o, =5 50+ 47

_1273 1] [(1273)" ,(6365)
- 2 5 2 | T 2
2d? 2 d d

_ 6.365 —%x 6.365 [\/mJ

d? d?
_ 6.3265 [1 : \/E] _- 2.2335 KN/mm?2
d d
=_ 2235 N/mm2 Front view of a jet engine. The rotors un-
d

dergo high torsional and bending stfresses.
We know that according to maximum principal strain theory,

c c Ot(a S
16 156
15 365 N 2635x% 0.3 —100 or — = 100

d? =16156/100=161.56 or d=12.7 mmAns.
4. According to maximum strain energy theory
We know that according to maximum strain energy theory,

204X 0O
(th)z + (Gtz)z _ tl t2 — [Gt(el)]z

2 2
[15;;65} {— 3235} Cou 15d?;65 T 3235 % 0.3 = (100)?
236x10° 6.94x10° 24.3x10°
+ +
d* d* d*
23600 694 2430 26724
-t —+ ——=1 or =
d* d*  d* d*
. d*4 =26724 or d=12.78 mm Ans.
5. According to maximum distortion energy theory
According to maximum distortion energy theory,
(th)z + (GIZ)Z - 26t1 X Gpp= [Gt(el)]z

=10x10°

1

2 2
15365]" , [-2635]° , 15365 —2635_ (1002
d? d? d? d?
6 6 6
236(;1 10° 6.94d>‘<1 10° 80.92 :< 10° _ 10y 10?
23600 694 8097 _, 32301
R I

d* =32391 or d=13.4mmAns.
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Example5.17. Acylindrical shaft made of steel of yield strength 700 MPais subjected to static
loads consisting of bending moment 10 kN-mand a torsional moment 30 kN-m. Deter minethe diameter
of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E = 210
GPa and poisson'sratio = 0.25.

Solution. Given: 6, = 700 MPa= 700 N/mm?; M = 10 kN-m =10 x 106 N-mm ; T=30kN-m
=30 x 105 N-mm; FS =2; E =210 GPa= 210 x 10° N/mm?; 1/m= 0.25

Let d = Diameter of the shaft in mm.

First of all, let us find the maximum and minimum principal stresses.

We know that section modulus of the shaft

zZ= % x d 3 = 00082 d® mm?
-, Bending (tensile) stress due to the bending moment,
M  10x10° 101.8x10° )
6, =—- = 3= 3 N/mm
Z 0.0982d d
and shear stress due to torsional moment,

16T _16x30x10° 152.8x10° N
T = = —
nd3 nd3
We know that maximum principal stress,

/mm?

oy = LZGZ+%[\/(01—02)2+ 412]

- %Jr%[w/(cl)zwrz} A 0,=0)

2 2
101.8x10° 1 (101.8 x 10° j (152.8 x 10 j
=+ = —_ | +4| =
2d°® 2 d3 d3

509x10° 1 10°
d® 2 dd

50.9x10° = 161x10° 211.9x10°
FE RS

[JaoL8?+ 4 (15287 |

N/mm?

and minimum principal stress,

O, = LZGZ—%[\/((H—GZ)AL 41:2]

= %_%[1/(01)%412} A~ 6,=0)

50.9x10° 161x10° —110.1x10° )
= — = N/mm

BT RE iE
Let us now find out the diameter of shaft (d) by considering the maximum shear stress theory
and maximum strain energy theory.

1. According to maximum shear stresstheory
We know that maximum shear stress,
Gu—6p 1 {211.9 x10° 110.1x 106} _ 161x 10°

R R R R o
We also know that according to maximum shear stresstheory,
Oyt 161x10° 700
= = =175
T 5Fs U T T ox2

d3 = 161 x 108/ 175=920 x 10% or d=97.2 mm Ans.
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Note: The value of maximum shear stress (., ) may aso be obtained by using the relation,

Ty = %[1/ (0)%+ 412J

1] |(1008x10°)"  (152.8x10°)’
N e )T e

- %xg[\/(1018)2+4(1528) ]

6 6
= 1,20 s gpp  1OXIO" e
27 d

...(Same as before)
2. According to maximum strain energy theory
We know that according to maximum strain energy theory,

2
1 20t1><0t2} 1 (cytj
O + (G - —
B A e

20.,X0O o
or 6.)2+ (5.)2 — 17 V12 =[ vt j
(0" + (o) m F.S.
2 2
211.9% 10° —-110.1x10° 211.9x10° -110.1x10° 700
e + e —-2X e X e x 0.25 =
44902 x 10 12122x 102 11665 x 107

or 40 + e + e =122 500

68 689 x 10
d6
d 6 = 68 689 x 10'%/122 500 = 0.5607 x 10'? or d =90.8 mm Ans.
Example 5.18. Amild steel shaft of 50 mm diameter is subjected to a bending moment of 2000
N-mand a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum val ue of

thistorque without causing yielding of the shaft according to 1. the maximum principal stress; 2. the
maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

Solution. Given: d =50 mm ; M = 2000 N-m = 2 x 106 N-mm ; o,, = 200 MPa= 200 N/mm?

Let T = Maximum torque without causing yielding of the shaft, in N-mm.
1. According to maximum principal stresstheory

We know that section modulus of the shaft,

=122 500

Z= 32 xd®=—- (50)3— 12 273 mm?®
*. Bending stress due to the bending moment,
6
o = M _2X10° 163 Njmm?
oz 12273

and shear stress due to the torque,
16T 16T
nd® & (50)

T = 7 =0.0407 x 102 T N/mm?

{T :%xrxdﬂ
We know that maximum principal stress,

c 17 -2 . 2
Oy = 21+2|: ((51)2+4‘Cz:|

- 123 111637+ 4 (00407 x 10°T)? |
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= 815+ 6642.5+ 1.65x 10° T2 N/mm?

o = G 5[ av]
_ 1_6233 _% /(1637 + 4 (0.0407 x10°T)? |

= 815 —  6642.5 + 1.65x 10 T2 N/mm?

Minimum principal stress,

and maximum shear stress,

T = 3 [ (007 + 477 | = 1 [/ 163 + 4 (00407 x 10°°T)? |

= /66425 + 1.65x 10° T2 N/mm?
We know that according to maximum principal stress theory,

Gy = Oy ..(TakingF.S =1)

815 + / 6642.5 + 1.65x 102 T2 = 200
66425+ 1.65+ 102 T2 = (200 — 81.5)2 = 14 042
, 14042 — 66425

1.65x107°
or T = 2118 x 108 N-mm = 2118 N-m Ans.

2. According to maximum shear stresstheory
We know that according to maximum shear stress theory,

= 4485 x 10°

Trex = Tyt = GTyt
- /66425 +165x10°T? = % =100
6642.5+ 1.65 x 10-° T 2= (100)2 = 10 000
ro o 1000066025 0 1o
1.65x 10

o T =1426 x 10° N-mm = 1426 N-m Ans.
3. According to maximum distortion strain energy theory
We know that according to maximum distortion strain energy theory
(th)z + (GtZ)Z —Gy XO0p = (Gyt)z

[81.5 +/6642.5 + 1.65x 109 T2 T + [81.5 — /66425 + 1.65x 1077 T2 ]2

- [81.5 +|/6642.5+ 1.65x 109 T2 } [81.5 — |/6642.5+ 1.65x 107 T2 } = (200)

2[(81.5)%+ 6642.5 + 1.65x 10° T2 | — [ (81.5)> — 6642.5+ 1.65 x 10° T | = (200)?

(8L.5)% + 3 x 6642.5 + 3 x 1.65 x 10 T 2 = (200)2
26 570 + 4.95 x 10- T 2 = 40 000

T2_4OOOO—26570

4.95x107°
T =1647 x 108 N-mm = 1647 N-m Ans.

= 2713 x10°
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5.15 Eccentric Loading - Direct and Bending Stresses Combined

An external load, whose line of action is parallel but does not coincide with the centroidal axis
of the machine component, is known as an eccentric load. The distance between the centroidal axis
of the machine component and the eccentric load is called eccentricity and is generally denoted by e.
The examples of eccentric loading, from the subject point of view, are C-clamps, punching machines,
brackets, offset connecting links etc.

Y P Y P Y Y P Y P
—>|e¢<— Pl, e < ¢P1=P —>|e¢<— ﬂer—
I |
P
! T ? ! Py=P P2|
|
| | | | '
| | | ! |
T T T T
Y Y Y Y Y
C I A | I |
| | |P1=H N
P | P p
T AR T IRz
| P\=pP, | h
D ! B I [
_L Tensile
Tt
o+,
Direct compressive _ Compressive _L
stress diagram. Bending stress '
diagram. Combined direct and
bending stress diagram.
(a) (b) () (d) (e)

Fig. 5.19. Eccentric loading.

Consider ashort prismatic bar subjected to acompressiveload P acting at an eccentricity of eas
shown in Fig. 5.19 (a).

Let usintroducetwo forces P, and P, along the centre line or neutral axis equal in magnitudeto
P, without altering the equilibrium of the bar as shown in Fig. 5.19 (b). A little consideration will
show that the force P, will induce adirect compressive stress over the entire cross-section of the bar,
asshown in Fig. 5.19 (c).

The magnitude of this direct compressive stressis given by

P P
c, = Kl or A where A isthe cross-sectional area of the bar.

The forces P, and P, will form a couple equal to P x e which will cause bending stress. This
bending stress is compressive at the edge AB and tensile at the edge CD, as shown in Fig. 5.19 (d).
The magnitude of bending stress at the edge AB is given by

P.e.y, .
o, = — (compressive)
and bending stress at the edge CD,
P.e.
o, = ——N (tensile)
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where y, andy, = Distancesof the extremefibreson the compressive and tensilesides,

from the neutral axis respectively, and

I = Second moment of area of the section about the neutral axisi.e.

Y-axis.
According to the principle of superposition, the maximum or the resultant compressive stress at
the edge AB,
%= T A~z A T

and the maximum or resultant tensile stress at the edge CD,

_Pey P.M P__
%= T Az A b7

The resultant compressive and tensile stress diagram is shown in Fig. 5.19 (e).

“Turbines

™ Turbine shaft
Combustion chamber

~™= Spark plug

Fuel line

Compressor

In a gas-turbine system, a compressor forces air info a combustion chamber. There, it mixes with fuel.
The mixture is ignited by a spark. Hot gases are produced when the fuel burns. They expand and drive

a series of fan blades called a turbine.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Notes: 1. When the member is subjected to a tensile load, then the

Load
point

above equations may be used by interchanging the subscripts c and t.

stress 6, then the compressive stress shall be present all over the
Ccross-section.

3. Whenthedirect stress o, isless than the bending stress o, Xq———-
then the tensile stress will occur in the left hand portion of the cross- I

section and compressive stress on the right hand portion of the cross- —ry—

section. In Fig. 5.19, the stress diagrams are drawn by taking o, less |

2. Whenthedirect stress o, isgreater than or equal to bending i l/
| |

than o,
In case the eccentric |oad acts with eccentricity about two axes, Y

asshown in Fig. 5.20, then the total stress at the extreme fibre Fig. 5.20. Eccentric load with

_P,.P.e.x _P.&.y

A IXX IYY

eccentricity about two axes.

| |
* We know that bending moment, M = P.e and section modulus, Z = v yeor Wi
c

Bending stress, 6, =M/ Z
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Example5.19. A rectangular strut is 150 mmwide and 120 mm thick. It carries a load of 180
kN at an eccentricity of 10 mmin a plane bisecting the thickness as shown in Fig. 5.21. Find the
maximum and minimum intensities of stressin the section.

Solution. Given : b =150 mm; d = 120 mm; P = 180 kN

=180x 108N ; e=10mm 10 mm ~_ 0 KN
We know that cross-sectional area of the strut, e
A =b.d =150 x 120
= 18 x 10° mm?

:
.. Direct compressive stress, !
P 180x10° |

6. = —=—"—%
° A 18x10° l
10 N/mm?2 = 10 MPa |
Section modulus for the strut, I

lyy d.b*/12 d.b?
/= —= =
y b/2 6
120 (150)2
6
450 x 10° mm3
Bending moment, M = Pe=180x 10° x 10
= 1.8 x 105 N-mm

: M 18x10° .
Bending stress, 6, = —-=——— .

Z 450%10 Fig. 5.21
= 4 N/mm?=4MPa

Since o, is greater than o, therefore the entire cross-section of the strut will be subjected to
compressive stress. The maximum intensity of compressive stress will be at the edge AB and

minimum at the edge CD. 20 kKN
. Maximum intensity of compressive stress at the edge AB
L—f— 500 —
|

=0,+0,=10+4=14MPaAns. !
and minimum intensity of compressive stress at the edge CD |
|
|

=0,-0,=10-4=6MPaAns.
Example5.20. Ahollow circular column of external diameter

250 mmand internal diameter 200 mm, carriesa projecting bracket
onwhich aload of 20 kN rests, as shown in Fig. 5.22. The centre of @,\/

the load fromthe centre of the column is 500 mm. Find the stresses <200
at the sides of the column. [ 250 >
Solution. Given : D = 250 mm; d = 200 mm; |
P=20kN =20x 10°N ; e=500 mm r
We know that cross-sectional area of column, _ * ~
v
A=— (D?-d?
4 L |
T Tensil
= 7 [(2502~ (2002 9.91 MPa enste y
= 17 674 mm? 317 MPa
. Direct compressive stress, Compressive '
P 20x10° 2 S
6. = —=———=113N/mm All dimensions in mm.
° A 17674 Fig. 5.22
= 113 MPa 'g->
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Section modulus for the column,
T 4 4 b
1D _d Rl 4_ 4
L1 at?] g [0 00

y D/2 250/2
=905.8 x 10° mm?3

Bending moment,

Positioning

M = Pe gears Transmission
=20 x 10® x 500 Turbine head
=10 x 10° N-mm | :
. i Contro - el
. Bending stress, clectronics '\l y _%: -t Drive shatt
5 adjust position ™= -
_ M = & of wind turbine :
% T Z 0058x10°  head :

5 Internal ladder

11.04 N/mm allow access to

11.04 MPa wind turbine
. . . head

Since o, is less than o, therefore right

hand side of the column will be subjected to

compressive stressand theleft hand side of the

column will be subjected to tensile stress.

" Vents for cooling
air

Turbine blade
. Maximum compressive stress,

6, =0,+0,=11.04+ 113

= 12.17MPaAns. Note : This picture is given as additional information and
and maximum tensile stress, is not a direct example of the current chapter.
6, =6,-0,=11.04-1.13=9.91 MPaAns.

Example 5.21. A masonry pier of width 4 m and thickness 3 m, supports a load of 30 kN as
shown in Fig. 5.23. Find the stresses devel oped at each corner of the pier.

Solution. Given: b=4m;d=3m;P=30kN;eX=0.5m;ey=1m
We know that cross-sectional area of the pier,
A=bxd=4x3=12n?

Wind turbine.

Load point
Moment of inertia of the pier about X-axis, C Y / Aoa pom
b.d® 4x3 4 < _f T
| = = = 9 m lm'H Im x
ST S 4 1
and moment of inertia of the pier about Y-axis, o _|_ _05m 1y i
d.b® 3x4 . ' 1
lyy = = =16 m |
12 12 y
Distance between X-axis and the corners A and B, |
Xx=3/2=15m D N B
< |
Distance between Y-axis and the corners A and C, 4m -

We know that stress at corner A,

P.e.
GA:E+P.eX.x+ &y
A Ixx

..[ At A both xandy are +ve]
lvy
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@4_ 30X0'5X1'5+ 0x1x2
12 9 16

=25+25+3.75=8.75kN/m? Ans.
Similarly stressat corner B,

P.e.
E+P.ex.x_ &y

Og = ..[ AtB,xis+veandyis-ve]
A IXX IYY
_ @Jr 30x05x15 30x1x2
T 12 9 16
=25+25-375=1.25kN/m2Ans.
Stress at corner C,
P P.e.x P.g.y
Oc= 7~ & + el ... [AtC, xis—veand yis+ve]
A IXX IYY
_ §—3OXO'SX1'5+ 30x1x 2
T 12 9 16
=25-25+375=3.75kN/m2Ans.
and stress at corner D,
P P.e.x P.e.y
Op = ~ — & - ey ... [At D, both xand y are — ve]
A lXX IYY
_ @_30><0.5><1.5 B 0x1x2
T 12 9 16

2.5—-25-3.75=—3.75 KN/m?= 3.75 KN/m? (tensile) Ans.

