
Part Four
Computational Approaches to Drug Absorption and Bioavailability





14
Calculated Molecular Properties and Multivariate Statistical
Analysis
Ulf Norinder

Abbreviations

2D Two dimensional
3D Three dimensional
AD Applicability domain
ADME Absorption, distribution metabolism, and excretion
ADMET Absorption, distribution metabolism, excretion, and toxicity
ANN Artificial neural network
ARD Automatic relevance determination
BCI Bernard chemical information
BCUT Burden, CAS, University of Texas descriptors
BNN Bayesian neural network
C4.5 Decision trees using information entropy
CART Classification and regression tree
ClogP Calculated partition coefficient between octanol and water
CoMFA Comparative molecular field analysis
CV Cross-validation
DECORATE Diverse ensemble creation by oppositional relabeling of artificial

training examples
Fa Fraction absorbed
FFD Fractional factorial design
FIRM Formal inference-based recursive modeling
FLAPs Fingerprints for ligands and proteins
FNHS Fractional negative hydrophobic surface area
FPHS Fractional positive hydrophobic surface area
GAs Genetic algorithms
GP Genetic programming
G-REX Genetic rule extraction
hERG Human ether-a-go-go related gene
HMLP Heuristic molecular lipophilicity potential
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LDA Linear discriminant analysis
LOO-CV Leave-one-out cross-validation
LMO-CV Leave-multiple-out cross-validation
MACC Maximum auto- and cross-correlation
MIF Molecular interaction field
MLP Molecular lipophilicity potential
MLR Multiple linear regression
MOE Molecular operating environment
NN Neural network
OD Onion design
P-gp P-Glycoprotein
PCA Principal component analysis
RDS Rule discovery system
PLS Partial least square projection to latent structures
QSPR Quantitative structure–property relationship
RNH Relative hydrophilicity
RPH Relative hydrophobicity
PNHS Partial negative hydrophobic surface area
PPHS Partial positive hydrophobic surface area
PSA Polar surface area
QSAR Quantitative structure–activity relationship
RP Recursive partitioning
SFD Space-filling design
SVM Support vector machine
TPSA Topological polar surface area
WDI World Drug Index
WHIM Weighted holistic invariant molecular descriptors
WNHS Weighted negative hydrophobic surface area
WPHS Weighted positive hydrophobic surface area

Symbols

A% Percentage absorbed
A Abraham hydrogen-bond acidity parameter
B Abraham hydrogen-bond basicity parameter
Cd Hydrogen-bond donor factor
Ca Hydrogen-bond acceptor factor
d, dv Kier–Hall molecular connectivity chi parameter
E Abraham excess molar refraction parameter
logP log10 of partition coefficient between octanol and water
S Dipolarity/polarizability solute–solvent interactions
V McGowan characteristic volume
q2 Cross-validated coefficient of determination
r2 Coefficient of determination (correlation coefficient)
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14.1
Introduction

To derive statistically good and predictive models, there are some aspects to
consider. The investigated data set should have a reasonable spread with respect to
continuous target values, for example, biological activities or some ADME-related
property, of approximately three orders of magnitude or more, and the target
values should also be reasonably well distributed. For deriving good and predictive
classification models, the investigated classes should either be well balanced from
the start, that is, the number of objects in each class are approximately the same,
or should be balanced during the analysis by some appropriate weighting scheme.
However, there are additional requirements that will need attention to consider a
derived model robust with good forecasting ability. The investigated objects, for
example, chemical structures, need to be well described for the statistical analysis
to find adequate information among the collected independent variables (descrip-
tors) to correlate to the corresponding dependent variable (target value). Today,
there exist a large number of different descriptors as well as programs, for
example, Dragon [1], Molconn-Z [2], MOE [3], Sybyl [4], and others, with which to
calculate these variables. It is easy to rapidly calculate several thousands of
descriptors for relatively large data set in the order of 10 k and upward. What
kinds of descriptors are useful for modeling ADME properties? How correlated
are the variables? Should 2D and/or 3D descriptors be utilized? Does the large
magnitude of descriptors used has implications for the choice of statistical
method or methods to be employed for analysis? What is the applicability domain
(AD) of the derived model? How can this domain be quantified and used to advise
users about the limitations of the model in question?
This chapter will try to answer some of these questions and investigate

various approaches to derive statistically sound, robust, and predictive in silico
models.

14.2
Calculated Molecular Descriptors

14.2.1
2D-Based Molecular Descriptors

Among the advantages with 2D-based descriptors are their rapid speed of computa-
tion for large sets of compounds and that they do not require 3D structures. Thus,
these descriptors avoid the problem and compute times associated with 3D structure
generation and conformational analysis, even though there are programs available
that generate reliable 3D structures, for example, CORINA [5].
The 2D-based descriptors are sometimes divided into different types of descriptors

such as constitutional, fragment, and functional group-based as well as topological
descriptors.
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14.2.1.1 Constitutional Descriptors
The constitutional descriptors are typically descriptors such asmolecular weight, the
number of various x-membered rings, the number of different types of atoms – for
example, atoms of carbon, oxygen, nitrogen, and different halogens – and bonds, for
example, single, double, triple, and aromatic. These kinds of descriptors have been
used as one part of the structure description for modeling different ADMET end
points [6–11]. Particularly, descriptors related to nitrogen and oxygen atoms have
been found to be useful in deriving good ADME models since these descriptors
capture the importance of hydrogen bonding for absorption and solvation processes.
Another constitutional descriptor that has been frequently used is the number
of rotatable bonds. This parameter is an attempt to easily obtain a crude estimation
of entropy. In addition, incorporation of descriptors such as counts of various
x-membered rings may provide important information regarding the influence of
molecular self-association, for example, p–p interactions, in problems related to
solubility [12].
A significant advantage of using constitutional descriptors is the ease of interpre-

tation. It is straightforward for a researcher to understand the impact of these
descriptors on derived statistical structure–property models.

14.2.1.2 Fragment- and Functional Group-Based Descriptors
The fragment and functional group based descriptors also represent a large and
diverse number of available descriptors, and the division between these two sets of
descriptors is rather fuzzy. These types of descriptors are also frequently called
fingerprints, bits, or keys; for example, Scitegic fingerprints [13], MDL keys [14], and
so on. This group of descriptors can vary significantly in the number of generated
descriptors, the size of fragments identified, and the technique employed to store the
descriptors. Onemay distinguish between twomajor approaches: a predefined set of
patterns to be identified, also called a dictionary-based set, or a set of patterns that will
vary depending upon the set of chemical structures that is under investigation. The
former types of descriptors are generated using BCI fingerprints [15], Leadscope
fingerprints [16], or MDL keys [17]. Many times user-defined fingerprints are of the
same kind, for example, the Bursi alerts for toxicological screening [18].
The Leadscope fingerprints (the set contains some 27 k descriptors) varymarkedly

in size. These fingerprints cover structural patterns from small functional groups to
rather large substructural moieties, whereas the Dragon functional group finger-
prints (154 descriptors) [1] are restricted to identifyingmostly small function groups,
for example, ketones, amides carboxylic acids, esters, and alcohols. The descriptor
sets generated using Daylight [19], Unity [4], or Scitegic fingerprints [13] represent
the latter kinds of fingerprints, that is, the in situ-generated patterns. These finger-
prints are usually �hashed� onto a fingerprint vector of predefined length, many
times of lengths 512, 1024, or 2048, using a pseudorandom number generator.
Owing to the hashing function, as well as the chosen size of the fingerprint bit vector,
it is not guaranteed that different fingerprints would not be assigned to the same bit.
This, in turn, means that the interpretability of such fingerprints can be lost.
Nevertheless, these descriptors still contain important information for ADMET
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modeling and may, many times, be quite useful for deriving statistical models with
significant predictability [7–11, 20–22].
The general problemwith using fingerprints resides in their binary nature, that is,

either present or absent in a particular (sub)structure. Unlike a continuous variable
where inter- or extrapolations are possible for new structures to be predicted by an
existing statistical model, a new structure to be predicted by a model based on the
binary fingerprints may contain a large number of unrecognized fragments. This, in
turn, may, at worst, mean that the new compound is poorly predicted by the latter
fingerprint-based models.

14.2.1.3 Topological Descriptors
Again, there are a large number of topological descriptors available (Table 14.1) that
can be calculated from the 2D structure (graph) of a compound.
Some of the most widely used topological descriptors are the so-called Kier–Hall

indices [23] that describe connectivity (mChi, m¼ 1–3, where m represents the
summation over atoms, bond paths, or bond fragments) and shapes (mKappa,
m¼ 1–3, where m represents the topological paths of length m). These indices are
based on two parameters d and dv, respectively, where the former parameter is the
difference between the number of sigma electrons and the count of hydrogen atoms,
while the latter is the difference between the number of valence electrons and the
count of hydrogen atoms for the particular atom in question. Other indices that have
been frequently used in ADMET modeling are the Wiener, Balaban, and Zagreb
indices [24]. The Wiener index, for instance, is related to the half-sum of the bond
path lengths between each atom in amolecule (the sumof all off-diagonal elements of
the path distance matrix in a molecule).
Another set of topological descriptors that have been found to be important in

ADMETmodeling is the BCUT (Burden, Cas, University of Texas) descriptors [25],
which are eigenvalue-based parameters. They are computed as the highest and lowest
eigenvalues from the hydrogen-depleted 2D connectivity matrix of the structure,
where the diagonal elements of the original BCUT parameters have information
regarding atomic charge, polarizability, and hydrogen-bonding ability, respectively.
A large number of different BCUT-type descriptors have been developed over the
years and, for instance, the Dragon software [1] computes over a hundred of these
kinds of indices. The disadvantage with these descriptors is that they, in many cases,
are difficult to interpret in terms of how should the current structures bemodified to
obtain a compound with better properties for the investigated target, for example,
absorption or solubility. However, the topological descriptors are quite useful for
computational screening of large virtual libraries (brute force approach) when a good
statistical model has been developed.
Another set of topological descriptors is the electrotopological state indices

(E-state indices) developed by Kier and Hall [26, 27]. These descriptors are based
on the topological state of a particular atom with corrections for electronic
interactions due to other atoms in the structure. This methodology originally
devised for nonhydrogen atoms only has been extended to also include E-state
indices for hydrogen atoms [28] and to also include atom-type E-state indices, for
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Table 14.1 Selected topological descriptors.

Topological descriptor
Information index on molecular size
Total information index of atomic composition
Mean information index on atomic composition
First Zagreb index M1

First Zagreb index by valence vertex degrees
Second Zagreb index M2

Second Zagreb index by valence vertex degrees
Quadratic index
Narumi simple topological index (log)
Narumi harmonic topological index
Narumi geometric topological index
Total structure connectivity index
Pogliani index
Ramification index
Polarity number
Logarithm of product row sums (PRSs)
Average vertex distance degree
Mean square distance index (Balaban)
Schultz molecular topological index (MTI)
Schultz MTI by valence vertex degrees
Gutman molecular topological index
Gutman MTI by valence vertex degrees
Xu index
Superpendentic index
Wiener W index
Mean Wiener index
Reciprocal distance Wiener-type index
Harary H index
Quasi-Wiener index (Kirchhoff number)
First Mohar index TI1
Second Mohar index TI2
Hyperdistance-path index
Reciprocal hyperdistance-path index
Detour index
Hyperdetour index
Reciprocal hyperdetour index
Distance/detour index
All-path Wiener index
Wiener-type index from Z-weighted distance matrix (Barysz matrix)
Wiener-type index from mass-weighted distance matrix
Wiener-type index from van der Waals-weighted distance matrix
Wiener-type index from electronegativity-weighted distance matrix
Wiener-type index from polarizability-weighted distance matrix
Balaban J index
Balaban-type index from Z-weighted distance matrix (Barysz matrix)
Balaban-type index from mass-weighted distance matrix
Balaban-type index from van der Waals-weighted distance matrix
Balaban-type index from electronegativity-weighted distance matrix
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example, for methyl groups, hydroxy and keto oxygens, respectively, and the
corresponding atom-type E-state sums for various groups, as well as for different
hydrogens, for example, hydrogen-bond donors and acceptors. The type E-state
sums related to groups of hydrogen atoms have been found to correlate well with
hydrogen-bonding properties [29].
One significant difference between many other topological descriptors and the

E-state parameters is that the latter indices are much easier to interpret and, thus,
capable of answering the question �Which are the next molecules to make?� in a
relatively straightforward manner. These two aspects (computational speed and
interpretability)make these descriptors quite attractive both for e-screening purposes
and for having an interpretable model with which to focus the virtual library
generation and for further pharmaceutical investigations or work. The sum of
hydrogen-bonding donor- and acceptor-related E-state descriptors is well correlated
with the corresponding HYBOTparameters (see Section 14.2.3.2 for further details)
with r2 values between 0.8 and 0.95 [30].

14.2.2
3D Descriptors

The 3D descriptors described in this section are the weighted holistic invariant
molecular (WHIM) descriptors, the Jurs descriptors, and the GRID-based VolSurf
and Almond descriptors, as well as pharmacophore fingerprints.

14.2.2.1 WHIM Descriptors
The WHIM descriptors are based on statistical indices calculated on the projections
of atoms along principal axes [31–34]. There are different types ofWHIMdescriptors
with the aim to incorporate 3D information regarding size, shape, symmetry, and
atom distributions independent of molecular alignments.
The WHIM algorithm performs a principal component analysis (PCA) on the

mean centered Cartesian coordinates of the molecule from a weighted covariance
matrix of the atomic coordinates. The weights of this matrix are such properties as
atomic mass, van der Waals volume, Sanderson atomic electronegativity, atomic

Table 14.1 (Continued)

Balaban-type index from polarizability-weighted distance matrix
Connectivity index chi-0
Connectivity index chi-1 (Randic connectivity index)
Connectivity index chi-2
Connectivity index chi-3
Connectivity index chi-4
Connectivity index chi-5
Average connectivity index chi-0
Average connectivity index chi-1
Average connectivity index chi-2
Average connectivity index chi-3
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polarizability, and electrotopological state indices (for a list of selected WHIM
descriptors see Table 14.2).

14.2.2.2 Jurs Descriptors
The so-called Jurs descriptors are 3D surface descriptions related to various total and
fractional defined surfaces. They can be divided into to two parts: one electronic [35]
and one hydrophobic [36]. The former set of descriptors is generated from partial
positive and negative surface areas, total charge as well as atomic positively and
negatively charged weighted surface areas, and various differential and fractional
charged partial surface areas of the molecule (see Table 14.3).
The second set of descriptors describes hydrophobic surface properties of a

molecule. As with the first set, the second set contains similar partial hydrophobic
and partial hydrophilic surface area descriptors (PPHS-x and PNHS-x, respectively),
differences in partial surface area descriptors (FPHS-x and FNHS-x), as well as total
surface area weighted descriptors (WPHS-x and WNHS-x). In addition, two de-
scriptors assessing themost hydrophobic atom and themost hydrophilic atomon the
overall lipophilicity are also described (RPH and RNH). The atom-based fractional
logP contributions used for calculations are those of Wildman and Crippen [37] and

Table 14.2 List of examples of WHIM descriptors.

L1u: first component size directional WHIM index/unweighted
L2u: second component size directional WHIM index/unweighted
L3u: third component size directional WHIM index/unweighted
L1m: first component size directional WHIM index/weighted by atomic masses
L2m: second component size directional WHIM index/weighted by atomic masses
L3m: third component size directional WHIM index/weighted by atomic masses
L1v: first component size directional WHIM index/weighted by atomic van der Waals volumes
L2v: second component size directional WHIM index/weighted by atomic van derWaals volumes
L3v: third component size directional WHIM index/weighted by atomic van der Waals volumes
L1e: first component size directional WHIM index/weighted by atomic Sanderson

electronegativities
L2e: second component size directional WHIM index/weighted by atomic Sanderson

electronegativities
L3e: third component size directional WHIM index/weighted by atomic Sanderson

electronegativities
L1p: first component size directional WHIM index/weighted by atomic polarizabilities
L2p: second component size directional WHIM index/weighted by atomic polarizabilities
L3p: third component size directional WHIM index/weighted by atomic polarizabilities
P1p: first component shape directional WHIM index/weighted by atomic polarizabilities
P2p: second component shape directional WHIM index/weighted by atomic polarizabilities
Tu: T total size index/unweighted
Tm: T total size index/weighted by atomic masses
Tv: T total size index/weighted by atomic van der Waals volumes
Te: T total size index/weighted by atomic Sanderson electronegativities
Tp: T total size index/weighted by atomic polarizabilities
Ts: T total size index/weighted by atomic electrotopological states
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computed on the solvent-accessible surface area using the SAVOL program [38]
with a probe radius of 1.5 A

�
.

The Jurs descriptors have been found useful in modeling ADMETproperties such
as human intestinal absorption [25, 39] and toxicity [40].

14.2.2.3 VolSurf and Almond Descriptors
VolSurf and Almond descriptors are based on results from molecular interaction
fields (MIFs) but do not explicitly require the alignment of the structures under
investigation as a first step in the analysis. AlthoughVolSurf and Almond descriptors
use the same source of information, that is, the computed GRID MIFs, they differ
significantly with respect to their underlying approaches. TheVolSurfmethod [41,42]
is created with the aim of predicting pharmacokinetic properties, for example,
blood–brain barrier permeation [43]. VolSurf descriptors summarize the MIF
information related to the size and shape of the molecule under investigation as
well as to the size and shape of the hydrophilic and hydrophobic regions and the
balance between the two regions. Almond descriptors are designed to characterize
pharmacodynamic properties such as protein–ligand interactions. Almond descrip-
tors are primarily aimed at the identification of optimal interaction sites and the
description of the geometrical relationship between such sites by using a default set
of GRID probes: DRY (hydrophobic), O (carbonyl oxygen, hydrogen-bond acceptor),

Table 14.3 List of selected electronic Jurs descriptors.

PPSA-1: partial positive surface area
PNSA-1: partial negative surface area
PPSA-2: total charge weighted PPSA
PNSA-2: total charge weighted PNSA
PPSA-3: atomic charge weighted PPSA
PNSA-3: atomic charge weighted PNSA
DPSA-1: difference in charged partial surface areas [(PPSA-1) – (PNSA-l)]
DPSA-2: difference in charged partial surface areas [(PPSA-2) – (PNSA-2)]
DPSA-3: difference in charged partial surface areas [(PPSA-3) – (PNSA-3)]
FPSA-1: fractional charged partial surface areas
FNSA-1: fractional charged partial surface areas
FPSA-2: fractional charged partial surface areas
FNSA-2: fractional charged partial surface areas
FPSA-3: fractional charged partial surface areas
FNSA-3: fractional charged partial surface areas
WPSA-1: surface-weighted charged partial surface areas
WNSA-1: surface-weighted charged partial surface areas
WPSA-2: surface-weighted charged partial surface areas
WNSA-2: surface-weighted charged partial surface areas
WPSA-3: surface-weighted charged partial surface areas
WNSA-3: surface-weighted charged partial surface areas
RPCG: relative positive charge
RNCG: relative negative charge
RPCS: relative positive charged surface area
RNCS: relative negative charged surface area
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and N1 (amide nitrogen, hydrogen-bond donor). A fixed number of GRID points
from each MIF with respect to the GRID energy level and the internode distance
between the two points are used. An autocorrelogram is generated via the MACC-2
(maximum auto- and cross-correlation) algorithm by storing only the highest
pair-wise product of interaction energies between all pairs. The three default
auto-correlograms are DRY–DRY (hydrophobic); O–O (hydrogen-bond donor);
N1–N1 (hydrogen-bond acceptor). The three default cross-correlograms are DRY–O
(hydrophobic–hydrogen-bond donor); DRY–N1 (hydrophobic–hydrogen-bond ac-
ceptor); O–N1 (hydrogen-bond donor–hydrogen-bond acceptor). These auto- and
cross-correlograms are then used as descriptors. Almond descriptors have, so far, in
the ADMET area primarily been used in P450 modeling [44–46].

14.2.2.4 Pharmacophore Fingerprints
Pharmacophores have been used formany years to derive models for understanding
the common interaction patterns of ligands or their subsets. These pharmacophores
have, subsequently, been used not only to design new structures with better target
properties or devoid of such activities if so being the desired case, for example, hERG
pharmacophores [47], but also to search 3D databases for new interesting entities or
core structures. For a recent review on pharmacophores, see Ref. [48].
Pharmacophore fingerprints have also been used to assess the similarity of

molecules from an interaction property point of view [49–51].
Pharmacophore fingerprints have typically so far been generated as three- or four-

point pharmacophores spanning 0–15 (16) A
�
edges with increments of typically

2–3A
�
. However, there are some issues to the generation of these fingerprints. First,

how important is information of chirality, that is, is a three-point pharmacophore
triangle sufficient or is the need for a four-point pharmacophore important for the set
of studied compounds? This choice has considerable implications with respect to the
number of fingerprints generated and stored for subsequent use for a typical set of
structures. Second, is a conformational analysis required so that many conforma-
tions for a particular compound may map to the pharmacophores or will a single
conformation be sufficient? For the latter case, should that conformation be selected
from the conformational analysis and, if so, which conformations should be used?
Perhaps, the lowest energy conformation should be used or some conformation of
choice, for example, the one more closely related to the proposed bioactive confor-
mation, is the best choice. Perhaps, a single conformation generated with a 3D
generation program, for example, CORINA, is good enough for the problem at hand.
If so, should that conformation be subjected to an energyminimization? Three-point
pharmacophore triangles using conformational analysis (�10 k pharmacophores)
with subsequent support vector machine (SVM)-based classification modeling for
lead hopping purposes have been published by Saeh and coworkers [52]. Pharma-
cophore fingerprints have also been used for modeling the efflux transporter
P-glycoprotein (P-gp) by Penzotti and coworkers [53]. In this work, a huge ensemble
of fingerprints from all two-, three-, and four-point pharmacophores present in the
conformers of the investigated compounds was generated. Even though the authors
imposed a limit of at most two hydrophobic features for each generated
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pharmacophore, the resulting pharmacophore bit length was approximately 12
million bits! Recently, an interesting approach using a combination of pharmaco-
phore fingerprints and GRIDMIFs (see Section 14.2.2.3) called FLAPs (fingerprints
for ligands and proteins) has been developed where the combined knowledge of
protein and ligand profiles is used [54].

14.2.3
Property-Based Descriptors

This section will cover a variety of descriptors related more to experimental physico-
chemical properties such as lipophilicity and hydrogen bonding.

14.2.3.1 log P
The calculated water/octanol partition coefficient (logP) is probably the most
commonly used descriptor in structure–activitymodeling.However, this well-known
andwidely used descriptor is notwithout computational difficulties. There exist quite
a number of software programs for the prediction of logP, for example, CLOGP [55],
KOWWIN [56], SciLogP/ULTRA [57], and ACD/logP [58], that employ different
algorithms including experimental values of parent structures, that is, a substructure
of the compound to be predicted, coupled with perturbation equations, that is,
equations for corrections due to additional fragments in the investigated structure,
and special correction factors due to, for instance, the proximity of other fragments, to
more fragment-based approaches, where each fragment has a certain set of logP
factors, and to rule-based approaches. This, in turn, means that a logP prediction for
a particular compound may vary markedly using different programs. For two recent
investigations of this issue, see Refs [59, 60]. In addition, a fact to be remembered is
that logP is a composite variable constituted by the three underlying properties of
molecular size, polarity/polarizability, and hydrogen bonding. This natural partition-
ing of the three factors, as it occurs in logP,maynot always be optimal for deriving the
best statistical model [61]. Instead, models employing separate descriptors for
molecular size, polarity/polarizability, and hydrogen bondingmay indeed havemore
reliable forecasting abilities.
Although logP is a scalar, there are 3D protocols designed to calculate logP. These

approaches utilize the concept ofmolecular lipophilicity potentials (MLPs). Testa and
coworkers introduced MLPs using distance-dependent functions calculated on the
solvent-accessible surface area molecules [62]. They used fragment-based lipophi-
licity factors fromBroto and coworkers [63] as well as fromGhose andCrippen [64] to
compute the MLPs. Lately, Du and coworkers have introduced the concept of
heuristicmolecular lipophilicity potentials (HMLPs) [65] that describe certain aspects
of molecular solvation. The HMLPs are based on quantum mechanical electrostatic
potentials (ESPs) that are calculated on a formal molecular surface of a compound.
The corresponding molecular lipophilicity potential for a particular point on the
surface is then constructed by comparing the local electron density at that point with
the ESP on the surrounding atoms. Du and coworkers have applied the HMLP
approach to calculate logP values for some alcohols [65].
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14.2.3.2 HYBOT Descriptors
Another set of property-based descriptors that have been quite useful in ADMET
modeling is the HYBOT parameters. Raevsky and coworkers have collected a large
database of thermodynamic data related to hydrogen bonding with which they have
developed the HYBOT program [66]. HYBOT will compute hydrogen-bond donor
(SCd) and acceptor (SCa) factors that describe the donor and acceptor strengths,
respectively, of a compound. By using these two descriptors, many significant
statistical models related to areas such as water solubility, logP estimations, Caco-2
permeability, human intestinal absorption, and human skin permeability have been
developed [67–69]. The HYBOTparameters represent another interesting aspect of
computational descriptors containing relevant information for calculating not only a
qualitativemeasure of a particular property, for example, hydrogen bonding, but also
a more quantitative one [66]. By using HYBOT parameters, it is possible to obtain
information regarding the possible importance of various hydrogen-bonding pat-
terns, for example, whether a few but strong hydrogen-bonding groups are more
important for the investigated property than perhaps many but weaker such entities.

