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Abbreviations

AZ AstraZeneca
BCS Biopharmaceutics Classification System
BNN Bayesian neural network
CAD Charged aerosol detector
CD Candidate drug
CLND Chemiluminescent nitrogen detection
ClogP Calculated logP
DMPK Drug metabolism and pharmacokinetics
DMSO Dimethyl sulfoxide
ELSD Evaporative light scattering detector
HI Hit identification
HPLC High-performance liquid chromatography
HTS High-throughput screening
HTSol High-throughput solubility
LI Lead identification
LO Lead optimization
MLR Multiple linear regression
PLM Polarized light microscopy
PLS Partial least squares
PXRD Powder X-ray diffraction
QSPR Quantitative structure–property relationship
SAR Structure–activity relationship

Symbols

Ksp Solubility product
MX Salt of acid or base
Mþ Protonated base or cationic counterion to conjugate base
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pKa Acid dissociation constant
S Solubility of a compound at a particular pH
S0 Solubility of a compound in its neutral form/intrinsic solubility
X� Conjugate base or anionic counterion to protonated base

2.1
Introduction

Aqueous solubility is one of the key physicochemical properties in drug discov-
ery [1, 2]. High solubility in intestinal fluid provides the concentration gradient that
drives the absorption of orally administered drugs and subsequent distribution to the
site of action to elicit a pharmacological response. For intravenously administered
agents, sufficiently high solubility in plasma is critical to minimize undesirable
precipitation in the systematic circulation. Generally, poor aqueous solubility leads to
formulation challenges in development, raising costs during this phase. Aqueous
solubility data facilitate the interpretation of biological assay results. In particular,
poorly soluble compounds can precipitate out of solution during a high-throughput
screening (HTS) campaign, thereby giving undesirable false negatives and/or false
positives, the latter via binding of the target to aggregates [3, 4]. In the absence of
solubility information at theHTS stage, such false hits can go unnoticed and hamper
structure–activity relationship (SAR) interpretation. Poor aqueous solubility can lead
to problems in vivo, such as incomplete absorption following oral administration [5],
variable bioavailability, fed/fasting effects [6, 7], and difficulties in establishing a
sufficient safety margin following dose escalation studies. Moreover, poor solubility
is relatively difficult to modulate in the later stage of a discovery project, where the
core structure of the lead series is more or less defined. Enabling formulations, such
as nanoparticle technology or polymer dispersion, may provide a solution by particle
size reduction, offering an enhanced dissolution rate (Chapter 22). These approaches
could show benefits in formulating BCS (Biopharmaceutics Classification System)
class II compoundswhere solubility is low (dose limitation is likely) and permeability
is high, and the limiting factor for absorption is the rate of dissolution, rather than the
passage across the intestinal barrier [8].
The search for potent chemical series in drug discovery means that for certain

biological target types there can be a tendency toward lipophilic and/or planar
structures to maximize interactions at the active site. However, the solubilities of
these compounds are generally low. On rare occasions, high potency may offset the
issue of low solubility because a low dose is sufficient to show the clinical benefit. An
example of this is montelukast (leukotriene D receptor antagonist, Clog P¼ 8.47), a
very potent compound (0.1 nM) that due to low dose renders solubility no longer an
issue [9]. To enable speedy progression of the chemical series of interest along the
discovery pipeline, it is important to aim for a good balance of parameters, for
example, solubility, exposure, and acceptable toxicity profile, while improving on
potency. This translates into a need for physicochemical property assays with greater
throughput or more reliable property prediction. The latter will be covered in
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Chapter 4. In this chapter, we will focus on the experimental aspect of aqueous
solubility and its interplay in discovery chemistry, DMPK, and bioscience assays.
Particular emphasis will be placed on the latest technologies for determining
aqueous solubility and the use of the solubility data in different phases of drug
discovery.

2.1.1
Definition of Aqueous Solubility

Solubility is usually expressed as log S, where S is the saturated compound concen-
tration in mol/l in equilibrium with its most stable crystalline form under certain
defined conditions (e.g., physiological pH at room temperature over an extended
period of time, typically 24–48 h). This is also knownas the thermodynamic solubility.
The typical log S values for discovery compounds vary from �3 (1mM) down to �7
(0.1mM). In contrast, kinetic solubility refers to the solubility value determined
within a defined period of time, which is usually much shorter than 24 h. Since
equilibrium conditions are not often achieved in this time frame, the compound is
typically not in its most stable crystalline form. Therefore, the kinetic solubility value
is normally higher than that obtained from the thermodynamic approach. Despite
these caveats, kinetic solubility measurement can be set up in a high-throughput
assay format andhas beenused by somepharmaceutical companies to identify poorly
soluble compounds in the very early stage of drug discovery.
A search [10] of the World Drug Index revealed that 62.5% of marketed drugs are

ionizable, which implies that these substances can exist in various charged states
depending on the pH of the media. For ionizable drugs, solubility is pH dependent,
and it is therefore important to understand the solubility in the context of pH.
Ionization of a compound can be defined by the acid dissociation constant, pKa. For
the case of monoprotic compounds, the solubility at a given pH can be described by
the following equations:

base : S ¼ S0ð1þ 10pKa�pHÞ; ð2:1Þ

acid : S ¼ S0ð1þ 10pH�pKaÞ; ð2:2Þ
where S0 denotes the solubility of the compound in its neutral form, also referred to
as intrinsic solubility. Figure 2.1 shows the pH–solubility profiles generated using
Equations 2.1 and 2.2. It can be seen that the solubility of ionizable compounds is
limited by the solubility of the neutral form of the compound. Depending on the
charge types, solubility increases as pH decreases (base) or increases (acid) until a
critical pH is reached, where the salt form and solubility product Ksp become
solubility limiting (Equations 2.3 and 2.4) [11].

MXðsÞ > Mþ
ðaqÞ þX�

ðaqÞ; ð2:3Þ

Ksp ¼ ½Mþ
ðaqÞ�½X�

ðaqÞ�: ð2:4Þ
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2.1.2
Aqueous Solubility in Different Phases of Drug Discovery

Figure 2.2 shows a schematic diagram of the drug discovery process. The target
identification phase seeks to identify the biological target, signaling the start of
a discovery project. Solubility evaluation typically begins in the hit identification (HI)
phase enabling physicochemical characterization of hits and interpretation of biologi-
cal and DMPK assay data. In lead identification (LI), solubility data facilitate the
selectionof �drug-like� leadseries thatwill allowswift identificationofacandidatedrug
(CD). Within the lead optimization (LO) phase, solubility data provide a formulation
risk assessment for CDs entering development. Moreover, throughout the HI/LI/LO
phases, solubility data are also used extensively as part of molecular design.

2.2
Aqueous Solubility in Hit Identification

In the HI phase of a discovery project, a variety of strategies are employed to identify
potential hit series. HTS, focused subset library screening, and fragment library

Figure 2.2 Different phases of drug discovery.

Figure 2.1 Theoretical solubility–pH profiles of a base with pKa of 8 and an acid with pKa of 4.
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screening represent a selection of the approaches undertaken in trying to find a good
hit series. Besides an assessment of potency, it has become increasingly important to
simultaneously understand the physicochemical properties of such potential leads to
enable rapid identification of quality series most likely to progress quickly to CD
delivery. Such front loading of physicochemical property assessment has required the
introduction of solubility screens capable of handling the large number of com-
pounds coming out of biological testing during this phase. Various solubility screens
have been established in discovery to this end, but all share the common features of
requiring compounds to be solubilized in DMSO as the starting point, since this
facilitates rapid dispensing from company collections and the use of plate-based
automation.

2.2.1
Aqueous Solubility from DMSO Solutions

It is the universally accepted practice within pharmaceutical companies to store
compounds both as solids and as solutions in DMSO. Typically, as at AstraZeneca
(AZ), a concentration of 10mM or similar is used. From this, the stock samples are
taken for a wide variety of tests including aqueous solubility screens. Using a
DMSO solution as the starting point for a solubility assay presents a number of
advantages. The automated nature of solution dispensing facilitates the study of a
large number of compounds: sample consumption is usually significantly less than
that in classic thermodynamic assays where solubility is measured from solid
material and where DMSO solution in the aqueous sample is kept low, typically and
at the 1% level or less, and there is minimal cosolvent effect [12] (see also
Figure 2.3). The use of a DMSO stock solution does, however, mean that the

Figure 2.3 The solubility ratios of a set of 43 in-house compounds
measured in phosphate buffer at pH 7.4 with and without 1%
DMSO by the classic shake-flask method from solid. Compounds
span a solubility range from 0.2mM to 5mM.
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upper end of the dynamic range of the solubility assay is defined by the choice of the
stock concentration in the company collection and the final DMSO percentage in
the aqueous sample. In the case of AZ, a 10mM DMSO stock combined with a 1%
final cosolvent concentration in the high-throughput solubility (HTSol) assay
means the assay upper limit is fixed at 100mM. This is typically less than can be
achieved from a solid-based assay.
Many of the HTSol assays reported in the literature using DMSO solution are

�kinetic� HTSol assays. Such assays analyze the aqueous samples after only a short
period of agitationwith timescales ranging from immediately following precipitation
to several minutes. In contrast, �thermodynamic� HTSol assays typically involve
agitation for a minimum 24h period and often longer. Kinetic solubility assays are
consequently easier to run and as such are frequently used as a frontline assay to
provide an initial ranking of lead series [13, 14]. In addition, kinetic solubility data
have been applied to the interpretation of biological assay data where the measure-
ment timescale and precipitation following dilution of a DMSO stock solution into
aqueous media more closely mirror the process of biological assay testing [15].
Kinetic solubilities are by definition very time dependent and as such results can be

less reproducible than thermodynamic solubility values. The short timescale also
means that they are more dependent on the physical form of the initial precipitate.
Consequentially, the correlation between kinetic and thermodynamic solubility is
generally poor, with the kinetic measurement usually giving higher values [12, 16].
However, an advantage this can bring is that therewill be few compounds excluded as
false negatives in this phase.
HTSol assays employingDMSOstock solutions vary in the nature of the analysis of

aqueous samples. Two approaches are commonly observed: (1) turbidimetric meth-
ods, where the formation or loss of precipitate is monitored against concentration,
and (2) direct quantification of compound in solution by UVabsorption spectroscopy
following removal of precipitate by filtration.

2.2.1.1 Turbidimetric Methods
Turbidimetric methods rely on the measurement of light scattering from precipitate
in solution to determine solubility. The initial approach, described by Lipinski,
involves the stepwise addition of aliquots of DMSO stock solution at 1min intervals
to aqueous buffer in a UV cuvette until precipitation occurs when the kinetic
solubility limit is achieved [1]. Precipitation is identified by an absorbance increase
due to blockage of light by the particles in the range 600–800 nm using a diode array
UV spectrometer. Using this approach, Lipinski is able to determine kinetic solu-
bilities in the range 5–65mg/mlwith an upper limit of 0.67%DMSOcosolvent. Other
turbidimetric methods have used fixed DMSO compositions (between 0.3 and 5%
cosolvent) to avoid any potential cosolvent effects on solubility and have looked for
precipitation following serial dilution [13, 14, 17, 18]. Alternative light scattering
detectionmethods have also been used, including nephelometry [14, 17, 18] and flow
cytometry [19]. Bothmake use of the perturbation of a laser beam passed through the
sample. Nephelometric detection in a 96-well plate format is more amenable to
automation and offers higher throughput than linear flow-through approaches, such
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as cytometry, or incremental DMSO addition to a UV cuvette. However, nephelome-
ter readings are very sensitive to plate quality, and the presence of scratches or dust
can give rise to erroneously low solubility values.