Example 5.22. A mild steel link, as shown in Fig. 5.24 by full lines, transmits a pull of 80 kN.
Find the dimensions b and t if b = 3t.
Assume the permissible tensile stress as /___f_ - T TS
|l

Ve
70 MPa. If the original link is replaced
by an unsymmetrical one, as shown by

/
= f b \
dotted linesin Fig. 5.24, having the same A r
thickness t, find the depth b,, using the 7 - - P
same permissible stress as before.
P | "I ! I‘_T

Solution. Given : P = 80 kN

=80 x 103N ; 5,= 70 MPa= 70 N/mm? =0 G2
When the link isin the position shown by full linesin Fig. 5.24, the area of cross-section,
A=bxt=3txt=3t2 (v b=3t)

We know that tensile load (P),
80x10%® =6, x A=70 x 312 = 210 t?
. t2 = 80 x 103/ 210=381 or t=19.5say 20 mm Ans.
and b=3t=3x20=60mmAns

When thelink isin the position shown by dotted lines, it will be subjected to direct stressaswell
as bending stress. We know that area of cross-section,

A =Db xt
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Direct tensile stress,

_P__P
% = A bxt
d bendi _M_P.e_6P.e [ . t(bl)zj
and bending stress, o, =7 Z t (by)? 2=
.~ Total stress due to eccentric loading
6P.e P P (6e
= Op + 0y = >+ = —+1
t(b)? bxt t.b (b
Since the permissible tensile stress is the same as 70 N/mm?, therefore
3 3
_ 80x10° (6xb, +1) = 16x10 ( Eccentricity, ezgl)
20b; \byx2 b, 2

b, = 16 x 103/ 70 = 228.6 say 230 mm Ans.

Example5 23. Acast-iron link, as shown in Fig. 5.25, isto carry aload of 20 kN. If thetensile
and compressive stresses in the link are not to exceed 25 MPa and 80 MPa respectively, obtain the
dimensions of the cross-section of the link at the middle of its length.

2a
—>{3
A
1 3a i 1
20 kN - — :i::a - 20 kN
i |<_3a_>| ) .
Fig. 5.25
Solution. Given: P=20kN =20 x 103N ; Oymax) = 25 MPa=25 N/mm?; o, ( =80 MPa
= 80 N/mm? 2a

Sincethelink issubjected to eccentric loading, thereforethere —»| 3 |<_ —>| 3 |<—
will be direct tensile stress as well as bending stress. The bending
stress at the bottom of thelink istensile and in the upper portionis
compressive. _L :

We know that cross-sectional area of thelink, N

A:3a><a+2><2—::1 X 2a

= 5.67 a2 mm?
-. Direct tensile stress,

3
_P_20x10°_353%0

%~ A se7a?  a
Now let us find the position of centre of gravity (or neutral axis) in order to find the bending

stresses.

Let 9 = Distanceof neutral axis(N.A.) from the bottom of thelink asshown
inFig. 5.26.
. 3ax % + 2% 4% x 2a
= =12amm
Y 5.67 a?
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Moment of inertiaabout N.A.,

2 3
, , 3 ax (2a) 452
+3a“(l.2a—-0.5a8)“ |+ 2

+— (2a-1.2a)°
3 ( )

|- [Sa x a’
12
= (0.25 a* + 1.47 a% + 2 (0.44a* + 0.85 a*) = 4.3 a* mm*
Distance of N.A. from the bottom of the link,
y, =y =1l2amm
Distance of N.A. from the top of thelink,
y. =3a-1l2a=18amm
Eccentricity of theload (i.e. distance of N.A. from the point of application of the load),
e=12a-05a=0.7amm
We know that bending moment exerted on the section,
M = Pe=20x10%x 0.7a= 14 x 10°aN-mm
. Tensile stressin the bottom of the link,

oM M M.y, 14x10®ax12a 3907
vtz ly, I 43a* a?

and compressive stress in the top of thelink,

M _ M _ M.y _14x10°ax18a _ 5860
%z T 1ly, | 434" a’

We know that maximum tensile stress [, (max)] ;

3907 5860 9767

25 =0+ 0 = 2 2 2
a® =9767/25=390.7 or a=19.76mm (1)
and maximum compressive stress [co(mx)],
80 = o, — 0, = 58(230 3 3530 _ 2330
a a a
a? =2330/80=29.12 or a=54mm (1)

We shall take the larger of thetwo values, i.e.
a = 19.76 mm Ans.

Example5.24. Ahorizontal pull P= 5kN isexerted by the belting on one of the cast iron wall
brackets which carry a factory shafting. At a point 75 mm from the wall, the bracket has a T-section
asshown in Fig. 5.27. Cal culate the maximum stressesin the flange and web of the bracket dueto the
pull.
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All dimensions in mm.

Fig. 5.27

Solution. Given : Horizontal pull, P =5kN =5000 N

Sincethe sectionis subjected to eccentric loading, therefore there will be direct tensile stressas
well as bending stress. The bending stress at the flange istensile and in the web is compressive.

We know that cross-sectional area of the section,

A =60 x 12+ (90— 12)9 = 720 + 702 = 1422 mn?
.. Direct tensile stress,c, = P _ 5000 =3.51 N/mm? = 3.51 MPa
O A 1422

Now let us find the position of neutral axis in order to determine the bending stresses. The

neutral axis passes through the centre of gravity of the section.

Let y = Distanceof centreof gravity (i.e. neutral axis) fromtop of theflange.
_ 60><12><12+78><9(12+78)
y = 2 27 _ 282 mm
720 + 702
Moment of inertia of the section about N.A.,

+720 (28.2 - 6)2} + [%28)3 + 702 (51— 28.2)2}

. {60(12)3
- 12

= (8640 + 354 845) + (355 914 + 364 928) = 1 084 327 mm*

. ST - L LT
= f‘_._ . ; ——
This picture shows a reconnoissance helicopter of air force. Its dark complexion absorbs light that falls
on its surface. The flat and sharp edges deflect radar waves and they do not return back to the radar.
These factors make it difficult to detect the helicopter.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Distance of N.A. from the top of theflange,
y, = y =282mm
Distance of N.A. from the bottom of the web,
Y, = 90-282=61.8mm
Distance of N.A. from the point of application of the load (i.e. eccentricity of the load),
e = 50+282=782mm
We know that bending moment exerted on the section,
M = P xe=5000x 78.2=391 x 10°N-mm
. Tensile stressin the flange,
M M M.y 391x10°x 28.2

6, = —= = =10.17 N/mm?
oz 1y I 1084 327
= 10.17 MPa
and compressive stressin the web,
3
o = M_ M _M.y _391x10°x618 _ 29 28 N/mm>
¢ Z, Iy, I 1084 327
= 22.28 MPa

We know that maximum tensile stressin the flange,
Oimaxy = Op+ 0, =0+ 0, = 10.17 + 3.51 = 13.68 MPaAns.
and maximum compressive stressin the flange,
Ogmax) = Op —0p =0, =0 = 22.28 —3.51 =18.77 MPa Ans.
Example 5.25. A mild steel bracket as shown in Fig. 5.28, is subjected to a pull of 6000 N
acting at 45° to its horizontal axis. The bracket has a rectangular section whose depth is twice the

thickness. Find the cross-sectional dimensions of the bracket, if the permissible stressin the material
of the bracket is limited to 60 MPa.

Solution. Given: P =6000N ; 6 =45°; ¢ =60 MPa= 60 N/mm?
Let t = Thickness of the section in mm, and
b = Depth or width of the section=2t ...(Given)

We know that area of cross-section,
A=bxt=2txt=2t2mm?

t x b? L
and section modulus, Z= 5 T Py
t (20)° ’ 75 mm 45°
= 6 —>| t |<— |
i p 6000 N
41° 3 % * v
=—mm® T T T T
6 y
Horizontal component of the load, —b
P,, = 6000 cos45°
= 6000x0.707 e 130mm——"—>

= 4242N Fig. 5.28

. Bending moment due to horizontal
component of the load,

M,, = P, x 75=4242 x 75 = 318 150 N-mm
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A little consideration will show that _ ——,
the bending moment duetothe horizontal ~ TUPine
component of the load induces tensile St
stress on the upper surface of the bracket Generator_ ==
and compressive stress on the lower ™%
surface of the bracket.

- Maximum bending stress on
the upper surface due to horizontal

Component' Curved =
blades
_My

o Z Water
318150 % 6 Schematic of a hydel turbine.

3 Note : This picture is given as additional information
4t and is not a direct example of the current chapter.

Water =

477 225
t3

N/mm? (tensile)

Vertical component of the load,
P, = 6000 sin 45° = 6000 x 0.707 = 4242 N
.~. Direct stress due to vertical component,

_ R 4242 2121 2 .
Oy = VN N/mm< (tensile)
Bending moment due to vertical component of the load,
M, = P, x 130 = 4242 x 130 = 551 460 N-mm

This bending moment induces tensile stress on the upper surface and compressive stress on the
lower surface of the bracket.

.. Maximum bending stress on the upper surface due to vertical component,

G = M, 551460x6 827190
v T 7 413 3
and total tensile stress on the upper surface of the bracket,
477225 2121 827190 1304 415 N 2121

N/mm? (tensile)

T t2 t3 t3 t2
Since the permissible stress (o) is 60 N/mm?, therefore
1304 415 2121 21740 354
3 + > = 60 or 3 + —2 = 1
t t t t
o t =284 mmAns. ... (By hit and trial)
and b =2t =2x284=56.8mm Ans.

Example 5.26. A C-clamp as shown in Fig. 5.29, carriesaload P = 25 kN. The cross-section
of the clamp at X-X isrectangular having width equal to twice thickness. Assuming that the clamp is
made of steel casting with an allowable stress of 100 MPa, find its dimensions. Also determine the
stresses at sections Y-Y and Z-Z.

Solution. Given: P=25kN =25x 103N ; ¢ =100 MPa= 100 N/mm?

t(max)
Dimensions at X-X
Let t = Thickness of the section at X-X in mm, and
b = Width of the sectionat X-Xinmm= 2t ...(Given)
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We know that cross-sectional areaat X-X, Y 140 mm —s-
A =bxt=2txt=2t2mm? b Z
. Direct tensile stress at X-X, 45f X’__!__ -
7
P 25x10° TN
T | Y
2t | 40
125%x10° i
= === N/mm® X—-—I—-——-X
t > b €
Bending moment at X-X dueto theload P, | 02 P
M = Pxe=25x10°x 140 | —j—
_ N
= 35x 10°N-mm 1
t.b? t()? 4t
Section modulus, Z= 5 - (6) = mm? <— 150 mm —>
Fig. 5.29
(v b=2Y

. Bending stress at X-X,
M 35x10°x6 5.25x10°

o, = — = N/mm? (tensile
N 4¢3 2 (tensle)
We know that the maximum tensile stress[c, (max)] ,
125x10®° 525x10°
100 =o,+0, = 2 + a
3
or @+52.5><10 _1-0
t2 t3
o t = 38.5mmAns. ...(By hit and trial)
and b=2t=2x385=77mmAns.

Stresses at section Y-Y

Since the cross-section of frame is uniform throughout, therefore cross-sectional area of the
frame at section Y-Y,

A =Dbsec45° xt =77 x 1.414 x 38.5 = 4192 mm?
Component of the load perpendicular to the section
= Pcos45° =25x 103 x 0.707 = 17 675N
This component of the load produces uniform tensile stress over the section.
. Uniform tensile stress over the section,
o = 17675/ 4192 = 4.2 N/mm? = 4.2 MPa
Component of the load parallel to the section
= Psin45° =25x10%x 0.707 =17 675N
This component of the load produces uniform shear stress over the section.
-~ Uniform shear stress over the section,
T = 17675/ 4192 = 4.2 N/mm? = 4.2 MPa
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We know that section modulus,
t (b sec 45°)> 385 (77 x 1.414)?
Z= =
6 6
Bending moment dueto load (P) over the section Y-Y,

M = 25x10°x 140=3.5x 10°N-mm
-. Bending stress over the section,

M 35x10° 5
=SS5 =——3 =46 N/mm* =46 MPa
Z 76x10

Dueto bending, maximum tensile stress at theinner corner and the maximum compressive stress
at the outer corner is produced.

. Maximum tensile stress at the inner corner,
0, = 0,+0,=46+4.2=502MPa
and maximum compressive stress at the outer corner,
0, = 0,—0,=46-4.2=41.8MPa
Since the shear stress acts at right angles to the tensile and compressive stresses, therefore
maximum principal stress (tensile) on the section Y-Y at the inner corner

= G+ sbleteart |22 202t ax e Jwea

= 25.1+25.4=50.5MPaAns.
and maximum principal stress (compressive) on section Y-Y at outer corner

- %+%[,/(oc)2+4rz]=£2'8+%[\/(41.8)2+ 4% (42?2 | MPa
= 209+21.3=42.2 MPaAns.
Maximumshear stress = 3[ /(02 + 472 | =3[ /(5027 + 4x (42)? | = 25.4 MPa Ans

Stresses at section Z-Z

=76 x 103 mm?®

Op

We know that bending moment at section Z-Z,
= 25x 10° x 40 = 1 x 105 N-mm

t.b?> 385(77)°
6 6
.. Bending stress at section Z-Z,
M 1x10°
O, = 5 =— 3 = 263N/mm?=263MPaAns.
Z 38x10

Thebending stressistensile at theinner edge and compressive at the outer edge. The magnitude
of both these stressesis 26.3 MPa. At the neutral axis, thereisonly transverse shear stress. The shear
stress at the inner and outer edges will be zero.

We know that * maximum transverse shear stress,

=38 x 103 mm3

and section modulus, Z =

P 25x 10°
Toax = 1.5 % Average shear stress= 1.5x— =15

X —
b.t 77 % 38.5
= 12.65 N/mm? = 12.65 MPa Ans.

*  Refer Art. 5.16
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h Sluice gate Dam Spillway

-—

\

Water fromthe  The flow of Turbinesdrive  Cables carry Excess water
reservoir water makes generator to away the flows over
passes through  the turbine shaft  produce electricity for spillway

a gate turn electricity use

General layout of a hydroelectric plant.

Note : This picture is given as additional information and is not a direct example of the current chapter.

5.16 Shear Stresses in Beams

In the previous article, we have assumed that no shear force is acting on the section. But, in
actual practice, when abeam isloaded, the shear force at a section always comesinto play along with
the bending moment. It has been observed that the effect of the shear stress, as compared to the
bending stress, is quite negligible and is of not much importance. But, sometimes, the shear stress at
asection is of much importance in the design. It may be noted that the shear stressin abeam is not
uniformly distributed over the cross-section but varies from zero at the outer fibresto a maximum at
the neutral surface as shown in Fig. 5.30 and Fig. 5.31.

- A

I h
y 2
N Yy

SN

Fig. 5.30. Shear stressin arectangular beam. Fig. 5.31. Shear stressin acircular beam.

The shear stressat any section actsin aplane at right angleto the plane of the bending stressand
itsvalueisgiven by

F —
T = WXAy
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where F = Vertical shear force acting on the section,
I = Moment of inertiaof the section about the neutral axis,
b = Width of the section under consideration,
A = Areaof the beam above neutral axis, and

y = Distance between the C.G. of the areaand the neutral axis.

Thefollowing values of maximum shear stressfor different cross-section of beamsmay be noted

1. For abeam of rectangular section, as shown in Fig. 5.30, the shear stressat adistancey from
neutral axisisgiven by

F (h? zj 3F { b.hﬂ
= —|—- = h2 — 4y? I XN =
2l (4 y 2b.hd ( y) 12
and maximum shear stress,

3F ( " h)

= — Substituting y=—

T 5 h gy 5

o _F _F

=15 T(average) .| * “(average) — Area_ b.h

The distribution of stressis shownin Fig. 5.30.
2. For abeam of circular section as shown in Fig. 5.31, the shear stress at a distance y from

neutral axisisgiven by
F (d? 2) 16F > , >
=—|—- = d--4
T ( 2V ) g @)

and the maximum shear stress,

T = L ...| Substituting y = 9
max T 2 2
3x 4 d
4 .. ‘[ = 7': = F
= § T(average) | e Area % d?

The distribution of stressisshownin Fig. 5.31.

3. For abeam of I-section asshownin Fig. 5.32, the maximum shear stressoccurs at the neutral
axisandisgiven by

FlB, , b.hz}
=—|—=(H“=h —_—
T I.b[S( ) 8
s ——]
T b |
H PR
H?2 % h
| 2R I
—3 p a—
Flange
N /Web
| |
Fig. 5.32
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Shear stress at the joint of the web and the flange

= = (H2-1)
and shear stress at the junction of the top of the web and bottom of the flange

F
= —x— (H2-h?
=3 ( )
The distribution of stress |sshown inFig. 5.32.

