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13.0 INTRODUCTION

In chapter 3 the forces exerted by static fluid on the containment surfaces was discussed. In
this chapter the forces exerted by fluid particles on the surfaces over which they flow, is
discussed. In case the surfaces cause a change in the magnitude and direction of the velocity of
the fluid particles, the fluid particles exert a force on the surface. In turn the surfaces exert an
equal and opposite force on the fluid particles. The force exerted by moving fluid particles
on the surface is called dynamic force. Dynamic force always involves a change in the
magnitude and direction of the velocity of the fluid. Forces due to viscous resistance is excluded
in the discussions in this chapter to reduce complexity in the analysis.

13.1 IMPULSE MOMENTUM PRINCIPLE

When applied to a single body Newtons second law can be started as “The sum of forces on the
body equals the rate of change of momentum of the body in the direction of the force. In equation
from (F and V are in the same direction)

 ΣF = 
d mV

dt
( )

(13.1.1)

This can also be written as

ΣF dt = d (mV) (13.1.1 a)

where m is the mass of the body and V is the velocity of the body and t is the time. This also
means the impulse Fdt equals the change in momentum of the body during the time
dt.

When applied to control volume, through which the fluid is flowing, the principle can be
stated as “The sum of forces on the fluid equals the difference between the momentum flowing
in and momentum flowing out and the change in momentum of the fluid inside the control
volume under steady flow condition the last term vanishes. So the forces in the fluid is given by

�� Dynamics of Fluid Flow
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 ΣF = 
d mV

dt
out( )

 – 
d mV

dt
in( )

(13.1.2)

In other words, the net force on the fluid mass is equal to the net rate of out flow of
momentum across the control surface.

This can also be written as

 ΣF = ρ2 Q2V2 – ρ1Q1V1 (13.1.3)

If the fluid is in compressible, then

 ΣF = ρQ (∆V) (13.1.3a)

In this case  ∆V should be taken as the vectorial addition of V1 and V2 and the
force will be in the direction of the resultant of V1 and V2 .

In case the forces in the cartesian co-ordinate directions is required, the equation in
scalar form is written as

ΣFx = ρQ ∆u (13.1.4)

ΣFy = ρQ ∆v (13.1.4a)

ΣFz = ρQ ∆w (13.1.4b)

where u, v and w are the components of velocity in the x, y and z directions.

When calculating the momentum flowing in or out, if the velocity over the section is not
uniform a correction has to applied. The correction factor β is given by

β = 
1

2
2

AV
u dA

A
z (13.1.5)

where V is the average velocity.

13.1.1 Forces Exerted on Pressure Conduits
Consider the reducer section shown in Figure 13.1.1 (a). The free body diagram is given in
Figure 13.1.1 (b) :

u1 u2
2

1

( )a ( )b

Fx

P A22P A11

Figure 13.1.1

Assuming ideal fluid flow,

ΣFx  = P1A1 – P2A2 – Fx = ρQ (u2 – u1) (13.1.6)

or the force on the fluid is given by

 Fx = P1A1 – P2A2 – ρQ (u2 – u1) (13.1.6a)

This force is the force exerted by the reducer on the fluid in the x direction. This force
acts towards the left as assumed in the figure. The negative sign in the LHS of 13.1.6 is due to
this assumption. The numerical value will show the actual sign. The force exerted by the fluid
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on the reducer will be equal and opposite to this force Fx. The plus and minus signs used in the
equations depend in the + ve or – ve directions of the co-ordinate system along which the force
is assumed to act.

In case both the magnitude and direction of the velocity is changed by a reducer bend
then the force exerted by the bend on the fluid, the turning angle being θ, (suffix F indicates as
on the fluid)

 FxF = P1A1 – P2A2 cos θ – �m (V2 cos θ – V1) (13.1.7)

FyF = P2A2  sin θ + �mV2 sin θ (13.1.8)

The forces on the bend will be equal and opposite to these forces.