14.2.3.3 Abraham Descriptors
Abraham and coworkers have developed a general solvation equation

SP ¼ cþ eEþ sSþ aAþ bBþ vV ; ð14:1Þ
where the dependent variable, SP, is the target property in question and E is an excess
molar refraction,S represents the dipolarity/polarizability solute–solvent interactions,
A and B are the hydrogen-bond acidity and basicity, respectively, and represent the
strength and number of H bonds formed by donor and acceptor groups, respectively,
in solute–solvent interactions, and V is the McGowan characteristic volume. These
five parameters (E, S, A, B, and V ) constitute the Abraham descriptors. The solute –
descriptors A and B are based on the theoretical cavity model of solute-solvent
interactions and are widely applied in the prediction of a variety of properties, such
as solubility [70], blood–brain partitioning [71], and skin permeability [72]. Again, the
use of the Abraham descriptors allows a more detailed understanding of possible
hydrogen-bonding patterns.

14.2.3.4 Polar Surface Area
A very useful property for predicting absorption is the polar surface area (PSA),
usually defined as those parts of the van der Waals or solvent-accessible surface of a
molecule that are associated with hydrogen-bond-accepting capability (e.g., N or O
atoms) and hydrogen-bond-donating capability (e.g., NH or OHgroups). Three types
of PSAs have been used in ADME studies:

1. dynamic PSA (PSAd) [73];
2. static PSA (PSA) [74]; and
3. two-dimensional (or topological) PSA (TPSA) [75].

The dynamic PSA, PSAd, was developed by Palm et al. [73]. PSAd is calculated by a
Monte Carlo conformational search with subsequent energy minimization.
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This generates a set of low-energy conformerswhere the van derWaals surface-based
PSAs for all conformers are within 2.5 kcal/mol of the �global�minimum, that is, the
lowest energy conformer found, are computed. The Boltzmann-weighted average
of the calculated PSAs are then used as the PSAd. Palm and coworkers found a good
sigmoidal correlation (r2¼ 0.94) between PSAd and percentage human absorbed
(A%) for 20 well-characterized drugs [73].
Amajor drawback of the PSAd is, however, the rather time-consuming calculation,

particularly the Monte Carlo conformational search, which makes PSAd inappropri-
ate for computational screening (e-screening) of large virtual libraries.
This prompted further development of the static PSA, originally proposed by van

de Waterbeemd and Kansy [76], based on only one conformer. Although this
simplification would save considerable computational time, it is not without com-
plications since it raises the question:Which conformation should be used? Probably
a low-energy conformation could be considered as a good estimation of the bioactive
conformation. However, in some cases, some sort of conformational search,
although short, has to be employed, and most of the advantage of using PSA instead
of PSAdwould be lost. Fortunately, a single conformer generated directly from the 2D
molecular structure withoutminimization can be used. This approximation does not
compromise the excellent correlation with absorption previously found [77, 78]. This
approach reduces the computational time to such a level so as tomake PSAuseful for
in silico screening of virtual libraries. However, still a slight drawback of PSA is the
generation of the 3D conformation. The problem is not related to the computational
time but from a conformational point of view. No matter how well 2D and 3D
conversion programs, such as CORINA, perform on an overall basis, the generation
may, in some cases, result in unreasonable 3D structures. Thus, it would be even
more favorable if this step could be circumvented or eliminated in some manner.
Ertl and coworkers [75] have developed such amethod for generating a topological

PSA (TPSA) based on 3D PSA values for 43 fragments resulting from an analysis of
34 810 compounds taken from the WDI database. The correlation between PSA and
TPSA is very high (r2¼ 0.98).
A further simplification, avoiding even the use of 3D fragments, has been

developed by Sherbukhin [79]. This method uses a 2D projection technique whereby
the TPSA (TPSA-2D) is computed. The algorithm employed sums up atomic
contributions of 2D-generated atom-based van der Waals spheres and subtracts
buried surfaces where two atomic spheres intersect to make a bond.
One thing to bear in mind here is that conformational dependencies may bury

parts of the PSA, thus resulting in an overestimation of the computed TPSA.

14.3
Statistical Methods

There are a large number of statistical techniques available to the researcher to relate
the independent variables (descriptors) computed for the objects (structures)
under investigation to the corresponding dependent variable (target value).
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These techniques span the entire field from multiple linear regression (MLR)-type
methods and various forms of neural network architectures to rule-based techniques
of different kinds. These approaches also span from single models to multiple
models, that is, consensus or ensemble modeling. Terms like machine learning and
data or information fusion are also frequently encountered in this area of research, as
well as the concepts of applicability domain and validation.
This section attempts to present some of the most common statistical techniques

used today to derive statistically sound structure–activity or structure–property
models with good predictive ability.
There are a number of important issues and possible trade-offs to be discussed

in this section that, in principle, do not stand against each other but, in reality,
often do, such as the balance between the interpretability versus robustness or
predictability of the derived model, that is, transparent versus opaque models,
white versus black box models, a well as whether to derive local versus more global
models for a particular target in question. For a recent review of statistical
methods, see Ref. [80].
There are many ways of characterizing different statistical machine-learning

methods and protocols, but in this section, they will be organized into linear and
nonlinear methods (even though the descriptor matrix they operate on may contain
higher order terms and cross-terms) as well as rule-based and Bayesian methods.

14.3.1
Linear and Nonlinear Methods

14.3.1.1 Multiple Linear Regression
Multiple linear regression is a classic mathematical multivariate regression analysis
technique [81] that has been applied to quantitative structure–property relationship
(QSPR) modeling. There are a few aspects, with respect to statistical issues, that the
researcher must be aware of when using MLR:

1. A general prerequisite that affects all statistical multivariate data analysis tech-
niques is that each of the variables should be given equal chance to influence the
outcome of the analysis. This can be achieved by scaling the variables in an
appropriative way. One popular method for scaling variables is autoscaling
whereby the variance of each variable is adjusted to 1.

2. MLR assumes each variable to be exact and relevant.

3. Strong co-linear variables must be eliminated by removing all but one of the
strongly correlated variables. Otherwise, spurious chance correlation may result.

4. Some sort of estimation of the statistical �distance� to the overall model should be
reported for each compound to provide an estimate of how much an intra- or
extrapolation in multivariate descriptor space the prediction actually constitutes.

MLRhas been applied extensively to problems related to various aspects predicting
ADMET properties such as solubility, Caco-2 cells permeability, human intestinal
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absorption, and blood–brain permeability, as well as for predictingmetabolism. For a
recent review, see Ref. [82].

14.3.1.2 Partial Least Squares
Partial least square projection to latent structures (PLS) [83] is a multivariate data
analysis tool that has gainedmuch attention during the past 10 years startingwith the
introduction of the 3D-QSARmethodCoMFA [84]. PLS is a projection technique that
uses latent variables (linear combinations of the original variables) to construct
multidimensional projections while focusing on explaining as much as possible the
information in the dependent variable and not among the descriptors used to
describe the objects (compounds) under investigation (the independent variables)
(Figure 14.1).
PLS differs from MLR in a number of ways:

1. The descriptors are not treated as exact and relevant but as consisting of two parts:
one part related to the dependent variable and the other part unrelated (noise).

2. Strong correlations between relevant variables are not a problem in PLS, and all
such variables can be kept in the analysis. In fact, the models derived using PLS
become more stable with the inclusion of strongly correlated and relevant
parameters.

3. The number of original descriptors may vastly exceed the number of compounds
in the analysis (as opposed to MLR) since PLS uses only a few (usually less than
5–10) latent variables for the actual statistical analysis.

4. In PLS analysis, a �distance� to the overall model (distance-to-model), defined as
the variance in the descriptors remaining after the analysis (residual standard
deviation, RSD), is given for each predicted compound. This is an important piece
of information that is presented to the researcher.

There are of course also some difficulties faced when using the PLS technique:

1. The number of latent variables (PLS components) has to be determined by some
sort of validation technique, for example, cross-validation (CV) [85]. The PLS
solution will coincide with the corresponding MLR solution when the number of
latent variables becomes equal to the number of descriptors used in the analysis.

Figure 14.1 PLS of two components (picture reproduced with
permission from the authors [125] and Umetrics, Inc.).
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The validation technique, at the same time, also serves the purpose of avoiding
overfitting of the model.

2. The possibility to use a very large number of descriptors, wheremany of themmay
not be particularly correlatedwith the dependent variable and thus represent large
amounts of noise, must be considered with great care or otherwise the signal-to-
noise ratio becomes too low for PLS to be able to create useful projections (latent
variables).

14.3.1.3 Artificial Neural Networks
Artificial neural networks (ANNs) represent, as opposed to PLS andMLR, a nonlinear
statistical analysis technique [86]. Themost commonly usedNN is of the feed-forward
back-propagation type (Figure 14.2). As is the case of both PLS and MLR, there are a
few aspects of NN to be considered when using this type of analysis technique:

1. The number of middle layers, hidden nodes, in an NN must be identified either
through a particular choice or through an optimization procedure with careful
monitoring of the predictive behavior of the derived model (see point 2).

2. NNs are well-known to overtrain, that is, to be able to explain a large portion of the
variance of the dependent variable for the training set but to fail grossly to be able
to predict a correct answer for the objects that are not part of the model (external
test set). Overtraining of NNs can be avoided by setting aside a fixed number of
compounds to validate the predictive ability of the NN model (validation set) as
part of the NN training and stop when the predictive ability starts to deteriorate.

3. The interpretability of the derived NNmodel may be difficult to understand even
though the influences of the descriptors on the derived model can be simulated.
Guha and coworkers [87] have developed a two-stepmethod for understanding the
weights and biases in neural networks, in which first the neuron transform is
linearized followed by a ranking scheme for the neurons.

NN methods have been used by Wessel and coworkers [39], Agatonovic-Kustrin
et al. [8], and Ghuloum et al. [88] to model intestinal absorption.

14.3.1.4 Bayesian Neural Networks
Bayesian neural networks (BNNs) are an alternative to themore traditional ANNs. The
main advantage with BNNs is that they are less prone to overtraining compared to
ANNs. BNNs are based on Bayesian probabilistics for the network training. Network
weights are determined by Bayesian inference. BNNs have been successfully used
together with automatic relevance determination (ARD) for the selection of relevant
descriptors to model aqueous solubility [89]. For a good review on BNNs, see Ref. [90].

14.3.1.5 Support Vector Machines
The Support vector machine technique is a relatively new method in the field of
structure–property relationships. SVMs originated from the work of Vapnik
et al. [91] and were originally applied to image analysis, text categorization, and
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character recognition [92]. Support vector machines have gained considerable
interest in modeling ADMET properties during the last 5–6 years for, among other
things, their robustness and forecasting abilities with respect to noisy data [93]. For a
compilation of SVM applications in ADMETmodeling, see Refs [94–96]. The basic
idea of SVM technology is to construct a hyperplane that discriminates between the
two classes of objects under investigation (binary SVM). The SVM algorithm
maximizes the construction of a margin between the classes. SVMs use transforma-
tions of the original data for the successful construction of the margin (Figure 14.3).

Figure 14.2 Simple scheme of an artificial neural network with one hidden layer.

Figure 14.3 Basic principle of a support vector machine transformation for a two-class problem.
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These transformations are executed by using so-called kernel functions. The
kernel functions can be both linear and nonlinear in nature. The most commonly
used kernel function is of the latter type and called the radial basis function (RBF).
There are a number of parameters, for example, cost functions and various kernel
settings, within the SVM applications that will affect the statistical quality of the
derived SVMmodels. Optimization of those variables may prove to be productive in
deriving models with improved performance [97]. The original SVM protocol was
designed to separate two classes but has later been extended to also handle multiple
classes and continuous data [80].

14.3.1.6 k-Nearest Neighbor Modeling
k-Nearest neighbor (kNN)modeling is based on the assumption of similarity, that is,
similar compounds have similar target properties. In its simplest form, the method
uses an unweighted distance measure, usually Euclidian distance, in chemical
property space and from the k-nearest objects determines the target property or
which class the object in question can be assigned to. There are, however, some
aspects to highlight when using this approach:

1. Euclidian distances can, from a strict perspective, only be used for determining
the distance between orthogonal variables. This is most often not the case for
chemical descriptors. The problem of orthogonality can be handled in two ways:
either compensate for the nonorthogonal behaviorwithin the distance calculation,
for example, use Mahalanobis distance instead [98] of an Euclidian distance or
orthogonalize the variables, for example, by principal component analysis, prior to
the Euclidian distance calculation.

2. All variables are treated equally importantly. It is unlikely that all the computed
chemical properties for the compounds in the data set are of equal importance for
the target property, for example, solubility, absorption, or metabolism.

3. The k-nearest neighbors are treatedwith equal weight with respect to determining
the target property. This is of particular importance when estimating continuous
properties. This aspect has been investigated by Shen et al. [99] where they used
weighted distances to obtain better predictions for the target property.

14.3.1.7 Linear Discriminant Analysis
Linear discriminant analysis (LDA) is aimed at finding a linear combination of
descriptors that best separate two or more classes of objects [100]. The resulting
transformation (combination)may be used as a classifier to separate the classes. LDA
is closely related to principal component analysis and partial least square discrimi-
nant analysis (PLS-DA) in that all three methods are aimed at identifying linear
combinations of variables that best explain the data under investigation. However,
LDA and PLS-DA, on one hand, explicitly attempt to model the difference between
the classes of data whereas PCA, on the other hand, tries to extract common
information for the problem at hand. The difference between LDA and PLS-DA is
that LDA is a linear regression-likemethodwhereas PLS-DA is a projection technique
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(see Sections 14.3.1.1 and 14.3.1.2 for further details). Thus, for a two-class, two-
descriptor problem (X1 and X2), the LDA description becomes

Y ¼ c1 �X 1 þ c2 �X2: ð14:2Þ
The object of the LDA is to find values of the two constants c1 and c2, respectively, that
separate the two classes expressed through the variable Y as, for instance, 1 and 2,
respectively.

14.3.2
Partitioning Methods

14.3.2.1 Traditional Rule-Based Methods
The basic underlying ideawith partitioningmethods is to split, usually in a recursive,
that is, repetitive, manner, the data set at hand into two or more groups, branches,
thus creating a decision tree. The object is to create more and more homogeneous
groups in the respective branches. There are several methods available for the
construction of decision trees, for example, FIRM [101], CART [102], RDS [103],
and C4.5 [104] (Figure 14.4).
As always, there are certain aspects to consider when developing a decision tree:

1. Overtraining:Aswithmanyothermethods,decisiontreesarepronetoovertrainingif
notmonitored.Theforecastingabilityof the treemustbeestimatedbysome,usually,
internal validationmethod such as a validation set or through cross-validation. This
will determine the depth and degree of branching of the derived tree.

2. Forecasting ability: Most decision tree methods are �greedy,� that is, they split on
the variable giving the best enhancement in group homogeneity according to

Figure 14.4 Simple decision tree with split points and terminal leaves.
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some statistical test, such as the t- or F-test, at each split point. This may, however,
not produce the model with the best predictive performance after model con-
struction. Random selection of variables, that is, a subset, available for each split
has been devised to overcome this situation.

Recursive partitioning has successfully been used to develop models for various
ADMETproperties, see Ref. [80], as well as for the elucidation of toxicological modes
of action [103].

14.3.2.2 Rule-Based Methods Using Genetic Programming
Neural networks and genetic algorithms (GAs) have been used inQSAR applications
for some time [105]. The main idea of genetic programming (GP) closely resembles
that of the GA. Most GP applications use a tree-based representation and normally a
genetic program has a tree-like construction consisting of functional nodes and
terminal leaves (see Figure 14.5).
The algorithm G-REX uses crossover and mutation (see Figure 14.6), and the

extraction strategy is based on genetic programming [106–109].
Crossover is very common, that is, around 85% of each new generation is created

by crossover, whereas mutation is used less than 2% for generating new offsprings.
One key property of G-REX is the option to directly balance accuracy against
comprehensibility by using an appropriate fitness function. G-REX modeling often
results in rather short and transparent models (see Chapter 15, Section 15.3.2.2: an
example using genetic programming-based rule extraction).

Figure 14.5 Principle of crossover in genetic programming
(picture reproduced with permission from the author [109]).
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14.3.3
Consensus and Ensemble Methods

Many times there is a trade-off between the transparency and the accuracy of the
derived model for a particular target. In some cases, the transparency is the most
important aspect as long as the derivedmodel has acceptable predictive ability. These
models are better suited to answer the question, �Which are the next compounds to
investigate?� by understanding the underlying properties of deriving compounds
with improved target properties. Other times the most important aspect of a derived
in silico model is the accuracy and robustness with respect to its forecasting
performance. For the latter cases, consensus, often also called ensemble, models
may offer some attractive properties. Many times these kinds of models offer
improved forecasting performance and robustness compared to an individualmodel
for the target in question. There are several ways to construct consensusmodels with
respect to the input variables, the statistical methods, and how the final prediction
from the battery ofmodels is derived. It should be noted that the two kinds ofmodels,
transparent versus more opaque, are not necessarily in conflict with each other. On
the contrary, they may benefit from each other�s existence in the following manner:
Onemay use themore transparentmodels to focus the attention around certain areas
(subspaces) in property space indicated to result in promising new entities. Once
these areas have been identified, the more complex consensus model, sometimes
requiring considerably longer time for computation, is employed to predict the target
property in question at a higher level of accuracy and precision. However, it may
sometimes be debatable whether or not the increase in performance really outweighs
the added complexity [110].

Figure 14.6 Principle of mutation in genetic programming
(picture reproduced with permission from the author [109]).
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The simplest and most straightforward way to employ consensus modeling is to
use the same set of descriptors and statistical method (single method-descriptor set
methods). Considerable time saving with respect to descriptor generation, that is,
using only one set and not several different sets, can be achieved. In addition, using
the same statistical approach may have a favorable effect on implementation of the
consensus approach with respect to issues such as licenses and data format
compatibility. Single method-descriptor set methods have been implemented in
decision tree programs such as TreeNet [111] and RDS [112]. The approach actually
consists of two selection parts. The training set for the variousmodels of contributing
to the ensemble is often selected using bagging (bootstrap aggregating). Then, at each
split point for decision tree programs, the variables to be included in the model are
also randomly chosen. Thus, a certain variation of the models of the ensemble is
achieved that promotes predictive performance and robustness of thefinal ensemble.
There are also approaches available to monitor and ensure a certain diversity of the
derived ensembles with acceptable statistical quality. One such an approach is
DECORATE (diverse ensemble creation by oppositional relabeling of artificial
training examples) [113].
The obvious extension to single method-descriptor set methods is of course

some combination of single or multiple methods using single or multiple descriptor
sets.
Various forms of these combinations with an accuracy of the ensemble models

better than the corresponding single reference have been reported [90, 114–119].

14.4
Applicability Domain

A very important aspect of statistical modeling is to determine the domain in which
the model is defined with high significant reliability, called the applicability domain.
It is important to do this for several reasons:

1. To make the users of the model aware of the applicability and limitations of the
present model.

2. To avoid the misuse of a model for forecasting of compounds outside the model�s
present statistical limits, which renders themodel (and/or statistical technique as
well as the parameterization) a false �bad reputation.�

3. To be able to use extrapolations from the present model in a constructive manner
to expand the model to cover a larger domain space.

However, many statistical modeling techniques do not, in an easy and straightfor-
wardway, by default, enable the estimation ofwhether a prediction is an interpolation
to themodel, thus rendering the predictionmore credibility or an extrapolation to the
model inwhich case the predictionmust be evaluatedwith greater care. Furthermore,
there are two aspects to the extrapolation problem: one structural and the other
statistical. Considerable research has been devoted to the problem of ADs. For a
recent compilation on this issue, see Ref. [120].
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The structurally focusedmethods for definingADs are related to a large extentwith
the independent variable (descriptor) side. These methods comprise techniques,
such as

1. Range-based methods whereby the AD is defined solely on the ranges that the
investigated descriptors of the training set, that is, the objects used to derive the
model in question, span. If a new object to be predicted is within the range of all
the model descriptors, then the object is within the AD of the model.

2. Distance-based methods whereby some kind of distance measure between the
object to be predicted and the closest neighbor or neighbors of the training set
defines the AD. Typical methods for distance-based measures are Euclidian and
Mahalanobis distances. The difference between the two is that the former distance
can only be used for determining the distance between orthogonal variables,
whereas the latter method compensates for the nonorthogonal behavior (see
further discussion in Section 14.3.1.6). In its simplest form, all descriptors are
treatedwith equal importancewhile somemore advancedmethods use some kind
of weighting scheme to increase accuracy and relevance of the distance measure,
for example, by using the coefficients of the derived statistical model for modu-
lating the influence of the descriptors.

3. Geometric methods where most definitions rest on defining the smallest convex
area that covers the training set compounds in descriptor space. This method is
also known as the convex hull method (Figure 14.7).

The statistically focusedmethods fordefiningADsare related to information content
of the investigated descriptors, for example, the variance of the descriptor matrix and
calculate the amount of anunexplained variance for the training set objects (themodel)
andcompare itwith thecorrespondingamount for thenewobjects tobepredicted. If the
amountofunexplainedvariance for thenewobjects ismuchgreater, typicallymore than
the two standard deviations from the training set compounds (�95% confidence
interval), the former objects are designated to be outside the AD of the model.
A constructive way of using the estimations of AD, and particularly extrapolations

thereof, as mentioned under point 3, would be to include some of the predicted

Figure 14.7 Schematic representation of the convex hull method for a two-parameter description.
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compounds that are identified as outliers in later updates of the model thus
increasing the AD of the new model.

14.5
Training and Test Set Selection and Model Validation

An integral part of deriving a statistically valid and predictive in silico model is the
choice of training and test set, as well as the model validation. Without proper
validation of the derived model, it is difficult to assess its statistical qualities and
forecasting ability.

14.5.1
Training and Test Set Selection

There are several methods for designing the training set and test set, respectively.
Most of them are dissimilarity based, that is, their aim is to select a training set as
diverse as possible for the studied descriptor and target space. Some include the
target variable, for example, biological activity, as part of the selection process so
that a good spread in target space is also achieved. Lately, however, approaches
focusing on local rather than global models have suggested the opposite strategy
for the selection of the training set; that is, selecting a small set of similar
compounds with respect to the new compound to be predicted and for each
prediction, deriving a local statistical model on-the-fly, also known as lazy
model [121–124]. The potential issues with lazar (lazy structure–activity relation-
ships) methods are related to the underlying basic assumption of structure–activity
relationships, namely, that similar molecules have similar activities. It is some-
times difficult to select a good representative set of similar training set compounds
for which there is a sufficient spread in target value, for example, biological
activity, and some investigations report that the local lazy model predicts worse
than the corresponding global model [122].
For the purpose of selecting a diverse training set, one may use experimental

design methods, for example, fractional factorial designs (FFDs) [125–128]. Using
these methods, a training set with a good spread in the investigated properties
(descriptors) can usually be selected. Since the nature of the FFDs is to select
compounds at the edges of the investigated descriptor space and the user has
considerable freedom of choice with respect to which compounds to include in the
proposed FFD, the usermust be aware that too extreme compounds should not form
the majority of the compounds selected for the final training set. It is therefore also
common to combine the FFDs with some compounds close to the center of the FFD.
To avoid some of the above-mentioned problems with classical FFDs, a new type of
designs called oniondesigns (ODs) has recently been developed [129]. The purpose of
ODs is to achieve efficiency as well as controlled coverage of both the outer and the
inner region of the descriptor space. TheOD approach is based on combining several
designs in layers. Thus, the compounds available are divided into subsets, or layers,
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and a separate selection is performed on each subset. The selection technique in each
layer can be of different kind, for example, FFDs or some space-filling design (SFD).
SFDs are aimed at creating a uniform distribution of compounds in descriptor

space by selecting compounds as dissimilar as possible. A particular form of SFDs is
the maximin technique designed by Marengo and Todeschini [130] whereby the
desired number of training set compounds are selected by maximizing the shortest
(minimum) distance in descriptor space between the chosen compounds. Again, if
using Euclidian distance as the distance measure, orthogonality among the descrip-
tors must be ensured. The authors have found that using a principal component
analysis prior to the maximin selection addresses not only the descriptor
orthogonality problem but also reduces the number of variables to be considered
during the selection process. The latter is of interest since the method involves
repetitive distance calculations between the compounds presently chosen and
potential new compounds to be exchanged in order to maximize the shortest
distance among the training set compounds. There are also sphere exclusion
algorithms available for training and test set selection [131].