2.2.1.2 UV Absorption Methods
The alternative method to turbidimetric detection used for measuring solubility in
early discovery is to quantify the aqueous supernatant directly via UV absor-
bance [13, 20, 21]. Typically, DMSO stock solution is added to aqueous buffer such
that the final DMSO composition is kept to a minimum (5% or less) and the
resulting precipitate is removed by filtration. A UV plate reader is then used to
determine the aqueous solubility by comparing the filtrate absorbance against that
of a calibration solution prepared in an identical solvent. It is important to match the
sample and calibration solutions to prevent solvochromic effects. Care must also be
taken in the selection of the filter plate since nonspecific binding of compound can
occur with some filter materials leading to erroneously low solubility values [22].
Like nephelometry, the plate-based UV detection approach is amenable to
automation.
Aswith turbidimetric assays,many of the directUVabsorbance assays are set up to

determine kinetic solubility. However, the UV absorbance method also lends itself
well to thermodynamic solubility determination by extending the period of sample
agitation prior to filtration to 24 h or more. This offers a number of advantages. The
solubility data generated are less dependent on the physical form of the initial
material precipitated from DMSO and are much closer to thermodynamic solubility
values determined later in discovery and in early development. As such, it givesmore
consistent solubility data through the discovery phase and enables a better quality
early assessment to be made of the likely difficulties or otherwise of progressing a
lead series into development.
It is a version of this latter assay that has been established as our current frontline

solubility measurement in the hit identification phase of discovery [23]. The assay
uses 10mMDMSO stock solution, which is diluted into aqueous buffer at pH 7.4 to
give a final DMSO composition of 1%. Samples are agitated for 24 h using magnetic
stirrer bars prior to plate filtration to remove precipitate. This sample is further
diluted and compared against a calibration solution of known concentration also
taken from the 10mM DMSO stock and diluted to the same solvent composition.
The assay is based on a 96-well plate format using a UV diode array plate reader.
This has enabled full automation of the assay with over 600 compounds measured
in each run.
One of the concerns raised with the direct UVabsorbance approach is that without

HPLC separation the presence of impuritiesmay cause erroneous solubility values to
be reported. This is also a concern for turbidimetric methods. However, with strict
purity criteria for registration of compounds into the company collection, this has
helped to lessen this concern. In addition, for this assay an algorithm has been
written that checks theUVspectrumof the sample against that of the calibration. Any
significant impurities or decomposition occurring during the 24 h agitation period
are readily picked out as a spectral mismatch [23].
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To determine how similar solubility values from our high-throughput DMSO-
based thermodynamic assay are to classical thermodynamic solubilities measured
from solid, a diverse test set of 200 predominantly in-house compounds were
compared. In the case of the latter assay as well as starting from solid material, the
method included HPLC analysis and separation of undissolved solid from the
supernatant via double centrifugation. Figure 2.4 indicates that there is a good
correlation between the two methods with most compounds giving solubilities
within a factor of 3. Given the potentially different physical forms of the
compound generated in the two assays, this seems reasonable. It is noted that the

Figure 2.4 Correlation between the solubility of
the test set obtained from the solid solubility
assay (x-axis) and from the high-throughput
solubility assay (y-axis; average of four
experiments). The black line is the 1 : 1 line.
Symbol � represents in-house compounds.
Symbol ^ represents commercial compounds:
1 – disulfiram, 2 – diethylstilbestrol, 3 –

griseofulvin, 5 – haloperidol, 6 –mebendazole, 7
– glyburide, 8 – nifedipine, 9 – albendazole, 10 –
bumetanide analogue, 11 – loperamide, 12 –

astemizole, 13 – nimodipine, 14 – loratadine.
Symbol in circle represents the negative outlier
as discussed in the text. Reprinted with
permission from [23].
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effect of different crystalline polymorphs on solubility can typically be within this
range [24, 25]. There are a number of outliers in the plot that predominantly fall on the
side of greater solubility for the DMSO-based assay. Literature and our own studies
suggest that this enhanced solubility effect is unlikely to be caused by the solubilizing
effect of 1% DMSO [12]. Figure 2.3 shows the solubility ratios of a set of 43
compounds measured in buffer with and without 1% DMSO by the classic thermo-
dynamicmethod. The compounds span a solubility range from 0.2mM to 5mM. The
presence of 1% DMSO has minimal impact on the solubility, with a factor of 3.6 the
largest enhancement observed. It ismore likely that the enhanced solubility observed
for the outliers reflects that the compounds have precipitated fromDMSOsolution as
amorphous material and this has not yet reached true equilibrium with their
crystalline formduring the 24 h agitation period. Literature indicates that differences
in solubility between amorphous and crystalline forms of a compound can be
significant [26]. A similar explanation has also been reported for positive outliers
observed in an extended agitation solubility study using HPLC–UV analysis [16].
There is one significant negative outlier in Figure 2.4. Further studies ruled out any
retention to the filter membrane as a possible explanation. Powder X-ray diffraction
on the postsolubility samples for this compound in a scaled-up experiment revealed
that the DMSO method had generated a crystalline sample in 24 h whereas the
sample from the experiment starting from solid material was predominantly
amorphous after this period. This interesting observation highlights that for certain
compounds DMSO precipitation conditions can facilitate formation of crystalline
material.

2.2.1.3 Alternative Detection Methodology
A further recent approach taken to deliver higher throughput kinetic and thermody-
namic aqueous solubility measurements from DMSO and solid, respectively, in-
volved changing the assay detection method from UV to one that does not require
compound-specific calibration, namely, chemiluminescent nitrogen detection
(CLND) [27, 28]. The CLND detector is able to quantify the nitrogen content of the
aqueous sample using a generic nitrogen calibration curve, and from the knowledge
of the number of nitrogen atoms in the molecule the aqueous concentration and
hence the solubility is determined. Eliminating the need for a compound-specific
calibration solution reduces assay sample consumption relative to UVmethods, and
the technique is fast when coupled with direct flow injection onto the detector.
However, the sensitivity of the CLND detector to nitrogen necessitates rigorous
laboratory housekeeping to avoid contamination of the instrument from nonsample
nitrogen sources. Regular recalibration of the CLND detector is required to retain
accuracy, and a linear response is not observed for all nitrogen environments; for
example, adjacent nitrogen atoms in amolecule are known to be a special class. Care
must also be taken if HPLC is not used with the detector to ensure that no nitrogen-
containing impurities are present in the sample.
Other universal detectors have been suggested as potential replacements forUV in

solubility assays including ELSD and CAD, although at present no specific assay has
been reported [29].
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2.2.1.4 Application of DMSO-Based Solubility Assays
The advent of fully automatedDMSO-based solubility assays hasmeant that aqueous
solubilities can now be determined on HTS output in parallel with biological testing
to enable rapid identification of quality hit series from a physicochemical perspec-
tive [2]. Figure 2.5 shows an AZ project example where simultaneous solubility and
potency measurements highlighted 1 out of 19 hit series as having poor physico-
chemical properties. A comparison of solubility data with potency data also enables
identification of potential false hits, which can be removed to facilitate SAR
understanding. Automated DMSO-based solubility assays have also shown benefits
in library screening. In relation to this, our thermodynamic HTSol assay described
above has been successfully applied to the selection of compounds forming the AZ
in-house generic fragment library [23]. Fragments typically show weak binding to
molecular targets and so are normally screened at high concentrations. Consequent-
ly, good aqueous solubility is one of the key criteria to satisfy in establishing a
fragment library. It has been demonstrated that by using a training set of 3234 neutral
compounds, a clear relationship could be established between measured solubility
and predicted logP (ClogP) (Figure 2.6) [23]. The use of binning and percentiles in
Figure 2.6 enables maximum information to be extracted from data covering a small
dynamic range. In particular, multiple percentiles (10, 20, 30, 40, and 50) capture the
variation in log S and reveal the strength of the trend with ClogP. This analysis was
applied to all the potential fragment library compounds. Neutral fragments with
ClogP less than 2.19 were assumed to have acceptable solubility, while those with
higher values were submitted for solubility measurement. Only those compounds
with solubilities at or above the upper quantification limit for the solubility assaywere
accepted into the fragment library.

2.3
Aqueous Solubility in Lead Identification and Lead Optimization

In the lead identification and lead optimization phases of discovery, there is greater
focus on thermodynamic solubility measurements. Thermodynamic solubility as-
says are designed to determine the solubility of the stable crystalline form of the
compound, since this is the physical form that will be sought in the development
phase for orally administered drugs. As such, thermodynamic solubilities provide
discovery projects with a better risk assessment of likely formulation issues in
development. Thermodynamic solubilities, unlike kinetic solubilities, are less de-
pendent on the initial physical form of the compound and being less time critical also
tend to bemore reproducible. This is particularly important from amolecular design
perspective where chemists are seeking to modify molecular structure to improve
solubility.
Classically, thermodynamic solubility is measured using the shake-flask method

[21, 30]. Thismethod involves addition of an excess of solid to aqueous buffer at fixed
pH. The solution is stirred for a minimum of 24 h prior to separation of the
supernatant from undissolved material via centrifugation or filtration followed by
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HPLC–UV analysis. The need for weighing out of solid and an analysis via HPLC
mean that the method has generally low throughput. However, the increasing
demand for thermodynamic solubilities in discovery has led to the development of
automation-friendly methods on the basis of the shake-flask approach. Many of
these methods make use of DMSO stock solutions as the starting point for the
assay, thereby exploiting the automated compound dispensing facilities within
pharmaceutical companies. The assays retain the minimum 24 h agitation of the
shake-flask method with analysis of supernatant being either via HPLC–UV or
direct UV.

2.3.1
Dried-Down Solution Methods

Another approach to increase the throughput of thermodynamic solubility measure-
ment in discovery involves evaporating a DMSO stock solution to dryness at the start
of the assay [12, 22, 31]. Aqueous buffer is added to the dried-down solid, which is
then agitated for 24 h followed by HPLC–UV or UV analysis of the supernatant.
Removal of all the DMSO solvent ensures that the solubility value is not enhanced by

Figure 2.6 Percentiles for solubility for training set fragments as a
function of mean ClogP for each bin. Data partitioned by ClogP
into 10 bins each with 356 solubility measurements. Reprinted
with permission from [23].
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any cosolvent effects. A further advantage of this method is that, as with the classic
shake-flask approach, a larger solubility dynamic range can be achieved compared
with direct DMSO-based methods. Appropriate selection of DMSO volume to be
evaporated coupled with buffer volume selection allows the upper assay limit to be
extended by an extra order of magnitude (�1mM). It should be noted that care must
be taken establishing evaporation conditions to avoid loss of volatile or thermally
labile compounds. Solubility data using this approach have been reported to give a
good correlation with thermodynamic solubility values determined by the classic
shake-flask methods [12, 22, 31]. Incidences where differences have been observed
are thought to reflect cases where equilibriumwith the stable crystalline formhas not
been achieved by the dried solid method in the 24 h timescale [31].