Example 13.1 A reducer in the horizontal plane has an inlet area of 0.02 m2 and the outlet area is
0.01 m2. The velocity at the inlet is 4 m/s. The pressures are 40 kPa at inlet and 10 kPa of outlet.
Determine the force exerted by the reducer on the fluid.

As the flow is in the horizental plane body forces are neglected. Refer Figure 13.1.1

As A1/A2 = 2, V2 = 2V1 = 8 m/s

Using equation (13.1.6a)

  Fx  = P1A1 – P2A2
 – m (u2 – u1)

 m = 4 × 0.01 × 1000 = 40 kg/s

Fx  = 40 × 103 × 0.02 – 10 × 103 × 0.01 – 40 (8 – 4)

= 540 N on the fluid towards left.

On the reducer 540 N along positive x direction.

Example 13.2 A 45° bend in the horizontal plane is shown in figure. The inlet area is 1.2 m2 and
the outlet area is 0.6 m2. The velocity of water at inlet is 12 m/s. The pressures at inlet and cutlet are
40 and 30 kPa respectively. Calculate the magnitude and direction  of the resultant force on the
bend.

P = 30 kPa2

0.6 m
2

45°

1.2 m
2

P1

40 kPa

V1 = 12 m/s

Figure Ex. 13.2

For convenience the control volume should be chosen such that the inlet and outlet areas are
normal to the velocities at these sections. In this case the force on the bend is required. It is
convenient to calculate the forces in the x and y directions separately.

 u1 = 12 m/s ∴ u2 = 24 m/s

Mass flow = 12 × 1.2 × 1000 = 14.4 × 103  kg/s

Using equations (13.1.7) and (13.1.8)

Fx = P1A1 – P2A2 cos θ – �m (V2 cos θ – V1)

 Fy = P2A2  sin θ + �m V2 sin θ
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Substituting the values, Force m the fluid is

Fx = 40 × 103 × 1.2 – 30 × 103 × 0.6 × cos 45 – 14.4 × 103 (24 cos 45 – 12)

= – 36.3 kN. in the –ve x direction

 Fy = 30 × 103 × 0.6 × sin 45 + 14.4 × 103 × 24 × sin 25

= 257.1 kN in the +ve y direction.

The forces on the bend will be 36.3 kN along x  and 257.1 kN downwards.

The resultant is 257 1 36 32 2. ( . )+ −  = 259.65 N.

The direction is  θ = tan–1 
36 3
257 1

.
.

 = 8.04°

with the negative y direction

13.1.2  FORCE EXERTED ON A STATIONARY VANE OR BLADE

In the case of turbomachines fluid passes over blades and in this context, the force on a vane
due to the fluid flowing over it is discussed. In turbomachines the blades are in motion. To
start the analysis force on stationary vane is considered. Here the direction of the velocity is
changed. There is negligible change in the magnitude. In the case considered pressure forces
are equal both at inlet and outlet. The flow is assumed to occur in the horizental plane.

V2

Blade

q

Jet

V1

Fy (Blade on water)

Fx (Blade on water)

Free body diagram

Figure 13.1.2

Force along x direction by the blade on fluid, with the assumed direction : Assuming V2 = V1
 as no

other energy transfer occurs,

 – Fx = �m  (V2u – V1) = �m  (V2 cos θ – V1) = �m  (V1 cos θ – V1) (13.1.8)

 Fy = �m (V2y – V1y) = �m V1 sin θ (13.1.9)

Example 13.3 A blade turns the jet of diameter 3 cm at a velocity of 20 m/s by 60°. Determine the
force exerted by the blade on the fluid.

Rate of flow �m  = 
π × 0 03

4

2.
× 20 × 1000 = 14.14 kg/s

– Fx = 14.14 (20 cos 60 – 20) = – 141.4 N

36.3
x

q
257.1

y

Figure Ex. 13.2
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or Fx = 141.4 N. in the assumed direction

Fy = 14.14 (20 × sin 60) = 244.9 N

The forces on the blade are 141.4 N along x direction and 244.9 in the –ve
y direction.