14.5.2
Model Validation

Some kind of model validation is necessary to determine the statistical quality with
respect to forecasting target values of new compounds. There are typically three
validation tests that should be performed:

. internal validation, for example, cross-validation [85];

. randomization of the target variable; and

. external test set predictions.

The internal validation is often performed through cross-validationwhereby one,
leave-on-one-out cross validation (LOO-CV), or several, leave-multiple-out cross
validation (LMO-CV), compounds are removed from the training set. The remain-
ing compounds of the training set are then used to derive a model with which the
left-out compounds are predicted. Another set of compounds is then removed from
the training set, a new model derived, and the new set of left-out compounds
predicted. This procedure is continued until all compounds have been left out once.
The computed measure of quality is the cross-validation squared correlation
coefficient (q2). While the normal squared correlation coefficient (r 2) can only
assume values between 0 and 1, the cross-validation squared correlation coefficient
can be both positive and negative. In fact, a value of zero for q2 merely indicates that
the model has used the average experimental value for all of the training set
compounds as the predicted value for each test compound.Normally, values greater
than 0.3 are recommended for amodel to be considered as statistically sound, but it
has been shown that values lower than 0.3may be acceptable depending on the size
of the data set [132]. The problem with LOO-CV methods is that they tend to
overestimate the forecasting ability of themodel when presented with new external
compounds to be predicted. Also, LMO-CVmethods have the same tendency, albeit
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to a lower extent. A real danger with cross validation is through the combination
with variable selection. When variable selection is applied and the computed q2 is
used to drive the variable selection, then the validation aspect of cross validation is
lost and q2 becomes an optimization function instead. By using this kind of
approach, it is possible to fit random (white) noise with excellent statistical �quality�
and respectable q2 values (>0.5, unpublished result by the author). For further
information regarding the predictive ability overestimation by the q2 metric, see
Ref. [133]. Variable randomization is another method for ensuring the reliability of
models. In this method, the values of the target are randomly reassigned for
training set compounds and then used to derive a new �model� [134]. After
performing the randomization procedure sufficiently (more than 50–100 times),
there should be clear difference between themodel derived using true target values
and the model derived using randomized target data. The most rigorous validation
of a derived model is, however, through the use of an external test set, that is, data
that have not been used for deriving the models. The use of external test sets is not
without problems either. It is important that the test set also covers the applicability
domain of the model to be evaluated in a good manner. There should be sufficient
difference between training and test set compounds so that near-neighbor com-
pounds are not in both sets. If that is the case, then the predictive ability of the
derivedmodel will most likely be significantly overestimated. The use of an external
test set may, in some cases, be the only way, of the three validation procedures
described here, to realize that the derived model is without any forecasting ability.
For more details regarding model validation, see Ref. [135].

14.6
Future Outlook

The application of SAR andQSAR inmodern discovery research to predict important
properties, for example, solubility, absorption, and toxicity, of both small and large
collections of (virtual) libraries, also known as �frontloading,� forces not only the
development of both more informative and more easily computed, for example,
faster computed, molecular descriptors but also necessitates new statistical techni-
ques to be used. For instance, the need for robust and predictivemethods andmodels
in virtual screening may infer the use of rather opaque consensus or ensemble
methods, whereas transparentmodels are of value to understand themost important
properties for the target in question and perhaps, at the same time, learn something
about the mechanisms and/or processes at hand. Thus, one may envision the
intertwined use of both these approaches, that is, transparent and opaque models,
to enable better understanding as well as final precision and quality of predictions.
The transparent models, with acceptable statistical quality, may then be utilized to
drive virtual library generation to the most promising areas in chemical space,
whereas the more complex and opaque models may then be applied for the final
predictions to obtain the extra precision and robustness offered by these latter
techniques.
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Another important area of research is the �T� in in silico ADMET, that is, in silico
toxicology, on which a lot of effort is already spent both in academia and in industry.
The ADME area has seen substantial efforts during the past 10 years to obtain
important understanding as well as to derive good models for solubility and absorp-
tion. The coming years will most likely see the same kind of attention for in silico
toxicology.However, this new area of research ismore demanding fromamechanistic
point of view than that of solubility and absorption. Several mechanisms may come
into play, even within analogous series of compounds, depending on what chemical
functionalities are present in the molecule. Also, overall physicochemical parameters
describing the entire structure may be less useful for modeling toxicology. Probably,
structural fragments, toxicophores, will prove to be more important and useful
descriptors and as descriptors capturing electronic properties of the investigated
compounds. The use of such descriptors is most probably not a straightforward
exercise either, to a certain extent depending upon the constitution of the structural
fragments employed, since the chemical surrounding of a substructure, fragment, is
important to ascertain whether the compound is likely to be toxic or not. Thus, a
particular fragmentmay be identified as inducing toxicity in one compound but not in
another.Many of the statisticalmethods employed todaywill have problemswith such
descriptors and will be unable to derive good statistical models. A possible way in the
future is therefore to both derive new descriptor sets and use other statistical tools that
take context dependency better into account.
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Abbreviations

ADME Absorption, distribution, metabolism, and excretion
ADMET Absorption, distribution, metabolism, excretion, and toxicity
AlogP Ghose–Crippen–Viswanadhan octanol–water partition

coefficient
BCS Biopharmaceutics Classification System
BCUT Burden, CAS, University of Texas descriptors
CART Classification and regression tree
ClogP Calculated partition coefficient between octanol and water
CMR Calculated molar refractivity
Fa Fraction absorbed
FPSA Fractional polar surface area
GP Genetic programming
G-REX Genetic rule extraction
GSE General solubility equation
HBA Hydrogen-bond acceptors
HBD Hydrogen-bond donors
HIA Human intestinal absorption
LDA Linear discriminant analysis
LOO-CV Leave-one-out cross-validation
MlogP Moriguchi logP
MV Molar volume
MW Molecular weight
nHBA Number of hydrogen-bond acceptors
nHBD Number of hydrogen-bond donors
NN Neural network
NPSA Nonpolar surface area
nRB Number of rotatable bonds
PDR Physician�s desk reference
P-gp P-glycoprotein
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PLS Partial least square projection to latent structures
PSA Polar surface area
QSAR Quantitative structure–activity relationship
RMSE Root mean square error
ROC Receiver-operating characteristic
RP Recursive partitioning
SVM Support vector machine
TOPS-MODE TOPological Substructural Molecular Design
TPSA Topological polar surface area

Symbols

2D Two-dimensional
3D Three-dimensional
A Abraham hydrogen-bond acidity parameter
logD6.5 Logarithm of apparent partition coefficient at pH 6.5
logP Logarithm of partition coefficient between octanol and water
log S Logarithm of intrinsic solubility
N rule-of-5 Number of violations of the four rule-of-5 rules developed by

Lipinski
r2 Coefficient of determination (correlation coefficient)
q2 Cross-validated coefficient of determination

15.1
Introduction

During the past 10 years starting with the publications of Lipinski and coworkers [1]
and Palm and coworkers [2], a considerable amount of research has been performed
to develop predictive computationalmodels for intestinal absorption in humans. The
purpose of these investigations has been to develop computationally fast and accurate
models for in silico electronic screening of large virtual compound libraries.
This chapter will give a theoretical background of the oral absorption and then

discuss the computationalmodels that are based on the publicly available data sets. A
short overview of the software for absorption prediction is also included in the
discussion.

15.2
Descriptors Influencing Absorption

The intestinal wall is optimized to absorb fluids and nutrients while keeping away
different xenobiotics. Which factors, from a theoretical point of view, are the most
influential in intestinal absorption?
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Let us assume passive diffusion as the main driving force for absorption. Passive
diffusion can be calculated by applying Fick�s first law to the flux through the
intestinal wall. At each point i on the intestinal surface, the flux Ji is:

Ji ¼ ciPi; ð15:1Þ
where ci is the concentration of the drug at a point i and Pi is the permeability of the
drug at the same point. Hence, the total mass m of absorbed drug at a time t can be
written as:

mðtÞ ¼
ðt

0

ð ð
A

ciPidAdt; ð15:2Þ

whereA is the total area of the intestinal tract. The fraction absorbed (Fa) is defined by
the total mass absorbed divided by the given dose of the drug:

Fa ¼ m ¥ð Þ
Dose

: ð15:3Þ

This brief simplified analysis shows that the absorption mainly depends on the
concentration at the intestinal wall, the permeability of the drug, and the given
dose [3]. Let us analyze these three factors further.

15.2.1
Solubility

The concentration of the drug at a point i at the intestinal wall depends on the
dissolution rate and the gastrointestinal transit. The dissolution rate of a drug
molecule is affected by the energy difference that arises when the compound
dissolves with similar molecules in the crystal or the molecules of the formulation
and instead forms bondswith the components in the intestinal fluid. If this process is
related to a high-energy penalty, the dissolution rate of the compound will be low,
whereas if the process releases energy, the dissolution rate will be high. The most
common factor for drug molecules is that the dissolution process is related to an
energy penalty of some extent. Some of the factors influencing the dissolution rate
and the maximum solubility obtained in the intestinal fluid are the formulation,
particle size, particle aggregation, pH in different segments of the intestine, food
content, and physicochemical properties of the drug molecule. Considering these
factors one can expect a large variation in the solubility for the same drug with
different formulations in different subjects, for example, humans.
If we look at the physicochemical factors governing solubility, among the first

identified were logP [4] and melting point [5, 6]. The lipophilicity is often calculated
theoretically using, among other techniques, fragment-based approaches. It has
lately become apparent that the logP is not always correctly calculated for new drug-
like compounds, and for new AstraZeneca and Pfizer compounds, the root mean
square error (RMSE) has been reported to be 0.84–1.46 on a log scale [7, 8].Hence, the
calculated (ClogP) value for such compounds becomes 7–29-fold falsely calculated.
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Several approaches have been applied to predict the melting point, but all of them
result in prediction errors of 35–45 �C [9, 10] and can therefore not be regarded as
accurate enough to be included in solubility calculations. Hence, the prediction of
solubility from the general solubility equation (GSE) established by Yalkowsky and
coworkers [6] still requires the experimentally determined melting point. Other
typical molecular descriptors included in solubility predictions are molecular size,
hydrogen bonding, nonspecific van der Waals interactions, aromaticity, flexibility,
and dipole moment [11–17].

15.2.2
Membrane Permeability

The other mechanistically important component for intestinal absorption is the
actual passage over the cell membrane. Before reaching the cell membrane, the drug
molecule needs to diffuse through the unstirred water layer. However, theoretical
considerations suggest that in most cases this diffusion is not the rate-limiting step
for permeability. When at the cell wall, there are a number of different mechanisms
for which a compound can be transported across the cell barrier. Themost important
mechanisms are transcellular passive diffusion, paracellular diffusion, active trans-
port with a transporter, and transcytosis (Figure 15.1). In addition, the drug can be
metabolized in close connection to the luminal cell membrane by CYP3A4.
For a theoreticalmodel, eachmechanismhas to be described in a differentmanner.
If we restrict ourselves to discuss transcellular diffusion, there are numerous

theoretical approaches, which differ depending on the underlying assumptions. In
general, permeability mainly depends on lipophilicity (logP or ClogP), molecular

Figure 15.1 The following routes are available for
permeating the intestinal wall (from the left-hand
side): the transcellular route, mainly used by
nonpolar and medium-sized molecules; the
paracellular route, mainly used by polar and
small molecules often bearing a net charge; and

energy-dependent active transport processes,
which efflux (secret) transporter substrates or
influx (take up) transporter substrates. Each
transport protein has its own substrate
specificity.
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weight (MW), and measures of hydrogen-bonding capacity or polarity [18]. If we use
thefindings fromcomputationalmodels on permeabilitymeasurements of cell lines,
for example, Caco-2 cells, the following factors are among the most important: polar
surface area (PSA), nonpolar surface area (NPSA) and/or lipophilicity, hydrogen-
bond acceptors (HBA), hydrogen-bond donors (HBD), polarity (charge distribution),
MW, size, shape, and degree of ionization [19–22].
Amidon et al. [3] devised a Biopharmaceutics Classification System (BCS), where

they divided drugs into four different classes based on their solubility and perme-
ability: class 1 (high solubility, high permeability), class 2 (low solubility, high
permeability), class 3 (high solubility, low permeability), and class 4 (low solubility,
low permeability); see also Chapter 19. The rate-limiting step to drug absorption and
hence the factors affecting drug absorption will differ depending on which class the
drug belongs to. For class 2, the rate-limiting step is dissolution, and the permeability
plays a minor role. For class 3, however, the permeability is rate limiting and the
dissolution has very little influence on the absorption. Given the above-mentioned
considerations, it is difficult to believe that it would be possible to fit drugs from all
four classes into one singlemodel. However, it is worth to note that severalmolecular
descriptors highly influence both permeability and solubility. For example, it has
been suggested that the fourBCSclasses canbe divided solely by considering theMW
and PSA [23].

15.3
Computational Models of Oral Absorption

15.3.1
Quantitative Predictions of Oral Absorption

To date, a large number ofmodels aiming at quantitative prediction of oral absorption
are available, either published in scientific journals (Table 15.1) or included in
commercial software (Table 15.2). These models are often based on human Fa data,
also known as the human intestinal absorption (HIA), extracted from the literature.
Original sources are generally clinical studies, the physician�s desk reference (PDR)
or product specifications. Occasionally, substitute parameters are used for absorp-
tion, one of the most commonly applied being the permeability in Caco-2 cell
monolayers [24]. The Caco-2 cells originate from colon carcinoma, which when
cultured in vitro easily forman intactmonolayermimicking the intestinal epithelium.
The advantages with using such a system are obvious; for instance, a large number of
compounds can easily be screened for their intestinal permeability at a low cost and
without facing ethical restrictions. However, the disadvantages are also clear – the
permeability obtained in the in vitro cell system reflects only the Fa after oral
administration if the absorption of the compound is limited by permeability. Hence,
for compounds that have poor solubility (BCS class 2 and 4) and/or stability issues
and are subjected to active transport, such an in vitro surrogate marker for Fa is not
applicable.
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15.3.1.1 Responses: Evaluations of Measurement of Fraction Absorbed
To obtain the responses, that is, the experimentally measured value for Fa, several
different techniques have been applied. We will briefly go through the procedure
performed in the establishment of three different data sets, namely, the �Wessel�
data set [25], the �Zhao� data set [26], and the �Votano� data set [27]. These data sets
were selected based on their repeated use in model development and/or their large
size.
The first large data set for Fa prediction was created by Wessel and coworkers [25],

who compiled Fa data for 86 compounds based on results found in 151 studies. Each
reference was carefully reviewed to ensure that the value used was indeed the Fa data
and not the absolute oral bioavailability, since the latter can be lower than the Fa.
Furthermore, the data were controlled to not be dose-dependent or disease-depen-
dent, that is, only results based on healthy volunteers were used. The 86 compounds
were divided into a training set of 76 compounds and a test set of 10. The authors
claimed that they included all poorly absorbed compounds available at the time for
the construction of the data set. Furthermore, they did not include all highly absorbed
compounds available with the intention to not let the highly absorbed compounds
skew the data set and thereby affect the results of the modeling. Even though these
precautions were taken, the final training set (n¼ 76) consisted of 49 compounds
with more than 80% absorbed and 7 compounds below 20%. It has lately become
apparent that someof the compounds included in the �Wessel� data set are substrates
for active transporters and therefore the data set may not be optimal for Fa modeling.
The clinical relevance of such active transport has though been debated in the
literature, and many claim that active transporters in most cases do not affect the
absorption rate in the intestine due to high concentrations of the drug available.
However, for specific molecules, the active transport is the dominating uptake
mechanism and is of pharmaceutical importance to some peptides, b-lactam

Table 15.2 Examples of commercial software available for
computational prediction of human fraction absorbed and related
properties.

Software Company Dissolution Sol Perm Trp
Oral
bioavailability Fa

Other
PK

ADME
boxes/batches

Pharma
Algorithms

� � � � � �

Cerius2 Accelrys � � �
Chem
Silico modules

ChemSilico � � � �

KnowItAll
ADME/Tox

Bio-Rad
Laboratories

� � � � �

QikProp Schr€odinger � � �
QMPRPlus Simulations Plus � � � �

Bullets show properties predicted in each of the reported software. The following abbreviations
are used: solubility (Sol), membrane permeability (Perm), transporters (Trp), human intestinal
absorption (Fa), pharmacokinetic properties (PK).
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antibiotics, and ACE inhibitors [28]. Hence, the generalization that active transport
does not have a significant effect on the uptake from the intestine can lead to
significant false predictions of such molecules.
Zhao and colleagues [26] published a quantitative structure–activity relationship

(QSAR) for Fa based on a data set of 241 compounds. From 244 papers, the following
properties were recorded for the compounds:

. the absorption data;

. the oral or absolute bioavailability;

. the percentage of cumulative urinary excretion of unchanged drug andmetabolites
following oral and intravenous administration;

. the percentage of metabolites in urine or first-pass effect following oral and
intravenous administration;

. the percentage of unchanged drug in urine following oral and intravenous
administration;

. the percentage excretion of drug in bile following oral and intravenous
administration;

. the percentage of cumulative excretion of drug in feces following oral and
intravenous administration;

. total recovery of drug in urine and feces following oral and intravenous
administration.

The information was thereafter used to sort the response into classes that depend
on the quality of the data. This resulted in 169 compounds in the group sorted as
having good orOK quality of the response data, whichwere divided into a training set
of 38 compounds and a test set of 131 compounds. Out of these, 23 compounds of the
training set had an Fa larger than 80%, and only 6 compounds had an Fa of less than
20%. The number of compounds for the test set was 96 displaying more than 80%
absorbed, but only 2 compounds with fraction absorbed data less than 20%. This,
together with the histogram of Fa for the data set, clearly shows that the �Zhao� data
set is heavily skewed toward compounds with high fraction absorbed. The clear
reason for this is that most marketed drugs already have been optimized for
absorption, and hence troublemakers have failed during the development process.
From a computational model development viewpoint, this results in the tools
developed to be good at identifying a compound with good absorption, whereas it
will be difficult to identify poorly absorbed compounds since this chemical space has
not been well represented in themodel development. The skewness of data sets used
for prediction of oral absorption has also been identified and treated recently [29].
The largest data set we have found published for quantitative prediction of Fa is the

data set treated by Votano and coworkers [27], who used a training set of 417
compounds and a test set of 195 compounds for model development and validation,
respectively. The data came from several different sources [26, 30, 31], the PDR [32],
and therapeutic drugs [33], and the compounds included were scrutinized to remove
substances reported to be actively transported across the intestinalmembrane. A true
objective validation of this data set, however, cannot be performed, since the authors
do not reveal the compounds included in the study. However, the authors state that a
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large fraction of the compounds showed a high Fa. Only 25% of the compounds
displayed an Fa value less than 60%, whereas 54% had an Fa value more than 80%.
The authors divided the complete data set into three groups: two groups were formed
through the use of a molecular weight cut-off rule, to handle paracellular (�251Da)
and transcellular (�252Da) transport separately. Again, the compounds included in
each cluster are not publicly available, making this effort of mechanistic modeling
difficult to evaluate. Finally, a subset of 23 compounds carrying a formal positive
charge was excluded from the two groups and modeled separately. The results from
the three different models were thereafter combined, resulting in an RMSE of the
training set of 11.5% and an RMSEtest set of 15.9%. Of these compounds, 10 were not
well predicted by themodel, and thesewere probenecid, gilbornuride, indomethacin,
meropenem, cymarin, piretanide, lodoxamide, etretinate, exemestane, and carbe-
noxolone. The authors could not find any chemical reason for the bad predictions
(27–49% falsely predicted), but they speculate that the solubility may be a limiting
factor for the absorption in vivo. The obtained �transcellular� model was based on
lipophilicity, PSA, and other hydrogen-bond descriptors. Unfortunately, the authors
do not reveal which descriptors were most important for the prediction of the
�paracellular� data set and the 23 charged compounds, and therefore conclusions
regarding absorptionmechanisms based onmolecular descriptors cannot be drawn.

15.3.1.2 Model Development: Data sets, Descriptors, Technologies, and Applicability
Quantitative predictions of oral absorption aim at returning an accurate percentage
absorbed from the prediction. Going through themodels published for prediction of
Fa reveals that the size of the data sets used differs tremendously, from 32
compounds [34] to more than 600 [27] (Table 15.1). Depending on the size of the
data set, and hence the volume and the density of the chemical space investigated, the
obtained model will be more or less generally applicable. Small data sets as well as
data sets including a large series of homologous structures are often generally less
applicable than models based on larger and structurally diverse data sets.
Most commonly applied descriptors for the development of Fa models have

different 2D and 3D properties. These are physicochemical, topological, electro-
statical, or geometrical. Several different software programs for the calculation of
these descriptors are available, which are rapid and allow several hundreds of
descriptors to be calculated. Typical descriptors are discussed in detail in Section 14.2.
In Table 15.1, quantitative predictions of Fa published during the past 10 years are

compiled. As can be seen, the problem of predicting Fa has been investigated using
quite different statistical techniques, and a variety of linear and nonlinear method-
ologies have been applied. In general, the models predict the training sets within
10–15% range of the experimental value, even though the true accuracy is difficult to
evaluate. To do so, the obtainedmodelsmust be challengedwith test sets composed of
compounds that have not been included in the model development. This is not
performed in all studies, sometimes due to the limitation of compounds available or
selected for the study. However, when test sets have been used, the range of accuracy
for the test set is within 9–23%. This indicates that there is a large uncertainty in the
value of absorption obtained from the prediction, as a result ofwhich a compound can
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easily be falsely predicted by asmuch as 20% in absorption. Thus, there is a tendency
to perform qualitative predictions, in which the percentage absorption is binned into
classes such as low, intermediate, and high Fa. These investigations will be discussed
in Section 15.3.2. However, we also note that quantitative models are sometimes
recommended to be used more as a sorting tool than for the actual value resulting
from the prediction. This is exemplified in the study performed by Niwa [35], who
treated the �Wessel� data set with a general regression neural network (NN) and a
probabilistic NN based on calculated molar refractivity (CMR), ClogP, and 2D
topological descriptors. As a result of the general regression NN, the test set was
predicted with an RMSE of 22.8%, indicating that the model is not really quantita-
tively reliable. When the same data set was used for classification purposes, the
results improved, and 80% of the test set was correctly predicted (see further
description of this study in Section 15.3.2). In this study, the effects of skewed data
sets also became clear. A large majority of the responses had Fa values of more than
80%, as a result of which all the well-absorbed compounds were correctly sorted by
the model whereas the poorly absorbed were partly misclassified.

