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5.1 Introduction
Sometimes machine parts are subjected to pure

torsion or bending or combination of both torsion and
bending stresses. We shall now discuss these stresses in
detail in the following pages.

5.2 Torsional Shear Stress
When a machine member is subjected to the action

of two equal and opposite couples acting in parallel planes
(or torque or twisting moment), then the machine member
is said to be subjected to torsion. The stress set up by torsion
is known as torsional shear stress. It is zero at the centroidal
axis and maximum at the outer surface.

Consider a shaft fixed at one end and subjected to a
torque (T) at the other end as shown in Fig. 5.1. As a result
of this torque, every cross-section of the shaft is subjected
to torsional shear stress. We have discussed above that the
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torsional shear stress is zero at the centroidal axis and maximum at the outer surface. The
maximum torsional shear stress at the outer surface of the shaft may be obtained from the following
equation:

.T C

r J l

τ θ= = ...(i)

where τ = Torsional shear stress induced at the outer surface of the shaft or maximum
shear stress,

r = Radius of the shaft,
T = Torque or twisting moment,
J = Second moment of area of the section about its polar axis or polar moment of

inertia,
C = Modulus of rigidity for the shaft material,
l = Length of the shaft, and
θ = Angle of twist in radians on a length l.

Fig. 5.1. Torsional shear stress.

The equation (i) is known as torsion equation. It is based on the following assumptions:
1. The material of the shaft is uniform throughout.
2. The twist along the length of the shaft is uniform.
3. The normal cross-sections of the shaft, which were plane and circular before twist, remain

plane and circular after twist.
4. All diameters of the normal cross-section which were straight before twist, remain straight

with their magnitude unchanged, after twist.
5. The maximum shear stress induced in the shaft due to the twisting moment does not exceed

its elastic limit value.
Notes : 1. Since the torsional shear stress on any cross-section normal to the axis is directly proportional to the
distance from the centre of the axis, therefore the torsional shear stress at a distance x from the centre of the shaft
is given by

x

x r

τ τ=

2. From equation (i), we know that

T

J r

τ= or
J

T
r

= τ ×

For a solid shaft of diameter (d), the polar moment of inertia,

J = IXX + IYY = 
4 4 4

64 64 32
d d d

π π π× + × = ×

∴ T =
4 32

32 16
d d

d

π πτ × × × = × τ ×
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In case of a hollow shaft with external diameter (do) and internal diameter (di), the polar moment of
inertia,

J =
32

π
 [(do)

4 – (di)
4] and r = 

2
od

∴ T =
4 4

4 4
4

2 ( ) – ( )
[( ) – ( ) ]

32 16
o i

o
o o

d d
d d

d d

⎡ ⎤π πτ × × = × τ ⎢ ⎥
⎣ ⎦

=
3 4( ) (1 – )

16 od k
π × τ ... Substituting, i

o

d
k

d
⎛ ⎞=⎜ ⎟
⎝ ⎠

3. The expression (C × J) is called torsional rigidity of the shaft.

4. The strength of the shaft means the maximum torque transmitted by it. Therefore, in order to design a
shaft for strength, the above equations are used. The power transmitted by the shaft (in watts) is given by

P =
2 .

.
60

N T
T

π = ω ...
2

60

Nπ⎛ ⎞ω =⎜ ⎟
⎝ ⎠
Q

where T = Torque transmitted in N-m, and

ω = Angular speed in rad/s.

Example 5.1. A shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the
shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear
stress as 70 MPa.

Solution. Given : P = 100 kW = 100 × 103 W ; N = 160 r.p.m ; Tmax = 1.25 Tmean ; τ = 70 MPa
= 70 N/mm2

Let       Tmean =  Mean torque transmitted by the shaft in N-m, and

             d   = Diameter of the shaft in mm.

We know that the power transmitted (P),

100 × 103 =
2 . 2 160

60 60
mean meanN T Tπ π × ×

=  = 16.76 Tmean

∴ Tmean = 100 × 103/16.76 = 5966.6 N-m

A Helicopter propeller shaft has to bear torsional, tensile, as well as bending stresses.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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and maximum torque transmitted,

Tmax = 1.25 × 5966.6 = 7458 N-m = 7458 × 103 N-mm

We know that maximum torque (Tmax),

7458 × 103 =
16

π
 × τ × d 3 = 

16

π
 × 70 × d 3 = 13.75 d 3

∴ d 3 = 7458 × 103/13.75 = 542.4 × 103  or  d = 81.5 mm Ans.
Example 5.2. A steel shaft 35 mm in diameter and 1.2 m long held rigidly at one end has a

hand wheel 500 mm in diameter keyed to the other end. The modulus of rigidity of steel is 80 GPa.

1. What load applied to tangent to the rim of the wheel produce a torsional shear of 60 MPa?

2. How many degrees will the wheel turn when this load is applied?

Solution. Given : d = 35 mm or r = 17.5 mm ; l = 1.2 m = 1200 mm ; D = 500 mm or
R = 250 mm ; C = 80 GPa = 80 kN/mm2 = 80 × 103 N/mm2 ; τ = 60 MPa = 60 N/mm2

1. Load applied to the tangent to the rim of the wheel
Let W   = Load applied (in newton) to tangent to the rim of the wheel.

We know that torque applied to the hand wheel,

T = W.R = W × 250 = 250 W N-mm

and polar moment of inertia of the shaft,

J =
32

π
 × d 4 = 

32

π
 (35)4 = 147.34 × 103 mm4

We know that
T

J r

τ=

∴ 3

250 60

17.5147.34 10

W =
×

or
360 147.34 10

2020 N
17.5 250

W
× ×= =

×
 Ans.

2. Number of degrees which the wheel will turn when load W = 2020 N is applied
Let                                θ = Required number of degrees.

We know that  
.T C

J l

θ=

∴ θ =
3 3

. 250 2020 1200
0.05

. 80 10 147.34 10

T l

C J

× ×= = °
× × ×

 Ans.

Example 5.3. A shaft is transmitting 97.5 kW at 180 r.p.m. If the allowable shear stress in the
material is 60 MPa, find the suitable diameter for the shaft. The shaft is not to twist more that 1° in
a length of 3 metres. Take C = 80 GPa.

Solution. Given : P = 97.5 kW = 97.5 × 103 W ; N = 180 r.p.m. ; τ = 60 MPa = 60 N/mm2 ;
θ = 1° = π / 180 = 0.0174 rad ; l = 3 m = 3000 mm ; C = 80 GPa = 80 × 109 N/m2 = 80 × 103 N/mm2

Let     T = Torque transmitted by the shaft in N-m, and

   d = Diameter of the shaft in mm.

We know that the power transmitted by the shaft (P),

97.5 × 103 =
2 . 2 180

60 60

N T Tπ π × ×=  = 18.852 T

∴ T = 97.5 × 103/18.852 = 5172 N-m = 5172 × 103 N-mm

Now let us find the diameter of the shaft based on the strength and stiffness.
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A tunnel-boring machine can cut through rock at up to one kilometre a month. Powerful hydraulic
rams force the machine’s cutting head fowards as the rock is cut away.

Archimedean screw lifts soil onto
conveyer belt

Powerful hydraulic rams
push cutting head forward

Control cab houses
operator

Conveyor belt
carries soil away

Cutting head
roller

Cutting teeth made
fo tungsten carbide

1. Considering strength of the shaft
We know that the torque transmitted (T),

5172 × 103 =
16

π
 × τ × d3 = 

16

π
 × 60 × d3 = 11.78 d3

∴ d 3 = 5172 × 103/11.78 = 439 × 103  or  d = 76 mm ...(i)
2.  Considering stiffness of the shaft

Polar moment of inertia of the shaft,

J =
32

π
 × d4 = 0.0982 d4

We know that
.T C

J l

θ=

3 3

4

5172 10 80 10 0.0174

30000.0982 d

× × ×=   or   
6

4

52.7 10
0.464

d

× =

∴ d 4  = 52.7 × 106/0.464 = 113.6 × 106  or  d = 103 mm ...(ii)
Taking larger of the two values, we shall provide d = 103 say 105 mm Ans.
Example 5.4. A hollow shaft is required to transmit 600 kW at 110 r.p.m., the maximum torque

being 20% greater than the mean. The shear stress is not to exceed 63 MPa and twist in a length of
3 metres not to exceed 1.4 degrees. Find the external diameter of the shaft, if the internal diameter to
the external diameter is 3/8. Take modulus of rigidity as 84 GPa.

Solution. Given : P = 600 kW = 600 × 103 W ; N = 110 r.p.m. ; Tmax = 1.2 Tmean ; τ = 63 MPa
= 63 N/mm2 ; l = 3 m = 3000 mm ; θ = 1.4 × π / 180 = 0.024 rad ; k = di / do = 3/8 ; C = 84 GPa
= 84 × 109 N/m2 = 84 × 103 N/mm2

Let            Tmean  =  Mean torque transmitted by the shaft,

do   =  External diameter of the shaft, and

di    =  Internal diameter of the shaft.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that power transmitted by the shaft (P),

600 × 103 =
2 . 2 110

60 60
mean meanN T Tπ π × ×

=  = 11.52 Tmean

∴ Tmean = 600 × 103/11.52 = 52 × 103 N-m = 52 × 106 N-mm

and maximum torque transmitted by the shaft,

Tmax = 1.2 Tmean = 1.2 × 52 × 106 = 62.4 × 106 N-mm

Now let us find the diameter of the shaft considering strength and stiffness.

1. Considering strength of the shaft
We know that maximum torque transmitted by the shaft,

Tmax =
16

π
 × τ (do)

3 (1 – k4)

62.4 × 106 =
4

3 33
63 ( ) 1 – 12.12 ( )

16 8o od d
⎡ ⎤π ⎛ ⎞× × =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∴ (do)

3 = 62.4 × 106/12.12 = 5.15 × 106  or  do = 172.7 mm ...(i)
2.  Considering stiffness of the shaft

We know that polar moment of inertia of a hollow circular section,

J =
4

4 4 4( ) – ( ) ( ) 1 –
32 32

i
o i o

o

d
d d d

d

⎡ ⎤π π ⎛ ⎞⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

=
4

4 4 4 43
( ) (1 – ) ( ) 1 – 0.0962 ( )

32 32 8o o od k d d
⎡ ⎤π π ⎛ ⎞= =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
We also know that

.T C

J l

θ=

6 3

4

62.4 10 84 10 0.024

30000.0962 ( )od

× × ×=   or   
6

4

648.6 10
0.672

( )od

× =

∴ (do)
4 = 648.6 × 106/0.672 = 964 × 106   or  do = 176.2 mm ...(ii)

Taking larger of the two values, we shall provide

do = 176.2 say 180 mm Ans.

5.3 Shafts in Series and Parallel
When two shafts of different diameters are connected together to form one shaft, it is then

known as composite shaft. If the driving torque is applied at one end and the resisting torque at the
other end, then the shafts are said to be connected in series as shown in Fig. 5.2 (a). In such cases,
each shaft transmits the same torque and the total angle of twist is equal to the sum of the angle of
twists of the two shafts.

Mathematically, total angle of twist,

θ = θ1 + θ2 = 1 2

1 1 2 2

. .T l T l

C J C J
+

If the shafts are made of the same material, then C1 = C2 = C.

∴ θ = 1 2 1 2

1 2 1 2

. .T l T l l lT

CJ CJ C J J
⎡ ⎤+ = +⎢ ⎥
⎣ ⎦
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Fig. 5.2. Shafts in series and parallel.

When the driving torque (T) is applied at the junction of the two shafts, and the resisting torques
T1 and T2 at the other ends of the shafts, then the shafts are said to be connected in parallel, as shown
in Fig. 5.2 (b). In such cases, the angle of twist is same for both the shafts, i.e.

θ1 = θ2

or 1 1 2 2

1 1 2 2

T l T l

C J C J
= or 1 2 1 1

2 1 2 2

T l C J

T l C J
= × ×

and T = T1 + T2

If the shafts are made of the same material, then C1 = C2.

∴ 1 2 1

2 1 2

T l J

T l J
= ×

Example 5.5.  A steel shaft ABCD having a total length of 3.5 m consists of three lengths
having different sections as follows:

AB is hollow having outside and inside diameters of 100 mm and 62.5 mm respectively, and BC
and CD are solid. BC has a diameter of 100 mm and CD has a diameter of 87.5 mm. If the angle of
twist is the same for each section, determine the length of each section. Find the value of the applied
torque and the total angle of twist, if the maximum shear stress in the hollow portion is 47.5 MPa and
shear modulus, C = 82.5 GPa.

Solution. Given: L = 3.5 m ; do = 100 mm ; di = 62.5 mm ; d2 = 100 mm ; d3 = 87.5 mm ;
τ = 47.5 MPa = 47.5 N/mm2 ; C = 82.5 GPa = 82.5 × 103 N/mm2

The shaft ABCD is shown in Fig. 5.3.

Fig. 5.3

Length of each section
Let                  l1,  l2 and l3 = Length of sections AB, BC and CD respectively.

We know that polar moment of inertia of the hollow shaft AB,

J1 =
32

π
 [(do)

4 – (di)
4] = 

32

π
 [(100)4 – (62.5)4] = 8.32 × 106 mm4

Polar moment of inertia of the solid shaft BC,

J2 =
32

π
 (d2)4 = 

32

π
 (100)4 = 9.82 × 106 mm4
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and polar moment of inertia of the solid shaft CD,

J3 =
32

π
 (d3)4 = 

32

π
 (87.5)4 = 5.75 × 106 mm4

We also know that angle of twist,

θ = T . l / C . J

Assuming the torque T and shear modulus C to
be same for all the sections, we have

Angle of twist for hollow shaft AB,

θ1 = T . l1 / C . J1

Similarly, angle of twist for solid shaft BC,

θ2 = T . l2 / C . J2

and angle of twist for solid shaft CD,
θ3 = T . l3 / C . J3

Since the angle of twist is same for each section,
therefore

θ1 = θ2

1

1

.

.

T l

C J
= 2

2

.

.

T l

C J
  or  

6
1 1

6
2 2

8.32 10
0.847

9.82 10

l J

l J

×= = =
×

...(i)

Also θ1 = θ3

1

1

.

.

T l

C J
= 3

3

.

.

T l

C J
  or  

6
1 1

6
3 3

8.32 10
1.447

5.75 10

l J

l J

×= = =
×

...(ii)

We know that l1 + l2 + l3 = L = 3.5 m = 3500 mm

32
1

1 1

1 3500
ll

l
l l

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

1
1 1

1 3500
0.847 1.447

l
⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

l1 × 2.8717 = 3500  or  l1 = 3500 / 2.8717 = 1218.8 mm Ans.
From equation (i),

l2 = l1 / 0.847 = 1218.8 / 0.847 = 1439 mm Ans.
and from equation (ii), l3 = l1 / 1.447 = 1218.8 / 1.447 = 842.2 mm Ans.
Value of the applied torque

We know that the maximum shear stress in the hollow portion,
τ = 47.5 MPa = 47.5 N/mm2

For a hollow shaft, the applied torque,

T =
4 4 4 4( ) – ( ) (100) – (62.5)

47.5
16 16 100

o i

o

d d

d

⎡ ⎤ ⎡ ⎤π π× τ = ×⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

= 7.9 × 106 N-mm = 7900 N-m Ans.
Total angle of twist

When the shafts are connected in series, the total angle of twist is equal to the sum of angle of
twists of the individual shafts. Mathematically, the total angle of twist,

θ = θ1 + θ2 + θ3

Machine part of a jet engine.
Note : This picture is given as additional information
and is not a direct example of the current chapter.



128    A Textbook of Machine Design

= 3 31 2 1 2

1 2 3 1 2 3

.. .

. . .

T l lT l T l l lT

C J C J C J C J J J
⎡ ⎤+ + = + +⎢ ⎥
⎣ ⎦

=
6

3 6 6 6

7.9 10 1218.8 1439 842.2

82.5 10 8.32 10 9.82 10 5.75 10

× ⎡ ⎤+ +⎢ ⎥× × × ×⎣ ⎦

=
6

3 6

7.9 10

82.5 10 10

×
× ×

 [146.5 + 146.5 + 146.5] = 0.042 rad

= 0.042 × 180 / π = 2.406° Ans.

5.4 Bending Stress in Straight Beams
In engineering practice, the machine parts of structural members may be subjected to static or

dynamic loads which cause bending stress in the sections besides other types of stresses such as
tensile, compressive and shearing stresses.

Consider a straight beam subjected to a bending moment M as shown in Fig. 5.4. The following
assumptions are usually made while deriving the bending formula.

1. The material of the beam is perfectly homogeneous (i.e. of the same material throughout)
and isotropic (i.e. of equal elastic properties in all directions).

2. The material of the beam obeys Hooke’s law.
3. The transverse sections (i.e. BC or GH) which were plane before bending, remain plane

after bending also.
4. Each layer of the beam is free to expand or contract, independently, of the layer, above or

below it.
5. The Young’s modulus (E) is the same in tension and compression.
6. The loads are applied in the plane of bending.

Fig. 5.4. Bending stress in straight beams.

A little consideration will show that when a beam is subjected to the bending moment, the fibres
on the upper side of the beam will be shortened due to compression and those on the lower side will
be elongated due to tension. It may be seen that somewhere between the top and bottom fibres there
is a surface at which the fibres are neither shortened nor lengthened. Such a surface is called neutral
surface. The intersection of the neutral surface with any normal cross-section of the beam is known
as neutral axis. The stress distribution of a beam is shown in Fig. 5.4. The bending equation is given
by

M

I
=

E

y R

σ =

where M = Bending moment acting at the given section,
σ = Bending stress,
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Parts in  a machine.

I = Moment of inertia of the cross-section about the neutral axis,
y = Distance from the neutral axis to the extreme fibre,
E = Young’s modulus of the material of the beam, and
R = Radius of curvature of the beam.

From the above equation, the bending stress is given by

σ =
E

y
R

×

Since E and R are constant, therefore within elastic limit, the stress at any point is directly
proportional to y, i.e. the distance of the point from the neutral axis.

Also from the above equation, the bending stress,

σ =
/

M M M
y

I I y Z
× = =

The ratio I/y is known as section modulus and is denoted by Z.
Notes : 1. The neutral axis of a
section always passes through its
centroid.

2. In case of symmetrical
sections such as circular, square or
rectangular, the neutral axis passes
through its geometrical centre and
the distance of extreme fibre from
the neutral axis is y = d / 2, where d
is the diameter in case of circular
section or depth in case of square or
rectangular section.

3. In case of unsymmetrical
sections such as L-section or T-
section, the neutral axis does not
pass through its geometrical centre.
In such cases, first of all the centroid
of the section is calculated and then
the distance of the extreme fibres for
both lower and upper side of the
section is obtained. Out of these two values, the bigger value is used in bending equation.

Table 5.1 (from pages 130 to 134) shows the properties of some common cross-sections.

This is the first revolver produced in a production line using interchangeable parts.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Barrel
Blade foresight

TriggerVulcanized
rubber handle

Revolving
chamber holds
bullets

Hammer strikes cartridge to make it
explode
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Example 5.6. A pump lever rocking shaft is shown in Fig. 5.5. The pump lever exerts forces of

25 kN and 35 kN concentrated at 150 mm and 200 mm from the left and right hand bearing respec-
tively. Find the diameter of the central portion of the shaft, if the stress is not to exceed 100 MPa.

Fig. 5.5

Solution. Given : σb = 100 MPa = 100 N/mm2

Let RA and RB = Reactions at A and B respectively.

Taking moments about A, we have

RB × 950 = 35 × 750 + 25 × 150 = 30 000

∴ RB = 30 000 / 950 = 31.58 kN = 31.58 × 103 N

and RA = (25 + 35) – 31.58 = 28.42 kN = 28.42 × 103 N

∴ Bending moment at C

= RA × 150 = 28.42 × 103 × 150 = 4.263 × 106 N-mm

and bending moment at D = RB × 200 = 31.58 × 103 × 200 = 6.316 × 106 N-mm

We see that the maximum bending moment
is at D, therefore maximum bending moment, M
= 6.316 × 106 N-mm.

Let d = Diameter of the
shaft.

∴ Section modulus,

Z =
32

π
 × d 3

= 0.0982 d 3

We know that bending stress (σb),

100 =
M

Z

6 6

3 3

6.316 10 64.32 10

0.0982

× ×= =
d d

∴ d 3 = 64.32 × 106/100 = 643.2 × 103 or  d = 86.3 say 90 mm Ans.
Example 5.7. An axle 1 metre long supported in bearings at its ends carries a fly wheel weighing

30 kN at the centre. If the stress (bending) is not to exceed 60 MPa, find the diameter of the axle.

Solution. Given : L = 1 m = 1000 mm ; W = 30 kN = 30 × 103 N ; σb = 60 MPa = 60 N/mm2

The axle with a flywheel is shown in Fig. 5.6.

Let d = Diameter of the axle in mm.

The picture shows a method where sensors are
used to measure torsion
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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∴ Section modulus,

Z =
32

π
 × d3 = 0.0982 d3

Maximum bending moment at the centre of the axle,

M =
3. 30 10 1000

4 4

W L × ×=  = 7.5 × 106 N-mm

We know that bending stress (σb),

60 =
6 6

3 3

7.5 10 76.4 10

0.0982

M

Z d d

× ×= =

∴ d 3 =  76.4 × 106/60 = 1.27 × 106  or  d = 108.3 say 110 mm Ans.
Example 5.8. A beam of uniform rectangular cross-section is fixed at one end and carries an

electric motor weighing 400 N at a distance of 300 mm
from the fixed end. The maximum bending stress in the
beam is 40 MPa. Find the width and depth of the beam,
if depth is twice that of width.

Solution. Given: W = 400 N ; L = 300 mm ;
σb = 40 MPa = 40 N/mm2 ; h = 2b

The beam is shown in Fig. 5.7.

Let b = Width of the beam in mm, and

h = Depth of the beam in mm.

∴ Section modulus,

Z =
2 2 3

3. (2 ) 2
mm

6 6 3

b h b b b= =

Maximum bending moment (at the fixed end),

M = W.L = 400 × 300 = 120 × 103 N-mm

We know that bending stress (σb),

40 =
3 3

3 3

120 10 3 180 10

2

M

Z b b

× × ×= =

∴ b3 = 180 × 103/40 = 4.5 × 103  or  b = 16.5 mm Ans.

and h = 2b = 2 × 16.5 = 33 mm Ans.

Example 5.9. A cast iron pulley transmits 10 kW at 400 r.p.m. The diameter of the pulley is 1.2
metre and it has four straight arms of elliptical cross-section, in which the major axis is twice the
minor axis. Determine the dimensions of the arm if the allowable bending stress is 15 MPa.

Solution. Given : P = 10 kW = 10 × 103 W ; N = 400 r.p.m ; D = 1.2 m = 1200 mm or
R = 600 mm ; σb = 15 MPa = 15 N/mm2

Let T = Torque transmitted by the pulley.

We know that the power transmitted by the pulley (P),

10 × 103 =
2 . 2 400

42
60 60

N T T
T

π π × ×= =

∴ T = 10 × 103/42 = 238 N-m = 238 × 103 N-mm

Fig. 5.7

Fig. 5.6
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Since the torque transmitted is the product of the tangential load and the radius of the pulley,

therefore tangential load acting on the pulley

=
3238 10

396.7 N
600

T

R

×= =

Since the pulley has four arms, therefore tangential load on each arm,

W = 396.7/4 = 99.2 N

and maximum bending moment on the arm,

M = W × R = 99.2 × 600 = 59 520 N-mm

Let 2b = Minor axis in mm, and

2a = Major axis in mm = 2 × 2b = 4b ...(Given)

∴ Section modulus for an elliptical cross-section,

Z =
4

π
 × a2b = 

4

π
 (2b)2 × b = π b3 mm3

We know that bending stress (σb),

15 = 3 3

59 520 18 943M

Z b b
= =

π
or b3 = 18 943/15 = 1263   or   b = 10.8 mm

∴    Minor axis, 2b = 2 × 10.8 = 21.6 mm Ans.
and        major axis, 2a = 2 × 2b = 4 × 10.8 = 43.2 mm Ans.

5.5 Bending Stress in Curved Beams
We have seen in the previous article that for the straight beams, the neutral axis of the section

coincides with its centroidal axis and the stress distribution in the beam is linear. But in case of curved
beams, the neutral axis of the cross-section is shifted towards the centre of curvature of the beam
causing a non-linear (hyperbolic) distribution of stress, as shown in Fig. 5.8. It may be noted that the
neutral axis lies between the centroidal axis and the centre of curvature and always occurs within the
curved beams. The application of curved beam principle is used in crane hooks, chain links and
frames of punches, presses, planers etc.