2.3.2
Solubility from Solid

Many approaches to determine thermodynamic solubility in drug discovery have
focused on miniaturizing the classic shake-flask method with solid samples manu-
ally weighed and dispensed into 96-well plates or 96-vial arrays [32–34]. The 96-well
format enables the use of liquid handling robots to improve throughput. As with the
standard shake-flaskmethod, aqueous buffer is added and the solution is agitated for
a minimum of 24 h prior to plate filtration or centrifugation to remove the superna-
tant, which is then analyzed by HPLC–UV or direct UV.
Given the large number of compounds evaluated in discovery for solubility and the

small quantities of solidmaterial available, the physical form of the starting solid and
that at the end of the agitation period is rarely characterized. Often the starting solid
material will be amorphous [35] reflecting the compound purification techniques
used by chemists today, which are largely based on preparative HPLC. Recrystalliza-
tion techniques are generally no longer used.
In all thermodynamic solubilitymethods, an assumption ismade that in the 24 hof

agitation the initial form of the compound is able to convert to the stable crystalline
form. Evidence indicates that compounds can convert from amorphous to crystalline
forms and can also change polymorphs in this period [24, 36]. However, not all
compounds are able to equilibrate to the most stable polymorph during this time
frame [37]. The question then arises what impact does the initial solid state have on
the thermodynamic solubility result reported and how often does the compound
convert to its most stable crystalline form in the solubility assay. Pudipeddi et al. [24]
showed with a data set of 81 compounds that there was little difference in the
solubilities of different crystalline polymorphs and that typically the solubility ratio
was no greater than 2. Similar observations were made by Hancock et al. [26], who
showed that themost significant solubility differences occurred between amorphous
and crystalline materials. In an attempt to understand how often crystalline material
is generated from amorphous samples in thermodynamic solubility assays, we have
taken a diverse set of commercial compounds, measured the solubility starting from
crystalline and amorphous solids, and compared the solid form by powder X-ray
diffraction (PXRD) (Table 2.1). From Figure 2.7, it is apparent that most amorphous
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compounds reach equilibration with crystalline material in the course of the assay
(Figure 2.8). A few positive outliers were seen by PXRD to be amorphous at the end of
the experiment (Figure 2.9). Similar observations have been made by Sugano, who
examined the solubility of a series of compounds starting from DMSO solution
following 20 h of agitation with characterization of the final solid state by polarized
light microscopy (PLM) [16]. Indirect evidence also suggests that most compounds
are able to generate a stable thermodynamic solubility value in 24 h. For example,
subsequent batches of the same compound made in AZ discovery projects show
small solubility differences (�0.44 log units, see Figure 2.10).Moreover, in general, it
is observed that there are good correlations between data produced in thermody-
namic solubility assays starting from solid, dried DMSO solution [12, 22, 31], and
DMSO solution (Figure 2.4).

2.3.3
Thermodynamic Solubility Assays with Solid-State Characterization

More recently in discovery there has been a trend toward developinghigh-throughput
thermodynamic solubility assays, which incorporate a solid-state assessment at the
end of the period of agitation. This assessment aids interpretation of the solubility
data and is an important consideration when relating the solubility data to molecular
structure. Solid-state characterization methods include the use of PLM [16], micro-
scopic analysis [34], PXRD [32, 33], and Raman microscopy [22]. With all these

Table 2.1 The aqueous solubility of 16 drug molecules at pH 7.4
measured from crystalline and amorphous solid materials
using the shake-flask method (24 h agitation).

Drug name
Crystalline
solubility (lM)

Amorphous
solubility (lM)

Solubility
ratio (amorphous/
crystalline)

Disulfiram 2.2 3.2 1.5
Astemizole 3.5 4.3 1.2
Bicalutamide 4.6 6.1 1.3
Ketoconazole 5.2 5.6 1.1
Loperamide 6.6 444.3 67.5
Glyburide 9.5 56.8 6.0
Griseofulvin 15.3 18.0 1.2
Terfenadine 15.7 21.3 1.4
Nifedipine 41.9 882.4 21.1
Haloperidol 52.3 54.7 1.0
Testosterone 57.9 69.0 1.2
Flutamide 92.9 79.8 0.9
Bitolterol 103.0 77.2 0.7
Diazepam 130.0 132.3 1.0
Carbamazepine 428.6 456.2 1.1
Chlorzoxazone 1360.0 1626.2 1.2
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methods having sufficient solid sample postincubation is key. It has been shown that
PLM can be applied to a DMSO-based solubility assay with a sample size of 0.6mg,
enabling an amorphous/crystalline interpretation of remaining solid [16]. Direct
analysis is made of the solid following centrifugation of the sample solution in a 96-
well glass-bottomed plate. A similar interpretation has been reported using micro-
scopic analysis from a solubility assay (PASS) using 0.5–4mg of sample [34]. In this
case, the supernatant is removed following centrifugation and the remaining solid
resuspended in silicon oil prior to analysis. More recently, Raman spectroscopic
analysis has been added to this assay to enable changes in solid form to be
identified [22]. Those thermodynamic solubility assays that characterize the remain-
ing solid by the gold standard method, PXRD, generally require larger amounts of
solid than microscopy techniques [32, 33]. A high-throughput thermodynamic
solubility assay has been reported including PXRD assessment using 3mg of solid
sample [32]. The sample solution is filtered following 17 h shaking using custom-
built nickel filter plates. The nickel filter serves as an effective means of presenting
the remaining solid to the PXRD instrument, since it does not give background
diffraction in the analysis window.

Figure 2.7 Plot of aqueous solubility using amorphous versus
crystalline material at pH 7.4 following 24 h agitation. (1)
Disulfiram, (2) astemizole, (3) bicalutamide, (4) ketoconazole, (5)
loperamide, (6) glyburide, (7) griseofulvin, (8) terfenadine, (9)
nifedipine, (10) haloperidol, (11) testosterone, (12) flutamide,
(13) bitolterol, (14) diazepam, (15) carbamazepine, (16)
chlorzoxazone.
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2.3.4
Solubility by Potentiometry

Potentiometry is a further technique used tomeasure aqueous solubility in discovery,
although throughput limitationsmean that this technique is usedmost often later in
the LO stage. Potentiometric approaches specifically measure intrinsic solubility,
which is the solubility of the neutral form of the molecule [38].
With the potentiometric approach, determination of intrinsic solubility is based

upon the measurement of the pH shift caused by compound precipitation during
acid–base titration of ionizable compounds. Two commercial potentiometric meth-
ods currently available are pSol [30, 39] and Cheqsol [40–42]. In the pSol method
developed byAvdeef, aminimumof three titrations in the direction of dissolution are
performed. Normal pH versus volume titration plots are reexpressed as Bjerrum
plots, that is, average number of bound protons versus pH. The Bjerrumplots enable
the shift in compound pKa to be more readily observed and are used to determine
intrinsic solubility (S0) via Equation 2.5:

log S0 ¼ log
C
2

� �
� pKa

app�pKað Þ; ð2:5Þ

Figure 2.8 PXRD traces of bicalutamide: (a) the initial crystalline
sample; (b) the initial amorphous sample; and (c) bicalutamide
post-24 h agitation in phosphate buffer from the amorphous
sample.
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where S0 is the intrinsic solubility,C is the total concentration of compound, pKapp
a is

the measured pKa in the presence of precipitation, and pKa is the measured aqueous
pKa (no precipitation).
Intrinsic solubilities determined by pSol have been shown to agreewell with values

derived by shake-flask methods and have the advantage of requiring less compound
since the technique does not require a sample calibration [39]. The time taken for
each pSol solubility measurement is compound specific with 3–10 h quoted as
typical [39]. Poorly soluble compounds can take longer than this and can be prone
to reprecipitation causing outlying titration points. In these circumstances, the
manufacturer�s recommendation is to repeat the titrations in the presence of
cosolvent spanning a range of percentage compositions and extrapolate back to the
pure aqueous solubility value. Although this can improve the speed and accuracy of
the titration, the need for further titrations generally adds to the overall experiment
time. When undertaking the titrations, consideration should also be given to the
compound physical form, which is usually not characterized. The initial physical
form of the compound supplied may differ from that which is reprecipitated after
each titration, and this can affect the solubility reported between the first and
subsequent titrations. It should also be noted that since the time the solid spends
in equilibrium with the aqueous solution at each pH is very short, there is less

Figure 2.9 PXRD traces of nifedipine: (a) the initial crystalline
sample; (b) the initial amorphous sample; and (c) nifedipine post-
24 h agitation in phosphate buffer from the amorphous sample.
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opportunity for the thermodynamically stable form of the compound to be produced
in the pSol method than in the 24 h of the classic shake-flask solubility method.
TheCheqsolmethodusesasimilarexperimentalsetuptopSol.However, incontrast

to pSol, the Cheqsol method begins with the compound in solution and titration is
followeduntilprecipitation isdetectedby lightscatteringviaaUVspectroscopicprobe.
At this point, the solution is switched repeatedly between a state of subsaturation and
that of supersaturation by the addition of small amounts of acid and base to rapidly
generate the point of equilibrium, from which the intrinsic solubility is calculated.
As with the pSol technique, determination of the intrinsic solubility requires an
accuratemeasure of the compound aqueous pKa, and for poorly soluble compounds,
titration in cosolvent with extrapolation to the aqueous state is used. The Cheqsol
technique has the advantage of being relatively quick to achieve a state of equilibrium
withexperiment times in theregionof1 hforcompounds thatdonot requirecosolvent
extrapolation. It has been shown with two compounds, diclofenac and sulindac,
that changes in the crystalline polymorphs can occur as a result of the potentiometric
cycling inCheqsol [41, 43].How the physical forms of the solid generated via Cheqsol
compare to those observed in classic shake-flask studies is yet to be established.

2.3.5
Application of Thermodynamic Solubility Data in LI and LO

In LI and LO, thermodynamic solubility data are used to aid the understanding of
DMPK data and guide formulation. When solubility is low, DMPK issues arise, such

Figure 2.10 Difference between the maximum and minimum log
solubility measured for different batches of each compound
(n¼ 360). Values greater or less than assay detection limits (over-
range values) have been excluded from the analysis. The mean
log Smax� log Smin¼ 0.44.
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as poor and variable bioavailability, fed/fasting effects [6], and lack of dose linearity.
Poorly soluble molecules can also present significant and time-consuming formula-
tion challenges during development. In trying to address these issues and challenges,
solubility data are frequently used as a part of molecular design in discovery. In this
respect, thermodynamic solubility data have been successfully applied to local and
generic QSPR models using techniques such as BNN, MLR, and PLS [44] and to
matchedmolecular pair analysis to determine substituent effects [45, 46] (Chapter 4).
The latter approach has proved particularly useful for identifying novel structural
effects on solubility. For example, Figure 2.11 shows a project thatwas able to improve
solubility in a chemical series through incorporation of a single methyl group, not
obvious based solely on logP, but which is suggestive of an effect on crystal packing.
Interpretation of such observations requires that quality solubility data are used,
coupled with the knowledge of the solid state to remove any concern about physical
form effects. It is to be hoped that the trend toward increased characterization of the
solid state earlier in discovery will lead to greater exploitation of solubility data as part
of molecular design.