15.3.2
Qualitative Predictions of Oral Absorption

15.3.2.1 Model Development: Data sets, Descriptors, Technologies, and Applicability
Owing to large uncertainties inmeasured Fa values as well as the uneven distribution
of the poorly andwell-absorbed compounds, it is rather common to derive qualitative
in silicomodels forFa instead of quantitativemodels (Table 15.3). For this purpose, the
Fa (0–100%) is split (binned) into two or more classes. As always, there is a potential
danger with binning continuous data since poor binningmay disrupt the underlying
data structure of a continuous variable.
Zmuidinavicius et al. [30] have used a compilation of compounds both from the

�Zhao� and �Wessel� data sets and from some additional sources such as therapeutic
drugs [33, 36, 37]. The data set covered over 1000 compounds. After questionable data
and compounds influenced by active transport were removed, the data set consisted
of 977 compounds. Unfortunately, the authors do not disclose more than a sample
data set of some 200 compounds in their publication. The structures were described
by properties such as Abraham descriptors (see Section 14.2.3.3), hydrogen-bonding
parameters, logP, PSA, and the number of rotatable bonds (nRB). Structural
descriptors of fragment-type were also used to characterize the investigated com-
pounds. The authors divided the Fa absorption into two classes with �good� absorp-
tion defined as Fa > 15% and �poor� absorption defined as Fa < 10%, respectively. A
recursive partitioning (RP) approach was employed by the authors to derive a small
set of rules, less than 10,which correctly explained�94.2%of the data. The data set is,
however, rather skewed with�90% of the compounds belonging to the �good� class
of compounds. Important parameters for determining the correct class were logP,
PSA, and Abraham alpha (A) hydrogen-bond acidity parameter. From the publica-
tion, it is not possible to determinehow the authors validated theirmodelwith respect
to both internal cross-validation and external validation (see Section 14.5 for details of
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the importance of model validation). This makes the results obtained somewhat
unreliable with respect to the forecasting ability of the derived model.
P�erez and coworkers [38] have used linear discriminant analysis (LDA) to develop a

classification model for Fa. The data set studied is, in part, based on the �Zhao� data
set but with additional compounds from Benet et al. [39] and consists of 209
compounds, which the authors divided into a training set and a test set of 82 and
127 compounds, respectively. TheFa was divided into three classes: highly (Fa > 70%),
moderately (Fa between 30 and 70%), and poorly (Fa< 30%) absorbed compounds.
The authors used a methodology called TOPS-MODE [40], which is based on the
calculation of spectral moments of a bond matrix, whose entries are ones or zeros if
the corresponding bonds are adjacent or nonadjacent. The diagonal elements of the
bond matrix in this study were weighted by PSA, hydrophobicity, molar refraction,
atomic charge, and atomicmass. Thisweighting aspect of the descriptormatrix (bond
matrix)makes computed descriptors of the TOPS-MODEmethod similar to the ones
obtained using the BCUTmethodology (see Ref. [41] for further description of the
BCUTmethod). The authors actually derived twomodels to be used sequentially. The
purpose of the first model was to distinguish the poorly absorbed compounds from
the highly andmoderately absorbed ones while the secondmodel was designed to do
the opposite, that is, distinguish the highly absorbed compounds from the moder-
ately and poorly absorbed ones. P�erez et al. performed extensive validation of their
model apart from the training and test set selection mentioned above. They also
conducted leave-one-out cross-validation (LOO-CV) on their training set and tested
the derived model with an additional external test set of some 100 compounds. The
predictive ability of the derived models with respect to both external and internal
validation is impressive with accuracies of between 80 and 94% for the various
validation sets. The authors found variables related to logP, PSA, the number of
bonds in the molecules, and the size of the molecules to be important for discrimi-
nating the three absorption classes.
Sun [42]hasalso investigated the�Zhao�data setusingatom-typedescriptors, as the

authorderivedtwomodels–a2-classmodelanda3-classmodel.Thethreeclasseswere
defined as class 1 Fa > 80%, class 2 Fa¼ 20–80%, and class 3 Fa < 20%. For the 2-class
model, the division between classes was set at 20%. The atom-type classification
employed in this study was based upon identifying a particular type depending upon
several factors, namely, its element, its aromaticity, its neighboring atoms, and
whether the atom is in a ring or not. This atom classification scheme resulted in
218 different descriptors. Sun used partial least square projection to latent structures
(PLS) [43] (see Section 14.3 for further details) as statistical engine for deriving the
relationship and cross-validation as internal validation technique. For the 3-class
model, the analysis resulted in a five-componentmodel with a coefficient of determi-
nation (r2) of 0.92 and a cross-validated coefficient of determination (q2) of 0.79. The
corresponding values for the 2-class case were 0.94 and 0.86, respectively. Unfortu-
nately, Sun neither reports the accuracy of the predictions nor does the investigation
use external validation for determining the forecasting ability of the derived model.
Bai et al. [44] investigated approximately 1260 drugs from the OraSpotter

human pharmacokinetic database [45] using CART rule-based modeling. They
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divided the Fa into six classes (0–0.19, 0.2–0.31, 0.32–0.43, 0.44–0.59, 0.6–0.75,
and 0.76–1) and used 28 different molecular descriptors that included variables
such as logP, number of HBDs and HBAs, MW, and PSA, as well as counts of
some functional groups. The data set was randomly split into a training set and a
test set consisting of 899 and 362 compounds, respectively. The accuracy was
65% for the prediction of the correct class and 80.4% accuracy within one class
error. Furthermore, Bai and coworkers additionally tested three more diverse data
sets that consisted of 67, 90, and 37 compounds and resulted in 85.1, 74.4, and
86.4% accuracy, respectively, within one class error. From the investigations, the
authors concluded that the CART model performed better for high and low
absorption but performed not so well for the intermediate classes between 0.32
and 0.59. As with most data sets, the data set used by Bai and coworkers was also
skewed and had relatively few compounds in the intermediate range between
0.32 and 0.59. This may, in part, explain the somewhat poor predictive ability for
this kind of compounds.
Deconinck et al. [46] have also usedCART tomodel Fa for the �Zhao� data set. They

investigated 141 compounds using bothDragon [47] andHyperchem [48] descriptors
(>1400 descriptors). The authors divided theFa range intofive classes: class 1, 0–25%;
class 2, 26–50%; class 3, 51–70%; class 4, 71–90%; and class 5, more than 90%. For
internal validation, a 10-fold cross-validatory procedure was employed. Deconinck
and coworkers developed three models: the first, second, and third models were
based on all available descriptors, all available 2D descriptors, and all available 3D
descriptors, respectively. They found that the first model based on all descriptors
performed best. Furthermore, the authors also found that the first five splits in the
CART tree were defined by 2D descriptors. Thus, the investigation indicated that the
rough classification of the compounds was performed by 2D descriptors and then
refined, by additional splits in the model further down the tree, by 3D descriptors.
The predictive power of the three models was tested with an external test set
consisting of 27 compounds, that is, �20% of the size of the training set. The three
models predicted the test with accuracies of 88.9, 85.2, and 77.8%, respectively. The
data set used by Deconinck and coworkers is well documented so that other
researchers may investigate the same data set.
Another study on the �Zhao� data set with some additional compounds was

performed by Klon and coworkers [49]. After removing P-glycoprotein (P-gp)
substrates and compounds for which human intestinal absorption was either not
reported or could not be related to passive intestinal absorption, the data set
consisted of 264 structures. The authors randomly assigned 75%of the compounds
to the training set (205 entries) while the remaining compounds constituted the
external test set (59 entries). Unfortunately, Klon et al. do not reveal the names or
structures of the compounds included in the training and test sets, which makes it
difficult for other researchers to verify or reinvestigate the data set in question. The
authors used three different implementations of na€ıve Bayesian classifiers – one
in-house-developed method and two commercially available [50, 51]. The former
method uses a Gaussian approach while the latter two are based on a Laplacian
implementation. The authors treated the Fa investigation as a binary classification
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with three different cut-offs (90, 80, and 70%, respectively) for defining the high
(above the cut-off) and the low (below the cut-off) absorbed compounds. The
measure of performance by the derived models was also estimated in a somewhat
different fashion compared to what is usually the case. Normally, accuracy is used
as the criteria of how well the model performs. In this investigation, a well-known
measure within the field of machine learning was used, namely, the receiver-
operating characteristic (ROC) curve. The ROC curve is a measure of the models�
sensitivity, that is, the ability to identify true positives, and specificity, that is, the
ability to avoid false negatives. The area under the ROCcurve serves as ameasure of
the predictive ability of the derivedmodel. A value of 1.0 represents a perfect model
that is able to discriminate perfectly between true positives and true negatives,
while 0.5 is indicative of a model with random performance, that is, no predictive
ability. The structures in the data set were described by three sets of descriptors:
Dragon descriptors [47], Pipeline Pilot descriptors [51], and the ADME Profiler
descriptors FPSA (a polar surface area descriptor) and AlogP (a calculated logP
descriptor) [52]. Finally, the Dragon descriptors were selected so that only variables
with an absolute correlation with Fa of 0.7 were retained. Also, pairwise highly
correlated variables were removed keeping only one of the descriptors. After
redundant descriptors were removed, only the hydrophilic factor (Hy), TPSA(NO),
and the Moriguchi logP (MlogP) remained. The Pipeline Pilot descriptors were an
extended connectivity fingerprint with a neighborhood size of six bonds (FCFP_6),
AlogP, MW, the number of hydrogen-bond donors (nHBD), the number of
hydrogen-bond acceptors (nHBA), the number of rotatable bonds, and PSAdefined
by nitrogen and oxygen atoms (PSA(NO)). The authors found that the Gaussian
implementation outperformed both the Pipeline Pilot and the binary QSAR
implementations. The area under ROC curve varied from 0.70 using the FPSA
and AlogP98 descriptors at the 90% cut-off for good absorption to 0.91 using the
selected Dragon descriptors at 70% cut-off.
Hou and coworkers [53] have also investigated HIA using a data set of 578

compounds and support vector machine (SVM) technology. The data set studied in
this work is a compilation from the Palm, Wessel, and Zhao data sets. Eleven
different descriptors were used (topological polar surface area (TPSA), the octa-
nol–water partitioning coefficient (logP), the apparent partition coefficient at pH
6.5 (logD6.5), the number of violations of the four rule-of-5 rules developed by
Lipinski (N rule-of-5), the number of hydrogen-bond donors and acceptors, the
intrinsic solubility (log S), the number of rotatable bonds, the molar volume (MV),
the molecular weight, and a binary indicator (Nþ ) representing the existence of a
positively charged N atom). The authors divided the data set into a 480-molecule
training set and a 98-molecule test set. Ten SVM classification models were
developed to investigate the impact of different individual molecular properties
on Fa. The final model consisted of the seven parameters: logD6.5, TPSA, nHBD,
MW, MV, N rule-of-5, and Nþ . The overall correctness of the model is quite
impressive: 97.8 and 94.5% of the good and poor classes, respectively, were
correctly classified for the training set while for the test set, the model achieved
corresponding accuracies of 97.8 and 100%, respectively.
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15.3.2.2 An Example Using Genetic Programming-Based Rule Extraction
The example described here employs genetic programming (GP) (see further
description of the method in Section 14.3.2.2) and the genetic rule extraction
(G-REX) algorithm [54, 55].
We have used the data set published by Hou and coworkers [53]. The data set

consists of 578 compounds. The compoundswere divided into two classes depending
upon the measured Fa value. Compounds with an Fa higher than 30%were assigned
to class �high� while the remaining compounds were designated �low.� The distri-
bution of classes was, as is unfortunately the case for data sets of this kind, rather
skewed with 407 compounds belonging to class �high� while only 73 compounds
belonging to class �low.� The training data were randomly divided into a training
set and a validation set consisting of 380 and 100 compounds, respectively, and
the classes were balanced internally by adding multiple copies of each object. The
data set is available through Ref. [53]. Crossover and mutation for the genetic
algorithm were set to 0.8 and 0.001, respectively. G-REX was applied and a rather
simple model emerged (see Figure 15.2) with good fit and predictive ability. The
actual model consists of four rules using parameters Nþ , N rule-of-5, logD6.5, and
MV (Figure 15.2).
In the external test set, the �high� and the �low� compounds were predicted

with accuracies of 96.8 and 100%, respectively. The corresponding accuracies for
the training set and the validation set are 93.1%, 93.3% and 96.6%, 100%,
respectively. The G-REX technique applied in this study thus performed as good
as the SVM model from the original study in Ref. [53] with respect to the external
predictive ability. A possible advantage of the G-REX-derived model is the
simplicity and transparency of the model that makes it quite attractive for further
use.

Figure 15.2 Genetic programming Fa classification model for the
data set in Ref. [53]. Compounds with Fa higher than 30% were
assigned to class �high� while the remaining compounds were
designated �low.�
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15.3.3
Repeated Use of Data Sets

The available literaturewithin thefield of prediction of oral absorption reveals that the
same literature data sets are repeatedly used. One of themost used data sets to date is
the�Palm�dataset [56],which is includedinalmostall largedatasets, the�Wessel�data
set [25],andthe�Zhao�dataset [26].Allof thesearebasedonmarketeddrugsandhence
are heavily skewed toward data reflecting good absorption. The scientific interest has
beenstronglydirected towardwhichtechniqueorwhichdescriptorspace is thebest for
obtainingmodels with good external predictivity, but it can be questioned howmuch
morewecan learn fromthesedata sets.Canweuse themtoproducepredictivemodels
applicable to the drug discovery process of today?Canwe use the results to predict the
oralabsorptionofnewleadstructures?Onewaytoimprovethepredictionsandtomake
themapplicable also for newdrug structures is to go back to the experimental settings
and produce response data for such compounds. Instead of using Fa data from
traditionally used drugs, which are sometimes of intermediate quality, it may be
more successful to model the major underlying mechanisms for absorption, for
example, solubility and membrane permeation. These investigations can be per-
formedonnewchemicals andproofof concept canbeperformed inanimal studies.To
virtually predict human Fa of new chemical entities based on such in vitro and in vivo
data with high accuracy for both poorly and well-absorbed compounds is one of the
future scientific challenges in this area.

15.4
Software for Absorption Prediction

A large number of software programs are available for prediction of oral absorption
and other pharmacokinetically relevant properties (Table 15.2). Is it possible to
know beforehand which one to use? Evaluations to test the performance of the
software are performed with the help of a standard data set. One such evaluation
compared the performance of GastroPlus and iDEA, two simulation software,
among others, for predicting oral absorption, and found them to perform quite
equally [57]. One reason for this can be the issues discussed in Section 15.3, that is,
the repeated use of data sets. It is likely that the training sets used for the model
development are similar and hence the performance becomes similar. However,
the training set used and the applicability domain for the models incorporated in
the software are generally not stated and thus it becomes difficult to know
beforehand which one to use. Therefore, the best way to decide which software
to choose for future use is to evaluate several software programs for a selected test
set representing the typical compounds that are to be predicted. By doing so, not
only the accuracy of the software but also the user-friendliness of each program is
included in the evaluation and the decision. Often the most predictive models are
established in-house since these models are based on the chemical space of
interest. However, the commercial software can be a good complement to such
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in-housemodels in terms of investigating interactions between different processes
and allow visualization of the complete absorption process.

15.5
Future Outlook

Frontloading of assessing ADMEproperties early in the discovery process has gained
much importance during recent years and is now considered a routine. These efforts
have significantly reduced the ADME-related attrition in the clinical phase.
For the frontloading process in early drug discovery to have an impact, the ADME

propertieshave tobeassessedona largenumberofcompoundsalready in theearly lead
generation phase. This has led to the development of high-capacity in vitro assays to
model different aspects of the in vivo situation; for example, permeability is being
approximated with the Caco-2 assay. The information gained from such assays has
played an important role in the design of molecules with good ADME properties.
To have a higher impact on the decision-making process, the next step has been the

heavy use of prediction models in the design stage before the molecules are
synthesized. Ideally, the prediction models are based on more complex measures,
such as Fa. The largest limitation of this initiative is the availability of such data,
which is not likely to increasemuch in the near future.However, in vitro permeability
and solubility values are being routinelymeasured on thousands of compounds. This
gives the opportunity to generate more elaborate models and also to fine-tune them
using technologies such as correction libraries [58]. Combining solubility and
permeability models (and possibly models for active transport) can give a good
estimate of oral absorption for a large number of compounds.
For the use of these models in the drug discovery phase, one can identify two

scenarios:

1. The lead generation (or hit-to-lead) phase: In this phase, it is desirable to obtain
predictions of a large number of molecules before any experimental measure-
ments are feasible from a practical point of view. The predictions do not need to be
limited to the hits found in a high-throughput screen but can also comprise large
virtual libraries of possible follow-up compounds. This requires very fast models
for which the prediction of each molecule is done in a fraction of a second. A
necessary requirement for future models is therefore speed, which has to be
combined with a quality that is acceptable. Another future requirement is the
generation of good data analysis programs, which can handle and judge the
impact of each prediction andmake intelligent selection of which compoundswill
bemost successful. In this step, it ismost likely that other absorption, distribution,
metabolism, elimination/excretion, and toxicity (ADMET) components will be
included such as predictions of transporter interactions, distribution, enzymatic
degradation, and toxicity.

2. The lead optimization phase: For the lead optimization phase, one can afford
slightlymore elaborate (and also probably slower)models if they have a significant
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increase in predictability. However, calculation times above minutes for each
molecule are still not desirable. Experimental data are more generally available in
this phase of the drug discovery process and the compounds of interest can
normally be assigned to one or several series. Therefore, local prediction models
can be advantageous to use.

An increased use of models predicting oral absorption will not only reduce the
ADME-related attrition in the clinic but also increase the speed of the discovery
process. Even though themodels can give a good estimate of the ADME properties of
molecules, it ismost likely that the in silicomodels of the futurewill be used in concert
with in vitro and in vivomodels to predict the complex ADME profile of compounds
that have advanced to a later phase in the drug discovery process.
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In Silico Prediction of Human Bioavailability
David J. Livingstone and Han van de Waterbeemd

Abbreviations

ADME Absorption, distribution, metabolism, and excretion
AFP Adaptive fuzzy partitioning
ANN Artificial neural network
CoMFA Comparative molecular field analysis
MLR Multiple linear regression
NCE New chemical entity
PBPK Physiologically-based pharmacokinetics
PK Pharmacokinetics
QSAR Quantitative structure–activity relationship
R&D Research and development
SIMCA Soft independent modeling of class analogy

Symbols

A% Percentage absorbed
AUC Area under the curve
C0 Concentration at time zero
Caco-2 Human colon adenocarcinoma cell line (used as absorption model)
CL Clearance
CLu Unbound clearance
Dose Administered dose
F Bioavailability (expressed as fraction)
F% Percentage bioavailable
fa Fraction absorbed
fg Fraction escaping gut wall intestinal metabolism
fu Fraction unbound to plasma proteins
logD Logarithm of the distribution coefficient D (for ionized species)
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logP Logarithm of the partition coefficient P
t1/2 Half-life
Vd Volume of distribution
Vdu Unbound volume of distribution

16.1
Introduction

To make it convenient to the patients and to increase compliance, most drugs are
given orally. Therefore, high bioavailability is a key quest in most drug discovery
projects. Low bioavailability usually results in undesired variability due to popu-
lation differences. In vitro ADMET and safety profiling is now well established in
drug discovery [1]. Often, oral bioavailability is assessed in the rat. However, this
is not always predictive for bioavailability in human. Factors that influence oral
drug bioavailability can be divided into physicochemical/biopharmaceutical and
physiological/biological factors. The first group tends to be essentially species
independent. Indeed, species differences in pH values change percentage ioniza-
tion and hence molecular behavior. Biological factors are often different between
species [2]. Early estimates of oral bioavailability can help to focus on most
promising lead series and clinical candidates. To address bioavailability issues in a
drug discovery project, a road map of experimentation and prediction has been
proposed [3].
This chapter reviews some of the in silico attempts to predict oral bioavailability.

However, bioavailability is a complex property, and various pros and cons of current
quantitative structure–activity relationship (QSAR) based approaches will be dis-
cussed here. As an alternative, physiologically-based pharmacokinetic (PBPK)
modeling is discussed as a promising approach to predict and simulate pharmaco-
kinetics (PK), including estimating bioavailability.
In silico models of biological activity have been constructed in the discovery

research departments of the pharmaceutical companies since the 1970s. Early
adopters of the technologies built QSAR models of pharmacological response and
even wrote molecular modeling software before integrated packages became
commercially available. Expectations of the results that might be delivered by these
approaches were high, partly as a result of the enthusiasm of the computational
chemists and partly because of the acceptance of the ideas by medicinal chemists.
The failure of these early attempts to deliver dramatic changes in the rate of
discovery of new chemical entities (NCEs) led to disappointment and a decrease in
popularity of these approaches over the next few years. Expectations have now
reached a mature level, and computer-aided molecular design is an accepted part of
the discovery process with the advantages and limitations of in silico modeling well
understood [4].
The next major technological advance in drug discovery was the development of

combinatorial chemistry [5] and high-throughput screening [6], which increased the
number of compounds synthesized and tested by factors of hundreds or even
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thousands. A decade after the widespread adoption of this approach, however, has
seen little or no increase in the number of NCEs submitted to the regulatory
authorities, despite the ever-increasing expenditure on pharmaceutical R&D. There
has been much debate about the reasons for this apparent failure, but a general
consensus of opinion at that time was that the primary cause is poor ADME
(absorption, distribution, metabolism, and excretion) properties. Indeed, widely
quoted reports conclude that as much as 40% of the failures of NCEs can be
attributed to this cause [7–9]. In fact, these figures are now old data and the truer
situation is probably as little as 10–15% [10, 11] but, nevertheless, there is still a
considerable effort focussed on the optimization of ADME properties, and high-
throughput methods are now being applied to generate ADME and toxicity infor-
mation [12–14].
Various attrition analysis studies appeared in the literature, the one by Pfizer�s

Chris Lipinski being one of the most cited. He investigated a range of easily
computable properties of compounds in the World Drug Index (WDI). Since these
compounds are either marketed drugs or are currently in clinical trial, the properties
common to these compounds define what we call now �drug-like� properties [86]. It
was found that compounds tend to have poor oral absorption if their molecular
weight (MW) is more than 500, calculated partition coefficient (ClogP) is more than
5, the number of hydrogen-bond acceptors (HBAs) is more than 10, and number of
hydrogen-bond donors (HBDs) is more than 5 [15]. This was called the rule-of-5,
since all key numbers are a multiple of 5. Many drugs are ionized at physiological
pH values (pH 5.5–7.4) and to reflect this, a proposal was made to use logD instead
of logP in drug-like filters [16]. Unfortunately, quite often the rule-of-5 is wrongly
linked to bioavailability [17, 18]. Poor bioavailability can occur even for compounds
with excellent oral absorption, if they have high first-pass liver clearance (CL).
In Figure 16.1, the difference between oral absorption and bioavailability is

Figure 16.1 Definition of oral absorption (percentage of dose
reaching the portal vein) and bioavailability (percentage of dose
reaching the systemic circulation [50].
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schematically presented. The key difference is metabolism (or clearance) and, for
some compounds, the interaction with transporters.
Human bioavailability is often estimated by measuring bioavailability in vivo in

several animal species and assuming humans are similar. Unfortunately, the direct
use of measured animal bioavailability data is unlikely to be a good model of the
human situation as shown in Figure 16.2, where data are plotted from Sietse-
ma [19]. At first sight, it might appear that these experimental bioavailability
measurements in animals are completely irrelevant for the prediction of human
bioavailability, but the situation is not as bad as it first appears since what is plotted
here are absolute bioavailability measurements. The lack of correlation between
animal and human data is likely to be due to differences in physiology between the
species, that is, to say differences in absorption, metabolism, plasma protein
binding, and so on [20]. The use of absolute bioavailability data from animals to
model the human data is equivalent to attempting to correlate all of the indepen-
dent processes in the animal and simultaneously relate them to the corresponding
processes in the humans [21]. This lack of direct correlation simply highlights the
fact that bioavailability is a complex property as discussed in the next section. It
should be noted that oral absorption compares often, but not always, much better
between species [20, 51].
It should also be borne in mind that a complex biological property such as

bioavailability is influenced by many factors as discussed in this chapter. The result
is the considerable interindividual variability of about 15% standard deviation in
observed bioavailability. The consequence of this is that any modeling approach
cannot be better than this (Figure 16.3).
Another approach to human bioavailability estimation is based on in vitro data

using Caco-2 as a measure of permeability and human liver microsomes for
metabolism estimates. These data are combined in a graphical method to get a
rough estimate of human oral bioavailability [22]. In principle, but not yet proven,
this method could also be applied by using calculated permeability and metabolic
stability.