 Resultant = (244.92 + 141.42)0.5 = 282.8 N

θ θ θ θ θ = tan–1 
141.4
244.9

 = 30°

30° with the negative y direction as in figure.

13.2 ABSOLUTE AND RELATIVE VELOCITY RELATIONS

In order to determine the force on moving blades and the energy transfer between the blades
and the fluid the relative velocity between the fluid and the blade becomes an important factor.
The blade may move in a direction at an angle to the velocity of the fluid. The relative velocity
of a body is its velocity relative to a second body which may in turn be in motion
relative to the earth.

The absolute velocity V of the first body, is the vector sum of its velocity relative to the
second body v, and the absolute velocity of the latter, u

Vectorially  V = u + v

This is easily determined by vector diagram called as velocity triangle. Some possible
diagrams are shown in Figure 13.2.1.

V

a b

u

uu uu
VuVu VuVu

a
b

V v v
V ba

uuVuVu

Figure 13.2.1 Sample Velocity diagrams

Some of the general relations are

V sin α = v sin β (13.2.1)

 Vu = V cos α = u + v cos β (13.2.2)

Vu is the component of the absolute velocity of the first body in the direction of the
velocity u of the second body.

13.3 FORCE ON A MOVING VANE OR BLADE

The force on a single moving vane is rarely met with. But this forms the basis for the calculation
of force and torque on a series of moving vanes fixed on a rotor. There are two main differences
between the action of the fluid on a stationary vane and a moving vane in the direction of the

141.4
x

q
244.9

y

Figure Ex. 13.3
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fluid motion. In the case of the moving vane it is necessary to consider both the absolute and
relative velocities. The other difference is that the amount of fluid that strikes a moving vane
at any time interval is different from that which strikes the stationary vane. If a jet of area A
with a velocity V1 strikes a stationary vane, the mass impinging per unit time on the vane
equals 8AV1 kg/s. But when the vane moves away from the direction of the jet with a velocity
u, then the mass of water striking the vane equals ρA(V1 – u) kg/s. (V – u) is the relative
velocity between the jet and the vane. This can be realised when the consider the velocity of
the vane to be equal to that of the jet. In this case no water will strike the vane, obviously.
Consider the flow as shown in figure 13.3.1.

Jet

V1

Blade

u
b2

V2

V1V1

uu
Vr = V – u

Inlet

Outlet
Vr2

V2

u

b2

Figure 13.3.1

The velocity diagram with as inlet and outlet are shown in the figure. Considering the
force on the fluid in the direction of blade velocity (can be considered as x direction)

Fu = ρA (V1 – u) ( )V Vu u2 1
− (13.3.1)

Vu2 = ( cos )V ur2 2β − , denoting Vr as relative velocity

∴ Fu = ρA (V1 – u) ( cos )V u Vr u2 12β − − (13.3.2)

In the case shown,  Vu1
= V itself

It is possible that ( cos )V ur2 2β −  or Vu2
is negative depending upon the relative values

of u and Vr i.e. u > Vr2
 cos β2.

It is to be noted that the vane angle at the inlet should be in the direction of the relative
velocity of the water when it touches the vane. Otherwise loss will occur due to the jet hitting
the vane at an angle and then turning the follow on the vane surface.

It was assumed that the relative velocity at inlet and at outlet are equal as no work was
done by the vane on the fluid. In case of friction, V cVr r2 1

=  where c is a fraction. In case the

vane moves at a direction different from that of the jet velocity say at an angle α, then force on
the fluid on the vane will be at an angle.