Example 5.27. A beam of |-section 500 mm deep and 200 mm wide has flanges 25 mm
thick and web 15 mmthick, as shownin Fig. 5.33 (a). It carries a shearing force of 400 kN. Find
the maximum intensity of shear stress in the section, assuming the moment of inertia to be
645 x 108 mm*. Also find the shear stress at the joint and at the junction of the top of the web
and bottom of the flange.

Solution. Given : H =500 mm; B =200 mm; h =500 — 2 x 25 = 450 mm; b = 15 mm;
F =400kN =400 x 103N ; | = 645 x 10 mm*

3.7 MPa

15 —

h
N =— \ 500
2

Flange

0
|<—200 —>|

All dimensions in mm.

(b)

Fig. 5.33
Maximum intensity of shear stress
We know that maximum intensity of shear stress,

F B, , ., b.hz}
= 2 HZ-n?) + 2
Tmex I.b[S( )+ 73
3 2
= 20x10 [200 (5002 — 4507) + 12X 4507 }N/mmz
645 x 10° x 15

= 64.8 N/mm? = 64.8 MPaAns.
The maximum intensity of shear stress occurs at neutral axis.

Note : The maximum shear stress may also be obtained by using the following relation :

_ F.A.y

max I .b

We know that area of the section above neutra axis,

450
A =200 x 25+ Y x 15 = 8375 mm?
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Distance between the centre of gravity of the areaand neutral axis,

v = 200x25(225+12.5) + 225x15%x112.5

y =187 mm
8375
400x 10°x 8375 x 187 )
Trax = 5 =64.8 N/mm? = 64.8 MPaAns.
645% 10°%x 15

Shear stress at thejoint of the web and the flange
We know that shear stress at the joint of the web and the flange

3
_ F (n2_pp) - _400x10 :

8l 8x 645x%x 10
= 3.7N/mm?2=3.7MPaAns.

[ (500) - (450)? | N/mm?

Shear stress at the junction of the top of the web and bottom of the flange
We know that shear stress at junction of the top of the web and bottom of the flange

3
- P B =&m6
8l b 8x 645x10

= 49 N/mm? = 49 MPaAns.

x % [ (500)2— (450)2 | N/mm?

The stress distribution is shown in Fig. 5.33 (b)

EXERCISES

A steel shaft 50 mm diameter and 500 mm long is subjected to a twisting moment of 1100 N-m, the
total angle of twist being 0.6°. Find the maximum shearing stress devel oped in the shzaft and modulus
of rigidity. [Ans. 44.8 M Pa; 85.6 kN/m?|

A shaft istransmitting 100 kW at 180 r.p.m. If the allowable stressin the material is 60 MPa, find the
suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 metres.
Take C = 80 GPa. [Ans. 105 mm]

Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r.p.m. The shear
stress in the shaft is not to exceed 70 MPa and the maximum torque exceeds the mean by 40%. Also
find the angle of twist in alength of 2 metres. Take C = 90 GPa. [Ans. 80 mm; 2.116°]

Design a hollow shaft required to transmit 11.2 MW at a speed of 300 r.p.m. The maximum shear
stress allowed in the shaft is 80 MPa and the ratio of the inner diameter to outer diameter is 3/4.
[Ans. 240 mm; 320 mm]

Compare theweights of equal lengths of hollow shaft and solid shaft to transmit agiven torque for the
same maximum shear stress. The material for both the shafts is same and inside diameter is 2/3 of
outside diameter in case of hollow shaft. [Ans. 0.56]

A spindle as shown in Fig. 5.34, isapart of an industrial brake and is loaded as shown. Each load P
isequal to 4 kN and is applied at the mid point of its bearing. Find the diameter of the spindle, if the

maximum bending stress is 120 MPa. [Ans. 22 mm]
—> 25mm |«——— 125 mm » 25 mm le—
y P yP
I” I*
Fig. 5.34

7. A castiron pulley transmits 20 kW at 300 r.p.m. The diameter of the pulley is 550 mm and has four

straight arms of elliptical cross-section in which the major axis is twice the minor axis. Find the
dimensions of the arm, if the allowable bending stressis 15 MPa. [Ans. 60 mm; 30 mm]
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8. A shaftissupported in bearings, the distance between their centresbeing 1 metre. It carriesapulley in
the centre and it weighs 1 kN. Find the diameter of the shaft, if the permissible bending stress for the
shaft material is 40 MPa. [Ans. 40 mm]

9. A punch press, used for stamping sheet metal, has a punching capacity of 50 kN. The section of the
frameis as shown in Fig. 5.35. Find the resultant stress at the inner and outer fibre of the section.
[Ans. 28.3 MPa (tensile); 17.7 M Pa (compressive)]

A
X O
| 100 ¥
N
l I
|
I
| | - I
= 200 ¢St
7
100 300
Section at X-X
Section at A-A
All dimensions in mm. All dimensions in mm.
Fig. 5.35 Fig. 5.36
10. A crane hook has a trapezoidal section at A-A as shown in Fig. 5.36. Find the maximum stress at
points P and Q. [Ans. 118 M Pa (tensile); 62 M Pa (compressive)]

11. A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial 1oad of 5000
N, asteady torque of 50 N-m and maximum bending moment of 75 N-m. Calculatethe factor of safety
available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory.

Assume yield strength as 400 MPa for plain carbon steel. If al other data remaining same, what
maximum yield strength of shaft material would be necessary using factor of safety of 1.686 and
maximum distortion energy theory of failure. Comment on the result you get.

[Ans. 1.752; 400 M Pa]

12. A hand cranking lever, as shown in Fig. 5.37, is used to start a truck engine by applying a force
F =400 N. The material of the cranking lever is 30C8 for which yield strength = 320 MPa; Ultimate
tensile strength = 500 MPa ; Young's modulus = 205 GPa ; Modulus of rigidity = 84 GPaand poisson’s

ratio=0.3.
, F
e
|
|
X : 200 mm
|
| Y / |
e
!-44 400 mm —»!

Fig. 5.37
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Assuming factor of safety to be 4 based onyield strength, design thediameter ‘d’ of thelever at section
X-X near the guide bush using : 1. Maximum distortion energy theory; and 2. Maximum shear stress
theory. [Ans. 28.2 mm; 28.34 mm]
An offset bar is loaded as shown in Fig. 5.38. The weight of the bar may be neglected. Find the
maximum offset (i.e., the dimension x) if allowable stressin tension is limited to 70 MPa.

[Ans. 418 mm]

10 kN

All dimensions in mm. All dimensions in mm.

Fig. 5.38 Fig. 5.39

A crane hook made from a50 mm diameter bar is shown in Fig. 5.39. Find the maximum tensile stress
and specify itslocation. [Ans. 35.72 MPaat A]
An overhang crank, as shown in Fig. 5.40 carries a tangential load of 10 kN at the centre of the
crankpin. Find the maximum principal stress and the maximum shear stress at the centre of the crank-

shaft bearing. [Ans. 29.45 M Pa; 18.6 M Pa]
e
R et
T 50

I

}ioﬂz_sk— e 1(;0 —

All dimensions in mm. All dimensions in mm.

Fig. 5.40 Fig. 5.41

A steel bracket is subjected to a load of 4.5 kN, as shown in Fig. 5.41. Determine the required
thickness of the section at A-A in order to limit the tensile stress to 70 MPa. [Ans. 9 mm]
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17.

A wall bracket, as shownin Fig. 5.42, is subjected to apull of P =5 kN, at 60° to the vertical. The
cross-section of bracket isrectangular having b = 3t . Determine the dimensions b and t if the stress
in the material of the bracket is limited to 28 MPa. [Ans. 75 mm; 25 mm]

18.

19.

20.

< 120
160
—>| 40
7
60
—{t | |
7 A L _|_ _
I —— — b R —
7R \ '
{30 [=—
|
All dimensions in mm. All dimensions in mm.
Fig. 5.42 Fig. 5.43

A bracket, as shown in Fig. 5.43, isbolted to the framework of a machine which carriesaload P. The
cross-section at 40 mm from the fixed end is rectangular with dimensions, 60 mm x 30 mm. If the
maximum stressis limited to 70 MPa, find the value of P.
[Ans. 3000 N]
A T-section of abeam, as shown in Fig. 5.44, is subjected to avertical shear force of 100 kN. Calcu-
late the shear stress at the neutral axis and at the junction of the web and the
flange. The moment of inertia at the neutral axisis 113.4 x 106 mm*.
[Ans. 11.64 MPa; 11 MPa; 2.76 M Pa]

e—200—~ y le—60—> ¥

—»>» <15

250 ~— Web 120

4
—50 e— 15

— 60— 1
All dimensions in mm. All dimensions in mm.
Fig. 5.44 Fig. 5.45

A beam of channel section, asshown in Fig. 5.45, is subjected to avertical shear force of 50 kKN. Find
the ratio of maximum and mean shear stresses. Also draw the distribution of shear stresses.
[Ans. 2.22]

QUESTIONS

Derive arelation for the shear stress developed in a shaft, when it is subjected to torsion.
State the assumptions made in deriving a bending formula.
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Provetherelation: M/l =cly = E/R

where M = Bending moment; | = Moment of inertia; 6 = Bending stressin afibre at adistancey from
the neutral axis; E = Young's modulus; and R = Radius of curvature.

Write the relations used for maximum stress when a machine member is subjected to tensile or com-
pressive stresses along with shearing stresses.

Write short note on maximum shear stress theory verses maximum strain energy theory.
Distinguish clearly between direct stress and bending stress.
What is meant by eccentric loading and eccentricity?

Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column,
when it is subjected to

(a) an eccentric load about one axis, and (b) an eccentric load about two axes.

OBJECTIVE TYPE QUESTIONS

When a machine member is subjected to torsion, the torsional shear stress set up in the member is
(@) zero at both the centroidal axis and outer surface of the member

(b) Maximum at both the centroidal axis and outer surface of the member

(c) zero at the centroidal axisand maximum at the outer surface of the member

(d) none of the above

Thetorsional shear stress on any cross-section normal to the axisis......... the distance from the centre
of the axis.

(a) directly proportional to (b) inversely proportional to

The neutral axis of abeam is subjected to

(@) zerostress (b) maximum tensile stress

() maximum compressive stress (d) maximum shear stress

At the neutral axis of abeam,

(a) thelayers are subjected to maximum bending stress

(b) thelayers are subjected to tension (c) thelayers are subjected to compression
(d) thelayersdo not undergo any strain

The bending stressin a curved beam is

(a) zero at the centroidal axis (b) zero at the point other than centroidal axis
(c) maximum at the neutral axis (d) none of the above

The maximum bending stress, in a curved beam having symmetrical section, always occur, at the
(a) centroidal axis (b) neutral axis

(c) insidefibre (d) outsidefibre

If d = diameter of solid shaft and t = permissible stress in shear for the shaft material, then torsional
strength of shaft iswritten as

@) %d“r (b) dlog,t

© %d3f ) %d"‘r

If d; and d, are the inner and outer diameters of a hollow shaft, then its polar moment of inertiais
(@) 55 (do)*=(0)*] () 55(@0)°~(@)°]

(© 55 (@)~ @)’ (@) 55 do—d)
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9. Two shafts under pure torsion are of identical length and identical weight and are made of same
material. The shaft A is solid and the shaft B is hollow. We can say that

(a) shaft Bis better than shaft A
(b) shaft Ais better than shaft B
(c) both the shafts are equally good
10. A solid shaft transmits atorque T. The allowable shear stressis t. The diameter of the shaft is

16T 4327
@ §rt ®) ¥ 7t
64T 16T
3 —— 3=

© g (d) .

11.  When amachine member is subjected to atensile stress (c,) due to direct load or bending and a shear
stress (1) due to torsion, then the maximum shear stress induced in the member will be

@ 3[J?+ad] ® 1[J©e)—av]
© [Jo?+ai?] (d) (0)?+47

12. Rankin€'stheory isused for

(@) brittle materials (b) ductile materials
(c) elastic materials (d) plastic materials
13. Guest'stheory is used for
(@) brittle materials (b) ductile materials
(c) elasticmaterias (d) plastic materials
14. At the neutral axisof abeam, the shear stressis
(@) zero (b) maximum
(c) minimum
15. The maximum shear stress developed in a beam of rectangular section is ........ the average shear
stress.
(@) equd to (b) 3 times
() 1.5times
ANSWERS
1. (b 2. (8 3. (@ 4. (d) 5. (b)
6. (¢ 7. (¢ 8. (@ 9. (@ 10. (a)
11. (a) 12. (a) 13. (b) 14. (b) 15. (o)
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Variable Stresses in
Machine Parts

A L N=

Infroduction.

Completely Reversed or
Cyclic Stresses.

Fatigue and Endurance
Limit.

Effect of Loading on
Endurance Limit—Load
Factor.

Effect of Surface Finish on
Endurance Limit—Surface
Finish Factor.

Effect of Size on Endurance
Limit—Size Factor.
Relation Between
Endurance Limit and
Ultimate Tensile Strength.
Factor of Safety for Fatigue
Loading.

Stress Concentration.

. Theoretical or Form Stress

Concentration Factor.
Stress Concentration due fo
Holes and Notches.
Factors to be Considered
while Designing Machine
Parts to Avoid Fatigue
Failure.

Stress Concentration
Factor for Various Machine
Members.

Fatigue Stress
Concentration Factor.
Notch Sensitivity.
Combined Steady and
Variable Stresses.

Gerber Method  for
Combination of Stresses.

., Goodman Method for

Combination of Stresses.

. Soderberg Method for

Combination of Stresses.

6.1 Introduction

We have discussed, in the previous chapter, the
stresses due to static loading only. But only afew machine
parts are subjected to static loading. Since many of the
machine parts (such asaxles, shafts, crankshafts, connecting
rods, springs, pinion teeth etc.) are subjected to variable or
alternating loads (also known as fluctuating or fatigue
loads), therefore we shall discuss, in this chapter, the
variable or alternating stresses.

6.2 Completely Reversed or Cyclic Stresses

Consider arotating beam of circular cross-section
and carrying a load W, as shown in Fig. 6.1. This load
induces stresses in the beam which are cyclic in nature. A
little consideration will show that the upper fibres of the
beam (i.e. at point A) are under compressive stress and the
lower fibres (i.e. at point B) are under tensile stress. After
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half a revolution, the point B occupies the position of

point A and the point A occupiesthe position of point B. ¢ A
Thus the point B is now under compressive stress and
the point A under tensile stress. The speed of variation
of these stresses depends upon the speed of thebeam. A | W

From above we see that for each revolution of the
beam, thestressesare reversed from compressivetotensile.
The stresseswhich vary from onevalue of compressiveto
the same va ue of tensile or vice versa, are known as completely reversed or cyclic stresses.

Notes: 1. The stresses which vary from aminimum val ue to amaximum value of the same nature, (i.e. tensile or
compressive) are called fluctuating stresses.

2. The stresses which vary from zero to a certain maximum value are called repeated stresses.

3. The stresses which vary from aminimum value to amaximum value of the opposite nature (i.e. from a
certain minimum compressive to acertain maximum tensile or from aminimum tensileto amaximum compressive)
are called alternating stresses.

Fig. 6.1. Reversed or cyclic stresses.

6.3 Fatigue and Endurance Limit

It has been found experimentally that when amaterial issubjected to repeated stresses, it failsat
stresses below the yield point stresses. Such type of failure of a material is known as fatigue. The
failureiscaused by meansof aprogressive crack formation which are usually fine and of microscopic
size. The failure may occur even without any prior indication. The fatigue of material is effected by
the size of the component, relative magnitude of static and fluctuating loads and the number of load
reversals.

875 mm 5 ! Gmax
2 /\ ] /\
= o,
= o
2 Oy
g
R=251 mm § AN G in

(a) Standard specimen. (b) Completely reversed stress.

Tension
—»

A

} ; L
7 2 ﬁ
[ I ? L e
« 'z
i | ! 1

{ | :

o) — > ©)
— No. of cycles —> Gin=0  Time

(¢) Endurance or fatigue limit. (d) Repeated stress. (e) Fluctuating stress.

Fig. 6.2. Time-stress diagrams.