Figure 16.2 Plot of the absolute human bioavailability of various
drugs versus their absolute bioavailability in primates, dogs, and
rodents [19].
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16.2
Concepts of Pharmacokinetics and Role of Oral Bioavailability

Most drugs are given orally for reasons of convenience and compliance. Typically, a
drug dissolves in the gastrointestinal tract, is absorbed through the gut wall, and then
passes the liver to get in the blood circulation. The percentage of the dose reaching the
systemic circulation is called bioavailability. From there, the drug will get distributed
to various tissues and organs in the body. The extent of distributionwill depend on the
compound�s structural and physicochemical properties. Some drugs may enter the
brain and central nervous system (CNS) via the blood–brain barrier (BBB). Finally,
the drug will bind to its molecular target, for example, a receptor or ion channel, and
exert its desired action. A short summary of the key pharmacokinetic parameters is
given here [23].
The volume of distribution (Vd) is a theoretical concept that connects the admin-

istered dose with the actual initial concentration (C0) present in the circulation:

Vd ¼ Dose
C0

: ð16:1Þ

Most drugs will bind to various tissues and in particular to proteins such as albumin
in the blood. Since only the free (unbound) drug will bind to themolecular target, the
concept of unbound volume of distribution (Vdu) is used:

Vdu ¼ Vd

f u
; ð16:2Þ

where fu is the fraction unbound to plasma proteins. Clearance of the drug from the
body mainly takes place via the liver (hepatic clearance or metabolism and biliary
excretion) and the kidney (renal excretion). By plotting the plasma concentration

Figure 16.3 Interindividual variability in bioavailability [32].
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against time, the area under the curve (AUC) relates to dose, bioavailability, and
clearance [24]:

AUC ¼ F � Dose
CL

: ð16:3Þ

The required dose can be estimated from the potency (e.g., IC50) of the compound
and the unbound clearance (CLu):

Dose¼ therapeutic concentration � dose interval � oral unbound clearance:

ð16:4Þ
The daily dose size is determined by the free (unbound) concentration of drug
required for efficacy and not by plasma protein or tissue binding. Protein or tissue
binding is important in the actual dosage regimen or frequency per day. The greater
the binding the lower and more sustained the free drug concentrations are [23].
Half-life (t1/2), the time taken for a drug concentration in the plasma to reduce by

50%, is a function of the clearance and volume of distribution and reflects how often a
drug needs to be administered as shown in Figure 16.4:

t1=2 ¼ 0:693Vd

CL
: ð16:5Þ

16.3
In Silico QSAR Models of Oral Bioavailability

16.3.1
Prediction of Human Bioavailability

Quantitative structure–activity relationships have been used since the 1960s tomodel
receptor and enzyme affinity, as well as physicochemical properties. The renewed
interest in QSAR [25] arises from the recognition that an early prediction of ADMET
properties ensures compound quality and avoids early development failure related to

Figure 16.4 The key pharmacokinetic properties and their role in
setting dose size and dose regimen [50].
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ADME and safety/toxicity issues. Predictive models are therefore widely used in
library design and profiling.
One of the earliest in silicomodels of human bioavailability was reported byHirono

and coworkers [26]. This study employed a set of 188 compounds that were classified
as low (<50%), medium (50–89%), or well (>90%) absorbed and used a classification
routine, fuzzy adaptive least squares, to generate discriminant functions. The
molecules were described by their physicochemical properties and substructural
descriptors, which meant that functional groups or substructures that enhanced
bioavailability (e.g., saturated carbon atoms in side chains) or reduced it (e.g.,
aliphatic hydroxyl groups) could be identified. The performance varied between the
three classes with the lowest success for the well-absorbed compounds, perhaps the
most important group of the three.
Yoshida andTopliss published another classification study in 2000 [27]. This used a

larger set of compounds (n¼ 232), classified into four classes, described by 15
substructural descriptors expected to be related to metabolism. The authors used in
their work on bioavailability prediction a descriptor DlogD defined as the difference
between the distribution coefficient at pH 6.5 (taken as pHof the small intestine) and
at pH 7.4 (blood) for an ionizable species to reflect drug transport. The efficiency of
this in silico system on a test set of 40 compounds was around 60%.
A model of bioavailability using a continuous measure was generated through

stepwise regression and recursive partitioning to optimize the regression equa-
tions [28]. This study employed 591 compounds that were characterized by a large set
(�600) of simple chemical substructure descriptors. Model efficiency was quite poor
since the average R2 value from 2000 random splits of the data into 80/20% training
and test sets was 0.58. The model was also judged by comparison with predictions
from the �rule-of-5� [15] (although this rule refers to oral absorption) and was shown
to give a slight improvement over the false negative, 3 versus 5%, and false positive,
46 versus 53%, predictions. Some insights into the difficulty of modeling bioavail-
ability may be gained by the complexity of the regression model, which involved 85
terms. Another linear regression approach using 169 compounds led to a regression
model containing eight terms [29]. This study involved more complex descriptors,
including some calculated by quantummechanics, and gave a slight improvement in
fit compared to the model reported by Andrews and coworkers.
These later two models of bioavailability as a continuous variable are linear since

they used stepwisemultiple linear regression (MLR) as themodeling tool. Anobvious
alternative, which may offer improved performance, is a nonlinear technique and
such a model using an artificial neural network (ANN) was reported by Turner and
colleagues [30]. This study employed 167 compounds characterized by several
descriptor types, 1D, 2D, and 3D, and resulted in a 10-term model. Although the
predictive performancewas judged adequate, it was felt that themodelwas better able
to differentiate qualitatively between poorly and highly bioavailable compounds.
Given the relatively poor performance of quantitative models, it is not surprising

that other attempts to build in silico models of human bioavailability have concen-
trated on classification. Adaptive fuzzy partitioning (AFP) was applied for two sets of
bioavailability data subdivided into four ranges of activity [31]. The bestmodels using
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the Yoshida and Topliss data [27] were able to predict correctly 75% of the validation
set compounds. It was also shown that the predictive power increaseswhen including
more chemical diversity in the training set.
A genetic programming algorithm has been used to build models based on an

automatic generation of substructural descriptors [32]. These models performed as
good as othermodels based on classified data, so given the variety of descriptors tried
and modeling techniques employed, this perhaps indicates that the problem in
modeling human bioavailability lies in the data. This is not to say that there is
anything wrong with the data but that it represents a summation of many different
processes as discussed further in the next section.
Another approach is based on the combination of molecular interaction fields

using the 3D-QSAR technique CoMFA and soft independent modeling of class
analogy (SIMCA) [33]. Predictions were made for F% ranges by using the data sets
from Refs [19, 27], with about 60% correctly classified.
Hou et al. compiled a database of human bioavailability for 768 compounds, which

is publicly available [34]. These authors used a cutoff of 20%as acceptable. This can be
questioned as F% up to about 30–40% can show considerable interindividual
variability. It was concluded that F% of highly metabolized compounds cannot be
well predicted from simple molecular descriptors as these do not encode for
metabolism.
Martin proposed a �bioavailability score� based on several molecular properties

including polar surface area (PSA), rule-of-5, and molecular charged state. With the
descriptors used, this is an example aiming to estimate oral absorption and not
bioavailability [19]; hence, the title of this work is misleading. A score was developed
to assign the probability that a compound has an Fmore than 10% in the rat. We do
not consider this as a meaningful cutoff. Better would be F more than 30% in
man [30].
A cascade method was proposed using recursive partitioning and descriptors

generated with a program called Algorithm Builder were used with a 800-compound
training set [35]. Their predictions are 2-class modelswithFs less than andmore than
30%, respectively. As parameters, they use a combination of solubility, pKa, fractions
ionized, human permeability, P-gp substrate specificity, physicochemical properties,
and various structural descriptors. This is an attempt to model the components of
bioavailability and then to integrate them into an overall prediction (see further in
Section 16.4).
Using a data set of 577 compounds with experimental human bioavailability, a set

of 42 bioavailability-boosting fragments was derived [36], although the general
validity of these can be questionedwithout further proof of concept. These fragments
were combined with other descriptors and with a genetic algorithm (GA), a set of 20
models for F%was obtained, and the final predictionwas based on a consensus score
(r2¼ 0.55, RMSE¼ 21.9%). In addition, an HQSAR (hologram QSAR) model (see
also below) was derived from the same data set (r2¼ 0.35, RMSE¼ 26.4%). The
combined consensus GA andHQSARmodel works best (r2¼ 0.62, RMSE¼ 20.2%).
This is a reasonable result in view of the fact that the standard error of the
experimental data is 14.5%.
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Molecular holograms are an extended form of fingerprints based on the 2D
structures. An HQSAR model was derived for 250 compounds (r2¼ 0.93, q2¼ 0.70)
and tested with 52 compounds (r2¼ 0.85) [37], which is a good result. The authors
correctly point out some limitations of the model. Training is based on drugs, most
compliant to the rule-of-5, and has no real solubility issues. The question therefore
arises whether such model would be predictive for and pick out nondrug-like
compounds.
A recent review gives a comprehensive survey of the state of the art in modeling

human bioavailability [38]. Commercial software for the prediction of bioavailability
using QSAR approaches include ADME Boxes [www.ap-algorithms.com], truPK
[trupk.strandgenomics.com], and KnowItAll [www.knowittallcom].

16.3.2
Prediction of Animal Bioavailability

These models have all attempted to explain human bioavailability, which of course is
our primary interest in drug design. Much data, however, have been measured in
animals, particularly in the rat. Veber and colleagues at GSK have studied a set of
1100 compounds for which oral bioavailability in the rat wasmeasured in-house [39].
The most important properties favorable for high oral bioavailability (in the rat)
appear to be reduced molecular flexibility as measured by the number of rotatable
bonds and low polar surface area. They conclude that these properties are in fact
independent of the molecular weight. This would contradict the MW less than 500
rule as proposed by Lipinski in developing his rule-of-5 [15]. However, it was also
found by others at Pharmacia that these results could not be generalized [40]. These
authors reminded that property calculations can be algorithm dependent and that
conclusions can be drug-class dependent; therefore, generalizations must be used
with caution.

16.4
Prediction of the Components of Bioavailability

Oral bioavailability is a complex property. Many of the contributing factors are known
(see Figure 16.4), but their cooperation is not always fully clear. Modeling of each of
the more fundamental properties contributing to oral bioavailability will give more
mechanistic insight. This might help the medicinal chemist to fine-tune the
properties of a compound, which lead to poor bioavailability, while keeping the
others in the right ballpark [41]. Fortunately, in silicomodels have been developed for
many of these individual processes and, as the pharmaceutical industry continues to
concentrate on these problems, better and more meaningful experimental tests are
being developed leading to larger amounts of more accurate and reliable data.
Reasonably successful models have been developed for several of the components
shown in Figure 16.5. Many chapters in this book detail these approaches to
understand properties contributing to bioavailability.
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Fundamental physicochemical properties (seeChapter 5) such as partition coefficient
(logP) and distribution coefficient (logD) and pKa are well predicted directly from
chemical structure [42, 43]. Aqueous solubility may also be predicted reasonably
well [44–46] (see Chapter 4), though there are warnings on the accuracy of solubility
predictions for in-house pharmaceutical company compounds since these tend to be
quite different chemical structures from those used to develop the commercial
models [47].
Permeability is perhaps the most widely studied of the �biological� components of

Figure 16.5 and as a result has led to a number of in silico models of this compo-
nent [48]. There are various experimental systems designed to give somemeasure of
permeability ranging in complexity from partition into liposomes to permeability
across Caco-2 cells (see Chapter 7). In silico models of Caco-2 cell permeability have
been constructed [49], but the question may be asked: �why model the model of
human absorption?� [50]. It may be better to measure, and make models of, more
fundamental factors that affect permeability.
There is considerable literature available on the prediction of oral absorption [51, 34]

(see Chapter 15). One of the key problems is the lack of sufficient data to build robust
predictive models.
Other components of bioavailability are also studied experimentally and in some

cases in silico models have been developed for them. Examples include plasma
protein binding [52], P-glycoprotein [53] (see Chapter 18) and other transporters [54]
(see Chapter 10), and metabolism by cytochrome P450s [55, 56] (see Chapter 12).
Metabolism forms an important and probably least well-modeled part of the overall

ADME process [57]. While metabolism/clearance may have a significant effect on
oral bioavailability, it is clearly ultimately responsible for the fate of xenobiotics,

Figure 16.5 Bioavailability is a complex property, which can be
unravelled into its more fundamental components [51].
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except those few that are excreted unchanged. To be able to produce reliable in silico
models of the ADME properties of drugs, it will be necessary to understand and
model the complex processes involved in metabolism. There is need to answer such
questions as which enzyme is involved [58], what extent and rate, regioselectivity, or
site of metabolism [59, 60], which metabolites are being formed [54, 55], are some of
these reactive metabolites (which can cause toxic effects)? There are two main
approaches to this problem: expert systems and computer-aided design. The expert
system approach consists of a set of rules based on individual experience of how
compounds are �dissected� by metabolism. The rules may be supplemented by
physicochemical property calculations to apply some simple QSAR predictions.
Examples of programs based on expert systems are MetabolExpert [61] and
METEOR [62, 63]. The computer-aided design methods may be based on the
properties of the ligands (QSAR) [64, 65] or on the structure of the enzyme (molecular
modeling) [66–68].
This brief discussion of the components of bioavailability has shown that many of

them are accessible experimentally and that in silico models may be built for the
majority of them. Some recent reviews discuss the modeling of these components
and other ADME processes [69–72]. It is by no means clear, however, and therefore
remains a challenge as to how the individual components can easily be integrated into
an overall prediction of oral bioavailability.

16.5
Using Physiological Modeling to Predict Oral Bioavailability

The concepts of pharmacokinetics come from classical compartmental modeling as
described in Section 16.2. These compartments are not �real� compartments in any
physical sense but rather virtual compartments that are required to make the
modeling process work. The components of bioavailability and other parts of the
whole ADME process are quite well understood, amenable to experimental mea-
surements, and capable of in silico modeling as discussed in Section 16.3. The
question remains, therefore, whether is it possible to link these pharmacokinetic
concepts to the individual components and processes occurring in the body? The
simple answer to this question is �yes, in principle,� but the way to do this is by no
means obvious. There is one approach, known as physiologically-based pharmaco-
kineticmodeling, which is promising and increasingly used [73, 74]. PBPKmodeling
attempts to produce models that describe a system in physiological terms, in other
words, the actual organs, blood flow, partition processes, and so on [75–77]. The
information required for PBPKmodeling is both chemical and biological as shown in
Table 16.1.
This form of modeling is intellectually appealing since it is based on physiology,

and thus there is a good scientific rationale to the process. Since it is based on
physiology, it is possible to draw mechanistic conclusions and make quantitative
predictions of disposition in various tissues. As a result, it being routinely applied in
chemical risk assessment and can be judged as a standard methodology in this
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field [78]. In drug research, most applications are performed in drug development
where sufficient data are available to feed into themodels. The ultimate bioavailability
of a new drug considerably depends on formulation. The biopharmaceutical assess-
ment is therefore an important part of the preclinical development program.
The Biopharmaceutical Classification System (BCS) is one such tool used (see
Chapter 19). Hurdles and critical parameters for oral bioavailability can be studied
by using computer simulations, for example, GastroPlus [www.simulations-plus.
com] [79] (see Chapter 17).
Unfortunately, the application of PBPK modeling in drug discovery so far has

been very limited, and only a few studies have been reported [80, 81]. This is almost
certainly due to the high data requirements, both chemical and biological, to
produce these models. This sort of data is not normally collected as part of the
regular drug discovery process and thus an investment in resources is required
to produce it. Fortunately, some of the parameters required for PBPK modeling, for
example, solubility, partition coefficients, uptake, and so on, can be estimated from
in silico models, and so it looks set to become a more routine part of drug
research [82].
Another way in which the components of bioavailability can be used, without the

complexity of a formal PBPK model, is to link the components in an empirical but
logical fashion. Two programs that demonstrated this, iDEA and pkEXPRESS, had
modules to estimate oral bioavailability from Caco-2 and microsomal metabolic
stability [83, 84]. Unfortunately, both products are no longer commercially available.
The principle for the bioavailability estimate is as follows [84]. Hepatic intrinsic

clearance (CLint) is measured in hepatocytes by measuring the half-life (t1/2) in the
following equation:

CLint ¼ 0:693
t1=2

� �
� g liver

kg body

� �
� ml incubation

cells incubation

� �
� cells

g liver

� �
: ð16:6Þ

The blood clearance can then be obtained through one of the several approaches, for
example, the well-stirred model and fraction unbound ( fu, obtained from plasma

Table 16.1 Information needs for PBPK models (adapted from Ref. [57]).

Chemical-specific data Biological data

Partition coefficients Anatomical dimensions
Metabolic rate constants Organ blood flows
Elimination rate constants Organ volumes
Molecular weight Cardiac output
Aqueous solubility Ventilation rate
Vapor pressure Body mass
Permeability coefficients Level of physical activity
Diffusion coefficients Age
Protein-binding constants Gender
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protein binding) and the liver bloodflow (Q, which for humans can be taken as 25ml/
min/kg [23]):

CLb ¼ Q � CLint � f u
Q þ CLint � f u

: ð16:7Þ

The hepatic extraction rate (EH) is

EH ¼ CLb
Q

: ð16:8Þ

The bioavailability (F ), correcting for the fraction absorbed ( fa) and fraction escaping
intestinal metabolism ( fg), is

F ¼ f a � f g � ð1� EHÞ: ð16:9Þ

The fraction absorbed ( fa) is obtained from othermeasurements including solubility
and permeability by using, for example, Caco-2 or PAMPAdata [83], each of which in
principle can also be predicted with a QSAR model (but see comment in 16.4).
More recent PBPK software packages such as SIMCYP [www.simcyp.com], PK-

Sim [www.pk-sim.com], GastroPlus [www.simulations-plus.com], and Cloe PK
[www.cyprotex.com] offer similar bioavailability estimation. It is clear that these
approaches require more data input than just molecular structure as in QSAR
models.
Integration of in vitro results and pharmacokinetic modeling is also used to assess

the bioavailability of nutrients [85] using TNO�s gastrointestinal model TIM [www.
tno.nl/pharma].

16.6
Conclusions

The properties that are important for drug metabolism and pharmacokinetics
(DMPK) are much better understood now than they were some 10 years ago [24].
Good progress has beenmade in recent years toward robustmodeling of a number of
pharmacokinetic properties and various aspects of human drug metabolism. More
and good quality data have become available for some of the important end points.
However, and unfortunately, some end points are by nature very complex. These
include clearance and oral bioavailability.
It is possible to build in silicomodels of human bioavailability but while these may

work well for certain classes of drugs, possibly because their bioavailability is
dominated by one process such as uptake, it is unlikely that they will work well for
all drugs. This may be improved by increasing quantities of data, but taking into
consideration more classes of drugs may have just the opposite effect. The cause of
these problems is clear since a small number of fundamental physicochemical
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properties determine many of the components of bioavailability. Changes in these
physicochemical properties may have quite different effects on individual compo-
nents as we change from one drug class to another or, indeed, within a single class.
There is a choice of building in-house predictive models starting from literature

and in-house bioavailability data. A wide range of QSAR tools are commercially or
freely available. Alternatively, commercial packages can be used as discussed in this
chapter.
Bioavailability is influenced by many properties, depending on the rate and the

extent of absorption and systemic clearance. Each of these properties is impacted by
physicochemical properties such as solubility, logP, logD, and pKa. Absorption and
metabolismare often governed by opposing factors.More lipophilic compounds tend
to be more permeable, but solubility may also become a limiting factor. In addition,
more lipophilic compoundswill bemore rapidly and extensivelymetabolized andwill
show increased toxicity liabilities [86].
Although formulation variables such as particle size and excipients have not been

discussed here, they are highly relevant in practice. In addition, food can play an
important role in oral absorption and thus bioavailability. Food may increase blood
flow and thus limit the extent of first-pass effect. Bile secretion increases with food
intake, which may enhance the solubility of lipophilic compounds. Attempts have
been made to predict the effect of food on the extent of drug absorption [87]. Gastric
emptying time is another factor, which depends on the type and the amount of food
intake and physiopathology, among others.
Another approach to increase bioavailability via better absorption is using pro-

drugs (see Chapter 20).
It is therefore good to stress that bioavailability predictions can only be ballpark

predictions in very early discovery stages, and they get better in later developments as
in silico data can be mixed with in vitro and in vivo measurements [1].
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Simulations of Absorption, Metabolism, and Bioavailability
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Abbreviations

ACAT Advanced compartmental absorption and transit model
ADMET Absorption, distribution, metabolism, excretion, and toxicity
Caco-2 Adenocarcinoma cell line derived from human colon
CAT Compartmental absorption and transit model
EPA Environmental Protection Agency
FDA Food and Drug Administration
GI Gastrointestinal
MRTD Maximal recommended therapeutic dose
P-gp P-Glycoprotein
PK Pharmacokinetics
PBPK Physiologically-based pharmacokinetics
RBA Ratio of the estimated estrogen receptor-binding affinities for 17b-

estradiol divided by the affinity estimated for the unknown molecule
TEER Transcellular epithelial electrical resistance

Symbols

Cp Plasma concentration
DlogP Difference between logP in octanol/water and logD at a given pH
HIA% Percent human intestinal absorption across apical membrane of the

enterocyte.
logD Logarithm of the distribution coefficient, usually in octanol/water at a

specified pH
logP Logarithm of the partition coefficient, usually in octanol/water (for

neutral species)
MW Molecular weight
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Papp Apparent permeability
pKa Ionization constant in water
Sw Solubility
SITT Small intestinal transit time (3.3 h¼ 199min)
V Volume
Vss Volume at steady state

17.1
Introduction

Ever since this chapter was first published in 2002, there has been an explosion
of awareness and research in the area of in silico methods for early assessment of
absorption and bioavailability [1–5]. Physiologically-based mechanistic gastroin-
testinal simulation and physiologically-based pharmacokinetic (PBPK) models of
absorption and distribution are now routinely used to identify and rank drug
discovery candidates with regard to their absorption, distribution, metabolism,
excretion, and toxicity (ADMET) properties [6–12]. Biopharmaceutical property
inputs for such simulations can be derived from in silico estimations or in vitro
experiments [13, 14]. The one property that still requires experimental data
for quantitative estimation is metabolism. However, computational approaches
have advanced rapidly in the last few years [15]. Formulation of development
candidates can be enhanced by using this same type of simulation [16]. A new
area for computational approaches to absorption and bioavailability is the appli-
cation of systems biology [17, 18]. Finally, model-based drug development and
clinical trial simulation technology have become a mainstay for regulatory
agencies [19–22].
The observed oral bioavailability and biological activity of a particular therapeutic

agent can be broken down into components that reflect delivery to the intestine,
liberation from formulated product (gastric emptying, intestinal transit, pH, and
food), absorption from the lumen (dissolution, lipophilicity, particle size, and active
transport), intestinal and hepatic first-passmetabolism, distribution into tissues, and
subsequent excretion, and toxicity (ADMET) [23]. This chapter will focus on in silico
approaches that have demonstrated ability to save valuable resources in the drug
discovery and development process. We will review some of the recent advances in
physiologically-based pharmacokinetics and discuss our results in simulating GI
absorption by using the advanced compartmental absorption and transit model
(ACAT).

17.2
Background

For the purposes of GI simulation, it is important to distinguish absorption (transfer
of drug from the lumen of the intestine across the apical membrane into the
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enterocyte) from bioavailability (the fraction of administered dose that is available in
the systemic circulation for interaction with the target tissue). Simulation of
absorption and bioavailability must account for many factors that fall into three
classes [24]. The first class represents physicochemical factors including pKa,
solubility, stability, diffusivity, lipophilicity, and salt forms. The second class com-
prises physiological factors includingGI pH, gastric emptying, small and large bowel
transit times, active transport and efflux, and gutwall and livermetabolism. The third
class comprises formulation factors such as surface area, drug particle size and
crystal form, and dosage forms such as solution, tablet, capsule, suspension, and
modified release.
An early concept governing oral absorption of organic molecules was called the

�pH-partition� hypothesis. Under this hypothesis, only the unionized form of
ionizable molecules was thought to partition into the membranes of epithelial cells
lining the GI tract [25, 26]. The contribution of pH to permeability and dissolution
of solid dosage forms has been proven to be a critical factor, but ionized molecules
have now been shown to be absorbed by a variety of mechanisms [27]. Ho and
colleagues developed one of the most sophisticated early theoretical approaches to
simulating drug absorption based on the diffusional transport of drugs across a
compartmental membrane [28–30]. Their physical model consisted of a well-stirred
bulk aqueous phase, an aqueous diffusion layer, and a heterogeneous lipid barrier
composed of several compartments ending in a perfect sink. Their model
represented the first example of the rigorous application of a physical model to
the quantitative and mechanistic interpretation of in vivo absorption [31]. The
simultaneous chemical equilibria and mass transfer of basic and acidic drugs were
modeled and compared favorably to in situmeasurements of intestinal, gastric, and
rectal absorption in animals. The pH-partition theory was shown to be a limiting
case of the more general model they developed. Because of its complexity, the
diffusional mass transit model has not been widely used. In the 1980s, a simple
and intuitive alternative approach based on a series of mixing tank compartments
was developed [32]. Pharmacokinetic models incorporating discontinuous GI
absorption from at least two absorption sites separated by N nonabsorbing sites
have been used to explain the occurrence of double peaks in plasma concentration
versus time (Cp–time) profiles for ranitidine and cimetidine [33]. A similar
discontinuous oral absorption model based on two absorption compartments and
two transit compartments was developed to explain the bioavailability of nucleoside
analogues [34]. Amidon and Yu developed a compartmental absorption and transit
model (CAT) of the GI tract based on seven equal transit time compartments [24].
Using a five-compartment GI simulation model, Norris et al. were able to estimate
Cp–time profiles for ganciclovir [35, 36]. A physiologically-based segregated flow
model (SFM) was developed to examine the influence of intestinal transport
(absorption and exsorption), metabolism, flow, tissue-partitioning characteristics,
and elimination in other organs on intestinal clearance, intestinal availability, and
systemic bioavailability [37]. Using a completely different approach, a stochastic
simulation of drug molecules moving through a cylinder of fixed radius with
random geometric placement of dendritic-type virtual �villi� was able to accurately
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account for the observed human SI transit time distribution [38, 39]. Ito et al. have
developed a pharmacokinetic model for drug absorption that includes metabolism
by CYP3A4 inside the epithelial cells, P-gp mediated efflux into the lumen,
intracellular diffusion from the luminal side to the basal side, and subsequent
permeation through the basal membrane [40]. As expected, they demonstrated that
the fraction of dose into the portal vein was synergistically elevated by simulta-
neous inhibition of both CYP3A4 and P-gp. The Simcyp Consortium Project has
compiled extensive demographic and physiological data to build virtual human
populations and has demonstrated good prediction of in vivo pharmacokinetic
profiles using in vitro data and a simulation approach similar to the CATmodel [41].
In contrast to the compartmental absorption and transit model, others have
developed a simulation of the GI tract modeled as a continuous tube with spatially
varying properties and continuous plug flow with dispersion of drug
molecules [42, 43].
We demonstrated the utility of GI absorption simulation based on the ACAT in

predicting the impact of physiological and biochemical processes on oral drug
bioavailability [44, 45].
The ACATmodel is loosely based on the work of Amidon and Yu who found that

seven equal transit time compartments are required to represent the observed
cumulative frequency distribution for small intestine transit times [24]. Their
original CAT was able to explain the oral plasma concentration profiles of
atenolol [46].