Figure 2.11 Crystalline solubility match pairs showing effects of the ortho-methyl substituent.
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2.4
Conclusions

Aqueous solubility is an important property in discovery that has an impact across
chemistry, DMPK, and formulation, and in the interpretation of biological assay
results. The difficulties faced in the accurate prediction of solubility mean that
measurement of aqueous solubility is essential from early HI onward. Automated
approaches based on kinetic solubility and turbidimetric readouts have been devel-
oped in response to the high numbers of compounds requiring characterization in
HI and also as a result of the desire to better understand biological assay data.
However, more recently this demand has switched to high-quality thermodynamic
solubilities to enable an early risk assessment of formulation issues in development
and to identify quality hit series. Such frontloading of thermodynamic solubility has
necessitated modification of the classic shake-flask approach to automation-friendly
formats, which offers higher throughputs and can exploit the ease of dispensing
provided by DMSO solution. In addition to this, there has also been a growing trend
toward increased solid-state characterization of the sample in the solubility experi-
ment during the LO stage of discovery. Such characterization means that there is a
better understanding of the discovery solubility data and consequently greater
confidence in its use to assess formulation risk when entering development and
enhanced application of solubility data in molecular design.
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3
Gastrointestinal Dissolution and Absorption of Class II Drugs
Arik S. Dahan and Gordon L. Amidon

Abbreviations

BA/BE Bioavailability/bioequivalence
BCS Biopharmaceutics Classification System
CMC Critical micelle concentration
FDA Food and Drug Administration
GI Gastrointestinal
IR Immediate release
IVIVC In vitro–in vivo correlation
NSAIDs Nonsteroidal anti-inflammatory drugs

Symbols

An Absorption number
CS Equilibrium solubility
D Diffusion coefficient
D0 Dose number
Dn Dissolution number
Peff Effective permeability
t�1
abs Effective absorption rate constant
tDiss Dissolution time
tres Residence time

3.1
Introduction

Modern drug discovery techniques (i.e., advances in in vitro high-throughput
screening methods, the introduction of combinatorial chemistry) have resulted in
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an increase in the number of low water solubility drug substances being selected as
drug candidates. According to some estimates, more than 40% of new drug
candidates are lipophilic and exhibit poor water solubility [1–3]. With very few
exceptions, dissolution of the drug substances in the aqueous gastrointestinal (GI)
milieu is a prerequisite for its absorption following oral administration. Hence, low-
solubility compounds often suffer from limited oral bioavailability. A great challenge
facing the pharmaceutical scientist is making these molecules into orally adminis-
tered medications with sufficient bioavailability. This chapter reviews the funda-
mentals of low-solubility, high-permeability drug substances and the intestinal
absorption process, including introduction to the Biopharmaceutics Classification
System (BCS) focusing on Class II drugs (see Chapter 19). We will discuss the
relevant variables affecting the absorption process of these compounds. In addition,
this chapter provides a perspective on regulatory issues concerning low-solubility,
high-permeability drug substances.

3.2
Drug Absorption and the BCS

The absorption of drugs following oral administration is a cascade of complex events,
and the rate and extent of the drug absorption are affected by many factors. These
include physicochemical factors (e.g., pKa, solubility, stability, diffusivity, lipophili-
city, surface area, particle size, and crystal form), physiological factors (e.g., GI pH,GI
blood flow, gastric emptying, transit time through the different GI segments, and
absorptionmechanisms), and factors related to the dosage form (e.g., tablet, capsule,
solution, suspension, emulsion, and gel) [4, 5].
When Fick�s first law is applied to amembrane, the absorption of a drug across the

GI mucosal surface under sink conditions can be written as

JW ¼ PW � CW ¼ dM
dt

� 1
A
; ð3:1Þ

where JW is the mass transport across the GI wall (mass/area/time), PW is the
effective permeability,CW is the concentration of the drug at themembrane, andA is
the surface area. As developed by Amidon et al. [6–8], the analysis of this equation
reveals that the fundamental events controlling oral drug absorption are the perme-
ability of the drug through the GI membrane, the dissolution of the drug in the GI
milieu, and the dose. These key parameters are characterized in the BCS by three
dimensionless numbers [7]: absorption number (An), dissolution number (Dn), and
dose number (D0). These numbers take into account both physicochemical and
physiological parameters and are fundamental to the oral absorption process.
The absorption number (An) is the ratio of permeability (Peff) and the intestinal

radius (R) multiplied by the residence time (tres), which can be interpreted as the
effective absorption rate constant ðt�1

absÞ times the residence time:

An ¼ absorption number ¼ Peff

R
tres ¼ t�1

abs tres: ð3:2Þ
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The dissolution number (Dn) is the ratio of the residence time and the dissolution
time (tDiss), which comprises the equilibrium solubility (CS), diffusivity (D), density
(r), the initial particle radius (r0), and the intestinal residence time (tres):

Dn ¼ dissolution number ¼ DCS

r0
¼ 4pr20

ð4=3Þpr30r
tres ¼ 3tresDCS

rr20
¼ tres

tDiss
:

ð3:3Þ
Finally, the dose number (D0) is the ratio of dose to dissolved drug:

D0 ¼ dose number ¼ M0=V0

CS
; ð3:4Þ

where CS is the equilibrium solubility, M0 is the dose, and V0 is the volume of water
taken with the dose, which is generally set to be 250ml. This volume was selected
based on a typical bioequivalence study that administered an 8 oz (240ml) glass of
water with the oral dosage form. Thus, 250ml, allowing a small GI residual volume,
represents the initial gastrointestinal volume to which an oral dosage form is exposed
in the fasting state. This number may be viewed as the number of glasses of water
required to dissolve the drug dose.
Based on their solubility and intestinal permeability characteristics, drug sub-

stances have been classified into one of the four categories according to the BCS
proposed by Amidon et al. [6] (Figure 3.1) (see Chapter 19):

. BCS Class I: High-solubility, high-permeability drugs. BCS Class I drugs are
generally very well absorbed. An immediate release (IR) product of this class is

Figure 3.1 The Biopharmaceutics Classification System as
defined by Amidon et al. [6]. The BCS is a classification of drug
substances according to their solubility and permeability
properties, in order to stand for themost fundamental view of the
drug intestinal absorption process following oral administration.
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expected to yield 100% intestinal absorption if at least 85% of the drug is dissolved
within 30min across the physiological pH. Hence, a waiver is granted for
bioavailability/bioequivalence (BA/BE) studies of BCS Class I IR drug products.

. BCS Class II: Low-solubility, high-permeability drugs. These drugs are the main
scope of this chapter. In general, BCS Class II drug products are likely to be limited
by the dissolution/solubility rate.

. BCSClass III:High-solubility, low-permeability drugs. The intestinal absorption of
this class of drugswill be limited by the permeability rate, as the dissolution is likely
to occur rapidly. Hence, it has been suggested that as long as the drug product does
not contain permeabilitymodifying agents, awaiver forBA/BE studies for this class
of drugs should be considered [9–12].

. BCS Class IV: Low-solubility, low-permeability drugs. These drugs are character-
ized by very poor oral bioavailability and tend to exhibit very large inter- and
intrasubject variability. Hence, unless the dose is very low, they are generally poor
oral drug candidates [1].

This BCS is one of themost significant prognostic tools created to facilitate product
development in recent years and has been adopted by the US Food and Drug
Administration (FDA) for setting BA/BE standards for drug product approval. The
validity and applicability of the BCS have been the subject of extensive research and
discussion, and classification of many drugs by the BCS is available in the litera-
ture [13–16]. Of particular interest are BCS Class II low-solubility, high-permeability
drug substances, which account for the majority of new chemical entities. This
chapter will focus on the different aspects of the intestinal absorption process of this
class of drugs.

3.3
Class II Drugs

Being low-solubility, high-permeability compounds, Class II drug substances are
characterized by high absorption number (An) and typically a high dose number (D0).
In these cases, dissolution might play a major role in the rate and extent of the oral
absorption. In general, the dissolution of low-solubility drugs is low, that is, Dn< 1,
while An andD0 are high. In cases where both An andDn are low, the compound will
be classified as a Class IV drug [17, 18].
The intestinal absorption of Class II drug substances can be broadly viewed as

dissolution limited or solubility limited. The concentration of the drug in the GI tract
milieu will be determined by dissolution rate, while the upper limit will be the
solubility. The classical example, still relevant today, which illustrates the effect of
dissolution number and dose number on the fraction of dose absorbed of highly
permeable drugs, is the case of digoxin and griseofulvin. A typical profile of the
fraction of dose absorbed as a function of the dissolution number and the dose
number for a large absorption number (i.e., highly permeable drug) is shown in
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Figure 3.2. It can be seen that for high An, the critical range of the dose number and
the dissolution number is around 1, where sharp changes in the fraction of drug
absorbed are obtained due to small changes in D0 and Dn [6].
Digoxin and griseofulvin have about the same solubility (�20mg/ml), but a very

different dose (0.5 and 500mg, respectively). Consequently, while digoxin has a very
low dose number (0.08), griseofulvin has a dose number,D0, of 133, which indicates
that over 33 l of water is required to dissolve a single griseofulvin dose.
The dose number and the dissolution number of digoxin and griseofulvin are

marked in Figure 3.2. It can be seen that for digoxin fraction of drug absorbed is
highly dependent upon the dissolution number. Acomplete intestinal absorption can
be expected for digoxin if the drug particle size is small enough (i.e., high Dn);
however, digoxin might be a dissolution rate limited drug if the drug particle size is
too large (smallDn) [6, 19, 20]. Hence,micronized digoxin powder will lead to a faster
dissolution rate, and the intestinal residence time would be sufficient for complete
absorption. However, changes in griseofulvin Dn alone would not be sufficient to

Figure 3.2 Graph of estimated fraction dose absorbed (F) vs
dissolution number (Dn) and dose number (D0) for a high
permeability drug [6]. The dose number and the dissolution
number of digoxin and griseofulvin are marked in the figure.
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influence the fraction of the drug absorbed. Micronization of the drug powder is not
expected to improve griseofulvin absorption unless accompanied by reduced dose
number, for example, by formulation that enables efficient solubilization in the GI
milieu [21, 22]. Without that, griseofulvin absorption will be solubility limited, and
complete absorption of the drug cannot be achieved.

3.4
GI Physiological Variables Affecting Class II Drug Dissolution

With very few exceptions, dissolution of the drug substance in the GI tract milieu
is a prerequisite for drug absorption following oral administration. For Class II
compounds, the rate-limiting factor in their intestinal absorption is dissolution
/solubility [23–25]. Hence, in-depth understanding of this process is essential
in the oral delivery of low-solubility compounds. Factors governing the dissolu-
tion process can be directly identified from the following equation, based on
the Nernst–Brunner and Levich modifications of the Noyes–Whitney model
[26–28]:

dXd

dt
¼ A�D

h
CS�Xd

V

� �
: ð3:5Þ

The dissolution rate is a function of the surface area of the solid drug (A), the
diffusion coefficient of the drug (D), the effective diffusion boundary layer
thickness adjacent to the dissolving surface (h), the saturation solubility of the
drug (CS), the volume of the fluid available for dissolution (V ), and the amount of
drug already dissolved (Xd). Thus, the rate of dissolution is highly affected by the
physicochemical properties of the drug and by many GI physiological factors that
will be discussed in this section.

3.4.1
Bile Salts

Bile acids affect both solubility and dissolution by micellization and wetting
effects [29, 30]. Hence, they play a significant role in Class II drugs� intestinal
absorption, which is a dissolution/solubility rate limited process. The bile fluid is
secreted from hepatocytes in the liver and stored and concentrated in the gall bladder
before release into the small intestine. The major organic solutes of the bile are bile
acids, phospholipids (particularly lecithin), and cholesterol. The bile acids are
derivatives of cholesterol in which hydroxyl and carboxylic acid are attached to the
steroid moiety, converting it into a powerful natural surfactant. Average typical
intestinal concentrations for bile acids and phospholipids are 5 and 0.2mM, respec-
tively, in the fasting state [31, 32] and 15 and 4mM, respectively, in the fed state [32].
Above their critical micelle concentration (CMC), these biliary secretions aid in drug
dissolution by forming submicron mixed micelles in which the low water-soluble
molecule is solubilized and gets to the absorptivemembrane of the enterocyte [33–35].
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Enhanced solubility of the low water-soluble drug may be obtained by bile salts
through the wetting mechanism [36, 37]. This is the main mechanism when the bile
salts are present at a level below their CMC [35, 38].