Fig. 5.8. Bending stress in a curved beam.

Consider a curved beam subjected to a bending moment M, as shown in Fig. 5.8. In finding the
bending stress in curved beams, the same assumptions are used as for straight beams. The general
expression for the bending stress (σb) in a curved beam at any fibre at a distance y from the neutral
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axis, is given by

σb =
. –n

M y

A e R y
⎛ ⎞
⎜ ⎟
⎝ ⎠

where M = Bending moment acting at the given section about the centroidal
axis,

A = Area of cross-section,
e = Distance from the centroidal axis to the neutral axis = R – Rn,
R = Radius of curvature of the centroidal axis,

Rn = Radius of curvature of the neutral axis, and
y = Distance from the neutral axis to the fibre under consideration. It is

positive for the distances towards the centre of curvature and
negative for the distances away from the centre of curvature.

Notes : 1. The bending stress in the curved beam is zero at a point other than at the centroidal axis.

2. If the section is symmetrical such as a circle, rectangle, I-beam with equal flanges, then the maximum
bending stress will always occur at the inside fibre.

3. If the section is unsymmetrical, then the maximum bending stress may occur at either the inside fibre
or the outside fibre. The maximum bending stress at the inside fibre is given by

σbi =
.

. .
i

i

M y

A e R
where yi = Distance from the neutral axis to the inside fibre = Rn – Ri , and

Ri = Radius of curvature of the inside fibre.

The maximum bending stress at the outside fibre is given by

σbo =
.

. .
o

o

M y

A e R

where yo = Distance from the neutral axis to the outside fibre = Ro – Rn, and

Ro = Radius of curvature of the outside fibre.

It may be noted that the bending stress at the inside fibre is tensile while the bending stress at the outside
fibre is compressive.

4. If the section has an axial load in addition to bending, then the axial or direct stress (σd) must be added
algebraically to the bending stress, in order to obtain the resultant stress on the section. In other words,

Resultant stress, σ = σd ± σb

The following table shows the values of Rn and R for various commonly used cross-sections in
curved beams.

Table 5.2. Values of Rn and R for various commonly used
cross-section in curved beams.

Section Values of Rn and R

log
n

o
e

i

h
R

R

R

=
⎛ ⎞
⎜ ⎟⎝ ⎠

2
= +i

h
R R
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Section Values of Rn and R

                                      
2

4

⎡ ⎤+⎣ ⎦= o i
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R R
R

                                       
2i
d

R R= +

2
–

log – ( – )
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⎝ ⎠=
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i o
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i o o i o

e i o
i

b b
h

R
b R b R R

b b
h R
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3 ( )

+= +
+

i o
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h b b
R R

b b

1
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log –

×
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i o o

e i
i

b h
R

b R R
b

h R
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= +i
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R R

( – )( ) .
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log log .log

–
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e e e
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b t t t t h
R

R t R R t
b t

R R t R t

221 1 1
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2 2 2
. ( – ) ( )

+ +
= +
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i o
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R R
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Section Values of Rn and R

                                                      

( – ) .

( – ) log .log
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i i
n

i i o
i e e

i i

t b t t h
R

R t R
b t t

R R

221 1
( – )

2 2
. ( – )

+
= +

+

i i

i
i i

h t t b t
R R

h t t b t

( – ) ( – ) .
–

log log log
–

+ +=
+⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i i o o
n

i i o o o
i e e o e

i i i o o

t b t t b t t h
R

R t R t R
b t b

R R t R t

2 21 1 1
( – ) ( – ) ( – )

2 2 2
( – ) ( – ) .

+ +
= +

+ +

i i o o o

i
i i o o

h t t b t b t t h t
R R

t b t t b t t h

Example 5.10. The frame of a punch press is shown in Fig. 5.9. Find the stresses at the inner
and outer surface at section X-X of the frame, if W = 5000 N.

Solution. Given : W = 5000 N ; bi = 18 mm ; bo = 6 mm ; h = 40 mm ; Ri = 25 mm ;
Ro = 25 + 40 = 65 mm

We know that area of section at X-X,

               A = 
1

2
 (18 + 6) 40 = 480 mm2

The various distances are shown in Fig. 5.10.

We know that radius of curvature of the neutral
axis,

Rn = 2
–

log – ( – )

+⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

i o

i o o i o
e i o

i

b b
h

b R b R R
b b

h R

=

18 6
40

2
18 65 – 6 25 65

log – (18 – 6)
40 25e

+⎛ ⎞ ×⎜ ⎟
⎝ ⎠

× ×⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
480

38.83 mm
(25.5 0.9555) – 12

=
×

Fig. 5.9
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and radius of curvature of the centroidal axis,

R =
( 2 ) 40 (18 2 6)

25 mm
3 ( ) 3 (18 6)

i o
i

i o

h b b
R

b b

+ + ×+ = +
+ +

= 25 + 16.67 = 41.67 mm

Distance between the centroidal axis and neutral axis,

e = R – Rn = 41.67 – 38.83 = 2.84 mm

and the distance between the load and centroidal axis,

x = 100 + R = 100 + 41.67 = 141.67 mm

∴ Bending moment about the centroidal axis,

M = W.x = 5000 × 141.67 = 708 350 N-mm

The section at X-X is subjected to a direct tensile load of W = 5000 N and a bending moment of
M = 708 350 N-mm. We know that direct tensile stress at section X-X,

σt = 25000
10.42 N/mm 10.42 MPa

480

W

A
= = =

Fig. 5.10

Distance from the neutral axis to the inner surface,

yi = Rn – Ri = 38.83 – 25 = 13.83 mm

Distance from the neutral axis to the outer surface,

yo = Ro – Rn = 65 – 38.83 = 26.17 mm

We know that maximum bending stress at the inner surface,

σbi = 2. 708 350 13.83
287.4 N/mm

. . 480 2.84 25
i

i

M y

A e R

×= =
× ×

= 287.4 MPa (tensile)

and maximum bending stress at the outer surface,

σb0 = 2. 708 350 26.17
209.2 N/mm

. . 480 2.84 65
o

o

M y

A e R

×= =
× ×

= 209.2 MPa (compressive)
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∴ Resultant stress on the inner surface

= σt + σbi = 10.42 + 287.4 = 297.82 MPa (tensile) Ans.
and resultant stress on the outer surface,

= σt – σbo = 10.42 – 209.2 = – 198.78 MPa

= 198.78 MPa (compressive) Ans.

Example 5.11. The crane hook carries a load of 20 kN  as shown in Fig. 5.11. The section at
X-X is rectangular whose horizontal side is 100 mm. Find the stresses in the inner and outer fibres at
the given section.

Solution. Given : W = 20 kN = 20 × 103 N ; Ri = 50 mm ; Ro = 150 mm ; h = 100 mm ; b = 20 mm

We know that area of section at X-X,

A = b.h = 20 × 100 = 2000 mm2

The various distances are shown in Fig. 5.12.

We know that radius of curvature of the neutral axis,

Rn =
100 100

91.07 mm
150 1.098

loglog
50

o
ee

i

h

R

R

= = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
and radius of curvature of the centroidal axis,

R =
100

50 100 mm
2 2i
h

R + = + =

∴ Distance between the centroidal axis and neutral axis,

e = R – Rn = 100 – 91.07 = 8.93 mm

and distance between the load and the centroidal axis,

x = R = 100 mm

∴ Bending moment about the centroidal axis,

M = W × x = 20 × 103 × 100 = 2 ×  106 N-mm

A big crane hook
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The section at X-X is subjected to a direct tensile load of W = 20 × 103 N and a bending moment

of M = 2 × 106 N-mm. We know that direct tensile stress at section X-X,

σt =
320 10

2000

W

A

×=  = 10 N/mm2 = 10 MPa

              

Fig. 5.11 Fig. 5.12

We know that the distance from the neutral axis to the inside fibre,

yi = Rn – Ri = 91.07 – 50 = 41.07 mm

and distance from the neutral axis to outside fibre,

yo = Ro – Rn = 150 – 91.07 = 58.93 mm

∴ Maximum bending stress at the inside fibre,

σbi =
6. 2 10 41.07

. . 2000 8.93 50
i

i

M y

A e R

× ×=
× ×  = 92 N/mm2 = 92 MPa (tensile)

and maximum bending stress at the outside fibre,

σbo =
6. 2 10 58.93

. . 2000 8.93 150
o

o

M y

A e R

× ×=
× ×  = 44 N/mm2

= 44 MPa (compressive)

∴ Resultant stress at the inside fibre

= σt + σbi = 10 + 92 = 102 MPa (tensile) Ans.

and resultant stress at the outside fibre

= σt – σbo = 10 – 44 = – 34 MPa = 34 MPa (compressive) Ans.

Example 5.12. A C-clamp is subjected to a maximum load of W, as shown in Fig. 5.13. If the
maximum tensile stress in the clamp is limited to 140 MPa, find the value of load W.

Solution. Given : σt(max) = 140 MPa = 140 N/mm2 ; Ri = 25 mm ; Ro = 25 + 25 = 50 mm ;
bi = 19 mm ; ti = 3 mm ; t = 3 mm ; h = 25 mm

We know that area of section at X-X,

A = 3 × 22 + 3 × 19 = 123 mm2
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Fig. 5.13

The various distances are shown in Fig. 5.14. We know that radius
of curvature of the neutral axis,

Rn =  
( – ) .

( – ) log log

i i

i i o
i e e

i i

t b t t h

R t R
b t t

R R

+
+⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 =
3 (19 – 3) 3 25

25 3 50
(19 – 3) log 3 log

25 25e e

+ ×
+⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=
123 123

31.64 mm
16 0.113 3 0.693 3.887

= =
× + ×

and radius of curvature of the centroidal axis,

R =
2 21 1

2 2. ( – )

. ( – )
i i

i
i i

h t t b t
R

h t t b t

+
+

+
2 21 1

2 225 3 3 (19 – 3) 937.5 72
25 25

25 3 3 (19 – 3) 75 48

× × + × += + = +
× + +

= 25 + 8.2 = 33.2 mm

Distance between the centroidal axis and neutral axis,

e = R – Rn = 33.2 – 31.64 = 1.56 mm

and distance between the load W and the centroidal axis,

x = 50 + R = 50 + 33.2 = 83.2 mm

∴   Bending moment about the centroidal axis,

M = W.x = W × 83.2 = 83.2 W N-mm

Fig. 5.14

The section at X-X is subjected to a direct tensile load of W and a bending moment of 83.2 W.
The maximum tensile stress will occur at point P (i.e. at the inner fibre of the section).

Distance from the neutral axis to the point P,

yi = Rn – Ri = 31.64 – 25 = 6.64 mm
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Big electric generators undergo high torsional stresses.

Direct tensile stress at section X-X,

σt = 20.008 N/mm
123

W W
W

A
= =

and maximum bending stress at point P,

σbi = 2. 83.2 6.64
0.115 N/mm

. . 123 1.56 25
i

i

M y W
W

A e R

×= =
× ×

We know that the maximum tensile stress σt(max),

140 = σt + σbi = 0.008 W + 0.115 W = 0.123 W

∴ W = 140/0.123 = 1138 N Ans.

Note : We know that distance from the neutral axis to the outer fibre,

yo = Ro – Rn = 50 – 31.64 = 18.36 mm

∴ Maximum bending stress at the outer fibre,

σbo =
. 83.2 18.36

0.16
. . 123 1.56 50

o

o

M y W
W

A e R

×= =
× ×

and maximum stress at the outer fibre,

= σt – σbo = 0.008 W – 0.16 W = – 0.152 W N/mm2

= 0.152 W N/mm2 (compressive)

From above we see that stress at the outer fibre is larger in this case than at the inner fibre, but this stress
at outer fibre is compressive.

5.6 Principal Stresses and Principal Planes
In the previous chapter, we have discussed about the direct tensile and compressive stress as

well as simple shear. Also we have always referred the stress in a plane which is at right angles to the
line of action of the force.
But it has been observed
that at any point in a
strained material, there are
three planes, mutually
perpendicular to each
other which carry direct
stresses only and no shear
stress. It may be noted that
out of these three direct
stresses, one will be
maximum and the other
will be minimum. These
perpendicular planes
which have no shear stress
are known as principal
planes and the direct
stresses along these planes
are known as principal
stresses. The planes on
which the maximum shear
stress act are known as planes of maximum shear.

Field structure
(magnet)

Armature con-
taining several
coils

The ends of the coils
are arranged round
the shaft
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5.7 Determination of Principal Stresses for a Member Subjected to Bi-axial
Stress

When a member is subjected to bi-axial stress (i.e. direct stress in two mutually perpendicular
planes accompanied by a simple shear stress), then the normal and shear stresses are obtained as
discussed below:

Consider a rectangular body ABCD of uniform cross-sectional area and unit thickness subjected
to normal stresses σ1 and σ2 as shown in Fig. 5.15 (a). In addition to these normal stresses, a shear
stress τ also acts.

It has been shown in books on ‘Strength of Materials’ that the normal stress across any oblique
section such as EF inclined at an angle θ with the direction of σ2, as shown in Fig. 5.15 (a), is given by

σt = 1 2 1 2 cos 2 sin 2
2 2

σ + σ σ + σ+ θ + τ θ ...(i)

and tangential stress (i.e. shear stress) across the section EF,

τ1 =
1

2
 (σ1 – σ2) sin 2θ – τ cos 2θ ...(ii)

Since the planes of maximum and minimum normal stress (i.e. principal planes) have no
shear stress, therefore the inclination of principal planes is obtained by equating τ1 = 0 in the above
equation (ii), i.e.

         
1

2
 (σ1 – σ2) sin 2θ – τ cos 2θ = 0

∴                                            tan 2θ = 
1 2

2

–

τ
σ σ

...(iii)

Fig. 5.15. Principal stresses for a member subjected to bi-axial stress.

We know that there are two principal planes at right angles to each other. Let θ1 and θ2 be the
inclinations of these planes with the normal cross-section.

From Fig. 5.16, we find that

sin 2θ =
2 2

1 2

2

( – ) 4

τ±
σ σ + τ

(a) Direct stress in two mutually
prependicular planes accompanied by
a simple shear stress.

(b) Direct stress in one plane accompanied
by a simple shear stress.
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Fig. 5.16

∴ sin 2θ1 =
2 2

1 2

2

( – ) 4

τ+
σ σ + τ

and sin 2θ2 =
2 2

1 2

2
–

( – ) 4

τ

σ σ + τ

Also cos 2θ = 1 2

2 2
1 2

–

( – ) 4

σ σ±
σ σ + τ

∴ cos 2θ1 = 1 2

2 2
1 2

–

( – ) 4

σ σ
+

σ σ + τ

and cos 2θ2 = 1 2

2 2
1 2

–
–

( – ) 4

σ σ

σ σ + τ
The maximum and minimum principal stresses may now be obtained by substituting the values

of sin 2θ and cos 2θ in equation (i).
∴ Maximum principal (or normal) stress,

σt1 = 2 21 2
1 2

1
( – ) 4

2 2

σ + σ + σ σ + τ ...(iv)

and minimum principal (or normal) stress,

σt2 = 2 21 2
1 2

1
– ( – ) 4

2 2

σ + σ σ σ + τ ...(v)

The planes of maximum shear stress are at right angles to each other and are inclined at 45° to
the principal planes. The maximum shear stress is given by one-half the algebraic difference between
the principal stresses, i.e.

τmax = 2 21 2
1 2

– 1
( – ) 4

2 2
t tσ σ

= σ σ + τ ...(vi)

A Boring mill.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Notes: 1. When a member is subjected to direct stress in one plane accompanied by a simple shear stress as shown
in Fig. 5.15 (b), then the principal stresses are obtained by substituting σ2 = 0 in equation (iv), (v) and (vi).

∴ σt1 = 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

σt2 = 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

and τmax = 2 2
1

1
( ) 4

2
⎡ ⎤σ + τ⎣ ⎦

2. In the above expression of σt2, the value of 
2 2

1
1

( ) 4
2
⎡ ⎤σ + τ⎣ ⎦  is more than 

1

2

σ
. Therefore the nature

of σt2 will be opposite to that of σt1, i.e. if σt1 is tensile then σt2 will be compressive and vice-versa.

5.8 Application of  Principal Stresses in Designing Machine Members
There are many cases in practice, in which machine members are subjected to combined stresses

due to simultaneous action of either tensile or compressive stresses combined with shear stresses. In
many shafts such as propeller shafts, C-frames etc., there are direct tensile or compressive stresses
due to the external force and shear stress due to torsion, which acts normal to direct tensile or com-
pressive stresses. The shafts like crank shafts, are subjected simultaneously to torsion and bending. In
such cases, the maximum principal stresses, due to the combination of tensile or compressive stresses
with shear stresses may be obtained.

The results obtained in the previous article may be written as follows:

1. Maximum tensile stress,

σt(max) = 2 21
( ) 4

2 2
t

t
σ ⎡ ⎤+ σ + τ⎣ ⎦

2. Maximum compressive stress,

σc(max) = 2 21
( ) 4

2 2
c

c
σ ⎡ ⎤+ σ + τ⎣ ⎦

3. Maximum shear stress,

τmax = 2 21
( ) 4

2 t
⎡ ⎤σ + τ⎣ ⎦

where σt = Tensile stress due to direct load and bending,

σc = Compressive stress, and

τ = Shear stress due to torsion.

Notes : 1. When τ = 0 as in the case of thin cylindrical shell subjected in internal fluid pressure, then

σt (max) = σt

2. When the shaft is subjected to an axial load (P) in addition to bending and twisting moments as in the
propeller shafts of ship and shafts for driving worm gears, then the stress due to axial load must be added to the
bending stress (σb). This will give the resultant tensile stress or compressive stress (σt or σc) depending upon the
type of axial load (i.e. pull or push).

Example 5.13. A hollow shaft of 40 mm outer diameter and 25 mm inner diameter is subjected
to a twisting moment of 120 N-m, simultaneously, it is subjected to an axial thrust of 10 kN and a
bending moment of 80 N-m. Calculate the maximum compressive and shear stresses.

Solution. Given: do = 40 mm ; di = 25 mm ; T = 120 N-m = 120 × 103 N-mm ; P = 10 kN
= 10 × 103 N ; M = 80 N-m = 80 × 103 N-mm

We know that cross-sectional area of the shaft,

A = 2 2 2 2 2( ) – ( ) (40) – (25) 766 mm
4 4o id d
π π⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦
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∴ Direct compressive stress due to axial thrust,

σo =
310 10

766

P

A

×=  = 13.05 N/mm2 = 13.05 MPa

Section modulus of the shaft,

Z =
4 4 4 4

3( ) – ( ) (40) – (25)
5325 mm

32 32 40
o i

o

d d

d

⎡ ⎤ ⎡ ⎤π π= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∴   Bending stress due to bending moment,

σb =
380 10

5325

M

Z

×=  = 15.02 N/mm2 = 15.02 MPa (compressive)

and resultant compressive stress,
σc = σb + σo = 15.02 + 13.05 = 28.07 N/mm2 = 28.07 MPa

We know that twisting moment (T),

120 × 103 =
4 4 4 4( ) – ( ) (40) – (25)

10 650
16 16 40

o i

o

d d

d

⎡ ⎤ ⎡ ⎤π π× τ = × τ = τ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∴ τ = 120 × 103/10 650 = 11.27 N/mm2 = 11.27 MPa

Maximum compressive stress
We know that maximum compressive stress,

σc(max) = 2 21
( ) 4

2 2
c

c
σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 228.07 1
(28.07) 4 (11.27)

2 2
⎡ ⎤+ +⎣ ⎦

= 14.035 + 18 = 32.035 MPa Ans.
Maximum shear stress

We know that maximum shear stress,

                                 τmax  =
2 2 2 21 1

2 2
( ) 4 (28.07) 4 (11.27) 18 MPac

⎡ ⎤ ⎡ ⎤σ + τ = + =⎣ ⎦⎣ ⎦  Ans.

Example 5.14.  A shaft, as shown in Fig. 5.17, is subjected to a bending load of 3 kN, pure torque
of 1000 N-m and an axial pulling force of 15 kN.

Calculate the stresses at A and B.

Solution. Given : W = 3 kN = 3000 N ;
T = 1000 N-m = 1 × 106 N-mm ; P = 15 kN
= 15 × 103 N ; d = 50 mm; x = 250 mm

We know that cross-sectional area of the shaft,

                                     A =
4

π
 × d 2

= 
4

π
 (50)2 = 1964 mm2

∴ Tensile stress due to axial pulling at points A and B,

σo =
315 10

1964

P

A

×=   = 7.64 N/mm2 = 7.64 MPa

Bending moment at points A and B,

M = W.x = 3000 × 250 = 750 × 103 N-mm

Fig. 5.17
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Section modulus for the shaft,

Z =
32

π
 × d3 = 

32

π
 (50)3

= 12.27 × 103 mm3

∴ Bending stress at points A and B,

σb =
3

3

750 10

12.27 10

M

Z

×=
×

= 61.1 N/mm2 = 61.1 MPa

This bending stress is tensile at point A and
compressive at point B.

∴ Resultant tensile stress at point A,
         σA = σb + σo = 61.1 + 7.64
             = 68.74 MPa

and resultant compressive stress at point B,
         σB = σb – σo = 61.1 – 7.64 = 53.46 MPa
We know that the shear stress at points A and B due to the torque transmitted,

           τ =
6

3 3

16 16 1 10

(50)

T

d

× ×=
π π

 = 40.74 N/mm2 = 40.74 MPa                 ... 3

16

π⎛ ⎞= × τ ×⎜ ⎟
⎝ ⎠
Q T d

Stresses at point A
We know that maximum principal (or normal) stress at point A,

σA(max) = 2 2A
A

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 268.74 1
(68.74) 4 (40.74)

2 2
⎡ ⎤+ +⎣ ⎦

= 34.37 + 53.3 = 87.67 MPa (tensile) Ans.
Minimum principal (or normal) stress at point A,

σA(min) = 2 2A
A

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦  = 34.37 – 53.3 = – 18.93 MPa

= 18.93 MPa (compressive ) Ans.
and maximum shear stress at point A,

τA(max) = 2 2 2 21 1
A2 2

( ) 4 (68.74) 4 (40.74)⎡ ⎤ ⎡ ⎤σ + τ = +⎣ ⎦⎣ ⎦

= 53.3 MPa Ans.

Stresses at point B

We know that maximum principal (or normal) stress at point B,

σB(max) = 2 2B
B

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 253.46 1
(53.46) 4 (40.74)

2 2
⎡ ⎤+ +⎣ ⎦

= 26.73 + 48.73 = 75.46 MPa (compressive) Ans.

Note : This picture is given as additional information and
is not a direct example of the current chapter.

This picture shows a machine component inside a
crane
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Minimum principal (or normal) stress at point B,

σB(min) = B 2 2
B

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

= 26.73 – 48.73 = – 22 MPa

= 22 MPa (tensile) Ans.

and maximum shear stress at point B,

τB(max) = 2 2 2 21 1
B2 2

( ) 4 (53.46) 4 (40.74)⎡ ⎤ ⎡ ⎤σ + τ = +⎣ ⎦⎣ ⎦

=  48.73 MPa Ans.

Example 5.15. An overhang crank with pin and shaft is shown in Fig. 5.18. A tangential load
of 15 kN acts on the crank pin. Determine the maximum principal stress and the maximum shear
stress at the centre of the crankshaft bearing.

Fig. 5.18

Solution. Given : W = 15 kN = 15 × 103 N ; d = 80 mm ; y = 140 mm ; x = 120 mm

Bending moment at the centre of the crankshaft bearing,

M = W × x = 15 × 103 × 120 = 1.8 × 106 N-mm

and torque transmitted at the axis of the shaft,

T = W × y = 15 × 103 × 140 = 2.1 × 106 N-mm

We know that bending stress due to the bending moment,

σb = 3

32M M

Z d
=

π
... 3

32

π⎛ ⎞= ×⎜ ⎟
⎝ ⎠
QZ d

=
6

3

32 1.8 10

(80)

× ×
π

 = 35.8 N/mm2 = 35.8 MPa

and shear stress due to the torque transmitted,

τ =
6

3 3

16 16 2.1 10

(80)

T

d

× ×=
π π

 = 20.9 N/mm2 = 20.9 MPa

Maximum principal stress
We know that maximum principal stress,

σt(max) = 2 21
( ) 4

2 2
t

t
σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 235.8 1
(35.8) 4 (20.9)

2 2
⎡ ⎤+ +⎣ ⎦ ... (Substituting σt = σb)

= 17.9 + 27.5 = 45.4 MPa Ans.
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Maximum shear stress
We know that maximum shear stress,

τmax = 2 2 2 21 1
2 2

( ) 4 (35.8) 4 (20.9)t
⎡ ⎤ ⎡ ⎤σ + τ = +⎣ ⎦⎣ ⎦

= 27.5 MPa Ans.

