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2  MODELING AND INFORMATICS IN DRUG DESIGN

  1.1   INTRODUCTION 

 Modeling and informatics have become indispensable components of rational drug 
design (Fig.  1.1 ). For the last few years, chemical analysis through molecular model-
ing has been very prominent in computer - aided drug design (CADD). But currently 
modeling and informatics are contributing in tandem toward CADD. Modeling in 
drug design has two facets: modeling on the basis of knowledge of the drugs/leads/
ligands often referred to as ligand - based design and modeling based on the structure 
of macromolecules often referred to as receptor - based modeling (or structure - based 
modeling). Computer - aided drug design is a topic of medicinal chemistry, and before 
venturing into this exercise one must employ computational chemistry methods to 
understand the properties of chemical species, on the one hand, and employ com-
putational biology techniques to understand the properties of biomolecules on the 
other. Information technology is playing a major role in decision making in phar-
maceutical sciences. Storage, retrieval, and analysis of data of chemicals/biochemi-
cals of therapeutic interest are major components of pharmacoinformatics. Quite 

    FIGURE 1.1     A schematic diagram showing a fl owchart of activities in computer aided 
drug development. The fi gure shows that the contributions from modeling methods and 
informatics methods toward the drug development are parallel and in fact not really 
distinguishable. 
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often, the efforts based on modeling and informatics get thoroughly integrated 
with each other, as in the case of virtual screening exercises. In this chapter, the 
molecular modeling methods that are in vogue in the fi elds of (1) computational 
chemistry, (2) computational biology, (3) computational medicinal chemistry, and 
(4) pharmacoinformatics are presented and the resources available in these fi elds 
are discussed.    

  1.2   COMPUTATIONAL CHEMISTRY 

 Two - dimensional (2D) structure drawing and three - dimensional (3D) structure 
building are the important primary steps in computational chemistry for which 
several molecular visualization packages are available. The most popular of these 
are ChemDraw Ultra and Chem3D Pro, which are a part of the ChemOffi ce suite 
of software packages  [1] . ACD/ChemSketch  [2] , MolSuite  [3] , and many more of 
this kind are other programs for the same purpose. Refi nement has to be carried 
out on all the drawings and 3D structures so as to improve the chemical accuracy 
of the structure on the computer screen. Structure refi nement based on heuristic 
rules/cleanup procedures is a part of all these software packages. However, chemical 
accuracy of the 3D structures still remains poor even after cleanup. Further refi ne-
ment can be carried out by performing energy minimization using either molecular 
mechanical or quantum chemical procedures. By using these methods, the energy 
of a molecule can be estimated in any given state. Following this, with the help of 
fi rst and second derivatives of energy, it can be ascertained whether the given com-
putational state of the molecules belongs to a chemically acceptable state or not. 
During this process, the molecular geometry gets modifi ed to a more appropriate, 
chemically meaningful state  –  the entire procedure is known as geometry optimiza-
tion. The geometry optimized 3D structure is suitable for property estimation, 
descriptor calculation, conformational analysis, and fi nally for drug design exercise 
 [4 – 6] . 

  1.2.1    Ab Initio  Quantum Chemical Methods 

 Every molecule possesses internal energy ( U ), for the estimation of which quantum 
chemical calculations are suitable. Quantum chemical calculations involve rigorous 
mathematical derivations and attempt to solve the Schr ö dinger equation, which in 
its simplest form may be written as

    H EΨ Ψ=     (1.1)  
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 where  ψ  represents the wavefunction,  E  represents energy,  ∇  represents the kinetic 
energy operator for electrons,  r i   defi nes the vector position of electron  i  with vector 
components in Bohr radii,  Z a   is the charge of fi xed nucleus  a  in units of the elemen-
tary charge, and  d a   is the vector position of nucleus  a  with vector components in 
Bohr radii. 
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 Exact solutions to Schr ö dinger equation cannot be provided for systems with 
more than one electron. Several ab initio  molecular orbital (MO) and  ab initio
density functional theory (DFT  ) methods were developed to provide expectation 
value for the energy. This energy can be minimized and thus the geometry of any 
molecule can be obtained, with high confi dence level, using quantum chemical 
methods. During this energy estimation, the wavefunctions of every molecule can be 
defi ned, which possess all the information related to the molecule. Thus, properties 
like relative energies, dipole moments, electron density distribution, charge distribu-
tion, electron delocalization, molecular orbital energies, molecular orbital shapes, 
ionization potential, infrared (IR) frequencies, and chemical shifts can be estimated 
using ab initio  computational chemistry methods. For this purpose, several quantum 
chemical methods like Hartree – Fock (HF), second order Moller – Plesset perturba-
tion (MP2), coupled cluster (CCSD  ), confi guration interaction (QCISD  ), many - body 
perturbation (MBPT), multiconfi guration self - consistent fi eld (MCSCF), complete 
active space self - consistent fi eld (CASSCF), B3LYP, and VWN were developed. At 
the same time to defi ne the wavefunction, a set of mathematical functions known as 
basis set  is required. Typical basis sets are 3 - 21G, 6 - 31G * , and 6 - 31+G * . Combination 
of the ab initio  methods and basis sets leads to several thousand options for estimat-
ing energy. For reliable geometry optimization of drug molecules, the HF/6 - 31+G * , 
MP2/6 - 31+G * , and B3LYP/6 - 31+G *  methods are quite suitable. When very accurate 
energy estimation is required, G2MP2 and CBS - Q methods can be employed. Gauss-
ian03, Spartan, and Jaguar are software packages that can be used to estimate reliable 
geometry optimization and very accurate energy estimation of any chemical species. 
In practice, quantum chemical methods are being used to estimate the relative sta-
bilities of molecules, to calculate properties of reaction intermediates, to investigate 
the mechanisms of chemical reactions, to predict the aromaticity of compounds, and 
to analyze spectral properties. Medicinal chemists are beginning to take benefi t from 
these by studying drug – receptor interactions, enzyme – substrate binding, and solva-
tion of biological molecules. Molecular electrostatic potentials, which can be derived 
from ab initio  quantum chemical methods, provide the surface properties of drugs 
and receptors and thus they offer useful information regarding complementarities 
between the two  [7 – 10] .  

  1.2.2   Semiempirical Methods 

 The above defi ned  ab initio  methods are quite time consuming and become pro-
hibitively expensive when the drugs possess large number of atoms and/or a series 
of calculations need to be performed to understand the chemical phenomena. 
Semiempirical quantum chemical methods were introduced precisely to address this 
problem. In these methods empirical parameters are employed to estimate many 
integrals but only a few key integrals are solved explicitly. Although these calcula-
tions do not provide energy of molecules, they are quite reliable in estimating the 
heats of formation. Semiempirical quantum chemical methods (e.g., AM1, PM3, 
SAM1) are very fast in qualitatively estimating the chemical properties that are of 
interest to a drug discovery scientist. MOPAC and AMPAC are the software pack-
ages of choice; however, many other software packages also incorporate these 
methods. Qualitative estimates of HOMO and LUMO energies, shapes of molecular 
orbitals, and reaction mechanisms of drug synthesis are some of the applications of 
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semiempirical analysis  [5, 10] . When the molecules become much larger, especially 
in the case of macromolecules like proteins, enzymes, and nucleic acids, employing 
these semiempirical methods becomes impractical. In such cases, molecular mechan-
ical methods can be used to estimate the heats of formation and to perform geom-
etry optimization.  

  1.2.3   Molecular Mechanical Methods 

 Molecular mechanical methods estimate the energy of any drug by adding up the 
strain in all the bonds, angles, and torsions due to the energy   of the van der Waals 
and Coulombic interactions across all atoms in the molecule. It refl ects the internal 
energy of the molecule; although the estimated value is nowhere close to the actual 
internal energy, the relative energy obtained from these methods is indicative 
enough for chemical/biochemical analysis. It is made up of a number of components 
as given by

    E E E E E E Emm bonds angles vdw torsion charge misc= + + + + +     (1.3)   

 Molecular mechanical methods are also known as force fi eld methods because 
in these methods, the electronic effects are estimated implicitly in terms of force 
fi elds associated with the atoms. In Eq.  1.3 , the energy ( E ) due to bonds, angles, and 
torsional angles can be estimated using the simple Hooke ’ s law and its variations, 
whereas the van der Waals (vdw) interactions are estimated using the Lennard -
 Jones potential and the electrostatic interactions are estimated using Coulombic 
forces. The energy estimation, energy minimization, and geometry optimization 
using these methods are quite fast and hence suitable for studying the geometries 
and conformations of biomolecules and drug – receptor interactions. Since these 
methods are empirical in nature, parameterization of the force fi elds with the help 
of available spectral data or quantum chemical methods is required. AMBER, 
CHARMM, UFF, and Tripos are some of the force fi elds in wide use in computer -
 aided drug development  [5, 10] .  

  1.2.4   Energy Minimization and Geometry Optimization 

 Drug molecules prefer to adopt equilibrium geometry in nature, that is, a geometry 
that possesses a stable 3D arrangement of atoms in the molecule. The 3D structure 
of a molecule built using a 3D builder does not represent a natural state; slight 
modifi cations are required to be made on the built 3D structure so that it represents 
the natural state. For this purpose, the following questions need to be addressed: (1) 
Which minimal changes need to be made? (2) How much change needs to be made? 
(3) How does one know the representation at hand is the true representation of the 
natural state? To provide answers to these questions we can depend on energy, 
because molecules prefer to exist in thermodynamically stable states. This implies 
that if the energy of any molecule can be minimized, the molecule is not in a stable 
state and thus the current representation of the molecule may not be the true rep-
resentation of the natural state. This also implies that we can minimize the energy 
and the molecular structure in that energy minimum state probably represents a 
true natural state. Several methods of energy minimization have been developed by 
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computational chemists, some of which are nonderivative methods (simplex method) 
but many of which are dependent on derivative methods (steepest descent, Newton –
 Raphson, conjugate gradient, variable metrics, etc.) and involve the estimation of 
the gradient of the potential energy curve  [4 – 6] . The entire procedure of geometry 
modifi cation to reach an energy minimum state with almost null gradient is known 
as geometry optimization in terms of the structure of the molecule and energy 
minimization in terms of the energy of the molecule. All computational chemistry 
software packages are equipped with energy minimization methods — of which a few 
incorporate energy minimization based on  ab initio  methods while most include the 
semiempirical and molecular mechanics based energy minimization methods.  

  1.2.5   Conformational Analysis 

 Molecules containing freely rotatable bonds can adopt many different conforma-
tions. Energy minimization procedures lead the molecular structure to only one of 
the chemically favorable conformations, called the local minimum. Out of the several 
local minima on the potential energy (PE) surface of a molecule, the lowest energy 
conformation is known as the global minimum. It is important to note all the possi-
ble conformations of any molecule and identify the global minimum before taking 
up a drug design exercise (Fig.  1.2 ). This is important because only one of the pos-
sible conformations of a drug, known as its bioactive conformation, is responsible 
for its therapeutic effect. This conformation may be a global minimum, a local 
minimum, or a transition state between local minima. As it is very diffi cult to identify 

    FIGURE 1.2     Flowchart showing the sequence of steps during molecular modeling of drug 
molecules. 
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the bioactive conformation of many drug molecules, it is common practice to assume 
the global minima to be bioactive. The transformation of drug molecules from one 
conformer to another can be achieved by changing the torsional angles. The com-
putational process of identifying all local minima of a drug molecule, identifying the 
global minimum conformation, and, if possible, identifying the bioactive conforma-
tion is known as conformational analysis. This is one of the major activities in com-
putational chemistry.   

 Manual conformational search is one method where the chemical intuition of the 
chemist plays a major role in performing the conformational analysis. Here, a 
chemist/modeler carefully chooses all possible conformations of a given drug mol-
ecule and estimates the energy of each conformation after performing energy mini-
mization. This procedure is very effective and is being widely used. This approach 
allows the application of rigorous quantum chemical methods for the conforma-
tional analysis. The only limitation of this method arises from the ability and patience 
of the chemist. There is a possibility that a couple of important conformations are 
ignored in this approach. To avoid such problems, automated conformational analy-
sis methods were introduced. 

 Various automated methods of conformational analysis include systematic search, 
random search, Monte Carlo simulations, molecular dynamics, genetic algorithms, 
and expert systems (Table  1.1 )  [4, 5] . The systematic conformational search can be 
performed by varying systematically each of the torsion angles of the rotatable 
bonds of a molecule to generate all possible conformations. The step size for torsion 
angle change is normally 30 – 60 ° . The number of conformations across a C — C single 
bond would vary between 6 and 12. With an increase in the number of rotatable 
bonds, the total number of conformations generated becomes quite large. The 
 “ bump check ”  method reduces the number of possibilities; still, the total number of 
conformations generated can be in the tens of thousands for drug molecules. Obvi-
ously, most of the conformations are chemically nonsignifi cant.   

 The random conformational search method employs random change in torsional 
angle across rotatable bonds and performs energy minimization each time; thus, a 
handful of chemically meaningful conformations can be generated  [11 – 18] . 

 Molecular dynamics is another method of carrying out conformational search of 
fl exible molecules. The aim of this approach is to reproduce time - dependent motional 
behavior of a molecule, which can identify bound states out of several possible 

 TABLE 1.1    Different Methods of Conformational Analysis 

 Methods for Conformational 
Analysis  Remarks 

 Systematic search  Systematic change of torsions 
 Random search  Conformations picked up randomly 
 Monte Carlo method  Supervised random search 
 Molecular dynamics  Newtonian forces on atoms and time dependency 

incorporated in conformational search 
 Genetic algorithm  Parent – child relationship along with survival of the 

fi ttest techniques employed 
 Expert system  Heuristic methods based on rules and facts employed 
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states. The user needs to defi ne step size, time of run, and the temperature supplied 
to the system at the beginning of the computational analysis. A simulated annealing 
method allows  “ cooling down ”  of the system at regular time intervals by decreasing 
the simulation temperature. As the temperature approaches 0 K, the molecule is 
trapped in the nearest local minimum. It is used as the starting point for further 
simulation and the cycle is repeated several times  [19] .   

  1.3   COMPUTATIONAL BIOLOGY 

 Computational biology is a fast growing topic and it is really not practical to distin-
guish this topic from bioinformatics. However, we may broadly distinguish between 
the two topics as far as this chapter is concerned. Molecular modeling aspects of 
computational biology, which lead to structure prediction, may be discussed under 
this heading, whereas the sequence analysis part, which leads to target identifi cation, 
may be discussed under the section of pharmacoinformatics. Structure prediction of 
biomolecules (often referred to as  “ structural bioinformatics ” ) adopts many aspects 
of computational chemistry. For example, energy minimization of protein receptor 
structure is one important step in computational biology. Molecular mechanics, 
molecular simulations, and molecular dynamics are employed in performing con-
formational analysis of macromolecules. 

 A rational drug design approach is very much dependent on the knowledge of 
receptor protein structures and is severely limited by the availability of target 
protein structure with experimentally determined 3D coordinates. Proteins exhibit 
four tiered organization: (1) primary structure defi ning the amino acid sequence, (2) 
secondary structure with α  - helical and  β  - sheet folds, (3) tertiary structure defi ning 
the folding of secondary structure held by hydrogen bonds, and (4) quaternary 
structure involving noncovalent association between two or more independent pro-
teins. Methods for identifying the primary amino acid sequence in proteins are now 
well developed; however, this knowledge is not suffi cient enough to understand the 
function of the proteins, the drug – receptor mutual recognition, and designing drugs. 
Various experimental techniques like X - ray crystallography, nuclear magnetic reso-
nance, and electron diffraction are available for determining the 3D coordinates of 
the protein structure; however, there are many limitations. It is not easy to crystallize 
proteins and even when we succeed, the crystal structure represents only a rigid 
state of the protein rather than a dynamic state. Thus, the reliability of the experi-
mental data is not very high in biomolecules. Computational methods provide 
the alternative approach — although with equal uncertainty but at a greater speed. 
Homology modeling and ab initio  methods are being employed to elucidate the 
tertiary structure of various biomolecules. The 3D structures of proteins are useful 
in performing molecular docking, de novo  design, and receptor - based pharmaco-
phore mappings. The computational methods of biomolecular structure prediction 
are discussed next (Fig.  1.3 )  [20, 21] .   

  1.3.1    Ab Initio  Structure Prediction 

 This approach seeks to predict the native conformation of a protein from the amino 
acid sequence alone. The predictions made are based on fundamental understanding 
of the protein structure and the predictions must satisfy the requirements of free -



 energy function associated with lowest free - energy minima. The detailed represen-
tation of macromolecules should include the coordinates of all atoms of the protein 
and the surrounding solvent molecules. However, representing this large number of 
atoms and the interactions between them is computationally expensive. Thus, several 
simplifi cations have been suggested in the representations during the  ab initio  struc-
ture prediction process. These include (1) representation of side chains using a 
limited set of conformations that are found to be prevalent in structures from the 
Protein Data Bank (PDB) without any great loss in predictive ability  [22]  and (2) 
restriction of the conformations available to the polypeptides in terms of phi – psi 
( φ  –  ψ ) angle pairs  [23] . Building the protein 3D structure is initiated by predicting 
the structures of protein fragments. Local structures of the protein fragments are 
generated fi rst after considering several alternatives through energy minimization. 
A list of possible conformations is also extracted from experimental structures for 
all residues. Protein tertiary structures are assembled by searching through the 
combinations of these short fragments. During the assembling process, bump check-
ing and low energy features (hydrophobic, van der Waals forces) should be incor-
porated. The fi nal suggested structure is subjected to energy minimization and 
conformational analysis using molecular dynamics simulations.  Ab initio  structure 
prediction can be used to guide target selection by considering the fold of biological 
signifi cance. The  ab initio  macromolecular structure prediction methods, if success-
ful, are superior to the widely used homology modeling technique because no  a 
priori  bias is incorporated into the structure prediction  [24] .  

  1.3.2   Homology Modeling 

 Homology or comparative modeling uses experimentally determined 3D structure 
of a protein to predict the 3D structure of another protein that has a similar amino 
acid sequence. It is based on two major observations: (1) structure of a protein 
is uniquely determined by its amino acid sequence and (2) during evolution, the 
structure is more conserved than the sequence such that similar sequences adopt 

    FIGURE 1.3     A list of computer - aided structure prediction methods with respect to their 
suitability to the available sequence similarity. 
 

HOMOLOGY MODELING 

MULTIPLE SEQUENCE ALIGNMENT

THREADING

AB INITIO METHODS 

Percentage Sequence Identity 

 0          10             30          60            100 

COMPUTATIONAL BIOLOGY  9



10 MODELING AND INFORMATICS IN DRUG DESIGN

practically identical structure and distantly related sequences show similarity in 
folds. Homology modeling is a multistep method involving the following steps: (1) 
obtaining the sequence of the protein with unknown 3D structure, (2) template 
identifi cation for comparative analysis, (3) fold assignment based on the known 
chemistry and biology of the protein, (4) primary structure alignment, (5) backbone 
generation, (6) loop modeling, (7) side chain modeling, (8) model optimization, and 
(9) model validation. 

 The methodology adopted in homology modeling of proteins can be described 
as follows. The target sequence is fi rst compared to all sequences reported in the 
PDB using sequence analysis. Once a template sequence is found in the data bank, 
an alignment is made to identify optimum correlation between template and target. 
If identical residues exist in both the sequences, the coordinates are copied as such. 
If the residues differ, then only the coordinates of the backbone elements (N, C α , 
C, and O) are copied. Loop modeling involves shifting all insertions and deletions 
to the loops and further modifying them to build a considerably well resembling 
model. Modeling the side chains involves copying the conserved residues, which also 
includes substitution of certain rotamers that are strongly favored by the backbone. 
Model optimization is required because of the expected differences in the 3D 
structures of the target and the template. The energy minimizations can be per-
formed using molecular mechanics force fi elds (either well defi ned and/or self -
 parameterizing force fi elds). Molecular dynamic simulations offer fast, more reliable 
3D structure of the protein. Model validation is a very important step in homology 
modeling, because several solutions may be obtained and the scientifi c user should 
interfere and make a choice of the best generated model. Often, the user may have 
to repeat the process with increased caution  [20, 24] .

  1.3.3   Threading or Remote Homology Modeling 

 Threading (more formally known as  “ fold recognition ” ) is a method that may be 
used to suggest a general structure for a new protein. It is mainly adopted when 
pairwise sequence identity is less than 25% between the known and unknown struc-
ture. Threading technique is generally associated with the following steps: (1) iden-
tify the remote homology between the unknown and known structure; (2) align the 
target and template; and (3) tailor the homology model  [24] .   

  1.4   COMPUTATIONAL MEDICINAL CHEMISTRY 

 Representation of drug molecular structures can be handled using computational 
chemistry methods, whereas that of macromolecules can be handled using compu-
tational biology methods. However, fi nding the therapeutic potential of the chemical 
species and understanding the drug – receptor interactions  in silico  requires the fol-
lowing well developed techniques of computational medicinal chemistry. 

  1.4.1   Quantitative Structure – Activity Relationship ( QSAR ) 

 QSAR is a statistical approach that attempts to relate physical and chemical proper-
ties of molecules to their biological activities. This can be achieved by using easily 



calculatable descriptors like molecular weight, number of rotatable bonds, and log 
P . Developments in physical organic chemistry over the years and contributions of 
Hammett and Taft in correlating the chemical activity to structure laid the basis for 
the development of the QSAR paradigm by Hansch and Fujita. Table  1.2  gives an 
overview of various QSAR approaches in practice. The 2D and 3D QSAR 
approaches are commonly used methods, but novel ideas are being implemented in 
terms of 4D – 6D QSAR. The increased dimensionality does not add any additional 
accuracy to the QSAR approach; for example, no claim is valid which states that 
the correlation developed using 3D descriptors is better than that based on 2D 
descriptors.   

2D QSAR  Initially, 2D QSAR or the Hansch approach was in vogue, in which 
different kinds of descriptors from the 2D structural representations of molecules 
were correlated to biological activity. The basic concept behind 2D QSAR is that 
structural changes that affect biological properties are electronic, steric, and hydro-
phobic in nature. These properties can be described in terms of Hammett substituent 
and reaction constants, Verloop sterimol parameters, and hydrophobic constants. 
These types of descriptors are simple to calculate and allow for a relatively fast 
analysis.

 Most 2D QSAR methods are based on graph theoretical indices. The graph theo-
retical descriptors, also called the molecular topological descriptors, are derived from 
the topology of a molecule, that is, the 2D molecular structure represented as graphs. 
These topological connectivity indices representing the branching of a molecule 
were introduced by Rand í c  [25]  and further developed by Kier and Hall  [26, 27] . The 
graph theoretical descriptors include mainly the Kier – Hall molecular connectivity 
indices (chi) and the Weiner  [28, 29] , Hosoya  [30] , Zagreb  [31] , Balaban  [32] , kappa 
shape  [33] , and information content indices  [32] . The electrotopological state index 
(E - state)  [34]  combines the information related to both the topological environment 
and the electronic character of each skeletal atom in a molecule. The constitutional 
descriptors are dependent on the constitution of a molecule and are numerical 
descriptors, which include the number of hydrogen bond donors and acceptors, rotat-
able bonds, chiral centers, and molecular weight (1D)  [35] . Apart from that, several 
indicator descriptors, which defi ne whether or not a particular indicator is associated 
with a given molecule, are also found to be important in QSAR. The quantum chemi-
cal descriptors include the molecular orbital energies (HOMO, LUMO), charges, 
superdelocalizabilities, atom – atom and molecular polarizabilities, dipole moments, 
total and binding energies, and heat of formation. These are 3D descriptors derived 
from the 3D structure of the molecule and are electronic in nature  [36] . These param-
eters are also often clubbed with the 2D QSAR analysis. 

 TABLE 1.2    Different Dimensions in  QSAR

 1D QSAR: Affi nity correlates with p Ka , log  P , etc. 
 2D QSAR: Affi nity correlates with a structural pattern. 
 3D QSAR: Affi nity correlates with the three - dimensional structure. 
 4D QSAR: Affi nity correlates with multiple representations of ligand. 
 5D QSAR: Affi nity correlates with multiple representations of induced - fi t scenarios. 
 6D QSAR: Affi nity correlates with multiple representations of solvation models. 

COMPUTATIONAL MEDICINAL CHEMISTRY 11
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 Statistical data analysis methods for QSAR development are used to identify the 
correlation between molecular descriptors and biological activity. This correlation 
may be linear or nonlinear and accordingly the methods may be divided into linear 
and nonlinear approaches. The linear approaches include simple linear regression, 
multiple linear regression (MLR), partial least squares (PLS), and genetic 
algorithm – partial least squares (GA - PLS). Simple linear regression develops a 
single descriptor linear equation to defi ne the biological activity of the molecule. 
MLR is a step ahead as it defi nes a multiple term linear equation. More than one 
term is correlated to the biological activity in a single equation. PLS, on the other 
hand, is a multivariate linear regression method that uses principal components 
instead of descriptors. Principal components are the variables found by principal 
component analysis (PCA), which summarize the information in the original descrip-
tors. The aim of PLS is to fi nd the direct correlation not between the descriptors 
and the biological activity but between the principal component and the activity. 
GA - PLS integrates genetic algorithms with the PLS approach. Genetic algorithms 
are an automatic descriptor selection method that incorporates the concepts of 
biological evolution within itself. An initial random selection of descriptors is made 
and correlated to the activity. This forms the fi rst generation, which is then mutated 
to include new descriptors, and crossovers are performed between the equations to 
give the next generation. Equations with better predictability are retained and the 
others are discarded. This procedure is continually iterated until the desired pre-
dictability is obtained or the specifi ed number of generations have been developed. 
The nonlinear approaches include an Artifi cial Neural Network (ANN) and 
machine learning techniques. Unlike the linear approaches, nonlinear approaches 
work on a black box principle; that is, they develop a relation between the descrip-
tors and the activity to predict the activity, but do not give the information on how 
the correlation was made or which descriptors are more contributing. The ANN 
algorithm uses the concept of the functioning of the brain and consists of three 
layers. The fi rst layer is the input layer where the structural descriptors are given as 
an input; second is the hidden layer, which may be comprised of more than one 
layer. The input is processed in this part to give the predicted values to the third 
output layer, which gives the result to the user. The user can control the input given 
and the number of neurons and hidden layers but cannot control the correlating 
method  [37 – 40] . 