In such a case, Fx = ρA (V1 cos α1i – Vr2  cos β2 – u) (V1 cos α1 – u)

= ρA (V1 cos α1 – V2 cos α2)
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As it was already mentioned, a single moving vane is not of practical importance when
a series of vanes fixed on the periphery of a well is struck by the jet, then the mass of fluid
striking the when will be ρAV itself.

Work or energy transfer between the fluid and the water will be F × u .

Example 13.5 A 4 cm diameter water jet with a velocity of 35 m/s impinges on a single vane
moving in the same direction at a velocity of 20 m/s. The jet enters the vane tangentially along the
x direction. The vane deflects the jet by 150°. Calculate the force exerted by the water on the
vane.

4 cm f

35 m/s

V1 = 35 m/s

Inlet Outlet

Vr2
V2

20 m/s

150° u = 20 m/s 15 m/s 30°

15 m/s

u = 20 m/s

7 m/s

Figure Ex. 13.5

The relative velocity is given by

Vr = 35 – 20 = 15 m/s.

Vu1
 = 30 m/s itself in the direction of blade velocity.

From exit velocity triangle

Vu2
 = u – Vr2

cos 30 = 20 – 15 cos 30 = 7 m/s

This is in the same direction as Vu1

∴ ∆Vu= 35 – 7 = 28 m/s.

Fu = 
1000

4
× ×0.042 π

 × (35 – 20) (28) = 527.8 N.

Energy transfer rate = F × u = 527.8 × 20 = 10556 Nm/s or W.

Fy = 
1000 0 04

4

2× ×. π
 × (35 – 20) × (15 sin 30 – 0) = 141.37 N

(Note V2 sin α2 = Vr2
 sin β2).

In case series of vanes have been used,

Fx 
 = 

1000 0 04
4

2× ×. π
 × 35 × 28 = 1231.5 N

Energy transfer = 1231.5 × 20 = 24630 W

In case there is friction for the flow over the blade, Vr2
= kVr1

In case the water jet direction and blade velocity direction are at an angle α1,then at the inlet Vu
≠ V1 but will be Vu = V1 cos α1. This is illustated by the following example.
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Example 13.6 A water jet 20 mm in diameter and having a velocity of 90 m/s strikes series of
moving blades in a wheel. The direction of the jet makes 20° with the direction of movement of the
blade. The blade angle at inlet is 35°. If the jet should enter the blade without striking, what should
be the blade velocity. If the outlet angle of the blade is 30°, determine the force on the blade.
Assume that there is no friction involved in the flow over the blade.

This problem has to be solved using the velocity diagram.

V = 90 m/s
1

V
r1

d1 = 20°b1

u1u1

35°

30°

40.61 u

V2 Vr1
53.67

Figure Ex. 13.6

u = V1 cos α1– Vr1
 cos β1

 V1 sin α1 = Vr1
sin β1

∴ Vr1
 = 

V1 1

1

sin
sin

α
β  = 

90 20
35

× sin
sin

 = 53.67 m/s

∴ u = 90 cos 20 – 53.67 cos 35 = 40.61 m/s

Vu1
 = V1 cos α1 = 90 × cos 20 = 84.57 m/s

Vu2
 = Vr2

 cos β2 – u = 53.67 × cos 30 – 40.61

= 5.87 m/s (opposite direction to Vu1
)

∴ ∆Vu = 84.57 + 5.87 = 90.44 m/s

Series of blades : Mass flow = 
π × 0 02

4

2.
 × 1000 × 90 = 28.274 kg/s

∴ Force Fx = 28.274 × 90.44 = 2557 N

Energy transfer rate = 2557 × 40.61 = 103845 Nm/s or W

Energy in the jet = 
mV1

2

2
 = 

28 274 90
2

2. ×
 = 1145097 W

Fy = (90 sin 20 – 53.67 sin 30) 28.274 = 111.6 N
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13.4 TORQUE ON ROTATING WHEEL