3.4.2
GI pH

BCS II class includes nonionizable substances (e.g., carbamazepine, griseofulvin)
and ionizable compounds, either acids (e.g., ibuprofen) or bases (e.g., diazepam). For
nonionizable drugs, pH changes along theGI tract would not have an impact on drug
solubilization/dissolution. However, the intestinal absorption of BCS Class II
ionizable drugs� is highly dependent on pH [30, 39]. Generally, aqueous solubility
is directly proportional to the number of hydrogen bonds that can be formed with
water, and hence the ionized form exhibits greater aqueous solubility than do the
unionized species. The nonionized form has generally better membrane permeabil-
ity than the ionized species; however, since permeability is not the rate-limiting step
for Class II drugs absorption process, this effect is less significant. Hence, for these
drugs, an alteration in the degree of conversion of the unionized drug to its ionized
form upon dissolution as a function of the pH may dictate the rate of absorption.
Throughout the passage along the GI tract, a drug product experiences a wide pH

range. Gastric pH highly depends upon food intake and values from 1 to 8 are
reported, while the fasting-state stomach pH is 1.4–2.1 [40–42]. In general, the pH
values in the small intestine are higher than those in the stomach, much less
dependent upon food intake, and show an upward gradient from the proximal to the
distal segments, covering a range of 4.4–7.4 [23, 40, 43].
For BCS Class II weak base drugs (e.g., dipyridamole, ketoconazole), ionization

will occur in the gastric acidic environment, leading to a rapid dissolution in the
stomach. As the drug is emptying from the stomach to the duodenum, the degree of
ionization is significantly reduced due to the elevated pH, with possible precipitation
of the drug [44, 45]. This leads to a complicated intestinal absorption pattern
controlled by many factors including the extent of supersaturation and solid form
of theweak base, pH, fluid volume, viscosity, and bile salts� concentration [30, 46, 47].
For BCS Class II weak acid drugs (e.g., ibuprofen, ketoprofen) with pKa in the GI

physiological range, extensive ionization is expected in the small intestine. As the
intestinal pH is on average higher than the pKa in more than one unit, the apparent
solubility of the weak acid increases by 10–100-fold. Thus, the in vivo solubility and
dissolution of these drugswould be high, presumably behavingmore likely as Class I
compounds, as discussed in Section 7.1 [38, 48, 49].

3.4.3
GI Transit

The twomajor components of theGI transit are the gastric residence time, dictated by
the gastric emptying, and the small intestinal transit time. In general, the rate of
gastric emptying is of significance in caseswhere dissolution is relatively fast [50]. For
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BCS Class II drug substances, dissolution rate is expected to be slower than the
gastric emptying, and hence this factor is not thought to be significant in their
intestinal absorption.
The transit time through the small intestine has the potential to affect Class II

intestinal absorption, as increased time in the main absorption site is expected to
yield higher absorption. However, the intestinal transit time is fairly fixed and largely
independent of food intake (i.e., fasting versus fed states) or the physical properties of
the system (Figure 3.3) [40]. On average, the small intestinal transit time is around
3–4 h [51, 52].

3.4.4
Drug Particle Size

The particle size of the drug powdermight be an important physical parameter in the
dissolution rate, as shown in the case of digoxin (Section 3.3). Smaller particle size
will lead to higher surface area available for dissolution, resulting in a faster
dissolution rate [53, 54]. Hence, particularly for Class II dissolution rate limited
drug substances, the dissolution rate is expected to increase proportionally with an
increase in surface area, and the particle size will be a critical formulation variable.
The density of particlesmight also affect the dissolution rate through alteration of the
in vivoparticle dispersion, as greater dispersion leads to improveddissolution [19, 55].
The effect of reduced particle size seems to depend upon food intake. It has
been shown that under the fasting state, reduced particle size had a major effect
on in vitro dissolution and in vivo oral absorption of DPC961, a BCS Class II reverse

Figure 3.3 Human small intestinal transit time of different
pharmaceutical dosage forms measured by g -scintigraphy [40].
The intestinal transit time is fairly fixed and largely independent of
the physical properties of the system or food intake.
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transcriptase inhibitor, while no effectwas observedunder the fed state [56]. Thismay
be attributed to the differences in the solubilization capacities in the fed and fasting
states. Improved in vivo dissolution rate in humans was observed for decreased
spironolactone particle size, however, with no influence on the relative bioavailabili-
ty [57]. The authors suggested that the lack of difference between the bioavailability of
the two particle sizes may be related to insufficient washout of particles after
perfusion ends, reabsorption of surface active ingredients along the GI tract,
relatively small difference in particle size, and the large inter- and intraindividual
differences in pharmacokinetic variables [57].
In regard to the drug powder particle size, it is worth noting that it is the effective

surface area that is important, that is, the surface area that is available to the
dissolution fluid (the wetted surface), and not the actual particle size. This is
important in the case of a highly hydrophobic drug in a dissolution medium that
has poor wetting properties and in the case of a manufacturing process that changes
the particle size duringmanufacture. In this case, decreased particle sizewill slow the
dissolution rate [58, 59].

3.4.5
Volume Available for Dissolution

The volume of fluids available in the GI tract for drug dissolution depends on the
volume of fluids coadministered with the drug, secretions into the GI lumen, and
water flux across the gut wall. This factor is of high importance particularly for BCS
Class II compounds, as higher volume of available fluids will enable the dissolution
of higher amounts of drug. Average fluid volumes approximately representing the
usual physiological range are 300–500ml for the fasting-state stomach (although the
volumemay be as low as 20–30ml) and 800–900ml for the fed-state stomach; 500ml
for the fasting-state small intestine and 900–1000ml for the fed-state small intes-
tine [23, 60, 61] (although volumes in the upper small intestine in the fed state can
reach as much as 1.5 l [62]).

3.5
In Vitro Dissolution Tests for Class II Drugs

As denoted above, the rate-limiting step in the oral absorption of Class II drug
substances is often the in vivo dissolution [23–25].Hence, awell-designed dissolution
test should be capable of providing adequate in vitro–in vivo correlation (IVIVC).

3.5.1
Biorelevant Media

The choice of medium is expected to play a very important role in the dissolution of
BCS Class II drug substances. The media used need to closely represent the in vivo
conditions in the upper GI tract to achieve a meaningful IVIVC. As discussed in this
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chapter, Class II drug dissolution depends on a wide variety of parameters, such as
surfactants, pH, buffer capacity, ionic strength, and the volume available for
dissolution. Class II dissolution test media often fail to produce adequate IVIVC
due to composition that does not take into account these essential factors.
Examples of suitable media for simulating the composition of proximal GI tract

include simulated gastric fluid (SGF) and surfactant, used to simulate the stomach
conditions under the fasting state; long-life milk 3.5% fat, used to simulate the
stomach conditions under fed state; fasting-state simulating intestinalfluid (FaSSIF),
the medium used to represent fasting state in the proximal small intestine; and fed-
state simulating intestinal fluid (FeSSIF), the fed-state proximal small intestine
medium [23, 44, 61, 63]. Very good IVIVCwas obtained with thesemedia for the low-
solubility drugs albendazole, danazol, ketoconazol, atovaquone, and troglita-
zone [44, 61, 64–66]. For these drugs, fed-state versus fasting-state effects, as well
as formulation effects, could be predicted by appropriate dissolution tests, showing
the potential of biorelevant dissolution tests to adequately simulate the in vivoGI tract
milieu composition.
The relationship between the hydrodynamics in the GI tract and that in the current

available dissolution tests is another factor that must be considered. It has been
reported that, provided an appropriate composition is chosen for the dissolution test,
the United States Pharmacopeia (USP) paddle apparatus can be used to reflect
variations in hydrodynamic conditions in the upper GI tract [67–69]. However, more
data are warranted, as this might insert uncertainty into the interpretation of dissolu-
tion tests, even when the composition of the GI milieu is well simulated.

3.5.2
Dynamic Lipolysis Model

One of the approaches to improve the oral bioavailability of Class II drug substances
is the utilization of lipid-based drug delivery systems [1, 70, 71]. Enhanced dissolu-
tion/solubilization of the coadministered lipophilic drug by stimulation of biliary and
pancreatic secretions is a major factor in this phenomenon [72]. Additional mechan-
isms by which lipid-based formulations might enhance the absorption of lipophilic
drugs include presentation of the low water-soluble drug as a solution and hence
avoiding the complexities associated with solid state; mild prolongation of GI tract
residence time; possible reduced metabolism and efflux activity [73, 74]; and
changing the intraenterocyte transport route by stimulation of the lymphatic trans-
port pathway [75, 76].
Following oral administration, the lipidic component of the lipid-based formula-

tion is subjected to enzymatic hydrolysis. Pancreatic lipase, upon complexation with
colipase, acts at the surface of the emulsified triglyceride droplets to produce the
corresponding 2-monoglyceride and two fatty acids. These amphiphilic lipid diges-
tion products interact with the endogenous bile salts and phospholipids, forming
colloidal structures holding different levels of surface activity, which enables the
solubilization of the coadministered poorly water-soluble compound and prevents
their precipitation in the aqueous GI tract milieu. In most cases, this process, which
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maintains the poorly water-soluble drug in solution and prevents its precipitation, is
thought to be the primary mechanism by which lipid-based drug delivery systems
augment the oral absorption of lipophilic drugs [32, 77]. Owing to the dependence of
lipid-based delivery systems� performance on GI processing, a meaningful release
test of such formulations will require the presence of lipolytic enzymes that catalyze
GI lipid digestion in vivo [78].
A dynamic in vitro lipolysis model, which provides simulation of the in vivo lipid

digestion process, has been developed over the past few years [79–81]. Thismodel has
been used for assessing different lipid-based delivery systems, and a correlation
between in vitro dissolution and in vivo absorption in the lipolysismodel was reported
for anumberof lowwater-soluble drugs, includinghalofantrine [82], griseofulvin [83],
and progesterone [84]. Overall, this model looks promising; however, the number of
studies evaluating the IVIVC provided by this method is still limited, and a more
thorough characterization of the model in different physiological conditions is
warranted.

3.6
BCS-Based FDA Guidelines: Implications for Class II Drugs

The current FDA guidelines on waiver of in vivo BA/BE studies for BCS Class I
drugs in rapid dissolution IR solid oral dosage form are generally considered highly
conservative, especially with respect to the class boundaries of solubility, perme-
ability, and dissolution. Thus, the possibility of modifying these boundaries and
criteria to allow biowaivers for additional drug products has received increasing
attention [24, 85–88].

3.6.1
Potential of Redefining BCS Solubility Class Boundary

Currently, drug substances are classified as high-solubility compounds if the highest
strength is soluble in 250ml or less of aqueous media throughout the pH range of
1.0–7.5. Three factors in this requirement are considered highly conservative and
may be reevaluated: (1) the required pH range; (2) the nature of themedia; and (3) the
volume of the media [86, 88].
Under fasting state, the GI pH varies from 1.4 to 2.1 in the stomach, 4.9–6.4 in the

duodenum, 4.4–6.6 in the jejunum, and 6.5–7.4 in the ileum [42, 89].Hence, it seems
reasonable to redefine the BCS class boundary pH range from 1.0–7.5 to 1.4–6.8.
Moreover, if a drug product meets the dissolution criterion, that is, not less that 85%
dissolved within 30min, its dissolution process is probably completed during the
jejunum, as it generally takes 85min for a drug to reach the ileum [5, 90]. Thus, it
might be reasonable to narrow the pH range requirement even more. This would
somewhat ease the requirement for Class II basic drug substances. Many ionizable
Class II acidic drugs have low solubility at low pH, but they are highly soluble
at higher pH values. For example, most nonsteroidal anti-inflammatory drugs

3.6 BCS-Based FDA Guidelines: Implications for Class II Drugs j43



(NSAIDs) are poorly soluble in the stomach but are highly soluble in the distal
intestine, which is the main absorption region of most compounds. These drugs are
classified as Class II drugs according to the current solubility definitions. However,
their absolute human bioavailability is 90% or higher, thus exhibiting BCS Class I
behavior [91]. In the same manner, the NSAID ketoprofen is classified as Class II
drug due to low solubility at low pH values; however, it has been demonstrated that
this drug behaves in a manner essentially equivalent to Class I drugs and could be
considered for a waiver of BA/BE studies [38, 48]. Yazdanian et al. [92] evaluated the
possible impact of changing the current high-solubility definition on the BCS
classification of 18 acidic NSAIDs. While 15 of the 18 drugs were classified as Class
II based on the current high-solubility definition, 8 of the 18 could be classified as
Class I by considering pH 5 and above. Overall, consideration for an intermediate
solubility classification for such compounds, which will take into account only the
intestinal relevant pH range, seems warranted.
While the solubility classification is based on the dissolution of the drug in aqueous

buffers, the in vivo conditions for drug dissolution contain bile salts and phospho-
lipids, even under fasting state. As denoted in Section 3.4.1, these are powerful
natural surfactants that aid in the dissolution/solubilization of the drug substances. A
medium thatmore adequately reflects physiological conditionsmay bemore relevant
in assessing in vivo solubility and dissolution, and potentially, drugs that are classified
as Class II according to the current solubility definitions could be classified as Class I
under these conditions [66, 86, 88].
Under the fasting state, the physiological volume of the small intestine varies from

50 to 1100ml with an average of 500ml [17, 93]. Upon administration, the drug is
usually ingested with 250ml of water that is immediately available to dissolve the
solid particles in the stomach. If the drug is not in solution on gastric emptying, it is
then exposed to additional fluids in the small intestine. Hence, the dose volume of
250ml is a conservative estimate of the actual in vivo volume available for solubiliza-
tion anddissolution.However, thewide variability of the small intestinalfluid volume
makes an appropriate volume definition difficult to set.