 The QSAR model developed by any statistical method has to be validated to 
confi rm that it represents the true structure – activity relationship and is not a chance 
correlation. This may be done by various methods such as the leave - one - out and 
leave - multiple - out cross - validations and the bootstrap method. The randomization 
test is another validation approach used to confi rm the adequacy of the training set. 
Attaching chemical connotation to the developed statistical model is an important 
aspect. A successful QSAR model not only effectively predicts the activity of new 
species belonging to the same series but also should provide chemical clues for 
future improvement. This requirement, as well as the recognition that the 3D rep-
resentation of the chemicals gives more detailed information, led to the develop-
ment of 3D QSAR.  

3D QSAR  3D QSAR methods are an extension of the traditional 2D QSAR 
approach, wherein the physicochemical descriptors are estimated from the 3D struc-



tures of the chemicals. Typically, properties like molecular volume, molecular shape, 
HOMO and LUMO energies, and ionization potential are the properties that can 
be calculated from the knowledge of the 3D coordinates of each and every atom of 
the molecules. When these descriptors of series of molecules can be correlated to 
the observed biological activity, 3D QSAR models can be developed. This approach 
is different from the traditional QSAR only in terms of the descriptor defi nition 
and, in a sense, is not really 3D in nature. 

Molecular fi elds (electrostatic and steric), which can be estimated using probe -
 based sampling of 3D structure of molecules within a molecular lattice, can be cor-
related with the reported numeric values of biological activity. Such methods proved 
to be much more informative as they provide differences in the fi elds as contour 
maps. The widely used CoMFA (comparative molecular fi eld analysis) method is 
based on molecular fi eld analysis and represents real 3D QSAR methods  [41] . A 
similar approach was adopted in developing modules like CoMSIA (comparative 
molecular similarity index analysis)  [42] , SOMFA (self - organizing molecular fi eld 
analysis)  [43] , and COMMA (comparative molecular moment analysis)  [44] . Utiliza-
tion and predictivity of CoMFA itself has improved suffi ciently in accordance with 
the objectives to be achieved by it  [45] . Despite the formal differences between the 
various methodologies, any QSAR method must include some identifi ers of chemi-
cal structures, reliably measured biological activities, and molecular descriptors. In 
3D QSAR, alignment (3D superimposition) of the molecules is necessary to con-
struct good models. The main problems encountered in 3D QSAR are related to 
improper alignment of molecules, greater fl exibility of the molecules, uncertainties 
about the bioactive conformation, and more than one binding mode of ligands. 
While considering the template, knowledge of the bioactive conformation of any 
lead compound would greatly help the 3D QSAR analysis. As discussed in Section 
 1.2.5 , this may be obtained from the X - ray diffractions or conformation at the 
binding site, or from the global minimum structure. Alignment of 3D structures of 
molecules is carried out using RMS atoms alignment, moments alignment, or fi eld 
alignment. The relationship between the biological activity and the structural param-
eters can be obtained by multiple linear regression or partial least squares analysis. 
Given next are some details of the widely used 3D QSAR approach CoMFA. 

   C  o  MFA  (Comparative Molecular Field Analysis)     DYLOMMS (dynamic lattice -
 oriented molecular modeling system) was one of the initial developments by Cramer 
and Milne to compare molecules by aligning in space and by mapping their molecu-
lar fi elds to a 3D grid. This approach when used with partial least squares based 
statistical analysis gave birth to the CoMFA approach  [46] . The CoMFA methodol-
ogy is a 3D QSAR technique that allows one to design and predict activities of 
molecules. The database of molecules with known properties is suitably aligned in 
3D space according to various methodologies. After consistently aligning the mole-
cules within a molecular lattice, a probe atom (typically carbon) samples the steric 
and electrostatic interactions of the molecule. Charges are then calculated for each 
molecule using any of the several methods proposed for partial charge estimation. 
These values are stored in a large spreadsheet within the module (SYBYL software) 
and are then accessed during the partial least squares (PLS) routine, which attempts 
to correlate these fi eld energy terms with a property of interest by the use of PLS 
with cross - validation, giving a measure of the predictive power of the model. 
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Electrostatic maps are generated, indicating red contours around regions where 
high electron density (negative charge) is expected to increase   activity, and blue 
contours where low electron density (partial positive charge) is expected to increase 
activity. Steric maps indicate areas where steric bulk is predicted to increase (green) 
or decrease (yellow) activity  [41, 45] . Figure  1.4  shows a typical contour map from 
CoMFA analysis.   CoMSIA  [42] , CoMMA  [44] , GRID  [47] , molecular shape analysis 
(MSA)  [48] , comparative receptor surface analysis (CoRSA)  [49] , and Apex - 3D  [50]  
are other 3D QSAR methods that are being employed successfully.     

4D QSAR  4D QSAR analysis developed by Vedani and colleagues incorporates 
the conformational alignment and pharmacophore degrees of freedom in the 
development of 3D QSAR models. It is used to create and screen against 3D - 
pharmacophore QSAR models and can be used in receptor - independent or 
receptor - dependent modes. 4D QSAR can be used as a CoMFA preprocessor to 
provide conformations and alignments; or in combination with CoMFA to combine 
the fi eld descriptors of CoMFA with the grid cell occupancy descriptors (GCODs) 
of 4D QSAR to build a  “ best ”  model; or in addition to CoMFA because it treats 
multiple alignments, conformations, and embedded pharmacophores, which are 
limitations of CoMFA  [51] .  

5D QSAR  The 4D QSAR concept has been extended by an additional degree of 
freedom — the fi fth dimension — allowing for multiple representations of the topol-
ogy of the quasi - atomistic receptor surrogate. While this entity may be generated 
using up to six different induced - fi t protocols, it has been demonstrated that the 

FIGURE 1.4     Steric and electrostatic contour map for the dual model showing the contri-
butions from each model. “ A ”  depicts the contributions made by the  α  - model and  “ G ”
depicts the contributions made by the γ  -  and model. (Reproduced with permission from The 
American Chemical Society; S. Khanna, M. E. Sobhia, P. V. Bharatam J Med Chem
2005;48:3015.)



simulated evolution converges to a single model and that 5D QSAR, due to the fact 
that model selection may vary throughout the entire simulation, yields less biased 
results than 4D QSAR, where only a single induced - fi t model can be evaluated at 
a time (software Quasar)  [52, 53] .  

  6 D   QSAR      A recent extension of the Quasar concept to sixth dimension (6D 
QSAR) allows for the simultaneous consideration of different solvation models  [54] . 
This can be achieved explicitly by mapping parts of the surface area with solvent 
properties (position and size are optimized by the genetic algorithms) or implicitly. 
In Quasar, the binding energy is calculated as

    E E E T S Ebinding ligand-receptor desolvation,ligand interna= − − −Δ ll strain induced fit− E     (1.4)     

  1.4.2   Pharmacophore Mapping 

 A pharmacophore may be defi ned as the spatial arrangement of a set of key features 
present in a chemical species that interact favorably with the receptor leading to 
ligand – receptor binding and which is responsible for the observed therapeutic 
effect. It is the spatial arrangement of key chemical features that are recognized by 
a receptor and are thus responsible for biological response. Pharmacophore models 
are typically used when some active compounds have been identifi ed but the 3D 
structure of the target protein or receptor is unknown. It is possible to derive phar-
macophores in several ways, by analogy to a natural substrate, by inference from a 
series of dissimilar biologically active molecules (active analogue approach) or by 
direct analysis of the structure of known ligand and target protein. 

 A pharmacophoric map is a 3D description of a pharmacophore developed by 
specifying the nature of the key pharmacophoric features and the 3D distance map 
among all the key features. Figure  1.5  shows a pharmacophore map generated from 
the DISCO software module of SYBYL. A pharmacophore map may be generated 
from the superimposition of the active compounds to determine their common 
features. Given a set of active molecules, the mapping of a pharmacophore involves 
two steps: (1) analyzing the molecules to identify pharmacophoric features, and (2) 
aligning the active conformations of the molecules to fi nd the best overlay of the 
corresponding features. Various pharmacophore mapping algorithms differ in the 
way they handle the conformational search, feature defi nition, tolerance defi nition, 
and feature alignment  [55] . During pharmacophore mapping, generation and opti-
mization of the molecules and the location of ligand points and site points (projec-
tions from ligand atoms to atoms in the macromolecule) are carried out. Typical 
ligand and site points are hydrogen bond donors, hydrogen bond acceptors, and 
hydrophobic regions such as centers of aromatic rings. A pharmacophore map iden-
tifi es both the bioactive conformation of each active molecule and how to superim-
pose and compare, in three dimensions, the various active compounds. The mapping 
technique identifi es what type of points match in what conformations of the 
compounds.   

 Besides ligand - based automated approaches, pharmacophore maps can also be 
generated manually. In such cases, common structural features are identifi ed from 
a set of experimentally known active compounds. Conformational analysis is carried 
out to generate different conformations of the molecules and interfeature distances 
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are inferred to develop the fi nal models. The receptor mapping technique is also 
currently in practice to develop pharmacophore models. The important residues 
required for binding the pharmacophores are identifi ed, which are employed for 
generating the receptor - based pharmacophores. The structure of protein can be used 
to generate interaction sites or grids to characterize favorable positions for 
ligands.

 After a pharmacophore map has been derived, there are two ways to identify 
molecules that share its features and thus elicit the desired response. First is the 
de novo  drug design, which seeks to link the disjoint parts of the pharmacophore 
together with fragments in order to generate hypothetical structures that are chemi-
cally novel. Second is the 3D database searching, where large databases comprising 
3D structures are searched for those that match to a pharmacophoric pattern. One 
advantage of the second method is that it allows the ready identifi cation of existing 
molecules, which are either easily available or have a known synthetic route 
 [56, 57] . Pharmacophore mapping methods are described next. 

Distance Comparison Method ( DISCO)  The various steps involved in DISCO -
 based generation of a pharmacophore map are conformational analysis, calculation 
of the location of the ligand and site points, fi nding potential pharmacophore maps, 
and graphics analysis of the results. In the process of conformational search, 3D 
structures can be generated using any building program like CONCORD, from 
crystal structures, or from conformational searching and energy minimization with 
any molecular or quantum mechanical technique. Comparisons of all the duplicate 
conformations are excluded while comparing all the conformations. If each corre-
sponding interatomic distance between these atoms in the two conformations is less 

FIGURE 1.5     A pharmacophore map developed from a set of GSK3 inhibitors. The phar-
macophore features include hydrogen bond acceptor atoms, hydrogen bond donor atoms, 
hydrogen bond donor site, hydrogen bond acceptor site, and hydrophobic centers. This 3D 
picture also shows the distance relationship between various pharmacophoric features present 
in the map. 



than a threshold (0.4    Å ), then the higher energy conformation is rejected. DISCO 
calculates the location of site points, which can be the location of ligand atoms, or 
other atom - based points, like centers of rings or a halogen atom, which are points 
of potential hydrophobic groups. The other point is the location of the hydrogen 
bond acceptors or donors. The default locations of site hydrogen bond donor and 
acceptor points are based on literature compilations of observed intermolecular 
crystallographic contacts in proteins and between the small molecules. Hydrogen 
bond donors and acceptors such as OH and NH 2  groups can rotate to change the 
locations of the hydrogen atom. 

 During the process of performing pharmacophore mapping in DISCO, the user 
may input the tolerance for each type of interpoint distance. The user may direct 
the DISCO algorithm to consider all the potential points and to stop when a phar-
macophore map with a certain total number of points is found. Alternatively, the 
user may specify the types of points, and the maximum and minimum number of 
each, that every superposition must include. It can also be directed to ignore specifi c 
compounds if they do not match a pharmacophore map found by DISCO. The user 
may also specify that only the input chirality is used for certain molecules and that 
only certain conformations below a certain relative energy should be considered. 

 The DISCO algorithm involves fi nding the reference molecule, which is the one 
with the fewest conformations. The search begins by associating the conformations 
of each molecule with each other. DISCO then calculates the distances between 
points in each 3D structure. Then it prepares the corresponding tables that relate 
interpoint distances in the current reference conformation and distances in every 
other 3D structure. Distances correspond if the point types are the same. These 
distances differ by no more than the tolerance limits. The clique - detection algorithm 
then identifi es the largest clique of distances common between the reference XYZ 
set and every other 3D structure. It then forms union sets for the cliques of each 
molecule. Finally, the sets with cliques that meet the group conditions are searched 
 [58, 59] .  

CATALYST  According to the pharmacophore mapping software CATALYST, a 
conformational model is an abstract representation of the accessible conformational 
space of a ligand. It is assumed that the biologically active conformation of a ligand 
(or a close approximation thereof) should be contained within this model. A phar-
macophore model (in CATALYST called a hypothesis) consists of a collection of 
features necessary for the biological activity of the ligands arranged in 3D space, 
the common ones being hydrogen bond acceptor, hydrogen bond donor, and hydro-
phobic features. Hydrogen bond donors are defi ned as vectors from the donor atom 
of the ligand to the corresponding acceptor atom in the receptor. Hydrogen bond 
acceptors are analogously defi ned. Hydrophobic features are located at the cen-
troids of hydrophobic atoms. CATALYST features are associated with position 
constraints that consist of the ideal location of a particular feature in 3D space sur-
rounded by a spherical tolerance. In order to map the pharmacophore, it is not 
necessary for a ligand to possess all the appropriate functional groups capable of 
simultaneously residing within the respective tolerance spheres of the pharmacoph-
oric features. However, the fewer features an inhibitor maps to, the poorer is its fi t 
to them and the lower is its predicted affi nity  [60 – 63] .   
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  1.4.3   Molecular Docking 

 There are several possible conformations in which a ligand may bind to an active 
site, called the binding modes. Molecular docking involves a computational process 
of searching for a conformation of the ligand that is able to fi t both geometrically 
and energetically into the binding site of a protein. Docking calculations are required 
to predict the binding mode of new hypothetical compounds. The docking procedure 
consists of three interrelated components — identifi cation of the binding site, a search 
algorithm to effectively sample the search space (the set of possible ligand positions 
and conformations on the protein surface), and a scoring function. In most docking 
algorithms, the binding site must be predefi ned, so that the search space is limited 
to a comparatively small region of the protein. The search algorithm effectively 
samples the search space of the ligand – protein complex. The scoring function used 
by the docking algorithm gives a ranking to the set of fi nal solutions generated by 
the search. The stable structures of a small molecule correspond to minima on the 
multidimensional energy surface, and different energy calculations are needed to 
identify the best candidate. Different forces that are involved in binding are elec-
trostatic, electrodynamic, and steric forces and solvent related forces. The free 
energy of a particular conformation is equal to the solvated free energy at the 
minimum with a small entropy correction. All energy calculations are based on the 
assumption that the small molecule adopts a binding mode of lowest free energy 
within the binding site. The free energy of binding is the change in free energy that 
occurs upon binding and is given as

    ΔG G G Gbinding complex protein ligand= − +( )     (1.5)  

where  G  complex  is the energy of the complexed protein and ligand,  G  protein  is the free 
energy of noninteracting separated protein, and  G  ligand  is the free energy of nonin-
teracting separated ligand. 

 The common search algorithms used for the conformational search, which provide 
a balance between the computational expense and the conformational search, 
include molecular dynamics, Monte Carlo methods, genetic algorithms, fragment -
 based methods, point complementary methods, distance geometry methods, tabu 
searches, and systematic searches  [64] . 

 Scoring functions are used to estimate the binding affi nity of a molecule or an 
individual molecular fragment in a given position inside the receptor pocket. Three 
main classes of scoring functions are known, which include force fi eld - based methods, 
empirical scoring functions, and knowledge - based scoring functions. The force fi eld 
scoring functions use molecular mechanics force fi elds for estimating binding affi n-
ity. The AMBER and CHARMM nonbonded terms are used as scoring functions 
in several docking programs. In empirical scoring functions, the binding free energy 
of the noncovalent receptor – ligand complex is estimated using chemical interac-
tions. These scoring functions usually contain individual terms for hydrogen bonds, 
ionic interactions, hydrophobic interactions, and binding entropy, as in the case of 
SCORE employed in DOCK4 and B ö hm scoring functions (explained in detail in 
Section  1.4.4 ) used in FlexX. In empirical scoring functions, less frequent interac-
tions are usually neglected. Knowledge - based scoring functions try to capture the 
knowledge about protein – ligand binding that is implicitly stored in the Protein Data 
Bank by means of statistical analysis of structural data, for example, PMF and 



DrugScore functions, Wallqvist scoring function, and the Verkhivker scoring func-
tion  [5, 37, 65 – 67] . Various molecular docking software packages are available, such 
as FlexX  [68] , Flexidock  [58] , DOCK  [69] , and AUTODOCK  [70] . 

FlexX  FlexX is a fragment - based method for docking which handles the fl exibility 
of the ligand by decomposing the ligand into fragments and performs the incremen-
tal construction procedure directly inside the protein active site. It allows confor-
mational fl exibility of the ligand while keeping the protein rigid. The base fragment 
or the ligand core is selected such that it has the most potential interaction groups 
and the fewest alternative conformations. It is placed into the active site and joined 
to the side chains in different conformations. Placements of the ligand are scored 
on the basis of protein – ligand interactions and ranked after the estimation of 
binding energy. The scoring function of FlexX is a modifi cation of B ö hm ’ s function 
developed for the de novo  design program LUDI. Figure  1.6  shows details of the 
interaction between a ligand and a receptor, obtained from FlexX molecular 
docking.    

DOCK  DOCK is a simple minimization program that generates many possible 
orientations of a ligand within a user selective region of the receptor. DOCK is a 
program for locating feasible binding orientations, given the structures of a  “ ligand ”  
molecule and a  “ receptor ”  molecule  [69] . DOCK generates many orientations of 
one ligand and saves the best scoring orientation. The docking process is handled 

FIGURE 1.6     The result of docking a ligand in the active site of PPAR γ . The ligand has a 
hydrogen bonding interaction with histidine and tyrosine. 
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in four stages — ligand preparation, site characterization, scoring grid calculation, 
and fi nally docking. Site characterization is carried out by constructing site points, 
to map out the negative image of the active site, which are then used to construct 
orientations of the ligand. Scoring grid calculations are necessary to identify ligand 
orientations. The best scoring poses may be viewed using a molecular graphics 
program and the underlying chemistry may be analyzed. 

 There are many other widely used molecular docking software packages, like 
Flexidock (based on genetic algorithm), Autodock (based on Monte Carlo simula-
tions and annealing), MCDOCK (Monte Carlo simulations), FlexE (ensemble of 
protein structures to account for protein fl exibility), and DREAM++ (to dock com-
binatorial libraries).   

  1.4.4    De Novo  Design 

De novo  design is a complementary approach to molecular docking: whereas in 
molecular docking already known ligands are employed, in de novo  design, ligands 
are built inside the ligand binding domain. This is an iterative process in which the 
3D structure of the receptor is used to build the putative ligand, fragment by frag-
ment, within the receptor groove. Two basic types of algorithms are being widely 
used in de novo  design. The fi rst one is the  “ outside - in - method, ”  in which the binding 
site is fi rst analyzed to determine which specifi c functional groups might bind tightly. 
These separated fragments are then connected together with standard linker units 
to produce the ligands. The second approach is the  “ inside - out - method, ”  where 
molecules are grown within the binding site so as to effi ciently fi t inside.  De novo
design is the only method of choice when the receptor structure is known but the 
lead molecules are not available. This method can also be used when lead molecules 
are known but new scaffolds are being sought. There are several programs devel-
oped by various researchers for constructing ligands de novo . GROW  [71] , GRID 
 [72] , CAVEAT  [73] , LUDI  [74 – 77] , LEAPFROG  [58] , GROUPBUILD  [78] , and 
SPROUT  [79]  are some of the  de novo  design programs that have found wide 
application.

GRID  The GRID program developed by Goodford  [72]  is an active site analysis 
method where the properties of the active site are analyzed by superimposition with 
a regular grid. Probe groups like water, methyl group, amine nitrogen, carboxyl 
oxygen, and hydroxyl are placed at the vertices of the grid and its interaction energy 
with the protein is calculated at each point using an empirical energy function that 
determines which kind of atoms and functional groups are best able to interact with 
the active site. The array of energy values is represented as a contour, which enables 
identifi cation of regions of attractions between the probe and the protein. It is not 
a direct ligand generation method but positions simple fragments.  

LUDI  LUDI, developed by B ö hm  [74 – 77] , is one of the most widely used auto-
mated programs available for de novo  design. It uses a knowledge - based approach 
based on rules about the energetically favorable interaction geometries of 
nonbonded contacts like hydrogen bonds and hydrophobic contacts between 
the functional groups of the protein and ligand. In LUDI the rules derived from 
statistical analysis of crystal packings of organic molecules are employed. LUDI is 



fragment based and works in three steps. It starts by identifying the possible hydro-
gen bonding donors and acceptors and hydrophobic interactions, both aliphatic and 
aromatic, in the binding site represented as interaction site points. The site points 
are positions in the active site where the ligand could form a nonbonded contact. 
A set of interaction sites encompasses the range of preferred geometries for a ligand 
atom or functional group involved in the putative interaction, as observed in the 
crystal structure analyses. LUDI models the H - donor and H - acceptor interaction 
sites and the aliphatic or aromatic interaction sites. The interaction sites are defi ned 
by the distance R , angle  α , and dihedral angle  ω . The fragments from a 3D database 
of small molecules are then searched for positioning into suitable interaction sites 
such that hydrogen bonds can be formed and hydrophobic pockets fi lled with hydro-
phobic groups. The suitably oriented fragments are then connected together by 
spacer fragments to the respective link sites to form the entire molecule. Figure  1.7  
shows LUDI generated fragment interaction sites inside the iNOS substrate binding 
domain.   

 An empirical but effi cient scoring function is used for prioritizing the hit frag-
ments given by LUDI. It estimates the free energy of binding ( ΔG ) based on the 

FIGURE 1.7     An example of  de novo  design exercise. In the substrate binding domain of 
inducible nitric oxide synthase, the stick representation shows the protein structure; ball - and -
 stick representation belongs to the designed ligand, and the gray sticks point out the interac-
tion sites  . 
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hydrogen bonding, ionic interactions, hydrophobic contact areas, and number of 
rotatable bonds in the ligand. The LUDI scoring function is given as

    Δ Δ Δ Δ Δ Δ Δ Δ
Δ Δ

G G G f R f G f R f
G A G N

= + +
+ +

∑ ∑o hb ion

lipo lipo rot

( ) ( ) ( ) ( )α α
RR G N+ Δ Δaro/aro aro/aro

    
(1.6)

  

 Δ  G  o  represents the constant contribution to the binding energy due to loss of trans-
lational and rotational entropy of the fragment.  Δ  G  hb  and  Δ  G  ion  represent the con-
tributions from an ideal neutral hydrogen bond and an ideal ionic interaction, 
respectively. The  Δ  G  lipo  term represents the contribution from lipophilic contact and 
the  Δ  G  rot  term represents the contribution due to the freezing of internal degrees 
of freedom in the fragment.  NR  is the number of acyclic sp 3  - sp 3  and sp 3  - sp 2  bonds.    

  1.5   PHARMACOINFORMATICS 

 Information technology provides several databases, data analysis tools, and knowl-
edge extraction techniques in almost every facet of life. In pharmaceutical sciences, 
several successful attempts are being made under the umbrella of pharmacoinfor-
matics (synonymously referred to as pharmainformatics) (Fig.  1.8 ). The scope and 
limitations of this fi eld are not yet understood. However, it may be broadly defi ned 
as the application of information technology in drug discovery and development. It 
encompasses all possible information technologies that eventually contribute to 
drug discovery. Chemoinformatics and bioinformatics contribute directly to drug 
discovery through virtual screening. Topics like neuroinformatics, immunoinformat-
ics, vaccine informatics, and biosystem informatics contribute indirectly by providing 
necessary inputs for pharmaceutical design in this area. Topics like metabolomics, 
toxicoinformatics, and ADME informatics are contributing to this fi eld by providing 
information regarding the fate of a NCE/lead  in vitro  and  in vivo  conditions. In this 
chapter some important aspects of these topics are presented. It is not easy to offer 
a comprehensive defi nition of this fi eld at this stage owing to the fact that several 
bold attempts are being made in this fi eld and initial signals related to a common 
platform are only emerging.  Drug Discovery Today  made initial efforts in this area 
by bringing out a supplement on this topic in which it was mainly treated as a sci-
entifi c discipline with the integration of both bioinformatics and chemoinformatics 
 [80, 81] . Recent trends in this area include several service - oriented themes including 
healthcare informatics  [82] , medicine informatics  [83] , and nursing informatics  [84] . 
Here we present an overview of the current status.   