Blades or vanes may be fixed at the periphery of the wheel in which case the radius at
which fluid enters will be the same as at fluid exit. There are cases where the blades are fixed
at the sides of a disc such that the radius at which the fluid enters the vane will be different
from the radius at which it exits. The former type is known axial blading and the later is
known as radial blading. In the former case the blade
velocity will be constant and in the latter case the blade
velocity will very with radius. Thus the force on the blade
will very with the radius and the previous method cannot
be used to find the fluid force on the blade. In this case
the moment of momentum theorem is used to
determine the torque on the wheel. The theorem
states that torque on the wheel equals the rate of
change of moment of momentum of the fluid as it
flows over the blades. Thus it is necessary to
determine the  moment of  momentum at the inlet and
outlet to determine the torque. Torque can be produced
only by the velocity component along the periphery.

The components of the velocity in the tangential direction are Vu1
 and Vu2

 equal to V1

cos α1 and V2 cos α2. Momentum at entry = �mV1 cos α1. Moment of momentum of entry = �mV1
cos α1 × r1

Similarly moment of  momentum at exit = �mV2 cos α2 × r2

 T = �m  (r1V1 cos α1 – r2V2 cos α2)

Power = ωT. ω = 
2
60
πN

Substituting :  
2

60
1πr N

 = u1 tangential velocity at entry

2
60

2πr N
 = u2  tangential at exit

∴  P = �m (V uu1 1 – V uu2 2 ).

where Vu1
 and Vu2

 are the components of the absolute velocities of the fluid in the tangential

direction. In this case the direction of blade velocity is the tangential direction to the wheel on
which the blades are fixed.

Example 13.7 Blades are fixed in a disc with outer and inner diameters of 0.8 m and 0.4 m. The
disc rotates at 390 rpm. The flow rate through blades is 4000 kg/s. The inlet angle of the blade is
80°. The blade width is 0.25 m.

If the flow at outlet is radial, determine the blade outlet angle. Determine the angle at which the
water should flow for smooth entry. Determine the torque exerted and the power resulting
therefrom.

Entry

Exit

Blades

Figure 13.4.1 Radial blading
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 u1 = 
πDN
60

 = 
π × ×0 8 390

60
.

 = 16.34 m/s

∴  u2 = u1 × D
D

2

1
 = 

16 34 0 4
0 8

. .
.
×

 = 8.17 m/s

From continuity  Q = πDbVf

where Vf is the flow velocity along the radius.

4000
1000

 = π × 0.8 × 0.25 × Vf

∴ Vf  = 6.37 m/s.

Vu1
= u1 + Vf /tan 80

= 16.34 + 
6 37

80
.

tan
 = 16.52 m/s

 
V

V
f

u

1

1

 = tan α1,
6 37
16 52

.
.

 = tan α1, α1 = 21.09°

The jet should be inclined at this angle to the periphery of the wheel

∴  V1 tan α1  = Vf1 ∴ V1 = 
6 37

2109
.

tan .
 = 16.51 m/s.

As the blade width is constant, the flow velocity at exit is

4 = π × 0.4 × 0.25 × Vf2

∴ Vf2
 = 12.73 m/s

∴ tan β2 = 
12 13
8 17

.
.

 ∴ β2 =  57.3°

As exit is radial, Vw2  = 0 as Vf2
 = V2

T = �m  (r1Vw1  – 0) =  4000 × 
0 8
2
.

 × 16.52 = 26432 mN.

P = ωT = 
2

60
πN

 × 
26432
1000

= 1079.5 kW. Also equal to �m  Vw1
Vu1

 (check)

We can also determine Vr1  and Vr2  if required.