In order to study the effect of fatigue of a material, a rotating mirror beam method is used. In
this method, a standard mirror polished specimen, as shown in Fig. 6.2 (a), is rotated in a fatigue
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testing machine while the specimen is loaded
in bending. As the specimen rotates, the
bending stress at the upper fibres varies from
maximum compressive to maximum tensile
while the bending stress at the lower fibres
varies from maximum tensile to maximum
compressive. In other words, the specimen is
subjected to acompletely reversed stresscycle.
This is represented by a time-stress diagram
as shown in Fig. 6.2 (b). A record is kept of
the number of cycles required to produce
failure at a given stress, and the results are
plotted in stress-cycle curve as shown in Fig.
6.2 (¢). A little consideration will show that if
the stressiskept below acertain valueasshown
by dotted linein Fig. 6.2 (c), the material will not fail whatever may be the number of cycles. This
stress, as represented by dotted line, is known as endurance or fatigue limit (c,). It is defined as
maximum value of the completely reversed bending stresswhich apolished standard specimen can
withstand without failure, for infinite number of cycles (usually 107 cycles).

It may be noted that the term endurance limit is used for reversed bending only while for other
types of loading, theterm endurance strength may be used when referring the fatigue strength of the
material. It may be defined as the safe maximum stress which can be applied to the machine part
working under actual conditions.

We have seen that when a machine member is subjected to a completely reversed stress, the
maximum stressin tension isequal to the maximum stressin compression asshowninFig. 6.2 (b). In
actual practice, many machine members undergo different range of stress than the completely
reversed stress.

The stress verses time diagram for fluctuating stress having values 6, ;, and ., isshown in
Fig. 6.2 (e). Thevariable stress, in general, may be considered as acombination of steady (or mean or
average) stress and a completely reversed stress component 6. The following relations are derived
from Fig. 6.2 (e):

1. Mean or average stress,

_ - -
A machine part is being turned on a Lathe.

_ 0-max + Gmin
m - 2
2. Reversed stress component or alternating or variable stress,

(¢}

_ Smax ~ Omin
o, = - 5
Note: For repeated |oading, the stress varies from maximum to zero (i.e. 6,,;,, = 0) in each cycleas shownin Fig.
6.2 (d).

Gmax
Oy = 0,= 2

c
3. Stressratio, R= cﬂ . For completely reversed stresses, R=—1 and for repeated stresses,

min
R = 0. It may be noted that R cannot be greater than unity.
4. The following relation between endurance limit and stress ratio may be used
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where

¢', = Endurance limit for any stress range represented by R.
6, = Endurance limit for completely reversed stresses, and
R = Stressratio.

6.4 Effect of Loading on Endurance Limit—Load Factor
The endurance limit () of a material as determined by the rotating beam method is for
reversed bending load. There are many machine members which are subjected to loads other than

reversed bending loads. Thus the endurance limit will
also be different for different types of loading. The
endurance limit depending upon the type of loading may
be modified as discussed below:

Let K,

= Load correction factor for the
reversed or rotating bending |oad.
Itsvalueisusually taken as unity.

= Load correction factor for the
reversed axial load. Its value may
be taken as 0.8.

= Load correction factor for the
reversed torsional or shear load. Its
value may be taken as 0.55 for
ductile materialsand 0.8 for brittle
materials.

.. Endurance limit for reversed bending load, Oy, = 0K, =0, (e Kp=1)
Endurance limit for reversed axial load, Gy = 0K,
and endurance limit for reversed torsiona or shear load, 1, = 6K

6.5 Effect of Surface Finish on Endurance Limit—Surface Finish Factor

When a machine member is subjected to variable loads, the endurance limit of the material for
that member depends upon the surface conditions. Fig. 6.3 shows the values of surface finish factor
for the various surface conditions and ultimate tensile strength.

Surface finish factor —>

o Mirror polished
. —— IP T T
0.9 I ——— S ohlshed I A
0.8 b \\\\\Machined I
Wi —
0.7 = Yith g, —
o N arp Cich']a u ——
. \ T Otcb
0.5 ™ Wftb| m 1| \!\\ -
0.4 ~_lu, dor ! scaje ~
OI‘([I‘Ha ~l I~
0.3 L Watey -
0.2 ~nder Salt watey —
0.1 N B e —
0

280 420 560 700 840 980 1120 1260 1400 1540
——— Ultimate tensile strength, MPa ——
Fig. 6.3. Surface finish factor for various surface conditions.

When the surfacefinish factor isknown, then the endurance limit for the material of the machine
member may be obtained by multiplying the endurance limit and the surface finish factor. We see that
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for amirror polished material, the surface finish factor isunity. In other words, the endurancelimit for
mirror polished material is maximum and it goes on reducing due to surface condition.

Let Ky, = Surfacefinish factor.
Endurancelimit,

Variable Stresses in Machine Parts

Oy = 04Ky, = 0K, Ky, =0.K,, (0 Kp=1)
...(For reversed bending load)

=0, Ky, = 0K K, ...(For reversed axial load)

= 1.Ky, = 0. KK, ...(For reversed torsional or shear load)

Note: The surface finish factor for non-ferrous metals may be taken as unity.

6.6 Effect of Size on Endurance Limit—Size Factor

A little consideration will show that if the size of the standard specimen asshowninFig. 6.2 (a)
isincreased, then the endurance limit of the material will decrease. Thisisdueto thefact that alonger
specimen will have more defects than asmaller one.

Let K = Sizefactor.

Endurance limit,

Oy, = 0y XK, ...(Considering surface finish factor also)

= 04Ky Ky = 0K Ky, Ky = 0K K, (- K,=1)
= O, KSur Ko =0.K, Ky, Ky ...(For reversed axial load)
= 1Ky Ky = 0. KoK K, ... (For reversed torsional or shear load)

Notes: 1. The value of size factor is taken as unity for the standard specimen having nominal diameter of
7.657 mm.

2. When the nominal diameter of the specimen is more than 7.657 mm but less than 50 mm, the value of
size factor may be taken as 0.85.

3. When the nominal diameter of the specimen is more than 50 mm, then the value of size factor may be
taken as 0.75.

6.7 Effect of Miscellaneous Factors on
Endurance Limit
In addition to the surface finish factor (K,),
sizefactor (K_) and load factors K, K, and K, there
are many other factorssuch asrel |ab|I|ty factor (K),
temperature factor (K,), impact factor (K;) etc. which
has effect on the endurance limit of amaterial. Con-
sidering al thesefactors, the endurancelimit may be
determined by using the following expressions :
1. For the reversed bending load, endurance
limit,
0'y = Oy Ky K KKK
2. For thereversed axial load, endurance limit,
0’ = 0 Ky, K KKK
3. For the reversed torsional or shear Ioad,
endurancelimit,

In addition to shecrr tensile, compressive and
torsional stresses, temperature can add its own
stress (Ref. Chapter 4)

Note : This picture is given as additional information
and is not a direct example of the current chapter.

= 1K, K KKK
In solving probI ems, if the value of any of the

above factorsis not known, it may be taken as unity.
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6.8 Relation Between Endurance Limit and Ultimate Tensile Strength

It has been found experimentally that endurance limit (c,) of a material subjected to fatigue
loading is a function of ultimate tensile strength (c,). Fig. 6.4 shows the endurance limit of steel
corresponding to ultimate tensile strength for different surface conditions. Following are some
empirical relations commonly used in practice :

840
T 700
&

—

= 560 Grownd | ——
g —
g L~ ed
8 420 Mach\“ I
5 ] —
= — . !
< 280 L T Hot riolled .
= /i — — As forged ——

140 —F — e

— I
0

420 560 700 840 830 920 960 1000 1040 1080
—— Ultimate tensile strength, MPa ——

Fig. 6.4. Endurance limit of steel corresponding to ultimate tensile strength.
For steel, o, =050,;
For cast steel, o, =0.40;
For cast iron, o, =0350;
For non-ferrous metals and alloys, 6,=0.3¢,

6.9 Factor of Safety for Fatigue Loading

When acomponent is subjected to fatigue loading, the endurance limit isthe criterion for faliure.
Therefore, the factor of safety should be based on endurance limit. Mathematically,

Endurance limit stress o,

Factor of safety (F.S) = - - =
Design or working stress o
Note:  For steel, o, = 0810090,
where 6, = Endurance limit stress for completely reversed stress cycle, and
o, = Yield point stress.

Example 6.1. Determine the design stress for a piston rod where the load is completely
reversed. The surface of the rod is ground and
the surfacefinishfactor is0.9. Thereisno stress
concentration. The load is predictable and the
factor of safety is 2.

Solution. Given: K, =09 ;FS =2

The piston rod is subjected to reversed
axial loading. We know that for reversed axial
loading, the load correction factor (K,) is 0.8.

Piston rod
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If o, is the endurance limit for reversed bending load, then endurance limit for reversed axial
load,
O = 0. XK, XK, =06,%x08x09=0.72¢,
We know that design stress,
G 0720,

0y = —== =0.36 6 Ans.
F.S. 2

6.10 Stress Concentration
Whenever a machine component changes the shape of its cross-section, the simple stress
distribution no longer holds good and the neighbourhood of the discontinuity is different. This
irregularity inthe stress distribution caused by abrupt changes of formiscalled stress concentration.
It occursfor all kinds of stressesin the presence of fillets, notches, holes, keyways, splines, surface
roughness or scratches etc.
Inorder to understand fully theideaof stress
concentration, consider amember with different K
cross-section under a tensile load as shown in
Fig. 6.5. A little consideration will show that the

nominal stressintheright and left hand sideswill (
be uniform but in the region where the cross-
section is changing, are-distribution of theforce Fig. 6.5. Stress concentration.

within the member must take place. The material
near the edgesis stressed considerably higher than the average value. The maximum stress occurs at
some point on the fillet and is directed parallel to the boundary at that point.

6.11 Theoretical or Form Stress Concentration Factor

Thetheoretical or form stress concentration factor isdefined astheratio of the maximum stress
in a member (at a notch or afillet) to the nominal stress at the same section based upon net area.
Mathematically, theoretical or form stress concentration factor,

_ Maximum stress
' Nominal stress

The value of K, depends upon the material and geometry of the part.
Notes: 1. In static loading, stress concentration in ductile materials is not so serious as in brittle materials,
becausein ductile materialslocal deformation or yielding takes place which reduces the concentration. In brittle
materials, cracks may appear at theselocal concentrations of stresswhich will increasethe stress over therest of
the section. It is, therefore, necessary that in designing parts of brittle materials such as castings, care should be
taken. In order to avoid failure due to stress concentration, fillets at the changes of section must be provided.

2. Incyclicloading, stress concentration in ductile materialsis always serious because the ductility of the
material is not effective in relieving the concentration of stress caused by cracks, flaws, surface roughness, or
any sharp discontinuity in the geometrical form of the member. If the stressat any point in amember isabovethe
endurance limit of the material, a crack may develop under the action of repeated load and the crack will lead to
failure of the member.

6.12 Stress Concentration due to Holes and Notches

Consider a plate with transverse elliptical hole and subjected to atensile load as shown in Fig.
6.6 (a). We seefrom the stress-distribution that the stress at the point away from the holeispractically
uniform and the maximum stresswill beinduced at the edge of the hole. The maximum stressisgiven

by
2a
=0|l+—
© ( bj
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and the theoretical stress concentration factor,

Orax 2a
o= =)
When a/b is large, the ellipse approaches a crack transverse to the load and the value of K,
becomesvery large. When a/bissmall, the ellipse approaches alongitudinal slit [asshowninFig. 6.6

(b)] and theincreasein stressis small. When the holeiscircular asshown inFig. 6.6 (¢), thena/b=1
and the maximum stressis three times the nominal value.

Gmax
max

—>q
~fa j~

alb=1/2 alb=1
G pax = 20 G ppax = 30
(0) (o)
Fig. 6.6. Stress concentration due to holes.
The stress concentration in the notched tension member, as
shownin Fig. 6.7, isinfluenced by the depth a of the notch and radius
r at the bottom of the notch. The maximum stress, which applies to
members having notches that are small in comparison with the width

|
of the plate, may be obtained by the following equation, | L,
| a

2a
Opox = G(l-i- Tj

6.13 Methods of Reducing Stress Concentration Fig. 6.7. Stress concentration
We have already discussed in Art 6.10 that whenever thereis a due to notches.
changein cross-section, such as shoulders, holes, notches or keyways and wherethereisan interfer-
ence fit between ahub or bearing race and a shaft, then stress concentration results. The presence of
4 -

Crankshaft

stress concentration can not be totally eliminated but it may be reduced to some extent. A device or
concept that is useful in assisting a design engineer to visualize the presence of stress concentration
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and how it may be mitigated isthat of stressflow lines, asshownin Fig. 6.8. The mitigation of stress
concentration means that the stress flow lines shall maintain their spacing asfar as possible.

"// \
= =

7
'IIIIIIIIIIIIIII A
(a) Poor (b) Good

(c) Preferred (d) Preferred
Fig. 6.8

InFig. 6.8 (a) we seethat stresslinestend to bunch up and cut very closeto the sharp re-entrant
corner. In order to improve the situation, fillets may be provided, as shownin Fig. 6.8 (b) and (c) to
give more equally spaced flow lines.

Figs. 6.9t0 6.11 show the several ways of reducing the stress concentration in shafts and other
cylindrical members with shoulders, holes and threads respectively. It may be noted that it is not
practicable to use large radius fillets asin case of ball and roller bearing mountings. In such cases,
notches may be cut as shown in Fig. 6.8 (d) and Fig. 6.9 (b) and (c).

o

prs 7l

\
\
N
N

7
v

v, hEm  Awme A
) () (T

(a) Poor (b) Good (c) Preferred
Fig. 6.9. Methods of reducing stress concentration in cylindrical members with shoulders.

Ll —— B ny wow

(a) Poor (b) Preferred

Fig. 6.10. Methods of reducing stress concentration in cylindrical members with holes.

(b) Good (c) Preferred

Fig. 6.11. Methods of reducing stress concentration in cylindrical members with holes.
The stress concentration effects of apressfit may be reduced by making more gradual transition
from therigid to the more flexible shaft. The various ways of reducing stress concentration for such
cases are shown in Fig. 6.12 (a), (b) and (c).
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6.14 Factors to be Considered while Designing Machine Parts to Avoid
Fatigue Failure
Thefollowing factors should be considered while designing machine partsto avoid fatiguefailure:
1. Thevariation in the size of the component should be as gradual as possible.
2. The holes, notches and other stress raisers should be avoided.

3. The proper stress de-concentrators such as fillets and notches should be provided
wherever necessary.

| ]
_E___B_ _____B _é__?_g%_%_

(a) (0) (c)
Fig. 6.12. Methods of reducing stress concentration of a press fit.
4. The parts should be protected from corrosive atmosphere.
5. A smooth finish of outer surface of the component increases the fatigue life.
6. Themateria with high fatigue strength should be selected.
7. Theresidual compressive stresses over the parts surface increases its fatigue strength.

6.15 Stress Concentration Factor for Various Machine Members

The following tables show the theoretical stress concentration factor for various types of
members.

Table 6.1. Theoretical stress concentration factor (K;) for a plate with hole
(of diameter d) in tension.

0.05 0.1 0.15 | 020 | 0.25 0.30 0.35 0.40 0.45 0.50 | 0.55

ola

A

283 |269 | 259 | 250 | 243 2.37 2.32 2.26 2.22 217 | 213

—
S B L e s

oy X
i 9% [ (;ﬁ;ﬂ)"@—‘@“%

Fig. for Table 6.1 Fig. for Table 6.2

Table 6.2. Theoretical stress concentration factor (K,) for a shaft
with transverse hole (of diameter d) in bending.

002 | 004 | 008 | 0.10 | 0.12 0.16 0.20 0.24 0.28 0.30

Ol

7

270 | 252 | 233 | 226 | 220 211 2.03 1.96 192 1.90
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Table 6.3. Theoretical stress concentration factor (K,) for stepped

shaft with a shoulder fillet (of radius r) in tension.

Theoretical stress concentration factor (K,)
D
E r/d
0.08 0.10 | 0.12 0.16 0.18 0.20 0.22 0.24 0.28 0.30
1.01 1.27 1.24 121 1.17 1.16 1.15 1.15 1.14 1.13 1.13
1.02 1.38 1.34 1.30 1.26 1.24 1.23 1.22 1.21 1.19 1.19
1.05 1.53 1.46 1.42 1.36 134 1.32 1.30 1.28 1.26 1.25
1.10 1.65 1.56 1.50 1.43 1.39 1.37 1.34 1.33 1.30 1.28
1.15 1.73 1.63 1.56 1.46 1.43 1.40 1.37 1.35 1.32 1.31
1.20 1.82 1.68 1.62 1.51 147 144 141 1.38 1.35 1.34
1.50 2.03 1.84 1.80 1.66 1.60 1.56 153 1.50 1.46 1.44
2.00 2.14 1.94 1.89 1.74 1.68 1.64 1.59 1.56 1.50 1.47

T 2
A=—x
7 d

Fig. for Table 6.3

Table 6.4. Theoretical stress concentration factor (K,) for a stepped
shaft with a shoulder fillet (of radius r) in bending.