  1.5.1   Chemoinformatics 

 Chemoinformatics deals with information storage and retrieval of chemical data. 
This has been pioneered principally by the American Chemical Society and 
Cambridge Crystallographic Databank. However, the term chemoinformatics came 
into being only recently when methods of deriving science from the chemical data-
bases was recognized. The integration of back - end technologies (for storing and 
representing chemical structure and chemical libraries) and front - end technologies 
(for assessing and analyzing the structures and data from the desktop) provides 



opportunities in chemoinformatics. Virtual screening and high - throughput (HTS) 
data mining are some of the important chemoinformatics methods. 

 Chemical data is mostly considered as heuristic data, because it deals with names, 
properties, reactions, and so on. However, chemoinformatics experts devised many 
ways of representing chemical data (Fig.  1.9 ). (1) One - dimensional information of 
the chemicals can be represented in terms of IUPAC names, molecular formulas, 
Wiswesser line notation (WLN), SMILES notation, SYBYL line notation (SLN), 
and so on in addition to numerical representation of physicochemical parameters 
like molecular weight, molar refractivity, surface area, log  P , and p K  a . (2) Two -
 dimensional chemical information consists of the chemical structural drawings, cor-
responding hashing, hash codes, connectivity tables, bond matrix, incidence matrix, 
adjacency matrix, bond - electron matrix, and so on. Graph theoretical procedures 
are extensively employed in this approach. To get a unique representation of 

    FIGURE 1.8     Flowchart of informatics - based activities in pharmaceutical sciences. 
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chemicals, several algorithms (e.g., Morgan algorithm) were devised, which are 
found to be extremely important while performing chemical data mining. (3) Three -
 dimensional representation of structures involves the defi nition of the Cartesian 
coordinates of each and every element in the molecule. Along with connection 
tables, distance matrix, bond angle matrix, and torsional angle matrix, the represen-
tations of chemical 3D structures are being made in the form of formatted fl at fi les 
like .mol and .sdf. (4) Fourth - dimensional information of chemicals is also available 
in the form of surface properties (e.g., Connolly surface, solvent accessible surface, 
electron density surfaces, molecular electrostatic potential (MESP), internal struc-
ture representation (molecular orbitals)). (5) Fifth - dimensional information about 
the chemical reactions is of course the most important information about chemical 
species. This involves defi ning chemical reaction parameters like inductive effect, 
resonance effect, polarizability effect, steric effect, and stereochemical effect, on the 
one hand, and chemical bond formation representations like Hendrickson scheme, 
Ugi scheme, and InfoChem scheme on the other. Some of the useful chemoinfor-
matics databases include CAS, CSD, STN, MARPAT, UNITY - 3D, MACCS - 3D, 
CONCORD, MAYBRIDGE, NCI, and CASReact  , which include chemical data in 
all the possible dimensions as discussed earlier  [6, 10, 85 – 88] .   

 Searching chemical data also requires distinctive methodologies. Search based 
on hash codes, graph theoretical indices (e.g., Weiner index), charge - related topo-
logical indices, Tanimoto coeffi cients, Carbo coeffi cient, Hamming distances, Euclid-
ean distance, clique detection, and pharmacophore map searching are some of the 
important techniques uniquely required in chemoinformatics. Virtual generation of 
synthesizable chemicals is an important component of this technique. The principles 
of similarity and diversity need to be employed simultaneously while performing 
this exercise. Virtual screening is often considered under chemoinformatics, which 
is discussed in Section  1.5.3  as the most important topic of pharmacoinformatics. 

    FIGURE 1.9     Information fl owchart in chemistry. In this context the dimensionality is not 
a geometrical dimensionality but an information complexity dimensionality.  
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 Chemical reaction informatics involves the exploration of synthetic pathways and 
the designing of new experiments. About 15 – 20 million reactions are currently avail-
able in chemical reaction databases (CASReact  , ChemReact, CrossFire Plus, etc.). 
The chemical reaction informatics would essentially assist the chemist in giving 
access to reaction information, deriving knowledge, predicting the course and 
outcome of chemical reactions, and designing syntheses. The main tasks include 
(1) storing information on chemical reactions, (2) retrieving the information, (3) 
comparing and analyzing sets of reactions, (4) defi ning the scope and limitations of 
a reaction type, (5) developing models of chemical reactivity, (6) predicting the 
course of the reactions, (7) analyzing reaction networks, and (8) developing methods 
for the design of syntheses. Chemical reaction databases consist of the following 
information: (1) reactants and products; (2) atom mapping, which allows you to 
determine which atom becomes which product atom through the reaction; (3) infor-
mation regarding reacting center(s); (4) the catalyst used; (5) the atmosphere, 
including temperature, pressure, and composition; (6) the solvent used; (7) product 
yield; (8) optical purity, and (9) references to literature.  

  1.5.2   Bioinformatics 

 The area of bioinformatics encompasses various fi elds of molecular biology requir-
ing data handling like genomics, proteomics, sequence analysis, and regulatory net-
works. Results of the Human Genome Project have triggered several activities in 
bioinformatics as a result of the complete sequencing of the human genome consist-
ing of approximately 30,000 genes. The data generated in the biology laboratories 
is being stored in data banks like GenBank (United States), EMBL (Europe), 
DDBJ (Japan), and Swiss - Prot, as primary data sources. Secondary data banks like 
PROSITE, Profi les, and Pfam contain the fruits of analyses of the sequences in the 
primary databases (Table  1.3 ). These databases are available on the Web as well as 
on some specialized networks like EMBnet and NCBInet. Apart from the sequence 
data, data related to gene expression, gene products, and protein interactions are 
also available, whose management, analysis, and storage are the objectives of bio-
informatics. Sequence analysis is the most important aspect of bioinformatics. There 
are many sequence analysis packages available like the Genetics Computing Group 
(GCG) package from Accelrys and the EMBOSS suite (European Molecular 
Biology Open Software Suite) from European Molecular Biology Laboratory 
(EMBL). Pairwise and multiple alignment algorithms were developed for determin-
ing the similarity between the sequences. Dotplot, which gives a dot matrix plot of 
any two sequences with respect to the amino acid comparison, is the simplest pair-
wise sequence analysis tool. Sequence identity, if present, becomes evident along 
diagonal areas in a dotplot. Dynamic programming methods like the Needleman –
 Wunsch algorithm (global alignment) and Smith – Waterman algorithm (local align-
ment) provide additional information after inserting necessary gaps. The sequence 
alignment program GAP from the GCG software and NEEDLE from EMBOSS 
are for global alignment, whereas BESTFIT from GCG and WATER from EMBOSS 
are for local alignment. Dynamic programming techniques provide optimal align-
ment between the amino acid sequences defi ned by the highest score. The number 
of matched pairs, mismatched pairs, and gaps can be used in estimating the score of 
a given pairwise comparison of two sequences. Percent Accepted Mutation matrix 
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 TABLE 1.3    Some Important Bioinformatics Resources 

 Category  Name  Description  Source 

 Sequence 
databases

 GenBank  Genetic sequence 
database

 National Center for 
Biotechnology
Information http://www.
ncbi.nlm.nih.gov

 EMBL  Nucleic acid and 
protein databases 

 European Molecular 
Biology Laboratory http://
www.ebi.ac.uk/embl/index.
html

 DDBJ  Nucleic acid database   http://www.ddbj.nig.ac.jp  
 UniProt/Swiss - Prot  Protein database   http://www.uniprot.org  
 PIR  Protein Information 

Resource
  http://pir.georgetown.edu/

pirwww/
 Genome 

databases
 dbEST  Expressed Sequence 

Tags database 
  http://www.ncbi.nlm.nih.gov/

dbEST/index.html
 GDB  Human Genome 

Database
  http://www.gdb.org/  

 Ensembl  Genome database   http://www.ensembl.org/
index.html

 Secondary 
protein
databases

 Pfam  Protein family 
database with 
multiple sequence 
alignments and 
hidden Markov 
models

  http://www.sanger.ac.uk/
Software/Pfam/

 Prodom  Protein family and 
domain database 

  http://protein.toulouse.inra.
fr/prodom/current/html/
home.php

 PROSITE  Protein family and 
domain database 

  http://us.expasy.org/prosite/
details.html

 Protein 
interaction
databases

 BIND  Biomolecular 
Interaction
Network Database 

  http://www.bind.ca  

 DIP  Database of 
Interacting Proteins 

  http://dip.doe - mbi.ucla.edu/  

 HPRD  Human Protein 
Reference
Database

  http://www.hprd.org/  

250 (PAM250) or the BLOsum SUbstitution Matrix 62 (BLOSUM62) for protein 
sequences are the well accepted scoring matrices. The word k  - tuple method is also 
a widely used sequence search tool, with heuristic algorithms like BLAST (Basic 
Local Alignment Search Tool) and FASTA. Multiple Sequence Alignment (MSA) 
methods like CLUSTALW and PILEUP have also been developed for alignment 
of three or more sequences. Highly conserved regions can be identifi ed from such 
types of alignments, which is important for identifying members of the same protein 
family or for studying evolutionary relationships. Most of these tools are available 



from the National Center for Biotechnology Information (NCBI) website ( http://
www.ncbi.nlm.nih.gov ). An effi cient search engine, ENTREZ, is also provided by 
NCBI for searching sequences or the related literature. The sequences are stored in 
various formats like GenBank, EMBL, Swiss - Prot, FASTA, and PIR. Some com-
mercial software packages like the GCG Wisconsin package incorporate the 
databases and analysis tools, which can be customized for the purpose of end 
users  [89] .   

 Proteomics involves a detailed study of all the proteins present in a cell, their 
expression, post - translational modifi cations, interactions with drugs and proteins, 
and so on. Major technologies in the fi eld of proteomics are mass spectrometry and 
gel electrophoresis. Proteome informatics deals with the application of informatic 
tools for proteome analysis. Several databases are available that contain information 
about the interactions between the proteins — for example, Database of Interacting 
Proteins (DIP)  [90] , the General Repository for Interaction Datasets (GRID)  [91] , 
the Biomolecular Interaction Network Database (BIND)  [92] , and the Human 
Protein Reference Database (HPRD)  [93] . The general methods for extracting 
interaction information from the literature are natural language processing (NLP), 
na ï ve Bayes  [94] , decision trees  [95] , neural networks, nearest neighbor, and support 
vector machine (SVM). The prediction of protein functions can also be carried out 
by a comparative genome analysis. Domain fusion studies, chromosomal proximity 
studies, and phylogenetic profi ling are some methods attempted in the postgenomic 
scenario to take the sequence information beyond, to the annotation of the pro-
teome. In genome informatics, tools for genome comparison like PipMaker and 
Artemis Comparison Tool (ACT) and tools from NCBI like HomoloGene and 
LocusLink are included. Databases that integrate different computational methods 
to predict functional associations have also been developed, like STRING  [96, 97]  
and POINT  [98] . 

 Target identifi cation and target validation are the two major aspects of modern 
bioinformatics which are relevant to drug discovery. A relatively small number of 
targets (200 – 500) have been considered until now for the development of drugs. The 
traditional target identifi cation process follows the path: assay observation  →  iden-
tifi cation of the key protein  →  cloning of its gene. This process was bogged down 
by the dearth of information on several fronts, for example, structural data of pro-
teins. With the recent advances in protein crystallography combined with the 2D -  
and 3D - NMR experiments, the available structural data improved drastically. This 
is further supplemented by the ab initio  fold prediction from the primary sequence 
data. Thousands of structures can now be determined on an industrial scale. The 
trends in target identifi cation made a paradigm shift in the recent past from a 
 “ deductive ”  approach involving assay - to - genes path to an  “ inductive ”  approach 
involving genes - to - assay path. The greatest challenge in bioinformatics is to facili-
tate this paradigm shift by providing automated tools for the identifi cation of new 
genes as potential targets. Target validation involves the identifi cation of the func-
tion of targets in disease states, such that  “ drugable ”  targets can be recognized. 
Experimental efforts in this context can be effectively complemented by computa-
tional methods by understanding drug – target interactions. For example, the identi-
fi cation of PPAR γ  as a target for insulin resistance could be carried out with the 
effective integration of the results from experimental, computational biology and 
bioinformatics methods. Initially, a model of trans  - retinoid acid receptor (RXR) was 
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built on the basis of available crystal structures. Multiple sequence alignment was 
then carried out on two human retinoic acid receptors and three human PPAR 
subtypes. Secondary structure prediction and homology modeling were carried out 
to understand the structure and binding characteristics of PPAR γ . Several compu-
tational techniques like pattern recognition, artifi cial neural networks, genetic algo-
rithms, and alignment techniques are being employed in analyzing the data stored 
in databases. The advances in the area of bioinformatics should lead to an explosion 
in the number of available target molecules, and contribute tremendously to 
pharmacoinformatics.

  1.5.3   Virtual Screening 

 Virtual screening is one of the most important technologies of pharmacoinformatics. 
It employs the databases and analysis tools discussed in the previous sections and 
pharmacophore mapping and molecular docking discussed under computational 
medicinal chemistry. This topic is considered under pharmacoinformatics because 
this technology is being heavily used for hit/lead identifi cation through data search 
rather than studying molecular interactions and chemical principles. Virtual screen-
ing (also called in silico  screening) provides a fast and cost effective tool for com-
putationally screening compound databases in the search for novel drug leads. 
Various changes have occurred in the methods of drug discovery, the major ones 
taking place in the fi eld of high throughput synthesis and screening techniques. The 
basic goal of virtual screening is the reduction of the huge chemical space of syn-
thesized/virtual molecules and to screen them against a specifi c target protein virtu-
ally. Thus, the fi eld of virtual screening has become an important component of drug 
discovery programs. Substantial efforts in this area have been made by large phar-
maceutical companies. However, there are no well defi ned standards in virtual 
screening as yet  [37] . 

Virtual Libraries  Two types of virtual libraries can be generated. One is produced 
by computational design, with the basic idea to design synthesizable compounds 
computationally. The other is a virtual library of compounds that are already syn-
thesized. It is possible to extract millions of compounds from these sources and 
create databases. Virtual libraries are useful in the absence of knowledge about 
specifi c drug targets for virtual screening. Focused virtual libraries are important 
sometimes to save resources as the hit rate is higher in such cases  [62] .  

Various Approaches of Virtual Screening  Virtual screening methods can be 
roughly divided into target structure - based and small molecule - based approaches, 
as shown in Table  1.4 . When no structural information about the target protein is 
given, pharmacophore models can be used as fi lters for screening. These are mostly 
used when a set of active compounds is known that bind in a similar way to the 
protein. A pharmacophore capturing these features should be able to identify novel 
compounds with a similar pattern from the database. These pharmacophores may 
be generated manually or by automated software packages like CATALYST 
(HipHop, HypoGen) or DISCO, as described earlier. If the 3D structure of the 
receptor is known, a pharmacophore model can be derived based on the receptor 
active site. Usually all the pharmacophore searches are done in two steps: fi rst the 



software confi rms whether or not the screened compound has the required atom 
types or functional groups, and then it checks whether the spatial arrangement of 
these elements matches the query. In actual practice, receptor - based and small 
molecule - based approaches can be used in combination, taking into account as 
much information as possible.   

 Structure based virtual screening is carried out by docking and scoring tech-
niques. Database of thousands of compounds can be screened against the specifi c 
target protein. FlexX  [68] , Flexidock  [58] , DOCK  [52] , and AUTODOCK  [70]  are 
the various docking programs employed. Molecular fi ngerprinting is another tech-
nique for performing virtual screening. These search tools consist of varying numbers 
of bits and encode different types of molecular descriptors and their values. Calcula-
tion of descriptors for a given molecule produces a characteristic bit pattern that 
can be quantitatively compared to others, applying a similarity metric  [37] . 

 Various fi lters can be used during the screening process which improves the 
chances of obtaining reliable hits. One such fi lter is the substructure fi lter. The data-
base may contain certain functional groups in molecules that interact at unwanted 
sites and are  “ false positives. ”  Many of these features are called as the substructures 
that are used to fi lter datasets. Other fi lters applied are the molecular weight, the 
number of rotatable bonds, and the calculated log P . All these considerations have 
led to the formulation of Lipinski ’ s rule of fi ve   [99] . These rules suggest whether or 
not a molecule is going to be absorbed. The criteria for choosing better absorbed 
molecules are: (1) molecular weight < 500, (2) log  P   <  5, (3) hydrogen bonds donors 
< 5, and (4) hydrogen bond acceptors  < 10. The rule of fi ve has been derived following 
a statistical analysis of known drugs. More sophisticated computational models of 
 “ drug - likeness ”  have been developed by employing the techniques of artifi cial 
neural networks, decision trees, and genetic algorithms  [6] . 

 TABLE 1.4    Computational Methods and Tools for Virtual Screening 

 Target structure - based approaches 
    Protein – ligand docking 
    Active site - directed pharmacophores 
 Molecule - based queries 
    2D substructures 
    3D pharmacophores 
    Complex molecular descriptors (e.g., electrotopological) 
    Volume -  and surface - matching algorithms 
 Molecular fi ngerprints 
    Keyed 2D fi ngerprints (each bit position is associated with a specifi c chemical feature) 
    Hashed 2D fi ngerprints (properties are mapped to overlapping bit segments) 
    Multiple - point 3D pharmacophore fi ngerprints 
 Compound classifi cation techniques 
    Cluster analysis 
    Cell - based partitioning (of compounds into subsections of  n  - dimensional descriptor 

 space) 
    3D/4D QSAR models 
 Statistical methods 
    Binary QSAR/QSPR 
    Recursive partitioning 
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 It is important to realize that virtual screening is expected to produce hits, not 
leads. The identifi cation of nanomolar inhibitors by database mining is an extremely 
rare probability. Lead optimization should be taken up to further modulate the 
structural features. A virtual screening exercise cannot distinguish the agonists; also, 
in several cases, the inactives are picked up. Hence it is better not to be very narrow   
toward the end of any virtual screening procedure  [62, 63] . 

 Virtual screening can be applied to target - based subset selection from the data-
bases. Statistical approaches like binary QSAR or recursive partitioning can be 
applied to process HTS results and develop predictive models of biological activity. 
The developed models can then be employed to select candidate molecules from 
databases. Similarly, hits from HTS are used in fi ngerprint searches or compound 
classifi cation analysis to identify sets of similar molecules. Based on these results, a 
few compounds are selected for additional testing. Many assumptions are made in 
virtual screening, and a positive outcome cannot be guaranteed every time. However, 
the overall process is extremely cost effective and fast. Virtual screening has the 
ability to produce leads that otherwise may not have been identifi ed. Hence, virtual 
screening is emerging as a major component of pharmacoinformatics.   

  1.5.4   Neuroinformatics 

 Neuroinformatics may be defi ned as the organization and analysis of neuroscientifi c 
data using the tools of information technology. The information sources in neuroin-
formatics include behavioral sciences (psychological description) and medicinal 
(including drugs and diagnostic images) and biological (membranes, neurons, syn-
apses, genes, etc.) aspects. The aim of neuroinformatics is to unravel the complex 
structure – function relationship of the brain in an integrative effort. Neuroscientists 
work at multiple levels and are producing enormous amounts of data. Distributed 
databases are being prepared and novel analytical tools are being generated with the 
help of information technology. Producing digital capabilities for web - based informa-
tion management systems is one of the major objectives of neuroinformatics. Apart 
from data sharing, computational modeling of ion channels, neurons and neural net-
works, second messenger pathways, morphological features, and biochemical reac-
tion are also often included in neuroinformatics. The initial ideas on neuroinformatics 
can be traced to the work of Hodgkin and Huxley, who initiated computational neu-
ronal modeling. Current efforts in the direction include studies related to modeling 
the neuropsychological tests, neuroimaging, computational neuroscience, brain 
mapping, molecular neuroimaging, and magnetic resonance imaging. 

Important Databases in Neuroinformatics  A probabilistic atlas and reference 
system for human brain is being developed as a neuroinformatics and neuroscience 
tool. Such a system is required because of the vast variance observed in the structure, 
function, and organization of human brain. It is a data source of digital images of 
human brain along with information on racial and ethnic conditions, education, 
handedness, personal traits, habits, and so on. It allows one to examine the relation-
ship and distribution of the macro -  and microscopic structure and function of human 
brain  [100, 101] . Surface management system (SuMS) is another database that 
mainly deals with studies of the structure and function of cerebral cortex. All the 
data generated during reconstruction of cerebral cortex and subsequent fl attening 
procedures is included in this database. SuMS (1) provides a systematic framework 



for classifi cation and storage, (2) serves as a version control system for the surface 
and volume datasets, (3) is an effi cient data retrieval module, and (4) acts as a service 
request broker  [102, 103] . Similarly, there are many other database systems with 
data analysis tools available in this fi eld, a few of which are listed in Table  1.5 . 

 TABLE 1.5    Selected List of Important Neuroinformatics Tools and Databases 

 Databases  Brief Description  URL 

 Brain Architecture 
Management
System (BAMS) 

 Repository of brain structure 
information; contains to date 
around 40,000 connections 

  http://brancusi.usc.edu/bkms/  

 BrainMap  For meta - analysis of human 
functional brain - mapping 
literature

  http://brainmap.org/  

 BrainInfo  Information about the brain and its 
functions   

  http://braininfo.rprc.
washington.edu/

 Brede Database  Neuroimaging data   http://hendrix.imm.dtu.dk/
services/jerne/brede/

 Surface 
Management
System (SuMS) 

 A surface - based database to aid 
cortical surface reconstruction, 
visualization and analysis 

  http://sumsdb.wustl.edu/sums/
index.jsp

 fMRIDC  Functional neuroimaging (fMRI) 
data (fMRI Data Center) 

  http://www.fmridc.org  

 LGICdb  Ligand Gated Ion Channel database   http://www.ebi.ac.uk/
compneursrv/LGICdb/

 ModelDB  Neuronal and Network Models   http://senselab.med.yale.edu/
senselab/ModelDB

 CoCoMac  Collation of Connectivity data on 
the Macaque brain 

  http://cocomac.org/home.htm  

 L - Neuron  Computational Neuroanatomy 
Database

  http://www.krasnow.gmu.edu/
LNeuron

 NeuroScholar  MySQL Database frontend with 
management of bibliography, 
histological and tracing data 

  http://www.neuroscholar.org  

 Catacomb  Components and Tools for 
Accessible Computer Modeling in 
Biology (Modeling Software for 
Neuroscience)

  http://www.compneuro.org/
catacomb/index.shtml

 GENESIS  Neural Simulator   http://www.genesissim.org/
GENESIS/

 Channel Lab  Single channel modeling program   http://www.synaptosoft.com/
Channelab/index.html

 NEURON  Simulation of individual neurons 
and networks of neurons 

  http://www.neuron.yale.edu  

 HHsim  Graphical Hodgkin – Huxley 
Simulator

  http://www.cs.cmu.edu/ ∼ dst/
HHsim/

 NEOSIM  Neural Open Simulation — for 
modeling of networks 

  http://www.neosim.org/  

 NANS  Neuron and Network Simulator   http://vlsi.eecs.harvard.edu/
research/nans.html

 SNNAP  Simulator for Neural Networks and 
Action Potentials 

  http://snnap.uth.tmc.edu/  
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Several software tools have been made available over the past few years in the fi eld 
of neuroinformatics. Neuroscholar  [104]  allows scientists to interact with informa-
tion in the literature in a modular fashion. This tool permits the user to isolate 
fragments of data from a source and then bring them together to prepare a fact 
base for analysis and interpretation in a knowledge base environment. GENESIS 
(General Neural Simulation System) is a tool that helps in the simulation of neu-
rosystems including subcellular components, biochemical reactions, single neurons, 
large neural networks, and system level models.   

 The Human Brain Project is one of the major initiatives under neuroinformatics. 
This is a broad based effort by neuroscientists and information scientists whose 
objective is to produce interoperable databases and analysis tools. This project 
included several tools for modeling simulation, information retrieval from multidis-
ciplinary data, graphical interfaces, and integration of data analysis tools through 
electronic collaboration  [105] .   

  1.5.5   Immunoinformatics 

 Immunoinformatics is another major area in biomedical research where computa-
tional and informational technologies are playing a major role in the development 
of drugs and vaccines. This fi eld is still in its infancy and it covers both modeling 
and informatics of the immune system and is the application of informatics technol-
ogy to the study of immunological macromolecules, addressing important questions 
in immunobiology and vaccinology. Data sources for immunoinformatics include 
experimental approaches and theoretical models, both demanding validation at 
every stage. Major immunological developments include immunological databases, 
sequence analysis, structure modeling, modeling of the immune system, simulation 
of laboratory experiments, statistical support for immunological experimentation, 
and immunogenomics  [106, 107]  

 There are many databases of relevance to immunologists, some of which are 
given in Table  1.6 . IMGT, the international ImMunoGeneTics information system 
created in 1989, is one of the important ventures in immunoinformatics and is a 
knowledge resource comprising databases, tools, resources on immunoglobulins, 
T cell receptors, major histocompatibility complex (MHC), and related proteins of 
the immune system. IMGT includes sequence and genome databases with different 
interfaces, 3D structure database, web resources, and interactive tools for sequence 
and genome analysis. IMGT ONTOLOGY, which is a semantic specifi cation of the 
terms to be used in immunogenetics and immunoinformatics, is available for IMGT 
users in the IMGT Scientifi c chart formalized in IMGT - ML (XML) schema  [108 –
 114] . The HIV Molecular Immunology Database is a database containing sequence 
and epitope maps of HIV - 1 cytotoxic and helper T - cell epitopes.   