3.6.2
Biowaiver Extension Potential for Class II Drugs

As discussed above, the rate-limiting step in the oral absorption of Class II drug
substances is likely to be the in vivo dissolution [23–25]. For Class II dissolution rate
limited drugs, hence, if in vivo dissolution can be estimated in vitro, an in vitro–in vivo
correlation may be established. As discussed in Section 3.5, such media have been
developed, and an adequate IVIVC was shown for number of Class II drugs.
However, due to the numerous in vivo parameters involved, it appears that more
research is needed to developuniformdissolutionmedia reflecting in vivodissolution
conditions, to establish an adequate IVIVC, and to asses the risk of bioinequiva-
lence [86, 88]. In addition, the relationship between the hydrodynamics in the
currently available dissolution tests and the actual in vivo situation is not adequately
characterized and might interfere to obtain the correlation.
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As discussed in detail above, the intestinal absorption of Class II drug substances
may be limited by dissolution rate or solubility rate. In the latter case, when the
absorption is limited by the drug equilibrium solubility, an IVIVC is not likely to be
obtained. The GI tract drug concentrations in this case will be close to the saturation
concentration, and since standard dissolution tests are carried out under sink
conditions, they can predict only processes occurring well below the saturation
concentration [85]. Hence, at this point, Class II solubility rate limited drugs are
probably poor candidates for BA/BE waiver.

3.7
Conclusions

Looking into the future,more BCSClass II drug candidates are likely to be produced,
and the delivery of these molecules through the oral route is expected to be a
continuing challenge.
In this chapter, we have reviewed the rate and extent of oral absorption of this class

of drugs and discussed the numerous factors, physicochemical, physiological, and
dosage form, thatmust be considered in effectively delivering these drug candidates.
In-depth comprehension of these factors and their influence on the intestinal
absorption process is essential in the effective oral delivery of BCS Class II drug
substances.
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4
In Silico Prediction of Solubility
Andrew M. Davis and Pierre Bruneau

Abbreviations

ASNN Associative neutral network
BRNN Bayesian regularised neural networks
DMSO Dimethyl sulfoxide
GI Gastrointestinal
GPs Gaussian processes
HTS High-throughput screening
KNNs k-nearest neighbors
LFERs Linear free-energy relationships
log D7.4 logarithmof the distribution coefficient between n-octanol andwater at

pH 7.4
log P logarithm of the partition coefficient of the neutral form of the

compound between n-octanal and water
LSER Linear solvation energy relationship
MAD Maximum absorbable dose
MLR Multiple linear regression
n Number of compounds within the training/test set
PCB Polychlorinated biphenyl
pH Acidity of solution measured represented as �logarithm10 of the

activity of hydronium ions in solution
PLS Partial least squares
PSA Polar surface area (dynamic or static – calculated from 2D or 3D

structure as defined)
QSAR Quantitative structure–activity relationship
QSPR Quantitative structure–property relationship
RMSE Root mean square error of predictions – average deviation of the

predictions from the measured value for a test set
s Standard error
SD Sample standard deviation
SVMs Support vector machines
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Symbols

2D Two-dimensional
3D Three-dimensional
logP log10(n-octanol–water partition coefficient)
log Sol log10(solubility measured according to the defined protocol) – usually,

on molar scale
MP Melting point
pKa Ionization constant
r Correlation coefficient
R2 Coefficient of variation of the fitted multivariate model

4.1
Introduction

Although the pharmaceutical industry has over 100 years of experience in drug
discovery, attrition through clinical development remains refractory to our efforts to
use experience andmodern tools to successfully design drugs. Compound toxicology
remains a major cause for uncontrolled attrition. While we seek a detailed under-
standing of the linkage between molecular mechanisms, in vivo toxicity, and adverse
drug reactions in humans, increasing focus is now being placed upon exercising
control of the simplest of molecular properties, molecular weight, lipophilicity, and
drug solubility [1]. Ideally, we would wish to exercise control through the accurate
prediction of these properties at the point of design of chemical targets, prior to
synthesis; hence, there is an increasing focus upon the development of accurate
computational models of these properties. In this chapter, we will focus upon the
prediction of one of the most important properties, solubility.
Solubility is widely regarded as one of the most difficult physical properties to

predict. But when building predictive solubility models, or in fact any model, one
needs to answer a number of questions: what solubility measures are required to be
modeled? Do we have a suitable data set on which to build a computational model?
What descriptors and whatmodelingmethods should be used?How accurate are the
models required to be? What is the influence of the domain of applicability? Do we
know when good predictions have been made? In this chapter, we will highlight
recent research, in an attempt to answer these key questions in solubility modeling.

4.2
What Solubility Measures to Model?

Solubility is a fundamental compound quality indicator and plays a critical role in
many aspects of drug research. Although most research has focused uponmodeling
solubility in water or aqueous buffered solutions, solubility in other milieu may be
equally important.
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Oral solid dosage forms need to dissolve with high enough solubility in gastroin-
testinal (GI) fluids and rapidly enough relative to GI transit time to provide sufficient
systemic exposure. The amount ofmaterial ultimately absorbed after an oral dosewill
depend, among other factors, upon the dose, the solid-state form, the rate and extent
of dissolution in the gastrointestinal milieu, and the GI transit time, as well as the
dissolved drug�s inherent permeability.
A number ofmathematicalmodels have been developed to describe the interplay of

solubility and these physiological parameters to model drug absorption. The most
simplistic model is the maximal absorbable dose (MAD) calculation. The MAD
calculation combines the amount of drug that can dissolve to forma saturated solution
in water equal in volume to the small intestinal volume, with an estimate of the
absorption rate and the small intestinal transit time. The maximal absorbable dose is
then related to the dose required to achieve the desired therapeutic effect [2]. If the
estimatedMADismuchgreater than thepredicted dose to achieve a therapeutic effect,
this can give confidence enough to take the drug toward clinical use. Predictions of
aqueous solubility may then be useful in predicting the extent of absorption in man.
The MAD calculation penalizes low-solubility compounds, as the predicted

maximum absorbable dose, limited by solubility, may be less than the predicted
human dose. Low-soluble compounds may result in an acceptable prediction for
poorly soluble drugs if the predicted dose is also low. A recent validation study has
reported that theMAD calculation underestimates the known human dose range for
low aqueous solubility clinical drugs. This is because poorly aqueous soluble drugs
often show enhanced solubility in gastric fluids. Measurement of solubility in either
aspirated human intestinal fluids or simulated intestinalfluids is oftenmore relevant
to poorly soluble lipophilic drugs, as the bile salts, for example, have a significant
enhancing effect on solubility [3]. Food may also have a significant solubility-
enhancing effect by altering gastric emptying time and affecting the solubility of
drugs. Computational models predicting solubility in intestinal fluids may be a
promising future area for research.
More sophisticated approaches to predict the extent of oral absorption of drugs use

mathematical models based on the known physiology and utilizing simple physico-
chemical measurements as input. The GastroPlus [4] program is a commercial tool
that utilizes an advanced compartmental and transit model, based on the work of
Amidon and Yu [5], and allows what–if questions to be posed to enable pharmaceuti-
cal optimization (see Chapter 17). For instance, the impact of morphology, formula-
tion, and/or particle size changes, and sensitivity analysis to include errors in
parameters on the prediction, can be considered.
Once absorbed, the drug needs to stay in solution as it equilibrates with all the body

compartments. For extensively renally cleared drugs, precipitation or crystallization
in the kidneys is a particular concern, as it leads to crystalluria [6, 7]. Changes in pH
and salt concentrations in the kidneys, the therapeutic dose required, and the rate of
renal clearance will affect the risk of crystalluria. Computational models predicting
solubility at differing pH valuesmay be useful in the context of renally cleared drugs.
Controlled dissolution froma formulationmay be critical for the control of duration

of drug action. Extended release formulations are useful formost drug delivery routes.
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For instance, fluticasone propionate is dosed topically to the lung via metered dose
inhalers or dry-powder inhalers, and its high lipophilicity and low aqueous solubility
are important for the drug�s pharmacokinetic and pharmacodynamic profile [8, 9].
Modelspredicting solubility in specific formulations, ormodelspredictingdissolution
rate, may be useful in formulation development and drug delivery.
Solubility in nonaqueous solvents is also important in drugdiscovery. For instance,

solubility in DMSO underpins most in vitro screening, and HTS depends upon the
long-term stability of solutions of compounds in DMSO in screening collections.
Although solubility is seldom a limiting factor in chemical synthesis in the drug
discovery phase, as drug development progresses, solubility can be a limiting factor
in large-scale synthetic processes. Tetko has published one of the first studies
describing DMSO solubility models [10]. Published data sets with 20–70 000 cases
exist, but they are only categorical in nature. Using commonmodelingmethods such
as random forests, recursive partitioning, and linear discriminant analysis produced
classification models with 70–80% successful classification of random test sets.
Computational models for predicting solubility in DMSO and other nonaqueous
solvents are an area for further research throughout the discovery process.
It is apparent from the preceding discussion that there are many choices over

solubility measures on which to base a computational model, and data sets and
models are sparse beyond solubility in water or aqueous buffered solutions.