Fig. for Table 6.4

L 3
7= —X
32 d

Theoretical stress concentration factor (K))
D
H r/d
0.02 0.04 | 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30
1.01 1.85 1.61 1.42 1.36 1.32 1.24 1.20 1.17 1.15 1.14
1.02 1.97 1.72 1.50 1.44 1.40 1.32 1.27 1.23 121 1.20
1.05 2.20 1.88 1.60 1.53 1.48 1.40 1.34 1.30 1.27 1.25
1.10 2.36 199 | 1.66 1.58 153 1.44 1.38 1.33 1.28 1.27
1.20 2.52 2.10 1.72 1.62 1.56 1.46 1.39 1.34 1.29 1.28
1.50 2.75 220 | 1.78 1.68 1.60 1.50 1.42 1.36 131 1.29
2.00 2.86 2.32 1.87 1.74 1.64 153 1.43 1.37 1.32 1.30
3.00 3.00 245 | 1.95 1.80 1.69 1.56 1.46 1.38 134 1.32
6.00 3.04 2.58 2.04 1.87 1.76 1.60 1.49 1.41 1.35 1.33
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Table 6.5. Theoretical stress concentration factor (K) for a stepped shaft
with a shoulder fillet (of radius 1) in torsion.

Theoretical stress concentration factor (K,)
2 /d
d r
0.02 0.04 | 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30
1.09 1.54 1.32 1.19 1.16 1.15 112 111 1.10 1.09 1.09
1.20 1.98 1.67 1.40 1.33 1.28 1.22 1.18 1.15 1.13 1.13
1.33 2.14 1.79 1.48 1.41 1.35 1.28 1.22 1.19 1.17 1.16
2.00 2.27 1.84 153 1.46 1.40 1.32 1.26 1.22 1.19 1.18
r
-1 _Ed — _%'
- A= xq?
a2 1 4
Flg for Table 6.5 Flg for Table 6.6
Table 6.6. Theoretical stress concentration factor (K;)
for a grooved shaft in tension.
Theoretical stress concentration (K, )
2 /d
d r
0.02 0.04 | 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30
1.01 1.98 1.71 147 1.42 1.38 1.33 1.28 1.25 1.23 1.22
1.02 2.30 1.94 1.66 1.59 154 1.45 1.40 1.36 1.33 1.31
1.03 2.60 2.14 1.77 1.69 1.63 153 1.46 1.41 1.37 1.36
1.05 2.85 2.36 1.94 1.81 1.73 1.61 154 1.47 1.43 1.41
1.10 . 2.70 2.16 2.01 1.90 1.75 1.70 1.57 1.50 1.47
1.20 . 2.90 2.36 2.17 2.04 1.86 1.74 1.64 1.56 1.54
1.30 . . 2.46 2.26 2.11 1.91 1.77 1.67 1.59 1.56
1.50 . . 2.54 2.33 2.16 1.94 1.79 1.69 1.61 1.57
2.00 . . 2.61 2.38 2.22 1.98 1.83 1.72 1.63 1.59
oo . . 2.69 2.44 2.26 2.03 1.86 1.74 1.65 1.61
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Table 6.7. Theoretical stress concentration factor (K,) of
a grooved shaft in bending.

Theoretical stress concentration factor (K,)
D /d
= It
d
0.02 0.04 | 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30
1.01 1.74 1.68 | 147 | 1.41 | 1.38 1.32 1.27 1.23 1.22 1.20
1.02 2.28 1.89 1.64 1.53 1.48 1.40 1.34 1.30 1.26 1.25
1.03 2.46 204 | 168 | 161 | 155 1.47 1.40 1.35 131 1.28
1.05 2.75 222 | 180 | 170 | 1.63 1.53 1.46 1.40 1.35 1.33
112 3.20 250 | 197 | 183 | 1.75 1.62 1.52 1.45 1.38 1.34
1.30 3.40 270 | 204 | 191 | 1.82 1.67 1.57 1.48 1.42 1.38
1.50 3.48 274 | 211 | 195 | 184 1.69 1.58 1.49 1.43 1.40
2.00 3.55 278 | 214 | 197 | 1.86 171 1.59 1.55 1.44 141
oo 3.60 2.85 | 2.17 1.98 1.88 1.71 1.60 1.51 1.45 1.42
r r
T '/-\ 1
A Iy } Ky T
+4—D — —4++d — ——H— +—D— —+—+d — — —
S Ly b
3
7= xg’ o _rd
32 dr 16
Fig. for Table 6.7 Fig. for Table 6.8
Table 6.8. Theoretical stress concentration factor (K;) for a grooved
shaft in torsion.
Theoretical stress concentration factor (K,
D /d
= r
d
0.02 0.04 | 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30
1.01 1.50 103 | 122 | 120 | 1.18 1.16 1.13 112 112 112
1.02 1.62 145 | 131 | 127 | 1.23 1.20 1.18 1.16 1.15 1.16
1.05 1.88 161 | 140 | 135 | 1.32 1.26 1.22 1.20 1.18 117
1.10 2.05 173 | 147 | 141 | 137 131 1.26 1.24 121 1.20
1.20 2.26 183 | 153 | 146 | 141 1.34 1.27 1.25 1.22 121
1.30 2.32 1.89 155 1.48 1.43 1.35 1.30 1.26 — —
2.00 2.40 193 | 158 | 150 | 1.45 1.36 131 1.26 — —
oo 2.50 1.96 | 160 | 151 | 1.46 1.38 1.32 1.27 1.24 1.23
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Example6.2. Find the maximum
stress induced in the following cases
taking stress concentration into
account:

1. Arectangular plate 60 mm x
10 mm with a hole 12 diameter as
shown in Fig. 6.13 (a) and subjected
to atensileload of 12 kN.

2. A stepped shaft as shown in
Fig. 6.13 (b) and carrying a tensile
load of 12 kN.

Stepped shaft

r=5mm

2 kN D =50 mm + 12 kN
d=25mm

1
12 kN 12 kN

4

10 mm —>| |<—
(@) (0)

Fig. 6.13
Solution. Case 1. Given: b=60mm;t=10mm;d=12mm; W=12kN =12 x 108N
We know that cross-sectional area of the plate,
A = (b—d) t=(60-12) 10 = 480 mm?

W  12x10° )
i =—="—""""—=25N/mm" =25 MPa
Nominal stress A 280

Ratio of diameter of hole to width of plate,
d_12_ 0.2

b 60
From Table 6.1, we find that for d / b = 0.2, theoretical stress concentration factor,
K =25
o Maximumstress = K, x Nominal stress = 2.5 x 25 = 62.5 MPaAns.
Case2.Given:D=50mm;d=25mm;r=5mm;W=12kN =12 x 103N
We know that cross-sectional areafor the stepped shaft,

T 2 _ T 2 2
= —xd° == (25° =491 mm
A= 4()

, W 12x10°
Nominal stress = AT a0
Ratio of maximum diameter to minimum diameter,
D/d =50/25=2
Ratio of radius of fillet to minimum diameter,
r/ld =5/25=0.2
From Table 6.3, wefind that for D/d = 2 and r/d = 0.2, theoretical stress concentration factor,
K, =1.64.

= 24.4 N/mm? = 24.4 MPa

Maximumstress = K, x Nominal stress = 1.64 x 24.4 = 40 MPaAns.
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6.16 Fatigue Stress Concentration Factor

When a machine member is subjected to cyclic or fatigue loading, the value of fatigue stress
concentration factor shall be applied instead of theoretical stress concentration factor. Since the
determination of fatigue stress concentration factor is not an easy task, therefore from experimental
testsit isdefined as

Fatigue stress concentration factor,

Endurance limit without stress concentration
Endurance limit with stress concentration

Kf:

6.17 Notch Sensitivity

In cyclic loading, the effect of the notch or the fillet isusually less than predicted by the use of
the theoretical factors as discussed before. The difference depends upon the stress gradient in the
region of the stress concentration and on the hardness of the material. The term notch sensitivity is
applied to this behaviour. It may be defined as the degree to which the theoretical effect of stress
concentration isactually reached. The stress gradient depends mainly on the radius of the notch, hole
or fillet and on the grain size of thematerial . Sincethe extensive datafor estimating the notch sensitivity
factor (q) is not available, therefore the curves, as shown in Fig. 6.14, may be used for determining
the values of g for two steels.

1.2
2 [TTTT 1]
1'0 Stleel, Iquenched and tempered
T 0.9 Steel, normlaliztlzd | —TT | I —
: 71_ or anneated ]
= 0.8 I / K—Aluminium, wrought alloys
2 07
£ ol
S 05 | / // ' $ "
o -6
0.2 ! A
0:1 ! Based on data for i/r <3
of HEEEEEN

1 2 3 4 5 6 7 8 9
Notch radius (r) mm —

Fig. 6.14. Notch sensitivity.

When the notch sensitivity factor qis used in cyclic loading, then fatigue stress concentration
factor may be obtained from the following relations:

K; -1

9T K
or Ki=1+q(K, -1 ...[For tensile or bending stress]
and Kfs =1l+q (Kts_ 1) ...[For shear stress]
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where

K, = Theoretical stress concentration factor for axial or bending

loading, and

K

ts

= Theoretical stress concentration factor for torsional or shear

loading.

6.18 Combined Steady and
Variable Stress

The failure points from fatigue

tests made with different steels and
combinations of mean and variable
stresses are plotted in Fig. 6.15 as
functions of variable stress (o) and
mean stress (o,,,). The most significant
observation is that, in general, the
failurepointislittlerelated to the mean
stresswhenitiscompressive butisvery
much afunction of themean stresswhen
itistensile. In practice, thismeansthat
fatiguefailuresarerare when the mean
stress is compressive (or negative).
Therefore, the greater emphasismust be
given to the combination of avariable
stress and a steady (or mean) tensile

Protective colour coatings are added to make components
it corrosion resistant. Corrosion if not taken care can magnify
other sfresses.
Note : This picture is given as additional information and is not a
direct example of the current chapter.

stress.

Failure points
[ Gerber parabola
Ge [ Goodman line

,t} ‘

~ Soderberg line
wn

5

=

wa

2

s

<

0 oy Ou
~—— Mean stress (G,,) —>
Compressive Tensile

Fig. 6.15. Combined mean and variable stress.

Thereare several waysinwhich problemsinvolving thiscombination of stresses may be solved,
but the following are important from the subject point of view :

1. Gerber method, 2. Goodman method, and 3. Soderberg method.
We shall now discuss these methods, in detail, in the following pages.
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6.19 Gerber Method for
Combination of Stresses

The relationship between variable
stress (c,) and mean stress (o, ) for axial and
bending loading for ductile materials are
shown in Fig. 6.15. The point 6, represents
thefatigue strength corresponding to the case
of complete reversal (c,,, = 0) and the point
o, represents the static ultimate strength
corresponding to ¢, = 0.

A parabolic curve drawn between the
endurance limit (o) and ultimate tensile
strength (c,) was proposed by Gerber in
1874. Generally, the test data for ductile
material fall closer to Gerber parabola as
shownin Fig. 6.15, but because of scatter in
thetest points, astraight linerelationship (i.e.
Goodman lineand Soderberg line) isusually
preferred in designing machine parts.

According to Gerber, variable stress,

Contents
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Evaporator
_--_--._ =
Gas flow

Fins radiate heat

Liquid flow

Condenser

r/ = COmpressor

L |

Liquid refrigerant absorbs heat as it vaporizes inside the
evaporator coil of a refrigerator. The heat is released
when a compressor turns the refrigerant back to liquid.

Note : This picture is given as additional information and is
not a direct example of the current chapter.

Fed

1 Om
% =% |Fs \o,

1 o)’ o ;
F.S o, Oc
where F.S. = Factor of safety,

6, = Mean stress (tensile or compressive),
o, = Ultimate stress (tensile or compressive), and
6, = Endurancelimit for reversal loading.

Considering the fatigue stress
concentration factor (K;), the equation (i) may
be written as

< (3
—=|—| FS+
FS \o,
6.20 Goodman Method for
Combination of Stresses
A straight line connecting the endurance
limit (o) and the ultimate strength (c), as
shown by line AB in Fig. 6.16, follows the
suggestion of Goodman. A Goodman line is
used when the design is based on ultimate
strength and may be used for ductile or brittle
meaterials.
InFig. 6.16, line AB connecting ¢, and

o, X K¢

O¢

s LA
¢ Goodman line

T (Failure stress line)
I} Safe stress line
=

7]

=

w

2 o

T Rl

s FES

s

ES.

—— Mean stress (c,,) ——>

Fig. 6.16. Goodman method.

Top



198 = A Texthook of Machine Design

o, iscalled Goodman'sfailurestressline. If asuitable factor of safety (F.S) isapplied to endurance
[imit and ultimate strength, asafe stressline CD may bedrawn parallel totheline AB. Let usconsider
adesign point P on the line CD.

Now from similar triangles COD and PQD,

PQ QD OD-0Q 00
co oD =1-—— . = —
CO OD oD oD ..(~- QD = 0D -0Q)
kS GV _a Gm
o./ F.S o,/ F.S
GV = Ge 1 — Gm = GE —1 —_ G_m
F.S. o,/ F.S FS o,
or 1 _Sm, % (i)
FS o, o,

This expression does not include the effect of stress concentration. It may be noted that for
ductile materials, the stress concentration may be ignored under steady loads.

Since many machine and structural parts that are subjected to fatigue loads contain regions of
high stress concentration, therefore equation (i) must be altered to include this effect. In such cases,
thefatigue stress concentration factor (K,) isused to multiply the variable stress (o, ). The equation (i)
may now be written as

K .
1 _Om, OvXPt (i)
FS o, Ce
where F.S. = Factor of safety,

o, = Mean stress,
6, = Ultimatestress,
o, = Variable stress,
6, = Endurance limit for reversed loading, and
K; = Fatigue stress concentration factor.
Considering the load factor, surface finish factor and size factor, the equation (ii) may be
written as

1 Om ., o, X K¢ _ O o, X K

= = (i)

FS o, 0gxKg XKy 06, 0exKpxKg, XKg
Om N o, X K;

T 0, OgxKg xKg ~(n 0y =0 X Ky and K, =1)

where K, = Load factor for reversed bending load,
K, = Surfacefinish factor, and
K = Sizefactor.

*  Herewe have assumed the same factor of safety (F.S) for the ultimate tensile strength (o) and endurance
limit (o). In case the factor of safety relating to both these stressesis different, then the following relation
may be used :

Oy a4 Sm
ce/(F.S)e oyu!(FS)y
where (F.S), = Factor of safety relating to endurance limit, and

(F.S), = Factor of safety relating to ultimate tensile strength.
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Notes: 1. The equation (iii) is applicable to ductile materials subjected to reversed bending loads (tensile or
compressive). For brittle materials, the theoretical stress concentration factor (K,) should be applied to the mean
stress and fatigue stress concentration factor (K;) to the variable stress. Thus for brittle materials, the equation
(iii) may be written as

1 _omxKe,  OvxKy (i)
F.S. oy Ogp X Kgyr XKy
2. When a machine component is subjected to a load other than reversed bending, then the endurance
limit for that type of loading should be taken into consideration. Thus for reversed axial loading (tensile or
compressive), the equations (iii) and (iv) may be written as
1 _om,  OwxKi
FS o, 0OgxKg xKg

1 _omxKe  _ OvxK;

...(For ductile materials)

...(For brittle materials)

and FS Oy Oea X Kgr XxKg
Similarly, for reversed torsional or shear loading,
1 _tm, WXKi ...(For ductile materials)
FS 1, 1TexKgr xKg
1 1, xKg T, X Ky
and s T + T x Koy X Ko ...(For brittle materials)

where suffix ‘s’ denotes for shear.

For reversed torsional or shear loading, the values of ultimate shear strength (t,) and endurance shear
strength (1) may be taken as follows:

1, = 080,andt,=080,

6.21 Soderberg Method for Combination of Stresses

A straight line connecting the endurance limit (c,) and the yield strength (cy), asshown by the
line AB in Fig. 6.17, follows the suggestion of Soderberg line. Thisline is used when the design is
based on yield strength.