Figure Ex. 13.7a

Figure Ex. 13.7b

u2

8.17

B2

Vr2

Vf2
=

12.73

Exit triangle

Vu1Vu1
u1u1

a1

V1

V 1r

VF

80°
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SOLVED PROBLEMS

Problem 13.1 A pipe line of 150 mm ID branches into two pipes which delivers the
water at atmospheric pressure. The diameter of the branch 1 which is at 30° anti clockwise to
the pipe axis is 75 mm. and  the velocity at outlet is 12 m/s. The branch 2 is at 15° with the pipe
centre line in the clockwise direction has a diameter of 100 mm. The outlet velocity is 12 m/s.
The pipes lie in a horizental plane. Determine the magnitude and direction of the forces
on the pipes.

0.15 m

0.075 m

30°
15°

12 m/s

12 m/s

0.01 m

y

x

Fx

Figure P. 13.1

The flow rates in the pipes are

Branch 1 : 
π × 0 075

4

2.
 × 12 × 1000 = 53 kg/s

Branch 2 = 
π × × ×0 1 12 1000

4

2.
 = 94 kg/s

Flow in the pipe = 94 + 53 = 147 kg/s

Velocity in the pipe : V1 = 0.147 / 
π 0 15

4

2.
 = 8.333 m/s

To determine the pressure in the pipe

P
p
1  = 

P
S
0  + 

V2
2

2
 – 

V1
2

2
 ,

Assuming zero gauge pressure at exit.

P1 = ρ  V V2
2

1
2

2
−L

N
MM

O
Q
PP   = 1000 

12 8 33
2

2 2−L
N
M

O
Q
P.

= 37.3 × 103 N/m2

The x directional force assuming it to act in the – ve x direction

Fx = 37.3 × 103 × 
π × 0 15

4

2.
 – 94 × 12 cos 15 – 53 × 12 cos 30 + 147 × 8.333

  = 242 N
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To determine Fy : Assuming to act in the + ve y direction

Fy = 53 × 12 sin 30 – 94 × 12 sin 15

= 26 N

Problem 13.2  A jet 30 mm diameter with velocity of 10 m/s strikes a vertical plate in
the normal direction. Determine the force on the plate if (i) The plate is stationary (ii) If it
moves with a velocity of 4 m/s towards the jet and (iii) If the plate moves away from the plate at
a velocity of 4 m/s.

Case (i) The total x directional velocity is lost.

∴ F = �mV, �m  = ρAV

∴ F = 
π × 0 03

4

2.
 × 10 × 10 × 1000 = 70.7 N

Case (ii) �m  = ρA(Vr), Vr = V + u = 14

∴  F = 
π × 0 032

4
.

 × 14 × 1000 × 10 = 99 N

Case (iii) F Vr = V – u = 6 m/s

 F = 
π × 0 03

4

2.
 × 6  × 1000 × 10 = 42.4 N

Problem 13.3 A jet of water at a velocity of 100 m/s strikes a series of moving vanes
fixed at the periphery of a wheel, 5 at the rate of kg/s.

The jet is inclined at 20° to the direction of motion of the vane. The blade speed is 50 m/s.
The water leaves the blades at an angle of 130° to the direction of motion.

Calculate the blade angles at the forces on the wheel in the axial and tangential direction.

V
1001

V
1AV 1f

Inlet

20°b1

Vu1V 1u

50 u150 u1

u2 = 50u2 = 50

Vu2Exit

130°
50

B2

55.7
V2

a2

Figure P. 13.3

tan β1 = 
V

V u
1 1

1 1

sin
cos

α
α −

 = 
100 20

100 20 50
×

−
sin

cos

Blade angle  at inlet ∴ β1 = 37 .88°
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sin β1 = 
V

Vr

1 1

1

sin α

∴ Vr1
 = 

100 20
37 88
sin

sin .  = 55.7 m/s

In this type of blade fixing

 Vr2
 = Vr1

and u2 = u1

Referring to the exit triangle

 Vr2
 cos 50 < u = 50

Hence this shape

  Vr2
 cos 50 = 35.8. ∴ Vu2 = 50 – 35.8

= 14 .2 m/s in the same direction as Vu1

∴ Tangential force = 500 × ( )V Vu u1 2
−

Vu1
 = 100 cos 20 = 93.97 m/s

∴ Tangential force  = 5 (93.97 – 14.2) = 3488 N

Axial force  F = �m [V1 sin α – Vr1
 sin β2]