4.3
Is the Data Set Suitable for Modeling?

Solubility is a complex property, and this complexity confounds our ability to develop
computational models to predict it. Most computational solubility models are empiri-
cal QSPRmodels, trained on solubility data sets either sourced from the literature and
corporate databases or generated specifically for thepurposes ofmodeling.Hence, it is
not surprising that the quality of the computational model depends on the quality of
the data set of experimental measurements used to train the model.
The solubility measure describes the concentration reached in solution, when a

pure phase of the material is allowed to dissolve in the solvent for a defined period of
time, at a defined temperature (and pressure). Most often for pharmaceutical
purposes, the pure phase is a solid, ideally a crystalline solid, and the liquid is water
or a buffered aqueous solution, at a controlled temperature (often 25 or 37 �C) and
ambient pressure. The purity of the solid can have a large effect on measured
solubility. Solubility can be measured in water or in pH-controlled buffers. In water,
the extent of solubility for ionizable compounds will depend upon the pKa values and
the nature of the counterion. In pH-controlled aqueous buffered solution, at
equilibrium, the solubility will depend upon the compound�s intrinsic solubility,
its pKa, and the ionic strength. It may also depend upon the relative solubility of the
initial added compound and the solubility of the salt formed by the compound with
the buffer salts, with which the solidmay equilibrate. In any buffer or solvent system,
the measured solubility may depend on the time of sampling, as solubility kinetics

56j 4 In Silico Prediction of Solubility



may be important. Sampling at different time points may prove useful not only to
define the thermodynamic equilibrium solubility but also sometimes to describe the
kinetics of dissolution. The �undissolved� solid may also change its morphology
during the experiment. As one solid-state formdissolves and another crystallizes, the
solubility measured at the end of an experiment may therefore be the solubility of a
form different from the one the experiment began with.
In generating data sets of solubility measurements for modeling purposes, the

degree of control of the parameters discussed above will undoubtedly contribute
to, or compromise, the accuracy and precision of any predictive model built upon
them. Taskinen and Norinder in their recent comprehensive survey [11] of data
sources for solubility models commented that inadequate documentation made it
difficult to assess whether many data sets represent suitably consistent values
regarding thermodynamics or ionization for modeling purposes. For these rea-
sons, an ideal data set for in silico modeling would be one from a single laboratory,
measured under a consistent and controlled experimental protocol with an
understood precision. Ideally, the conditions will be relevant to the end point
being optimized and the solid-state form of the compounds being studied should
be known before and after the experiment. Most data sets used as the basis for
solubility models do not conform to this idealized description. This may contribute
to the perceived lack of accuracy and precision of solubility models in general.
Bergstr€om [12]made an interesting discussion about the advantages of the various

methods of measuring solubility and permeability. Bergstr€om showed that some
methods, such as kinetic measurement of solubility by precipitation of a DMSO
solution, by adding increasing amounts of aqueous buffer, can only lead to a
qualitative classification in terms of low, intermediate, and high solubility. As a
consequence, these results can only be used in classification predictions. On the
contrary, if quantitative models are looked for, more labor-intensive and maybe less-
automated methods are needed to collect more precise data of solubility and
permeability. Bergstr€om emphasizes the need of a database of good, accurate, and
reproducible measurements to produce good predictive models. Even if we have a
good database, descriptors, and mathematical tools to make a goodmodel, there will
remain the problem of applicability of the model to various chemical spaces.
The quality of measured data is often a problem in the research environment

where the various batches of a compound show different measured solubility. In an
in-house study at AstraZeneca, 75% of repeated measures on the same batch were
found to have a standard deviation (SD) of less than 0.29 log unit, whereas the
corresponding figure for the interbatch averagemeasurements reached 0.49 log unit
and 10% of these interbatch measurements had a variability of more than 0.81 log
unit. This discrepancywas tentatively explained by the differences in solid state of the
samples issued from different batches. Although an attractive hypothesis, and
supported by the data, this suggested explanation is not supported by Delaney [13],
who holds that the difference of physical state between compounds is not important
to the accuracy of the solubility prediction, and by the recent study of Bergstr€om and
coworkers [14], who show that the solubility of poorly soluble compounds is limited
more by their weak solvation ability than by their solid state.
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4.4
Descriptors and Modeling Methods for Developing Solubility Models

The choice of descriptors is not always clear-cut. The time required to calculate
elaborate descriptors by quantum methods is not always justified compared to the
results obtained with simpler and more rapidly calculated descriptors. For example,
Bergstr€om [12] compared 2Dpolar surface area (PSA)with 3DPSAand static, instead
of dynamic, calculations. No definitive gain was obtained by using the most
sophisticated method(s) of calculating PSA descriptors.
There is no such clear-cut judgment about the statistical methods of modeling

solubility. There are models as simple as the relationship between logP and melting
point (MP), established some time ago by Yalkowsky and coworkers, and the very
complex linear solvation energy relationships (LSERs). The limitation of the simple
Yalkowsky relationship is that it uses two variables, obtained with accuracy only by
measurement, and thus the simple relationship turns out to be very complicated
when calculated logP and MP are used.
Among the recent reviews, the most comprehensive one is by Dearden [15]. In his

review, he discusses the fundamentals of aqueous solubility, which lead to the
Yalkowsky equation. Dearden also reviews the oldest approaches of predicting
aqueous solubility, from a very simple fragment-based approach of 1924 to the
numerous approaches post-1990, for which he made an extensive tabular
comparison.
Delaney [13] describes the solubilization mechanism as controlled by a double

phenomenon: the affinity of the compound for itself and the affinity of the compound
for the solvent. The latter effect is simply described either by the logP property or by
very sophisticated methods such as statistical thermodynamic or quantum mecha-
nical techniques. These very intensive calculation methods have not yet proved their
superiority over the simpler and faster methods that tend to mimic the successful
logP fragment calculator.
The effects of solid-state structure on solubility are even more complicated and so

far less successful to calculate, if we exclude some very crude methods of entropy of
melting estimation by evaluating the number of rotatable bonds and the symmetry of
the molecule. But Delaney estimates that the error on calculation of the compound–
compound interaction is small (about half a log unit) compared to the potential error
due to the compound–solvent interaction that can be estimated as 2 log units. It is
even possible to neglect the variation of themelting points of compounds by using an
average value of 125 �C for all compounds without influencing the accuracy of the
prediction. This latter argument justifies the use of empirical approaches that neglect
the fundamental mechanisms of solubilization but try to correlate the measured
values with various calculated descriptors more or less related to the solubility-like
parameters accounting for hydrogen bonding or solvent cavity formation. This is
reassuring, as the use of solid-state descriptors would first require the ab initio
prediction of the solid-state structure of compounds, which even for simple com-
pounds is still in its infancy. In this part of his review, Delaney emphasizes the fact
that linear methods are suitable for restricted homogeneous series, whereas large
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data sets of diverse chemistry should be treated by nonlinear methods. Delaney
surveys the various mathematical tools that have been successfully used in the data
regression without pointing out a simplemethod, or a group ofmethods, whichmay
be better than others. Delaney, similar to many other authors, concludes that the
quality of the data is of primary importance and that there are some problems not yet
fully solved, such the prediction of charged compounds at various pH values and
DMSO solubilities. The influence of the crystal stability on solubility and the success
of the Yalkowsky equation have initiated many attempts at predicting the melting
point.
A recent publication relates the work of Varnek et al. [16] on this subject. The

authors have gathered a database of 717 compounds with measured melting points.
These compounds were all bromides of nitrogen-containing organic cations. They
used associative neural network (ASNN), k-nearest neighbors (KNNs), support vector
machines (SVMs), and multiple linear regression (MLR). Their validation method
was a leave-one-fifth-out method, that is, they built five models on four-fifths of the
data using one-fifth of the data reserved for the validation set. The five subvalidation
sets were combined to form the internal validation set. Similar to all leave-n-out
validation methods, these internal validation sets will contain close analogs of the
training sets, but it does not seem that there is another goodmethod to validate such
models. The results show that there is a slight advantage of using the nonlinear
method and that an RMSE of around 40 �C can be achieved.
Nigsch et al. [17, 18] made a similar attempt; by using a k-nearest neighbors

algorithm with a genetic parameter optimization on a training set of 4110 diverse
organic molecules and 277 drugs, they obtained an RMSE of 42.2 �C. They explained
that the remaining error is due to �the lack of information about the interactions in
the liquid state.�

4.5
Comparing Literature Solubility Models

The reviews published by Bergstr€om [12] and Delaney [13] in 2005 and Dearden [15]
in 2006 give good overviews of the predictive solubility literature.
But the main problem with the multitude of solubility models is how to compare

them?The onlyway to obtain an objective judgment of their predictive power is to test
each model using a common external test set. For this purpose, Dearden made a
compilation of results from21models,whose authors published results of a common
test set comprising 20 drugs and pesticides and one PCB, as it was initially used by
Yalkowsky and Banerjee to evaluate their own model. A summary of the most
homogeneous results from these models is reproduced in Table 4.1.
This comparison is very useful, but one must keep in mind that 20 molecules in a

test set does not represent a large chemical space, and although it constitutes a
comparative test, it does not prove that the models are predictive for any drug-like
molecule, as we shall discuss later. Dearden widens his comparative study to 17
commercially available programs able to predict solubility. The comparisonwas done
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with a common test set of 122 compounds with accurately measured intrinsic
solubility in pure water. In judging the results, one must be careful of the fact that
some or evenmost of the 122 test compoundsmay have been used on the training set
of the software concerned. Keeping in mind this possibility, the standard error of the
log Sol of commercial software has a range of 0.47–1.96 with a median at 0.95 log
unit. Dearden points out that the best scores, around 0.50, reach the limits of the
experimental errors of solubility measurements [18, 19]. A good method to compare
the commercially available software is to evaluate the percentage of compounds that
are well predicted with an error less than 0.5 log unit and the percentage of
compounds that have an acceptable error less than 1 log unit, as shown in Table 4.2.
Schwaighofer et al. [19] have done a remarkable work by gathering solubility data

on 23 516 compounds from literature sources that after data cleaning led to reliable
solubility measurements on 3307 neutral compounds combined with data from
about 1100 compounds, mainly electrolytes, which have been measured in-house.
They also used data on 704 compounds, which were used by Huuskonen and
numerous other researchers. The complete database was used either to predict pure
solubility of neutral compounds or to predict solubility at a given pH for neutral
compounds and electrolytes. Apart from using a comprehensive database, the main
originality of thiswork is the use ofGaussian process (GP) as themathematical tool to
build the models. GPs are techniques from the field of Gaussian statistics, and
similar to the Bayesian regularized neural networks (BRNNs) [20], they have the great
advantage to allow an evaluation of the prediction error for the individual predicted
solubilities. Their model achieves a performance, as measured by the RMSE,
comparable to commercial packages at around 0.6 log unit on neutral compounds,

Table 4.1 Aqueous solubility prediction studies using the Yalkowsky and Banerjee test set [15].

Author Year of
publication

Compounds
in training set

Compounds
in test set

Std of
training set

Std of
test set

Yalkowsky 1992 41 21 0.50 0.79
Klopman 1992 483 21 0.53 1.25
Yalkowsky 1993 41 19 0.39 1.34
Kuhner 1995 694 21 0.38 1.05
Huuskonen 1998 160 21 0.46 1.25
Huuskonen 2000 884 21 0.47 0.63
Huuskonen 2000 675 21 0.52 0.75
Huuskonen 2001 674 21 0.58 0.84
Livingstone 2001 552 21 0.52 0.77
Liu 2001 1033 21 0.70 0.93
Yan 2003 797 21 0.50 0.77
Wegner 2003 1016 21 0.52 0.79
Butina 2003 2688 11 0.61 0.94
Yan 2003 741 21 0.51 0.80
Hou 2004 878 21 0.59 0.64
Delaney 2004 2874 21 0.97 0.78
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while it is much better on electrolytes with an RMSE of 0.77, compared to well above
1 log unit for commercial packages on the same validation set.
Du-Cuny et al. [21] have used a large data set of 2473 compounds likely to be more

�drug-like� as they are from their own employer�s pharmaceutical company collec-
tion. The originalities of their work are

. modeling of intrinsic solubility (log 1/S0);

. use of 170 structural fragment descriptors and four fragment-based correction
factors;

. use of 81 congeneric series indices.

The obtained PLS model gave R2¼ 0.81 on an independent test set of 958
compounds. This measure of predictivity is optimistic, since the test set was selected
in amanner favorable to good prediction. The initial data set of 2473 compounds was
clustered and the singletons were eliminated. Then the remaining data set was
randomized and the training set and test set were selected. Therefore, the members
of the test set were very likely not too far from members of the training set, thus
leading to better prediction statistics. The authors submitted their test set to
prediction with a commercial software that led to a poor R2¼ 0.10. Although the
figure of 0.81 obtainedwith theirmodel is probably optimistic, the improvement over
R2¼ 0.10 obtained withWSKOWWIN is large enough to conclude the superiority of
the models developed using in-house data over the commercial models.