5.9 Theories of Failure Under Static Load
It has already been discussed in the previous chapter that strength of machine members is based

upon the mechanical properties of the materials used. Since these properties are usually determined
from simple tension or compression tests, therefore, predicting failure in members subjected to uni-
axial stress is both simple and straight-forward. But the problem of predicting the failure stresses for
members subjected to bi-axial or tri-axial stresses is much more complicated. In fact, the problem is
so complicated that a large number of different theories have been formulated. The principal theories
of failure for a member subjected to bi-axial stress are as follows:

1. Maximum principal (or normal) stress theory (also known as Rankine’s theory).
2. Maximum shear stress theory (also known as Guest’s or Tresca’s theory).
3. Maximum principal (or normal) strain theory (also known as Saint Venant theory).
4. Maximum strain energy theory (also known as Haigh’s theory).
5. Maximum distortion energy theory (also known as Hencky and Von Mises theory).
Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the

material and brittle materials fail by fracture, therefore the limiting strength for these two classes of
materials is normally measured by different mechanical properties. For ductile materials, the limiting
strength is the stress at yield point as determined from simple tension test and it is, assumed to be
equal in tension or compression. For brittle materials, the limiting strength is the ultimate stress in
tension or compression.

5.10 Maximum Principal or Normal Stress Theory (Rankine’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the maximum

principal or normal stress in a bi-axial stress system reaches the limiting strength of the material in a
simple tension test.

Since the limiting strength for ductile materials is yield point stress and for brittle materials
(which do not have well defined yield point) the limiting strength is ultimate stress, therefore according

Pig iron is made from iron ore in a blast furnace. It is a brittle form of iron that contains 4-5 per cent carbon.

Coke

Waste gases
are removed

Hot air
blasted into
furnace

Molten slag removed

Iron ore

Pig iron and
scrap steel
are poured
into converter

Oxygen is
blown into
molten metal

Converter pours out
molten steel

Molten steel fluid can be poured
into moulds or cast while fuild

Oxygen burns off carbon to
turn the pig iron into steelMolten pig iron

Ladle

Iron

Limestone

Mixed raw
maerials

The molten steel can
then be tapped off.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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to the above theory, taking factor of safety (F.S.) into consideration, the maximum principal or normal
stress (σt1) in a bi-axial stress system is given by

σt1 =
. .
yt

F S

σ
, for ductile materials

=
. .
u

F S

σ
, for brittle materials

where σyt = Yield point stress in tension as determined from simple tension
test, and

σu = Ultimate stress.
Since the maximum principal or normal stress theory is based on failure in tension or compression

and ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials.
However, for brittle materials which are relatively strong in shear but weak in tension or compression,
this theory is generally used.
Note : The value of maximum principal stress (σt1) for a member subjected to bi-axial stress system may be
determined as discussed in Art. 5.7.

5.11 Maximum Shear Stress Theory (Guest’s or Tresca’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the maximum

shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a
simple tension test. Mathematically,

τmax = τyt /F.S. ...(i)
where τmax = Maximum shear stress in a bi-axial stress system,

τyt = Shear stress at yield point as determined from simple tension test,
and

F.S. = Factor of safety.

Since the shear stress at yield point in a simple tension test is equal to one-half the yield stress
in tension, therefore the equation (i) may be written as

τmax =
2 . .

yt

F S

σ
×

This theory is mostly used for designing members of ductile materials.
Note: The value of maximum shear stress in a bi-axial stress system (τmax) may be determined as discussed in
Art. 5.7.

5.12 Maximum Principal Strain Theory (Saint Venant’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the maximum

principal (or normal) strain in a bi-axial stress system reaches the limiting value of strain (i.e. strain at
yield point) as determined from a simple tensile test. The maximum principal (or normal) strain in a
bi-axial stress system is given by

εmax = 1 2–
.

t t

E m E

σ σ

∴ According to the above theory,

εmax = 1 2–
. . .

ytt t

E m E E F S

σσ σ
= ε =

×
...(i)

where σt1 and σt2 = Maximum and minimum principal stresses in a bi-axial stress system,
ε = Strain at yield point as determined from simple tension test,

1/m = Poisson’s ratio,
E = Young’s modulus, and

F.S. = Factor of safety.
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From equation (i), we may write that

2
1 –

. .
ytt

t m F S

σσ
σ =

This theory is not used, in general, because it only gives reliable results in particular cases.

5.13 Maximum Strain Energy Theory (Haigh’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the strain

energy per unit volume in a bi-axial stress system reaches the limiting strain energy (i.e. strain energy
at the yield point ) per unit volume as determined from simple tension test.

We know that strain energy per unit volume in a bi-axial stress system,

           U1 =
2 2 1 2

1 2
21

( ) ( ) –
2

t t
t tE m

σ × σ⎡ ⎤σ + σ⎢ ⎥⎣ ⎦
and limiting strain energy per unit volume for yielding as determined from simple tension test,

U2 =
2

1

2 . .
yt

E F S

σ⎛ ⎞
⎜ ⎟
⎝ ⎠

According to the above theory, U1 = U2.

∴
2

2 2 1 2
1 2

21 1
( ) ( ) –

2 2 . .
ytt t

t tE m E F S

σ⎛ ⎞σ × σ⎡ ⎤σ + σ = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

or (σt1)2 + (σt2)
2 – 

2
1 22

. .
ytt t

m F S

σ⎛ ⎞σ × σ
= ⎜ ⎟
⎝ ⎠

This theory may be used for ductile materials.

5.14 Maximum Distortion Energy Theory (Hencky and Von Mises Theory)
According to this theory, the failure or yielding occurs at a point in a member when the distortion

strain energy (also called shear strain energy) per unit volume in a bi-axial stress system reaches the
limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a
simple tension test. Mathematically, the maximum distortion energy theory for yielding is expressed
as

(σt1)
2 + (σt2)

2 – 2σt1 × σt2 = 
2

. .
yt

F S

σ⎛ ⎞
⎜ ⎟
⎝ ⎠

This theory is mostly used for ductile materials in place of maximum strain energy theory.
Note: The maximum distortion energy is the difference between the total strain energy and the strain energy due
to uniform stress.

This double-decker A 380 has a passenger capacity of 555. Its engines and parts  should be robust
which can bear high torsional and variable stresses.
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Example 5.16. The load on a bolt consists of an axial pull of 10 kN together with a transverse

shear force of 5 kN. Find the diameter of bolt required according to
1. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal

strain theory; 4. Maximum strain energy theory; and 5. Maximum distortion energy theory.

Take permissible tensile stress at elastic limit = 100 MPa and poisson’s ratio = 0.3.

Solution. Given : Pt1 = 10 kN ; Ps = 5 kN ; σt(el) = 100 MPa = 100 N/mm2 ; 1/m = 0.3

Let d = Diameter of the bolt in mm.

∴ Cross-sectional area of the bolt,

A =
4

π
 × d2 = 0.7854 d 2 mm2

We know that axial tensile stress,

σ1 =
21

2 2

10 12.73
kN/mm

0.7854
tP

A d d
= =

and transverse shear stress,

τ =
2

2 2

5 6.365
kN/mm

0.7854
sP

A d d
= =

1.  According to maximum principal stress theory
We know that maximum principal stress,

σt1 = 2 21 2
1 2

1
( – ) 4

2 2

σ + σ ⎡ ⎤+ σ σ + τ⎣ ⎦

= 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦ ...(Q σ2 = 0)

=
2 2

2 2 2

12.73 1 12.73 6.365
4

22 d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 2 2

6.365 1 6.365
4 4

2d d
⎡ ⎤+ × +⎣ ⎦

= 2 2
2 2 2

6.365 1 15.365 15 365
1 4 4 kN/mm N/mm

2d d d

⎡ ⎤+ + = =⎢ ⎥⎣ ⎦
According to maximum principal stress theory,

σt1 = σt(el)   or  
2

15 365
100

d
=

∴ d 2 = 15 365/100 = 153.65  or  d = 12.4 mm Ans.
2. According to maximum shear stress theory

We know that maximum shear stress,

τmax = 2 2 2 21 1
1 2 12 2

( – ) 4 ( ) 4⎡ ⎤ ⎡ ⎤σ σ + τ = σ + τ⎣ ⎦ ⎣ ⎦ ...(Q σ2 = 0)

=
2 2

2 2 2

1 12.73 6.365 1 6.365
4 4 4

2 2d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎡ ⎤+ = × +⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 2 2
2 2

9 9000
kN/mm N/mm

d d
=

According to maximum shear stress theory,

τmax =
( )

2
t elσ

  or   
2

9000 100
50

2d
= =

∴ d 2 = 9000 / 50 = 180   or   d = 13.42 mm Ans.
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3.  According to maximum principal strain theory
We know that maximum principal stress,

σt1 =
2 21

1 2

1 15 365
( ) 4

2 2 d

σ ⎡ ⎤+ σ + τ =⎣ ⎦ ...(As calculated before)

and minimum principal stress,

σt2 = 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

=
2 2

2 2 2

12.73 1 12.73 6.365
– 4

22 d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 2 2

6.365 1 6.365
– 4 4

2d d
⎡ ⎤× +⎣ ⎦

= 2
2 2

6.365 – 2.635
1 – 2 kN/mm⎡ ⎤ =⎣ ⎦

d d

2
2

– 2635
N/mm=

d
We know that according to maximum principal strain theory,

    1 2–t t

E mE

σ σ
  = ( )t el

E

σ
or 2

1 ( )– t
t t elm

σ
σ = σ

∴
2 2

15 365 2635 0.3
100

d d

×+ =   or  2

16 156
100

d
=

d 2 =16 156 / 100 = 161.56   or   d = 12.7 mm Ans.
4. According to maximum strain energy theory

We know that according to maximum strain energy theory,

(σt1)2 + (σt2)
2 – 1 22 t t

m

σ × σ
 = [σt(el)]

2

2 2
2

2 2 2 2

15 365 – 2635 15 365 – 2635
– 2 0.3 (100)

d d d d

⎡ ⎤ ⎡ ⎤+ × × × =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
6 6 6

3
4 4 4

236 10 6.94 10 24.3 10
10 10

d d d

× × ×+ + = ×

4 4 4

23 600 694 2430
1

d d d
+ + =   or  

4

26 724
1

d
=

∴ d 4 = 26 724  or  d = 12.78 mm Ans.
5. According to maximum distortion energy theory

According to maximum distortion energy theory,

(σt1)
2 + (σt2)

2 – 2σt1 × σt2= [σt(el)]
2

2 2
2

2 2 2 2

15 365 – 2635 15 365 – 2635
– 2 (100)

d d d d

⎡ ⎤ ⎡ ⎤+ × × =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
6 6 6

3
4 4 4

236 10 6.94 10 80.97 10
10 10

d d d

× × ×+ + = ×

4 4 4

23 600 694 8097
1

d d d
+ + = or 4

32 391
1

d
=

∴ d4 = 32 391  or  d = 13.4 mm Ans.

Front view of a jet engine. The rotors un-
dergo high torsional and bending  stresses.
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Example 5.17. A cylindrical shaft made of steel of yield strength 700 MPa is subjected to static

loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter
of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E = 210
GPa and poisson's ratio = 0.25.

Solution. Given : σyt = 700 MPa = 700 N/mm2 ; M = 10 kN-m = 10 × 106 N-mm ; T = 30 kN-m
= 30 × 106 N-mm ; F.S. = 2 ; E = 210 GPa = 210 × 103 N/mm2 ; 1/m = 0.25

Let d = Diameter of the shaft in mm.
First of all, let us find the maximum and minimum principal stresses.
We know that section modulus of the shaft

Z =
32

π
 × d 3 = 0.0982 d3 mm3

∴  Bending (tensile) stress due to the bending moment,

σ1 =
6 6

2
3 3

10 10 101.8 10
N/mm

0.0982

M

Z d d

× ×= =

and shear stress due to torsional moment,

τ =
6 6

2
3 3 3

16 16 30 10 152.8 10
N/mm

T

d d d

× × ×= =
π π

We know that maximum principal stress,

σt1 = 2 21 2
1 2

1
( – ) 4

2 2

σ + σ ⎡ ⎤+ σ σ + τ⎣ ⎦

= 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦ ...(Q σ2 = 0)

=

2 26 6 6

3 3 3

101.8 10 1 101.8 10 152.8 10
4

22d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞× × ×⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
6 6

2 2
3 3

50.9 10 1 10
(101.8) 4 (152.8)

2d d

× ⎡ ⎤+ × +⎣ ⎦

=
6 6 6

2
3 3 3

50.9 10 161 10 211.9 10
N/mm

d d d

× × ×+ =

and minimum principal stress,

σt2 = 2 21 2
1 2

1
– ( – ) 4

2 2

σ + σ ⎡ ⎤σ σ + τ⎣ ⎦

= 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦ ...(Q σ2 = 0)

=
6 6 6

2
3 3 3

50.9 10 161 10 – 110.1 10
– N/mm

d d d

× × ×=

Let us now find out the diameter of shaft (d) by considering the maximum shear stress theory
and maximum strain energy theory.

1. According to maximum shear stress theory
We know that maximum shear stress,

τmax =
6 6 6

1 2
3 3 3

1 211.9 10 110.1 10 161 10

2 2
t t

d d d

⎡ ⎤σ − σ × × ×
= + =⎢ ⎥

⎣ ⎦
We also know that according to maximum shear stress theory,

τmax =
2 . .

yt

F S

σ
   or   

6

3

161 10 700
175

2 2d

× = =
×

∴ d 3 = 161 × 106 / 175 = 920 × 103  or  d = 97.2 mm Ans.
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Note:  The value of maximum shear stress (τmax) may also be obtained by using the relation,

τmax = 2 21
12

( ) 4⎡ ⎤σ + τ⎣ ⎦

=

2 26 6

3 3

1 101.8 10 152.8 10
4

2 d d

⎡ ⎤⎛ ⎞ ⎛ ⎞× ×⎢ ⎥+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
6

2 2
3

1 10
(101.8) 4 (152.8)

2 d
⎡ ⎤× +⎣ ⎦

=
6 6

2
3 3

1 10 161 10
322 N/mm

2 d d

×× × = ...(Same as before)

2.  According to maximum strain energy theory
We know that according to maximum strain energy theory,

                   
2

2 2 1 2
1 2

21 1
( ) ( ) –

2 2 . .
ytt t

t tE m E F S

σ⎛ ⎞σ × σ⎡ ⎤σ + σ = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

or                         (σt1)
2 + (σt2)

2 – 
2

1 22

. .
ytt t

m F S

σ⎛ ⎞σ × σ
= ⎜ ⎟
⎝ ⎠

   

2 2 26 6 6 6

3 3 3 3

211.9 10 – 110.1 10 211.9 10 – 110.1 10 700
– 2 0.25

2d d d d

⎡ ⎤ ⎡ ⎤× × × × ⎛ ⎞+ × × × = ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎝ ⎠⎣ ⎦ ⎣ ⎦

or         
12 12 12

6 6 6

44 902 10 12 122 10 11 665 10
122 500

d d d

× × ×+ + =
12

6

68 689 10
122 500

d

× =

∴ d 6 = 68 689 × 1012/122 500 = 0.5607 × 1012  or  d = 90.8 mm Ans.
Example 5.18. A mild steel shaft of 50 mm diameter is subjected to a bending moment of 2000

N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of
this torque without causing yielding of the shaft according to 1. the maximum principal stress; 2. the
maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

Solution. Given: d = 50 mm ; M = 2000 N-m = 2 × 106 N-mm ; σyt = 200 MPa = 200 N/mm2

Let T = Maximum torque without causing yielding of the shaft, in N-mm.

1.  According to maximum principal stress theory
We know that section modulus of the shaft,

Z =
32

π
 × d3 = 

32

π
 (50)3 = 12 273 mm3

∴  Bending stress due to the bending moment,

σ1 =
6

22 10
163 N/mm

12 273

M

Z

×= =

and shear stress due to the torque,

τ = 3 3

16 16

(50)

T T

d
=

π π
 = 0.0407 × 10–3 T N/mm2

... 3

16

π⎡ ⎤= × τ ×⎢ ⎥⎣ ⎦
QT d

We know that maximum principal stress,

σt1 = 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 –3 2163 1
(163) 4 (0.0407 10 )

2 2
T⎡ ⎤+ + ×⎣ ⎦
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    = –9 2 281.5 6642.5 1.65 10 N/mmT+ + ×
Minimum principal stress,

 σt2  = 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

        = 2 –3 2163 1
– (163) 4 (0.0407 10 )

2 2
T⎡ ⎤+ ×⎣ ⎦

        = –9 2 281.5 – 6642.5 1.65 10 N/mmT+ ×
and maximum shear stress,

τmax  = 2 2 2 –3 21 1
12 2

( ) 4 (163) 4 (0.0407 10 )T⎡ ⎤ ⎡ ⎤σ + τ = + ×⎣ ⎦⎣ ⎦

        = –9 2 26642.5 1.65 10 N/mmT+ ×
We know that according to maximum principal stress theory,

 σt1  = σyt ...(Taking F.S. = 1)

∴  –9 281.5 6642.5 1.65 10 200T+ + × =
         6642.5 + 1.65 + 10–9 T 2  = (200 – 81.5)2 = 14 042

T 2  = 9
–9

14 042 – 6642.5
4485 10

1.65 10
= ×

×
or  T  = 2118 × 103 N-mm = 2118 N-m Ans.
2.  According to maximum shear stress theory

We know that according to maximum shear stress theory,

     τmax  =  τyt = 
2
ytσ

∴ –9 2 200
6642.5 1.65 10 100

2
T+ × = =

         6642.5 + 1.65 × 10–9 T 2 = (100)2 = 10 000

T 2  =  
9

–9

10 000 – 6642.5
2035 10

1.65 10
= ×

×
∴ T = 1426 × 103 N-mm = 1426 N-m Ans.

3.  According to maximum distortion strain energy theory
We know that according to maximum distortion strain energy theory
                        (σt1)2 + (σt2)

2 – σt1 × σt2 = (σyt)
2

2 2
–9 2 –9 281.5 6642.5 1.65 10 81.5 – 6642.5 1.65 10T T⎡ ⎤ ⎡ ⎤+ + × + + ×⎣ ⎦ ⎣ ⎦

     –9 2 –9 2 2– 81.5 6642.5 1.65 10 81.5 – 6642.5 1.65 10 (200)T T⎡ ⎤ ⎡ ⎤+ + × + × =⎣ ⎦ ⎣ ⎦

2 –9 2 2 –9 2 22 (81.5) 6642.5 1.65 10 – (81.5) – 6642.5 1.65 10 (200)T T⎡ ⎤ ⎡ ⎤+ + × + × =⎣ ⎦ ⎣ ⎦

(81.5)2 + 3 × 6642.5 + 3 × 1.65 × 10–9 T 2 = (200)2

  26 570 + 4.95 × 10–9 T 2 = 40 000

   T 2 = 9
–9

40 000 – 26 570
2713 10

4.95 10
= ×

×
∴ T  = 1647 × 103 N-mm = 1647 N-m Ans.
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5.15 Eccentric Loading - Direct and Bending Stresses Combined
An external load, whose line of action is parallel but does not coincide with the centroidal axis

of the machine component, is known as an eccentric load. The distance between the centroidal axis
of the machine component and the eccentric load is called eccentricity and is generally denoted by e.
The examples of eccentric loading, from the subject point of view, are C-clamps, punching machines,
brackets, offset connecting links etc.

Fig. 5.19. Eccentric loading.

Consider a short prismatic bar subjected to a compressive load P acting at an eccentricity of e as
shown in Fig. 5.19 (a).

Let us introduce two forces P1 and P2 along the centre line or neutral axis equal in magnitude to
P, without altering the equilibrium of the bar as shown in Fig. 5.19 (b). A little consideration will
show that the force P1 will induce a direct compressive stress over the entire cross-section of the bar,
as shown in Fig. 5.19 (c).

The magnitude of this direct compressive stress is given by

σo = 1P

A
 or 

P

A
, where A is the cross-sectional area of the bar.

The forces P1 and P2 will form a couple equal to P × e which will cause bending stress. This
bending stress is compressive at the edge AB and tensile at the edge CD, as shown in Fig. 5.19 (d).
The magnitude of bending stress at the edge AB is given by

σb =
. . cP e y

I
 (compressive)

and bending stress at the edge CD,

σb =
. . tP e y

I
 (tensile)
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where yc and yt = Distances of the extreme fibres on the compressive and tensile sides,

from the neutral axis respectively, and
I = Second moment of area of the section about the neutral axis i.e.

Y-axis.
According to the principle of superposition, the maximum or the resultant compressive stress at

the edge AB,

σc =
. .

+ =cP e y P

I A
* + = σ + σb o

M P

Z A
and the maximum or resultant tensile stress at the edge CD,

σt =
. .

– –t
b o

P e y P M P

I A Z A
= = σ − σ

The resultant compressive and tensile stress diagram is shown in Fig. 5.19 (e).

Notes: 1. When the member is subjected to a tensile load, then the
above equations may be used by interchanging the subscripts c and t.

2. When the direct stress σo is greater than or equal to bending
stress σb, then the compressive stress shall be present all over the
cross-section.

3. When the direct stress σo is less than the bending stress σb,
then the tensile stress will occur in the left hand portion of the cross-
section and compressive stress on the right hand portion of the cross-
section. In Fig. 5.19, the stress diagrams are drawn by taking σo less
than σb.

In case the eccentric load acts with eccentricity about two axes,
as shown in Fig. 5.20, then the total stress at the extreme fibre

                   = 
XX YY

. .. . yx
P e yP P e x

A I I
± ±

Fig. 5.20. Eccentric load with
eccentricity about two axes.

* We know that bending moment, M = P.e and section modulus, Z = orc t

I I

y y y
=

∴ Bending stress, σb = M / Z

In a gas-turbine system, a compressor forces air into a combustion chamber. There, it mixes with fuel.
The mixture is ignited by a spark. Hot gases are produced when the fuel burns. They expand and drive
a series of fan blades called a turbine.

Compressor

Fuel injector

Fuel line

Spark plug

Air in

Combustion chamber

Turbine shaft

Turbines

Exhaust

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Fig. 5.22

Fig. 5.21

Example 5.19. A rectangular strut is 150 mm wide and 120 mm thick. It carries a load of 180
kN at an eccentricity of 10 mm in a plane bisecting the thickness as shown in Fig. 5.21. Find the
maximum and minimum intensities of stress in the section.

Solution. Given : b = 150 mm ; d = 120 mm ; P = 180 kN
= 180 × 103 N ; e = 10 mm

We know that cross-sectional area of the strut,
A = b.d = 150 × 120

= 18 × 103 mm2

∴ Direct compressive stress,

σo =
3

3

180 10

18 10

P

A

×=
×

= 10 N/mm2 = 10 MPa
Section modulus for the strut,

Z =
3 2

YY . /12 .

/ 2 6

I d b d b

y b
= =

=
2120 (150)

6
= 450 × 103 mm3

Bending moment, M = P.e = 180 × 103 × 10
= 1.8 × 106 N-mm

∴ Bending stress, σb =
6

3

1.8 10

450 10

M

Z

×=
×

= 4 N/mm2 = 4 MPa
Since σo is greater than σb, therefore the entire cross-section of the strut will be subjected to

compressive stress. The maximum intensity of compressive stress will be at the edge AB and
minimum at the edge CD.

∴ Maximum intensity of compressive stress at the edge AB

= σo + σb = 10 + 4 = 14 MPa Ans.
and minimum intensity of compressive stress at the edge CD

= σo – σb = 10 – 4 = 6 MPa Ans.
Example 5.20. A hollow circular column of external diameter

250 mm and internal diameter 200 mm, carries a projecting bracket
on which a load of 20 kN rests, as shown in Fig. 5.22. The centre of
the load from the centre of the column is 500 mm. Find the stresses
at the sides of the column.