 Computer - aided vaccine design (CAVD) or computational vaccinology is another 
application of immunoinformatics involving prediction of immunogenicity. Immune 
interactions can be modeled using artifi cial neural networks (ANNs), hidden Markov 
models, molecular modeling, binding motifs, and quantitative matrices, of which 
ANN models have proved to be superior for the prediction of MHC - binding pep-
tides  [115 – 117] . Table  1.6  also gives a list of some of the tools for predicting whether 
or not a peptide would bind to a major histocompatibility complex. In addition to 
immunoinformatics, theoretical immunology is another related discipline and is the 



 TABLE 1.6    Some Selected Immunoinformatics Databases and Tools 

 Databases and Tools  Brief Description  URL 

 IMGT, the 
international
ImMunoGeneTics
information system 

 A sequence, genome, and 
structure database for 
immunogenetics data 

  http://imgt.cines.fr  

 HIV Molecular 
Immunology
Database

 A database of HIV - specifi c 
B - cell and T - cell responses 

  http://www.hiv.lanl.gov/content/
immunology/index.html

 MHCBN  Comprehensive database of 
MHC - binding, nonbinding 
peptides and T - cell epitopes 

  http://bioinformatics.uams.edu/
mirror/mhcbn/

 MHCPEP  Database of MHC - binding 
peptides

  http://wehih.wehi.edu.au/
mhcpep/

 ADABase (Mutation 
Registry for 
Adenosine
Deaminase
Defi ciency) 

 Contains information on 
diseases and mutations 
associated with adenosine 
deaminase

  http://bioinf.uta.fi /ADAbase/  

 BCIPep  Database of B - cell epitopes   http://bioinformatics.uams.edu/
mirror/bcipep/

 FIMM  Database of Functional 
Immunology

  http://research.i2r.a - star.edu.sg/
fi mm/  

 IPD (Immuno 
Polymorphism
Database)

 Database for the study of 
polymorphism in genes of the 
immune system 

  http://www.ebi.ac.uk/ipd/  

 DHR (The Database 
of Hypersensitive 
Response)

 Defi nition, source, and sequence 
of hypersensitive response 
(HR) proteins, etc. 

  http://sdbi.sdut.edu.cn/hrp/  

 VBASE2  Database of variable genes 
from the immunoglobulin loci 

  http://www.vbase2.org/  

 BIMAS  Bioinformatics and Molecular 
Analysis Section (MHC 
peptide - binding prediction) 

  http://bimas.dcrt.nih.gov/
molbio/hla_bind/

 SYFPEITHI  Database and prediction server 
of MHC ligands 

  http://www.syfpeithi.de/  

 ProPred  MHC Class I and II Binding 
Peptide Server 

  http://www.imtech.res.in/
raghava/propred/
http://www.imtech.res.in/
raghava/propred1/

 nHLAPred  A neural network - based MHC 
Class I Binding Peptide 
Prediction Server 

  http://bioinformatics.uams.edu/
mirror/nhlapred/

 NetMHC  Peptide - binding prediction 
using artifi cial neural 
networks (ANNs) and weight 
matrices

  http://www.cbs.dtu.dk/services/
NetMHC/

 MHCPred  Predict binding affi nity for 
MHC I and II molecules 

  http://www.jenner.ac.uk/
MHCPred/
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application of mathematical modeling to diverse aspects of immunology ranging 
from T - cell selection in the thymus to the epidemiology of vaccination. The results 
from immunoinformatics are being heavily employed in defi ning another emerging 
science called Artifi cial Immune Systems (immunological computation or immuno-
computing). The AIS computation is also of interest in modeling the immune system 
and solving immunological problems  [118] .  

  1.5.6   Drug Metabolism Informatics 

 An understanding of the pharmacokinetics of a drug can play a major role in reduc-
ing the probability of bringing a new chemical entity (NCE) with inappropriate 
ADME/Toxicity profi le to the market. Drug metabolism and toxicity in the human 
body are primarily assessed during clinical trials, and preclinical assessment of the 
same involves study on in vivo  and  in vitro  systems.  In silico  models for predicting 
pharmacokinetic properties based on the experimental results can greatly reduce 
the cost and time required for the experiments. These methods range from modeling 
approaches such as QSARs, to similarity searches as well as informatics methods 
like ligand – protein docking and pharmacophore modeling. Several ADME proper-
ties can be explained by simple molecular descriptors derived from the 2D chemical 
structure and can be used for the development of QSAR models. Such in silico
prediction methods help chemists in judging whether or not a potential candidate 
may continue in the drug discovery pipeline. Metabolic biotransformation of any 
NCE may profoundly affect the bioavailability, activity, distribution, toxicity, and 
elimination of a compound; the effects of probable metabolism are now considered 
in the early stages of drug discovery with the help of computer - aided methods. 

In silico  prediction of metabolic biotransformation occurring at the liver cyto-
chrome enzymes (CYP450 enzymes) are being studied  [119] . Many databases and 
software systems are available in this fi eld for the early prediction of substrates of 
CYP450 enzymes. Some of the databases and predictive systems for metabolic 
information of drugs are given in Table  1.7 . The Human Drug Metabolism Database 
(hDMdb) project is a nonprofi t, internet database of xenobiotic metabolic transfor-
mations that are observed in humans  [120] . Other databases like MDL Metabolite 
contain xenobiotic transformation information that can also be linked to a toxicity 
database like MDL Toxicity database. Thus, it can give toxicity, if present, in the 
metabolite shown by the database. The predictive systems available for metabolism 
are mainly expert systems based on experimental data representing the metabolic 
effects (database) and/or rules derived from such data (rule - base). The rules may 
either be induced rules, which are quantitative, derived from a statistical analysis of 
the metabolic data, or knowledge - based rules derived from expert judgment. Some 
of the expert systems are MetabolExpert, METEOR, and META, as given in Table 
 1.7 . These can also be linked to the corresponding toxicity prediction modules. 
METEOR covers both phase I and phase II biotransformation reactions and can 
analyze mass spectrometry data from metabolism studies. It can be linked to the 
DEREK software for toxicity prediction of the metabolites. Likewise, Metabol-
Expert can be linked to HazardExpert and META can be interfaced with MULTI-
CASE, both of which are toxicity prediction modules. MetabolExpert is an open 
knowledge base, where the user can add his/her own rules. The META program 
operates from dictionaries of transformation operators, created by experts to rep-



 TABLE 1.7    Databases and Tools for Metabolism Informatics 

 Databases and Tools  Brief Description  URL 

 Human Drug 
Metabolism
Database (hDMdb) 

 IUPAC project for a web -
 based model database for 
human drug metabolism 
information

  http://www.iupac.org/projects/
2000/2000 - 010 - 1 - 700.html

 MDL Metabolite  Comprised of a database, 
registration system, and 
browsing interface 

  http://www.mdl.com/products/
predictive/metabolite/index.
jsp

 Accelrys ’  Metabolism 
Database

 Biotransformations of organic 
molecules in a variety of 
species

  http://www.accelrys.com/
products/chem_databases/
databases/metabolism.html

 Biofrontier/P450  Human cytochrome P450 
information and predictive 
system

  http://www.fqs.pl/  

 Metabolism and 
Transport Drug 
Interaction database 

 Database developed by 
University of Washington 

  http://www.druginteractioninfo.
org/

 MetabolExpert 
(CompuDrug, Inc.) 

 Predictive system for 
metabolic fate of a drug 

  http://www.compudrug.com/  

 MEXAlert 
(CompuDrug, Inc.) 

 Rule - based prediction for fi rst -
 pass metabolism 

  http://www.compudrug.com/  

 META (Multicase, 
Inc.)

 Uses dictionaries to create 
metabolic paths of query 
molecules

  http://www.multicase.com/
products/prod05.htm

 METEOR (LHASA 
Ltd., Leeds, UK) 

 Predictions presented as 
metabolic trees 

  http://www.lhasalimited.org/  

resent known metabolic paths, and is capable of predicting the sites of potential 
enzymatic attack and the metabolites formed  [121] .    

  1.5.7   Toxicoinformatics 

 Early prediction of toxicological parameters of new chemical entities (NCEs) is an 
important requirement in the drug discovery strategy today. This is being empha-
sized in the wake of many drug withdrawals in the recent past. Computational 
methods for predicting toxicophoric features is a cost effective approach toward 
saving experimental efforts and saving animal life. Current efforts in toxicoinformat-
ics are mainly based on QSTR (quantitative structure – toxicity relationships) and 
rule - based mechanistic methods  [122 – 125] . QSTR is a statistical approach, in which 
a correlation is developed between structural descriptors of a series of compounds 
and their toxicological data. In this approach, a model can be trained with the help 
of a set of known data, validated using many approaches, and then used for the 
prediction of toxicological parameters. The only limitation of this approach is that 
the predictive power of these models gets reduced when chemicals belonging 
to a class outside the series of molecules is used for the construction of the model. 
Toxicity prediction tools using this approach include TOPKAT and CASE/ 
M - CASE. 
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 TOPKAT mainly employs electrotopological descriptors based on graph theory 
for the development of QSTR models. TOPKAT uses linear free - energy relation-
ships in statistical regression analysis of a series of compounds. In this software, the 
continuous/dichotomous toxicity end points are correlated to the structural features 
like electronic topological descriptors, shape descriptors, and substructure descrip-
tors. CASE (Computer Automated Structure Evaluation) and M - CASE are toxi-
coinformatics software packages that have the capability to automatically generate 
predictive models. A hybrid QSTR artifi cial expert system - based methodology is 
adopted in CASE - based systems. A linear scale called  “ CASE units ”  is defi ned, 
which segregate the given set of molecules as active/inactive/marginally toxic species. 
Molecular fragments are classifi ed in terms of biophores (fragments associated with 
activity) and biophobes (fragments associated with inactivity). One advantage of 
these packages is that they also include experimental data that is not released by 
the FDA, which increases the applicability of this set of packages. 

 Toxicity prediction tools based on  “ mechanistic approaches ”  are knowledge 
based - systems, where a fact base and rule base can be effectively analyzed to give 
qualitative information regarding the toxicity of chemical species. The expert rules 
included in the knowledge base are generally derived from the molecular mecha-
nism of the drug action and hence they are known as  “ mechanistic approaches. ”  
Well known software packages in this category are DEREK (Deductive Estimation 
of Risk from Existing Knowledge), HazardExpert, and Oncologic. DEREK is a 
widely used toxicity prediction system. This program not only predicts the potential 
toxicity of a query chemical but also provides details of the logical process that 
leads to the predicted results. Table  1.8  gives a list of known resources in 
toxicoinformatics.    

  1.5.8   Cancer informatics 

 Application of information technology has been extended to specifi c subtopics of 
pharmaceutical sciences like cancer, diabetes, and AIDS. One important example, 
wherein information technology is being extensively used, is cancer informatics. The 
necessity of such focused subtopics of pharmacoinformatics was required because 
of the overfl ow of information and lack of integrated data formats. Major cancer 
informatics initiatives are being undertaken by the National Cancer Institute Center 
for Bioinformatics (NCICB), National Institutes of Health (United States), National 
Cancer Research Institute (NCRI) (United Kingdom), and the National Cancer 
Center (NCC) (Japan). 

 A web - based environment called CaCORE (Cancer Common Ontologic Refer-
ence Environment) was established, which helps in the management, redistribution, 
integration, and analysis of data arising from studies involving cell and molecular 
biology, genomics, histopathology, drug development, and clinical trials. The struc-
tural and functional components of CaCORE include (1) Enterprise Vocabulary 
Services (EVS), which provide terminology development, dictionary, and thesaurus 
services like the description - logics based NCI Thesaurus and the NCI Metathesau-
rus, which is a collection of biomedical vocabularies based on National Library of 
Medicine (NLM) and the Unifi ed Medical Language System (UMLS); (2) The 
Cancer Data Standards Repository (CaDSR), which is a metadata registry for 



common data elements that have been identifi ed to simplify and standardize the 
data collection requirements and eligibility/exclusion criteria; and (3) the Cancer 
Bioinformatics Infrastructure Objects (CaBIO) module, which provides the data 
interface architecture  [126 – 128] . 

 Apart from the web - based facilities, several machine learning techniques like 
artifi cial neural networks and decision trees are also being utilized for cancer detec-
tion and diagnosis and more recently for prediction and prognosis. Several bioin-
formatics resources that are helpful in gene function prediction, in protein structure 
and function predictions, and in studies of protein – protein interactions are being 
employed in cancer informatics as well  [129] . Several specifi c databases like PDQ, 
CGED, and FaCD (Table  1.9 ) are being heavily used by cancer informatics special-
ists. The NCI chemical databank is a source of all the chemicals tested for anticancer 
effects.     

 TABLE 1.8    Toxicoinformatics Tools 

 Tools  Description  URL  Predicted Endpoints 

 TOPKAT  QSAR  Accelrys 
 http://www.accelrys.com/
products/topkat

 Mutagenicity, 
carcinogenicity,
mammalian acute and 
chronic toxicities, 
developmental
toxicities

 M - CASE, 
CASE,
ToxAlert,
Casetox

 Hybrid QSAR 
and expert 
system

 Multicase Inc. 
 http://www.multicase.
com

 Carcinogenicity, 
mutagenicity,
teratogenicity,
mammalian acute and 
chronic toxicities 

 DEREK  Knowledge 
based,
structural
rules

 Lhasa Limited 
 http://www.lhasalimited.
org/

 Mutagenicity, 
carcinogenicity,
teratogenicity/
developmental toxicity, 
skin sensitization, acute 
toxicity, etc. 

 OncoLogic  Knowledge 
based

 www.oncologic.net    Carcinogenicity 

 HazardExpert  Knowledge 
based

 CompuDrug 
 http://www.compudrug.
com

 Carcinogenicity, 
mutagenicity,
teratogenicity,
membrane irritation, 
neurotoxicity

 COMPACT  QSAR; 
mechanistic
supported
by molecular 
modeling
studies

 Surrey  Cytochrome P450 
metabolism

PHARMACOINFORMATICS 37



38 MODELING AND INFORMATICS IN DRUG DESIGN

  1.6   FUTURE SCOPE 

 The fi eld of computer - aided drug development has undergone a paradigm shift in 
the past fi ve years. Earlier, this subject was dominated by chemistry and physics of 
drug discovery, mainly through molecular modeling, QSAR. A dramatic increase 
has been noted in these two topics — several practical solutions are being offered 
and novel concepts are being introduced. At the same time an additional component 
is emerging in CADD through informatics. The current status of CADD includes 
both modeling and informatics with equal and synergistic contributions. Although 
a lot has been done in this area over the past twenty years, there is still a lot of scope 
left for future growth. First and foremost is winning the confi dence of the experi-
mental colleague, who is still skeptical about the value of these efforts. Second is 
the proper integration of modeling efforts and informatics efforts. Although virtual 
screening has proved to be highly successful, the methodologies being adopted lack 
common elements. Often the methods adopted in CADD are considered as tech-
nological components, although several fundamentals exist. In fact, the fundamen-
tals of the fi eld of drug discovery are only emerging. CADD methods should 
strongly contribute in establishing these fundamentals; efforts should be concen-
trated in this direction.  

  REFERENCES 

   1.      http://www.cambridgesoft.com .  
   2.      http://www.acdlabs.com/download/chemsk.html .  

 TABLE 1.9    Cancer Informatics Resources 

 Databases  Brief Descvription  URL 

 PDQ (Physician Data Query)  NCI ’ s Comprehensive 
Cancer Database 

  http://www.cancer.gov/
cancertopics/pdq/
cancerdatabase

 CGED (Cancer Gene 
Expression Database) 

 Database of gene expression 
profi le and accompanying 
clinical information 

  http://cged.hgc.jp/  

 Mouse Retroviral Tagged 
Cancer Gene Database 

 Retroviral and transposon 
insertional mutagenesis in 
mouse tumors 

  http://rtcgd.ncifcrf.gov  

 The Familial Cancer Database 
(FaCD)

 Assists in the differential 
diagnosis in familial cancer 

  http://facd.uicc.org/  

 International Agency for 
Research on Cancer (IARC) 
p53 Mutation database 

 Information on TP53 gene 
mutations

  http://www.iarc.fr/p53/  

 The Tumor Gene Database  Information on genes that 
are targets for cancer -
 causing mutations 

  http://condor.bcm.tmc.
edu/oncogene.html

 SNP500Cancer Database  Central Resource for 
Sequence verifi cation of 
SNPs

  http://snp500cancer.
nci.nih.gov



   3.      http://www.chemsw.com .  
   4.       Goodman   JM  .  Chemical Applications of Molecular Modeling .  Cambridge, UK :  Royal 

Society of Chemistry ;  1998 .  
   5.       Holtje   HD  ,   Sippl   W  ,   Rognan   D  .  Molecular Modeling Basic Principles and Applications , 

 2nd ed.   Weinheim :  Wiley - VCH Verlag GmbH ;  2003 .  
   6.       Leach   AR  ,   Gillet   VJ  .  An Introduction to Chemoinformatics .  Dordrecht :  Kluwer Aca-

demics ;  2003 .  
   7.       Levine   IN  .  Quantum Chemistry ,  4th ed.   Englewood Cliffs, NJ :  Prentice - Hall ;  1991 .  
   8.       Szabo   A  ,   Ostlund   S  .  Modern Quantum Chemistry .  New York :  MacMillan ;  1982 .  
   9.       Foresman   JB  ,   Frisch   AE  .  Exploring Chemistry with Electronic Structure Methods ,  2nd 

ed.   Pittsburgh :  Gaussian Inc. ;  1995 .  
   10.       Gasteiger   J  ,   Engel   T  .  Chemoinformatics: A Textbook .  Weinheim :  Wiley - VCH Verlag 

GmbH ;  2003 .  
   11.       Howard   AE  ,   Kollman   PA  .  An analysis of current methodologies for conformational 

searching of complex molecules . J Med Chem   1998 ; 31 : 1669  –  1675 .  
   12.       Lipton   M  ,   Still   WC  .  The multiple minimum problem in molecular modeling. Tree search-

ing internal coordinate conformational space . J Comput Chem   1988 ; 9 : 343  –  355 .  
   13.       Dammkoehler   RA  ,   Karasek   SF  ,   Shands   EF  ,   Marshall   GR  .  Constrained search of con-

formational hyperspace . J Comput Aided Mol Des   1989 ; 3 : 3  –  21 .  
   14.       Saunders   M  .  Stochastic exploration of molecular mechanics energy surfaces. Hunting 

for the global minimum . J Am Chem Soc   1987 ; 109 : 3150  –  3152 .  
   15.       Saunders   M  .  Stochastic search for the conformations of bicyclic hydrocarbons . J Comput 

Chem   1989 ; 10 : 203  –  208 .  
   16.       Ferguson   DM  ,   Raber   DJ  .  A new approach to probing conformational space with molec-

ular mechanics: random incremental pulse search . J Am Chem Soc   1989 ; 111 : 4371  – 
 4378 .  

   17.       Chang   G  ,   Guida   WC  ,   Still   WC  .  An internal - coordinate Monte Carlo method for search-
ing conformational space . J Am Chem Soc   1989 ; 111 : 4379  –  4386 .  

   18.       Saunders   M  ,   Houk   KN  ,   Wu   YD  ,   Still   WC  ,   Lipton   M  ,   Chang   G  ,   Guida ,  WC  .  Conforma-
tions of cycloheptadecane. A comparison of methods for conformational searching .
J Am Chem Soc   1990 ; 112 : 1419  –  1427 .  

   19.       Lybrand   TP  ,  Computer simulation of biomolecular systems using molecular dynamics 
and free energy perturbation methods , in Reviews in Computational Chemistry .  Hoboken, 
NJ :  Wiley - VCH ;  1990 , pp  295  –  320 .  

   20.       Bourne   PE  ,   Weissig   H  .  Structural Bioinformatics (Methods of Biochemical Analysis) . 
 Hoboken, NJ :  Wiley - Liss ;  2003 .  

   21.       Clote   P  ,   Backofen   R  .   Computational    Molecular Biology: An Introduction .  Hoboken, NJ : 
 Wiley ;  2000 .  

   22.       Dunbrack   RL   Jr  ,   Karplus   M  .  Conformational analysis of the backbone - dependent 
rotamer preferences of protein sidechains . Nat Struct Biol   1994 ; 1 : 334  –  340 .  

   23.       Park   BH  ,   Levitt   M  .  The complexity and accuracy of discrete state models of protein 
structure .  J Mol Biol   1995 ; 249 : 493  –  507 .  

   24.       Sternberg   MJE  .  Protein Structure Prediction: A Practical Approach (The Practical 
Approach Series) .  New York :  Oxford University Press ;  1997 .  

   25.       Rand í c   M  .  Characterization of molecular branching . J Am Chem Soc   1975 ; 97 :
 6609  –  6615 .  

   26.       Kier   LB  ,   Hall   LH  .  Molecular Connectivity in Chemistry and Drug Research .  New York :
 Academic Press ;  1976 .  

REFERENCES 39



40 MODELING AND INFORMATICS IN DRUG DESIGN

   27.       Kier   LB  ,   Hall   LH  .  Molecular Connectivity in Structure – Activity Analysis .  Hoboken, NJ : 
 Wiley ;  1986 .  

   28.       M ü ller   WR  ,   Szymanski   K  ,   Knop   JV  ,   Trinajstic   N  .  An algorithm for construction of the 
molecular distance matrix . J Comput Chem   1987 ; 8 : 170  –  173 .  

   29.       Wiener   H  .  Structural determination of paraffi n boiling points . J Am Chem Soc
 1947 ; 69 : 17  –  20 .  

   30.       Hosoya   H  .  Topological index. A newly proposed quantity characterizing the topological 
nature of structural isomers of saturated hydrocarbons . Bull Chem Soc Jpn
 1971 ; 44 : 2332  –  2339 .  

   31.       Bonchev   D  .  Information Theoretic Indices for Characterization of Chemical Structures . 
 Hoboken, NJ :  Wiley ;  1983 .  

   32.       Balaban   AT  .  Highly discriminating distance - based topological index . Chem Phys Lett
 1982 ; 89 : 399  –  404 .  

   33.       Kier   LB  .  A shape index from molecular graphs . Quant Struct - Activity Relat   1985 ; 4 :
 109  –  116 .  

   34.       Kier   LB  ,   Hall   LH  ,   Frazer   JW  .  An index of electrotopological state for atoms in mole-
cules .  J Math Chem   1991 ; 7 : 229  –  241 .  

   35.       Todeschini   R  ,   Consonni   V  .  Handbook of Molecular Descriptors .  Weinheim :  Wiley - VCH 
Verlag GmbH ;  2000 .  

   36.       Karelson   M  ,   Lobanov   VS  ,   Katritzky   AR  .  Quantum - chemical descriptors in QSAR/
QSPR studies . Chem Rev   1996 ; 96 : 1027  –  1044 .  

   37.       Abraham   DJ  .  Burger ’ s Medicinal Chemistry  &  Drug Discovery ,  6th ed.   Hoboken, NJ :
 Wiley - Interscience ;  2003 .  

   38.       Hansch   C  ,   Leo   A  ,   Heller   SR  .  Exploring QSAR: Volume 1: Fundamentals and Applica-
tions in Chemistry and Biology .  Washington DC :  American Chemical Society ;  1995 .  

   39.       Kubinyi   H  ,  QSAR: Hansch analysis and related approaches . In Methods and Principles 
in Medicinal Chemistry .  Weinheim :  VCH ;  1993 .  

   40.       Kubinyi   H  ,  QSAR In Drug Design. Theory, Methods and Applications .  Leiden :  ESCOM ; 
 1993 .  

   41.       Cramer   RDI  ,   Patterson   DE  ,   Bunce   JD  .  Comparative molecular fi eld analysis (CoMFA). 
1. Effect of shape on binding of steroids to carrier proteins .  J Am Chem Soc
 1988 ; 110 : 5959  –  5967 .  

   42.       Klebe   G  ,   Abraham   U  ,   Meitzner   T  .  Molecular similarity indices in a comparative analysis 
(CoMSIA) of drug molecules to correlate and predict their biological activity . J Med 
Chem   1994 ; 37 : 4130  –  4146 .  

   43.       Robinson   DD  ,   Winn   PJ  ,   Lyne   PD  ,   Richards   WG  .  Self - organizing molecular fi eld analysis: 
a tool for structure – activity studies .  J Med Chem   1999 ; 42 : 573  –  583 .  

   44.       Silverman   BD  ,   Platt   DE  .  Comparative molecular moment analysis (CoMMA): 3D -
 QSAR without molecular superposition . J Med Chem   1996 ; 39 : 2129  –  2140 .  

   45.       Kubinyi   H  .  Comparative molecular fi eld analysis (CoMFA) , in The Encyclopedia of 
Computational Chemistry .  Chichester :  Wiley ;  1998 , pp  448  –  460 .  

   46.       Wise   M  ,   Cramer   RD  ,   Smith   D  ,   Exman   I  .  Progress in three - dimensional drug design: the 
use of real - time colour graphics and computer postulation of bioactive molecules in 
DYLOMMS . In  Quantitative Approaches to Drug Design .  Amsterdam :  Elsevier ;  1983 , 
pp  145  –  146 .  

   47.       Pastor   M  ,   Cruciani   G  ,   Watson   KAA  .  Strategy for the incorporation of water molecules 
present in a ligand binding site into a three - dimensional quantitative structure – activity 
relationship analysis . J Med Chem   1997 ; 40 : 4089  –  4102 .  



   48.       Polanski   J  ,   Walczak   B  .  The comparative molecular surface analysis (COMSA): a novel 
tool for molecular design . Comput Chem   2000 ; 24 : 615  –  625 .  