17.3
Use of Rule-Based Computational Alerts in Early Discovery

17.3.1
Simple Rules for Drug Absorption (Druggability)

In silico ADMET profiling of compound libraries in early discovery has become a
valuable addition to the research toolbox of computational andmedicinal chemists. A
computational alert was developed by Lipinski based on the physicochemical
characteristics of approximately 90% of 2245 drugs with USAN names that have
had clinical exposure found in the World Drug Index [47]. Most of these drugs have
entered at least phase-II clinical trials. The rule-of-5 has had a significant impact on
early drug discovery and has stimulated development of similar computational
alerts [48–52]. Application of a computational alert to compound libraries prior to
synthesis helps limit the requirement of in vitro testing to those compounds that are
most likely to have �drug-like� characteristics.
We have developed a new set of rules, called �ADMET Risk,� that contains cutoffs

for human jejunal permeability, pHof a saturated solutionof the drug inwater, partial
charge onH-bond donors and acceptors, an indicator variable for permanent cations,
and a low-level cutoff for logP. The ADMET Risk rules and two-letter abbreviations
are listed as follows:
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LP Sþ log P <�1:006

Pr SþPef f < 0:314
pH Sþ pH < 3:12
Hd HBDCH > 1:34
Ha HBACH <�6:6

PC QuaAmine >½Nþ �>0;
where Sþ logP represents Simulations Plus artificial neural network model of logP
(octanol/water); SþPeff represents Simulations Plus predicted human jejunal
effective permeability; Sþ pH represents Simulations Plus estimation of the pH of
a saturated solution of the drug in pure water; HBDCH represents partial charge on
hydrogen-bond donors; HBACH represents partial charge on hydrogen-bond ac-
ceptors; and QuaAmine_>[Nþ ] represents an indicator variable for the presence of
quaternary amines, sulfonium cations, or diazonium cations.
All the descriptors and properties necessary to calculate ADMETRisk are generated

by the software programADMETPredictor (formerly calledQMPRPlus) (Simulations
Plus, Inc.). The current set of ADMET Predictor computational models for biophar-
maceutical properties is listed below:

. multiprotic ionization constants (pKa);

. logP (log10 of octanol–water partition coefficient for unionized molecules);

. logD (log10 of octanol–water distribution coefficient for all molecular species);

. effective permeability (human jejunum) (Peff, cm/s� 104);

. average effective permeability (entire small intestine) (Pavg, cm/s� 104);

. MDCK cell monolayer permeability (Papp, nm/s);

. blood–brain barrier permeation (high, low, undecided)

. saturated aqueous solubility in pure water (mg/ml);

. saturated aqueous pH in pure water;

. saturated intrinsic solubility in pure water (mg/ml);

. saturated solubility at user-specified pH (mg/ml);

. salt solubility factor;

. diffusivity (diffusion coefficient, cm2/s);

. molal volume (cm3/mol);

. percentage unbound to blood plasma proteins (%);

. pharmacokinetic volume of distribution (l/kg);

. maximum recommended therapeutic dose (mg/kg/day);

. estrogen receptor toxicity;

. lethal acute toxicity against fathead minnow (mg/l/96 h);

. affinity toward hERG Kþ channel (a measure of cardiac toxicity);

. carcinogenicity in rats and mice;

. Ames mutagenicity in Salmonella;

. metabolism rate constants (Vmax, Km) for five main CYP enzymes in human (1A2,
2C19, 2C9, 2D6, and 3A4);

. inhibition of HIV-1 integrase;

. simulated fraction absorbed in human.
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These models are based on the calculation of 297 molecular descriptors obtained
by parsing the 2D or 3D structures of drug molecules as represented either in
SMILES string format or as ISIS-.RDF, .SDF, or .MOL file format (MDL Information
Systems, Inc., http://www.mdli.com/). Molecular descriptor values are used as
inputs to independent mathematical models to generate estimates for each of the
biopharmaceutical properties listed above. Using these property estimates or experi-
mentally determined properties as inputs to theACATmodel, drugmoleculesmay be
classified according to their ADMETqualities. While no computer program is able to
estimate the exact experimental values for these properties, we have demonstrated
that the estimated values generated by our method are sufficiently accurate to allow
rank ordering of a large number of compounds for �overall ADMETquality.� In fact,
in vitro methods also fail to predict in vivo ADMET properties under certain
conditions. We have found that the in silico methods are comparable to in vitro
methods for predictive capability.
We tested the usefulness of these in silico biopharmaceutical properties in pre-

dicting the rank order of human intestinal absorption (HIA%). The percentage
absorbed for266drugmoleculeswas collected fromvarious literature sources [53, 54].
These drugs are known to be absorbed by a number ofmechanisms includingpassive
transcellular, passive paracellular, and active transport mechanism and some were
actively effluxed. Starting from three-dimensional structures calculated by CORINA
(http://www2.ccc.uni-erlangen.de/software/corina/), we used ADMET Predictor to
generate molecular descriptors, to estimate the biopharmaceutical properties, and to
calculate the ADMET Risk values as described above.
Results fromADMETPredictor using a rule-basedmethodwerefirst ranked by the

value of ADMET Risk and, within an ADMET Risk category (0–5), were ranked by
increasingpermeability (in silicoestimate ofhumaneffectivepermeability).Table17.1
lists the experimental HIA% and compares their rank order with the rank order
predicted for 266 drugs using the rule-based method. We found a significant
Spearman rank correlation coefficient of 0.70 (p < 0.001)when the rule-basedmethod
of predicting the rank order of oral faction absorbed was applied to 209 passively
absorbed compounds. Figure 17.1 shows a plot of the experimental rank order
compared with the ADMET Risk-based rank order method for 209 compounds that
are known to be absorbed through a passive transcellular or paracellular route. It can
be seen that there is a good correlation for the passively absorbed compounds. By
contrast, Figure 17.2 shows a similar plot for the 43 compounds that are known to be
absorbed by an active route or are known to be actively effluxed. For these compounds
the correlation is nonexistent.
In a comparison betweenLipinski�s rules and theADMETRisk,wehave found that

the �rule-of-5� accurately identifies only a fraction of the compounds that have
experimental absorption less than 50%. This high false-positive result allowsmany of
the poor compounds to go undetected. By contrast, the ADMET Risk identifies a
much higher fraction of the unfavorable compounds in addition to many of the well-
absorbed compounds.
ADMET Predictor was used to generate in silico estimates of logP, aqueous

solubility, the pH of a saturated solution in water, partial charges on H-bond donors
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and acceptors, and human jejunal permeability from 3D molecular structures. The
predictive performance of Lipinski�s original rule-of-5 [47] was compared with that of
the ADMETRisk. Apositive was defined asHIA%greater than or equal to 50%, and a
negative was defined as less than or equal to 50%.
Both sets of rules correctly identified over 99% of the true positives. However,

because of the liberal criteria found in Lipinski�s rule-of-5, only 20% true negatives
were predicted correctly whereas 80% were predicted as false positives. The default
ADMETRisk rules predicted 64%of the truenegatives and lowered the false positives
to only 36%. Unlike the original rule-of-5, however, ADMET Risk marked one

Figure 17.1 Correlation of rank order for ADMET Risk and human
intestinal absorption (HIA%). TheADMETRisk score ranged from
0 to 5, with 5 being compounds with the greatest risk of having
poor ADMETproperties.Within a single ADMETRisk number, the
compounds were ranked according to ascending estimated
human jejunal permeability (ADMET Predictor, Simulations Plus,
Inc.). Spearman rank correlation coefficient was 0.7 (p< 0.001).

Figure 17.2 Correlation of rank order for 43 compounds that
are known substrates for influx or efflux transporters. Spearman
rank correlation coefficient was 0.3.
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compound as a false negative – a result of more conservative rules. Rifabutine has
Fa¼ 53%andwas assigned anADMETRisk score of 3, so it was right on the border of
having poor ADMET properties. Thus, application of ultrahigh-throughput in silico
estimation of biopharmaceutical properties to the generation of computational alerts
has the potential to improve compound selection to those drug candidates that are
likely to have less trouble in development.

17.3.2
Complex Rules That Include Toxicity

Computational alerts can be extended from having rules that predict absorption
properties only to customized rules that include distribution and toxicity. Here, we
will consider in silicomodels for four types of toxicity. When the �hits� in the ADME
rules are combined with additional rules for estimated toxicity, we generate a more
general computational �ADMET Risk.�
Maximal recommended therapeutic dose (MRTD as defined by the US FDA) has

been correlatedwith potential toxicity.Matthews et al.have reported in silicomulticase
models for MRTD [55]. According to their analysis, more toxic molecules will have
MRTDvalues less than 2.7mg/kg/day and less toxicmoleculeswill haveMRTDmore
than 4.99mg/kg/day. If one builds an in silicomodel for MRTD, then a new rule can
be added to the computational alert ADME rules described above.
The US Environmental Protection Agency (EPA) has released a number of

toxicological databases on its Distributed Structure-Searchable Toxicity (DSSTox)
database network. These databasesmake a tremendous resource for building in silico
models of toxicity. The first toxicity we will consider from the EPA is for molecules
that bind to the estrogen receptor and have the potential to produce endocrine
disruption. The primary quantitative end point for this toxicity is a ratio of the
estimated estrogen receptor-binding affinities for 17b-estradiol divided by the affinity
estimated for the unknown molecule (RBA). A high value for the ratio (RBA > 1)
would imply that the new molecule has a binding affinity for the estrogen receptor
greater than estradiol. The EPAdatabase contains 232moleculeswithmeasuredRBA
values, and the median ratio is 0.02. Thus, half of the molecules would have ratios
greater than 0.02 (more toxic), and half would have ratios less than 0.02 (less toxic).
When a virtual screen is conducted on a set of new molecules, this RBA estimation
would be a valuable addition to the overall ADMET Risk score.
When considering environmental chemicals, another important measure of

toxicity is based on the EPA acute fathead minnow toxicity database. In this assay,
28–36-day-old fathead minnows are exposed to varying concentrations of a test
molecule in a flow-through apparatus for 96 h [56]. The concentration of the organic
chemical that produced 50% lethality (LD50) was reported in the EPA database. The
median LD50 from 586 molecules was 21.5mg/l. This value could comprise another
cutoff in a computational alert.
Rat carcinogenicity is another important measure of toxicity reported in one of the

DSSTox databases. TD50 is the daily dose that will induce tumors in half of the test
animals that would have remained tumor free at zero dose [57]. The median TD50
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from 265 compounds tested was 1.15mg/kg/day. In screening for ADMET Risk,
thus, one might be able to estimate if the new molecules were more or less
carcinogenic than the most carcinogenic half of the molecules tested by the EPA.
TheDSSToxweb site also provides a database forSalmonellamutagenicity with 506

molecules approximately half of which are designated as positive for mutagenicity
[57]. In addition, Simulations Plus, Inc., has a database with approximately 5000
molecules that covers 10 strains of bacterial mutagenesis.
Finally, we can consider the inhibition of human ether-a-go-go related gene

(hERG) product, which encodes a voltage-gated potassium channel in the cardiac
myocyte. Inhibition of the channel predisposes patients to long QT syndrome, the
characteristic �Torsades de Pointes� arrhythmia, and sudden cardiac death. Several
publications have reported the results of electrophysiological measurement of the
hERG IC50 for a variety of drugs [58, 59]. In building a model for hERG IC50, it is
important to screen the data for a common target, preferably the expression of
hERG on mammalian cells (HEK, CHO, COS, cardiac myocytes, and neuroblasto-
ma cells). For 93 drugs, the median half-maximal inhibition of potassium channel
current tested in patch clamp electrophysiological apparatus on mammalian cells
expressing human ERG gene was 1.58mM. This represents a reasonable cutoff for
hERG toxicity.
Thus, an extension of the ADMET Risk rules to include toxicity would include

. MRTD values less than 2.7mg/kg/day;

. RBA ratios more than 0.02;

. fathead minnow LD50 less than 21.5mg/l;

. Positive prediction for Salmonela mutagenicity;

. hERG IC50 less than 1.58mM.

17.4
Mechanistic Simulation (ACAT Models) in Early Discovery

We have developed a two-step procedure for the in silico screening of compound
libraries based on biopharmaceutical property estimation linked to a mechanistic
simulation of GI absorption. The first step involves biopharmaceutical property
estimation by application of machine learning procedures to empirical data modeled
with a set of molecular descriptors derived from 2D and 3Dmolecular structures. In
silicomethods were used to estimate such biopharmaceutical properties as effective
human jejunal permeability, cell culture permeability, aqueous solubility, and
molecular diffusivity. In the second step, differential equations for the advanced
compartmental absorption and transit model were numerically integrated to deter-
mine the rate, extent, and approximate GI location of drug liberation (for controlled
release), dissolution, and absorption. Figure 17.3 shows the schematic diagramof the
ACAT model in which each one of the arrows represents an ordinary differential
equation (ODE).
The form of the ACATmodel implemented in GastroPlus describes the release,

dissolution, luminal degradation (if any), metabolism, and absorption/exsorption of
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a drug as it transits through successive compartments. The kinetics associated with
these processes is modeled by a system of coupled linear and nonlinear rate
equations. The equations include the consideration of 6 states (unreleased, undis-
solved, dissolved, degraded, metabolized, and absorbed), 18 compartments (9 GI – 1
stomach, 6 small intestine, and 2 colon– and 9 enterocyte), 3 states of excreted
material (unreleased, undissolved, and dissolved), and the amount of drug in up to 3
pharmacokinetic compartments (when pharmacokinetic parameters are available) or
in a whole body physiologically-based pharmacokinetic model. The total amount of
absorbedmaterial is summed over the integrated amounts being absorbed/exsorbed
from each absorption/transit compartment.
For example, the rate of change of dissolved drug concentration in a luminal GI

compartment depends on six different processes: (1) transit of drug into a compart-
ment, (2) transit of drug out of a compartment, (3) release of drug from the
formulation in the compartment, (4) dissolution/precipitation of drug particles,
(5) luminal degradation of the drug, and (6) absorption/exsorption of the drug . The
timescale associated with luminal transit through a compartment is determined by a
transfer rate constant, kt, that is calculated as one divided by the mean transit time
within the compartment. Transit times within each compartment are determined as
the product of the physical volume of fluid in the compartment (milliliter) divided by
the average fluid flow rate (ml/h). The timescale of the dissolution process is set by a

Figure 17.3 Schematic diagram of the advanced compartmental
absorption and transit model as implemented in GastroPlus.
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rate constant, kd, that is computed from a drug�s solubility (as a function of pH), its
effective particle size, particle density, lumen concentration, diffusion coefficient,
and the diffusion layer thickness (Equation 17.1). The timescale associated with the
absorption process is set by a rate coefficient, ka, that depends on the effective
permeability of the drug (Peff, units of cm/s) multiplied by an absorption scale factor
(ASF with units of cm�1) for each compartment (Equation 17.2). The nominal value
of the ASF is the surface-to-volume ratio of the compartment, which reduces to 2/
radius of the SI compartment. ASFs are adjusted from these nominal values to
correct for the changes in permeability due to changing physiology along the
GI tract; for example, absorption surface area, pH, tight junction gap width, and
transport protein (influx or efflux) densities. The rates of absorption and exsorp-
tion depend on the concentration gradients across the apical and basolateral
enterocyte membranes (Equations 17.3 and 17.4). The timescale for luminal
degradation is set by a rate constant kDegrad that is determined by interpolation
from an input table of degradation rate (or half-life) versus pH and the pH in the
compartment.
The system of differential equations is integrated using CVODE numerical

integration package. CVODE is a solver for stiff and nonstiff ordinary differential
equation systems [60]. The fraction of dose absorbed is calculated as the sum of all
drug amounts crossing the apical membrane as a function of time, divided by the
dose, or by the sum of all doses if multiple dosing is used.

kðiÞd ¼ 3g
CSðiÞ�CðiÞL

rr0T
; ð17:1Þ

k0ðiÞa ¼ aðiÞPeff ðiÞ; ð17:2Þ

Absorption
Exsorption ðiÞ

¼ k0ðiÞaV ðiÞðCðiÞL�CðiÞEÞ; ð17:3Þ

Basolateral transferðiÞ ¼ k0ðiÞbV ðiÞðCðiÞE�CpÞ; ð17:4Þ

where k(i)d is dissolution rate constant for the ith compartment; k0ðiÞa is absorption rate
coefficient for the ith compartment; k0ðiÞb is absorption rate coefficient specific for the
basolateral membrane of the ith compartment; CS is aqueous solubility at local pH;
C(i)L is lumen concentration for the ith compartment; C(i)E is intracellular enterocyte
concentration for the ith compartment; Cp is plasma central compartment concen-
tration;V(i) is lumen volume of ith compartment; g ismolecular diffusion coefficient;
r is drug particle density; r0 is effective initial drug particle radius; T is diffusion
layer thickness; a(i) is compartmental absorption scale factor for ith compartment;
and Peff(i) is human effective permeability for ith compartment.
As one part of our software validation, we tested the accuracy of GastroPlus

simulation of fraction absorbed. Starting from two-dimensional structures, ADMET
Predictor was used to generate the molecular descriptors and estimates of logP,
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solubility, permeability, and diffusivity that were used in GI simulations. The extent
of GI absorption for each drug was determined in silico using the ACATmodel after
making the following simplifying assumptions: (default dose (100mg), particle
radius (was adjusted to achieve 100% dissolution in 3.3 h), and human fasted
physiology). The simulation results from GastroPlus were compared with literature
values. The simplest assumption for the regional dependence of the rate of absorp-
tion (Equation 17.2) is that the compartmental absorption scale factor is equal to 2
divided by the radius of the small intestine and that this value of ASF is applied to all
compounds equally.

17.4.1
Automatic Scaling of k0a as a Function of Peff, pH, logD, and GI Surface Area

The size and shape of a drug molecule, its acid and base dissociation constants, and
the pH of the GI tract all influence the absorption rate constant for specific regions
of theGI. Pade and coworkersmeasured theCaco-2 cellular permeability for a diverse
set of acidic and basic drug molecules at two pH values [61]. They concluded that
the permeability coefficient of the acidic drugs was greater at pH 5.4, whereas that of
the basic drugs was greater at pH 7.2 and that the transcellular pathway was the
favored pathway formost drugs, probably due to its larger accessible surface area. The
paracellular permeability of the drugs depended on size and charge. Thepermeability
of the drugs through the tight junctions decreased with increasing molecular size.
Further, the pathway also appeared to be cation selective, with the positively charged
cations of weak bases permeating the aqueous pores of the paracellular pathway at a
faster rate than the negatively charged anions of weak acids. Thus, the extent to which
the paracellular and transcellular routes are utilized in drug transport is influenced
by the fraction of ionized and unionized species (which in turn depends on the pKa of
the drug and the pHof the solution), the intrinsic partition coefficient of the drug, and
molecule size and charge.
Figure 17.4 is a representation of regional permeability coefficients of 19 drugs

with different physicochemical properties determined by Ungell et al. by using
excised segments from three regions of rat intestine: jejunum, ileum, and colon [62].
They observed a significant decrease in the permeability to hydrophilic drugs and a

significant increase in the permeability for hydrophobic drugs aborally to the small
intestine (p < 0.0001). Figure 17.4 illustrates that for hydrophilic drugs (low perme-
ability and low logD), the ratio of colon: jejunal permeability was less than 1, whereas
for hydrophobic drugs (higher permeability and higher logD), the ratio of colon:
jejunal permeability was observed to be greater than 1. At certain pH values, the
permeability of small hydrophilic drugsmayhave a largeparacellular component [63],
and it is well known that the transepithelial electrical resistance (TEER) of colon is
much higher than that of the small intestine. TEER increases as the width of tight
junctions decreases, and the tight junction width has been determined to be
0.75–0.8 nm in jejunum, 0.3–0.35 nm in ileum, and 0.2–0.25 nm in colon [64–
67]. The narrower tight junctions in colon suggest that the paracellular transport will
be much less significant in the colon, which helps to explain the lower ratio of colon:
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jejunal permeability for hydrophilic drugs. To our knowledge, a conclusive explana-
tion for the increased colon permeability of drugs with high small intestine
permeability is not yet available. We have used the ACATmodel with experimental
biopharmaceutical properties for a series of hydrophilic and hydrophobic drug
molecules to calibrate a �logD model� that explains the observed rate and extent
of absorption.
The mechanistic simulation ACATmodel was modified to automatically account

for the change in small intestinal and colon k0a as a function of the local (pH-
dependent) logD of the drug molecule. The rank order of HIA% from GastroPlus
was directly compared with the rank order experimental HIA% with this correction
for the logD of eachmolecule in each of the pH environments of the small intestine.
The mechanistic simulation produced 82% of HIA% predictions within 25% of the
experimental values.

17.4.2
Mechanistic Corrections for Active Transport and Efflux

Table 17.2 lists the 43 molecules used in this study that are known to be substrates
for active transport or active efflux. The mechanistic ACATmodel was modified to
accommodate saturable uptake and efflux by using standard Michaelis–Menten
equations. It was assumed that transporters responsible for active uptake of drug
molecules from the lumen and active efflux from the enterocytes to the lumen
were homogeneously dispersed within each luminal compartment and each
corresponding enterocyte compartment, respectively. Equation 17.5 represents the

Figure 17.4 Relationship between distribution coefficient at
pH¼ 7.4 and the intestinal permeability of jejunum, ileum, and
colon. Data were collected from [62].
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overall mass balance for drug in the enterocyte compartment lining the intestinal
wall:

dMentðiÞ
dt

¼ ADRðiÞ þATRðiÞ�BDRðiÞ�GMRðiÞ; ð17:5Þ

ATR ¼ DFinfluxðiÞ
VmaxðinfluxÞCi

KmðinfluxÞ þCi
�DFeffluxðiÞ

VmaxðeffluxÞCentðiÞ
KmðeffluxÞ þCentðiÞ

; ð17:6Þ

whereMent(i) is themass of drug in the enterocyte compartment i; ADR(i) is the apical
diffusion rate for ith compartment; ATR(i) is the apical transport rate for ith
compartment; BDR(i) is the basolateral diffusion rate for ith compartment; GMR(i)

is the gut metabolism rate for ith compartment; DFinflux(i) is distribution factor for
influx transporter in compartment i; DFefflux(i) is distribution factor for efflux
transporter in compartment i; Vmax(influx or efflux) is the maximal velocity of the
saturable transporter; Km(influx or efflux) is the Michaelis constant for the saturable
transporter;Ci is the concentration of drug inside the lumen of the intestine;Cent(i) is
the concentration of drug inside the enterocyte in compartment i.
Because the amounts and density of these transporters vary along the GI tract, it is

necessary to introduce a correction factor for the varying transport rates in the
different luminal and enterocyte compartments. Owing to the lack of experimental
data for the regional distribution and Michaelis–Menten constants for each drug in
Table 17.2, we fitted an intrinsic (concentration-independent) transport rate for each
drug to closely approximate the experimental HIA%. Figure 17.5 shows a correlation

Figure 17.5 Correlation of experimental and simulated
percentage absorbed. Percentage absorbed is defined as the
percentage of the dose that crosses the apical membrane of the
intestine. Percentage absorbed was simulated using the ACAT
model as described in the text.
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between the simulatedHIA%and the experimentalHIA%for 209 passively absorbed
compounds.