Solution. Given : D = 250 mm ; d = 200 mm ;
P = 20 kN = 20 × 103 N ; e = 500 mm

We know that cross-sectional area of column,

A =
4

π
 (D2 – d2)

= 
4

π
 [(250)2 – (200)2]

= 17 674 mm2

∴ Direct compressive stress,

σo =
3

220 10
1.13 N/mm

17 674

P

A

×= =

= 1.13 MPa
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Wind turbine.

Note : This picture is given as additional information and
is not a direct example of the current chapter.

Transmission
Posit ioning
gears

Turbine head

Control
electronics
adjust position
of wind turbine
head

Internal ladders
allow access to
wind turbine
head

Turbine blade

Vents for cooling
air

Drive shaft

Section modulus for the column,

Z =

4 4–
64

/ 2

D dI

y D

π ⎡ ⎤⎣ ⎦
=  = 

4 4(250) – (200)
64

250 / 2

π ⎡ ⎤⎣ ⎦

=905.8 × 103 mm3

Bending moment,
M = P.e

= 20 × 103 × 500
=10 × 106 N-mm

∴ Bending stress,

σb =
6

3

10 10

905.8 10

M

Z

×=
×

=  11.04 N/mm2

=  11.04 MPa

Since σo is less than σb, therefore right
hand side of the column will be subjected to
compressive stress and the left hand side of the
column will be subjected to tensile stress.

∴  Maximum compressive stress,

σc =  σb + σo = 11.04 + 1.13

=  12.17 MPa Ans.

and maximum tensile stress,

σt = σb – σo = 11.04 – 1.13 = 9.91 MPa Ans.
Example 5.21. A masonry pier of width 4 m and thickness 3 m, supports a load of 30 kN as

shown in Fig. 5.23. Find the stresses developed at each corner of the pier.

Solution. Given: b = 4 m ; d = 3 m ; P = 30 kN ; ex = 0.5 m ; ey = 1 m

We know that cross-sectional area of the pier,

A = b × d = 4 × 3 = 12 m2

Moment of inertia of the pier about X-axis,

IXX = 
3 3

4. 4 3
9 m

12 12

b d ×= =

and moment of inertia of the pier about Y-axis,

IYY = 
3 3

4. 3 4
16 m

12 12

d b ×= =

Distance between X-axis and the corners A and B,

x = 3 / 2 = 1.5 m
Distance between Y-axis and the corners A and C,

y = 4 / 2 = 2 m

We know that stress at corner A,

σA =
XX YY

. .. . yx
P e yP e xP

A I I
+ + ... [Q  At A, both x and y are +ve]

Fig. 5.23
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=
30 30 0.5 1.5 30 1 2

12 9 16

× × × ×+ +

= 2.5 + 2.5 + 3.75 = 8.75 kN/m2 Ans.
Similarly stress at corner B,

σB =
XX YY

. .. .
– yx

P e yP e xP

A I I
+ ... [Q  At B, x is +ve and y is –ve]

=
30 30 0.5 1.5 30 1 2

–
12 9 16

× × × ×+

= 2.5 + 2.5 – 3.75 = 1.25 kN/m2 Ans.
Stress at corner C,

σC =
XX YY

. .. .
– yx

P e yP e xP

A I I
+ ... [At C, x is –ve and y is +ve]

=
30 30 0.5 1.5 30 1 2

–
12 9 16

× × × ×+

= 2.5 – 2.5 + 3.75 = 3.75 kN/m2 Ans.
and stress at corner  D,

σD =
XX YY

. .. .
– – yx

P e yP e xP

A I I
... [At D, both x and y are – ve]

=
30 30 0.5 1.5 30 1 2

– –
12 9 16

× × × ×

= 2.5 – 2.5 – 3.75 = – 3.75 kN/m2 = 3.75 kN/m2 (tensile) Ans.

Example 5.22. A mild steel link, as shown in Fig. 5.24 by full lines, transmits a pull of 80 kN.
Find the dimensions b and t if b = 3t.
Assume the permissible tensile stress as
70 MPa. If the original link is replaced
by an unsymmetrical one, as shown by
dotted lines in Fig. 5.24, having the same
thickness t, find the depth b1, using the
same permissible stress as before.

Solution. Given : P = 80 kN
= 80 × 103 N ; σt = 70 MPa = 70 N/mm2

When the link is in the position shown by full lines in Fig. 5.24, the area of cross-section,

A = b × t = 3 t × t = 3 t 2 ...(Q b = 3 t )

We know that tensile load (P),

80 × 103 = σt × A = 70 × 3 t2 = 210 t2

∴ t2 = 80 × 103 / 210 = 381  or  t = 19.5 say 20 mm Ans.

and b = 3 t  = 3 × 20 = 60 mm Ans.

When the link is in the position shown by dotted lines, it will be subjected to direct stress as well
as bending stress. We know that area of cross-section,

A1 = b1 × t

Fig. 5.24
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Fig. 5.26

∴ Direct tensile stress,

σo =
1

=
×

P P

A b t

and bending stress, σb = 2
1

. 6 .

( )
= =M P e P e

Z Z t b
...

2
1( )

6

⎛ ⎞
=⎜ ⎟

⎝ ⎠
Q

t b
Z

∴Total stress due to eccentric loading

= 2
1 1 11

6 . 6
1

.( )

⎛ ⎞σ + σ = + = +⎜ ⎟× ⎝ ⎠
b o

P e P P e

b t t b bt b

Since the permissible tensile stress is the same as 70 N/mm2, therefore

70 =
3 3

1

1 1 1

680 10 16 10
1

20 2

×× ×⎛ ⎞+ =⎜ ⎟×⎝ ⎠

b

b b b
... 1Eccentricity,

2
⎛ ⎞=⎜ ⎟
⎝ ⎠
Q

b
e

∴ b1 = 16 × 103 / 70 = 228.6 say 230 mm Ans.
Example 5.23. A cast-iron link, as shown in Fig. 5.25, is to carry a load of 20 kN. If the tensile

and compressive stresses in the link are not to exceed 25 MPa and 80 MPa respectively, obtain the
dimensions of the cross-section of the link at the middle of its length.

Fig. 5.25

Solution. Given : P = 20 kN = 20 × 103 N ; σt(max) = 25 MPa = 25 N/mm2 ; σc(max) = 80 MPa
= 80 N/mm2

Since the link is subjected to eccentric loading, therefore there
will be direct tensile stress as well as bending stress. The bending
stress at the bottom of the link is tensile and in the upper portion is
compressive.

We know that cross-sectional area of the link,

A = 3a × a + 2 × 
2

3

a
 × 2a

= 5.67 a2 mm2

∴  Direct tensile stress,

σo =
3

2
2 2

20 10 3530
N/mm

5.67

P

A a a

×= =

Now let us find the position of centre of gravity (or neutral axis) in order to find the bending
stresses.

Let y = Distance of neutral axis (N.A.) from the bottom of the link as shown
in Fig. 5.26.

∴ y =

2
2

2

4
3 2 2

2 3 1.2 mm
5.67

a a
a a

a
a

× + × ×
=
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Moment of inertia about N.A.,

3
3 2

2 2 2

2
(2 )3 433 (1.2 – 0.5 ) 2 (2 – 1.2 )

12 12 3

a aa a a
I a a a a a

⎡ ⎤×⎡ ⎤ ⎢ ⎥×= + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= (0.25 a4 + 1.47 a4) + 2 (0.44a4 + 0.85 a4) = 4.3 a4 mm4

Distance of N.A. from the bottom of the link,

yt = y  = 1.2 a mm

Distance of N.A. from the top of the link,

yc = 3 a – 1.2 a = 1.8 a mm

Eccentricity of the load (i.e. distance of N.A. from the point of application of the load),

e = 1.2 a – 0.5 a = 0.7 a mm

We know that bending moment exerted on the section,

M = P.e = 20 × 103 × 0.7 a = 14 × 103 a N-mm

∴ Tensile stress in the bottom of the link,

σt =
t

M

Z
  =

3

4 2

. 14 10 1.2 3907

/ 4.3

× ×= = =t

t

M yM a a

I y I a a

and compressive stress in the top of the link,

σc =
3

4 2

. 14 10 1.8 5860

/ 4.3
c

c c

M yM M a a

Z I y I a a

× ×= = = =

We know that maximum tensile stress [σt (max)],

25 = 2 2 2

3907 5860 9767
t c

a a a
σ + σ = + =

∴ a2 = 9767 / 25 = 390.7 or a = 19.76 mm ...(i)

and maximum compressive stress [σc(max)],

80 = σc – σ0 =  2 2 2

5860 3530 2330
–

a a a
=

∴ a2 = 2330 / 80 = 29.12 or a = 5.4 mm ...(ii)

We shall take the larger of the two values, i.e.

a = 19.76 mm Ans.

Example 5.24.  A horizontal pull P = 5 kN is exerted by the belting on one of the cast iron wall
brackets which carry a factory shafting. At a point 75 mm from the wall, the bracket has a T-section
as shown in Fig. 5.27. Calculate the maximum stresses in the flange and web of the bracket due to the
pull.
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Fig. 5.27

Solution. Given : Horizontal pull, P = 5 kN = 5000 N

Since the section is subjected to eccentric loading, therefore there will be direct tensile stress as
well as bending stress. The bending stress at the flange is tensile and in the web is compressive.

We know that cross-sectional area of the section,

A = 60 × 12 + (90 – 12)9 = 720 + 702 = 1422 mm2

∴  Direct tensile stress,σ0 =
5000

1422

P

A
=  = 3.51 N/mm2 = 3.51 MPa

Now let us find the position of neutral axis in order to determine the bending stresses. The
neutral axis passes through the centre of gravity of the section.

Let y = Distance of centre of gravity (i.e. neutral axis) from top of the flange.

∴ y =

12 78
60 12 78 9 12

2 2 28.2 mm
720 702

⎛ ⎞× × + × +⎜ ⎟
⎝ ⎠ =

+
Moment of inertia of the section about N.A.,

I =
3 3

2 260 (12) 9 (78)
720 (28.2 – 6) 702 (51 – 28.2)

12 12

⎡ ⎤ ⎡ ⎤
+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= (8640 + 354 845) + (355 914 + 364 928) = 1 084 327 mm4

This picture shows a reconnoissance helicopter of air force. Its dark complexion absorbs light that falls
on its surface. The flat and sharp edges deflect radar waves and they do not return back to the radar.
These factors make it difficult to detect the helicopter.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Fig. 5.28

Distance of N.A. from the top of the flange,

yt = y  = 28.2 mm

Distance of N.A. from the bottom of the web,

yc = 90 – 28.2 = 61.8 mm

Distance of N.A. from the point of application of the load (i.e. eccentricity of the load),

e = 50 + 28.2 = 78.2 mm

We know that bending moment exerted on the section,

M = P × e = 5000 × 78.2 = 391 × 103 N-mm

∴ Tensile stress in the flange,

σt =
3

2. 391 10 28.2
10.17 N/mm

/ 1 084 327
t

t t

M yM M

Z I y I

× ×= = = =

= 10.17 MPa

and compressive stress in the web,

σc =
3

2. 391 10 61.8
22.28 N/mm

/ 1 084 327
c

c c

M yM M

Z I y I

× ×= = = =

= 22.28 MPa

We know that maximum tensile stress in the flange,

σt(max) = σb + σo = σt + σo = 10.17 + 3.51 = 13.68 MPa Ans.
and maximum compressive stress in the flange,

σc(max) = σb – σo = σc – σo = 22.28 – 3.51 = 18.77 MPa Ans.

Example 5.25. A mild steel bracket as shown in Fig. 5.28, is subjected to a pull of 6000 N
acting at 45° to its horizontal axis. The bracket has a rectangular section whose depth is twice the
thickness. Find the cross-sectional dimensions of the bracket, if the permissible stress in the material
of the bracket is limited to 60 MPa.

Solution. Given : P = 6000 N ; θ = 45° ; σ = 60 MPa = 60 N/mm2

Let t = Thickness of the section in mm, and

b = Depth or width of the section = 2 t ...(Given)

We know that area of cross-section,

A = b × t = 2 t × t = 2 t2 mm2

and section modulus, Z =
2

6

t b×

=
2(2 )

6

t t

=
3

34
mm

6

t

Horizontal component of the load,

PH = 6000 cos 45°

= 6000 × 0.707

= 4242 N

∴ Bending moment due to horizontal
component of the load,

MH = PH × 75 = 4242 × 75 = 318 150 N-mm
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A little consideration will show that

the bending moment due to the horizontal
component of the load induces tensile
stress on the upper surface of the bracket
and compressive stress on the lower
surface of the bracket.

∴ Maximum bending stress on
the upper surface due to horizontal
component,

                                   σbH = HM

Z

            3

318 150 6

4

×=
t

      
2

3

477 225
N/mm (tensile)=

t
Vertical component of the load,

PV = 6000 sin 45° = 6000 × 0.707 = 4242 N
∴ Direct stress due to vertical component,

σoV = 2V
2 2

4242 2121
N/mm

2

P

A t t
= =  (tensile)

Bending moment due to vertical component of the load,

MV = PV × 130 = 4242 × 130 = 551 460 N-mm

This bending moment induces tensile stress on the upper surface and compressive stress on the
lower surface of the bracket.

∴ Maximum bending stress on the upper surface due to vertical component,

σbV = 2V
3 3

551 460 6 827 190
N/mm

4

M

Z t t

×= =  (tensile)

and total tensile stress on the upper surface of the bracket,

σ = 3 2 3 3 2

477 225 2121 827 190 1 304 415 2121

t t t t t
+ + = +

Since the permissible stress (σ) is 60 N/mm2, therefore

3 2

1 304 415 2121

t t
+ = 60  or  

3 2

21 740 35.4
1

t t
+ =

∴ t = 28.4 mm Ans. ... (By hit and trial)

and b = 2 t  = 2 × 28.4 = 56.8 mm Ans.
Example 5.26. A C-clamp as shown in Fig. 5.29, carries a load P = 25 kN. The cross-section

of the clamp at X-X is rectangular having width equal to twice thickness. Assuming that the clamp is
made of steel casting with an allowable stress of 100 MPa, find its dimensions. Also determine the
stresses at sections Y-Y and Z-Z.

Solution. Given : P = 25 kN = 25 × 103 N ; σt(max) = 100 MPa = 100 N/mm2

Dimensions at X-X
Let t = Thickness of the section at X-X in mm, and

b = Width of the section at X-X in mm = 2 t ...(Given)

Schematic of a hydel  turbine.
Note : This picture is given as additional information
and is not a direct example of the current chapter.

Water

Curved
blades

Water

Generator
rotor

Turbine

shaft



170    A Textbook of Machine Design

We know that cross-sectional area at X-X,

A = b × t = 2 t × t = 2 t2 mm2

∴ Direct tensile stress at X-X,

σo =
3

2

25 10

2

P

A t

×=

=
3

2
3

12.5 10
N/mm

t

×

Bending moment at X-X due to the load P,

M = P × e = 25 × 103 × 140

= 3.5 × 106 N-mm

Section modulus, Z =
2 2 3

3. (2 ) 4
mm

6 6 6

t b t t t= =

...(Q b = 2t)

∴ Bending stress at X-X,

σb =
6 6

2
3 3

3.5 10 6 5.25 10
N/mm

4

M

Z t t

× × ×= =  (tensile)

We know that the maximum tensile stress [σt (max)],

100 = σo + σb = 
3 6

2 3

12.5 10 5.25 10

t t

× ×+

or      
3

2 3

125 52.5 10
– 1 0

t t

×+ =

∴ t = 38.5 mm Ans. ...(By hit and trial)

and b = 2 t = 2 × 38.5 = 77 mm Ans.
Stresses at section Y-Y

Since the cross-section of frame is uniform throughout, therefore cross-sectional area of the
frame at section Y-Y,

A = b sec 45° × t = 77 × 1.414 × 38.5 = 4192 mm2

Component of the load perpendicular to the section

= P cos 45° = 25 × 103 × 0.707 = 17 675 N

This component of the load produces uniform tensile stress over the section.

∴ Uniform tensile stress over the section,

σ = 17 675 / 4192 = 4.2 N/mm2 = 4.2 MPa

Component of the load parallel to the section

= P sin 45° = 25 × 103 × 0.707 = 17 675 N

This component of the load produces uniform shear stress over the section.

∴ Uniform shear stress over the section,

τ = 17 675 / 4192 = 4.2 N/mm2 = 4.2 MPa

Fig. 5.29
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We know that section modulus,

Z =
2 2

3 3( sec 45 ) 38.5 (77 1.414)
76 10 mm

6 6

t b ° ×= = ×

Bending moment due to load (P) over the section Y-Y,

M = 25 × 103 × 140 = 3.5 × 106 N-mm

∴ Bending stress over the section,

σb =
6

3

3.5 10

76 10

M

Z

×=
×

 = 46 N/mm2 = 46 MPa

Due to bending, maximum tensile stress at the inner corner and the maximum compressive stress
at the outer corner is produced.

∴ Maximum tensile stress at the inner corner,

σt = σb + σo = 46 + 4.2 = 50.2 MPa

and maximum compressive stress at the outer corner,

σc = σb – σo = 46 – 4.2 = 41.8 MPa

Since the shear stress acts at right angles to the tensile and compressive stresses, therefore
maximum principal stress (tensile) on the section Y-Y at the inner corner

=
2 2 2 21 50.2 1

( ) 4 (50.2) 4 (4.2) MPa
2 2 2 2

t
t

σ ⎡ ⎤ ⎡ ⎤+ σ + τ = + + ×⎣ ⎦⎣ ⎦

= 25.1 + 25.4 = 50.5 MPa Ans.

and maximum principal stress (compressive) on section Y-Y at outer corner

=
2 2 2 21 41.8 1

( ) 4 (41.8) 4 (4.2) MPa
2 2 2 2
c

c
σ ⎡ ⎤ ⎡ ⎤+ σ + τ = + + ×⎣ ⎦⎣ ⎦

= 20.9 + 21.3 = 42.2 MPa Ans.

Maximum shear stress = 2 2 2 21 1
2 2

( ) 4 (50.2) 4 (4.2) 25.4 MPat
⎡ ⎤ ⎡ ⎤σ + τ = + × =⎣ ⎦⎣ ⎦  Ans.

Stresses at section Z-Z

We know that bending moment at section Z-Z,

= 25 × 103 × 40 = 1 × 106 N-mm

and section modulus, Z =
2 2. 38.5 (77)

6 6

t b =  = 38 × 103 mm3

∴ Bending stress at section Z-Z,

σb =
6

3

1 10

38 10

M

Z

×=
×

 = 26.3 N/mm2 = 26.3 MPa Ans.

The bending stress is tensile at the inner edge and compressive at the outer edge. The magnitude
of both these stresses is 26.3 MPa. At the neutral axis, there is only transverse shear stress. The shear
stress at the inner and outer edges will be zero.

We know that *maximum transverse shear stress,

τmax = 1.5 × Average shear stress = 
325 10

1.5 1.5
. 77 38.5

P

b t

×× = ×
×

= 12.65 N/mm2 = 12.65 MPa Ans.

* Refer Art. 5.16
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5.16 Shear Stresses in Beams
In the previous article, we have assumed that no shear force is acting on the section. But, in

actual practice, when a beam is loaded, the shear force at a section always comes into play along with
the bending moment. It has been observed that the effect of the shear stress, as compared to the
bending stress, is quite negligible and is of not much importance. But, sometimes, the shear stress at
a section is of much importance in the design. It may be noted that the shear stress in a beam is not
uniformly distributed over the cross-section but varies from zero at the outer fibres to a maximum at
the neutral surface as shown in Fig. 5.30 and Fig. 5.31.

Fig. 5.30. Shear stress in a rectangular beam. Fig. 5.31. Shear stress in a circular beam.

The shear stress at any section acts in a plane at right angle to the plane of the bending stress and
its value is given by

τ = .
.

F
A y

I b
×

Note : This picture is given as additional information and is not a direct example of the current chapter.

General layout of a hydroelectric plant.

Sluice gate Dam

Water from the
reservoir
passes through
a gate

The flow of
water makes
the turbine shaft
turn

Turbines drive
generator to
produce
electricity

Cables carry
away the
electricity for
use

Excess water
flows over
spillway

River

Spillway
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where F = Vertical shear force acting on the section,

I = Moment of inertia of the section about the neutral axis,

b = Width of the section under consideration,

A = Area of the beam above neutral axis, and

y = Distance between the C.G. of the area and the neutral axis.

The following values of maximum shear stress for different cross-section of beams may be noted
:

1. For a beam of rectangular section, as shown in Fig. 5.30, the shear stress at a distance y from
neutral axis is given by

τ =
2

2
3

3
–

2 4 2 .

F h F
y

I b h

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (h2 – 4y2) ...

3.

12

⎡ ⎤
=⎢ ⎥

⎣ ⎦
Q

b h
I

and maximum shear stress,

τmax =
3

2 .

F

b h
... Substituting

2
⎛ ⎞=⎜ ⎟
⎝ ⎠

h
y

= 1.5 τ(average) ... ( ) Area .
⎡ ⎤τ = =⎢ ⎥
⎣ ⎦
Q average

F F

b h

The distribution of stress is shown in Fig. 5.30.

2. For a beam of circular section as shown in Fig. 5.31, the shear stress at a distance y from
neutral axis is given by

τ =
2

2 2 2
4

16
– ( – 4 )

3 4 3

F d F
y d y

I d

⎛ ⎞
=⎜ ⎟

⎝ ⎠ π
and the maximum shear stress,

τmax =
2

4

3
4

F

d
π×

... Substituting
2

⎛ ⎞=⎜ ⎟
⎝ ⎠

d
y

= ( )
4

3 averageτ ... ( )
2Area

4

⎡ ⎤τ = =⎢ ⎥π
⎢ ⎥
⎣ ⎦

Q average
F F

d

The distribution of stress is shown in Fig. 5.31.

3. For a beam of I-section as shown in Fig. 5.32, the maximum shear stress occurs at the neutral
axis and is given by

τmax =
2

2 2 .
( – )

. 8 8

F B b h
H h

I b

⎡ ⎤
+⎢ ⎥

⎣ ⎦

Fig. 5.32
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Shear stress at the joint of the web and the flange

=
8

F

I
 (H2 – h2)

and shear stress at the junction of the top of the web and bottom of the flange

=
8

F B

I b
×  (H2 – h2)

The distribution of stress is shown in Fig. 5.32.

Example 5.27. A beam of I-section 500 mm deep and 200 mm wide has flanges 25 mm
thick and web 15 mm thick, as shown in Fig. 5.33 (a). It carries a shearing force of 400 kN. Find
the maximum intensity of shear stress in the section, assuming the moment of inertia to be
645 × 106 mm4. Also find the shear stress at the joint and at the junction of the top of the web
and bottom of the flange.

Solution. Given : H = 500 mm ; B = 200 mm ; h = 500 – 2 × 25 = 450 mm ; b = 15 mm ;
F = 400 kN = 400 × 103 N ; I = 645 × 106 mm4

Fig. 5.33

Maximum intensity of shear stress
We know that maximum intensity of shear stress,

τmax =
2

2 2 .
( – )

. 8 8

F B b h
H h

I b

⎡ ⎤
+⎢ ⎥

⎣ ⎦

=
3 2

2 2 2
6

400 10 200 15 450
(500 – 450 ) N/mm

8 8645 10 15

⎡ ⎤× ×+⎢ ⎥
⎣ ⎦× ×

= 64.8 N/mm2 = 64.8 MPa Ans.

The maximum intensity of shear stress occurs at neutral axis.

Note :The maximum shear stress may also be obtained by using the following relation :

τmax =
. .

.

F A y

I b

We know that area of the section above neutral axis,

A = 200 × 25 + 
450

2
 × 15 = 8375 mm2
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Distance between the centre of gravity of the area and neutral axis,

y = 200 25 (225 12.5) 225 15 112.5
187 mm

8375

× + + × × =

∴ maxτ =
3

6

400 10 8375 187

645 10 15

× × ×
× ×

 = 64.8 N/mm2 = 64.8 MPa Ans.

Shear stress at the joint of the web and the flange
We know that shear stress at the joint of the web and the flange

=
3

2 2 2 2 2
6

400 10
( – ) (500) – (450) N/mm

8 8 645 10

F
H h

I

× ⎡ ⎤= ⎣ ⎦× ×
= 3.7 N/mm2 = 3.7 MPa Ans.