   49.       Ivanciuc   O  ,   Ivanciuc   T  ,   Cabrol - Bass   D  .  Comparative receptor surface analysis (CoRSA) 
model for calcium channel antagonists . SAR QSAR Environ Res   2002 ; 12 : 93  –  111 .  

   50.       Hariprasad   V  ,   Kulkarni   VM  .  A proposed common spatial pharmacophore and the cor-
responding active conformations of some peptide leukotriene receptor antagonists . 
J Comput Aided Mol Des   1996 ; 10 : 284  –  292 .  

   51.       Vedani   A  ,   Briem   H  ,   Dobler   M  ,   Dollinger   H  ,   McMasters   DR  .  Multiple - conformation and 
protonation - state representation in 4D - QSAR: the neurokinin - 1 receptor system . J Med 
Chem   2000 ; 43 : 4416  –  4427 .  

   52.       Vedani   A  ,   Dobler   M  ,   Dollinger   H  ,   Hasselbach   KM  ,   Birke   F  ,   Lill   MA  .  Novel ligands for 
the chemokine receptor - 3 (CCR3): a receptor - modeling study based on 5D - QSAR . 
J Med Chem   2005 ; 48 : 1515  –  1527 .  

   53.       Vedani   A  ,   Dobler   M  .  5D - QSAR: the key for simulating induced fi t?   J Med Chem
 2002 ; 45 : 2139  –  2149 .  

   54.       Vedani   A  ,   Dobler   M  ,   Lill   MA  .  Combining protein modeling and 6D - QSAR. Simulating 
the binding of structurally diverse ligands to the estrogen receptor . J Med Chem
 2005 ; 48 : 3700  –  3703 .  

   55.       Martin   YC  ,   Bures   M  ,   Dahaner ,  E  .  A fast approach to pharmacophore mapping and its 
applications to dopaminergic and benzodiazepine agonists . J Comput Aided Mol Des
 1993 ; 7 : 83  –  102 .  

   56.       Marriott   DP  ,   Dougall   IB  ,   Meghani   P  ,   Liu   Y - J  ,   Flower   DR  .  Lead generation using phar-
macophore mapping and three - dimensional database searching: application to musca-
rinic M(3) receptor antagonists . J Med Chem   1999 ; 42 : 3210  –  3216 .  

   57.       Sutter   J  ,   G ü ner   OF  ,   Hoffmann   R  ,   Li   H  ,   Waldman   M  .  Pharmacophore, Perception Devel-
opment and Use In Drug Design .  La Jolla, CA :  International University Line , 2000 , pp 
 504  –  506 .  

   58.      SYBYL7.0 , Tripos Inc, 1699 South Hanley Rd, St Louis, MO 631444, USA.  http://www.
tripos.com .

   59.       Gardiner   EJ  ,   Artymiuk   PJ  ,   Willett   P  .  Clique - detection algorithms for matching three -
 dimensional molecular structures . J Mol Graph Model   1997 ; 15 : 245  –  253 .  

   60.       Sprague   PW  .  Automated chemical hypothesis generation and database searching with 
CATALYST . In  Perspectives in Drug Discovery and Design .  Leiden :  ESCOM Science ;
 1995 , pp  1  –  20 .  

   61.      CATALYST4.10 , Biosyn - MSI, San Diego, CA, USA,  2005 .  http://www.accelrys.com .  
   62.       Bajorath   J  .  Virtual screening in drug discovery: methods, expectations and reality . Curr

Drug Discov   2002 , pp  24  –  28 .  
   63.       Klebe   G  .  Virtual Screening: An Alternative or Complement to High Throughput Screen-

ing?   Berlin :  Springer ;  2000 .  
   64.       Leach   AR  .  Molecular Modelling: Principles and Applications ,  2nd ed.   Boston :  Addison 

Wesley Longman, Harlow ;  1996 .  
   65.       Cohen   N  .  Guidebook on Molecular Modeling in Drug Design .  San Drego, CA : Academic

Press ;  1996 .  
   66.       Charifson   PS  .  Practical Application of Computer - Aided Drug Design .  New York :  Marcel 

Dekker ;  1997 .  
   67.       Schneider   G  ,   Bohm   H - J  .  Virtual screening and fast automated docking methods . Drug

Discov Today   2002 ; 7 : 64  –  70 .  
   68.       Rarey   M  ,   Kramer   B  ,   Lengauer   T  ,   Klebe   G  .  A fast fl exible docking methods using an 

incremental construction algorithm . J Mol Biol   1996 ; 261 : 470  –  489 .  

REFERENCES 41



42 MODELING AND INFORMATICS IN DRUG DESIGN

   69.       Kuntz   ID  ,   Blaney   JM  ,   Oatley   SJ  ,   Langridge   R  ,   Ferrin   TE  .  A geometric approach to 
macromolecule – ligand interactions .  J Mol Biol   1982 ; 161 : 269  –  288 .  

   70.       Morris   GM  ,   Goodsell   DS  ,   Huey   R  ,   Olson   AJ  .  Distributed automated docking of fl exible 
ligands to proteins: parallel applications of AutoDock2.4 . J Comput Aided Mol Des
 1996 ; 10 : 293  –  304 .  

   71.       Moon   JB  ,   Howe   WJ  .  Computer design of bioactive molecules: a method for receptor -
 based  de novo  ligand design . Proteins   1991 ; 11 : 314  –  328 .  

   72.       Goodford   PJ  .  A computational procedure for determining energetically favorable 
binding sites on biologically important macromolecules . J Med Chem   1985 ; 28 : 849  –  857 .  

   73.       Lauri   G  ,   Bartlett   PA  .  CAVEAT: a program to facilitate the design of organic molecules .
J Comput Aided Mol Des   1994 ; 8 : 51  –  66 .  

   74.       B ö hm   HJ  .  LUDI: rule - based automatic design of new substituents for enzyme inhibitor 
leads .  J Comput Aided Mol Des   1992 ; 6 : 593  –  606 .  

   75.       B ö hm   HJ  .  The computer program LUDI: a new method for the  de novo  design of 
enzyme inhibitors . J Comput Aided Mol Des   1992 ; 6 : 61  –  78 .  

   76.       B ö hm   HJ  .  A novel computational tool for automated structure - based drug design . J Mol 
Recognit   1993 ; 6 : 131  –  137 .  

   77.       B ö hm   HJ  .  The development of a simple empirical scoring function to estimate the 
binding constant for a protein – ligand complex of known three - dimensional structure . 
J Comput Aided Mol Des   1994 ; 8 : 243  –  256 .  

   78.       Rotstein   SH  ,   Murcko   MA  .  GroupBuild: a fragment - based method for  de novo  drug 
design .  J Med Chem   1993 ; 36 : 1700  –  1710 .  

   79.       Gillet   V  ,   Johnson   AP  ,   Mata   P  ,   Sike   S  ,   Williams   P  .  SPROUT: a program for structure 
generation .  J Comput Aided Mol Des   1993 ; 7 : 127  –  153 .  

   80.       Gund   P  ,   Sigal   N  . Applying information systems to high - throughput screening and analy-
sis. In Pharmainformatics: A Trend Guide. Drug Discor Today 1999; (Suppl) ,  25  –  29 .  

   81.       Bharatam   PV  .  Pharmacoinformatics: IT solutions for drug discovery and development ,
CRIPS (Current Research and Information on Pharmaceutical Sciences) ,  2003 ; 4 : 2  –  5 .  

   82.       Hanson   CW  .  Healthcare Informatics .  New York :  McGraw - Hill Professional ;  2005 .  
   83.       Goodman   KW  .  Ethics, Computing, and Medicine: Informatics and the Transformation of 

Health Care ,  1st ed.   Cambridge, UK :  Cambridge University Press ;  1998 .  
   84.       Saba   VK  ,   McCormick   KA  .  Essentials of Nursing Informatics ,  4th ed.   New York :

 McGraw - Hill Medical ;  2005 .  
   85.       Gadre   SR  ,   Shirsat   RN  .  Electrostatics of Atoms and Molecules .  Hyderabad :  Universities 

Press (India) Limited ;  2000 .  
   86.       Oprea   TI  .  Chemoinformatics in drug discovery . In Methods and Principles in Medicinal 

Chemistry , Vol 23.  Weinheim :  Wiley - VCH Verlag GmbH ;  2005 .  
   87.       Gasteiger   J  .  Handbook on chemoinformatics: from data to knowledge , In Representation

of Molecular Structures .  Hoboken, NJ :  Wiley ;  2003 .  
   88.       Bajorath   J  .  Chemoinformatics: concepts, methods, and tools for drug discovery . In 

Methods in Molecular Biology .  Totowa, NJ :  Humana Press ;  2004 .  
   89.       Mount   DW  .  Bioinformatics: Sequence and Genome Analysis .  Cold Spring Harbor, NY :

 Cold Spring Harbor Laboratory Press ;  2001 .  
   90.       Xenarios   I  ,   Salwinski   L  ,   Duan   XJ  ,   Higney   P  ,   Kim   SM  ,   Eisenberg   D  .  DIP, the Database

of Interacting Proteins: a research tool for studying cellular networks of protein interac-
tions .  Nucleic Acids Res   2002 ; 30 : 303  –  305 .  

   91.       Breitkreutz   BJ  ,   Stark   C  ,   Tyers   M  .  The GRID: the General Repository for Interaction 
Datasets .  Genome Biol   2003 ; 4 : R23 .  



   92.       Bader   GD  ,   Betel   D  ,   Hogue   CW  .  BIND: the Biomolecular Interaction Network Data-
base .  Nucleic Acids Res   2003 ; 31 : 248  –  250 .  

   93.       Peri   S  ,   Navarro   JD  ,   Kristiansen   TZ  ,   Amanchy   R  ,   Surendranath   V  ,   Muthusamy   B  ,   Gandhi
 TK  ,   Chandrika   KN  ,   Deshpande   N  ,   Suresh   S  ,   Rashmi   BP  ,   Shanker   K  ,   Padma   N  ,   Niranjan  
 V  ,   Harsha   HC  ,   Talreja   N  ,   Vrushabendra   BM  ,   Ramya   MA  ,   Yatish   AJ  ,   Joy   M  ,   Shivashankar  
 HN  ,   Kavitha   MP  ,   Menezes   M  ,   Choudhury   DR  ,   Ghosh   N  ,   Saravana   R  ,   Chandran   S  , 
  Mohan   S  ,   Jonnalagadda   CK  ,   Prasad   CK  ,   Kumar - Sinha   C  ,   Deshpande   KS  ,   Pandey   A  . 
 Human protein reference database as a discovery resource for proteomics . Nucleic Acids 
Res   2004 ; 32 : D497  –  501 .  

   94.       Marcotte   EM  ,   Xenarios   I  ,   Eisenberg   D  .  Mining literature for protein – protein interac-
tions .  Bioinformatics   2001 ; 17 : 359  –  363 .  

   95.       Wilcox   A  ,   Hripcsak   G  .  Classifi cation algorithms applied to narrative reports .  Proc AMIA 
Symp 1999 ; 455  –  459 .  

   96.      STRING ,  http://string.embl.de/ .  

   97.       von Mering   C  ,   Huynen   M  ,   Jaeggi   D  ,   Schmidt   S  ,   Bork   P  ,   Snel   B  .  STRING: a database of 
predicted functional associations between proteins . Nucleic Acids Res   2003 ; 31 : 258  –  261 .  

   98.       Tien   AC  ,   Lin   MH  ,   Su   LJ  ,   Hong   YR  ,   Cheng   TS  ,   Lee   YC  ,   Lin   WJ  ,   Still   IH  ,   Huang   CY  . 
 Identifi cation of the substrates and interaction proteins of aurora kinases from a 
protein – protein interaction model . Mol Cell Proteomics   2004 ; 3 : 93  –  104 .  

   99.       Lipinski   CA  ,   Lombardo   F  ,   Dominy   BW  ,   Feeney   PJ  .  Experimental and computational 
approaches to estimate solubility and permeability in drug discovery and development 
settings .  Adv Drug Deliv Rev   1997 ; 23 : 3  –  25 .  

   100.       Mazziotta   J  ,   Toga   A  ,   Evans   A  ,   Fox   P  ,   Lancaster   J  ,   Zilles   K  ,   Woods   R  ,   Paus   T  ,   Simpson  
 G  ,   Pike   B  ,   Holmes   C  ,   Collins   L  ,   Thompson   P  ,   MacDonald   D  ,   Iacoboni   M  ,   Schormann   T  , 
  Amunts   K  ,   Palomero - Gallagher   N  ,   Geyer   S  ,   Parsons   L  ,   Narr   K  ,   Kabani   N  ,   Le Goualher  
 G  ,   Boomsma   D  ,   Cannon   T  ,   Kawashima   R  ,   Mazoyer   B  .  A probabilistic atlas and reference 
system for the human brain: International Consortium for Brain Mapping (ICBM) .
Philos Trans R Soc Lond B Biol Sci   2001 ; 356 : 1293  –  1322 .  

   101.       Mazziotta   J  ,   Toga   A  ,   Evans   A  ,   Fox   P  ,   Lancaster   J  ,   Zilles   K  ,   Woods   R  ,   Paus   T  ,   Simpson  
 G  ,   Pike   B  ,   Holmes   C  ,   Collins   L  ,   Thompson   P  ,   MacDonald   D  ,   Iacoboni   M  ,   Schormann   T  , 
  Amunts   K  ,   Palomero - Gallagher   N  ,   Geyer   S  ,   Parsons   L  ,   Narr   K  ,   Kabani   N  ,   Le Goualher  
 G  ,   Feidler   J  ,   Smith   K  ,   Boomsma   D  ,   Hulshoff Pol   H  ,   Cannon   T  ,   Kawashima   R  ,   Mazoyer  
 B  .  A four - dimensional probabilistic atlas of the human brain . J Am Med Inform Assoc
 2001 ; 8 : 401  –  430 .  

   102.       Dickson   J  ,   Drury   H  ,   Van Essen   DC  .  The surface management system (SuMS) database: 
a surface - based database to aid cortical surface reconstruction, visualization and analy-
sis .  Philos Trans R Soc Lond B Biol Sci   2001 ; 356 : 1277  –  1292 .  

   103.       Van Essen   DC  .  Windows on the brain: the emerging role of atlases and databases in 
neuroscience .  Curr Opin Neurobiol   2002 ; 12 : 574  –  579 .  

   104.       Burns   GA  .  Knowledge management of the neuroscientifi c literature: the data model 
and underlying strategy of the NeuroScholar system . Philos Trans R Soc Lond B Biol 
Sci   2001 ; 356 : 1187  –  1208 .  

   105.       Shepherd   GM  ,   Mirsky   JS  ,   Healy   MD  ,   Singer   MS  ,   Skoufos   E  ,   Hines   MS  ,   Nadkarni   PM  , 
  Miller   PL  .  The Human Brain Project: neuroinformatics tools for integrating, searching 
and modeling multidisciplinary neuroscience data . Trends Neurosci   1998 ; 21 : 460  –  468 .  

   106.       Rammensee   HG  .  Immunoinformatics: bioinformatic strategies for better understanding 
of immune function. Introduction . Novartis Found Symp   2003 ; 254 : 1  –  2 .  

   107.       Brusic   V  ,   Zeleznikow   J  ,   Petrovsky   N  .  Molecular immunology databases and data reposi-
tories .  J Immunol Methods   2000 ; 238 : 17  –  28 .  

REFERENCES 43



44 MODELING AND INFORMATICS IN DRUG DESIGN

   108.       Robinson   J  ,   Waller   MJ  ,   Parham   P  ,   de Groot   N  ,   Bontrop   R  ,   Kennedy   LJ  ,   Stoehr   P  ,   Marsh  
 SG  .  IMGT/HLA and IMGT/MHC: sequence databases for the study of the major his-
tocompatibility complex . Nucleic Acids Res   2003 ; 31 : 311  –  314 .  

   109.       Lefranc   MP  .  IMGT, the international ImMunoGeneTics database . Nucleic Acids Res
 2003 ; 31 : 307  –  310 .  

   110.       Giudicelli   V  ,   Lefranc   MP  .  Ontology for immunogenetics: the IMGT - ONTOLOGY .  Bio-
informatics   1999 ; 15 : 1047  –  1054 .  

   111.       Petrovsky   N  ,   Schonbach   C  ,   Brusic   V  .  Bioinformatic strategies for better understanding 
of immune function . In Silico Biol   2003 ; 3 : 411  –  416 .  

   112.       Lefranc   MP  .  IMGT, The international ImMunoGeneTics Information System .  Methods
Mol Biol   2004 ; 248 : 27  –  49 .  

   113.       Lefranc   MP  ,   Giudicelli   V  ,   Ginestoux   C  ,   Bosc   N  ,   Folch   G  ,   Guiraudou   D  ,   Jabado -
Michaloud   J  ,   Magris   S  ,   Scaviner   D  ,   Thouvenin   V  ,   Combres   K  ,   Girod   D  ,   Jeanjean   S  ,   Protat  
 C  ,   Yousfi  - Monod   M  ,   Duprat   E  ,   Kaas   Q  ,   Pommie   C  ,   Chaume   D  ,   Lefranc   G  .  IMGT -
 ONTOLOGY for immunogenetics and immunoinformatics . In Silico Biol   2004 ; 4 : 17  – 
 29 .  

   114.       Lefranc   MP  .  IMGT - ONTOLOGY and IMGT databases, tools and Web resources for 
immunogenetics and immunoinformatics . Mol Immunol   2004 ; 40 : 647  –  660 .  

   115.       Brusic   V  ,   Zeleznikow   J  .  Artifi cial neural network applications in immunology , in  Pro-
ceedings of the International Joint Conference on Neural Networks , 1999 ; 5 : 3685  –  3689   .  

   116.       De Groot   AS  ,   Bosma   A  ,   Chinai   N  ,   Frost   J  ,   Jesdale   BM  ,   Gonzalez   MA  ,   Martin   W  ,   Saint -
 Aubin   C  .  From genome to vaccine: in silico  predictions,  ex vivo  verifi cation .  Vaccine
 2001 ; 19 : 4385  –  4395 .  

   117.       De Groot   AS  ,   Sbai   H  ,   Aubin   CS  ,   McMurry   J  ,   Martin   W  .  Immuno - informatics: mining 
genomes for vaccine components . Immunol Cell Biol   2002 ; 80 : 255  –  269 .  

   118.       de Castro   LN  ,   Timmis   JI  .  Artifi cial immune systems: a novel paradigm to pattern recog-
nition . In  Artifi cial Neural Networks in Pattern Recognition .  Paisley, UK :  University of 
Paisley ;  2002 , pp  67  –  84   .  

   119.       Korolev   D  ,   Balakin   KV  ,   Nikolsky   Y  ,   Kirillov   E  ,   Ivanenkov   YA  ,   Savchuk   NP  ,   Ivashchenko
 AA  ,   Nikolskaya   T  .  Modeling of human cytochrome P450 - mediated drug metabolism 
using unsupervised machine learning approach . J Med Chem   2003 ; 46 : 3631  –  3643 .  

   120.       Erhardt   PW  .  A human drug metabolism database: potential roles in the quantitative 
predictions of drug metabolism and metabolism - related drug – drug interactions .  Curr
Drug Metab   2003 ; 4 : 411  –  422 .  

   121.       Langowski   J  ,   Long   A  .  Computer systems for the prediction of xenobiotic metabolism . 
Adv Drug Deliv Rev   2002 ; 54 : 407  –  415 .  

   122.       Barratt   MD  ,   Rodford   RA  .  The computational prediction of toxicity . Curr Opin Chem 
Biol   2001 ; 5 : 383  –  388 .  

   123.       Pearl   GM  ,   Livingston - Carr   S  ,   Durham   SK  .  Integration of computational analysis as a 
sentinel tool in toxicological assessments . Curr Top Med Chem   2001 ; 1 : 247  –  255 .  

   124.       Dearden   JC  ,   Barratt   MD  ,   Benigni   R  ,   Bristol   DW  ,   Combes   RD  ,   Cronin   MTD  ,   Judson 
 PN  ,   Payne   MP  ,   Richard   AM  ,   Tichy   M  ,   Worth   AP  ,   Yourick   JJ .   The development and vali-
dation of expert systems for predicting toxicity . ATLA   1997 ; 25 : 223  –  252 .  

   125.       Schultz   TW  ,   Cronin   MTD  ,   Walker   JD  ,   Aptula   AO  .  Quantitative structure – activity rela-
tionships (QSARs) in toxicology: a historical perspective . J Mol Structure (Theochem)
 2003 ; 622 : 1  –  22 .  

   126.       Covitz   PA  ,   Hartel   F  ,   Schaefer   C  ,   De Coronado   S  ,   Fragoso   G  ,   Sahni   H  ,   Gustafson   S  , 
  Buetow   KH  .  caCORE: a common infrastructure for cancer informatics .  Bioinformatics
 2003 ; 19 : 2404  –  2412 .  



   127.       Silva   JS  ,   Ball   MJ  ,   Douglas   JV  .  The Cancer Informatics Infrastructure (CII): an architec-
ture for translating clinical research into patient care . Medinfo   2001 ; 10 : 114  –  117 .  

   128.       Hubbard   SM  ,   Setser   A  .  The Cancer Informatics Infrastructure: a new initiative of the 
National Cancer Institute . Semin Oncol Nurs   2001 ; 17 : 55  –  61 .  

   129.       Kihara   D  ,   Yang   YD  ,   Hawkin   T  .  Bioinformatics resources for cancer research with an 
emphasis on gene function and structure prediction tools . Cancer Informatics   2006 ; 
pp  25  –  35 .   

            

REFERENCES 45





47

2
 COMPUTER TECHNIQUES: 
IDENTIFYING SIMILARITIES 
BETWEEN SMALL MOLECULES 

  Peter   Meek  ,   Guillermo   Moyna  , and   Randy   Zauhar  
  University of the Sciences in Philadelphia, Philadelphia, Pennsylvania 

    Contents   

  2.1     Introduction  
  2.2     Computer - Aided Drug Design (CADD) 
  2.3     Harvesting Data from Small Molecules 
  2.4     Representing Molecules for Interpretation by Computers 

  2.4.1     Importance of Continuity Within Molecular Representations 
  2.5   Defi ning Similarity 

   2.5.1     Why Do We Wish to Compare Molecules? 
  2.5.2     Utilizing External Sources of Information 

  2.6   Detecting Similarity with  in silico  Techniques 
   2.6.1     HQSAR  
  2.6.2     QSAR  
  2.6.3     Superimposition  
  2.6.4     Program Suites 
  2.6.5     Comparative Molecular Field Analysis (CoMFA) and Related Approaches 
  2.6.6     Shape Signatures 

  2.7   Conclusion  
     Acknowledgments  
     References           

Preclinical Development Handbook: ADME and Biopharmaceutical Properties,
edited by Shayne Cox Gad
Copyright © 2008 John Wiley & Sons, Inc.



48 IDENTIFYING SIMILARITIES BETWEEN SMALL MOLECULES

  2.1   INTRODUCTION 

 In this chapter, current computational methodologies available for the comparison 
of structurally similar compounds are presented and analyzed in detail. Problems 
encountered throughout these types of endeavors are summarized fi rst, giving par-
ticular emphasis to the suitability of in silico , or computer - based, methods for evalu-
ating molecular similarity among members of large compound libraries. The chapter 
then concentrates on the description of different techniques, starting from the sim-
plest ones, then more complex, and fi nishing with emerging approaches. Salient 
examples of a technique application found in the literature are discussed, and brief 
guidelines for readers interested in employing these computational tools are 
outlined.

  2.2   COMPUTER - AIDED DRUG DESIGN ( CADD ) 

 Implementing CADD techniques depends heavily on what molecular information 
is provided or accessible. However, of equal or even greater importance is how the 
information that is searched and utilized is organized and constructed. These, of 
course, are the databases containing the small molecules. The format of how a 
molecular entry is recorded and stored is pivotal and dictates what transformations 
of the entries are required before any kind of search or CADD application can be 
performed. In fact, this chapter might be described as a series of illustrations of the 
different ways in which molecules can be represented in a computer, each with its 
potential benefi ts and drawbacks.  

  2.3   HARVESTING DATA FROM SMALL MOLECULES 

 Over the past few decades there has been an unprecedented explosion of informa-
tion in the chemical and life sciences. Development of new biological and chemical 
tools has been documented and new pharmaceutical agents are discovered with 
ever - increasing frequency year by year  [1] . At the same time, it has become more 
and more diffi cult to gain regulatory approval of new chemical entities  [2]  due to 
new and stricter legislation. There are millions of molecules that are now known to 
possess bioactivity against one or more targets, or to be useful as reagents in aca-
demic and industrial research. Before any computer - based technique can be imple-
mented, these vast numbers of isolated and synthesized molecules need to be 
organized. As might be expected, the need to catalog this abundant information was 
recognized early on, and many molecules are organized into indexes (e.g., CAS 
system) and/or are held in commercial  [3 – 6] , industrial  [7, 8] , or public  [9 – 11]  data-
bases. Given the vast volume of  “ chemical space ”  that has already been explored, 
it is to the advantage of the investigator to consult these knowledge bases before 
planning a new synthesis, and at the outset of any efforts to identify new therapeutic 
or bioactive compounds. In particular, synthesizing a new compound often repre-
sents an enormous effort in the laboratory, work carried out in vain if the target 
compound (or one similar to it) is already available from a commercial source. 