Table 4.2 Predictive ability of some commercially available
software for aqueous solubility, based on a 122-compound test set
of drugs [15].

Software Percentage of compounds predicted within

�0.5 log unit �1.0 log unit

SimulationsPlus 65 91
Admensa 72 87
Pharma Algorithms ADME Boxes 59 87
ChemSilico 60 86
ACDLabs 59 85
ALogS 52 81
PredictionBase 47 81
ESOL 55 79
MOLPRO 62 78
Absolv 2 44 75
QikProp 48 79
SPARC 43 73
Cerius ADME 38 73
WSKOWWIN 41 67
ADMEWORKS Predictor 34 66
AlogP98 38 62
CHEMICALC 23 46
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AsDu-Cuny et al. [21] have described, it is tempting to derive the intrinsic solubility
from ameasurement of the solubility at a given pH andmeasured pKa and using the
Henderson–Hasselbalch equation. Hansen et al. [22] followed a reverse path. They
built an intrinsic solubility model from intrinsic solubility data and, using a
calculated pKa from a commercial tool, predicted the pH-dependent solubility of
a validation set of 27 drugs with experimentally determined pH-dependent solubility
profile, to obtain an RMSE of 0.79 log unit. Bergstr€om et al. [23] have shown that one
must be very cautious in doing this kind of calculation. They measured a set of 25
monoamine compounds. TheHenderson–Hasselbalch equation shows a slope of�1
for the relationships of solubility log unit with pH. The Bergstr€om et al. measure-
ments reveal that�1 is very rarely observed since the experimental slopes range from
�0.5 to�8.6. This is explained by various experimental conditions leading to dimers,
aggregates, andmicelles and also to the presence of counterions withmulti-ionizable
sites. The consequences of these observations are that solubility measurements are
extremely difficult to obtain with a reproducible and reliable quality.
In his review, Dearden [15] has tabulated the statistical characteristics of nearly 90

models published between 1990 and 2005 in a chronological order. If we exclude two
studies showing very low standard error of estimate (s¼ 0.08 and 0.19), which
according to Dearden are probably heavily overfitted models, and a model having a
very high s¼ 2.4, the remaining reported data of s and RMSE have a mean value of
0.57 log unit, whichfits quite well with the generally acceptedfigure of 0.6 log unit for
the experimental error of the solubility measurements. But the data show a remark-
able increase with time. Dearden points out that the first studies to use drugs in the
training set did not appear until 1998; shortly after, Lipinski et al. published their
study on the rule-of-5 [24]. If we separate the s andRMSE published before 1998 from
the ones published after that year, we observe a clear increase from 0.41 log unit for
the pre-1998 data to 0.62 for the post-1998 data. Even after 1998, the increasing trend
is shown with an average of 0.49 in 2000 to an average of 0.67 for the models
published in 2004. The difference between these twofigures is statistically significant
at the 0.05 level of a Student t-test. The results for the other years show the trend,
although they do not show a statistical difference from each other (Table 4.3).
The reasons for the degradation of modeling performance are unclear. Dearden

proposed that there are more andmore drugs involved in the modeling process. It is
probably true, but there is no fundamental difference between a chemical entity

Table 4.3 Variation of the mean RMSE of the models published between 2000 and 2004.

Year of publication Mean RMSE Number of publications

2000 0.49 7
2001 0.62 9
2002 0.60 11
2003 0.65 15
2004 0.67 11
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being �drug� and another a �nondrug.� Since Dearden�s data consider statistics
obtained on training sets, the results should at least be stable or should rather
improve with the improvement of modeling processes and of the descriptors sets.
Any difference explainable by the usual more complex and higher molecular weight
of drug-like compounds should be seen only on validation results.

4.6
What Is the Influence of the Domain of Applicability?

As highlighted by Bergstr€om [12], the problem of the applicability domain of a
model has not been definitively solved. Stanforth et al. [25, 26] have recently
addressed this problem by clustering the training set by a k-means clustering
algorithm in the descriptors space. Then, the distance to domain was evaluated and
correlated to the error of the model. Their method compares well with other
methods of evaluating the distance to model to estimate the likely error of the
prediction. In a similar manner, Bruneau and McElroy [20] set up a method that
used the average of the Mahalanobis distances to the three nearest neighbors,
calculated in the descriptors space to describe the distance to the models. These
authors show a very good dependency of the RMSE of a logD7.4 model on the
calculated distance from the model. They also show that the standard deviation of
the prediction obtained by sampling a few hundreds of BRNNs is also a very good
indication of the likely error of the model.
Bruneau has demonstrated the importance of domain of applicability of solubility

models using three training set/test set pairs described by the same set of descriptors
and using the same modeling method, Bayesian neural networks with automatic
relevance determination variable selection [26]. He defined internal proprietary
training and test sets and �public� training and test sets from the literature. A
combined data set representing both �public� and �in-house� proprietary data was
also constructed. The �public� compounds were on average smaller, less lipophilic,
andmore soluble than the proprietary drug-like compounds. He showed that similar
resultswere obtained from the �public�model applied to a �public� validation setwith
an RMSE ¼ 0.84 log unit and the so-called �in-house� model applied to �in-house�
validation set with an RMSE ¼ 0.78 log unit. This would be judged as two equivalent
models with similar performance from a publication point of view. But when the
validation sets were crossed over, the �public�model gave an RMSE ¼ 1.0 on the �in-
house� validation set, and the �in-house� model� gave an RMSE ¼ 1.88 on the
�public� validation set. It is clear that even models with apparently similar perfor-
mancesmay give very different results when applied to different data sets. It must be
noted that the �in-house� model had much more difficulties in predicting �public�
data than the reverse. This was explained by the higher diversity of the �public�
database compared to the �in-house� database, which is more series dependent. To
solve this, Bruneau combined the training and test set databases and obtained a
�mixed�model that when applied to the �public� validation set gave an RMSE ¼ 0.82
and when applied to the �in-house� validation set gave an RMSE ¼ 0.79. The
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predictions from the literature model for each test set were then binned by the
distance to the training space of the �public� model, and the test set�s RMSE values
were analyzed per distance bin. It was concluded that once the distance to the training
set model space was considered, the literature model now performed similarly on all
three test sets, when bins of a similar distancewere compared as shown in Figure 4.1.
This analysis is very revealing. It suggests that comparing different computational

models on common test sets may not be a very useful exercise. It does tell you which
model predicts that particular test set well, but this gives little information on the
relative generalizability of themodels. The dependence of predictive performance on
distance-to-model must be taken into account. As Bruneau states, �It is utopian to
expect that a model can predict any structure.� This view may undermine many
reports in the literature, but the most important consideration is how well does a
particular model predict �my test set of interest� or, more importantly, how well does
the model predict the next compound I am going to make.

Figure 4.1 Distance-to-model versus RMSE.
Solid circles represent �public model� applied to
�public� validation set. Open circles represent
�public� model applied to �in-house� validation
set. The missing open circles correspond to the
lack of examples in the corresponding bin. lt0.5,
lt1.0, lt1.5, and lt2.0 stand for bins of the
Mahalanobis distances of compounds to be

tested to the nearest compounds in the training
set of less than 0.5, 1.0, 1.5, and 2.0 distance
arbitrary units, respectively. mt2.0 stands for bin
of the Mahalanobis distances of compounds to
be tested to the nearest compounds in the
training set of more than 2.0 distance arbitrary
units [26].
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4.7
Can We Tell when Good Predictions Are Made?

Whatever the results of training sets, and test sets, the users ask what is the best
model to use? The question is difficult, and even impossible, to answer from the
publisheddata on training and validation sets. This is because the performance of any
model on any particular test set will heavily depend on the distance of the test set
compounds to the training setmodel space, as well as the inherent predictive poser of
themodel itself, as has beendescribed in the previous section. The onlyway to answer
this question is for the users to try the models on their own data sets.
The modelers of physical properties face a difficult situation: they are satisfied

when theirmodels have anRMSEon validation set of less than the fatidic one order of
magnitude, but at the same time themedicinal chemists are frustratedwhen they use
the model in their own projects. The discrepancy of judgments is explained on pure
statistical elements. An RMSE of 0.8 log unit on a global model of solubility validated
on a validation set spreading from�2 to 8 log unit with an SD of say 5 log units leads
to a very satisfactory r2 of nearly 1, which classified themodel as very good.When the
medicinal chemist uses the model on his own data, the spread of which is often
narrowed tomaybe two orders ofmagnitude with an SD of say 1 log unit, he observes
a deceptive r2 of 0.36. The situation is usually evenworse since the series onwhich the
chemist is workingmight be poorly represented in the training set, and the RMSE of
the model on this new series may well be higher than the SD of the measured data
leading to an evenmore disappointing negative r2. The usual answer to this problem
is often a request for �local� models. This approach may sometime be successful,
especially when linear regression methods are used, since these methods are able to
pick up �local� specificities.
So why cannot we improve the models? Johnson [27] attempts to answer this

disturbing question. Although his discussion is centered on QSAR, it has many
common points relevant to QSPR, which is used in the field of solubility modeling.
He concludes that we should not be led bymere statistics that too often dictates what
is good orwrong, but rather by scientific rationale, experimental design, and personal
observation.

4.8
Conclusions

The literature and commercial companies abound with computational solubility
models. Many data sets have been studied, with many different descriptor sets, and
using amultitude of statisticalmethods. It appears that diverse drug-like data sets are
often predicted by our best methods with an RMSE of 0.8–1 log unit. This compares
with an error in replicate measurements of approximately 0.5 log unit. A common
view is that there is still room for improvement in the computational modeling of
solubility. There are a number of suggestions that the quality control of the ideal data
set is still lacking. This may be true for some literature data set compilations, but it is
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less likely to be the case for proprietary data sets described by large pharmaceutical
companies, where a large number of compounds have been measured through
single well-controlled assays. There may be further work that could be done to
describe the solute–solute interactions in the solid state, but this may be very
challenging and may be a minor controlling factor compared to the importance of
solvation, which is well described by current QSAR descriptors. Maybe an RMSE of
0.7–0.8, as observed on diverse test sets predicted by a number of models, is the best
one should expect to be able to achieve. When distance to the training set model
space of the test set is considered, compounds closest to the training sets may be
predicted close to the replicate error in measurement. The problem then reduces to
keeping the training set space of your computational model close to the compounds
you wish to predict and building your computational model to predict to the most
relevant end point.
One should always keep in mind that a correlation established on a training set

between descriptors and experimental data may not be an indication of causation.
Without the causation factor, that is, the descriptors explain the phenomenon that
induces the variation in the data, it is unlikely that the model can predict any so far
unknown molecular feature. Of course, this is the heart of molecular modeling and
this iswhy themodels are so dependent on thedistance to themodel space. All you can
do to gain confidence in yourmodel is to assess the predictivity of yourmodel on your
compounds. You can do this by testing the model on compounds synthesized and
tested subsequent to themodel derivation,with the test set similar to the compound(s)
required to be predicted, and consider the effect of distance tomodel in the prediction
errors. Once one has built confidence that the model has some predictive power on
similar compounds of interest, a judgment has to be made whether the predictivity
achieved has the resolution required for the purpose in hand. If it does have, then all
that is left is to hold your breath and make a real prediction. As Niels Bohr said,
�Predictions are difficult, especially those of the future.� In the end, you have to take
your chances that your model really does have enough control of solubility to guide
to you to your goal, and this chance is often worth taking than leaving solubility to
random chance.
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