Shear stress at the junction of the top of the web and bottom of the flange
We know that shear stress at junction of the top of the web and bottom of the flange

=
3

2 2 2 2 2
6

400 10 200
( – ) (500) – (450) N/mm

8 158 645 10

F B
H h

I b

× ⎡ ⎤× = × ⎣ ⎦× ×
= 49 N/mm2 = 49 MPa Ans.

The stress distribution is shown in Fig. 5.33 (b)

EEEEEXEXEXEXEXERRRRRCISECISECISECISECISESSSSS

1. A steel shaft 50 mm diameter and 500 mm long is subjected to a twisting moment of 1100 N-m, the
total angle of twist being 0.6°. Find the maximum shearing stress developed in the shzaft and modulus
of rigidity. [Ans. 44.8 MPa; 85.6 kN/m2]

2. A shaft is transmitting 100 kW at 180 r.p.m. If the allowable stress in the material is 60 MPa, find the
suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 metres.
Take C = 80 GPa. [Ans. 105 mm]

3. Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r.p.m. The shear
stress in the shaft is not to exceed 70 MPa and the maximum torque exceeds the mean by 40%. Also
find the angle of twist in a length of 2 metres. Take C = 90 GPa. [Ans. 80 mm; 2.116°]

4. Design a hollow shaft required to transmit 11.2 MW at a speed of 300 r.p.m. The maximum shear
stress allowed in the shaft is 80 MPa and the ratio of the inner diameter to outer diameter is 3/4.

[Ans. 240 mm; 320 mm]

5. Compare the weights of equal lengths of hollow shaft and solid shaft to transmit a given torque for the
same maximum shear stress. The material for both the shafts is same and inside diameter is 2/3 of
outside diameter in case of hollow shaft. [Ans. 0.56]

6. A spindle as shown in Fig. 5.34, is a part of an industrial brake and is loaded as shown. Each load P
is equal to 4 kN and is applied at the mid point of its bearing. Find the diameter of the spindle, if the
maximum bending stress is 120 MPa. [Ans. 22 mm]

Fig. 5.34

7. A cast iron pulley transmits 20 kW at 300 r.p.m. The diameter of the pulley is 550 mm and has four
straight arms of elliptical cross-section in which the major axis is twice the minor axis. Find the
dimensions of the arm, if the allowable bending stress is 15 MPa. [Ans. 60 mm; 30 mm]
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8. A shaft is supported in bearings, the distance between their centres being 1 metre. It carries a pulley in
the centre and it weighs 1 kN. Find the diameter of the shaft, if the permissible bending stress for the
shaft material is 40 MPa. [Ans. 40 mm]

9. A punch press, used for stamping sheet metal, has a punching capacity of 50 kN. The section of the
frame is as shown in Fig. 5.35. Find the resultant stress at the inner and outer fibre of the section.

[Ans. 28.3 MPa (tensile); 17.7 MPa (compressive)]

Fig. 5.35 Fig. 5.36

10. A crane hook has a trapezoidal section at A-A as shown in Fig. 5.36. Find the maximum stress at
points P and Q. [Ans. 118 MPa (tensile); 62 MPa (compressive)]

11. A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of 5000
N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the factor of safety
available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory.
Assume yield strength as 400 MPa for plain carbon steel. If all other data remaining same, what
maximum yield strength of shaft material would be necessary using factor of safety of 1.686 and
maximum distortion energy theory of failure. Comment on the result you get.

[Ans. 1.752; 400 MPa]
12. A hand cranking lever, as shown in Fig. 5.37, is used to start a truck engine by applying a force

F = 400 N. The material of the cranking lever is 30C8 for which yield strength = 320 MPa; Ultimate
tensile strength = 500 MPa ; Young’s modulus = 205 GPa ; Modulus of rigidity = 84 GPa and poisson’s
ratio = 0.3.

Fig. 5.37
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Assuming factor of safety to be 4 based on yield strength, design the diameter ‘d’ of the lever at section
X-X near the guide bush using : 1. Maximum distortion energy theory; and 2. Maximum shear stress
theory. [Ans. 28.2 mm; 28.34 mm]

13. An offset bar is loaded as shown in Fig. 5.38. The weight of the bar may be neglected. Find the
maximum offset (i.e., the dimension x) if allowable stress in tension is limited to 70 MPa.

[Ans. 418 mm]

Fig. 5.38 Fig. 5.39

14. A crane hook made from a 50 mm diameter bar is shown in Fig. 5.39. Find the maximum tensile stress
and specify its location. [Ans. 35.72 MPa at A]

15. An overhang crank, as shown in Fig. 5.40 carries a tangential load of 10 kN at the centre of the
crankpin. Find the maximum principal stress and the maximum shear stress at the centre of the crank-
shaft bearing. [Ans. 29.45 MPa; 18.6 MPa]

Fig. 5.40 Fig. 5.41

16. A steel bracket is subjected to a load of 4.5 kN, as shown in Fig. 5.41. Determine the required
thickness of the section at A-A in order to limit the tensile stress to 70 MPa. [Ans. 9 mm]
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17. A wall bracket, as shown in Fig. 5.42, is subjected to a pull of P = 5 kN, at 60° to the vertical. The
cross-section of bracket is rectangular having b = 3t . Determine the dimensions b and t if the stress
in the material of the bracket is limited to 28 MPa. [Ans. 75 mm; 25 mm]

Fig. 5.42 Fig. 5.43

18. A bracket, as shown in Fig. 5.43, is bolted to the framework of a machine which carries a load P. The
cross-section at 40 mm from the fixed end is rectangular with dimensions, 60 mm × 30 mm. If the
maximum stress is limited to 70 MPa, find the value of P.

[Ans. 3000 N]

19. A T-section of a beam, as shown in Fig. 5.44, is subjected to a vertical shear force of 100 kN. Calcu-
late the shear stress at the neutral axis and at the junction of the web and the
flange. The moment of inertia at the neutral axis is 113.4 × 106 mm4.

[Ans. 11.64 MPa; 11 MPa; 2.76 MPa]

                       

Fig. 5.44 Fig. 5.45

20. A beam of channel section, as shown in Fig. 5.45, is subjected to a vertical shear force of 50 kN. Find
the ratio of maximum and mean shear stresses. Also draw the distribution of shear stresses.

[Ans. 2.22]

QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. Derive a relation for the shear stress developed in a shaft, when it is subjected to torsion.

2. State the assumptions made in deriving a bending formula.
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3. Prove the relation: M/I = σ/y = E/R

where M = Bending moment; I = Moment of inertia; σ = Bending stress in a fibre at a distance y from
the neutral axis; E = Young’s modulus; and R = Radius of curvature.

4. Write the relations used for maximum stress when a machine member is subjected to tensile or com-
pressive stresses along with shearing stresses.

5. Write short note on maximum shear stress theory verses maximum strain energy theory.

6. Distinguish clearly between direct stress and bending stress.

7. What is meant by eccentric loading and eccentricity?

8. Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column,
when it is subjected to

(a) an eccentric load about one axis, and (b) an eccentric load about two axes.

OBJECTOBJECTOBJECTOBJECTOBJECTIVE IVE IVE IVE IVE TTTTTYPYPYPYPYPE QE QE QE QE QUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. When a machine member is subjected to torsion, the torsional shear stress set up in the member is

(a) zero at both the centroidal axis and outer surface of the member

(b) Maximum at both the centroidal axis and outer surface of the member

(c) zero at the centroidal axis and maximum at the outer surface of the member

(d) none of the above

2. The torsional shear stress on any cross-section normal to the axis is ......... the distance from the centre
of the axis.

(a) directly proportional to (b) inversely proportional to

3. The neutral axis of a beam is subjected to

(a) zero stress (b) maximum tensile stress

(c) maximum compressive stress (d) maximum shear stress

4. At the neutral axis of a beam,

(a) the layers are subjected to maximum bending stress

(b) the layers are subjected to tension (c) the layers are subjected to compression

(d) the layers do not undergo any strain

5. The bending stress in a curved beam is

(a) zero at the centroidal axis (b) zero at the point other than centroidal axis

(c) maximum at the neutral axis (d) none of the above

6. The maximum bending stress, in a curved beam having symmetrical section, always occur, at the

(a) centroidal axis (b) neutral axis

(c) inside fibre (d) outside fibre

7. If d = diameter of solid shaft and τ = permissible stress in shear for the shaft material, then torsional
strength of shaft is written as

(a)
4

32

π τd (b) d loge τ

(c)
3

16

π τd (d)
3

32

π τd

8. If di and do are the inner and outer diameters of a hollow shaft, then its polar moment of inertia is

(a)
4 4( ) – ( )

32

π ⎡ ⎤⎣ ⎦o id d (b)
3 3( ) – ( )

32

π ⎡ ⎤⎣ ⎦o id d

(c)
2 2( ) – ( )

32

π ⎡ ⎤⎣ ⎦o id d (d) ( – )
32

π
o id d
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9. Two shafts under pure torsion are of identical length and identical weight and are made of same
material. The shaft A is solid and the shaft B is hollow. We can say that

(a) shaft B is better than shaft A

(b) shaft A is better than shaft B

(c) both the shafts are equally good

10. A solid shaft transmits a torque T. The allowable shear stress is τ. The diameter of the shaft is

(a) 3
16

π τ
T

(b) 3
32

π τ
T

(c) 3
64

π τ
T

(d) 3
16

τ
T

11. When a machine member is subjected to a tensile stress (σt) due to direct load or bending and a shear
stress (τ) due to torsion, then the maximum shear stress induced in the member will be

(a) 2 21
2

( ) 4⎡ ⎤σ + τ⎣ ⎦t (b) 2 21
2

( ) – 4⎡ ⎤σ τ⎣ ⎦t

(c) 2 2( ) 4⎡ ⎤σ + τ⎣ ⎦t (d) (σt)
2 + 4 τ2

12. Rankine’s theory is used for

(a) brittle materials (b) ductile materials

(c) elastic materials (d) plastic materials

13. Guest’s theory is used for

(a) brittle materials (b) ductile materials

(c) elastic materials (d) plastic materials

14. At the neutral axis of a beam, the shear stress is

(a) zero (b) maximum

(c) minimum

15. The maximum shear stress developed in a beam of rectangular section is ........ the average shear
stress.

(a) equal to (b) 4
3  times

(c) 1.5 times

ANSWEANSWEANSWEANSWEANSWERRRRRSSSSS

1. (b) 2. (a) 3. (a) 4. (d) 5. (b)

6. (c) 7. (c) 8. (a) 9. (a) 10. (a)

11. (a) 12. (a) 13. (b) 14. (b) 15. (c)
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6.1 Introduction
We have discussed, in the previous chapter, the

stresses due to static loading only. But only a few machine
parts are subjected to static loading. Since many of the
machine parts (such as axles, shafts, crankshafts, connecting
rods, springs, pinion teeth etc.) are subjected to variable or
alternating loads (also known as fluctuating or fatigue
loads), therefore we shall discuss, in this chapter, the
variable or alternating stresses.

6.2 Completely Reversed or Cyclic Stresses
Consider a rotating beam of circular cross-section

and carrying a load W, as shown in Fig. 6.1. This load
induces stresses in the beam which are cyclic in nature. A
little consideration will show that the upper fibres of the
beam (i.e. at point A) are under compressive stress and the
lower fibres (i.e. at point B) are under tensile stress. After
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half a revolution, the point B occupies the position of
point A and the point A occupies the position of point B.
Thus the point B is now under compressive stress and
the point A under tensile stress. The speed of variation
of these stresses depends upon the speed of the beam.

From above we see that for each revolution of the
beam, the stresses are reversed from compressive to tensile.
The stresses which vary from one value of compressive to
the same value of tensile or vice versa, are known as completely reversed or cyclic stresses.
Notes: 1. The stresses which vary from a minimum value to a maximum value of the same nature, (i.e. tensile or
compressive) are called fluctuating stresses.

2. The stresses which vary from zero to a certain maximum value are called repeated stresses.

3. The stresses which vary from a minimum value to a maximum value of the opposite nature (i.e. from a
certain minimum compressive to a certain maximum tensile or from a minimum tensile to a maximum compressive)
are called alternating stresses.

6.3 Fatigue and Endurance Limit
It has been found experimentally that when a material is subjected to repeated stresses, it fails at

stresses below the yield point stresses. Such type of failure of a material is known as fatigue. The
failure is caused by means of a progressive crack formation which are usually fine and of microscopic
size. The failure may occur even without any prior indication. The fatigue of material is effected by
the size of the component, relative magnitude of static and fluctuating loads and the number of load
reversals.

Fig. 6.2. Time-stress diagrams.

In order to study the effect of fatigue of a material, a rotating mirror beam method is used. In
this method, a standard mirror polished specimen, as shown in Fig. 6.2 (a), is rotated in a fatigue

Fig. 6.1. Reversed or cyclic stresses.
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testing machine while the specimen is loaded
in bending. As the specimen rotates, the
bending stress at the upper fibres varies from
maximum compressive to maximum tensile
while the bending stress at the lower fibres
varies from maximum tensile to maximum
compressive. In other words, the specimen is
subjected to a completely reversed stress cycle.
This is represented by a time-stress diagram
as shown in Fig. 6.2 (b). A record is kept of
the number of cycles required to produce
failure at a given stress, and the results are
plotted in stress-cycle curve as shown in Fig.
6.2 (c). A little consideration will show that if
the stress is kept below a certain value as shown
by dotted line in Fig. 6.2 (c), the material will not fail whatever may be the number of cycles. This
stress, as represented by dotted line, is known as endurance or fatigue limit (σe). It is defined as
maximum value of the completely reversed bending stress which a polished standard specimen can
withstand without failure, for infinite number of cycles (usually 107 cycles).

It may be noted that the term endurance limit is used for reversed bending only while for other
types of loading, the term endurance strength may be used when referring the fatigue strength of the
material. It may be defined as the safe maximum stress which can be applied to the machine part
working under actual conditions.

We have seen that when a machine member is subjected to a completely reversed stress, the
maximum stress in tension is equal to the maximum stress in compression as shown in Fig. 6.2 (b). In
actual practice, many machine members undergo different range of stress than the completely
reversed stress.

The stress verses time diagram for fluctuating stress having values σmin and σmax is shown in
Fig. 6.2 (e). The variable stress, in general, may be considered as a combination of steady (or mean or
average) stress and a completely reversed stress component σv. The following relations are derived
from Fig. 6.2 (e):

1. Mean or average stress,

σm =
2

max minσ + σ

2. Reversed stress component or alternating or variable stress,

σv =
2

max minσ − σ

Note: For repeated loading, the stress varies from maximum to zero (i.e. σmin = 0) in each cycle as shown in Fig.
6.2 (d).

∴ σm = σv = 
2

σmax

3. Stress ratio, R = 
max

min

σ
σ . For completely reversed stresses, R = – 1 and for repeated stresses,

R = 0. It may be noted that R cannot be greater than unity.

4. The following relation between endurance limit and stress ratio may be used

σ'e =
3

2
e

R

σ
−

A machine part is being turned on a Lathe.
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where σ'e = Endurance limit for any stress range represented by R.

σe = Endurance limit for completely reversed stresses, and

R = Stress ratio.

6.4 Effect of Loading on Endurance Limit—Load Factor
The endurance limit (σe) of a material as determined by the rotating beam method is for

reversed bending load. There are many machine members which are subjected to loads other than
reversed bending loads. Thus the endurance limit will
also be different for different types of loading. The
endurance limit depending upon the type of loading may
be modified as discussed below:

Let Kb = Load correction factor for the
reversed or rotating bending  load.
Its value is usually taken as unity.

Ka = Load correction factor for the
reversed axial load. Its value  may
be taken as 0.8.

Ks = Load correction factor for the
reversed torsional or shear load. Its
value may be taken as 0.55 for
ductile materials and 0.8 for brittle
materials.

∴ Endurance limit for reversed bending load, σeb = σe.Kb = σe ...( QKb = 1)

Endurance limit for reversed axial load, σea = σe.Ka

and endurance limit for reversed torsional or shear load, τe = σe.Ks

6.5 Effect of Surface Finish on Endurance Limit—Surface Finish Factor
When a machine member is subjected to variable loads, the endurance limit of the material for

that member depends upon the surface conditions. Fig. 6.3 shows the values of surface finish factor
for the various surface conditions and ultimate tensile strength.

Fig. 6.3. Surface finish factor for various surface conditions.

When the surface finish factor is known, then the endurance limit for the material of the machine
member may be obtained by multiplying the endurance limit and the surface finish factor. We see that

Shaft drive.
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for a mirror polished material, the surface finish factor is unity. In other words, the endurance limit for
mirror polished material is maximum and it goes on reducing due to surface condition.

Let  Ksur = Surface finish factor.

∴ Endurance limit,

σe1 = σeb.Ksur = σe.Kb.Ksur = σe.Ksur ...( Q  Kb = 1)

...(For reversed bending load)

= σea.Ksur = σe.Ka.Ksur ...(For reversed axial load)

= τe.Ksur = σe.Ks.Ksur ...(For reversed torsional or shear load)

Note : The surface finish factor for non-ferrous metals may be taken as unity.

6.6 Effect of Size on Endurance Limit—Size Factor
A little consideration will show that if the size of the standard specimen as shown in Fig. 6.2 (a)

is increased, then the endurance limit of the material will decrease. This is due to the fact that a longer
specimen will have more defects than a smaller one.

Let  Ksz = Size factor.

∴ Endurance limit,

σe2 = σe1 × Ksz ...(Considering surface finish factor also)

= σeb.Ksur.Ksz = σe.Kb.Ksur.Ksz = σe.Ksur.Ksz ( Q  Kb = 1)

= σea.Ksur.Ksz = σe.Ka.Ksur.Ksz ...(For reversed axial load)

= τe.Ksur.Ksz = σe.Ks.Ksur.Ksz ... (For reversed torsional or shear load)

Notes: 1. The value of size factor is taken as unity for the standard specimen having nominal diameter of
7.657 mm.

2. When the nominal diameter of the specimen is more than 7.657 mm but less than 50 mm, the value of
size factor may be taken as 0.85.

3. When the nominal diameter of the specimen is more than 50 mm, then the value of size factor may be
taken as 0.75.

6.7 Effect of Miscellaneous Factors on
Endurance Limit

In addition to the surface finish factor (Ksur),
size factor (Ksz) and load factors Kb, Ka and Ks, there
are many other factors such as reliability factor (Kr),
temperature factor (Kt), impact factor (Ki) etc. which
has effect on the endurance limit of a material. Con-
sidering all these factors, the endurance limit may be
determined by using the following expressions :

1. For the reversed bending load, endurance
limit,

σ'e = σeb.Ksur.Ksz.Kr.Kt.Ki

2. For the reversed axial load, endurance limit,
σ'e = σea.Ksur.Ksz.Kr.Kt.Ki

3. For the reversed torsional or shear load,
endurance limit,

σ'e = τe.Ksur.Ksz.Kr.Kt.Ki

In solving problems, if the value of any of the
above factors is not known, it may be taken as unity.

In addition to shear, tensile, compressive and
torsional stresses, temperature can add its own

stress  (Ref. Chapter 4)
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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6.8 Relation Between Endurance Limit and Ultimate Tensile Strength
It has been found experimentally that endurance limit (σe) of a material subjected to fatigue

loading is a function of ultimate tensile strength (σu). Fig. 6.4 shows the endurance limit of steel
corresponding to ultimate tensile strength for different surface conditions. Following are some
empirical relations commonly used in practice :

Fig. 6.4. Endurance limit of steel corresponding to ultimate tensile strength.

For steel, σe = 0.5 σu ;

For cast steel, σe = 0.4 σu ;

For cast iron, σe = 0.35 σu ;

For non-ferrous metals and alloys,  σe = 0.3 σu

6.9 Factor of Safety for Fatigue Loading
When a component is subjected to fatigue loading, the endurance limit is the criterion for faliure.

Therefore, the factor of safety should be based on endurance limit. Mathematically,

Factor of safety (F.S.) =
Endurance limit stress

Design or working stress
e

d

σ
=

σ
Note:    For steel, σe = 0.8 to 0.9 σy

where σe = Endurance limit stress for completely reversed stress cycle, and

σy = Yield point stress.

Example 6.1. Determine the design stress for a piston rod where the load is completely
reversed. The surface of the rod is ground and
the surface finish factor is 0.9. There is no stress
concentration. The load is predictable and the
factor of safety is 2.

Solution. Given : Ksur = 0.9 ; F.S. = 2

The piston rod is subjected to reversed
axial loading. We know that for reversed axial
loading, the load correction factor (Ka) is 0.8.

Piston rod
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Fig. 6.5. Stress concentration.

If σe is the endurance limit for reversed bending load, then endurance limit for reversed axial
load,

σea = σe × Ka × Ksur = σe × 0.8 × 0.9 = 0.72 σe

We know that design stress,

σd =  
0.72

0.36
. . 2
ea e

eF S

σ σ
= = σ Ans.

6.10 Stress Concentration
Whenever a machine component changes the shape of its cross-section, the simple stress

distribution no longer holds good and the neighbourhood of the discontinuity is different. This
irregularity in the stress distribution caused by abrupt changes of form is called stress concentration.
It occurs for all kinds of stresses in the presence of fillets, notches, holes, keyways, splines, surface
roughness or scratches etc.

In order to understand fully the idea of stress
concentration, consider a member with different
cross-section under a tensile load as shown in
 Fig. 6.5. A little consideration will show that the
nominal stress in the right and left hand sides will
be uniform but in the region where the cross-
section is changing, a re-distribution of the force
within the member must take place. The material
near the edges is stressed considerably higher than the average value. The maximum stress occurs at
some point on the fillet and is directed parallel to the boundary at that point.

6.11 Theoretical or Form Stress Concentration Factor
The theoretical or form stress concentration factor is defined as the ratio of the maximum stress

in a member (at a notch or a fillet) to the nominal stress at the same section based upon net area.
Mathematically, theoretical or form stress concentration factor,

          Kt = 
Maximum stress

Nominal stress
The value of Kt depends upon the material and geometry of the part.

Notes: 1. In static loading, stress concentration in ductile materials is not so serious as in brittle materials,
because in ductile materials local deformation or yielding takes place which reduces the concentration. In brittle
materials, cracks may appear at these local concentrations of stress which will increase the stress over the rest of
the section. It is, therefore, necessary that in designing parts of brittle materials such as castings, care should be
taken. In order to avoid failure due to stress concentration, fillets at the changes of section must be provided.

2. In cyclic loading, stress concentration in ductile materials is always serious because the ductility of the
material is not effective in relieving the concentration of stress caused by cracks, flaws, surface roughness, or
any sharp discontinuity in the geometrical form of the member. If the stress at any point in a member is above the
endurance limit of the material, a crack may develop under the action of repeated load and the crack will lead to
failure of the member.

6.12 Stress Concentration due to Holes and Notches
Consider a plate with transverse elliptical hole and subjected to a tensile load as shown in Fig.

6.6 (a). We see from the stress-distribution that the stress at the point away from the hole is practically
uniform and the maximum stress will be induced at the edge of the hole. The maximum stress is given
by

σmax =
2

1
⎛ ⎞σ +⎜ ⎟
⎝ ⎠

a

b
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and the theoretical stress concentration factor,

Kt =  
2

1max a

b

σ ⎛ ⎞= +⎜ ⎟⎝ ⎠σ
When a/b is large, the ellipse approaches a crack transverse to the load and the value of Kt

becomes very large. When a/b is small, the ellipse approaches a longitudinal slit [as shown in Fig. 6.6
(b)] and the increase in stress is small. When the hole is circular as shown in Fig. 6.6 (c), then a/b = 1
and the maximum stress is three times the nominal value.

Fig. 6.6. Stress concentration due to holes.

The stress concentration in the notched tension member, as
shown in Fig. 6.7, is influenced by the depth a of the notch and radius
r at the bottom of the notch. The maximum stress, which applies to
members having notches that are small in comparison with the width
of the plate, may be obtained by the following equation,

σmax =
2

1⎛ ⎞σ +⎜ ⎟
⎝ ⎠

a

r

6.13 Methods of Reducing Stress Concentration
We have already discussed in Art 6.10 that whenever there is a

change in cross-section, such as shoulders, holes, notches or keyways and where there is an interfer-
ence fit between a hub or bearing race and a shaft, then stress concentration results. The presence of

stress concentration can not be totally eliminated but it may be reduced to some extent. A device or
concept that is useful in assisting a design engineer to visualize the presence of stress concentration

Fig. 6.7. Stress concentration
due to notches.