Overflow pipe

Boiler Insulation

Hot water
cylinder

o=

~ Radiator

Gas burner

Heat exchanger

In this central heating system, a furnace burns fuel fo heat water in a boiler. A pump forces the hot
water through pipes that connect to radiators in each room. Water from the boiler also heats the hot
water cylinder. Cooled water returns to the boiler.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Proceeding in the same way as discussed
inArt 6.20, theline AB connecting 6 and 6,, as
showninFig. 6.17,iscalled Soderberg'sfailure
stressline. If asuitablefactor of safety (F.S) is
appliedtotheendurancelimit and yield strength,
asafe stress line CD may be drawn parallel to
theline AB. L et us consider adesign point P on
theline CD. Now from similar triangles COD
and PQD,

PQ_Qb _0D-0Q

CO ObD OD
21—k
oD
..(*» QD = OD - 0Q)
Oy _1_ Om
c./F.S c,/F.S.
Oe Om 1
o, = 1- =0g| ——
o ""Fs { Gy/F.S} {F.S.

1 c c
m+v

F.S.=cs o,

y Oe

Variable stress (5,) —

Contents

Soderberg line
(Failure stress line)

Safe stress line

o, -G,
Fs. R=—=—~ |
|
|
|
! B
O c, Q G,
ES.
—— Mean stress (c,,) ——>
Fig. 6.17. Soderberg method.
o
o

For machine parts subjected to fatigue loading, the fatigue stress concentration factor (K
should be applied to only variable stress (6, ). Thus the equations (i) may be written as

(i)

Considering the load factor, surface finish factor and size factor, the equation (ii) may be

1 Oy OvX Ks
FS o, Ce
written as
1 _Sm
FS o

o, X K

y  Ow X Kgr XxKg

...(iii)

Sincec,, = o, x K, and K, = 1for reversed bending load, therefore o, = 6, may be substituted

in the above equation.

Notes: 1. The Soderberg method is particularly used for ductile materials. The equation (iii) is applicable to
ductile materials subjected to reversed bending load (tensile or compressive).

2. When a machine component is subjected to reversed axial loading, then the equation (iii) may be

written as

1 o,

o, X K;

FS 0y 0guXxKg xKg

3. When a machine component is subjected to reversed shear loading, then equation (iii) may be

written as
1 =,

F.S T,

T, X Ko

T X Koy X Kg

where K is the fatigue stress concentration factor for reversed shear loading. The yield strength in shear (‘Cy)
may be taken as one-half the yield strength in reversed bending (csy).
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Example 6.3. A machine component is Y R AR R PR S P8t emim e
subjected to a flexural stress which fluctuates
between + 300 MN/m? and — 150 MN/m?.
Deter mine the val ue of minimum ultimate strength
according to 1. Gerber relation; 2. Modified
Goodman relation; and 3. Soderberg relation.

Takeyield strength = 0.55 Ultimate strength;
Endurance strength = 0.5 Ultimate strength; and gL,
factor of safety = 2.

Solution. Given : 6, = 300 MN/m?;
0, = — 150 MN/m?; 6,=0550,;0,=050,;

L .':'r’f""."""f"l'lh'"i'l'- T T

-

- T
1l - I

Springs often undergo variable stresses.

FS =2
Let 6, = Minimum ultimate strength in MN/m?.
We know that the mean or average stress,
. 0 +0, _ 300+ (- 150) = 75 MN/m?
2 2
0, —O 300 — (— 150
and variable stress, o, = 5 2 - é ) _ 205 MN/m?
1. According to Gerber relation
We know that according to Gerber relation,
2
i = G_m ES + &
F.S o Oe
1_(75Y ,, 225 11250 450 _ 11250+ 4506,
2 oy, 056, (0,)° oy (0,)°
(6,)? =22500+9000,
or (6.)*-90005,—-22500 =0
900+ /(900) + 4x1x 22500 900 + 948.7
Ou = 2x1 T2
= 924.35 MN/m? Ans. ...(Taking +ve sign)

2. According to modified Goodman relation
We know that according to modified Goodman relation,
_1 = G_m + &
FS o, o,
1_75 N 225 525
2

or o, 050, o,

o 6, = 2x525=1050 MN/m? Ans.
3. According to Soderberg relation
We know that according to Soderberg relation,

i = Om + Sv
FS o, o
1 75 255  586.36
or P + =
2 05506, 050, oy

0, = 2x586.36 = 1172.72 MN/m? Ans.
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Example 6.4. A bar of circular cross-section is subjected to alternating tensile forces varying
from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an
ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Determine the diameter of
bar using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit
and a stress concentration factor of 1.65 for fatigue load. Use Goodman straight line as basis for
design.

Solution. Given: W, =200kN ; W =500kN ; 5, =900 MPa=900 N/mm?; 6= 700 MPa
=700 N/mm?; (FS),=35; (FS),=4;K,= 165

Let d = Diameter of bar in mm.

Area, A = %x d? = 0.7854 d? mm?

We know that mean or average force,
Wiax + Wi 500 + 200

W, = o= = 350 kN = 350 10° N
3 3
Mean stress, o, = W _ 350X102 = 446);10 N/ mm?
A 07854d d
Variable force, W, = W ;W""” = 500; 200 _ 150 kN =150 x 10° N

W, _ 150x10° _191x10°
A 07854 d? d?
We know that according to Goodman's formula,

N/ mm?

Variable stress, ¢,

o, _ Om-Ks
6./ (F.S). o,/ (F.S),
191x10° 446 x 10°
o 2 x 1.65
700/4 900/35
B = Oil and resin
blended Paint Manufacture : A typical gloss paint is made by first mixing
together natural oils and resins called alkyds. Thinner is added to make

the mixture easier fo pump through a filter that removes any
) solid particles from the blended liquids. Pigment is mixed info
Thinner the binder blend in a powerful mixer called a disperser.
added

Disperser Bead mill Holding tank

Mixing
tank

] Filter tank Pigment and paint thin- Final adjustments made
Setting tank ner added

Note : This picture is given as additional information and is not a direct example of the current chapter.
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1100 2860 1100 + 2860 _
e T T
d? =3960 or d=629say 63mm Ans.

Example 6.5. Determine the thickness of a 120 mm wide uniform plate for safe continuous
operation if the plate is to be subjected to a tensile load that has a maximum value of 250 kN and a
minimum value of 100 kN. The properties of the plate material are as follows:

Endurance limit stress = 225 MPa, and Yield point stress= 300 MPa.
The factor of safety based on yield point may be taken as 1.5.

Solution. Given: b=120mm ;W,__ =250kN; W,; = 100kN ; 6, =225 MPa= 225 N/mm?;
o, = 300 MPa = 300 N/mm?2;, FS. =15

Let t = Thickness of the plate in mm.
Area, A = bxt=120tmm?
We know that mean or average load,

Wi +Woin 250 + 100

W, = 5 =175kN =175x10° N
3
Mean stress, Gm = % = M N/I’TII’TI2

A 120t

Variableload, W, = W ;W"‘” _ %0 ; 100 _ 75 kN = 75x10° N
3

Variable stress, 6, = W, _ 75107 2

A 120t

According to Soderberg’s formula,
1 %, %
FS o, o
1 175x10° . 75x10°  4.86 L 278 _764
15 120tx300 120tx225 t t t
t=764x15=1146say 11.5mm Ans.

Example 6.6. Determinethe diameter of a circular rod made of ductile material with a fatigue
strength (complete stress reversal), 6, = 265 MPa and a tensile yield strength of 350 MPa. The
member is subjected to a varying axial load fromW . = —300x 10*NtoW__ = 700 x 10°Nand
has a stress concentration factor = 1.8. Use factor of safety as 2.0.

Solution. Given: 6= 265 MPa= 265 N/mm?; 6, =350MPa= 350N/mm?; W . =—300x 10°N ;
W =700x 103N ; Kf 18:FS =2

Let d = Diameter of thecircular rod in mm.

Area, A = %xd2 = 0.7854 d? mm?
We know that the mean or average load,
W + Wiin 700 10% + (— 300 x 10%)

W, = = =200x10° N
2 2
W, 200x10° 254.6x10° )
Mean stress, 6, = —= = 7= > N/mm
A 07854d d
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_ . 3 3
Varicbleload, W= e ZW”"” - 10010 ; 300107) _ 500 10° N
W, 500x10° 636.5x10°
~. Variablestress, 6, =—* = 5= . N/mm?
A 07854d d
We know that according to Soderberg's formula,
o, xK
1 _Om  OvXRs
FS o, Ce
1 2546x10° 6365x10°x1.8 727 4323 5050
2  d?x3%0 d? x 265 d>  d? d?

o d? =5050x2=10100 or d=100.5mmAnNS.

Example 6.7. A steel rod is subjected to a reversed axial load of 180 kN. Find the diameter of
the rod for a factor of safety of 2. Neglect column action. The material has an ultimate tensile
strength of 1070 MPa and yield strength of 910 MPa. The endurance limit in reversed bending
may be assumed to be one-half of the ultimate tensile strength. Other correction factors may be
taken as follows:

For axial loading = 0.7; For machined surface = 0.8 ; For size = 0.85; For stress
concentration = 1.0.

Solution. Given : W, =180 kN ; W =—-180 kN ; F.S = 2; ¢, = 1070 MPa = 1070
N/mm?; o, =910 MPa=910 N/mm?; 6,=050,;K,=07; K, =08;K,=085;K=1
Let d = Diameter of therod in mm.

Area, A = %x d? = 0.7854 d? mm?

We know that the mean or average load,
Wiax + Wein 180+ (- 180)

W= 0
m 2 2
W
Mean stress, 6, = T“‘=0
Variableload, W, = Wi ;Wmi” _ 180~ ;‘ 180) _ 180 kN = 180x 10° N
Variable st W, 180x10® 229x10° N/mm?
- Variablestress, 6, = — = =
v A 07854 d? d?
Endurance limit in reversed axial loading,
G, =0,xK, =0506,%x0.7=0350, (v 06,=050)

= 0.35 x 1070 = 374.5 N/mm?
We know that according to Soderberg's formulafor reversed axial loading,

1 gm+ o, X K

FS 0, 0gXxKg XKg
1 4. 229 % 10% x 1 _ 900
2 d?x3745%x0.8x0.85 d?
d2 =900x2=1800 or d=42.4mm Ans.
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Shells for Loader Engine

main gun

Sighting equipment

Commander
Driving

sprocket
Gunner

Driver
Main gun
Machine gun

Rubber tyres

Layout of a military tank.
Note : This picture is given as additional information and is not a direct example of the current chapter.

Example 6.8. A circular bar of 500 mm length is supported freely at its two ends. It is acted
upon by a central concentrated cyclic load having a minimum value of 20 kN and a maximum value
of 50 kN. Determine the diameter of bar by taking a factor of safety of 1.5, size effect of 0.85, surface
finish factor of 0.9. The material properties of bar are given by : ultimate strength of 650 MPa, yield
strength of 500 MPa and endurance strength of 350 MPa.

Solution.Given:I=500mm;Wmm=20kN=20><103N;Wmax=50kN=50><103N;
FS=15;K,=085; K, =09; ¢, =650 MPa= 650 N/mm?; o, = 500 MPa = 500 N/mm?;
G, = 350 MPa = 350 N/mm?

Let d = Diameter of the bar in mm.

We know that the maximum bending moment,

v o W X! _ 50x10° x 500
e 4

and minimum bending moment,

= 6250 x 10° N-mm

Wiin x| 20x10° x 500
Iv'min = =
4 4
.. Mean or average bending moment,

3 3
M :Mm;an _ 6250x10 ;2500><10 — 4375% 10° N-mm

and variable bending moment,

= 2550 x 10° N-mm

v =M = Muin _ 6250 x 10° — 2500 x 10°
v 2 2
Section modulus of the bar,

=1875%10° N-mm

7 = X« d®=0.0982 d® mm?
32

.. Mean or average bending stress,

3 6
%= 4375x 10 _ 44.5x 10 N/mm2

= z = 0.0982d3 d3
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and variable bending stress,

3 6
M, _1875x10° _101x10° &

Tz T ooes2d® P

We know that according to Goodman'sformula,
1 Om 4 Oy X K f

FS o, 0exKg XKg
5

6 6
_ 443.‘5><10 b 19.1x10° x1 (Taking K, = 1)
d®x650 d°x350x0.9x0.85
68x10° 71x10° 139x10°
= + =
d® d® d?
d3=139%x103x1.5=209x% 10 or d=59.3mm
and according to Soderberg'sformula,
o, X K
1 on + v f

1

FS o, 0.xKg xKg
6 6
1 445x10 N 19.1x10° x1 .(Taking K, = 1)

15 d®x500 d®x350x09x0.85

89x10° 71x10° 160x10°
= + =
d? d? d?
o d3=160x103x 1.5=240x10° or d=62.1mm
Taking larger of thetwo values, wehaved = 62.1 mm Ans.
Example 6.9. A 50 mm diameter shaft is made from carbon steel having ultimate tensile
strength of 630 MPa. It is subjected to a torque which fluctuates between 2000 N-m to — 800 N-m.
Using Soderberg method, calculate the factor of safety. Assume suitable values for any other data

needed.
Solution. Given:d=50mm; cu=630MPa=630N/mm2 s Trax = 2000N-m; T . =—800N-m

We know that the mean or average torque,
= oo * Toun _ 2000+ (2800) _ g5 iy — 600 x 20% N-mm

T

L 2 2
. Mean or average shear stress,
16T, 2
t, = om  10X000XI0T_ 50 4 Ny mm? ( T=£xrxd3)
nd 7(50) 16
Variable torque,
T, = T ;Tm'” = 2000_2(_ 800) _ 1400 N-m = 1400 x 10° N-mm
16 T, 16 x1400x 10° )
e _ = =57 N/mm
. Variable shear stress, 1, dd 7(50)°

Since the endurance limit in reversed bending (c,) is taken as one-half the ultimate tensile
strength (i.e. 6, = 0.5 6,)) and the endurance limit in shear (1) istaken as 0.55 ¢, therefore

1, =0550,=055%x0506,=02750,
= 0.275 x 630 = 173.25 N/mm?
Assumetheyield stress (cy) for carbon steel in reversed bending as 510 N/mm?, surface finish
factor (K,) as 0.87, size factor (K_) as 0.85 and fatigue stress concentration factor (K, as 1.
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Army Tank
Note : This picture is given as additional information and is not a direct example of the current chapter.

Since the yield stress in shear (‘Cy) for shear loading is taken as one-half the yield stress in
reversed bending (O'y), therefore

7, = 0.50,=05x510=255 N/mm?

Let F.S. = Factor of safety.
We know that according to Soderberg's formula,
1 Tm T XK 244 57x1

[ = +
FS 1, ToxKg xKg 255 17325x 0.87 x 0.85

= 0.096 + 0.445 = 0.541

FS =1/0541=1.85 Ans.

Example6.10. A cantilever beam made of cold drawn carbon steel of circular cross-section as

shown in Fig. 6.18, is subjected to a load which varies _F

from — F to 3 F. Determine the maximum load that this A
member canwithstand for an indefinite life using a factor [e——-150 >
of safety as 2. Thetheoretical stressconcentration factor 7 I‘ﬁm -
is 1.42 and the notch sensitivity is 0.9. Assume the $
following values : 20— -—- 13-
Ultimate stress = 550 MPa ¢ B )
Yield stress = 470 MPa v
Endurance limit = 275 MPa All dimensionsin mm. 3F
Size factor =0.85 Fig. 6.18

Surface finish factor = 0.89
Solution. Given: W, =—F;W_ =3F;FES=2;K =142;q9=0.9; c,=550 MPa
= 550 N/mn?; o, =470 MPa=470 N/mm?; 6, = 275 MPa= 275 N/mm?; K_=0.85; K_, =0.89
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The beam as shown in Fig. 6.18 is subjected to areversed bending load only. Since the point A
at the change of cross section is critical, therefore we shall find the bending moment at point A.
We know that maximum bending moment at point A,
M ox = Wiy X 125 = 3F x 125=375 F N-mm
and minimum bending moment at point A,
M i = Wy, X 125=—F x 125=—125F N-mm
-. Mean or average bending moment,
Mmx + Mpin 375 F +(-125F)

M_ = = =125F N-mm
m 2 2

and variable bending moment,
Mupax = Mpyin 375 F —(-125F)

M, = > > =250F N-mm
Section modulus, Z-= % xd® = % @3)°=2157mm® (.. d=13mm)
Mean bending stress, o, = % = % =058 F N/mm?
and variable bending stress, o, = % = % =1.16 F N/mm?