Given the sheer volume of information, there is considerable need to employ com-
puters to carry out these investigations as few human minds past, present, or future 
can compare one molecule to a previously memorized database of 10,000,000 mol-
ecules. Harnessing computer power is not without drawbacks; we discuss here the 
importance and careful considerations required to represent chemical structures. 
Chemical database storage and searching relies on electronic defi nitions of chemical 
structures, and the details of the methodology used are vital to defi ning and measur-
ing similarity between molecules.  

  2.4   REPRESENTING MOLECULES FOR INTERPRETATION 
BY COMPUTERS 

 Molecules are represented based on their constituent parts and the way in which 
these constituent parts are connected. The components of a small molecule are 
atoms, which are minimally identifi ed by element type, but which may be character-
ized by a number of additional descriptors, including but not limited to van der 
Waals radius, valence, and/or charge state. The next step beyond simply enumerating 
the atoms in a molecule is to provide detailed connectivity information, typically in 
terms of a list of bonds of recognized chemical type; in this way the molecule is 
defi ned mathematically as a graph, with the atoms as vertices and the bonds as edges 
of specifi ed type. The atom and bond defi nitions act as the building blocks of mole-
cules that can be represented in one of three major forms: one - dimensional (1D), 
two - dimensional (2D), or three - dimensional (3D). Over the years several standard 
computer fi le formats have been developed for each dimension class (Table  2.1 ), 
and these have steadily evolved to allow incorporation of additional data types. For 
instance, many applications require a detailed distribution of partial atomic charges 
(as opposed to simply specifying ionization state); such charges are required by 
some force fi elds, such as MMFF94  [19] , and are routinely computed using rapid 
semiempirical methods (Gasteiger  [20]  and Gastegier and Huckel  [21] ). This infor-
mation is readily included in many molecular fi le formats, including the structure 
data fi le sdf  [22]  and mol2  [14]  specifi cations. In addition, some current formats (such 
as sdf) admit the possibility of  “ tagging ”  a molecule with arbitrary data, a boon in 
the sense of providing open - ended fl exibility, but a peril in that descriptors may not 
be added uniformly across a database, and/or the additions may not be clearly 
annotated.   

  2.4.1   Importance of Continuity Within Molecular Representations 

 One of the most critical issues when applying various molecular databases is to 
recognize the varying levels of faithfulness between the representation of the 
molecule in the computer and the actual material available to the investigator. This 
is a function of both the database and the source of the compound. For example, 
suppose that a sample of a potentially bioactive compound is available in the form 
of a purifi ed enantiomer. Many molecular databases store connectivity (bonding) 
information but do not distinguish between different stereoisomers. If the database 
entry corresponding to this compound is used to generate a molecular model with 
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detailed atomic positions, the resulting model may not correspond to the material 
sample. Conversely, the investigator may have a racemic mixture, whereas the data-
base entry assumes a specifi c enantiomeric form. In either case, incorrect predictions 
may result, since biological activity is often remarkably sensitive to the details of 
3D molecular structure. 

 Generally, it is often the case that small changes in chemical structure or physi-
cochemical properties can have profound implications for the specifi city and mag-
nitude of the biological effects associated with a compound. Speaking fi rst to the 
effects of structural variations, we can identify classic examples of chemical isomer-
ism, including chiral, cis/trans ( E/Z ), functional group, and positional isomerism. 
Small variations such as substitution of atoms and/or isomeric rearrangements can 
have an important impact on both molecular shape and physical properties (e.g., 
dipole moment, hydrophobicity) that are a function of 3D structure. Hence, it is 
imperative for the investigator to be aware of the details in the information stored 
in a database, particularly when data is absent (e.g., no representation of stereo-
isomerism) as well as when data is present but may not correspond to the state of 
the physical sample (e.g., R  chiral form where  S  is found in the material sample, or 
a neutral database entry corresponding to a molecule that may be ionized at the 
pH of interest). It is therefore imperative to use, derive, and develop uniform 
molecular representation systems meticulously, without which predictions or appli-
cation of in silico  techniques would be impossible. 

 TABLE 2.1    Representation of the Small Molecule  b  -  d  - Glucopyranose 

  1D a 

 SMILES string representation of  β  -  d  - glucopyranose (@ = S, @@ = R): 

 [H][C@@]1(O)O[C@]([H])(CO)[C@@]([H])(O)[C@]([H])(O)[C@@]1([H])O 

 SLN string representation of  β  -  d  - glucopyranose: 

 O[1]CH(CH(CH(CH(CH@1OH)OH)OH)OH)CH2OH 

  2D    b      3D    c 

 MarvinSketch representation of 
β  -  d  - glucopyranose 

 SYBYL representation of 
β  -  d  - glucopyranose 

a Two examples: a SMILE string notation  [12]  and the SLN (SYBYL Line Notation 
 [13] , by Tripos  [14] ).
b Representation using the classic bond - wedge diagram (MarvinSketch  [15] ).  
c The image of  β  -  d  - glucopyranose created from a mol2 fi le (SYBYL by Tripos). The 
2D and 3D structures are collapsible to linear notation and converted into a required 
fi le format by CORINA  [16] ; stereoisomers are generated with STERGEN  [17]  and 
tautomers with TAUTOMER  [18] .   



 To highlight this concept further, we present some examples of small molecular 
frameworks that are at fi rst glance similar but that in fact differ signifi cantly 
(Fig.  2.1 ). Certain atoms have similar sizes and the same bond orientation (e.g., tet-
rahedral carbon, phosphorus, and protonated nitrogen, Fig.  2.1a ) yet the molecular 
charge distribution is considerably different. In contrast, substituting one halide for 
another at a specifi ed location in a framework has a small effect on total dipole 
moment, and yet these atoms differ signifi cantly in size, with the largest, iodine, 
occupying about the same volume as a methyl group (Fig.  2.1b ). This raises the 
question: When similarity is measured, what governs how similar an atom is to 
another atom? In other words, how similar is O to S,   or N to P or C, or an atom to 
a small group (e.g., I to CH 3 )? The answer depends heavily on the context of the 
atom or group in question. Moreover, it is important to recognize that the physical 
infl uences of atom or small group in determining molecular properties depend on 
its context; such factors include hybridization state and the local chemical environ-
ment, an insight fi rst proposed by Hammet  [23]  and Hansch et al.  [24] . These 
researchers developed mathematical representations for predicting molecular prop-
erties on the basis of structure.   

 Yet more complexity arises if we introduce the possibility of molecular fl exibility. 
Most molecules of biological interest admit some degree of fl exibility, including 
bonds about which free rotation is possible and saturated ring systems that can 

    FIGURE 2.1     ( a ) Depiction of three tetrahedral atom arrangements: ( left ) the central 
 carbon  in methane, ( center ) the central protonated  nitrogen  in ammonium, and ( right ) the 
 phosphorus  in phosphate all look similar but carry different charges. ( b ) Atomic arrange-
ments of a tetrahedral carbon bonded with a single halide of increasing size: ( left ) chloro-
methane, ( center ) bromomethane, and ( right ) iodomethane. All molecule constructions were 
created with MarvinSketch  [15] . 
 

(a) Similarity of atomic arrangements of carbon, nitrogen, and phosphorus 
Tetrahedral Carbon 

Charge = 0 

Tetrahedral Nitrogen 

Charge = +1 

Tetrahedral Phosphorus 

Charge = -3 
(b) Similarity of charge but difference in charge between carbon–halide bonds 
Carbon-Chloride 

 
Size 1.75 Å 
Cl dipole: negative 

Carbon-Bromide 

Size 1.85 Å 
Br dipole: weakly negative 

Carbon-Iodide 

Size 1.98 Å 
I dipole: close to neutral
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adopt alternate conformations (e.g., chair vs. boat forms for six - membered rings, 
various classes of puckering observed in pyranoses). This leads to the possibility of 
multiple conformers for a molecule, each representing a local minimum on the 
energy surface of the compound. While a molecule will often have a single global 
energy minimum representing the conformation most favored in terms of energy, 
there may be other important minima of similar energy (Fig.  2.2 ), and there is no 
guarantee that the global minimum corresponds to the form of the molecule that is 
active against a particular biological target  [25] . A number of techniques are avail-
able to identify low energy conformers    [14, 26] . Although many databases include 
a representative low energy conformer for each compound, detailed considerations 
of molecular fl exibility are usually relegated to the fi nal stages of analysis, after a 
relatively small set of interesting molecules have been identifi ed. Nonetheless, con-
sideration of fl exibility is often critical for rationalizing differences in activity among 
a panel of bioactive molecules.     

  2.5   DEFINING SIMILARITY 

 Defi ning similarity between molecules is an inherently ambiguous undertaking. 
What makes two molecules similar? Should we focus on the volumes occupied by 
molecules, their patterns of chemical bonding, the presence of particular functional 

FIGURE 2.2     Graph of molecular conformation versus energy. An energy profi le plot is 
shown for each possible conformation of a hypothetical molecule in 3D space. The troughs 
denote local energy minima (short gray lines) and the global energy minimum (gray arrow). 
When exploring molecular space, fi nding the global energy minimum is not guaranteed. For 
example, if the four starting points were the gray triangles, the output would not detect the 
global energy minimum, but maybe fi ve local energy minima at best. Using the start points 
with the gray circles would almost certainly guarantee the global energy minima and possibly 
all the local minima too. The problem is inherent to all experimental investigations: if the 
sample size is not large enough, the minima determined will not be representative of the 
whole. Likewise, in energy calculations if the energy barrier is too high to climb, the pockets 
or valleys over the hills cannot be entered into and located. This is why small molecules bound 
to their targets are highly sought after; a more active molecule will have a bound structure 
not too dissimilar to its gas phase global minima. 



groups, ionization state, hydrophobicity, dipole moment, or any or all of a host of 
other topological and physicochemical descriptors? In most cases the desire is to 
fi nd molecules that  “ look like ”  a particular query molecule, or that are compatible 
with a chemical/spatial pattern (corresponding perhaps to a pharmacophore model). 
Note that we are not typically interested in stringent criteria; rather, the goal is to 
cast a fairly wide net and identify molecules that have the potential to interact with 
a particular target of interest. Examples of comparisons (Fig.  2.3 ) demonstrate that 
different tools, each employing its own valid approach to defi ning molecular similar-
ity, can produce very different results. This is not in itself surprising but does high-
light the need for care and caution when applying  in silico  methods to scan chemical 
databases for lead compounds. It is important to understand what features a par-
ticular method is  “ looking for, ”  and it is just as critical to recognize what the method 
ignores! Similarity is itself an arbitrarily defi ned concept (with appreciable overlaps 
between techniques) and will depend entirely on the tool(s) used.   

 Essentially,  in silico  search techniques prove most useful when the similarity 
measurement (scoring index) reliably returns molecules with the same desired 
characteristics as the query. Such a technique will take a large dataset of unrelated 
molecules and reduce it to a smaller set, but with proportionally more molecules 
similar to the query. This process is called  enrichment . Methods are available to 
quantitate enrichment    [29, 31] , and a measure of enrichment may provide a useful 
fi gure of merit when comparing and assessing computational search tools. 

    FIGURE 2.3     A simple similarity example using different comparison methods. A collection 
of fi ve benzene derivatives is displayed and an assessment is made of their similarity to a 
toluene reference using Tanimoto index  [27] , 1D Shape Signatures, (shape comparison), and 
2D Shape Signatures (shape and mean electrostatic potential comparison)  [28 – 30] . All three 
types of comparison required 3D coordinate input fi les (mol2). A Tanimoto score of 1.000 
implies a perfect match, with 0.000 implying a complete mismatch; a Shape Signatures score 
of 0.000 is a perfect match and 2.000 is a complete mismatch. 
 

1,4-Dimethylbenzene 
ROCS Score TBA 

Tanimoto Score 0.963 
Shape Sig Score  

1D 0.061960 
2D 0.217802

Anesol 
ROCS Score TBA 

Tanimoto Score 0.271 
Shape Sig Score  

1D 0.063520 
2D 1.164624 

Toluene 
ROCS Score TBA 

Tanimoto Score 1.000 
Shape Sig Score  

1D 0.000 
2D 0.000

Isopropylbenzene 
ROCS Score TBA 

Tanimoto Score 0.634 
Shape Sig Score  

1D 0.187000 
2D 0.322557

Phenol 
ROCS Score TBA 

Tanimoto Score 0.300
Shape Sig Score  

1D 0.093740 
2D 0.490301
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  2.5.1   Why Do We Wish to Compare Molecules? 

 In the context of drug development (or identifi cation of bioactivity in general), there 
are two motivations for comparing molecules. One is to locate molecules in a data-
base that are similar to a known active, which might also be active against the target, 
and furthermore could conceivably provide better compounds as determined by any 
number of measures (e.g., activity, bioavailability, ease of synthesis). The second is 
to rationalize the effi cacy of a set of known active compounds, to identify the fea-
tures that are directly related to activity, and thus to determine how existing com-
pounds can be improved. Of course, the two motivations can be combined: one 
might fi rst use a library search to locate interesting lead compounds and then 
improve the leads by making modifi cations in line with established models that 
relate structure to activity. Clearly, at the very least, the database search component 
of this strategy needs to be automated, since humans do a poor job of scanning 
through hundreds of structures, let alone the hundreds of thousands that are avail-
able in contemporary libraries. But the central point is that drug design methods 
that employ measures of molecular similarity have the potential to rapidly locate 
lead compounds, to support the fi netuning of structures to improve activity and 
other critical features, and to dramatically reduce costs by identifying compounds 
that may be readily available or easily modifi ed. 

 Similarity searching is not a straightforward task: small alterations of a molecule 
(e.g., cis/trans stereoisomerism (Fig.  2.4a ) and chirality (Fig.  2.4b )) can have a pro-
found and marked effect on activity. Indeed, the protonation state of the molecule 

FIGURE 2.4     ( a) Shape and cis/trans  isomerism. This part demonstrates how a subtle change 
in the arrangement of a carbon – carbon double bond (sp 2= sp 2 ) can dramatically affect the 
appearance of a molecule. The bond (black dot) is either in the cis  conformation (same side), 
(i ) and ( iii ), or the  trans  conformation (opposite sides), ( ii ) and ( iv ). One should take paticular 
note that as small molecules are usually designed to biological targets, it is inevitable that 
cis/trans  isomerism can dramatically affect the activity of a potential drug, and consequently 
is a major headache in chemical synthesis. ( b ) Shape and chiral isomerism. Controlling 
chirality poses a huge challenge for synthetic chemists. There are several chiral centers in 
this molecule; the only differing one is marked with an arrow, being S  on the isomer to 
the left and R  on the one to the right. Usually one optical isomer, or enantiomer, will 
have activity against a biological target (known as the eutomer), while the other lacks the 
desired activity. Due to the expense associated with the separation or enantiomers from a 
mixture, chirality is of paramount importance when searching molecular databases. ( c ) Shape 
and distribution of charge. Shown are two representations of aspartic acid — an amino acid: 
(left ) the fully protonated amino acid and ( right ) the fully deprotonated amino acid. Usually 
the nitrogen is tetrahedral at physiological pH and the C terminus and side chain (connected 
to the C α  - carbon) are deprotonated. The state of the proton donors and acceptors modifi es 
the local charge and overall shape of the molecule; hence, the small molecule being investi-
gated needs to mimic the donor and acceptor sites to be truly similar. As a general rule, the 
termini are not involved in donor and acceptor sites on a protein, as the vast majority are 
lost in the peptide bond formation. The side chains dictate the number of donor and acceptor 
sites.



 

 

i) 

ii) iii) 

iv) 

The two forms of stearate (i) and (ii), an 
unsaturated lipophilic molecule and a building 
block within cell membranes. An unsaturated 
hydrocarbon cis-but-2-ene (iii) and trans-but-
2-ene (iv).  

(a)

N-Terminus 

Cα-Carbon 
C-Terminus 

(c)

(b)

can affect the structure and surface charge distribution (Fig.  2.4c ), with fl exibility 
and rotation further complicating the matter  . Hence, one could defi ne this problem 
as akin to a box of left - threaded and right - threaded nuts and bolts. The different 
classes of bolts may have many properties in common, such that even a trained eye 
might sort them together, yet they have distinct and incompatible functions. This 
paradigm is clearly evident in the biological context and highlighted with respect to 
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enantiomer specifi city (HIV serine proteases made of exclusively either D   or L 
amino acids)  [32]  and the toxic effects observed with thalidomide  [33] .   

 Consequently, while attempts to measure similarity between molecules have an 
objective basis, the evaluations depend heavily on the algorithms employed, some-
times leading to the appearance of subjectivity (the results obtained depend on the 
specifi c tools selected). That said, it has been evident for a long while that molecular 
similarity provides the foundation for rational drug design. As far as the choice of 
tools and algorithms is concerned, these are of course ultimately evaluated at the 
laboratory bench, and it is empirical studies that in the end provide the validation 
of existing approaches, and point out new directions for improvement and develop-
ment on the computational side.  

  2.5.2   Utilizing External Sources of Information 

 As discussed earlier, several scenarios admit the use of similarity searching. In some 
cases, a relatively small set of molecules are compared, but in others the goal is to 
scan a potentially enormous library of compounds. To a large extent, the form of 
the investigation will be determined by the molecular descriptors maintained in the 
target database. These vary considerably from one database to another; for example, 
many commonly used compound databases (National Cancer Institute  [10] ) include 
only chemical formulas in the form of SMILES strings  [12] , with no 3D structures. 
On the other hand, these same libraries may be offered by other vendors with 
atomic coordinates appended (Tripos version of NCI), and furthermore a number 
of fast tools are available to generate coordinates from SMILES strings (CORINA 
 [16] , CONCORD  [34] ), so this data can be added by the end user. Some databases 
include a range of molecular descriptors for each entry, such as log    P , molar refrac-
tivity, molecular weight, or custom topological descriptors (e.g., chemical fi nger-
prints  [35] ). Again, these descriptors, when missing, can sometimes be added by 
third - party tools (MOE  [36] , DayLight  [37] ). At the same time, whether these newly 
added atomic coordinates and/or descriptors can readily be used with available 
search software is a question that needs to be addressed at the outset; if a tool 
requires a proprietary database format, it is an open question as to whether any 
modifi cations can be introduced by the end user. An extreme case is found when 
the database is accessible only via a website maintained by a company or academic 
laboratory, and the raw data is inaccessible except through the supplied interface. 
The most attractive approach, rarely realized, is to maintain a fl exible database 
format and something akin to a relational database that can be used to construct 
arbitrary queries of the information held in the library. 

 Databases for use in similarity searching are diffi cult to procure or expensive to 
obtain  [3 – 8] . Recently, several have become available that are utilizable and rele-
vant to small molecule comparison  [9 – 11] . The research conducted at the University 
of the Sciences in Philadelphia aims to provide a readily searchable database to the 
global academic community (see Section  2.6.6 ).   

  2.6   DETECTING SIMILARITY WITH   IN SILICO  TECHNIQUES 

 There is a vast expanse of  in silico  techniques that  “ detect ”  similarity between small 
molecules, far too many to cover all in detail here due to space constraints. However, 



the aim is to give a fl avor of techniques that are in common use and applied in 
contemporary research. We begin with established techniques that are the least 
complex and require the least amount of input data and move through to more 
complicated data intensive methods and fi nally emerging technologies. 

  2.6.1    HQSAR  

 HQSAR (hologram quantitative structure – activity relationships) is a powerful 
approach that can claim important advantages over many of the traditional QSAR 
(quantitative structure – activity relationship) techniques we will describe later. This 
is especially true when little is known about the receptor target of interest. A key 
advantage of HQSAR is that it requires only 2D chemical structures combined with 
experimental binding data; there is no need to generate atomic coordinates or align-
ments of structures, as is required by some 3D methods like CoMFA (comparative 
molecular fi eld analysis, discussed in Section  2.6.5 ). At the same time, predictions 
from HQSAR can be combined with other methods to sometimes improve the 
overall accuracy of predicted activities. Models of high statistical quality and predic-
tive value can be rapidly and easily generated by HQSAR and can often be used 
in conjunction with chemical databases to select molecules with superior biological 
activity, providing the model is robust. HQSAR can be used to rapidly scan chemical 
libraries but is also useful with small datasets. 

 HQSAR requires a set of training molecules in order to construct predictive 
models. As with any machine learning algorithm, the reliability of the model gener-
ated is largely a function of the quality of the training set; it is imperative that the 
training molecules be well characterized, with a common binding site and accurate 
IC50  measurements. 

HQSAR Application  HQSAR is a rapid and inexpensive means to test com-
pounds using a computer algorithm. The computer  “ learns ”  from the input provided 
from real data derived from actual experiments and generates a model (Fig.  2.5a ). 
This model in turn serves as the basis for predicting the activity of compounds that 
have been proposed as new leads, or for scanning a chemical library for compounds 
likely to be active (Fig.  2.5b ). While we will describe the HQSAR methodology in 
more detail below, the basic idea is straightforward. It is usually true that a biologi-
cally active compound has three or four groups that are crucial to activity, and these 
are held at specifi c distances by a skeleton/backbone structure. HQSAR aims to 
identify these groups and to correlate the arrangement of these key components 
with activity.    

HQSAR: A Computational Perspective  To understand HQSAR, an appreciation 
of the computational algorithm is required, and for this we need to consider the 
underlying representation of the data. Linear notation (more specifi cally SLN) is 
utilized to represent molecules (Table  2.1 ),    [12, 13, 38] , but the molecule is fi nally 
represented as a fi ngerprint  [35] . The key importance of HQSAR fi ngerprint rep-
resentations (Fig.  2.6 ) is that fragments are generated based on the chemical struc-
ture of each compound and need not correspond to a predefi ned list of functional 
groups and structural components. This fl exibility leads to more robust database 
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    FIGURE 2.6     An example of a fi ngerprint and a hologram. The chemical structure has 35 
fragments. In the case of the hashed fi ngerprint, the representation is purely binary, whereas 
in the case of the hologram, the bins contain information about the number of fragments 
hashed into each bin and its contribution (positive, negative, or otherwise to biological 
activity). 
 

Fingerprint 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 
Hologram 0 0 2 5 0 9 0 0 0 1 3 8 7 0 0 0 Σ = 35 

screening  [37] , and more effective 2D and/or similarity searches, than a structural 
key approach  [39] . The package used  [14] , however, provides the capabilities of each 
approach.   

 Conventional QSARs can identify critical relationships between the proper-
ties — the geometric and the chemical characteristics of a molecular system of inter-
est. In QSAR, the measured bioactivity of a set of compounds is correlated with 
structural descriptors to determine trends and predict the bioactivity of related, 
untested compounds. HQSAR (like combined QSAR and CoMFA) works by iden-
tifying substructural features in sets of molecules that are relevant to biological 
activity. A key advantage of HQSAR is the relative simplicity of the required input, 
which in the training phase consists of chemical (2D) structures and their experi-
mental activity (i.e., relative binding affi nity, LD 50  or IC 50 ). 

 The underlying principle of HQSAR is simply stated: since the structure of the 
molecule is encoded within its 2D fi ngerprint and that structure is a key determinant 
of all molecular properties including biological activity, then it should be possible 

    FIGURE 2.5     Simplifi ed representation of HQSAR with a small molecule training and test 
set. The methodology behind HQSAR consists of ( a ) the training set of known molecules 
and ( b ) the predictions for theoretically designed molecules. The points at the very extremi-
ties of the shapes can be considered as active groups, and the overall shape as a molecular 
skeleton. When an HQSAR run is conducted, the molecules in the training set ( a ) defi ne 
whether particular groups contribute to or negate activity in the HQSAR model (in this case 
experimentally derived IC 50  values are used). Theoretical compounds incorporating varia-
tions in the component parts ( b ) are then tested with this HQSAR model. In many incidences 
results make sense ( lower center  and  lower right ) being between the IC 50  values of the two 
component parts. There are cases where the IC 50  can appear to be greater than the sum of 
the component parts ( lower left ), and in this case it is in a more favorable direction: 2   nM 
while previously the best molecule was 50   nM ( upper right ). 
 

a) Known bioactive molecules and associated IC50 values 

IC50 200nM IC50 5μM IC50 50nM 

b) HQSAR predictions for theoretical compound designs based on input data

IC50 2nM IC50 750nM IC50 500nM



to predict the activity of a molecule from its fi ngerprint, which implicitly encodes 
the structure. Molecular fi ngerprints (Fig.  2.6 ) are strings of 1 ’ s and 0 ’ s (binary) that 
indicate the presence or absence of a particular fragment (e.g., a carbonyl, hydroxyl, 
or halide). The fi ngerprint is therefore a shorthand list of the fragments present in 
a structure. A molecular hologram  extends this concept to incorporate both  branched
fragments  and  counts  of the fragments that are present. These additions are impor-
tant as the inclusion of branched fragments helps distinguish hybridization states, 
and the counting function differentiates between compounds with (for example) 
one, two, or more carbonyls. Thus, a hologram is a list of integers, not a bit string, 
and is therefore a fi ngerprint. In summary, a molecular hologram contains all pos-
sible molecular fragments within a molecule, including overlapping fragments, and 
maintains a count of the number of times each unique fragment occurs. This process 
of incorporating information about each fragment, and each of its constituent sub-
fragments, implicitly encodes 3D structural information. These fragments are 
arranged into (or hashed) a linear array of numbers (the hologram, Fig.  2.6 ). Note 
that the hashing algorithm guarantees that a particular fragment will always hash 
to the same numerical value but does not guarantee that different fragments will 
always have unique hash values. If different fragments, all important for determining 
biological activity, should hash to the same bin positions in the hologram, it will not 
be possible to distinguish their effects using a partial least squares analysis (or any 
other approach for that matter). This phenomenon is called fragment collision and 
results in poor models with little predictive validity. Using holograms of different 
lengths ( L ) can prevent fragments that are responsible for biological activity from 
being hashed to the same bin. 