Crankshaft
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and how it may be mitigated is that of stress flow lines, as shown in Fig. 6.8. The mitigation of stress
concentration means that the stress flow lines shall maintain their spacing as far as possible.

Fig. 6.8

In Fig. 6.8 (a) we see that stress lines tend to bunch up and cut very close to the sharp re-entrant
corner. In order to improve the situation, fillets may be provided, as shown in Fig. 6.8 (b) and (c) to
give more equally spaced flow lines.

Figs. 6.9 to 6.11 show the several ways of reducing the stress concentration in shafts and other
cylindrical members with shoulders, holes and threads respectively. It may be noted that it is not
practicable to use large radius fillets as in case of ball and roller bearing mountings. In such cases,
notches may be cut as shown in Fig. 6.8 (d) and Fig. 6.9 (b) and (c).

Fig. 6.9. Methods of reducing stress concentration in cylindrical members with shoulders.

Fig. 6.10. Methods of reducing stress concentration in cylindrical members with holes.

Fig. 6.11. Methods of reducing stress concentration in cylindrical members with holes.

The stress concentration effects of a press fit may be reduced by making more gradual transition
from the rigid to the more flexible shaft. The various ways of reducing stress concentration for such
cases are shown in Fig. 6.12 (a), (b) and (c).
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6.14 Factors to be Considered while Designing Machine Parts to Avoid
Fatigue Failure

The following factors should be considered while designing machine parts to avoid fatigue failure:
1. The variation in the size of the component should be as gradual as possible.
2. The holes, notches and other stress raisers should be avoided.
3. The proper stress de-concentrators such as fillets and notches should be provided

wherever necessary.

Fig. 6.12. Methods of reducing stress concentration of a press fit.

4. The parts should be protected from corrosive atmosphere.

5. A smooth finish of outer surface of the component increases the fatigue life.

6. The material with high fatigue strength should be selected.

7. The residual compressive stresses over the parts surface increases its fatigue strength.

6.15 Stress Concentration Factor for Various Machine Members
The following tables show the theoretical stress concentration factor for various types of

members.

Table 6.1. Theoretical stress concentration factor (Kt ) for a plate with hole
(of diameter d ) in tension.

d

b
0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Kt 2.83 2.69 2.59 2.50 2.43 2.37 2.32 2.26 2.22 2.17 2.13

Fig. for Table 6.1 Fig. for Table 6.2

Table 6.2. Theoretical stress concentration factor (Kt ) for a shaft
with transverse hole (of diameter d ) in bending.

d

D
0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

Kt 2.70 2.52 2.33 2.26 2.20 2.11 2.03 1.96 1.92 1.90
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Table 6.3. Theoretical stress concentration factor (Kt ) for stepped
shaft with a shoulder fillet (of radius r ) in tension.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.08 0.10 0.12 0.16 0.18 0.20 0.22 0.24 0.28 0.30

1.01 1.27 1.24 1.21 1.17 1.16 1.15 1.15 1.14 1.13 1.13

1.02 1.38 1.34 1.30 1.26 1.24 1.23 1.22 1.21 1.19 1.19

1.05 1.53 1.46 1.42 1.36 1.34 1.32 1.30 1.28 1.26 1.25

1.10 1.65 1.56 1.50 1.43 1.39 1.37 1.34 1.33 1.30 1.28

1.15 1.73 1.63 1.56 1.46 1.43 1.40 1.37 1.35 1.32 1.31

1.20 1.82 1.68 1.62 1.51 1.47 1.44 1.41 1.38 1.35 1.34

1.50 2.03 1.84 1.80 1.66 1.60 1.56 1.53 1.50 1.46 1.44

2.00 2.14 1.94 1.89 1.74 1.68 1.64 1.59 1.56 1.50 1.47

Table 6.4. Theoretical stress concentration factor (Kt ) for a stepped
shaft with a shoulder fillet (of radius r ) in bending.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.85 1.61 1.42 1.36 1.32 1.24 1.20 1.17 1.15 1.14

1.02 1.97 1.72 1.50 1.44 1.40 1.32 1.27 1.23 1.21 1.20

1.05 2.20 1.88 1.60 1.53 1.48 1.40 1.34 1.30 1.27 1.25

1.10 2.36 1.99 1.66 1.58 1.53 1.44 1.38 1.33 1.28 1.27

1.20 2.52 2.10 1.72 1.62 1.56 1.46 1.39 1.34 1.29 1.28

1.50 2.75 2.20 1.78 1.68 1.60 1.50 1.42 1.36 1.31 1.29

2.00 2.86 2.32 1.87 1.74 1.64 1.53 1.43 1.37 1.32 1.30

3.00 3.00 2.45 1.95 1.80 1.69 1.56 1.46 1.38 1.34 1.32

6.00 3.04 2.58 2.04 1.87 1.76 1.60 1.49 1.41 1.35 1.33
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Table 6.5. Theoretical stress concentration factor (Kt) for a stepped shaft
with a shoulder fillet (of radius r) in torsion.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.09 1.54 1.32 1.19 1.16 1.15 1.12 1.11 1.10 1.09 1.09

1.20 1.98 1.67 1.40 1.33 1.28 1.22 1.18 1.15 1.13 1.13

1.33 2.14 1.79 1.48 1.41 1.35 1.28 1.22 1.19 1.17 1.16

2.00 2.27 1.84 1.53 1.46 1.40 1.32 1.26 1.22 1.19 1.18

Table 6.6. Theoretical stress concentration factor (Kt )
for a grooved shaft in tension.

Theoretical stress concentration (Kt )
D

d
 r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.98 1.71 1.47 1.42 1.38 1.33 1.28 1.25 1.23 1.22

1.02 2.30 1.94 1.66 1.59 1.54 1.45 1.40 1.36 1.33 1.31

1.03 2.60 2.14 1.77 1.69 1.63 1.53 1.46 1.41 1.37 1.36

1.05 2.85 2.36 1.94 1.81 1.73 1.61 1.54 1.47 1.43 1.41

1.10 .. 2.70 2.16 2.01 1.90 1.75 1.70 1.57 1.50 1.47

1.20 .. 2.90 2.36 2.17 2.04 1.86 1.74 1.64 1.56 1.54

1.30 .. .. 2.46 2.26 2.11 1.91 1.77 1.67 1.59 1.56

1.50 .. .. 2.54 2.33 2.16 1.94 1.79 1.69 1.61 1.57

2.00 .. .. 2.61 2.38 2.22 1.98 1.83 1.72 1.63 1.59

 ∞ .. .. 2.69 2.44 2.26 2.03 1.86 1.74 1.65 1.61
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 Table 6.7. Theoretical stress concentration factor (Kt ) of
a grooved shaft in bending.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.74 1.68 1.47 1.41 1.38 1.32 1.27 1.23 1.22 1.20

1.02 2.28 1.89 1.64 1.53 1.48 1.40 1.34 1.30 1.26 1.25

1.03 2.46 2.04 1.68 1.61 1.55 1.47 1.40 1.35 1.31 1.28

1.05 2.75 2.22 1.80 1.70 1.63 1.53 1.46 1.40 1.35 1.33

1.12 3.20 2.50 1.97 1.83 1.75 1.62 1.52 1.45 1.38 1.34

1.30 3.40 2.70 2.04 1.91 1.82 1.67 1.57 1.48 1.42 1.38

1.50 3.48 2.74 2.11 1.95 1.84 1.69 1.58 1.49 1.43 1.40

2.00 3.55 2.78 2.14 1.97 1.86 1.71 1.59 1.55 1.44 1.41

∞ 3.60 2.85 2.17 1.98 1.88 1.71 1.60 1.51 1.45 1.42

Table 6.8. Theoretical stress concentration factor (Kt ) for a grooved
shaft in torsion.

Theoretical stress concentration factor (Kts)
D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.50 1.03 1.22 1.20 1.18 1.16 1.13 1.12 1.12 1.12

1.02 1.62 1.45 1.31 1.27 1.23 1.20 1.18 1.16 1.15 1.16

1.05 1.88 1.61 1.40 1.35 1.32 1.26 1.22 1.20 1.18 1.17

1.10 2.05 1.73 1.47 1.41 1.37 1.31 1.26 1.24 1.21 1.20

1.20 2.26 1.83 1.53 1.46 1.41 1.34 1.27 1.25 1.22 1.21

1.30 2.32 1.89 1.55 1.48 1.43 1.35 1.30 1.26 — —

2.00 2.40 1.93 1.58 1.50 1.45 1.36 1.31 1.26 — —

∞ 2.50 1.96 1.60 1.51 1.46 1.38 1.32 1.27 1.24 1.23



194    A Textbook of Machine Design

Stepped shaft

Example 6.2. Find the maximum
stress induced in the following cases
taking stress concentration into
account:

1. A rectangular plate 60 mm ×
10 mm with a hole 12 diameter as
shown in Fig. 6.13 (a) and subjected
to a tensile load of 12 kN.

2. A stepped shaft as shown in
Fig. 6.13 (b) and carrying a tensile
load of 12 kN.

Fig. 6.13

Solution. Case 1. Given : b = 60 mm ; t = 10 mm ; d = 12 mm ; W = 12 kN = 12 × 103 N
We know that cross-sectional area of the plate,

A = (b – d) t = (60 – 12) 10 = 480 mm2

∴ Nominal stress =
3

212 10
25 N / mm 25 MPa

480

W

A

×= = =

Ratio of diameter of hole to width of plate,
12

0.2
60

d

b
= =

From Table 6.1, we find that for d / b = 0.2, theoretical stress concentration factor,
Kt = 2.5

∴ Maximum stress = Kt × Nominal stress = 2.5 × 25 = 62.5 MPa Ans.
Case 2. Given : D = 50 mm ; d = 25 mm ; r = 5 mm ; W = 12 kN = 12 × 103 N

We know that cross-sectional area for the stepped shaft,

A = 2 2 2(25) 491 mm
4 4

d
π π× = =

∴ Nominal stress =
3

212 10
24.4 N / mm 24.4 MPa

491

W

A

×= = =

Ratio of maximum diameter to minimum diameter,

D/d = 50/25 = 2

Ratio of radius of fillet to minimum diameter,

r/d = 5/25 = 0.2

From Table 6.3, we find that for D/d = 2 and r/d = 0.2, theoretical stress concentration factor,
Kt = 1.64.

∴ Maximum stress = Kt × Nominal stress = 1.64 × 24.4 = 40 MPa Ans.
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6.16 Fatigue Stress Concentration Factor
When a machine member is subjected to cyclic or fatigue loading, the value of fatigue stress

concentration factor shall be applied instead of theoretical stress concentration factor. Since the
determination of fatigue stress concentration factor is not an easy task, therefore from experimental
tests it is defined as

Fatigue stress concentration factor,

Kf =
Endurance limit without stress concentration

Endurance limit with stress concentration

6.17 Notch Sensitivity
In cyclic loading, the effect of the notch or the fillet is usually less than predicted by the use of

the theoretical factors as discussed before. The difference depends upon the stress gradient in the
region of the stress concentration and on the hardness of the material. The term notch sensitivity is
applied to this behaviour. It may be defined as the degree to which the theoretical effect of stress
concentration is actually reached. The stress gradient depends mainly on the radius of the notch, hole
or fillet and on the grain size of the material. Since the extensive data for estimating the notch sensitivity
factor (q) is not available, therefore the curves, as shown in Fig. 6.14, may be used for determining
the values of q for two steels.

Fig. 6.14. Notch sensitivity.

When the notch sensitivity factor q is used in cyclic loading, then fatigue stress concentration
factor may be obtained from the following relations:

q =
– 1

–1
f

t

K

K

or Kf = 1 + q (Kt – 1) ...[For tensile or bending stress]

and Kfs = 1 + q (Kts – 1) ...[For shear stress]
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where Kt = Theoretical stress concentration factor for axial or bending
loading, and

Kts = Theoretical stress concentration factor for torsional or shear
loading.

6.18 Combined Steady and
Variable Stress

The failure points from fatigue
tests made with different steels and
combinations of mean and variable
stresses are plotted in Fig. 6.15 as
functions of variable stress (σv) and
mean stress (σm). The most significant
observation is that, in general, the
failure point is little related to the mean
stress when it is compressive but is very
much a function of the mean stress when
it is tensile. In practice, this means that
fatigue failures are rare when the mean
stress is compressive (or negative).
Therefore, the greater emphasis must be
given to the combination of a variable
stress and a steady (or mean) tensile
stress.

Fig. 6.15. Combined mean and variable stress.

There are several ways in which problems involving this combination of stresses may be solved,
but the following are important from the subject point of view :

1. Gerber method, 2. Goodman method, and 3. Soderberg method.

We shall now discuss these methods, in detail, in the following pages.

Protective colour coatings are added to make components
it corrosion resistant. Corrosion if not taken care can magnify
other stresses.
Note : This picture is given as additional information and is not a

direct example of the current chapter.
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6.19 Gerber Method for
Combination of Stresses

The relationship between variable
stress (σv) and mean stress (σm) for axial and
bending loading for ductile materials are
shown in Fig. 6.15. The point σe represents
the fatigue strength corresponding to the case
of complete reversal (σm = 0) and the point
σu represents the static ultimate strength
corresponding to σv = 0.

A parabolic curve drawn between the
endurance limit (σe) and ultimate tensile
strength (σu) was proposed by Gerber in
1874. Generally, the test data for ductile
material fall closer to Gerber parabola as
shown in Fig. 6.15, but because of scatter in
the test points, a straight line relationship (i.e.
Goodman line and Soderberg line) is usually
preferred in designing machine parts.

According to Gerber, variable stress,

σv = σe 

2
1

. .
. .

m

u

F S
F S

⎡ ⎤σ⎛ ⎞−⎢ ⎥⎜ ⎟σ⎝ ⎠⎢ ⎥⎣ ⎦

or

2
1

. .
. .

m v

u e

F S
F S

σ σ⎛ ⎞= +⎜ ⎟σ σ⎝ ⎠
...(i)

where F.S. = Factor of safety,

σm = Mean stress (tensile or compressive),

σu = Ultimate stress (tensile or compressive), and

σe = Endurance limit for reversal loading.

Considering the fatigue stress
concentration factor (Kf), the equation (i) may
be written as

             

2
1

. .
. .

v fm

u e

K
F S

F S

σ ×σ⎛ ⎞= +⎜ ⎟σ σ⎝ ⎠

6.20 Goodman Method for
Combination of Stresses

A straight line connecting the endurance
limit (σe) and the ultimate strength (σu), as
shown by line AB in Fig. 6.16, follows the
suggestion of Goodman. A Goodman line is
used when the design is based on ultimate
strength and may be used for ductile or brittle
materials.

In Fig. 6.16, line AB connecting σe and

Liquid refrigerant absorbs heat as it vaporizes inside the
evaporator coil of a refrigerator. The heat is released
when a compressor turns the refrigerant back to liquid.

Note : This picture is given as additional information and is
not a direct example of the current chapter.

Fig. 6.16. Goodman method.

Evaporator

Gas flow

Fins radiate heat

Liquid flow

Condenser

Compressor
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* Here we have assumed the same factor of safety (F.S.) for the ultimate tensile strength (σu) and endurance
limit (σe). In case the factor of safety relating to both these stresses is different, then the following relation
may be used :

1
/ ( . .) / ( . .)

σ σ
= −

σ σ
v m

F S F Se e u u
where (F.S.)e = Factor of safety relating to endurance limit, and

(F.S.)u = Factor of safety relating to ultimate tensile strength.

σu is called Goodman's failure stress line. If a suitable factor of safety (F.S.) is applied to endurance
limit and ultimate strength, a safe stress line CD may be drawn parallel to the line AB. Let us consider
a design point P on the line CD.

Now from similar triangles COD and PQD,

       
PQ QD

CO OD
=  

OD OQ

OD

−=  1 –
OQ

OD
= ...(Q  QD = OD – OQ)

∴ 1
/ . . / . .

σ σ
= −

σ σ
v m

e uF S F S

1
1

. . / . . . .
e m m

v e
u uF S F S F S

σ σ σ⎡ ⎤ ⎡ ⎤σ = − = σ −⎢ ⎥ ⎢ ⎥σ σ⎣ ⎦ ⎣ ⎦

or
1

. .
m v

u eF S

σ σ
= +

σ σ
...(i)

This expression does not include the effect of stress concentration. It may be noted that for
ductile materials, the stress concentration may be ignored under steady loads.

Since many machine and structural parts that are subjected to fatigue loads contain regions of
high stress concentration, therefore equation (i) must be altered to include this effect. In such cases,
the fatigue stress concentration factor (Kf) is used to multiply the variable stress (σv). The equation (i)
may now be written as

1

. .
v fm

u e

K

F S

σ ×σ
= +

σ σ
...(ii)

where F.S. = Factor of safety,
σm = Mean stress,
σu = Ultimate stress,
σv = Variable stress,
σe = Endurance limit for reversed loading, and
Kf = Fatigue stress concentration factor.

Considering the load factor, surface finish factor and size factor, the equation (ii) may be
written as

1

. .
v f v fm m

u eb sur sz u e b sur sz

K K

F S K K K K K

σ × σ ×σ σ= + = +
σ σ × × σ σ × × ×

...(iii)

=
v fm

u e sur sz

K

K K

σ ×σ
+

σ σ × × ...(Q  σeb = σe × Kb and Kb = 1)

where Kb = Load factor for reversed bending load,

Ksur = Surface finish factor, and

Ksz = Size factor.

∗
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Notes : 1. The equation (iii) is applicable to ductile materials subjected to reversed bending loads (tensile or
compressive). For brittle materials, the theoretical stress concentration factor (Kt) should be applied to the mean
stress and fatigue stress concentration factor (Kf) to the variable stress. Thus for brittle materials, the equation
(iii) may be written as

1

. .

σ ×σ ×= +
σ σ × ×

v fm t

u eb sur sz

KK

F S K K
...(iv)

2. When a machine component is subjected to a load other than reversed bending, then the endurance
limit for that type of loading should be taken into consideration. Thus for reversed axial loading (tensile or
compressive), the equations (iii) and (iv) may be written as

1

. .

σ ×σ= +
σ σ × ×

v fm

u ea sur sz

K

F S K K
...(For ductile materials)

and
1

. .

σ ×σ ×= +
σ σ × ×

v fm t

u ea sur sz

KK

F S K K
...(For brittle materials)

Similarly, for reversed torsional or shear loading,

1

. .

τ ×τ= +
τ τ × ×

v fsm

u e sur sz

K

F S K K
...(For ductile materials)

and
1

. .
v fsm ts

u e sur sz

KK

F S K K

τ ×τ ×
= +

τ τ × × ...(For brittle materials)

where suffix ‘s’denotes for shear.

For reversed torsional or shear loading, the values of ultimate shear strength (τu) and endurance shear
strength (τe) may be taken as follows:

τu = 0.8 σu; and τe = 0.8 σe

6.21 Soderberg Method for Combination of Stresses
A straight line connecting the endurance limit (σe) and the yield strength (σy), as shown by the

line AB in Fig. 6.17, follows the suggestion of Soderberg line. This line is used when the design is
based on yield strength.

Note : This picture is given as additional information and is not a direct example of the current chapter.

In this central heating system, a furnace burns fuel to heat water in a boiler. A pump forces the hot
water through pipes that connect to radiators in each room. Water from the boiler also heats the hot
water cylinder. Cooled water returns to the boiler.

Overflow pipe
Mains
supply

Hot water
cylinderWater

tank Control
valve

Radiator

Pump

Heat exchanger
Gas burner

Boiler Insulation

Flue

Air inlet
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Proceeding in the same way as discussed
in Art 6.20, the line AB connecting σe and σy, as
shown in Fig. 6.17, is called Soderberg's failure
stress line. If a suitable factor of safety (F.S.) is
applied to the endurance limit and yield strength,
a safe stress line CD may be drawn parallel to
the line AB. Let us consider a design point P on
the line CD. Now from similar triangles COD
and PQD,

          
PQ QD OD OQ

CO OD OD

−= =

        = 1
OQ

OD
−

...(Q  QD = OD – OQ)

∴ 1
/ . . / . .

v m

e yF S F S

σ σ
= −

σ σ

or
1

1
. . / . . . .
e m m

v e
y yF S F S F S

σ σ σ⎡ ⎤ ⎡ ⎤σ = − = σ −⎢ ⎥ ⎢ ⎥σ σ⎣ ⎦ ⎣ ⎦

∴
1

. .
m v

y eF S

σ σ
= +

σ σ
...(i)

For machine parts subjected to fatigue loading, the fatigue stress concentration factor (Kf)
should be applied to only variable stress (σv). Thus the equations (i) may be written as

   
1

. .
v fm

y e

K

F S

σ ×σ
= +

σ σ
...(ii)

Considering the load factor, surface finish factor and size factor, the equation (ii) may be
written as

                                      
1

. .
v fm

y eb sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
...(iii)

Since σeb = σe × Kb and Kb = 1 for reversed bending load, therefore σeb = σe may be substituted
in the above equation.

Notes: 1. The Soderberg method is particularly used for ductile materials. The equation (iii) is applicable to
ductile materials subjected to reversed bending load (tensile or compressive).

2. When a machine component is subjected to reversed axial loading, then the equation (iii) may be
written as

                                          
1

. .

σ ×σ= +
σ σ × ×

v fm

y ea sur sz

K

F S K K

3. When a machine component is subjected to reversed shear loading, then equation (iii) may be
written as

1

. .

τ ×τ= +
τ τ × ×

v fsm

y e sur sz

K

F S K K

where K f s  is the fatigue stress concentration factor for reversed shear loading. The yield strength in shear (τy)
may be taken as one-half the yield strength in reversed bending (σy).

Fig. 6.17. Soderberg method.
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Example 6.3.  A machine component is

subjected to a flexural stress which fluctuates
between + 300 MN/m2 and – 150 MN/m2.
Determine the value of minimum ultimate strength
according to 1. Gerber relation; 2. Modified
Goodman relation; and 3. Soderberg relation.

Take yield strength = 0.55 Ultimate strength;
Endurance strength = 0.5 Ultimate strength; and
factor of safety = 2.

Solution. Given : σ1 = 300 MN/m2 ;
σ2 = – 150 MN/m2 ; σy = 0.55 σu ; σe = 0.5 σu ;
F.S. = 2

Let σu = Minimum ultimate strength  in MN/m2.

We know that the mean or average stress,

21 2 300 ( 150)
75 MN/m

2 2

σ + σ + −σ = = =m

and variable stress, 21 2 300 ( 150)
225 MN/m

2 2v
σ − σ − −σ = = =

1.  According to Gerber relation
We know that according to Gerber relation,

2
1

. .
. .

m v

u e

F S
F S

σ σ⎛ ⎞= +⎜ ⎟σ σ⎝ ⎠
2

2 2

11 250 4501 75 225 11 250 450
2

2 0.5 ( ) ( )

+ σ⎛ ⎞= + = + =⎜ ⎟σ σ σσ σ⎝ ⎠
u

u u uu u

(σu)
2 = 22 500 + 900 σu

or (σu)
2 – 900 σu – 22 500 = 0

∴ σu =
2900 (900) 4 1 22 500 900 948.7

2 1 2

± + × × ±=
×

= 924.35 MN/m2 Ans. ...(Taking +ve sign)

2.  According to modified Goodman relation

We know that according to modified Goodman relation,

1

. .
m v

u eF S

σ σ
= +

σ σ

or
1 75 225 525

2 0.5u u u

= + =
σ σ σ

∴ σu = 2 × 525 = 1050 MN/m2 Ans.

3.  According to Soderberg relation

We know that according to Soderberg relation,
1

. .
m v

y eF S

σ σ
= +

σ σ

or
1 75 255 586.36

2 0.55 0.5u u u

= + =
σ σ σ

∴ σu = 2 × 586.36 = 1172.72 MN/m2 Ans.

Springs often undergo variable stresses.
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Example 6.4. A bar of circular cross-section is subjected to alternating tensile forces varying
from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an
ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Determine the diameter of
bar using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit
and a stress concentration factor of 1.65 for fatigue load. Use Goodman straight line as basis for
design.

Solution. Given : Wmin = 200 kN ; Wmax = 500 kN ; σu = 900 MPa = 900 N/mm2 ; σe = 700 MPa
= 700 N/mm2 ; (F.S.)u = 3.5 ; (F.S.)e = 4 ; Kf = 1.65

Let d = Diameter of bar in mm.