Fatigue stress concentration factor,K; =1+ q (K, —1) =1+ 0.9 (1.42-1) = 1.378
We know that according to Goodman’s formula
1 Om i Oy X Kf

FS o, 0.xKg XxKg
1_058F N 1.16F x1.378
2 550 275%x 0.89% 0.85
= 0.00105F +0.007 68 F =0.008 73 F
F = _r 57.3N
2 x 0.00873
and according to Soderberg’s formula,
1 o, X Kj

S. oy 0exKg xKg

1 _058F N 116F x1.378

2 470 275x 0.89x 0.85
=0.00123F +0.007 68 F =0.008 91 F

F = 1 56 N
2x0.008 91

Taking larger of the two values, we have F = 57.3 N Ans.

Example6.11. Asimply supported beam has a concentrated |oad at the centre which fluctuates
from a value of P to 4 P. The span of the beam is 500 mm and its cross-section is circular with a
diameter of 60 mm. Taking for the beam material an ultimate stress of 700 MPa, a yield stress of 500
MPa, endurance limit of 330 MPa for reversed bending, and a factor of safety of 1.3, calculate the
maximum value of P. Take a size factor of 0.85 and a surface finish factor of 0.9.

Solution.Given:Wmin=P;Wmax=4P;L=500mm;d=60mm;cu=700MPa=7OON/mm2;
o, = 500 MPa= 500 N/mm?; 6, = 330 MPa= 330 N/mm?; FS = 1.3; K_=0.85;K_, =0.9
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We know that maximum bending moment,
~ W xL 4P x500

Moy = =500P N-mm
4
and minimum bending moment,
Mo = M XL PXS00_ 1o0p Nmm

min 4
-. Mean or average bending moment,
Miex + Myin  500P +125P

M, = = =3125P N-mm
2 2

and variable bending moment,

M — Myin _ 500P — 125P

M = = =187.5P N-mm
v 2 2
I T
Section modulus, 7 = —xd®=—(60)° = 21.21x 10°* mm®
32 32
Mean bending stress,
G = My _ 8125P _ 0.0147P N/mm?

mT Z  2121x10°
and variable bending stress,

o = v o 1875P _ 5 0088p Nimms?
vTZ T 2121x10

We know that according to Goodman’s formula,
1 o, o, x Ky

FS o, 0exKg xKg
1 00147P 4 0.0088P x 1
13 700 330x 0.9x0.85
21P 348P 558P
]
10 10 10
1 _10°

P=-—x——=13785N =13.785 kN
13 558

and according to Soderberg's formula,

.(Taking K, = 1)

1 _Om,  OuxKy
F.S. Oy O X Kar X Ky

1 _00147P  00088Px1 _294P  348P _64.2P
1. 500 330x09x0.85 10° 108 106

6
P = ix£ =11982 N =11.982 kN
13 642

From the above, we find that maximum valueof P =13.785kN  Ans.

w

6.22 Combined Variable Normal Stress and Variable Shear Stress

When amachine part is subjected to both variable normal stressand avariable shear stress; then
it isdesigned by using the following two theories of combined stresses:

1. Maximum shear stress theory, and 2. Maximum normal stress theory.
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We have discussed in Art. 6.21, that according to Soderberg's formula,
1 _on N oy X Ky,

= — ...(For reversed bending | oad)
FS o

y O X Kgy XKg
Multiplying throughout by o, We get
Oy oy X 0y X Ky

—— =0
F.S T g X Kgy X Kg
The term on the right hand side of the above expression is known as equivalent normal stress
due to reversed bending.

-, Equivalent normal stress due to reversed bending,
Oy X Gy X Ky )
Opy =0+ ———— (i)

Cep X Kgy X Ky
Similarly, equivalent normal stress dueto reversed axial loading,
o, X o, X K .
Onea =Om T A A . (i)
Cea X Kgyr X Ky

and total equivalent normal stress,

Sy
O = Gneb+6nea: E ...(|||)
We have a'so discussed in Art. 6.21, that for reversed torsional or shear loading,
1 Ty T, X Ky
FS 1y TexKg XKy
Multiplying throughout by T,, Weget
Ty T, X Ty X Kgg

E_Tm Te X Koy X Kg
The term on the right hand side of the above expression is known as equivalent shear stress.
-, Equivalent shear stress due to reversed torsional or shear loading,
Tes =Ty + M (V)
Te X Kgy X Kg
The maximum shear stress theory is used in designing machine parts of ductile materials.
According to this theory, maximum equivalent shear stress,

_1 sy 2 _ Yy
Tesmay = o (One)” + 4 (Tes) “Fs

The maximum normal stress theory is used in designing machine parts of brittle materials.
According to this theory, maximum equivalent normal stress,

1 1\/%_ Gy
Onemay) ~ E (One) + E (One)” + 4 (Te)” = E

Example 6.12. A steel cantilever is 200 mmlong. It is subjected to an axial load which varies
from 150 N (compression) to 450 N (tension) and also a transverse load at its free end which varies
from 80 N up to 120 N down. The cantilever is of circular cross-section. It is of diameter 2d for the
first 50 mm and of diameter d for the remaining length. Determine its diameter taking a factor of
safety of 2. Assume the following values :

Yield stress

Endurance limit in reversed loading

Correction factors

330 MPa
300 MPa
0.7 in reversed axial loading

1.0 in reversed bending

Contents
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Stress concentration factor = 1.44 for bending
= 1.64 for axial loading
Sze effect factor = 0.85
Surface effect factor = 0.90
Notch sensitivity index = 0.90

Solution. Given : | = 200 mm; W, .,y = 450 N; W,y = =150 N Wy = 120N
Wy(iny = = 80 N; F.S. =2 6, = 330 MPa = 330 N/mm?; 6, = 300 MPa = 300 N/mm?;
K,=0.7;K,=1; K, =144; K_=1.64;K_,=0.85; K, =0.90;q=0.90

First of al, let us find the equiva

ASON
lent normal stress for point A which is 200 mm _
critical asshowninFig.6.19. Itisassumed  —» 50 mm 150 mm '
that the equivalent normal stress at this A
point will be the algebraic sum of the A IS0N 450N
equivalent normal stressdueto axial load- B i
ing and equivalent normal stress due to ¢ B A
bending (i.e. due to transverse load act-
ing at the free end). 12‘(;N
Let us first consider the reversed Fig. 6.19
axial loading. We know that mean or 9. ©.
average axial load,
W, + W, i —
Wm _ a(max) . a(min) _ 450 + ( 150) —150 N
and variable axial load,
= Moo St 0= (10
. Mean or average axial stress,
N Y
- %:150x4_£1N/mm2 ...(-A—4xdj

m> A nd?2  d2
and variable axial stress,
W, 300x4 _ﬁ

KR T

N/mm?
We know that fatigue stress concentration factor for reversed axial loading,
K, =1+q(K,-1)=1+0.9(1.64-1)=1576
and endurance limit stressfor reversed axial loading,
Gy, = O, % K, =300 x 0.7 = 210 N/mm?
We know that equivalent normal stress at point A dueto axial loading,

, OuX0oyX Kia _101  382x330x1576
— 5 _2
nea M g x Kgy XKy d? d?x210x0.9x0.85

Q
|

191 1237 1428

2
@ e T
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Now let us consider the reversed bending dueto
transverse load. We know that mean or average bend-
ing load,

w, = Wi (max) JZF\M(min)
_120+(=80) _ o\
and variable bending load,
W, = W (max) ; (min)
_120-(-80) _, 00N

Machine transporter

*. Mean bending moment at point A,
M., =W, (I —50) = 20 (200 — 50) = 3000 N-mm
and variable bending moment at point A,
M, =W, (I —50) = 100 (200 - 50) = 15 000 N-mm
We know that section modulus,

7 = = % d® = 0.0982 d® mm?
32

.. Mean or average bending stress,

- = My _ 3000 = 30 5350 N/mm2
m Z 0.0982d d
and variable bending stress,

M, 15 000 152 750 2
c,= —-= 3= 3 N/mm
Z 0.0982d d

We know that fatigue stress concentration factor for reversed bending,

Ko =1+0(Ky,—-1)=1+09(144-1) =139
Since the correction factor for reversed bending load is 1 (i.e. K, = 1), therefore the endurance

limit for reversed bending load,

Oy = O, . Ky = c,=300 N/mm?

We know that the equivalent normal stress at point A due to bending,

Oy X0y xKp _ 30550 152 750 x 330x 1.396
Oy X Kgy xKg  d® d® x 300 0.9 x 0.85

Gheb =Gm+

30550 306618 337168
= q° + FER
.. Total equivalent normal stress at point A,

337168 | 1428

ea d3 + d2

N/mm?

_ 2 .
Gpo = Opp * O, N/mm (i)
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We know that equivalent normal stress at point A,

(¢}
= 9 _30_ 165 Nimm?
e FS 2

Equating equations (i) and (ii), we have

33(7]' 168 , 1;‘_58 ~165 or 337168 +1428d = 165d°

o

(i)

236.1+d =0.116d3ord=12.9 mm Ans. ...(By hit and trial)

Example 6.13. A hot rolled steel shaft is subjected to a torsional moment that varies from
330 N-m clockwiseto 110 N-m counterclockwise and an applied bending moment at a critical section
varies from 440 N-mto — 220 N-m. The shaft is of uniform cross-section and no keyway is present at
the critical section. Determine the required shaft diameter. The material has an ultimate strength of
550 MN/m¥? and a yield strength of 410 MN/n?. Take the endurance limit as half the ultimate strength,
factor of safety of 2, size factor of 0.85 and a surface finish factor of 0.62.
Solution. Given: T =330 N-m(clockwisg) ; T.;,= 110 N-m (counterclockwise) =— 110 N-m
(clockwise) ; M, ., = 440 N-m; M, = — 220 N-m; ¢, = 550 MN/m? = 550 x 10° N/m?;

2
Let d = Required shaft diameter in metres.

We know that mean torque,
~ Toex + Tin 330 + (- 110)

T, = > =110 N-m
Toox — T 330 - (- 110
and variabletorque, T, = 5 m = é ) _ 200 N-m
. Mean shear stress,
16T, 16x110 560 2
’I:m = ﬂdg _—’ndg —F N/m
and variable shear stress,
_ 16T, _ 16 x 220 _ 1120 N/m?

and

YT o ndd RE

1
;6,= 5 6,=275x 10N/m? ; F.S = 2;K_=085; K_, =0.62

Since the endurance limit in shear (1) is 0.55 ¢, and yield strength in shear (‘Cy) is0.5 o,
therefore

T, = 0.55 x 275 x 106 = 151.25 x 10° N/m?
T, = 0.5x 410 x 10° = 205 x 10°% N/m?
We know that equivalent shear stress,
T, X Ty Ky

T =Tt ~ ww o w
s mo o7, X Ky, X Kg

d® " d®x151.25x10° x 0.62 % 0.85
560 2880 3440
@ e E
Mean or average bending moment,
v = Mum + My _ 440+ (= 220)
m 2

N/m?

=110 N-m

560 1120 x 205x 10° x 1 .(Taking K, = 1)
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and variable bending moment,

M :Mmax_Mm'n =44O—(—220)_330Nrn
v 2 2
Section modulus, Z = % x d% =0.0082 d° m®
.. Mean bending stress,
M, 110 1120 .
c = = I3 N/m
mZ 0.0982 d d -
and variable bending stress, &
5, :ﬂ: 330 . 3320 N/m2
Z 0.0982 d d

Since there is no reversed axial loading, therefore the
equivalent normal stress due to reversed bending load, _;
e —e 4 6, X0y, X Kg, :
Gneb = One = Om e X Kgy X K Machine parts are offen made

of alloys to improve their
mechanical properties.

e

1120 3360 x 410 x 10° x 1
d3 d3 x 275 x 10° x 0.62 x 0.85

..(TekingK,, =lando, =0c)

1120 9506 10626 )
= + = N/m
d3 d® dd

We know that the maximum equivalent shear stress,

_ T 1
Teg(max) ~ F_yS =3 (One)? + 4 (tes)’

205x10° 1 [10 625)2 . 4(3440j2
2 2 d3 d3

205x10°xd® = \[113x 10° + 4 x 11.84 x 10° =12.66 x 10°

12.66 x10°  0.0617

3 _ =
d°= So5x10° 107
or d= % =0.0395 m=395say 40mm  Ans.

Example 6.14. A pulley is keyed to a shaft midway between two bearings. The shaft is made of
cold drawn steel for which the ultimate strength is 550 MPa and the yield strength is 400 MPa. The
bending moment at the pulley varies from— 150 N-mto + 400 N-m as the torque on the shaft varies
from — 50 N-m to + 150 N-m. Obtain the diameter of the shaft for an indefinite life. The stress
concentration factorsfor thekeyway at the pulley in bendingandintorsionare 1.6 and 1.3 respectively.
Take the following values:

Factor of safety =15

Load correction factors = 1.0in bending, and 0.6 in torsion
S ze effect factor = 0.85

Surface effect factor = 0.88
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Solution. Given : ¢, = 550 MPa = 550 N/mm? ; o, = 400 MPa = 400 N/mm?2 ;

Mo =—150N-m;M__ =400 N-m; T . =-=50N-m; T =150 N-m; Ky =16; K, =13;
FS=15;K =1;K,=06;K_,=0.85; K, =0.88
Let d = Diameter of the shaft in mm.

First of al, let usfind the equivalent normal stress due to bending.
We know that the mean or average bending moment,

M, = e Z Munin _ 400+ (2150) _ 155 N = 125 % 10° N-mm
and variable bending moment,
M, = Mo . Muin _ 400‘; 150) _ 575 N-m = 275 x 16° N-mm

Sectionmodulus, Z % x d® = 0.0982 d® mm?

Mean bending stress,

Mp _125x10° _1273x10°
z

= == . /mm?
0.0982d d

=

and variable bending stress,
M, 275x10° 2800 x 10°

vz oo92d®  dd
Assuming the endurance limit in reversed bending as one-half the ultimate strength and since
the load correction factor for reversed bendingis 1 (i.e. K, = 1), therefore endurance limit in reversed
bending,

N/mm?

550
Oy = 0,= 7”=7: 275 N/mm?

Since thereisno reversed axial loading, therefore equivalent normal stress due to bending,

oy X 0y X Ky

O =0 =0+
e = e %mT 5 x Ky, x Kg

1273x 10° . 2800 x 10° x 400 x 1.6
d3 d® x 275% 0.88 x 0.85

1273x10°  8712x10°  9985x 10°
e T e @
Now let us find the equivalent shear stress due to torsional moment. We know that the mean
torque,

N/mm?

Trex + Tmin _ 150 + (- 50)

T, = 5 =50 N-m = 50 x 10° N-mm
andvariabletorque, T, = Trrex ;Tmi” = 150=(50) _ 160 Nm = 100 x 10° N-mm
*. Mean shear stress,
16T, 3 3
T = g]=16x50;<10 =255>;1O N/mm?
nd nd d
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and variable shear stress,

16T, 16x100x10° 510x10° )
T = 3 = 3 = 3 N/mm
' nd nd d®

Endurance limit stress for reversed torsional or shear loading,

T, = 6, % K =275 x 0.6 = 165 N/mm?
Assuming yield strength in shear,

1, = 0.506,=0.5 x 400 = 200 N/mm?
We know that equivalent shear stress,

T, X Ty X Ky
Tes = Tm ™ Te X Koy X Ky

255 x 10° . 510 x 10° x 200 x 1.3

d3 d® x 165 x 0.88 x 0.85
_ 255x10° 1074x10° 1329x10° )
= 3 + e = e N/mm
and maximum equivalent shear stress,

T 1
Ty = Eg = 5 Vo) 4 ()’

2 2
200 1 \/[9985>< 103] 4 (1329>< 1o3j _ 5165x 10°

E_ 2 d3 d3 d3
3
43 = W=387400r d=3384say 35 mm Ans

6.23 Application of Soderberg’s Equation
We have seen in Art. 6.21 that according to Soderberg's equation,
1 _on, oxK; =0
FS o,

This equation may also be written as

Oe

1 _ OmX0Oe+0, X0y xKs

Gy X O
G, X G, c ,
or FS = £ " ! (i)
O X G + G, X G, X c
moTe TEATY AR o+ 2L | K x o,
Ge

Since the factor of safety based on yield strength is the ratio of the yield point stress to the
working or design stress, therefore from equation (ii), we may write

Working or design stress

- (Zyj K, X, (i)

e
Let us now consider the use of Soderberg's equation to a ductile material under the following
loading conditions.