= 5 [100 sin 20 – 55.7 . sin 50] = – 8.5 N

Problem 13.4 Water jet at the rate of 10 kg/s strikes the series of moving blades at a
velocity of 50 m/s. The blade angles with respect to the direction of motion are 35° and 140°. If
the peripheral speed is 25 m/s, determine the inclination of the jet so that water enters the
blades without shock. Also calculate the power developed and the efficiency of the system.
Assume blades an mounting on the periphery of the wheel.

In this type of mounting u remains the same so also relative velocity. β1, V1 and u are
known :

Refer figure

V
1Vr1

A

b1

Vu1V 1u

u1u1

q

a1
B

C

u = 252u2 = 25
4.04

4.0

V = Vr2 r1

V2

Figure P. 13.4
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V1

1180sin ( )− β
 = 

u
sin θ

∴
50

180 35sin ( – )
 = 

25
sin θ

Solving θ = 16.7°. ∴ α1 = 180 – (180 – 35) – 16.7 = 18.3°

Direction of the jet is 18.3° to the direction of motion.

 Vu1
 = 50 × cos 18.3 = 47.47 m/s,

Vr1
 = 

50 18 3
35

sin .
sin

 = 27.37 m/s

 β2= (180 – 140) = 40°, Vr2
 cos 40 = 20.96 < 25 (u)

∴ The shape of the exit triangle will be as in figure

Vu2
 = u – Vr2

 cos β2  = 25 – 20.96 = 4.04 m/s

Tangential force = m ( )V Vu u1 2
−  = 10 (47.47 – 4.04) = 434.3 N

Power = F × u = 434.3 × 25 = 10.86 × 103 W

Energy in jet = 
10 50

2

2×
 = 12.5 × 103 W

∴ η = 
10 86 10
12 5 10

3

3

.
.

×
×

 = 0.8686 or 86.86 %

Problem 13.5 Curved vanes fixed on a wheel on the surface receive water at angle of 20°
to the tangent of the wheel. The inner and outer diameter of the wheel are 0.9 and 1.6 m respectively.

The speed of rotation of the wheel is 7 revolutions per second. The velocity of water at
entry is 75 m/s. The water leaves the blades with an absolute velocity of 21 m/s at an angle of
120° with the wheel tangent at outlet. The flow rate is 400 kg/s. Determine the blade angles
for shockless entry and exit. Determine the torque and power. A also determine the radial
force.

V
1 = 75Vr1

b1

Vu1V 1u

u = 35.191u1 = 35.19

2q

Vf1

Vu2

Vr2

21Vf2

b2

19.8

120

uc

Inlet

Exit

Figure P. 13.5
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Blade velocity u1 = πdN = π × 1.6 × 7 = 35.19 m/s

u2 = 
9
16

 × 35.19 = 19.8 m/s

tan β1 = 
V

V u
1 1

1 1

sin
cos

α
α −  = 

75 20
75 20 35 19

×
×

sin
cos – .

Solving β1 = 36°

 tan β2 = 
21 60

19 8 21 60
sin

. cos+

Solving β2 = 30.97°

 T = �m[V ru1 1
 + V ru2 2

] (in this case, Vu2
 is in the opposite direction)

∴ ∆Vw = Vu1
 + Vu2

= 400 [0.8 × 75 cos 20 + 0.45 × 21 cos 60] = 24443 Nm

Power = 24443 × ω = 24443 × 2π × 7 = 1075042 W

or Ω 1075 kW.

Power in the jet = 
75

2

2

 × 400 = 1125000 W or 1125 kW

 η = 
1075
1125

 = 0.955 or 95.5%

Radial force = 400 (75 sin 20 – 21 sin 60) = 2986 N.