∴ Area, A = 2 2 20.7854 mm
4

d d
π × =

We know that mean or average force,

Wm = 3500 200
350 kN 350 10 N

2 2
max minW W+ += = = ×

∴ Mean stress, σm =
3 3

2
2 2

350 10 446 10
N / mm

0.7854

× ×= =mW

A d d

Variable force, Wv = 3500 200
150 kN 150 10 N

2 2
max minW W− −= = = ×

∴ Variable stress, σv =
3 3

2
2 2

150 10 191 10
N / mm

0.7854
vW

A d d

× ×= =

We know that according to Goodman's formula,

.
1 –

/ ( . .) / ( . .)
m fv

e e u u

K

F S F S

σσ
=

σ σ
3 3

2 2

191 10 446 10
1.65

1
700 / 4 900 / 3.5

d d

× × ×
= −

Paint Manufacture : A typical gloss paint is made by first mixing
natural oils and resins called alkyds. Thinner is added to make
the mixture easier to pump through a filter that removes any
solid particles from the blended liquids. Pigment is mixed into
the binder blend in a powerful mixer called a disperser.

Pigment and paint thin-
ner added

Final adjustments madeFilter tank
Setting tank

Mixing
tank

Thinner
 added

Oil and resin
blended
together

Disperser Bead mill Holding tank

Note : This picture is given as additional information and is not a direct example of the current chapter.



Variable Stresses in Machine Parts     203

2 2

1100 2860
1

d d
= − or 2

1100 2860
1

d

+ =

∴ d 2 = 3960   or   d = 62.9 say 63 mm  Ans.
Example 6.5. Determine the thickness of a 120 mm wide uniform plate for safe continuous

operation if the plate is to be subjected to a tensile load that has a maximum value of 250 kN and a
minimum value of 100 kN. The properties of the plate material are as follows:

Endurance limit stress = 225 MPa, and Yield point stress = 300 MPa.

The factor of safety based on yield point may be taken as 1.5.

Solution. Given : b = 120 mm ; Wmax = 250 kN; Wmin = 100 kN ; σe = 225 MPa = 225 N/mm2 ;
σy = 300 MPa = 300 N/mm2; F.S. = 1.5

Let t = Thickness of the plate in mm.

∴ Area, A = b × t = 120 t mm2

We know that mean or average load,

Wm = 3250 100
175 kN = 175 × 10 N

2 2
max minW W+ += =

∴ Mean stress, σm =
3

2175 10
N/mm

120
mW

A t

×=

Variable load, Wv = 3250 100
75 kN 75 10 N

2 2
max minW W− −= = = ×

∴ Variable stress, σv =
3

275 10
N/mm

120
vW

A t

×=

According to Soderberg’s formula,
1

. .
m v

y eF S

σ σ
= +

σ σ
3 31 175 10 75 10 4.86 2.78 7.64

1.5 120 300 120 225t t t t t

× ×= + = + =
× ×

∴ t = 7.64 × 1.5 = 11.46 say 11.5 mm Ans.
Example 6.6. Determine the diameter of a circular rod made of ductile material with a fatigue

strength (complete stress reversal), σe = 265 MPa and a tensile yield strength of 350 MPa. The
member is subjected to a varying axial load from Wmin = – 300 × 103 N to Wmax = 700 × 103 N and
has a stress concentration factor = 1.8. Use factor of safety as 2.0.

Solution. Given : σe = 265 MPa = 265 N/mm2 ; σy = 350 MPa = 350 N/mm2 ; Wmin = – 300 × 103 N ;
Wmax = 700 × 103 N ; Kf = 1.8 ; F.S. = 2

Let d = Diameter of the circular rod in mm.

∴ Area, A = 2 2 20.7854 mm
4

d d
π × =

We know that the mean or average load,

Wm =
3 3

3700 10 ( 300 10 )
200 10 N

2 2
max minW W+ × + − ×= = ×

∴ Mean stress, σm =
3 3

2
2 2

200 10 254.6 10
N/mm

0.7854
mW

A d d

× ×= =
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Variable load,       Wv =
3 3

3700 10 ( 300 10 )
500 10 N

2 2
max minW W− × − − ×= = ×

∴ Variable stress, σv =
3 3

2
2 2

500 10 636.5 10
N/mm

0.7854
vW

A d d

× ×= =

We know that according to Soderberg's formula,

1

. .
v fm

y e

K

F S

σ ×σ
= +

σ σ
3 3

2 2 2 2 2

1 254.6 10 636.5 10 1.8 727 4323 5050

2 350 265d d d d d

× × ×= + = + =
× ×

∴ d 2 = 5050 × 2 = 10 100   or   d = 100.5 mm Ans.
Example 6.7. A steel rod is subjected to a reversed axial load of 180 kN. Find the diameter of

the rod for a factor of safety of 2. Neglect column action. The material has an ultimate tensile
strength of 1070 MPa and yield strength of 910 MPa. The endurance limit in reversed bending
may be assumed to be one-half of the ultimate tensile strength. Other correction factors may be
taken as follows:

For axial loading = 0.7; For machined surface = 0.8 ; For size = 0.85 ; For stress
concentration = 1.0.

Solution. Given : Wmax = 180 kN ; Wmin = – 180 kN ; F.S. = 2 ; σu = 1070 MPa = 1070
N/mm2; σy = 910 MPa = 910 N/mm2 ; σe = 0.5 σu ; Ka = 0.7 ; Ksur = 0.8 ; Ksz = 0.85 ; Kf = 1

Let d = Diameter of the rod in mm.

∴ Area, A = 2 2 20.7854 mm
4

d d
π × =

We know that the mean or average load,

Wm =
180 ( 180)

0
2 2

max minW W+ + −= =

∴ Mean stress, σm = 0mW

A
=

Variable load, Wv = 3180 ( 180)
180 kN 180 10 N

2 2
max minW W− − −= = = ×

∴Variable stress, σv =
3 3

2
2 2

180 10 229 10
N/mm

0.7854
vW

A d d

× ×= =

Endurance limit in reversed axial loading,

σea = σe × Ka = 0.5 σu × 0.7 = 0.35 σu ...(Q  σe = 0.5 σu)

= 0.35 × 1070 = 374.5 N/mm2

We know that according to Soderberg's formula for reversed axial loading,

1

. .
v fm

y ea sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
3

2 2

1 229 10 1 900
0

2 374.5 0.8 0.85d d

× ×= + =
× × ×

∴ d 2 = 900 × 2 = 1800  or  d = 42.4 mm Ans.
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Example 6.8. A circular bar of 500 mm length is supported freely at its two ends. It is acted
upon by a central concentrated cyclic load having a minimum value of 20 kN and a maximum value
of 50 kN. Determine the diameter of bar by taking a factor of safety of 1.5, size effect of 0.85, surface
finish factor of 0.9. The material properties of bar are given by : ultimate strength of 650 MPa, yield
strength of 500 MPa and endurance strength of 350 MPa.

Solution. Given : l = 500 mm ; Wmin = 20 kN = 20 × 103 N ; Wmax = 50 kN = 50 × 103 N ;
F.S. = 1.5 ; Ksz = 0.85 ; Ksur = 0.9 ; σu = 650 MPa = 650 N/mm2 ; σy = 500 MPa = 500 N/mm2 ;
σe = 350 MPa = 350 N/mm2

Let d = Diameter of the bar in mm.

We know that the maximum bending moment,

Mmax =
3

350 10 500
6250 10 N-mm

4 4
maxW l× × ×= = ×

and minimum bending moment,

Mmin =
3

320 10 500
2550 10 N -mm

4 4
minW l× × ×= = ×

∴ Mean or average bending moment,

Mm =
3 3

36250 10 2500 10
4375 10 N-mm

2 2
max minM M+ × + ×= = ×

and variable bending moment,

Mv =
3 3

36250 10 2500 10
1875 10 N -mm

2 2
max minM M− × − ×= = ×

Section modulus of the bar,

Z =
3 3 30.0982 mm

32
d d

π × =

∴ Mean or average bending stress,

σm =
3 6

2
3 3

4375 10 44.5 10
N/mm

0.0982
mM

Z d d

× ×= =

Layout of a military tank.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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and variable bending stress,

                              σv = 
3 6

2
3 3

1875 10 19.1 10
N/mm

0.0982
vM

Z d d

× ×= =

We know that according to Goodman's formula,

                         
1

. .
v fm

u e sur sz

K

F S K K

σ ×σ= +
σ σ × ×

                           
6 6

3 3

1 44.5 10 19.1 10 1

1.5 650 350 0.9 0.85

× × ×= +
× × × ×d d

...(Taking Kf = 1)

                                  =
3 3 3

3 3 3

68 10 71 10 139 10

d d d

× × ×+ =

∴                       d 3 = 139 × 103 × 1.5 = 209 × 103   or   d = 59.3 mm

and according to Soderberg's formula,

                         
1

. .
v fm

y e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×

                            
6 6

3 3

1 44.5 10 19.1 10 1

1.5 500 350 0.9 0.85

× × ×= +
× × × ×d d

...(Taking Kf = 1)

                                  =
3 3 3

3 3 3

89 10 71 10 160 10

d d d

× × ×+ =

∴                        d 3 = 160 × 103 × 1.5 = 240 × 103     or    d = 62.1 mm

Taking larger of the two values, we have d = 62.1 mm Ans.
Example 6.9.  A 50 mm diameter shaft is made from carbon steel having ultimate tensile

strength of 630 MPa. It is subjected to a torque which fluctuates between 2000 N-m to – 800 N-m.
Using Soderberg method, calculate the factor of safety. Assume suitable values for any other data
needed.

Solution. Given : d = 50 mm ; σu = 630 MPa = 630 N/mm2 ; Tmax = 2000 N-m ; Tmin = – 800 N-m
We know that the mean or average torque,

Tm =  32000 ( 800)
600 N-m 600 10 N-mm

2 2
max minT T+ + −= = = ×

∴  Mean or average shear stress,

τm =  
3

2
3 3

16 16 600 10
24.4 N / mm

(50)

× ×= =
π π

mT

d
... 3

16

π⎛ ⎞= × τ ×⎜ ⎟
⎝ ⎠
Q T d

Variable torque,

Tv = 32000 ( 800)
1400 N-m 1400 10 N-mm

2 2
max minT T− − −= = = ×

∴ Variable shear stress, τv = 
3

2
3 3

16 16 1400 10
57 N/mm

(50)
vT

d

× ×= =
π π

Since the endurance limit in reversed bending (σe) is taken as one-half the ultimate tensile
strength (i.e. σe = 0.5 σu) and the endurance limit in shear (τe) is taken as 0.55 σe, therefore

τe = 0.55 σe = 0.55 × 0.5 σu = 0.275 σu

= 0.275 × 630 = 173.25 N/mm2

Assume the yield stress (σy) for carbon steel in reversed bending as 510 N/mm2, surface finish

factor (Ksur) as 0.87, size factor (Ksz) as 0.85 and fatigue stress concentration factor (Kfs) as 1.
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Since the yield stress in shear (τy) for shear loading is taken as one-half the yield stress in
reversed bending (σy), therefore

τy = 0.5 σy = 0.5 × 510 = 255 N/mm2

Let F.S. = Factor of safety.

We know that according to Soderberg's formula,

1 24.4 57 1

. . 255 173.25 0.87 0.85
v fsm

y e sur sz

K

F S K K

τ ×τ ×= + = +
τ τ × × × ×

= 0.096 + 0.445 = 0.541

∴ F.S. = 1 / 0.541 = 1.85  Ans.
Example 6.10. A cantilever beam made of cold drawn carbon steel of circular cross-section as

shown in Fig. 6.18, is subjected to a load which varies
from – F to 3 F. Determine the maximum load that this
member can withstand for an indefinite life using a factor
of safety as 2. The theoretical stress concentration factor
is 1.42 and the notch sensitivity is 0.9. Assume the
following values :

Ultimate stress = 550 MPa

Yield stress = 470 MPa

Endurance limit = 275 MPa

Size factor = 0.85

Surface finish factor = 0.89

Solution. Given : Wmin = – F ; Wmax = 3 F ; F.S. = 2 ; Kt = 1.42 ; q = 0.9 ; σu = 550 MPa
= 550 N/mm2 ; σy = 470 MPa = 470 N/mm2 ; σe = 275 MPa = 275 N/mm2 ; Ksz = 0.85 ; Ksur = 0.89

Fig. 6.18

Note : This picture is given as additional information and is not a direct example of the current chapter.

Army  Tank

All dimensions in mm.
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The beam as shown in Fig. 6.18 is subjected to a reversed bending load only. Since the point A
at the change of cross section is critical, therefore we shall find the bending moment at point A.

We know that maximum bending moment at point A,

Mmax = Wmax × 125 = 3F × 125 = 375 F N-mm
and minimum bending moment at point A,

Mmin = Wmin × 125 = – F × 125 = – 125 F N-mm
∴ Mean or average bending moment,

Mm =
375 ( 125 )

125 N -mm
2 2

max minM M F F
F

+ + −= =

and variable bending moment,

Mv =
375 ( 125 )

250 N -mm
2 2

max minM M F F
F

− − −= =

Section modulus, Z =
3 3 3(13) 215.7 mm

32 32
d

π π× = = ...( Q  d = 13 mm)

∴   Mean bending stress, σm = 2125
0.58 N/mm

215.7
mM F

F
Z

= =

and variable bending stress, σv = 2250
1.16 N/mm

215.7
vM F

F
Z

= =

Fatigue stress concentration factor,Kf = 1 + q (Kt – 1) = 1 + 0.9 (1.42 – 1) = 1.378

We know that according to Goodman’s formula

1

. .
v fm

u e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
1 0.58 1.16 1.378

2 550 275 0.89 0.85

F F ×= +
× ×

= 0.001 05 F + 0.007 68 F = 0.008 73 F

∴ F =
1

57.3 N
2 0.00873

=
×

and according to Soderberg’s formula,

1

. .
v fm

y e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
1 0.58 1.16 1.378

2 470 275 0.89 0.85

F F ×= +
× ×

= 0.001 23 F + 0.007 68 F = 0.008 91 F

∴ F =
1

56 N
2 0.008 91

=
×

Taking larger of the two values, we have F = 57.3 N Ans.
Example 6.11. A simply supported beam has a concentrated load at the centre which fluctuates

from a value of P to 4 P. The span of the beam is 500 mm and its cross-section is circular with a
diameter of 60 mm. Taking for the beam material an ultimate stress of 700 MPa, a yield stress of 500
MPa, endurance limit of 330 MPa for reversed bending, and a factor of safety of 1.3, calculate the
maximum value of P. Take a size factor of 0.85 and a surface finish factor of 0.9.

Solution. Given : Wmin = P ; Wmax = 4P ; L = 500 mm; d = 60 mm ; σu = 700 MPa = 700 N/mm2 ;

σy = 500 MPa = 500 N/mm2 ; σe = 330 MPa = 330 N/mm2 ; F.S. = 1.3 ; Ksz = 0.85 ; Ksur = 0.9
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We know that maximum bending moment,

Mmax =
4 500

500 N-mm
4 4

maxW L P
P

× ×= =

and minimum bending moment,

Mmin =  
500

125 N-mm
4 4

minW L P
P

× ×= =

∴ Mean or average bending moment,

Mm =
500 125

312.5 N-mm
2 2

max minM M P P
P

+ += =

and variable bending moment,

Mv =
500 125

187.5 N-mm
2 2

max minM M P P
P

− −= =

Section modulus, Z =
3 3 3 3(60) 21.21 10 mm

32 32
d

π π× = = ×

∴   Mean bending stress,

σm =
2

3

312.5
0.0147 N/mm

21.21 10
mM P

P
Z

= =
×

and variable bending stress,

σv =
2

3

187.5
0.0088 N/mm

21.21 10
vM P

P
Z

= =
×

We know that according to Goodman’s formula,

1

. .
v fm

u e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
1 0.0147 0.0088 1

1.3 700 330 0.9 0.85

P P ×= +
× ×

...(Taking Kf = 1)

= 6 6 6

21 34.8 55.8

10 10 10

P P P+ =

∴ P =
61 10

13 785 N 13.785 kN
1.3 55.8

× = =

and according to Soderberg's formula,

1

. .
v fm

y e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×

6 6 6

1 0.0147 0.0088 1 29.4 34.8 64.2

1.3 500 330 0.9 0.85 10 10 10

P P P P P×= + = + =
× ×

∴ P =
61 10

11 982 N 11.982 kN
1.3 64.2

× = =

From the above, we find that maximum value of P = 13.785 kN Ans.

6.22 Combined Variable Normal Stress and Variable Shear Stress
When a machine part is subjected to both variable normal stress and a variable shear stress; then

it is designed by using the following two theories of combined stresses :

1. Maximum shear stress theory, and 2. Maximum normal stress theory.
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We have discussed in Art. 6.21, that according to Soderberg's formula,

1

. .
v fbm

y eb sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
...(For reversed bending load)

Multiplying throughout by σy, we get

. .
y v y fb

m
eb sur sz

K

F S K K

σ σ × σ ×
= σ +

σ × ×
The term on the right hand side of the above expression is known as equivalent normal stress

due to reversed bending.

∴ Equivalent normal stress due to reversed bending,
v y fb

neb m
eb sur sz

K

K K

σ × σ ×
σ = σ +

σ × ×
...(i)

Similarly, equivalent normal stress due to reversed axial loading,
v y fa

nea m
ea sur sz

K

K K

σ × σ ×
σ = σ +

σ × ×
. ..(ii)

and total equivalent normal stress,

σne = σneb + σnea = 
. .
y

F S

σ
...(iii)

We have also discussed in Art. 6.21, that for reversed torsional or shear loading,

1

. .
v fsm

y e sur sz

K

F S K K

τ ×τ
= +

τ τ × ×
Multiplying throughout by τy, we get

. .
y v y fs

m
e sur sz

K

F S K K

τ τ × τ ×
= τ +

τ × ×
The term on the right hand side of the above expression is known as equivalent shear stress.
∴  Equivalent shear stress due to reversed torsional or shear loading,

v y fs
es m

e sur sz

K

K K

τ × τ ×
τ = τ +

τ × ×
...(iv)

The maximum shear stress theory is used in designing machine parts of ductile materials.
According to this theory, maximum equivalent shear stress,

τes(max) =
2 21

( ) 4 ( )
2 . .

y
ne es F S

τ
σ + τ =

The maximum normal stress theory is used in designing machine parts of brittle materials.
According to this theory, maximum equivalent normal stress,

σne(max) =
2 21 1

( ) ( ) 4 ( )
2 2 . .

σ
σ + σ + τ = y

ne ne es F S
Example 6.12. A steel cantilever is 200 mm long. It is subjected to an axial load which varies

from 150 N (compression) to 450 N (tension) and also a transverse load at its free end which varies
from 80 N up to 120 N down. The cantilever is of circular cross-section. It is of diameter 2d for the
first 50 mm and of diameter d for the remaining length. Determine its diameter taking a factor of
safety of 2. Assume the following values :

Yield stress =  330 MPa
Endurance limit in reversed loading =  300 MPa
Correction factors =  0.7 in reversed axial loading

=  1.0 in reversed bending



Variable Stresses in Machine Parts     211

Stress concentration factor = 1.44 for bending

= 1.64 for axial loading

Size effect factor = 0.85

Surface effect factor = 0.90

Notch sensitivity index = 0.90

Solution. Given : l = 200 mm; Wa(max) = 450 N; Wa(min) = – 150 N ; Wt(max) = 120 N ;
Wt(min) = – 80 N; F.S. =2 ; σy = 330 MPa = 330 N/mm2 ; σe = 300 MPa = 300 N/mm2 ;

Ka = 0.7; Kb = 1; Ktb = 1.44 ; Kta = 1.64; Ksz = 0.85 ; Ksur = 0.90 ; q = 0.90

First of all, let us find the equiva-
lent normal stress for point A which is
critical as shown in Fig. 6.19. It is assumed
that the equivalent normal stress at this
point will be the algebraic sum of the
equivalent normal stress due to axial load-
ing and equivalent normal stress due to
bending (i.e. due to transverse load act-
ing at the free end).

Let us first consider the reversed
axial loading. We know that mean or
average axial load,

Wm =
( ) ( ) 450 ( 150)

150 N
2 2

a max a minW W+ + −= =

and variable axial load,

Wv =
( ) ( ) 450 ( 150)

300 N
2 2

a max a minW W− − −
= =

∴ Mean or average axial stress,

σm =
2

2 2

150 4 191
N/mmmW

A d d

×= =
π

... 2

4

π⎛ ⎞= ×⎜ ⎟
⎝ ⎠
Q A d

and variable axial stress,

σv =
2

2 2

300 4 382
N/mmvW

A d d

×= =
π

We know that fatigue stress concentration factor for reversed axial loading,

Kfa = 1 + q (Kta – 1) = 1 + 0.9 (1.64 – 1) = 1.576

and endurance limit stress for reversed axial loading,

σea = σe × Ka = 300 × 0.7 = 210 N/mm2

We know that equivalent normal stress at point A due to axial loading,

σnea = σm + 2 2

191 382 330 1.576

210 0.9 0.85

v y fa

ea sur sz

K

K K d d

σ × σ × × ×= +
σ × × × × ×

= 2
2 2 2

191 1237 1428
N/mm

d d d
+ =

Fig. 6.19
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Now let us consider the reversed bending due to
transverse load. We know that mean or average bend-
ing load,

Wm =  
( ) ( )

2

+t max t minW W

120 ( 80)
20 N

2

+ −= =

and variable bending load,

Wv =
( ) ( )

2

−t max t minW W

                                
120 ( 80)

100 N
2

− −= =

∴ Mean bending moment at point A,

Mm = Wm (l – 50) = 20 (200 – 50) = 3000 N-mm

and variable bending moment at point A,

Mv = Wv (l – 50) = 100 (200 – 50) = 15 000 N-mm

We know that section modulus,

Z =
3 3 30.0982 mm

32
d d

π × =

∴ Mean or average bending stress,

σm =
2

3 3

3000 30 550
N/mm

0.0982
= =mM

Z d d
and variable bending stress,

σv = 2
3 3

15 000 152 750
N/mm

0.0982
= =vM

Z d d
We know that fatigue stress concentration factor for reversed bending,

Kfb = 1 + q (Ktb – 1) = 1 + 0.9 (1.44 – 1) = 1.396

Since the correction factor for reversed bending load is 1 (i.e. Kb = 1), therefore the endurance
limit for reversed bending load,

σeb = σe . Kb = σe = 300 N/mm2

We know that the equivalent normal stress at point A due to bending,

σneb = σm 
3 3

30 550 152 750 330 1.396

300 0.9 0.85

v y fb

eb sur sz

K

K K d d

σ × σ × × ×+ = +
σ × × × × ×

= 2
3 3 3

30 550 306 618 337 168
N/mm

d d d
+ =

∴ Total equivalent normal stress at point A,

σne = σneb + σnea 
2

3 2

337 168 1428
N/mm

d d
= + ...(i)

Machine transporter
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We know that equivalent normal stress at point A,

σne =
2330

165 N/mm
. . 2
y

F S

σ
= = ...(ii)

Equating equations (i) and (ii), we have

3
3 2

337 168 1428
165 or 337 168 + 1428 165+ = =d d

d d
∴ 236.1 + d = 0.116 d3 or d = 12.9 mm   Ans. ...(By hit and trial)

Example 6.13. A hot rolled steel shaft is subjected to a torsional moment that varies from
330 N-m clockwise to 110 N-m counterclockwise and an applied bending moment at a critical section
varies from 440 N-m to – 220 N-m. The shaft is of uniform cross-section and no keyway is present at
the critical section. Determine the required shaft diameter. The material has an ultimate strength of
550 MN/m2 and a yield strength of 410 MN/m2. Take the endurance limit as half the ultimate strength,
factor of safety of 2, size factor of 0.85 and a surface finish factor of 0.62.

Solution. Given : Tmax = 330 N-m (clockwise) ; Tmin = 110 N-m (counterclockwise) = – 110 N-m
(clockwise) ; Mmax = 440 N-m ; Mmin = – 220 N-m ; σu = 550 MN/m2 = 550 × 106 N/m2 ;

σy = 410 MN/m2 = 410 × 106 N/m2 ; σe = 
1

2
σu = 275 × 106 N/m2 ; F.S. = 2 ; Ksz = 0.85 ; Ksur = 0.62

Let d = Required shaft diameter in metres.