1. Axial loading
In case of axial loading, we know that the mean or average stress,
c,=W,/A
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and variable stress,c, = W, /A
where W, = Mean or average load,
W, = Variableload, and
A = Cross-sectional area.

The equation (iii) may now bewritten asfollows:

Working or design stress,
Oy
W s W, + o
A O¢
o, X A
FS = Y

Oy
W+ | YK, W,

e
2. Simple bending
In case of ssimple bending, we know that the
bending stress,

My M ol
o M2 [y
. Mean or average bending stress,

6, =M,/Z
and variable bending stress,

o, =M/Z
where M., = Mean bending moment,

M, = Variable bending moment,

and
Z = Section modulus.

The equation (iii) may now be written as ;
follows: a4 e
Working or design bending stress, A large disc- shaped electromagnet hangs from

jib of this scrapyard crane. Steel and iron objects

M M fly towards the magnet when the current is

o, = —_m 4| X Ki X — switched on. In this way, iron and steel can be
Y4 O¢ 4 separated for recycling.

Note : This picture is given as additional information
and is not a direct example of the current chapter.

32 o
:—{Mm +(G—VJKf X MV} ( For circular shaftsz=%xd3)
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3. Simpletorsion of circular shafts
In case of simple torsion, we know that the torque,

T= lxrx d3 0rr=—16T
16 nd?
.. Mean or average shear stress,
16T,
LLERE
. 16T,
and variable shear dtress, 1, = FE
v
where T, = Mean or average torque,

T, = Variabletorque, and
d = Diameter of the shaft.
The equation (iii) may now be written asfollows:
Working or design shear stress,

6T, (7T 16T, 16 Ty
+| = | Kiggx —2F =— | T +| = |Kis XT,
TCd3 (Tej fs T|:d3 TCd3 { m [Tej fs v:|

a
1

T
FS = Y
16 T,

e {Tm + (TJ K X T\,}

where K, = Fatigue stress concentration factor for torsional or shear loading.
Note : For shafts made of ductile material, T, = 0.5 Oy and t, = 0.5 6, may be taken.
4. Combined bending and torsion of circular shafts

In case of combined bending and torsion of circular shafts, the maximum shear stress theory
may be used. According to this theory, maximum shear stress,

Y 1o 2
Tex = Fg 2 (0,)" + 41
R ’ 16 ’
o T
= M | LKy xM o | 4| 1T +| 2 | K xT,
TCd Ge TCd Te
16 o 2 R 2
— {Mm{—yij xMV} +|:Tm+£—yJ KfsxTv}
ntd O¢ Te

Themajority of rotating shafts carry asteady torque and the loads remain fixed in spacein both
direction and magnitude. Thus during each revolution every fibre on the surface of the shaft under-
goesacompletereversal of stress dueto bending moment. Therefore for the usual casewhenM, =0,
M,=M,T_=TandT, =0, the above equation may be written as

T 16 [|(oy) ?
L == k_yJ Ki xM | +T?
FS nd Ce
Note: The aboverelations apply to asolid shaft. For hollow shaft, the left hand side of the above equations must
be multiplied by (1 —k*), where k isthe ratio of inner diameter to outer diameter.
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Example 6.15. A centrifugal blower rotates at 600 r.p.m. A belt drive is used to connect the
blower to a 15 kW and 1750 r.p.m. electric motor. The belt forces a torque of 250 N-m and a force of
2500 N on the shaft. Fig. 6.20 shows the location of bearings, the steps in the shaft and the planein
which the resultant belt force and torque act. Theratio of the journal diameter to the overhung shaft
diameter is1.2 and theradiusof thefillet is 1/10th of overhung shaft diameter. Find the shaft diameter,
journal diameter and radius of fillet to have a factor of safety 3. The blower shaft isto be machined
from hot rolled steel having the following values of stresses:

Endurancelimit = 180 MPa; Yield point stress= 300 MPa; Ultimatetensile stress= 450 MPa.

Solution. Given: *Ng =600 r.p.m. ; *P =15kW; *N,, = 1750r.p.m. ; T =250 N-m = 250 x 103
N-mm; F = 2500 N ; F.S = 3; o, = 180 MPa = 180 N/mm?; o, = 300 MPa= 300 N/mm?; o, = 450

MPa = 450 N/mm?
100 mm
25 mm b’<—10 mm / Keyway
. WA
— .- —_——— - -—— D tHA———F——H-d
L

2500 N

Fig. 6.20
Let D = Journal diameter,
d = Shaft diameter, and r = Fillet radius.
*. Ratio of journal diameter to shaft diameter,

D/d = 1.2 ...(Given)
and radius of thefillet, r = 1/10 x Shaft diameter (d) =0.1d
rid = 0.1 ...(Given)
From Table 6.3, for D/d = 1.2 and r/d = 0.1, the theoretical stress concentration factor,
K, = 162

Thetwo pointsat which failure may occur are at the end of the keyway and at the shoul der fillet.
Thecritical sectionwill be the one with larger product of K, x M. Since the notch sensitivity factor g
is dependent upon the unknown dimensions of the notch and since the curves for notch sensitivity
factor (Fig. 6.14) are not applicable to keyways, therefore the product K, x M shall be the basis of
comparison for the two sections.

-. Bending moment at the end of the keyway,
K, x M = 1.6 x 2500 [100 — (25 + 10)] =260 x 10°* N-mm
.. K, for key ways = 1.6)
and bending moment at the shoulder fillet,
K, x M = 1.62 x 2500 (100 — 25) = 303 750 N-mm
SinceK, x M at the shoulder filletislarge, therefore considering the shoulder fillet asthe critical

section. We know that
2
T o
_Vzﬁ -y K xM +T2
FS ndd Ce

*  Superfluous data
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2
05x300 _ 16 [(@ x 303750j + (250 x10%)?
3 nd? 180

... (Substituting, T, = 0.5 Gy)

16

50 = —— x 565x 10° _ 2877x10°
nd®

d3
d3 = 2877 x 10°%50 =57 540 or d=38.6say 40 mmAns.

Note: Sincer isknown (because r/d = 0.1 or r = 0.1d = 4 mm), therefore from Fig. 6.14, the notch sensitivity
factor (g) may be obtained. For r = 4 mm, we have g = 0.93.

. Fatigue stress concentration factor,
Ki=1+q(K,—1)=1+0.93(1.62-1)=158
Using thisvalue of K; instead of K;, anew value of d may be cal culated. We see that magnitudes of K, and
K, are very close, therefore recalculation will not give any improvement in the results already obtained.

EXERCISES
1. Arectangular plate 50 mm x 10 mm with ahole 10 mm diameter is subjected to an axial load of 10 kN.
Taking stress concentration into account, find the maximum stress induced. [Ans. 50 M Pg]

2. A stepped shaft has maximum diameter 45 mm and minimum diameter 30 mm. The fillet radiusis 6
mm. If the shaft is subjected to an axial load of 10 kN, find the maximum stress induced, taking stress
concentration into account. [Ans. 22 M Pg]

3. Aleaf spring in an automobileis subjected to cyclic stresses. The average stress = 150 MPg; variable
stress = 500 M Pg; ultimate stress = 630 M Pg; yield point stress = 350 M Paand endurance limit = 150

M Pa. Estimate, under what factor of safety the spring isworking, by Goodman and Soderberg formulae.
[Ans. 1.75, 1.3]

4. Determine the design stress for bolts in a cylinder cover where the load is fluctuating due to gas
pressure. The maximum load on the bolt is 50 kN and the minimum is 30 kN. The load is unpredict-
able and factor of safety is 3. The surface of the bolt is hot rolled and the surface finish factor is 0.9.

During asimple tension test and rotating beam test on ductile materials (40 C 8 steel annealed), the
following results were obtained :

Diameter of specimen =12.5 mm; Yield strength = 240 M Pa; Ultimate strength = 450 M Pa; Endurance
limit = 180 MPa. [Ans. 65.4 MPq]

5. Determine the diameter of atensile member of acircular cross-section. The following datais given :

Maximum tensile load = 10 kN; Maximum compressive load = 5 kN; Ultimate tensile strength = 600
MPg; Yield point = 380 MPa; Endurance limit = 290 M Pa; Factor of safety = 4; Stress concentration
factor = 2.2 [Ans. 24 mm]

6. Determinethe size of apiston rod subjected to atotal load of having cyclic fluctuationsfrom 15 kN in
compression to 25 kN in tension. The endurance limit is 360 M Paand yield strength is400 MPa. Take
impact factor = 1.25, factor of safety = 1.5, surface finish factor = 0.88 and stress concentration factor
=2.25. [Ans. 35.3 mm]

7. A steel connecting rod is subjected to acompletely reversed axial load of 160 kN. Suggest the suitable
diameter of the rod using a factor of safety 2. The ultimate tensile strength of the material is 1100
MPa, and yield strength 930 MPa. Neglect column action and the effect of stress concentration.

[Ans. 30.4 mm]

8. Findthediameter of ashaft made of 37 Mn 2 steel having the ultimate tensile strength as 600 MPaand
yield stress as 440 MPa. The shaft is subjected to completely reversed axial load of 200 kN. Neglect
stress concentration factor and assume surface finish factor as 0.8. The factor of safety may be taken
asl15. [Ans. 51.7 mm]

Contents

Top



10.

11

12.

13.

14.

Variable Stresses in Machine Parts = 221

Find the diameter of a shaft to transmit twisting moments varying from 800 N-m to 1600 N-m. The
ultimate tensile strength for the materia is 600 MPa and yield stress is 450 MPa. Assume the stress
concentration factor = 1.2, surface finish factor = 0.8 and size factor = 0.85. [Ans. 27.7 mm]

A simply supported shaft between bearings carries a steady load of 10 kN at the centre. The length of
shaft between bearings is 450 mm. Neglecting the effect of stress concentration, find the minimum
diameter of shaft. Given that

Endurance limit = 600 M Pa; surface finish factor = 0.87; size factor = 0.85; and factor of safety = 1.6.
[Ans. 35 mm]

Determine the diameter of a circular rod made of ductile material with a fatigue strength (complete
stress reversal) o, = 280 MPa and atensile yield strength of 350 MPa. The member is subjected to a
varying axial load from 700 kN to — 300 kN. Assume K, =1.8and FS. = 2. [Ans. 80 mm]

A cold drawn steel rod of circular cross-section is subjected to a variable bending moment of 565 N-
m to 1130 N-m as the axia load varies from 4500 N to 13 500 N. The maximum bending moment
occurs at the sameinstant that the axial load is maximum. Determine the required diameter of the rod
for a factor of safety 2. Neglect any stress concentration and column effect. Assume the following
values:

Ultimate strength = 550 MPa

Yield strength = 470 MPa

Sizefactor = 0.85

Surface finish factor = 0.89

Correction factors = 1.0for bending
= 0.7 for axia load

The endurance limit in reversed bending may be taken as one-half the ultimate strength. [Ans. 41 mm]

A steel cantilever beam, as shown in Fig. 6.21, is subjected to a transverse load at its end that varies
from 45 N up to 135 N down as the axial load varies from 110 N (compression) to 450 N (tension).
Determine the required diameter at the change of section for infinite life using afactor of safety of 2.
The strength properties are as follows:

Ultimate strength = 550 MPa
Yield strength = 470 MPa
Endurance limit = 275 MPa
45N
Z Lﬁ 125 mm
A ¢ 110N 450N
2d d - —
! x 0.2d +
< - 180 mm
135N

Fig. 6.21
The stress concentration factors for bending and axial loads are 1.44 and 1.63 respectively, at the
change of cross-section. Take size factor = 0.85 and surface finish factor = 0.9. [Ans. 12.5mm]

A steel shaft is subjected to completely reversed bending moment of 800 N-m and a cyclic twisting
moment of 500 N-m which varies over arange of £+ 40%. Determinethe diameter of shaft if areduction
factor of 1.2 is applied to the variable component of bending stress and shearing stress. Assume
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(a) that the maximum bending and shearing stresses are in phase;
(b) that thetensile yield point is the limiting stress for steady state component;
(c) that the maximum shear strength theory can be applied; and
(d) that the Goodman relationisvalid.
Take the following material properties:
Yield strength = 500 MPa ; Ultimate strength = 800 MPa ; Endurance limit = + 400 MPa.
[Ans. 40 mm]

A pulley is keyed to a shaft midway between two anti-friction bearings. The bending moment at the
pulley varies from — 170 N-m to 510 N-m and the torsional moment in the shaft varies from 55 N-m
to 165 N-m. The frequency of the variation of the loads is the same as the shaft speed. The shaft is
made of cold drawn steel having an ultimate strength of 540 MPa and ayield strength of 400 MPa.
Determine the required diameter for an indefinite life. The stress concentration factor for the keyway
in bending and torsion may be taken as 1.6 and 1.3 respectively. The factor of safety is 1.5. Take size

factor = 0.85 and surface finish factor = 0.88. [Ans. 36.5mm]
[Hint. Assumec,=0.56,,17,=050,;7,= 0556
QUESTIONS

Explain the following terms in connection with design of machine members subjected to variable
loads:

(@) Endurance limit, (b) Sizefactor,

(o) Surfacefinish factor, and (d) Notch sensitivity.

What is meant by endurance strength of a material? How do the size and surface condition of a
component and type of load affect such strength?

Write a note on the influence of various factors of the endurance limit of a ductile material.

What ismeant by "stress concentration'? How do you take it into consideration in case of acomponent
subjected to dynamic loading?

Illustrate how the stress concentration in a component can be reduced.

Explain how thefactor of safety isdetermined under steady and varying loading by different methods.
Write Soderberg's equation and state its application to different type of loadings.

What information do you obtain from Soderberg diagram?

OBJECTIVE TYPE QUESTIONS

The stress which vary from a minimum value to a maximum value of the same nature (i.e. tensile or
compressive) iscalled

(@) repeated stress (b) yieldstress

(c) fluctuating stress (d) alternating stress

The endurance or fatigue limit is defined as the maximum value of the stress which a polished
standard specimen can withstand without failure, for infinite number of cycles, when subjected to

(a) staticload (b) dynamicload

(c) static aswell asdynamic load (d) completely reversed load
Failure of amaterial is called fatigue when it fails

(a) attheelastic limit (b) below the elastic limit
(c) attheyield point (d) below theyield point
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The resistance to fatigue of amaterial is measured by

(@) easticlimit (b) Young's modulus
(c) ultimate tensile strength (d) endurance limit
Theyield point in static loading is ............... as compared to fatigue loading.
(@) higher (b) lower (c) same

Factor of safety for fatigue loading is the ratio of

(a) elasticlimit to the working stress

(b) Young's modulus to the ultimate tensile strength

(c) endurance limit to the working stress

(d) elasticlimit totheyield point

When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate
tensile strength is

(@) 0.20 (b) 0.35
(c) 0.50 (d) 0.65
The ratio of endurance limit in shear to the endurance limit in flexureis
(@) 0.25 (b) 0.40
(c) 0.55 (d) 0.70

If the size of astandard specimen for afatigue testing machineisincreased, the endurancelimit for the
material will

(@) have same value asthat of standard specimen (b) increase (c) decrease

The residential compressive stress by way of surface treatment of a machine member subjected to
fatigue loading

(@) improvesthefatiguelife (b) deterioratesthefatiguelife

(c) doesnot affect the fatiguelife (d) immediately fracturesthe specimen
The surface finish factor for amirror polished material is

(& 0.45 (b) 0.65

(c) 0.85 (d 1

Stress concentration factor is defined as the ratio of

(@) maximum stress to the endurance limit (b) nominal stressto the endurance limit
(c) maximum stressto the nominal stress (d) nominal stress to the maximum stress
In static loading, stress concentration is more seriousin

(@) brittle materials (b) ductile materials

(c) brittleaswell asductile materials (d) elastic materias

In cyclic loading, stress concentration is more seriousin

(@) brittle materials (b) ductile materials

(c) brittleaswell asductile materials (d) elastic materias

The notch sensitivity g is expressed in terms of fatigue stress concentration factor K, and theoretical
stress concentration factor K, as

Kf +1 Kf -1
K¢ +1 ® k-1
K +1 K -1
Ky +1 @ k; -1
ANSWERS
1. (¢ 2. (d) 3. (d) 4. (d) 5. (a)
6. (¢) 7. (¢ 8. (0 9. (0 10. (a)
11. (d) 12. (c) 13. (a) 14. (b) 15. (b)
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