17.4.3
PBPK and In Silico Estimation of Distribution

Prior to 2002, most studies published on physiologically-based pharmacokinetic
models focused on the distribution and elimination of environmental toxins such as
dioxin, styrene, and organic solvents [68–70]. PBPK models for drug molecules
generally relied on tissue/plasma partition coefficients (Kps) measured in rat [71–73].
The earliest models for calculation of tissue/plasma partition coefficients from
structure were typical QSAR models developed from a database of empirical Kp

values [74].However, several years back, one group had already started a revolution in
PBPK modeling with the introduction of a mechanistic model for tissue/plasma
partition coefficients based on the tissue composition of neutral and phospholipids
and volume fraction of water [75]. Years after the introduction of the tissue
composition method, a comparison of methods for calculating Kp values observed
that the mechanistic tissue composition methods worked well to estimate Kp values
for volatile organic molecules [76]. However, the widespread use of these models for
calculating drug distribution achieved greatmomentum from thework of Poulin and
Theil [77–80]. Recent reviews and validation studies have confirmed the utility of
PBPK modeling in early drug discovery [8, 10, 11, 81].
To address the inaccuracy of estimates for volume at steady state (Vss) for strongly

basic drugmolecules, Rodgers andRowland have proposed an extension to the tissue
composition method that takes into account the volume fraction of acidic phospho-
lipids. Presumably, the higher values ofVss observed for these basic molecules is due
to the interaction of the cationic state (at physiological pH) of the base with the
anionic state of the acidic phospholipids [82–85]. Several commercial software
programs are now extensively used in the pharmaceutical industry for PBPK
modeling [86, 41, 87, 11].

17.5
Mechanistic Simulation of Bioavailability (Drug Development)

In addition to the mechanistic simulation of absorptive and secretive saturable
carrier-mediated transport, we have developed a model of saturable metabolism for
the gut and liver that simulates nonlinear responses in drug bioavailability and
pharmacokinetics [44]. Hepatic extraction is modeled using a modified venous
equilibrium model that is applicable under transient and nonlinear conditions. For
drugs undergoing gut metabolism by the same enzymes responsible for liver
metabolism (e.g., CYPs 3A4 and 2D6), gut metabolism kinetic parameters are scaled
from liver metabolism parameters by scaling Vmax by the ratios of the amounts of
metabolizing enzymes in each of the intestinal enterocyte compartments relative to
the liver. Significant work in identifying the distribution of CYP3A4 and CYP2D6
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isozymes in the gut has been done by Paine et al. and Madani et al., respectively
[88, 89], and their data were used in our simulations. We have validated the model
against experimental data for drugs that undergo livermetabolismalone (propranolol
andmetoprolol), gut metabolism, and liver metabolism (midazolam), and efflux, gut
metabolism, and liver metabolism (saquinavir).
We used in vitro kinetic constants obtained from homogenate or whole-cell

experiments under controlled conditions and scaled the constants to the in vivo
scenario by using appropriate physiological scale factors. Figure 17.6 shows our
simulated results for absorption and metabolism of midazolam at three solution
doses [90]. Midazolam is metabolized in the gut and liver by cytochrome 3A4, and
Figure 17.6 shows the accurate simulation of the nonlinear dose dependence due to
saturation of CYP3A4. Saquinavir is alsometabolized in the gut and liver by 3A4, and
it is also a substrate for efflux by P-glycoprotein. Figure 17.7 shows our simulated
results for absorption and metabolism of saquinavir when dosed with and without
grapefruit juice [91]. It can be seen that the simulation correctly predicts the increase
in oral AUC and bioavailability when the drugs are dosed after the patient ingested
grapefruit juice. It is well known that grapefruit juice is able to inhibit CYP3A4
metabolism in the gut by approximately 60% but not in the liver. Our results show
that in vitro kinetic constants can be used to predict drug behavior in vivo, provided
adequate data on enzyme distribution and activity are available, and that the in vitro
method adequately measures the metabolic processes for the compound. The use of
in vitro data from human liver microsomes, as was done for midazolam and
saquinavir above, is adequate when the metabolism of the compound is well
described by only phase-I processes that take place in microsomes. For compounds
with significant phase-II metabolism, such as propranolol, microsomal measure-

Figure 17.6 Experimental and simulated plasma concentration
versus time profiles for three solution doses of midazolam. Data
were collected from the literature [90].
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ments will not reflect the entire metabolism, and clearance will be underpredicted.
Data from hepatocytes can provide both phase-I and phase-II metabolism, and so the
use of hepatocytes would be preferred when phase-II metabolism is involved. Even
with the best of experimental data, factors such as interindividual variability in
enzyme content and activity strongly limit the extension of predictions across
different demographics.
More experimental information is needed regarding distribution and densities of

metabolizing enzymes and efflux proteins in the GI tract. This information is
crucial since dissolution and absorption are site dependent all along the GI tract.
Knowledge of the variation in enzyme and efflux transporter amounts in the
intestine and colon can also be used to design formulations with increased
bioavailabilities by avoiding sites of high intestinal first pass and efflux. For
example, the bioavailability of oxybutynin, a CYP3A4 substrate, is increased by
modifying the formulation to release most of the drug in the distal GI [92]. Similarly,
the bioavailability of a P-gp substrate might be increased by using a gastric-retentive
formulation to release the drug in proximal GI where the P-gp density is relatively
low. The influence of inhibitors and inducers of enzymes can be modeled by using
appropriate scale factors to mimic changes in enzyme amounts, activity, and
competitive inhibition. Similarly, drug–drug interactions can be modeled using
the same techniques.
In spite of its limitations, the ACATmodel combined with modeling of saturable

processes has become a powerful tool in the study of oral absorption and pharmaco-
kinetics. To our knowledge, it is the only tool that can translate in vitro data from early
drug discovery experiments all the way to plasma concentration profiles and
nonlinear dose-relationship predictions. As more experimental data become avail-
able, we believe that the model will become more comprehensive, and its predictive
capabilities will be further enhanced.

Figure 17.7 Experimental and simulated plasma concentration
versus time profiles for a single dose of saquinavir administered
with and without grape fruit juice [91].
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17.5.1
Approaches to In Silico Estimation of Metabolism

In silico estimation of metabolism is still an area of intense study and development.
Accurate prediction of intrinsic clearance is still not possible with the currently
available methods [15]. Most of the progress in this area has been focused on the
mixed function oxidase cytochrome P450 enzyme family. Advances in this area have
been focused on three areas: (1) prediction of the cytochrome P450 (CYP) enzyme
isotype that is responsible for the major metabolism, (2) prediction of the chemical
site of a molecule that is most likely to undergo biotransformation by oxidative
metabolism, and (3) structure-based docking studies of CYP enzyme substrate
complexes .
Unsupervised machine learning based on the application of Kohonen self-

organizing maps to groups of isotype-specific molecules has been applied to predict
the CYP enzyme isotype involved in themajormetabolism [93]. The same group used
similar computational methods to estimate the catalytic Km values for P450 sub-
strates [94]. The most successful methods for predicting the P450 metabolism site
utilize a method for calculation of the activation energy for homolytic cleavage of a
C�Hbond in the substrate [95–99]. HomolyticHatom abstraction is the rate-limiting
step in P450 oxidative metabolism, and the C�Hbonds with lowest activation energy
are generally the sites of major metabolism for CYP enzymes such as 3A4 that has a
large binding pocket that can easily accommodate the substrate in a variety of
orientations. This method is less predictive for other CYP enzymes such as 2D6 or
2C9 that have a definite pharmacophore that helps orient the substrate so that
oxidation can occur at carbons that have a higher activation energy for homolytic
cleavage. A newer, empirical method for estimating the H-atom abstraction energy
was shown to be more accurate than the classical methods based on semiempirical
AM1 calculations [100, 101].
The availability of X-ray crystallographic structures and homology models of the

CYP450 enzymes allows the application of structure-based methods to predict P450
metabolism [102–105]. Newer approaches that have promise in this area include
hybrid methods that use an energy calculation with some knowledge of the steric
interaction of a given CYP enzyme. Metasite, a software program, combines the
calculation of H-atom abstraction energetics with a method based on a comparison
between alignment-independent descriptors derived from GRID molecular interac-
tion fields for the active site and a distance-based representation of the
substrate [106, 107].

17.6
Regulatory Aspects of Modeling and Simulation (FDA Critical Path Initiative)

Pharmaceutical productivity has been falling and costs have been rising. In 2004, the
US FDA introduced the Critical Path Initiative to modernize drug development by
introducing advancements in genomics, modeling and simulation, and advanced
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imaging [22, 108, 109, 20, 110]. One important use of such data will be to construct
quantitative models of disease processes, incorporating what is known about
biomarkers, clinical outcomes, and the effects of various interventions. Thesemodels
can then be used for trial simulations to better design appropriate trials and clinical
outcome measures. These methods have been dubbed �Model-Based Drug Deve-
lopment and have the potential to improve the success rate in regulatory
approval [20].�

17.7
Conclusions

The application of ultrahigh-throughput in silico estimation of biopharmaceutical
properties to generate rule-based computational alerts has the potential to improve
compound selection for those drug candidates that are likely to have less trouble in
development. Extension of purely in silico methods to the realm of mechanistic
simulation further enhances our ability to predict the impact of physiological and
biochemical processes on drug absorption and bioavailability. Quantitative predic-
tion of metabolic rates is still a future goal, but great progress has been achieved in
calculating substrate specificity, sites of metabolism, and relative binding interac-
tions with metabolic enzymes. It remains to be seen if all of these innovations
combinedwith clinical trial simulations andmodel-based drug developmentwill lead
to a faster and less expensive drug development.
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18
Toward Understanding P-Glycoprotein Structure–Activity
Relationships
Anna Seelig

Abbreviations

ABC ATP-binding cassette (transport protein)
ATP Adenosine triphosphate
BBB Blood–brain barrier
GRIND Grid independent descriptors
IUPAC International Union of Pure and Applied Chemistry
LDA Linear discriminant analysis
MDR Multidrug resistance
NBD Nucleotide-binding domain
PCA Principle component analysis
PLS-DA Partial least square discriminant analysis
P-gp P-Glycoprotein (MDR1, ABCB1)
(Q)SAR (Quantitative) structure–activity relationship
Sav1866 ABC transporter from Staphylococcus aureus
SVM Support vector machine
TMD Transmembrane domain

Symbols

CSaq Substrate concentration in aqueous solution
K1 Substrate concentration at half-maximum P-gp activation
K2 Substrate concentration of at half-minimum P-gp activation
V0 Basal P-gp activity in the absence of substrates
V1 Maximum transporter activity
V2 Minimum transporter activity
VSaq Transporter activity at a given substrate concentration in aqueous solution
k Rate constant
Ktw(1) Binding constant of a drug fromwater to the activating binding region

of the transporter
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Ktl(1) Binding constant of a drug from the lipid phase to the inhibitory
binding region of the transporter

Klw Lipid–water partition coefficient
DG0

twð1Þ Free energy of binding of a substrate from water to the activating
binding region of the transporter

DG0
tlð1Þ Free energy of binding of a substrate from the lipid phase to the

activating binding region of the transporter
DG0

lw Freeenergyofpartitioningofasubstrate fromwater tothe lipidmembrane
J Net flux
F Passive flux
IC50 Half-maximum (50%) inhibitory concentration

18.1
Introduction

P-Glycoprotein (P-gp/MDR1/ABCB1) is an efflux transporter of broad substrate
specificity that is encodedby themultidrug resistance (MDR) 1 gene (MDR1) [1]. P-gp
was first observed inmultidrug resistant cancer cells [2]. It is also highly expressed in
different plasmamembrane barriers with protective functions, such as the intestinal
barrier (IB) [3, 4], the blood–brain barrier (BBB) [3, 5], the placental barrier [6], and the
blood–testis barrier [7], where it reduces or even prevents the absorption of a broad
range of drugs and toxins (for review seeRef. [3, 8]). Recently, P-gpwas detected in the
nuclear membrane [9] where it contributes to an additional protection shell around
the nucleus. P-gp not only prevents absorption but also plays a role in the excretion of
drugs, toxins, and their metabolites, for example, in proximal tubules of the kidney
and biliary ducts of the liver [3].
Cells can be induced to overexpress P-gp after exposure to a single agent

(e.g., anticancer drugs, certain antibiotics, or food components) [10] or even after
exposure to physical stress, such as X-ray [11], UV light irradiation [12], or heat
shock [13].Overexpression of P-gp leads tomultidrug resistance, that is, to a resistance
toward all drugs that are substrates for P-gp. The expression level of P-gp not only
depends on the exposure of cells to various stimuli but also on genetic factors [14].
The same type of stimuli that induce MDR due to P-gp in human can also induce

MDR in bacteria, parasites, and fungi by promoting the expression of related ABC
transporters.MDR is detrimental not only for the treatment of cancers (for review see
Ref. [15]), but also for the treatment of bacterial [16], parasitic [17], and fungal [18]
diseases and can be considered as a general problem for pharmacotherapy.

18.1.1
Similarity Between P-gp and Other ABC Transporters

ATP-binding cassette transport proteins (ABCs) are phylogenetically highly con-
served and transport a large variety of compounds across cell membranes. The 48
human ABC transporters are grouped into seven subfamilies (A–G) according to
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similarities in their amino acid sequences [19]. On the basis of hydropathy plots,most
human ABC transporters are predicted to consist of two homologous parts,
each consisting of a transmembrane domain (TMD) and a cytosolic nucleotide-
binding domain (NBD) coupled by a cytosolic linker region. P-gp (MDR1/ABCB1)
(Figure 18.1) is the best studied example.
Some transporters (e.g., BCRP/ABCG2) are half-transporters (with one TMD

comprising six transmembrane a-helices and one cytosolic NBD) that only function
as homodimers, like the prokaryoticABCtransporter (e.g., Sav1866).Othermembers
(e.g., ABCC1, ABCC2, ABCC3, ABCC6, and ABCC10) exhibit an additional amino-
terminal TMD [20]. Despite these variations, overlapping substrate specificity has
been observed, for example, between P-gp/ABCB1and MRP1/ABCC1 [21] as well as
between P-gp/ABCB1 and BCRP/ABCG2 [22].
Like many membrane proteins, P-gp (170 kDa) has been recalcitrant to crystalli-

zation. So far, only a low-resolution (�8A
�
) structure from two-dimensional crystals of

P-glycoprotein trapped in the nucleotide-bound state has been obtained by electron
microscopy [23]. A high-resolution crystal structure is available for a homologous

Figure 18.1 The putative transmembrane
domains of P-gp derived from hydropathy plots.
Hydropathy analyses search for all clusters of
about 20–22 amino acids in a protein, which are
hydrophobic enough to form a transmembrane
sequence. Upper panel: P-gp in a 2D model
derived from hydropathy plots comprises two
halves each consisting of six putative a-helices

(gray tubes) (TMDs) followed by a nucleotide-
binding domain. Lower panel: the percentage of
hydrogen-bond donor side chains in the putative
transmembrane sequences of P-gp. The
crosshatched putative a-helices are known to be
especially important for binding and transport of
substrates (updated version of Figure 18.3 in
Ref. [26]).
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bacterial ABC transporter, Sav1866 (64.9 kDa). It was also crystallized in the nucleo-
tide-bound state [24, 25] and was found to be a homodimer, formed from two TMD
units, each consisting of six transmembrane a-helices.

18.1.2
Why P-gp Is Special

P-gp differs frommany well-characterized membrane transporters such as sugar or
amino acid transporters. First, it transports not one specific class of compounds but
an intriguing number of chemically unrelated drugs, toxins, and metabolites (see,
e.g., Ref. [26]). Second, it seems to exhibit not one single well-defined binding site but
several binding sites [1, 27, 28]. The different binding sites may not even be well-
defined, lock–key-type binding sites but may constitute a binding region that is
occupied only transiently [21]. Third, P-gp recognizes its substrates not when they are
dissolved in aqueous phase but when they are dissolved in the lipid membrane [29];
more precisely, when the substrates are dissolved in the membrane leaflet facing the
cytosol [30, 31]. This implies that binding occurs in two consecutive binding steps,
partitioning from water into lipid followed by partitioning from lipid into the P-gp-
binding region. The membrane concentration of the substrate thus determines the
P-gp activity [32].
In silicomethods that are able to predict quantitative aspects of the interaction of a

substrate with P-gp would be of great value. So far, modeling was applied mainly to
lock–key-type reactions taking place in aqueous solution. The structural diversity and
lipid solubility of P-gp substrates and the fact that their encounter with the
transporter takes place in the lipid membrane and not in aqueous solution are new
challenges for in silico predictions. Since all in silicomodels are based on experimental
data, we first provide a short introduction to various P-gp assays and discuss their
underlying principles (18.2). Secondly, we summarize the different in silico ap-
proaches (18.3), and, lastly, we discuss the parameters that are most relevant for the
different in silico models (18.4).

18.2
Measurement of P-gp Function

Different assays are used to monitor the function of P-gp such as (i) ATPase assays;
(ii) drug transport assays across confluent, polarized cell monolayers; and (iii)
competition assays with reference substrates. The different assays address different
functional aspects of P-gp.

18.2.1
P-gp ATPase Activity Assay

P-gp ATPase activity is measured using either inside-out cellular vesicles of MDR1-
transfected cells or reconstituted proteoliposomes. In both types of systems, NBDs
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are oriented at least partially toward the extravesicular side, and ATP hydrolysis can
therefore be monitored with a colorimetric [33–35] or a coupled enzyme assay [36].
For cells in vitro, glycolysis is the mainmetabolic pathway and yields onemolecule

of lactic acid permolecule of ATP synthesized; the lactic acid leaves the cell as a waste
product. At steady state, the rate of ATP synthesis corresponds to the rate of ATP
hydrolysis and can therefore be monitored in living MDR1-transfected cells by
measuring the rate of lactic acid extrusion by the cell. Lactic acid extrusion can be
measured either by a spectroscopic approach [37] or by recording the extracellular
acidification rate (ECAR) in NIH-MDR1-G185 cells [32, 38] with a micro-pH meter
based on silicon chip technology (Cytosensor microphysiometer) [39]. A graphical
representation of these assays is shown in Figure 18.2.
P-gp shows a basal ATPase activity in the absence of exogenous compounds; on

additionofdrugs, theATPaseactivity can increaseordecrease.Drug-inducedinorganic
phosphate release [33–35] or ECAR [32] shows a bell-shaped dependence on the drug
concentration (log scale), first increasing to a maximum and then decreasing at high
concentrations (Figure 18.3). Both equimolar (e.g., Ref. [40]) and equitoxic (e.g.,
Refs [41, 42]) concentrations have been used to classify compounds as substrates,
modulators,orinhibitors.Thefact that thesamedrugscaneitheractivateorinhibitP-gp
depending on the assay concentration (Figure 18.3) may explain the numerous
inconsistencies in the classification of drugs with respect to their effects on P-gp.
Differentmodels have been used to analyze P-gp activity profiles [32–34]. Here, we

describe the modified Michaelis–Menten equation proposed by Litman et al. [33]. It

Figure 18.2 ATPase assays: In living cells, the
drug first partitions into the extracellular leaflet of
the plasma membrane and then crosses the
membrane by passive diffusion. Once the drug
reaches the cytosolic membrane leaflet, it either
escapes to the cytosol or is captured by P-gp
(indicated in dark gray). The diffusion process,
that is, passive influx, can vary by several orders
ofmagnitude. If the drug is boundby P-gp (which
ismore likely if diffusion through the intracellular
leaflet is slow), it can be exported out of the cell at
the expense of ATP hydrolysis. ATP in cultured
cells is produced via glycolysis; whereby an

equimolar amount of lactic acid is formed, which
leaves the cell as a waste product, and
dissociates extracellularly to lactate and a proton.
This can be monitored with a Cytosensor as an
extracellular acidification rate. Cytosensor assays
are performed under steady-state conditions. In
contrast, in inside-out plasma membrane
vesicles, the drug first partitions into the
cytosolic leaflet of the plasma membrane. P-gp
activation can be measured by monitoring
inorganic phosphate released by ATPase activity
using a colorimetric assay.
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Figure 18.3 P-gp activity profiles measured with living MDR1-
transfected cells as a function of drug concentration. The
extracellular acidification rate is expressed as a percentage of the
basal rate (100%): verapamil is represented by lozenges, lidocaine
by open squares, and trifluopromazine by open circles. (Data are
taken from Ref. [32].)

assumes activation with one substrate molecule, S, bound, and inhibition with two
substrate molecules bound to P-gp as described by Scheme 18.1:

Tþ ATPþ S>
k1

k�1

TðATPÞSþ S
#k0

TðADPÞ þ Pi þHþ þ Srel

>
k2

k�2

TðATPÞS2 !k00 TðADPÞ þ 2Srel þ Pi þHþ

Scheme 18.1

T(ATP)S and T(ATP)S2 are transporter–ATP complexes with one and two substrate
molecules bound, respectively; T(ADP) is the transporter–ADP complex; Pi inorganic
phosphate; Srel is the substrate molecule flipped to the outer leaflet or released
extracellularly; k1, k�1, and k2, k�2 are the rate constants of the first and the second
substrate binding steps, respectively; and k0 and k00 the rate constants of the catalytic
steps. For this model, the rate of ATP hydrolysis is a function of the P-gp-stimulating
drug concentration:

VSaq ¼
K1K2V0 þK2V1CSaq þV2C

2
Saq

K1K2 þK2CSaq þC2
Saq

; ð18:1Þ

where VSaq is the rate of Pi release as a function of the substrate concentration in
solution, CSaq; V0 is the basal activity in the absence of substrate; V1 is the maximal
ATPase rate that is achieved only when the inhibitory second step is negligible; V2 is
theminimal rate at infinite substrate concentration and lower thanV1;K1 is the drug
concentration at half-maximumactivation, that is,V1/2;K2, the drug concentration at
half-minimum activation, that is, V2/2. At low drug concentrations, Equation 18.1
simplifies to the Michaelis–Menten equation. The catalytic rate constant (k0) corre-
sponds to V1/[T0], where [T0] is the transporter concentration.
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Figure 18.4 Binding from water to the
transporter (1) is divided into two steps:
membrane partitioning (2) and transporter
binding (3). These processes are fast and can be
considered (to a first approximation) as
equilibrium processes in inside-out vesicles as
well as in cells under steady-state conditions in a
Cytosensor: this is indicated by the double
arrows. The free energy of binding of the drug
from water to the transporter (DG0

twð1Þ) was

derived from ATPase assays, and the free energy
of binding of the drug from water to the lipid
membrane (DG0

lw) was derived from surface
activity measurements or from isothermal
titration calorimetry. The free energy of bindingof
the drug from the lipid membrane to the
transporter (DG0

tl) is not directly accessible by
experiment but can be estimated as the
difference between the two free energies DG0

twð1Þ
and DG0

lw (see Equation 18.3).

Evidence for a direct correlation between the turnover number for vinblastine-
stimulated ATP hydrolysis and vinblastine transport rate was provided by Ambudkar
and Stein [43]. Since compounds that interact with P-gp often exhibit a high
lipid–water partition coefficient and can cross the lipid bilayer by passive diffusion,
the stoichiometry between ATP hydrolysis and drug transport is difficult to assess.
Using a permanently charged spin-labeled analogue of verapamil that cannot cross
the membrane by passive diffusion [44], a direct correlation between ATP hydrolysis
and drug transport was demonstrated [45].