We know that mean torque,

Tm =
330 ( 110)

110 N-m
2 2

max minT T+ + −= =

and variable torque, Tv =
330 ( 110)

220 N-m
2 2

max minT T− − −= =

∴ Mean shear stress,

τm =
2

3 3 3

16 16 110 560
N/m

×= =
π π

mT

d d d
and variable shear stress,

τv =
2

3 3 3

16 16 220 1120
N/mvT

d d d

×= =
π π

Since the endurance limit in shear (τe) is 0.55 σe, and yield strength in shear (τy) is 0.5 σy,
therefore

τe = 0.55 × 275 × 106 = 151.25 × 106 N/m2

and τy = 0.5 × 410 × 106 = 205 × 106 N/m2

We know that equivalent shear stress,

τes = τm + 
v y fs

e sur sz

K

K K

τ × τ
τ × ×

=  
6

3 3 6

560 1120 205 10 1

151.25 10 0.62 0.85d d

× × ×+
× × × ×

...(Taking Kfs = 1)

= 2
3 3 3

560 2880 3440
N/m

d d d
+ =

Mean or average bending moment,

Mm =
440 ( 220)

110 N-m
2 2

max minM M+ + −= =
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and variable bending moment,

                            Mv =
– 440 ( 220)

330 N-m
2 2

max minM M − −= =

Section modulus,  Z = 3 3 30.0982 m
32

d d
π × =

∴ Mean bending stress,

                             σm =
2

3 3

110 1120
N/m

0.0982
mM

Z d d
= =

and variable bending stress,

                              σv =
2

3 3

330 3360
N/m

0.0982
vM

Z d d
= =

Since there is no reversed axial loading, therefore the
equivalent normal stress due to reversed bending load,

                  σneb = σne = σm + v y fb

eb sur sz

K

K K

σ × σ ×
σ × ×

= 
6

3 3 6

1120 3360 410 10 1

275 10 0.62 0.85d d

× × ×+
× × × ×

         ...(Taking Kfb = 1 and σeb = σe)

= 
2

3 3 3

1120 9506 10626
N/m

d d d
+ =

We know that the maximum equivalent shear stress,

τes(max) = 2 21
( ) 4 ( )

. . 2
y

ne esF S

τ
= σ + τ

2 26

3 3

205 10 1 10 625 3440
4

2 2

× ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠d d

205 × 106 × d 3 = 6 6 3113 10 4 11.84 10 12.66 10× + × × = ×

∴ d 3 =
3

6 3

12.66 10 0.0617

205 10 10

× =
×

or d =
0.395

0.0395 m 39.5 say 40 mm
10

= = Ans.

Example 6.14. A pulley is keyed to a shaft midway between two bearings. The shaft is made of
cold drawn steel for which the ultimate strength is 550 MPa and the yield strength is 400 MPa. The
bending moment at the pulley varies from – 150 N-m to + 400 N-m as the torque on the shaft varies
from – 50 N-m to + 150 N-m. Obtain the diameter of the shaft for an indefinite life. The stress
concentration factors for the keyway at the pulley in bending and in torsion are 1.6 and 1.3 respectively.
Take the following values:

Factor of safety =  1.5
Load correction factors =  1.0 in bending, and 0.6 in torsion
Size effect factor =  0.85

Surface effect factor =  0.88

Machine parts are often made
of alloys to improve their
mechanical properties.
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Solution. Given : σu = 550 MPa = 550 N/mm2 ; σy = 400 MPa = 400 N/mm2 ;

Mmin = – 150 N-m; Mmax = 400 N-m ; Tmin = – 50 N-m ; Tmax = 150 N-m ; Kfb = 1.6 ; Kfs = 1.3 ;
F.S. = 1.5 ; Kb = 1 ; Ks = 0.6 ; Ksz = 0.85 ; Ksur = 0.88

Let d = Diameter of the shaft in mm.

First of all, let us find the equivalent normal stress due to bending.

We know that the mean or average bending moment,

Mm = 3400 ( 150)
125 N-m 125 10 N-mm

2 2
max minM M+ + −= = = ×

and variable bending moment,

Mv = 3400 ( 150)
275 N-m 275 10 N-mm

2 2
max minM M− − −= = = ×

Section modulus, Z =
3 3 30.0982 mm

32
d d

π × =

∴ Mean bending stress,

                              σm= 
3 3

2
3 3

125 10 1273 10
N/mm

0.0982

× ×= =mM

Z d d
and variable bending stress,

          σv = 
3 3

2
3 3

275 10 2800 10
N/mm

0.0982

× ×= =vM

Z d d
Assuming the endurance limit in reversed bending as one-half the ultimate strength and since

the load correction factor for reversed bending is 1 (i.e. Kb = 1), therefore endurance limit in reversed
bending,

σeb = σe = 2550
275 N/mm

2 2
uσ

= =

Since there is no reversed axial loading, therefore equivalent normal stress due to bending,

σneb = σne = σm + 
v y fb

eb sur sz

K

K K

σ × σ ×
σ × ×

=
3 3

3 3

1273 10 2800 10 400 1.6

275 0.88 0.85d d

× × × ×+
× × ×

=
3 3 3

2
3 3 3

1273 10 8712 10 9985 10
N/mm

d d d

× × ×+ =

Now let us find the equivalent shear stress due to torsional moment. We know that the mean
torque,

Tm = 3150 ( 50)
50 N-m 50 10 N-mm

2 2
max minT T+ + −= = = ×

and variable torque,      Tv = 3150 ( 50)
100 N-m 100 10 N-mm

2 2
max minT T− − −= = = ×

∴  Mean shear stress,

τm =
3 3

2
3 3 3

16 16 50 10 255 10
N/mmmT

d d d

× × ×= =
π π
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and variable shear stress,

τv =
3 3

2
3 3 3

16 16 100 10 510 10
N/mmvT

d d d

× × ×= =
π π

Endurance limit stress for reversed torsional or shear loading,
τe = σe × Ks = 275 × 0.6 = 165 N/mm2

Assuming yield strength in shear,
τy = 0.5 σy = 0.5 × 400 = 200 N/mm2

We know that equivalent shear stress,

τes = τm + 
v y fs

e sur sz

K

K K

τ × τ ×
τ × ×

=
3 3

3 3

255 10 510 10 200 1.3

165 0.88 0.85d d

× × × ×+
× × ×

=
3 3 3

2
3 3 3

255 10 1074 10 1329 10
N/mm

d d d

× × ×+ =
and maximum equivalent shear stress,

τes(max) = 2 21
( ) 4 ( )

. . 2
y

ne esF S

τ
= σ + τ

2 23 3 3

3 3 3

200 1 9985 10 1329 10 5165 10
4

1.5 2 d d d

⎛ ⎞ ⎛ ⎞× × ×= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∴ d 3 =
35165 10 1.5

38 740 or 33.84 say 35 mm
200

d
× × = =  Ans.

6.23 Application of Soderberg’s Equation
We have seen in Art. 6.21 that according to Soderberg's equation,

1

. .
v fm

y e

K

F S

σ ×σ
= +

σ σ
...(i)

This equation may also be written as

      
1

. .
m e v y f

y e

K

F S

σ × σ + σ × σ ×
=

σ × σ

or F.S. =
y e y

ym e v y f
m f v

e

K
K

σ × σ σ
=

σσ × σ + σ × σ × ⎛ ⎞
σ + × σ⎜ ⎟σ⎝ ⎠

...(ii)

Since the factor of safety based on yield strength is the ratio of the yield point stress to the
working or design stress, therefore from equation (ii), we may write

Working or design stress

= σm +  
y

f v
e

K
σ⎛ ⎞

× σ⎜ ⎟σ⎝ ⎠
...(iii)

Let us now consider the use of Soderberg's equation to a ductile material under the following
loading conditions.

1.  Axial loading
In case of axial loading, we know that the mean or average stress,

σm = Wm / A
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and variable stress, σv = Wv  / A

where Wm = Mean or average load,

Wv = Variable load, and

A = Cross-sectional area.

The equation (iii) may now be written as follows :

Working or design stress,

=

y
m f v

y em v
f

e

W K W
W W

K
A A A

σ⎛ ⎞
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2.  Simple bending

In case of simple bending, we know that the
bending stress,

σb =
.M y M

I Z
= ...

⎛ ⎞=⎜ ⎟
⎝ ⎠
Q

I
Z

y

∴ Mean or average bending stress,

σm =  Mm / Z

and variable bending stress,

σv =  Mv/ Z

where Mm = Mean bending moment,

Mv = Variable bending moment,
 and

Z = Section modulus.

The equation (iii) may now be written as
follows :

Working or design bending stress,

σb =
σ⎛ ⎞

+ ×⎜ ⎟σ⎝ ⎠
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... 3For circular shafts,
32
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Q Z d
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σ

⎡ σ ⎤⎛ ⎞
+ ×⎢ ⎥⎜ ⎟σπ ⎝ ⎠⎣ ⎦

Note : This picture is given as additional information
and is not a direct example of the current chapter.

A large disc- shaped electromagnet hangs from
jib of this scrapyard crane. Steel and iron objects
fly towards the magnet when the current is
switched on. In this way, iron and steel can be
separated for recycling.
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3. Simple torsion of circular shafts
In case of simple torsion, we know that the torque,

T = 3
3

16
or

16

T
d

d

π × τ × τ =
π

∴ Mean or average shear stress,

τm = 3

16 mT

dπ

and variable shear stress, τv = 3

16 vT

dπ
where Tm = Mean or average torque,

Tv = Variable torque, and

d = Diameter of the shaft.

The equation (iii) may now be written as follows :

Working or design shear stress,

τ = 3 3 3

16 16 16τ ⎡ τ ⎤⎛ ⎞ ⎛ ⎞
+ × = + ×⎢ ⎥⎜ ⎟ ⎜ ⎟τ τπ π π ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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y
m fs v

e

T K T
d

τ
⎡ τ ⎤⎛ ⎞

+ ×⎢ ⎥⎜ ⎟τ⎝ ⎠π ⎣ ⎦
where Kfs = Fatigue stress concentration factor for torsional or shear loading.

Note : For shafts made of ductile material, τy = 0.5 σy, and τe = 0.5 σe may be taken.

4.  Combined bending and torsion of circular shafts
In case of combined bending and torsion of circular shafts, the maximum shear stress theory

may be used. According to this theory, maximum shear stress,

τmax =
2 21

( ) 4
. . 2
y

bF S

τ
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=

2 2

3 3

1 32 16
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The majority of rotating shafts carry a steady torque and the loads remain fixed in space in both
direction and magnitude. Thus during each revolution every fibre on the surface of the shaft under-
goes a complete reversal of stress due to bending moment. Therefore for the usual case when Mm = 0,
Mv = M, Tm = T and Tv = 0, the above equation may be written as

2

2
3

16

. .
y y

f
e

K M T
F S d

τ ⎡ σ ⎤⎛ ⎞
= × +⎢ ⎥⎜ ⎟σ⎝ ⎠π ⎣ ⎦

Note: The above relations apply to a solid shaft. For hollow shaft, the left hand side of the above equations must
be multiplied by (1 – k4), where k is the ratio of inner diameter to outer diameter.
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Example 6.15. A centrifugal blower rotates at 600 r.p.m. A belt drive is used to connect the

blower to a 15 kW and 1750 r.p.m. electric motor. The belt forces a torque of 250 N-m and a force of
2500 N on the shaft. Fig. 6.20 shows the location of bearings, the steps in the shaft and the plane in
which the resultant belt force and torque act. The ratio of the journal diameter to the overhung shaft
diameter is 1.2 and the radius of the fillet is 1/10th of overhung shaft diameter. Find the shaft diameter,
journal diameter and radius of fillet to have a factor of safety 3. The blower shaft is to be machined
from hot rolled steel having the following values of stresses:

Endurance limit = 180 MPa; Yield point stress = 300 MPa; Ultimate tensile stress = 450 MPa.

Solution. Given: *NB = 600 r.p.m. ; *P = 15 kW; *NM = 1750 r.p.m. ; T = 250 N-m = 250 × 103

N-mm; F = 2500 N ; F.S. = 3; σe = 180 MPa = 180 N/mm2 ; σy = 300 MPa = 300 N/mm2 ; σu = 450
MPa = 450 N/mm2

Fig. 6.20

Let D = Journal diameter,

d = Shaft diameter, and r = Fillet radius.

∴ Ratio of journal diameter to shaft diameter,

D/d = 1.2 ...(Given)

and radius of the fillet, r = 1/10 × Shaft diameter (d) = 0.1 d

∴ r/d = 0.1 ...(Given)

From Table 6.3, for D/d = 1.2 and r/d = 0.1, the theoretical stress concentration factor,

Kt = 1.62

The two points at which failure may occur are at the end of the keyway and at the shoulder fillet.
The critical section will be the one with larger product of Kf × M. Since the notch sensitivity factor q
is dependent upon the unknown dimensions of the notch and since the curves for notch sensitivity
factor (Fig. 6.14) are not applicable to keyways, therefore the product Kt × M shall be the basis of
comparison for the two sections.

∴  Bending moment at the end of the keyway,

Kt × M = 1.6 × 2500 [100 – (25 + 10)]  = 260 × 103 N-mm

...(Q Kt for key ways = 1.6)

and bending moment at the shoulder fillet,

Kt × M = 1.62 × 2500 (100 – 25) = 303 750 N-mm

Since Kt × M at the shoulder fillet is large, therefore considering the shoulder fillet as the critical
section. We know that
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τ ⎡ σ ⎤⎛ ⎞
= × +⎢ ⎥⎜ ⎟σπ ⎢ ⎥⎝ ⎠⎣ ⎦

* Superfluous data
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2
3 2

3

0.5 300 16 300
303750 (250 10 )

3 180

⎡× ⎛ ⎞= × + ×⎢⎜ ⎟
⎝ ⎠⎣πd

... (Substituting, τy = 0.5 σy)

50 =
3

3
3 3

16 2877 10
565 10

d d

×× × =
π

∴ d 3 = 2877 × 103/50 = 57 540   or   d = 38.6 say 40 mm Ans.
Note: Since r is known (because r/d = 0.1 or r = 0.1d = 4 mm), therefore from Fig. 6.14, the notch sensitivity
factor (q) may be obtained. For r = 4 mm, we have q = 0.93.

∴ Fatigue stress concentration factor,

Kf = 1 + q (Kt – 1) = 1 + 0.93 (1.62 – 1) = 1.58

Using this value of Kf instead of Kt, a new value of d may be calculated. We see that magnitudes of Kf and
Kt are very close, therefore recalculation will not give any improvement in the results already obtained.

EEEEEXEXEXEXEXERRRRRCISECISECISECISECISESSSSS

1. A rectangular plate 50 mm × 10 mm with a hole 10 mm diameter is subjected to an axial load of 10 kN.
Taking stress concentration into account, find the maximum stress induced. [Ans. 50 MPa]

2. A stepped shaft has maximum diameter 45 mm and minimum diameter 30 mm. The fillet radius is 6
mm. If the shaft is subjected to an axial load of 10 kN, find the maximum stress induced, taking stress
concentration into account. [Ans. 22 MPa]

3. A leaf spring in an automobile is subjected to cyclic stresses. The average stress = 150 MPa; variable
stress = 500 MPa; ultimate stress = 630 MPa; yield point stress = 350 MPa and endurance limit = 150
MPa. Estimate, under what factor of safety the spring is working, by Goodman and Soderberg formulae.

[Ans. 1.75, 1.3]

4. Determine the design stress for bolts in a cylinder cover where the load is fluctuating due to gas
pressure. The maximum load on the bolt is 50 kN and the minimum is 30 kN. The load is unpredict-
able and factor of safety is 3. The surface of the bolt is hot rolled and the surface finish factor is 0.9.

During a simple tension test and rotating beam test on ductile materials (40 C 8 steel annealed), the
following results were obtained :

Diameter of specimen = 12.5 mm; Yield strength = 240 MPa; Ultimate strength = 450 MPa; Endurance
limit = 180 MPa. [Ans. 65.4 MPa]

5. Determine the diameter of a tensile member of a circular cross-section. The following data is given :

Maximum tensile load = 10 kN; Maximum compressive load = 5 kN; Ultimate tensile strength = 600
MPa; Yield point = 380 MPa; Endurance limit = 290 MPa; Factor of safety = 4; Stress concentration
factor = 2.2 [Ans. 24 mm]

6. Determine the size of a piston rod subjected to a total load of having cyclic fluctuations from 15 kN in
compression to 25 kN in tension. The endurance limit is 360 MPa and yield strength is 400 MPa. Take
impact factor = 1.25, factor of safety = 1.5, surface finish factor = 0.88 and stress concentration factor
= 2.25. [Ans. 35.3 mm]

7. A steel connecting rod is subjected to a completely reversed axial load of 160 kN. Suggest the suitable
diameter of the rod using a factor of safety 2. The ultimate tensile strength of the material is 1100
MPa, and yield strength 930 MPa. Neglect column action and the effect of stress concentration.

[Ans. 30.4 mm]

8. Find the diameter of a shaft made of 37 Mn 2 steel having the ultimate tensile strength as 600 MPa and
yield stress as 440 MPa. The shaft is subjected to completely reversed axial load of 200 kN. Neglect
stress concentration factor and assume surface finish factor as 0.8. The factor of safety may be taken
as 1.5. [Ans. 51.7 mm]
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9. Find the diameter of a shaft to transmit twisting moments varying from 800 N-m to 1600 N-m. The

ultimate tensile strength for the material is 600 MPa and yield stress is 450 MPa. Assume the stress
concentration factor = 1.2, surface finish factor = 0.8 and size factor = 0.85. [Ans. 27.7 mm]

10. A simply supported shaft between bearings carries a steady load of 10 kN at the centre. The length of
shaft between bearings is 450 mm. Neglecting the effect of stress concentration, find the minimum
diameter of shaft. Given that

Endurance limit = 600 MPa; surface finish factor = 0.87; size factor = 0.85; and factor of safety = 1.6.
[Ans. 35 mm]

11. Determine the diameter of a circular rod made of ductile material with a fatigue strength (complete
stress reversal) σe = 280 MPa and a tensile yield strength of 350 MPa. The member is subjected to a
varying axial load from 700 kN to – 300 kN. Assume Kt = 1.8 and F.S. = 2. [Ans. 80 mm]

12. A cold drawn steel rod of circular cross-section is subjected to a variable bending moment of 565 N-
m to 1130 N-m as the axial load varies from 4500 N to 13 500 N. The maximum bending moment
occurs at the same instant that the axial load is maximum. Determine the required diameter of the rod
for a factor of safety 2. Neglect any stress concentration and column effect. Assume the following
values:

Ultimate strength =  550 MPa

Yield strength =  470 MPa

Size factor =  0.85

Surface finish factor =  0.89

Correction factors =  1.0 for bending

=  0.7 for axial load

The endurance limit in reversed bending may be taken as one-half the ultimate strength. [Ans. 41 mm]

13. A steel cantilever beam, as shown in Fig. 6.21, is subjected to a transverse load at its end that varies
from 45 N up to 135 N down as the axial load varies from 110 N (compression) to 450 N (tension).
Determine the required diameter at the change of section for infinite life using a factor of safety of 2.
The strength properties are as follows:

Ultimate strength = 550 MPa

Yield strength = 470 MPa

Endurance limit = 275 MPa

Fig. 6.21

The stress concentration factors for bending and axial loads are 1.44 and 1.63 respectively, at the
change of cross-section. Take size factor = 0.85 and surface finish factor = 0.9. [Ans. 12.5 mm]

14. A steel shaft is subjected to completely reversed bending moment of 800 N-m and a cyclic twisting
moment of 500 N-m which varies over a range of ± 40%. Determine the diameter of shaft if a reduction
factor of 1.2 is applied to the variable component of bending stress and shearing stress. Assume
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(a) that the maximum bending and shearing stresses are in phase;

(b) that the tensile yield point is the limiting stress for steady state component;

(c) that the maximum shear strength theory can be applied; and

(d) that the Goodman relation is valid.

Take the following material properties:

Yield strength = 500 MPa ; Ultimate strength = 800 MPa ; Endurance limit = ± 400 MPa.

[Ans. 40 mm]

15. A pulley is keyed to a shaft midway between two anti-friction bearings. The bending moment at the
pulley varies from – 170 N-m to 510 N-m and the torsional moment in the shaft varies from 55 N-m
to 165 N-m. The frequency of the variation of the loads is the same as the shaft speed. The shaft is
made of cold drawn steel having an ultimate strength of 540 MPa and a yield strength of 400 MPa.
Determine the required diameter for an indefinite life. The stress concentration factor for the keyway
in bending and torsion may be taken as 1.6 and 1.3 respectively. The factor of safety is 1.5. Take size
factor = 0.85 and surface finish factor = 0.88. [Ans. 36.5 mm]

[Hint. Assume σe = 0.5 σu; τy = 0.5 σy; τe = 0.55 σe]

QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. Explain the following terms in connection with design of machine members subjected to variable
loads:

(a) Endurance limit, (b) Size factor,

(c) Surface finish factor, and (d) Notch sensitivity.

2. What is meant by endurance strength of a material? How do the size and surface condition of a
component and type of load affect such strength?

3. Write a note on the influence of various factors of the endurance limit of a ductile material.

4. What is meant by ̀ stress concentration'? How do you take it into consideration in case of a component
subjected to dynamic loading?

5. Illustrate how the stress concentration in a component can be reduced.

6. Explain how the factor of safety is determined under steady and varying loading by different methods.

7. Write Soderberg's equation and state its application to different type of loadings.

8. What information do you obtain from Soderberg diagram?

OBJECTOBJECTOBJECTOBJECTOBJECTIVE  IVE  IVE  IVE  IVE  TTTTT YPYPYPYPYPE  QE  QE  QE  QE  QUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. The stress which vary from a minimum value to a maximum value of the same nature (i.e. tensile or
compressive) is called

(a) repeated stress (b) yield stress
(c) fluctuating stress (d) alternating stress

2. The endurance or fatigue limit is defined as the maximum value of the stress which a polished
standard specimen can withstand without failure, for infinite number of cycles, when subjected to
(a) static load (b) dynamic load
(c) static as well as dynamic load (d) completely reversed load

3. Failure of a material is called fatigue when it fails
(a) at the elastic limit (b) below the elastic limit
(c) at the yield point (d) below the yield point
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4. The resistance to fatigue of a material is measured by

(a) elastic limit (b) Young's modulus
(c) ultimate tensile strength (d) endurance limit

5. The yield point in static loading is ............... as compared to fatigue loading.
(a) higher (b) lower (c) same

6. Factor of safety for fatigue loading is the ratio of
(a) elastic limit to the working stress
(b) Young's modulus to the ultimate tensile strength
(c) endurance limit to the working stress
(d) elastic limit to the yield point

7. When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate
tensile strength is
(a) 0.20 (b) 0.35
(c) 0.50 (d) 0.65

8. The ratio of endurance limit in shear to the endurance limit in flexure is
(a) 0.25 (b) 0.40
(c) 0.55 (d) 0.70

9. If the size of a standard specimen for a fatigue testing machine is increased, the endurance limit for the
material will
(a) have same value as that of standard specimen (b) increase (c) decrease

10. The residential compressive stress by way of surface treatment of a machine member subjected to
fatigue loading
(a) improves the fatigue life (b) deteriorates the fatigue life
(c) does not affect the fatigue life (d) immediately fractures the specimen

11. The surface finish factor for a mirror polished material is
(a) 0.45 (b) 0.65
(c) 0.85 (d) 1

12. Stress concentration factor is defined as the ratio of
(a) maximum stress to the endurance limit (b) nominal stress to the endurance limit
(c) maximum stress to the nominal stress (d) nominal stress to the maximum stress

13. In static loading, stress concentration is more serious in
(a) brittle materials (b) ductile materials
(c) brittle as well as ductile materials (d) elastic materials

14. In cyclic loading, stress concentration is more serious in
(a) brittle materials (b) ductile materials
(c) brittle as well as ductile materials (d) elastic materials

15. The notch sensitivity q is expressed in terms of fatigue stress concentration factor Kf and theoretical
stress concentration factor Kt, as
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ANSWEANSWEANSWEANSWEANSWERRRRRSSSSS

1. (c) 2. (d) 3. (d) 4. (d) 5. (a)

6. (c) 7. (c) 8. (c) 9. (c) 10. (a)

11. (d) 12. (c) 13. (a) 14. (b) 15. (b)
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