 When the various lengths of holograms are chosen at even intervals, the chances 
of resolving bad collisions are reduced. For example, if fragment collisions occur 
with the length set at 400, these collisions will not be resolved at length 200 (nor 
100, 50, or 25 as these are all factors of 400). Since the 400 bin hologram is simply 
folded over to produce the 200 bin hologram, the colliding fragments will still end 
up in the same bin. For this reason, the default values for the hologram lengths are 
all prime numbers. This reduces the chances of seeing the same bad collisions at the 
various lengths. It is wise to use all available lengths so that the best model can be 
generated in a single HQSAR run. 

 Despite the fundamental simplicity of HQSAR, there are many options and 
much terminology connected with the application of the method, only a portion of 
which is described here. Each molecule in the training set is broken down into 
structural fragments whose size falls within a specifi ed range; here we will denote 
the lower limit for the number of atoms in a fragment as M , and the upper limit as 
N . The parameters  M  and  N  are user - defi ned (typically with  M  = 4 – 7 and  N  = 7 – 9), 
as is the length ( L ) of the molecular hologram into which the fragments are hashed. 
Given the length L  of the hologram, a fragment with a particular chemical structure 
always hashes to the same well - defi ned bin. However, the hashing function can be 
adjusted to ignore certain molecular features; for example, the user controls whether 
or not fragments with the same chemical structure but opposite chirality hash into 
the same or different hologram bins. 

 The calculation of a set of molecular holograms for a training set of structures 
yields a data matrix of dimension n ×  L , where  n  is the number of compounds in 
the dataset and L  is the length of the molecular hologram. The partial least squares 
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technique is then employed to generate a statistical model that relates the descriptor 
variables (occupancy numbers of the bins in the hologram) to an observable prop-
erty, for example, the biological activity expressed as − log   IC 50 . The selection of the 
hologram length leading to the  “ best ”  HQSAR is based on the PLS analysis that 
gives either the highest cross - validated  q2  or the lowest standard error associated 
with the cross - validation analysis. The predictive power of the model is determined 
by using statistical cross - validation, the default approach being the leave - one - out 
(LOO) method. 

 An important role of a QSAR model, besides predicting the activities of untested 
molecules, is to provide hints about what molecular fragments may be important 
contributors to activity. This information is of great value to the synthetic chemist. 
Such information can be combined with knowledge of the maximal common struc-
ture (MCS) between compounds to get ideas for the synthesis of new molecules 
that might lead to suitable drug candidates. Clearly, the HQSAR method, which 
focuses directly on elements of chemical structure (rather than derived properties 
such as dipole moment or hydrophobicity), is well suited to proposing changes in 
chemical structure that are likely to improve activity. 

 The contributions of individual atoms to activity can be assessed through their 
representation in the hologram hash bins and can be used to color code the atoms 
of each molecule. Atoms that contribute positively to activity are colored toward 
the blue end of the spectrum; atoms that contribute negatively are colored toward 
the red end, and atoms that do not signifi cantly affect activity (usually constitut-
ing the backbone or skeleton of the molecule) are colored white. 

 An important feature of HQSAR is the capability to recognize the maximal 
substructure common to the training compounds and to remove this substructure 
from consideration when constructing holograms. It is usually the case that a series 
of active molecules will share a signifi cant common framework, and the predictive 
power of the method is enhanced by excluding portions of the molecule that are 
shared across the training set, and thus cannot be correlated with activity. Using this 
maximum common substructure (MCS) feature also allows the user to exclude in 
a consistent way molecules that lie too far outside the predictive space of the model. 
Moreover, identifying the MCS allows the user to better rationalize the relationship 
between structure and activity, and provides a template for proposing new com-
pounds with activity that is likely to be accurately predicted by the HQSAR model. 
An MCS must contain at minimum seven connected atoms and is calculated purely 
by the molecules that constitute the training dataset; it is possible for good models 
to be derived without an MCS, but this is of less use when establishing and develop-
ing biological theories and of course for a centralized chemical synthesis route. 

 Once a HQSAR model has been calculated, the next step is to validate the model 
quality; the preferred method being the leave - one - out method (this is covered in 
detail in the next section). After model validation, proposed synthetics or other 
candidate theory molecules may be tested using the model. Often a search of chemi-
cal databases for molecules similar to those in the training set is conducted. Pre-
dictions of their activities, based on the model, are organized with the predicted 
activities in descending order. In a typical application, the database is fi rst pre-
screened using a fast measure of similarity, such as the Tanimoto index, with a user -
 selected value for the minimum similarity cutoff (the default threshold for this index 
is 0.85). The results of the Tanimoto screen, which is effectively a 2D similarity 



search, is carried out, and the hits found from the search are entered onto a spread-
sheet. The activities of the compounds are calculated from the HQSAR model. 
Compounds are sorted according to their predicted measured variable (usually 
IC50 ). These fi ndings can be presented in simple bar charts with test compound 
versus predicted variable. Using the Tanimoto coeffi cient is not absolutely essential, 
but can aid in reducing the size of larger databases. Frequently a database including 
only those molecules proposed by medicinal chemists is used. 

 Successful HQSAR requires a minimum of fi ve molecules in the training set, but 
preferably more than ten. These should be structurally different molecules, but with 
some similarity. The model should not be used to predict the activity of compounds 
that are structurally very different from those in the training set.  

HQSAR Example  Vacuolar ATPase is an ATP - dependent proton pump that is 
important in many biological processes by acidifying specialized cell compartments. 
Of particular interest is the implication of V - ATPase in bone resorption by osteo-
clasts. Excessive bone resorption by osteoclasts and failure of osteoblasts laying 
down new bone are indicative of osteoporosis. The structural defects that accumulate 
and weaken the bones are primarily due to demineralization of the bone (removal 
of Ca 2+  and PO 3− ). Approximately one in three postmenopausal women and one in 
twelve older men suffer from osteoporosis. Currently, treatment of osteoporosis is 
via two methods — bisphosphonates and selective estrogen receptor modulators, the 
latter not being the favored treatment for men. Current therapies are useful in two 
respects. First, the bisphosphonates rapidly increase bone mineral density by forming 
a dead end complex; hence, bone resorption is impaired. Second, estrogenic mole-
cules have the benefi cial effect of mimicking endogenous hormones promoting rem-
ineralization, but increase in bone density is poor compared to bisphosphonates. 
Estrogenics do offer a considerable advantage in that bone integrity is maintained, 
whereas with bisphosphonates microfractures tend to accumulate. To date, V - ATPase 
inhibitors are not suitable because of poor selectivity toward the osteoclast form of 
the enzyme and because of their more potent effect on kidney, liver, and neural 
forms. Structures and IC 50  data from literature sources incorporating medicinal 
chemistry to improve selectivity  [40 – 45]  were used to aid design of new V - ATPase 
inhibitors. The data was organized in a manner so HQSAR could specifi cally assess 
and augment compound activity against desired V - ATPase species (osteoclast), yet 
decrease activity against undesired V - ATPases (liver and kidney). HQSAR models 
with high predictive quality were produced and tested, and a selection of proposed 
compounds were synthesized and evaluated in silico . 

 All compounds from the source papers were entered into a SYBYL database 
and transferred to a spreadsheet manually and checked for absolute stereochemis-
try. While constructing HQSAR models is a straightforward process, producing a 
model that will be robust and have high predictive value requires care in the selec-
tion and processing of activity data. The quality of models is assessed using cross -
 validation . In this approach, subsets of the training data are selected at random, and 
removed. An HQSAR model is constructed using the observations that remain and 
is used to predict the activities of the points removed. There are different protocols 
for carrying out this procedure; in the  “ leave - one - out ”  technique, every element of 
the training set is removed, and its activity is predicted based on all the remaining 
observations. Whatever the protocol, the measure of the quality of the model is the 
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cross - validated  r 2  , denoted  q 2  , which measures the error when the points predicted 
are excluded when constructing the model. Cross - validation is critical not only for 
HQSAR but for any method that potentially uses a large number of descriptors, 
and where there is high probability of fi nding  “ random ”  variation in the attributes 
of the training molecules that will closely match any pattern of activity presented. 

 In the present case, the quality of the models (as measured by both  q 2   and stan-
dard error) was improved by two means: normalizing IC 50  data relative to one 
compound of the set, or predicting differences between activity against different 
targets to produce a selectivity index (e.g., activity against chicken osteoclast cOc 
minus activity measured using bovine chromaffi n granules bCG). An ideal set of 
compounds would contain IC 50  values that cover a wide range of activity (10 – 15 
orders of magnitude or more) and also a diverse collection of functional groups, 
so that the resulting model is valid over a large chemical space. In particular, com-
pounds that include large, complex groups (e.g., an Fmoc group, see Compound 4 
in  [40] ) will be poorly predicted if underrepresented in the training set. 

 With the goal of the study to create, detect, and evaluate new compounds selec-
tive for osteoclast V - ATPase inhibition, some HQSAR results (Figs.  2.7 – 2.9 ) illus-
trate a few the best models produced. These were measured by achieving a 
cross - validated  q 2    >  0.5 and a standard deviation  <  1 between the training dataset 
(experimentally derived measured variable) and the predicted dataset (HQSAR 
model - derived measured variable) (Table  2.2 ). Within the fi gures the  y  - axis scale 
was calculated relative to bafi lomycin A 1 ; in essence, this compound serves as a ref-
erence value for the HQSAR algorithm, to which all other compounds were com-
pared (i.e., bafi lomycin has an inhibitory selective index of 1 for chicken osteoclast 

    FIGURE 2.7     Selection of HQSAR results I. Actual data ( light gray bars ) log   IC 50  cOc  −  
log   IC 50  bCG of a compound measured relative to bafi lomycin A 1  V - ATPase phosphate assay 
from original data    [40, 44] , versus predicted log   IC 50  according to HQSAR ( dark gray bars )  , 
versus the cross - validated HQSAR prediction ( white bars ). The graph is sorted in decreasing 
order of the cross - validated prediction relative to bafi lomycin A 1  specifi city. The graph sug-
gests a strong correlation between the actual measured values of cOc/bCG selectivity and 
the predicted values (small difference between actual and predicted data). Hence, the model 
is likely to be of strong predictive value. To summarize, any compound left of bafi lomycin A 1  
( Baf1 ) has an increased specifi city for cOc; any compound to the right has a decreased speci-
fi city for cOc. 
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    FIGURE 2.8     Selection of HQSAR results II. Actual data ( light gray bars ) log   IC 50  hK of a 
compound measured relative to bafi lomycin A 1  V - ATPase phosphate assay ( BafA1 ) from 
original data    [41, 44] , versus predicted according to HQSAR ( dark gray bars ), versus the 
cross - validated HQSAR prediction ( white bars ). The graph is sorted in decreasing order of 
the cross - validated prediction and has a relatively strong predictive power. This data could 
provide a reasonable model for predicting the action of potential lead compounds against 
hK toxicity. 
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    FIGURE 2.9     Selection of HQSAR results III. Actual data ( light gray bars ) log   IC 50  hOc of 
a compound measured relative to bafi lomycin A 1  V - ATPase phosphate assay ( BafA1 ) from 
original data  [41] , versus predicted according to HQSAR ( dark gray bars ), versus the cross -
 validated HQSAR prediction ( white bars ). Despite the small size of this group, the HQSAR 
model was of high quality and may provide an indication of the activity of the potential lead 
compounds on hOc. 
 

2.00

1.50

1.00

0.50

0.00

–0.50

–1.00

–1.50

–2.00

–2.50

–3.00

–3.50

–4.00

–4.50

–5.00

–5.50

Compound

Lo
g[

IC
50

] R
el

B
af

A
1 

hO
c

hOc HQSAR Model ABCH

ConA BafA1 SALa Lof Oxil Loa Loc Loe Lod Lob Oxill



 T
A

B
L

E
 2

.2
    H

Q
SA

R
 M

od
el

sa
 a

 P
ar

am
et

er
 

 M
od

el
 

 A
pF

 
  q2   

 ST
D

_E
R

R
 

 C
V

ST
D

_E
R

R
 

 L
en

gt
h 

 C
om

po
ne

nt
s 

 M
C

S 
 P

re
d -

  r2

 hO
c 

 A
B

C
 

 4 
to

 7
 

 0.
67

2 
 0.

38
4 

 0.
43

7 
 40

1 
 1 

 N
 

 D
2S

 
 hO

c 
 A

B
C

H
 

 4 
to

 7
 

 0.
70

8 
 0.

36
5 

 0.
41

2 
 40

1 
 1 

 N
 

 D
2S

 
 hO

c 
 A

C
D

o 
 4 

to
 7

 
 0.

60
6 

 0.
41

3 
 0.

47
8 

 40
1 

 1 
 N

 
 D

2S
 

 hO
c 

 A
C

H
D

o 
 4 

to
 7

 
 0.

64
5 

 0.
39

5 
 0.

45
4 

 40
1 

 1 
 N

 
 D

2S
 

 hK
 

 A
B

C
 

 4 
to

 7
 

 0.
85

7 
 0.

51
6 

 0.
68

1 
 19

9 
 2 

 N
 

 D
2S

 
 hK

 
 A

B
C

H
 

 4 
to

 7
 

 0.
83

1 
 0.

47
2 

 0.
76

6 
 97

 
 3 

 N
 

 D
2S

 
 hK

 
 A

C
D

o 
 4 

to
 7

 
 0.

89
0 

 0.
46

9 
 0.

59
8 

 61
 

 2 
 N

 
 D

2S
 

 hK
 

 A
C

H
D

o 
 4 

to
 7

 
 0.

96
8 

 0.
18

9 
 0.

29
5 

 59
 

 3 
 N

 
 D

2S
 

 cO
c/

bC
G

 
 A

B
C

 
 5 

to
 8

 
 0.

81
9 

 0.
14

8 
 0.

27
9 

 59
 

 5 
 N

 
 0.

73
71

 
 cO

c/
bC

G
 

 A
B

C
H

 
 5 

to
 8

 
 0.

76
6 

 0.
13

0 
 0.

32
3 

 83
 

 6 
 N

 
 0.

81
09

 
 cO

c/
bC

G
 

 A
B

C
C

h 
 5 

to
 8

 
 0.

81
7 

 0.
12

4 
 0.

28
6 

 97
 

 6 
 N

 
 0.

82
19

 
 cO

c/
bC

G
 

 A
B

C
H

C
h 

 5 
to

 8
 

 0.
71

9 
 0.

11
5 

 0.
35

5 
 35

3 
 6 

 N
 

 0.
82

04
 

 cO
c/

bC
G

 
 A

C
C

hD
o 

 5 
to

 8
 

 0.
77

5 
 0.

12
1 

 0.
31

1 
 83

 
 5 

 N
 

 0.
88

29
 

 cO
c/

bC
G

 
 A

C
D

o 
 5 

to
 8

 
 0.

76
6 

 0.
15

8 
 0.

31
7 

 97
 

 5 
 N

 
 0.

83
35

 
 cO

c 
 A

B
C

 
 5 

to
 8

 
 0.

41
3 

 0.
57

2 
 0.

90
4 

 53
 

 5 
 N

 
 D

2S
 

 cO
c 

 A
B

C
C

h 
 5 

to
 8

 
 0.

44
9 

 0.
37

0 
 0.

89
0 

 19
9 

 6 
 N

 
 D

2S
 

 cO
c 

 A
C

C
hD

o 
 5 

to
 8

 
 0.

49
0 

 0.
38

1 
 0.

85
7 

 35
3 

 6 
 N

 
 0.

35
72

 
 cO

c 
 A

C
D

o 
 5 

to
 8

 
 0.

46
1 

 0.
45

2 
 0.

88
1 

 61
 

 6 
 N

 
 D

2S
 

 bC
G

 
 A

B
C

 
 4 

to
 7

 
 0.

57
7 

 0.
63

4 
 0.

89
5 

 59
 

 5 
 N

 
 D

2S
 

 bC
G

 
 A

B
C

H
 

 4 
to

 7
 

 0.
52

5 
 0.

65
0 

 0.
94

8 
 40

1 
 5 

 N
 

 D
2S

 
 bC

G
 

 A
B

C
C

h 
 4 

to
 7

 
 0.

58
9 

 0.
56

3 
 0.

88
2 

 19
9 

 5 
 N

 
 0.

31
11

 
 bC

G
 

 A
C

C
hD

o 
 4 

to
 7

 
 0.

63
3 

 0.
36

0 
 0.

84
9 

 25
7 

 6 
 N

 
 0.

56
15

 
 bC

G
 

 A
C

D
o 

 5 
to

 8
 

 0.
56

8 
 0.

51
3 

 0.
92

1 
 30

7 
 6 

 N
 

 D
2S

 

a  T
he

 H
Q

SA
R

 m
od

el
 a

cc
ur

ac
y 

w
as

 a
ss

es
se

d 
by

 li
ne

ar
 r

eg
re

ss
io

n.
 T

he
 p

re
di

ct
iv

e 
po

w
er

 o
f t

he
 H

Q
SA

R
 m

od
el

 w
as

 c
al

cu
la

te
d 

fo
r 

ea
ch

 c
om

po
un

d 
da

ta
se

t (
P

re
d -

  r2  ),
 

w
he

re
 s

om
e 

co
m

po
un

ds
 w

er
e 

om
it

te
d 

in
 t

he
 H

Q
SA

R
 m

od
el

 c
on

st
ru

ct
io

n.
 D

2S
 =

 D
at

as
et

 t
oo

 S
m

al
l f

or
 H

Q
SA

R
 m

od
el

 v
al

id
at

io
n.

 A
n

r2    >
  0

.3
5 –

 0.
4 

is
 g

oo
d,

 w
it

h 
a 

va
lu

e 
of

 1
.0

 b
ei

ng
 p

er
fe

ct
. T

he
 P

ar
am

et
er

 c
ol

um
n 

is
 t

he
 d

at
as

et
 u

se
d 

an
d 

co
ns

ti
tu

te
s 

th
e 

de
pe

nd
en

t 
va

ri
ab

le
 (

i.e
., 

IC
 50

  r
el

at
iv

e 
to

 b
afi

 lo
m

yc
in

 A
 1 )

, t
he

 M
od

el
 

co
lu

m
n 

sp
ec

ifi 
es

 t
he

 fl
 a

gs
 u

se
d.

 T
he

 A
to

m
s 

pe
r 

F
ra

gm
en

t 
(A

pF
) 

co
lu

m
n 

in
di

ca
te

s 
th

e 
op

ti
m

um
 n

um
be

r 
of

 a
to

m
s 

pe
r 

fr
ag

m
en

t 
to

 g
en

er
at

e 
th

e 
be

st
  q

2   v
al

ue
. 

ST
D

_E
R

R
 =

 S
ta

nd
ar

d 
E

rr
or

, a
nd

 C
V

ST
D

_E
R

R
 =

 C
ro

ss
 - V

al
id

at
ed

 S
ta

nd
ar

d 
E

rr
or

. L
en

gt
h 

is
 th

e 
op

ti
m

al
 h

ol
og

ra
ph

ic
 le

ng
th

; i
n 

ea
ch

 c
as

e 
al

l a
va

ila
bl

e 
ho

lo
gr

am
 

le
ng

th
s 

w
er

e 
us

ed
 (

53
, 5

9,
 6

1,
 7

1,
 8

3,
 9

7,
 1

51
, 1

99
, 2

57
, 3

07
, 3

53
, 4

01
).

 C
om

po
ne

nt
s 

ar
e 

th
e 

fr
ag

m
en

ts
 t

ha
t 

w
er

e 
ca

lc
ul

at
ed

 t
o 

be
 p

ot
en

ti
al

ly
 o

f 
gr

ea
te

st
 in

te
re

st
 t

o 
m

od
ul

at
e 

ac
ti

vi
ty

 o
f 

th
e 

lig
an

d 
(t

he
 l

ar
ge

r 
th

e 
nu

m
be

r,
 t

he
 b

et
te

r 
an

d 
m

or
e 

in
fo

rm
at

iv
e 

th
e 

m
od

el
).

 T
he

 m
ax

im
al

 c
om

m
on

 s
tr

uc
tu

re
 (

M
C

S)
 w

as
 o

nl
y 

ef
fe

ct
iv

e 
w

he
n 

co
m

pa
ri

ng
 t

he
 p

le
co

m
ac

ro
lid

es
.   

64



over bovine chromaffi n granules). The cOc versus bCG compares the selectivity 
ratio of bafi lomycin A 1  against the two biological targets (computed as the differ-
ence of log 10  values), and then subtraction of the result from itself. The value is 0 
because

    bafilomycin A selectivity (on cOc/bCG) bafilomycin A  
selectiv

1 −
iity (on cOc/bCG) 0=

1  

For compounds with greater selectivity toward cOc, the value will be  > 0 ( positive ) 
and those with less selectivity to cOc, the value will be  < 0 ( negative ).         

 The data (Fig.  2.7 ) classically demonstrates a good quality HQSAR model (rela-
tive to bafi lomycin A 1 ); Indole 3 ( I3 ) was the most selective experimentally derived 
compound for cOc versus bCG (38 - fold). The predicted value from the HQSAR 
model also indicated  I3  as the most selective because it had the greatest magnitude. 
Likewise, the most nonselective compound for cOc over bCG was concanamycin 
derivative 4 ( 4 ), which had correspondingly the greatest negative magnitude. The 
cross - validated values indicate the predicted actvity of omitted compounds and can 
improve the quality of the model (by making  q  2  closer to 1, and standard deviation 
closer to 0), but in these results the cross - validation impaired the quality. The quality 
of HQSAR models can be assessed directly by leaving out bioactive molecules that 
have known IC 50  data. It is advisable to select molecules over the majority of the 
measured data range to ensure a fair test. An HQSAR model is constructed as usual 
with these selected molecules omitted from the training set. The HQSAR model 
was then used to evaluate the predicted IC 50  of these omitted molecules. Plotting 
the known IC 50  versus the predicted IC 50  values should produce a graph of  y = x , 
with an ideal graph having the points plotted close to the  y = x  line. Applying linear 
regression evaluates the quality of the predicted activities against their known 
values and hence is a direct measure of the quality of an HQSAR model(s). A linear 
regression score ( r  2 ) close to 1 is ideal with 0 being the worst possible model. If the 
predicted  r  2  value is close to 1, it adds confi dence to the HQSAR model (Table  2.2 ), 
although datasets can be too small to apply such a technique and one must rely on 
the HQSAR model alone (Fig.  2.10 ). When evaluating proposed new chemical 
inhibitors (Figs.  2.11 – 2.13 ), researchers prefer a predictive  r  2  value of around 0.35 –
 0.40 (or greater) when considering candidates for chemical synthesis or chemical 
modifi cation.         

 HQSAR has been used for investigations into several other ligand classes  [46 –
 52] , but while computational output is exciting and valid, links with  wet  experiments 
and subsequent success are pressing issues and hence such techniques often evade 
academic interest.   

  2.6.2    QSAR  

 In the last ten years, QSAR has become an important tool that is used by nearly 
every pharmaceutical, agrochemical, and biotechnology company to increase the 
effi ciency of lead discovery. The value of the QSAR approach is that it may be used 
either in the absence of detailed receptor site knowledge (i.e., binding site structural 
information) or in conjunction with such information if it is available. A QSAR 
model is a multivariate mathematical relationship between a set of physicochemical 
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    FIGURE 2.10     Two small molecules that at fi rst glance look very different ( a  and  b ). When 
superimposed ( c ), the fused ring structure of the second molecule ( b ) does not appear too 
different from the nonfused ring structure ( a ). Only by careful alignment by eye can overlaps 
such as these be accomplished. Slowly, computers are improving in performing these tasks. 
 

c) 

b) 
a) 

    FIGURE 2.11     Application of HQSAR model predictions for  in silico  ligand database 
assessment I. Evaluation of the database of proposed synthetic ligands for selective action 
on cOc over bCG V - ATPase. Database compounds of signifi cant interest lie to the left of the 
graph.    

2.50

1.50

0.50

–0.50

–1.50

–2.50

–3.50

–4.50

–5.50

Compound

Lo
g[

IC
50

] c
O

c 
vs

 b
C

G
 (

R
el

 B
af

A
1)

 P
re

di
ct

io
n

Prediction of Synthetic Ligand Activity on cOc vs bCG ABCH

L5
L2

C
L2

B
L2

A L4
5B

T
5C

T
5B

T
5A

T
5C

T L1
5F

T
1B

T
4B

T
1A

T
1C

T
1D

T
4C

T
2F

T
3B

T
3A

T
3C

T
1F

T
4F

T L3
5G

T
3F

T
2G

T
5E

T
5D

T
2E

T
2D

T
1G

T
4G

T
3G

T
1E

T
4E

T
4D

T
3E

T
3D

T 3



    FIGURE 2.12     Application of HQSAR model predictions for  in silico  ligand database 
assessment II. Evaluation of the database of proposed synthetic ligands sorted by IC 50  for 
hK V - ATPase phosphate assay. Database compounds of signifi cant interest lie to the right of 
the graph.   
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    FIGURE 2.13     Application of HQSAR model predictions for  in silico  ligand database 
assessment III. Evaluation of the database of proposed synthetic ligands sorted by IC 50  for 
hOc V - ATPase phosphate assay. Database compounds of signifi cant interest lie to the left of 
the graph. 
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properties ( descriptors ) and a property of the system being studied, such as the 
biological activity, solubility, or mechanical behavior. QSARs correlate with coge-
neric series of compounds, affi nities of ligands to their binding sites, inhibition con-
stants, rate constants, and other biological activities, either with certain structural 
features (e.g., Free Wilson analysis) or with atomic, group, or molecular properties, 
such as lipophilicity, polarizability, and electronic and steric properties (e.g., Hansch 
analysis). QSAR models have proved to be reliable tools for speeding up lead dis-
covery  [53 – 55]  and have had an important place in molecular informatics through-
out the world for at least two decades. 