Problem 13.6 A jet of water with a velocity of 30 m/s impinges on a series of vanes
moving at 12 m/s at 30 to the direction of motion. The vane angle at outlet is 162° to the
direction of motion. Complete (i) the vane angle at inlet for shockless entry and (ii) the
efficiency of power transmission.

Vr2

18°

Outlet

V
1 = 30

b1 30

Inlet

12

19.5

u

V2

Figure P. 13.6

tan β1 = 

V
V u

1 1

1 1

sin
cos

α
α −  = 

30 30
30 30 12

sin
cos –  = 1.073

∴ β1 = 47°
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sin β1 = 
30 30

1

sin
Vr

∴ Vr1
 = 

30 30

1

sin
sinβ  = 20.5 m/s = Vr2

 Vr2
 cos β2 > u1 ∴ hence the shape of the triangle.

 Vu1
 = 30 cos 30 = 25.98 m/s

Vu2
 = 20.5 cos 18 – 12 = 7.5 m/s

Assuming unit mass flow rate :

 P = u [Vw1
 + Vw2

] = 12 [25.98 + 7.5] = 401.76 W/kg/s

Energy in the jet = 
30

2

2

 = 450 W.

∴ η = 
40176

450
.

 = 0.893 or 89.3%

EXERCISE QUESTIONS

E 13.1 Derive the linear momentum equation using the control volume approach and determine the
force exerted by the fluid flowing through a pipe bend.

E 13.2 Derive the expression for the force exerted by a water jet on a plate moving in the same
direction of the jet with a velocity less than that of the jet.

E 13.3 A horizontal Y is shown in figure. Determine the x and y components of the force exerted in
the pipe.

1.6 m f1.6 m f

60°

60°

0.5 m

1 m f

18.33 m/s

18.33 m/s

Figure E. 13.3

E 13.4 A nozzle of 5 cm diameter is fixed at the end of  a pipe of 15 cm diameter with water flowing in
the pipe at a velocity of 3 m/s. The jet discharges into the air. Determine the force exerted in
the nozzle.

E 13.5 Water flows through a right angled reducer bend with inlet diameter of 60 cm and exit diam-
eter of 40 cm. The entrance velocity is 6 m/s. If the bend lies on a horizontal plane, determine
the magnitude and direction of the force on the bend.
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E 13.6 A jet of 5 cm diameter enters a blade in the x direction with a velocity of 60 m/s. The blade
angle at inlet is 0°. The outlet angle is 120° with x direction. If the blade moves with a velocity
of 25 m/s along the x direction, determine the forces in the x and y directions. Also determine
the energy transfer rate.

E 13.7 A jet of water 6 cm dia has a velocity of 30 m/s. If it impinges on a curved vane which turns the
jet by 90° determine forces on the vane if the vane moves in the direction of the jet at a
velocity of 14 m/s.

E 13.8 A series of vanes is acted upon by a 7.5 cm water jet having a velocity of 30 m/s. α1 = β1 = 0°.
If the force acting on the vane in the direction of the jet is 900 N determine the angle by which
the jet is turned by the vane. The vane velocity is 15 m/s.

E 13.9 A 5 cm2 area water jet impinges on a series of vanes as shown in figure. The absolute veloci-
ties and their directions are indicated on the figure. What is the  power transmitted? Also
determine the blade speed and blade inlet angle.

30°

60°

u

V = 60 m/s
1

V
= 45 m/s

2

Figure E. 13.9

E 13.10 A water jet with a velocity of 60 m/s enters a series of curved vanes at an angle of 20° to the
direction of blade movement. The peripheral speed of the disc on which the blades are mounted
is 25 m/s. Calculate the vane inlet angle. If at the exit the component of absolute velocity
along the direction of motion is zero, determine the outlet blade angle. Assume shockless
enters and exit.