18.2.1.1 Quantification of Substrate–Transporter Interactions
Substrate binding from water to the transporter can be described as a two-step
binding process [32] as illustrated in Figure 18.4.
ATPase activationexperimentsareperformedundersteady-state conditions, and the

catalytic rate (rate constant, k1� 1–5 s�1) of P-gp ismuch slower than the rates of drug
and ATP binding. Hence, the concentration at half-maximum activation (K1) can be
considered as the dissociation constant and 1/K1 as the binding constant of a drug to
the activating binding region of the transporter (Ktw(1)) to a first approximation. The
binding constant of the drug to the transporter (Ktw(1)) can then be expressed as the
product of the lipid–water partition coefficient (Klw) and the binding constant of
the substrate from the lipidmembrane to the activating binding site of the transporter
(Ktl(1)),

1
K1

ffi K twð1Þ ffi K tlð1Þ �K lw: ð18:2Þ

This leads to the free energy relationship,

DG0
twð1Þ ffi DG0

tlð1Þ þDG0
lw; ð18:3Þ

18.2 Measurement of P-gp Function j503



where the superscript zero refers to a biological standard state (pH 7.4 and 37 �C). The
free energy of substrates binding from water to the transporter, DG0

twð1Þ, and the free
energy of partitioning into the lipid membrane, DG0

lw, are defined as

DG0
twð1Þ ffi �RT lnðCwK twð1ÞÞ ð18:4Þ

and

DG0
lw ¼ �RT lnðCwK lwÞ; ð18:5Þ

respectively, whereCw (55.3mol/l) corresponds to themolar concentration of water at
37 �C.Analogous equations can be formulated for the binding constant,Ktw(2), and the
free energy of binding, DG0

twð2Þ, to the second binding region as outlined previously
[32]. Themore negative the free energy of binding is, the higher is the binding affinity
to the transporter. For 15 drugs [32], the free energy of drug partitioning fromwater to
the lipid membrane, DG0

lw, was somewhat more negative than the free energy of drug
binding from the lipid phase to the transporter, DG0

tlð1Þ. However, the variation in
DG0

tlð1Þ was more pronounced (�fourfold) than that in DG0
lw (�1.5 fold) as shown in

Figure 18.5.

18.2.1.2 Relationship between Substrate–Transporter Affinity and Rate of Transport
As seen in Figure 18.6, the maximal extent of P-gp ATPase stimulation, which
correlates with the rate of intrinsic transport, lnk1, decreases as the affinity of drugs to
the transporter increases or as the free energy of binding, DG0

twð1Þ, decreases.
Molecules with low affinity are thus transported more rapidly and tend to be smaller
(Figure 18.7).

Figure 18.5 The free energy of drug binding from
water to the activating binding region of P-gp
(DG0

twð1Þ) (hatched and cross-hatched bars) in
comparison to the free energy of drug
partitioning from water to the lipid membrane
(DG0

lw) (cross-hatched bars). The difference
between DG0

twð1Þ and DG0
lw represents the free

energy of drug binding from lipid membrane to

the transporter (DG0
tlð1Þ) (hatched bar).

Amitriptyline (1), chlorpromazine (2), cis-
flupenthixol (3), cyclosporin A (4), daunorubicin
(5), dibucaine (6), diltiazem (7), glivec (8),
lidocaine (9) progesterone (10), promazine (11),
verapamil (12), reserpine (13), trifluoperazine
(14), and trifluopromazine (15) measured at pH
7.4 and 37 �C. (Data are taken from Ref. [32].)
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In summary, ATP hydrolysis by P-gp correlates well with the intrinsic rate of
substrate transport. A complete characterization of the interaction of a compound
withP-gp is obtained bymeasuring theATPase activity as a function of concentration.
The rate of intrinsic substrate transport first increases with increasing concentration,
reaches amaximum, and decreases again at high concentrations. The rate of intrinsic
transport by P-gp depends not only on the substrate concentration but also on its
affinity to the transporter; substrates with high affinities for P-gp are transported
more slowly than those with low affinities.

Figure 18.6 Correlation between the logarithm
of the maximum P-gp activity (lnV1) obtained
fromphosphate releasemeasurements at pH7.0
(37 �C) and the free energy of drug binding from
water to transporter (DG0

twð1Þ). The maximum
activity of P-gp (V1) is expressed as a percentage
of the basal rates taken as 100%. Data are
presented as average of two to 15
measurements. The solid line is a linear

regression to the data with a slope 0.06� 0.01
and an intercept 7.76� 0.34 (R2¼ 0.79).
Compounds are as in Figure 18.5 (1–15);
daunorubicin (5), and lidocaine (9) were
excluded from the fit due to experimental
problems; extra data for OC144-093 (17),
PSC-833 (18), and vinblastine (19) (data taken
from Ref. [35]).

Figure 18.7 Intrinsic transport by P-gp. P-gp transports drugs at
different rates. Small drugs often have a lower affinity to the
transporter and are transported more rapidly (at least at low
concentrations when only one drug is bound) than larger drugs
with higher affinity.

18.2 Measurement of P-gp Function j505



18.2.2
Transport Assays

P-gp-specific transport is often assayed with confluent monolayers of polarized
epithelial cells transfectedwith theMDR1 gene (e.g., kidney cells) using radioactively
labeled compounds [46]. Instead of MDR1-transfected cells, Caco-2 cell lines have
been used [47]. Caco-2 cells can express a number of different transporters, including
P-gp, and thus show activities typical of all transporters. To assess transport,
basolateral-to-apical flux (JB!A) is generally compared with apical-to-basolateral flux
(JA!B) of a compound across the confluent cell monolayer using identical initial
compound concentrations in the donor compartments (Figure 18.8) (see e.g.,
Ref. [48]). If P-gp or other efflux transporters are present in the basolateral mem-
brane, the basolateral-to-apical flux (JB!A) is enhanced and the apical-to-basolateral
flux is reduced resulting in a flux ratio

JB!A

JA!B
>1: ð18:6Þ

As illustrated in Figure 18.8, the net flux ( J) across amembrane is the sum of passive
and active transport processes. To estimate the net flux across a membrane, the
following simplifying assumptions are made. The net flux ( JB!A) from the baso-
lateral to the apical side of themembrane is assumed to be the sumof the passive flux
(FB!A) plus the active transport rate (þV ), and the net flux from the apical to the
basolateral side (JA!B) is the sumof the passive flux (FA!B) less the active transport
rate (�V):

JB!A ¼ FB!A þV ; ð18:7Þ

JA!B ¼ FA!B�V : ð18:8Þ
To illustrate the role of passive influx in transport assays, we plotted the flux ratio
JB!A/JA!B as a function of the passive flux (F). Passive flux varies enormously

Figure 18.8 Transport processes across a
confluent cell monolayer of P-gp-expressing
cells. The flux from the basolateral to the apical
side of the membrane ( JB!A) is the sum of the
passive flux (FB!A) (black arrow 1) plus an

active efflux component (V ) (light gray arrow 3).
The flux from the apical to the basolateral side of
the membrane ( JA!B) is the sum of the passive
flux (FA!B) (black arrow 2) and an active efflux
component (�V ) (light gray arrow 3).
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(from about 1012 to less than 106 molecules/s/cell). It decreases exponentially with
increasing cross-sectional area (AD) and the charge (pKa) of the molecule. Further
factors that influence the passive flux are the lateral membrane packing density (pM),
which depends on the lipid composition, and the pH of the solution [49]. In contrast,
active efflux varies by less than one order of magnitude for a given cell line
(see Figure 18.6) [50]. Major factors influencing active efflux are the drug concentra-
tion (Equation 18.1) (see also Ref. [51]) and the expression level of P-gp.
Passive flux |F| is orders ofmagnitude higher than active efflux |V| for small drugs

(intrinsic substrates) and is therefore �masked� in assays (Figure 18.9). As the passive
flux tends to decrease stronglywithmolecular size and the intrinsic transport tends to
decrease only slightly [49, 50], membrane-specific limiting cross-sectional areas (AD)
can be defined for drug permeation and have been reported for the blood–brain
barrier [52] and the intestinal barrier [53].
In summary, assays with confluent cellmonolayers reveal the net flux (J) that is the

result of passive and active transport processes. Substrate transport is observable only
if themagnitude of passiveflux |F| is similar to that of active efflux |V| but is �masked�
if the passive flux is significantly higher than active efflux. Since the passive flux
decreases exponentially with the cross-sectional area (AD) and the ionization status
(pKa), these two parameters dominate the flux, or the apparent transport, across a cell

Figure 18.9 Transport across confluent cell
monolayers depends on many parameters (see
Section 20.2.2). The quotient JB!A/JA!B is
plotted as a function of the passive influx (F). It
was assumed that FB!A and FA!B are
identical. Active export was taken as
V¼ 5� 107molecules/cell/s (A) or
V¼ 1� 108molecules/cell/s (B). If the passive
flux |F| is high, active transport by P-gp is

masked, leading to flux ratio JB!A/JA!B close to
1; if the flux |F| is similar to the rate of active
transport |V|, then JB!A/JA!B > 1; if the passive
flux |F| is very low (lower limits indicated by
dotted lines), the quotient cannot be determined
experimentally because all substrate molecules
that then permeate the plasma membrane are
exported again and none are able to permeate
into the cytosol. (Data are taken from Ref. [49].)
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layer. Compounds that are determined as substrates in transport assays are called
apparent substrates to distinguish them from intrinsic substrates determined by
ATPase assays.

18.2.3
Competition Assays

The most frequently used competition assays are the calcein–AM [54–56] and the
cytotoxicity assays (e.g., performed with doxorubicin) [41, 42], carried out with living
cells expressing P-gp. Calcein–AM as well as doxorubicin is used as reference
substrates for P-gp as their concentrations in the cytosol are reduced by its action.
If a second compound that competes for the transporter P-gp is added to the cell, the
reference substrates accumulate above control levels in the cytosol in a concentration-
dependent manner up to a maximal value. The more effective the competing
agent, the larger is the increase in cytosolic concentration of the reference substrates.
In the case of the calcein–AM that is hydrolyzed as soon as it reaches the
cytosol, the fluorescent hydrolysis product, calcein, is assayed by fluorescence
spectroscopy. The inhibitory potencies of compounds aremeasured as half-inhibitory
constants, KI.
In the case of the cytotoxin doxorubicin, its concentration in the cytosol is

generally estimated via the incumbent cytotoxicity, which reduces cell growth rates.
Defined concentrations of doxorubicin inhibit growth of the MDR-expressing
cells by 50 or 20% (IC50 or IC20 values). When P-gp is inhibited by a competing
drug, lower concentrations of doxorubicin are required to cause the same level of
toxicity; hence, drug potencies are expressed as effect–concentration ratio or MDR
ratio.

MDR ratio ¼ IC50ðcytotoxic drug aloneÞ
IC50ðcytotoxic drugþmodulatorÞ : ð18:9Þ

In summary, competition assays yield information on the affinity of a drug to the
transporter relative to the affinity of a reference substrate, for example, calcein–AMor
doxorubicin. The higher the affinity of a drug for P-gp (or the more negative the free
energy of binding to P-gp), the greater is the ability to suppress efflux of a reference
substrate.

18.3
Predictive In Silico Models

Different predictionmodels have been reported including (i) pharmacophoremodels
that take into account structural features, (ii) linear discriminant models that do not
consider structural features, (iii) a modular-binding approach, and (iv) rule-based
approaches. The focus of the following discussion is to identify the most important
descriptors in the different approaches and relate them to the physicochemical
parameters determined in the different P-gp assays.
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18.3.1
Introduction to Structure–Activity Relationship

Structure–activity relationship (SAR) studies are based on the assumption that
similar molecules elicit similar activities in a lock/key-type manner. Quantitative
structure–activity relationships (QSARs) correlate the extent of a change in a
biological response (e.g., activity) elicited by a specific compound with its physico-
chemical and/or its structural properties,

activity ¼ f physical� chemical parameters and=or structural propertiesð Þ:
ð18:10Þ

Individual physicochemical parameters are also calledmolecular descriptors, and the
net structural properties describe a pharmacophore. According to IUPAC, a phar-
macophore is defined as the ensemble of steric and electronic features that is
necessary to ensure interactions with a specific biological target and that induces
or blocks its biological response.
QSAR modeling has been successfully applied for elucidating the stereochemical

features relevant for the function of small ligands binding to an acceptor in a lock/
key-type mechanism in aqueous solution. For such a process, the following assump-
tions are appropriate: (i) the modeled conformation is the bioactive one (i.e., the
pharmacophore); (ii) the binding site and/or mode is the same for all modeled
compounds; (iii) interactions between the drug and the binding site aremainly due to
enthalpic processes such as van derWaals interactions; and (iv) solvent ormembrane
effects are negligible [57].
Extending QSARmodels to P-gp is nontrivial since no high-resolution structure of

P-gp is available yet [23]. In addition, the binding site or binding region is not well
defined, but is most likely large and flexible [58]; as it is located in the interior
membrane, electrostatic and hydrogen-bond interactions are more specific and
stronger than van der Waals interactions, due to the low dielectric constant of the
environment [32]. Substrates have extremely diverse and flexible structure [59]. A
further difficulty arises from the complexity of the biological data used as the basis for
QSAR or SAR. Generally, data from transport or competition assays are used,
although the underlying principles are more complex than in ATPase assays.

18.3.2
3D-QSAR Pharmacophore Models

Examples of pharmacophoremodels are discussed in this chapter. The earliermodels
are primarily based on competition assays whereas the newer models are rather
based on transport assays.
On the basis of competition assays, Pajeva and Wiese [60] proposed pharmaco-

phores with different interaction points with the transporter using the program
GASP (Tripos software). GASP elucidates pharmacophore models while allowing
ligand flexibility, without requiring prior knowledge of pharmacophore elements or
constraints. The pharmacophore model consists of two hydrophobic points, three
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hydrogen-bond acceptor points, and one hydrogen-bond donor point. In this model,
the affinity of the substrate to the transporter depends on the number of pharma-
cophore points per substrate and thus allows for variable binding to the transporter.
Ekins et al. built QSAR models using Catalyst software to rank and predict

inhibitors for P-gp substrate transport. In their first attempt, four different pharma-
cophores were derived from the analysis of inhibitors of digoxin transport, vinblas-
tine binding, or intracellular accumulation of vinblastine and calcein [61]. These data
were then combined with experiments using verapamil as inhibitor and led to the
construction of a unique pharmacophore consisting of one hydrogen-bond acceptor,
one aromatic ring, and two hydrophobic centers [62].
Langer et al. [63] used a training set of propafenone-type MDR modulators tested

with a daunorubicin competition assay and developed a pharmacophore for P-gp
inhibition using Catalyst software. The pharmacophore features identified by this
model were one hydrogen-bond acceptor, one hydrophobic area, two aromatic
centers, and (iv) one positively ionizable group.
On the basis of transport data, Penzotti et al. [64] constructed and validated amodel

for recognizing P-gp transport substrates. The model consists of an ensemble of
100 two-, three-, and four-point pharmacophores. The �point pharmacophores� were
selected from the following descriptors: hydrogen-bond acceptors, hydrogen-bond
donors, hydrophobic centers, negative and positive charges, aromatic groups, and the
associated six interfeature distances. Together, these were assumed to describe the
various chemotypes that interact with P-gp.
Cianchetta et al. [65] selected compounds from Caco-2 cell transport assays and

investigated them for their ability to inhibit calcein–AM efflux. Using GRIND (grid
independent descriptors), they then proposed a unique pharmacophore containing
two hydrophobic groups separated by 16.5A

�
and two hydrogen-bond acceptor groups

separated by 11.5A
�
. Moreover, they observed that the dimensions of the molecule

play a significant role for substrate transport.
Applying supervised machine learning techniques, Li et al. [66] proposed a model

that differentiates substrates fromnonsubstrates of P-gp based on a simple tree using
nine distinct pharmacophores. Four-point 3D pharmacophores were employed to
increase the amount of shape information and resolution and possessed the ability to
distinguish chirality. Relevant features were hydrogen-bond acceptors, hydrophobic-
ity indices, and a cationic charge.

18.3.3
Linear Discriminant Models

Linear discriminant analysis (LDA) is used in statistics and machine learning
methods to find the best linear combination of descriptors that distinguish two or
more classes of objects or events, and, in the present case, to distinguish between
substrates and nonsubstrates of P-gp. A linear classifier achieves this by making a
classification decision based on the value of the linear combination of descriptors.
The linear discriminant models applied to P-gp [67, 68] are essentially based on

data from transport assays. Several methods such as the support vector machine
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approach (SVM) [69], principle component analysis (PCA) [69], partial least square
discriminant analysis (PLS-DA) [70, 71], or the machine learning approach (neural
network) [70, 72] are derived from related principles. Svetnik et al. [73] used boosting
tree or bagging tree techniques for P-gp substrate classification, each of which
consists of a sequence of about 100 tree classifiers based on 1522 binarized atom pair
descriptors. The investigation was performed with the transport data set of Penzotti
et al. [64] and it revealed that when chlorine and fluorine substitutions enhanced
permeability [74] they also lowered the tendency of a compound to be effluxed by
P-gp. All these procedures start with a very large number of general descriptors that
are then reduced to lower numbers of essential ones; size- and charge-related
parameters dominate again.

18.3.4
Modular Binding Approach

To get the broadest possible information on the nature of P-gp/substrate interactions,
we chose data from all types of assays and analyzed 3D structures by visual
inspection. Chemically very diverse compounds known to interact (or not to interact)
with P-gp were analyzed, with their molecular weight ranging from approximately
250 to 1250. The only recognition elements found in all compounds interacting with
P-gp were hydrogen-bond acceptor groups. Patterns with two hydrogen-bond ac-
ceptors with a spatial separation of 2.5� 0.3 A

�
(type I units) were observed in all P-gp

substrates. In addition, patterns with three hydrogen-bond acceptor groups with a
spatial separation of the outer two acceptor groups of 4.6� 0.6A

�
or two hydrogen-

bond acceptor groups with a spatial separation of 4.6� 0.6A
�
(type II units) were

observed in many substrates and all inducers of P-gp [21, 26]. Hydrogen-bond
acceptor patterns were therefore suggested to serve as binding modules interacting
with the hydrogen-bond donor-rich transmembrane domains of P-gp.
In lipid environments, exhibiting a low dielectric constant, the hydrogen-bonding

interactions are stronger and more specific than van der Waals interactions. It was
therefore suggested that themeasured total free energy of binding of a drug from the
lipidmembrane to the transporterDG0

tlð1Þ is the sumof the free energies,DG0
Hi, of the

individual hydrogen bonds formed between the substrate and the transporter [26, 75]

DG0
tlð1Þ �

Xn
i¼1

DG0
Hi: ð18:11Þ

To test this hypothesis, the experimentally determined free energy of binding to P-gp,
DG0

tlð1Þ, for a given drug was divided by the number of possible hydrogen bonds
formed thus yielding the free energy per hydrogen bond of DG0

Hi � �2:5 kJ=mol as a
lower limit. This value is in good agreement with expectations [32]. Combining
Equations 18.3 and 18.11, the free energy of binding of a substrate from water to the
transporter can then be estimated as

DG0
twð1Þ �

Xn
i¼1

DG0
Hi þDG0

lw: ð18:12Þ
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The requirement to bind to P-gp is thus the ability to partition into the inner lipid
leaflet and to carry hydrogen-bond acceptor groups (arranged in type I or type II
units).

18.3.5
Rule-Based Approaches

One of the first and most cited rule-based approaches is the �rule-5� by Lipinski [76],
which predicts whether a compoundwill be absorbed from the intestinal tract, that is,
cross the intestinal barrier. Although transporters are not explicitly mentioned, they
play a role in intestinal absorption. �Lipinski�s rule-of-5� states that, in general, a well-
absorbed drug violates no more than one of the following criteria: no more than five
hydrogen-bond donors (i.e., nitrogen or oxygen atoms with one or more hydrogen
atoms); not more than 10 hydrogen-bond acceptors (nitrogen or oxygen atoms);
molecular weight below 500Da; and an octanol–water partition coefficient (logP)
below 5.
An approach that is related to the �rule-of-5�was proposed byDidziapetris et al. [77]

to predict whether a drug is a substrate for P-glycoprotein. On the basis of
transcellular transport experiments, they suggested that compounds withmore than
eight oxygen and nitrogen atoms, molecular weights above 400Da, and acidic pKa

more than 4 are likely to be P-glycoprotein substrates; compoundswith less than four
oxygen and nitrogen atoms, molecular weights below 400Da, and pKa less than 8 are
likely to be nonsubstrates.
The cross-sectional area, AD, of a compound oriented in an amphiphilic gradient

such as the air–water or lipid–water interface has been shown to be even more
reliable for permeability predictions than the molecular weight [52]. For BBB
permeation, the limiting cross-sectional area, AD, was determined as AD� 73A

� 2,
and the limiting ionization constants, pKas, for bases and acids were determined as 9
and 4, respectively [52]. For intestinal barrier permeation, the limiting cross-sectional
area was assessed as AD� 100A

� 2, and the limiting ionization constants (pKas) for
bases as 9 and for acids as 2 [53]. In this approach, the role of P-gp is again
implicit [49].
To predict membrane barrier permeation in silico, we developed an algorithm that

determines the molecular axis of amphiphilicity and the cross-sectional area, ADcalc,
perpendicular to this axis. Starting with the conformational ensemble of each
molecule, the three-dimensional membrane-binding conformation was determined
as the one with the smallest cross-sectional area, ADcalcM, and the strongest amphi-
philicity. The calculated cross-sectional areas, ADcalcM, were then correlated with the
calculated octanol–water distribution coefficients, logD7.4, of the 55 compoundswith
known abilities to permeate the blood–brain barrier, to predict the probability of
blood–brain barrier permeation. The limiting cross-sectional area was ADcalcM¼
70A

� 2, and the optimal range of octanol–water distribution coefficients was �1.4	
logD7.4< 5.0. The correlation was validated with an independent set of 43 com-
pounds with known abilities to permeate the blood–brain barrier and yielded a
prediction accuracy of 86% [59].
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18.4
Discussion

We now compare the main descriptors obtained from the different in silico models
(Section 18.3) with the physicochemical parameters that allow a quantitative descrip-
tion of the different aspects of P-gp transport (Section 18.2).

18.4.1
Prediction of Substrate-P-gp Interactions

Most pharmacophore models for P-gp substrate prediction have similar predictive
accuracies. All three-dimensional pharmacophores use similar features such as size-
related parameters, hydrogen-bond acceptors, hydrophobicity parameters, aromatic
rings, and ionizable groups. Thereby size- and charge-related parameters and
hydrogen-bond acceptor groups were generally considered as the most relevant
descriptors. Despite these agreements, the resulting pharmacophores showed no
similarity at all, raising the question whether three-dimensional lock/key-type
pharmacophores are appropriate for P-gp. Moreover, it is difficult to envisage how
a single pharmacophore could account for the different affinities of drugs to the
transporter. Variable binding affinities can, however, only be explained withmodular
binding approaches.

18.4.2
Prediction of ATPase Activity or Intrinsic Transport

The binding affinity of a substrate to P-gp seems to directly influence the rate
of transport as seen in Figure 18.6. ATPase activity (or the intrinsic transport rate by
P-gp) decreases with increasing binding affinities of substrates to the transporter.
Rather accurate predictions are possible assuming modular binding [26, 32, 78]
using Equation 18.12 [79]. The modular binding principles also allow the prediction
of the extent of competition between different substrates for binding P-gp
(see Ref. [79]).

18.4.3
Prediction of Transport (i.e., Apparent Transport)

Pharmacophore models, linear discriminate models, and rule-based models agree
with respect to the relevance of size and charge for transport by P-gp and also agree
with experimental investigations [80]. This is also consistent with the analysis of net
influx (Section 18.2.2), which shows that increasing size (or cross-sectional area) and/
or charge of themolecule diminishes the rate of diffusion that in turn unmasks active
transport rates [49]. It can thus be concluded that compounds that are large, have
hydrogen-bond acceptors, and are cationic are likely to be apparent substrates for
P-gp. Large molecules with hydrogen-bond acceptor groups are also at risk when
being effluxed by transporters with overlapping substrate specificities.
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18.4.4
Prediction of Competition

Hydrogen-bond acceptor groups and size-related descriptors are also dominant in
QSAR models predicting P-gp inhibitors on the basis of competition assays.
However, substrate–transporter interactions are most likely not determined by the
size of the substrate as such, but rather by a concomitant increase in residues that can
undergo specific interactions with the transmembrane sequences of P-gp (for details
see Ref. [32]). A good estimate of the competitive potential of compounds is possible
on the basis of the total hydrogen-bond acceptor strength alone, if the lipid-binding
properties of the compounds are comparable [35, 81].

18.4.5
Conclusions

Considerable effort has been put into the development of in silico methods that
predict apparent transport by P-gp and competition for P-gp-binding sites. The
models cited include pharmacophore, linear discriminant and rule-based models,
respectively, and a modular binding approach. The first three in silico models are
strongly based on transport assays that are very complex and determine apparent
rather than intrinsic transport rates by P-gp. Although the differentmodels discussed
are very diverse, they nevertheless agree with respect to the relevance of size and
charge of the molecule for apparent transport; they also agree on the relevance of
hydrogen-bond acceptor groups as recognition elements for P-gp. However, they
disagree greatly with respect to the proposed structural arrangement of recognition
elements. At present, only the modular binding approach that considers small
hydrogen-bond acceptor patterns as binding modules allows modeling the different
binding affinities of the enormously diverse intrinsic substrates for P-gp. Translation
of the results obtained from these investigations into the synthesis of new ligands or
into an optimization of known ligands could lead to a reduction of MDR.
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