 QSAR, like HQSAR, is based on measuring molecular similarity, but in the case 
of  “ classical ”  QSAR that similarity is based on characteristics, such as charge dis-
tribution and hydrophobicity, that derive from but are clearly secondary to molecu-
lar structure. While it is possible to rely exclusively on descriptors derived from 
experimental data, it is often the case that the molecular descriptors used in a QSAR 
study are directly computed from chemical structure; for example, a number of 
accurate algorithms are available to estimate log P  from molecular structure  [56] , 
and likewise the electrostatic properties of molecules can be calculated using ab
initio  quantum chemical methods  [57 – 62] . So, even if molecular structure is not 
immediately related to function by a QSAR model, it lies close in the background 
of these studies. In fact, this has become increasingly the case as the chemical librar-
ies being used have increased in size, and it has become less likely that experimental 
data will be uniformly available for all the compounds being considered. 

 The elements of a QSAR model are the training data, consisting of selected 
physicochemical properties, a method for generating a predictive regression model 
from the training data, and a set of validation data (which are usually removed from 
the initial training set at the beginning). A variety of mathematical techniques are 
available to generate predictive models, which map a set of values for the molecular 
descriptors to a predicted activity. The simplest is classical multivariate linear regres-
sion, but this approach becomes less satisfactory as the number of descriptors 
increases, and it becomes likely that some of the descriptors will be highly corre-
lated. More satisfactory approaches include principal components analysis (PCA) 
 [63]  and partial least squares (PLS)  [64] , which despite some differences in mathe-
matical approach have the same function of automatically generating  “ aggregate ”  
variables that are linear combinations of descriptors and building regression models 
based on these. Models constructed using PCA or PLS are less complex and more 
robust than those based on straightforward regression. They provide the added 
benefi t of highlighting just those descriptors that are important for explaining the 
activity to be predicted, and effectively dropping those that are uncorrelated with 
the activity to be explained. Cross - validation is critical, especially when many 
descriptors are in use, and is performed just as was described in the context of 
HQSAR (Section  2.6.1 ). 

 The goal of QSAR is to derive a function that relates to biological activity with 
some parameter(s) describing a feature of the molecule. Analyzing the correlation 
between biological activity and molecular parameters for a series of molecules that 
have already been tested forms the QSAR relationship. The concept is based on the 
assumption that the difference in the physical and chemical properties of molecules, 
whether experimentally measured or computed, accounts for the difference in their 
observed biological or chemical properties. Thus, in general, the QSAR method 



deals with identifying and describing important structural features of molecules that 
are relevant to explaining variations in biological or chemical properties. The QSAR 
indicates the descriptors that are most statistically signifi cant in determining the 
property, and studies can be focused on the molecular characteristics that those 
descriptors represent. QSARs thus help to make maximum use of data, whether 
that data is from experiment, simulation, or a database search. 

 QSAR is often carried out in the context of a  congeneric series , a collection of 
molecules that share a common framework, but with signifi cant variation of attached 
functional groups. Such a series comprises  “ variations on a theme, ”  and it is this 
scenario that is most likely to lead to a robust, useful predictive model. While this 
might be seen as a drawback for classical QSAR, in that only molecules of a speci-
fi ed class are considered, the approach is very much compatible with most drug 
design methodologies where one begins with a framework that is amenable to 
variation using well - understood synthetic routes. The goal in this case is to develop 
a QSAR that rationalizes changes in activity with respect to structure, and to use 
this as a guide in proposing additional modifi cations that will further improve 
activity.

 The  “ series ”  (a library of molecules with a shared characteristic) will consist of 
a common molecular framework with variance only in physicochemical descriptors 
such as hydrophobic constants, electronic parameters, or individual atoms. These 
physicochemical adaptations explain why individual molecules in a series have dif-
ferent biological activities. Relationships between activity and physicochemical 
characteristics can then be postulated, and the postulated relationship can be tested 
by generation of new compounds with predicted properties. The methods used to 
establish the equation that best describes the relationship between the property and 
the descriptors include regression techniques, PCA, and genetic algorithms. The 
expressed QSAR takes the form of either a search query or a predictive model, 
which can then be used to select new molecules with the specifi ed activity from a 
database, or to predict the activity of individual molecules of interest. QSAR thus 
provides invaluable knowledge of which interactions are important to activity. This 
understanding provides the basis to formulate new active compounds that possess 
better overall therapeutic profi les, for example, compounds with increased function-
ality or that are more orally active. In fact, any biological or chemical activity that 
can be measured or derived from measurements can potentially be used as input 
for QSAR. 

 It should also be remembered that  in vitro  activity data only produce a QSAR 
that selects molecules that satisfy the tested biological assay , and do not necessarily 
indicate in vivo  activity. The quality of the assay is therefore important. It has 
become increasingly important to conduct QSAR using more than one measured 
activity variable, such as adding a bioavailability measure to the activity data. The 
addition of in vivo  data is diffi cult, as often many variables may exist that affect 
activity (primarily metabolism and excretion that are not tailored for), but this 
should be considered as an important development of QSAR.  

  2.6.3   Superimposition 

 One of the most compelling similarity techniques is not automated, can be time 
consuming, but is always done to get the point across clearly and effectively to a 
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reader or critic. Usually after several techniques have been employed to narrow 
down the best matches to a particular query molecule, potential candidates can be 
compared for similarity by 2D superimposition. The coordinates of one molecule 
(the query) is taken and mapped onto another molecule (the candidate) to assess 
how similar the two molecules are. However, the drawback is that so far only we 
humans can deduce where to appropriately overlay them (Fig.  2.10 ). Therefore, it is 
hard to implement superimposition until there is a short list of molecules: a list of 
thousands is not appropriate for evaluation by this method. Ultimately, this tech-
nique convinces medicinal chemists that the candidate molecule is indeed similar 
to another, and they will commence synthesis (providing there are not too many 
chiral centers, E/Z  isomers, or complex heterocyclic ring structures).  

  2.6.4   Program Suites 

 UNITY is a program suite offered by Tripos    [14] , which contains a combination of 
techniques and methods to represent small molecules and identify potential mole-
cules for biological trials via similarity. Another such suite available for purchase is 
CATALYST  [65]  offered by the commercial vendor Accelrys  [66] . 

Identifying Molecules Via Behavioral Similarities     The principles governing the 
biological activity of many chemical entities used as drugs are usually due to par-
ticular groups and core structure within the molecule. These physicochemical 
descriptors are usually unique to a particular class of molecule. For instance, a 
hydrogen bond donor (or acceptor) could interact favorably with the biological 
target and be crucial for activity; often coordinated water molecules are critical in 
such cases (e.g., estrogens 1ERR  [67] ). Maximizing contact between the molecule 
and the target via van der Waals interactions is the driving force for ligand binding 
(i.e., a good fi t), releasing water used in solvation and increasing the entropy of the 
system. To employ UNITY, the user needs strong biological understanding of the 
active ligands known and, if possible, should have an available protein structure. 

 Before searching large databases, it is imperative to design a robust representa-
tion of the parts of the molecule responsible for the drug class activity. This simpli-
fi ed representation is called a  pharmacophore ; it incorporates the features of as 
many drugs within the class as possible (deemed crucial for activity). If the design 
is of good quality, the pharmacophore will return the molecules known to be active 
and thus validate itself. Once the pharmacophore is designed suitably and holds well 
by returning other molecules within the drug class, the next step can be taken. 

 Large databases of molecules are available at cost and also without charge 
(Section  2.5.2 ) and are an excellent resource to fi nd if there are compounds already 
similar to the pharmacophore. The goal is to fi nd subtly different molecules that 
contain the groups and structural features essential for activity. Even if the molecule 
is not ideal, it may be available and amenable to medicinal chemistry. 

 In UNITY the procured molecular databases must be processed into a recogniz-
able format for use by the program and often requires expertise. One must be 
exceptionally careful when building the database and when relying on prepared 
databases that the compounds are indeed represented correctly. CORINA  [16]  and 
STERGEN  [17]  are among the best tools for this particular job, but naming com-
pounds uniquely is the most imperative and diffi cult task to accomplish. On con-



struction of UNITY databases, unique names for each molecule are responsible 
for most of the observed errors reported back. There are more sinister examples 
of errors such as the interpretation of molecules by SYBYL itself. One needs 
to be very vigilant with molecules having double bonds and conjugated aromatic 
and cyclized compounds. It is often the case that subtle changes can occur and 
the user is oblivious to these mistakes. A particularly good example is Raloxifene 
from the WDI database being interpreted incorrectly. Many PDB fi les contain mis-
takes and can also be interpreted incorrectly. When the database in constructed, it 
is important to note that 2D fi ngerprints and 2D macroscreens can be included in 
the database build. Often incorporating this into the UNITY database design 
increases the build time dramatically; but on the upside, all the searches will be 
considerably faster and nonmatching molecules are rapidly evaluated in a prescreen 
fi rst. 

 These shortcomings aside, UNITY is still a powerful and reproducible means to 
search for similar molecules with many extra features, including the possibility of 
using key amino acids interacting with the ligand for structure - based drug design. 
What is sadly lacking is a score of how well the hits from the database fi t the phar-
macophore to describe the quality of the hit itself. This is rectifi ed using an inbuilt 
feature to obtain Tanimoto coeffi cients for the returned hits: pitching these mole-
cules against the best known drug molecules and implementing a cutoff to 
similarity.

Designing New ACE Inhibitors  Angiotensin converting enzyme (ACE) inhibitors 
are an excellent means to demonstrate pharmacophore design, not to mention their 
signifi cant economic and medicinal importance. Heart disease affects approximately 
65+ million Americans. The costs incurred via healthcare bills, lost revenue, and sick 
days are a serious nationwide medical and fi nancial concern. The prime contributor 
to heart disease is hypertension (high blood pressure); 95% of cases are diagnosed 
as  “ essential hypertension. ”  Blood pressure higher than 140/90   mmHg is considered 
seriously hyper tensive and requires treatment. 

 ACE inhibitors work by preventing the fi nal cleavage step of the rennin – 
angiotensin system; at this step angiotensin I is converted to angiotensin II by the 
enzyme ACE. Angiotensin II is the most potent endogenous vasoconstrictor known 
and increases peripheral reistance to blood fl ow by reducing the bore of arterioles. 
Inhibition of ACE would logically follow with a reduction in blood pressure and 
reduce the strain on the heart and circulatory system. 

 Recently, the crystal structure of lisinopril (Zestril by AstraZeneca) has been 
solved (PDB fi le   1O86)  [68]  and is considerably useful since potential molecules 
can be evaluated via docking into the active site of the receptor. Several ACE inhibi-
tors combined with known IC 50  data are available  [69] , as are pharmacophore 
designs  [70, 71] . To highlight the use of such information and data, we demonstrate 
how UNITY can be used by incorporating pharmacophore designs for database 
screening. Our example is somewhat simpler than that presented in the literature 
for clarity and ease of understanding. 

 The pharmacophore designed is more simplistic but serves an important purpose 
in orienting the mind to appreciate that pharmacophores do not need to be overly 
complex to be effective. As each feature is added and the pharmacophore is built 
up, it adds further complexity to the screening process, unlike a macroscreen or 
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fi ngerprint comparison that is rapid; a spatial or distance constraint between atoms 
requires a lot more computational time. Hence, a pharmacophore with one defi ned 
feature is a 1 - point pharmacophore and can be identifi ed very rapidly. Two defi ned 
features constitute a 2 - point pharmacophore, and so on; typically, a pharmacophore 
has between 4 and 6 points, with some being very complex indeed  [71] . As more 
points are added, the complexity of the calculations increases exponentially, so when 
screening, simple pharmacophores followed by a more complex one will save time 
in investigations. To screen a library of approximately 6 million molecules, it took 
approximately two weeks (in computer time) to create and screen the UNITY 
databases with incorporation of 2D macroscreens via fi ngerprints. This was six 
weeks in real time to manipulate and screen and modify the residual hit list data. 
Figure  2.14  shows the simple pharmacophore used incorporating the fragments 
conserved between all the ACE inhibitors  [69] , the three - carbon chain, and nitrogen 
in the fi ve - membered ring. The features of this 2 - point pharmacophore (Fig.  2.14a ) 
were rapidly identifi ed by the 2D Macro function and the matches were easily rec-
ognized by 1D comparisons. The 3 - point pharmacophore (Fig.  2.14b ), however, 
includes distance and spatial constraints, consequently requiring a lot more compu-
tational time. Thus, in screening a large library one would almost certainly conduct 
the search using the 2 - point pharmacophore followed by the second. When testing 
the pharmacophores sequentially, all but one of the 23 known ACE inhibitors were 
returned, thus validating the pharmacophore design. The pharmacophores were 
used to screen an NCI database containing all possible stereoisomers of each entry 
and the residual dataset was organized using the Tanimoto coeffi cient. The top 4000 

    FIGURE 2.14     Three pharmacophores were used in a similarity search: ( a ) 2 points + distant 
constraint, ( b ) 3 points + distant constraint, ( c ) fragment - based pharmacophore with four 
hydrogens and 3 carbons (large box) and one nitrogen (small box); ( d ) what the computer 
sees for ( b ). 
 

b)a) 

d) 

c) 



hits against lisinopril were docked into the PDB fi le 1O86 with the GOLD algorithm 
 [72] . A comprehensive study of this investigation is currently under way.  

UNITY Summary  UNITY demonstrates that robust design of a molecular tem-
plate as a pharmacophore can prove insightful for identifying similar molecules. 
Although investment is required in software and expertise, it is not a particularly 
diffi cult technique to become adept with. Probably the biggest concern is mainte-
nance and networking issues requiring specialized staff capable of system adminis-
tration. This example merely scratches the surface of what UNITY can do: it is most 
relevant in identifying similar molecules.   

  2.6.5   Comparative Molecular Field Analysis ( C  o  MFA ) and Related Approaches 

 Comparative molecular fi eld analysis (CoMFA)  [73, 74] , a proprietary method 
developed and marketed by Tripos, Inc.  [14] , is one of the most popular approaches  
to constructing quantitative models that link structure and activity  [75 – 78] . Unlike 
conventional QSAR approaches, which use descriptors that describe the entire 
molecule (dipole moment, log P , topological indices, etc.), CoMFA is a 3D method 
that correlates a measured activity (e.g., log IC 50 ) with variations in electrostatic and 
steric properties for an aligned series of molecules. Since CoMFA identifi es regions 
of the aligned structures that are important for determining activity, it allows the 
synthetic chemist to focus on sites of an exisiting molecular framework where varia-
tions are likely to be most productive. In favorable circumstances, a CoMFA can be 
thought of as an inverse model of the target receptor, since positive variations in 
activity require changes in the steric and electrostatic properties of the ligand that 
are compatible with (complementary to) those of the host receptor site. A CoMFA 
model can be generated to rationalize the activities of a series of ligands already 
characterized, and can then be used in predictive mode to estimate the activities of 
new molecules being proposed. CoMFA is one of a number of techniques that 
implicitly measure molecular shape by superimposing a regular grid on a collection 
of molecules. 

 The prerequisite for CoMFA is an aligned training set of ligands with known 
activities. This condition is most easily met by a congeneric series, since the shared 
molecular scaffold provides an immediate means to align the members of the set. 
In situations where a common framework is not available, CoMFA still requires 
that the molecules being analyzed can be superimposed in a meaningful way. One 
approach to this is molecular fi eld - fi t , where each molecule is positioned on a grid 
so as to maximize overlap with a preexisting set of fi eld values (steric or electro-
static) computed on the grid vertices  [79] . This approach can be used to construct 
a progressive alignment, where one or more seed molecules are used to generate a 
fi eld on the grid, and successive molecules are aligned to the existing grid. As mol-
ecules are added to the alignment, their fi elds can be added to the vertices, poten-
tially reinforcing the alignment fi eld. Other methods that rely on a molecular fi eld 
representation to carry out alignment include SEAL  [80] , FLUFF  [81] , and FIGO 
 [82]  (which combines a minimization procedure with 3D descriptors generated by 
the program GRID  [83] ). 

 A simple and effective approach for collections of structurally dissimilar mole-
cules is to align them using their principal moments of inertia  [84]  — a procedure 
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that aligns molecules based on their distributions of mass. Yet another approach, 
applicable when a structure is available for the target protein receptor, is to dock 
the molecules into the common receptor site, thus aligning them  [85 – 87] . At fi rst 
this might seem an ideal approach, since the molecules will be aligned with biologi-
cally relevant conformations; however, owing to inevitable perturbations in the 
conformations and positions of the docked ligands, even when the molecules exhibit 
very similar docking modes, this procedure tends to produce CoMFA models that 
are inferior to those generated using a receptor - free alignment  [88] ; but on occasion 
improvements are evident  [89] . 

 Once an alignment has been constructed using an appropriate set of training 
molecules, the next step is to embed the aligned set in a cubical grid and to 
compute the interactions of a probe atom with the aligned molecules. The 
default probe is a carbon atom (with van der Waals parameters appropriate 
for a tetrahedral carbon) with a charge of +1. The probe is positioned at each 
vertex of the grid, and its steric (van der Waals 6 – 12) and electrostatic (Coulomb ’ s 
law) interactions are computed separately with each of the molecules in the 
alignment. (It should be pointed out that the choice of probe is fl exible, and 
a number of novel modifi cations have been introduced, including probes 
that measure hydrophobicity through the HINT potential  [90 – 92] , and use of an 
orientable water molecule as a probe, to measure local hydrogen - bonding 
potential  [93] .) The grid spacing is an important parameter in determining the 
performance of the resulting CoMFA model, and there is also some infl uence 
due to the position and orientation of the aligned molecules with respect to the 
grid. The importance of these factors can be evaluated by adjusting the grid spacing 
as well as the orientation of the aligned molecules. In addition, a grid  “ focusing ”  
procedure is available, which can be used to automatically refi ne the grid by identi-
fying those grid vertices on which changes in potential are highly correlated with 
activity    [73, 74, 94] ; those portions of the grid most important for creating a robust 
predictive model can then be refi ned by subdivision, effectively increasing the 
density of vertices in the regions of the alignment with greatest predictive 
importance.

 The fi nal step in the construction of a CoMFA model is the application of partial 
least squares (PLS) regression, a method already discussed, to generate a quantita-
tive relationship between the fi eld values computed on the grid and measured 
activity (although the technique SOMFA shows new and promising advantages 
 [95] ). In CoMFA, each vertex of the grid gives rise to at least one descriptor (a steric 
or electrostatic fi eld value for each molecule in the alignment). Since these typically 
number in the hundreds or thousands, there is the danger that the PLS procedure 
will pick out vertices with potential values that correlate well with activity merely 
by chance. In fact, it is almost always the case that CoMFA will produce a model 
that predicts the activities of the training molecules with a very favorable r2 . To 
ensure that the model is robust and applicable outside the training set, it is an abso-
lute requirement to apply cross - validation. This is usually accomplished using the 
leave - one - out approach discussed previously (although more sophisticated tech-
niques are available). As a rule of thumb, CoMFA models with a cross - validated  r2

(q2 ) of 0.5 or better are considered to be useful as predictive models. As with all 
established techniques, CoMFa is subject to evaluation  [96]  and improvement 
   [95, 97] .  



  2.6.6   Shape Signatures 

 Shape Signatures is a new method for detecting molecular similarity recently devel-
oped in our laboratory  [98] . The fundamental motivation of the method is to gener-
ate compact descriptors that capture the features of molecular shape and polarity 
while avoiding details of chemical structure. By maintaining a focus on shape, our 
approach emphasizes those characteristics of molecules important for biological 
activity, making it much easier to scan chemical libraries for compounds that may 
be both bioactive and of novel structure. 

 The key feature of Shape Signatures is our approach for exploring and encoding 
shape and polarity information. We have adapted the method of ray tracing, widely 
used in computer animation and presentation graphics, as a probe of molecular 
geometry. To do this, we initiate a ray in the interior of a molecule, which is bounded 
by a triangulated representation of the solvent - accessible molecular surface (Fig. 
 2.15a ), and allow the ray to propagate by the laws of optical refl ection (Fig.  2.15b,c ). 
Probability distributions are derived from the ray, and it is these distributions, stored 
as histograms, which we denote as Shape Signatures. The signatures are independent 
of the orientation of the molecule and can be compared very quickly using simple 
metrics below:    

    L H H1
1D = −∑ i i

i

1 2  

    
L H H1

2D = −∑∑ i j i j
ji

, ,
1 2

  

 The simplest signature is the probability distribution of ray - trace segment lengths, 
where a segment is the portion of the trace between two successive refl ections. 
We call this a one - dimensional (1D) signature, as the domain of the distribution 
is one dimensional (Fig.  2.15e ). Shape Signatures of higher dimension can easily 
be generated by combining ray - trace segment length with properties measured 
on the molecular surface; for example, by computing the joint probability distribu-
tion for observing a particular sum of segment lengths on either side of a refl ection 
point, combined with the molecular electrostatic potential (MEP) measured at 
the refl ection, we produce a  “ 2D - MEP ”  signature with two - dimensional domain 
(length + electric potential), which encodes both shape and polarity information 
(Fig.  2.15f ). 

 Although not as well developed as the ligand - based approach just described, it 
is also possible to apply the Shape Signatures method in  receptor - based  mode. Here, 
the ray - trace operation is carried out in the volume exterior to a protein receptor 
site, with Shape Signature histograms accumulated in the same way as in the ligand -
 centered approach. In this case, a match between the signatures for a potential 
ligand and the receptor indicates shape complementarity between the small mole-
cule and the shape of the receptor - site volume. While harder to apply than the 
ligand - based method (primarily because of ambiguities in defi ning the binding - site 
volume), the receptor - based approach offers the exciting prospect of scanning 
chemical libraries for potential bioactive compounds on the basis of shape, without 
the bias of using specifi c chemical structure queries, and without the computational 
expense of database docking. 
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    FIGURE 2.15     Process of Shape Signature generation. ( a ) The structure of Indinavir 
enclosed in the triangulated solvent - accessible surface is generated using SMART  [41] . 
( b ) Propagation of a ray trace around the inside of the triangulated molecular surface. Propa-
gation of the ray trace around the Indinavir molecule with ( c ) 100 ray - trace segments and 
( d ) 10,000 ray - trace segments is shown. On completion of a Shape Signature, the generated 
trace ( d ) is illustrated by ( e ), a histogram denoting the probability distribution (ordinate) of 
ray - trace segment lengths (abscissa), a  “ 1D Shape Signature. ”  A Shape Signature trace 
defi ned by ray - trace segment lengths and a mean electrostatic potential (MEP) is shown by 
( f ) a contour plot, a  “ 2D Shape Signature. ”  It is these data stored as text fi les that are com-
pared when performing a database screen. 
 

(b)(a)

(c) 
(d)

(f)(e)

 Although the method is in its infancy, Shape Signatures similarity comparisons 
have already been shown to be very effective for biological application    [28 – 30, 
98 – 100] . A current area of intensive research in our laboratory is to develop further 
ways of applying Shape Signatures for multiple conformers and stereoisomers, and 
to further develop the receptor - based strategy along with the existing ligand - based 
approach. It is clear that it is not unreasonable to expect to be able to carry out well 
over a thousand million comparisons a day on a single processor (Table  2.3 ) —
 numbers that are not easily attainable by other techniques. The method is trivial to 



parallelize: both database generation and comparison — hence submission of queries 
via the Internet — could be implemented and accomplished in the near future. The 
data returned dramatically reduces the initial database size, a vital part of any suc-
cessful CADD strategy  [101] . Furthermore, Shape Signatures also achieves the 
second important quality of CADD: enrichment of molecules from the same class 
as the query    [28 – 30, 98, 99] . Initial successes with Shape Signatures and estrogenic 
molecules (Fig.  2.16 ) were supported with experimental fi ndings  [99] . A potential 
novel molecule involved in analgesia has been discovered using Shape Signatures 
and offers considerable benefi ts over current compounds in this class  [100] . Many 
groups  [102 – 104]  have previously used similar techniques for virtual - spatial recogni-
tion, but they have not been used in biological applications (with the exception of 
Ankerst and colleagues  [105] ). The Shape Signatures method is distinct from these 

 TABLE 2.3    Comparison Between Speeds for Database Construction and Screening 

 Technique 

Number of Molecules/Time Unit
CPU + RAM

 Minute  Hour  Day  Month  Year 
 Computer 

Specifi cations 

 Database Construction 

 Shape Signatures (Ray Tracing) 
     5.6  3.3  ×  10 2   8.0  ×  10 3   2.4  ×  10 5   2.9  ×  10 6   1  ×  3.5   GHz Intel 

Pentium 4, 2   GB 
 1.1  ×  10 4   2.1  ×  10 4   5.1  ×  10 5   1.5  ×  10 7   1.9  ×  10 8   32  ×  Opteron 

2.6   GHz, 0.5   GB 
 Raptor Model (Generation) 
     4.5  2.7  ×  10 2   6.5  ×  10 3   1.9  ×  10 5   2.4  ×  10 6   1  ×  1.8   GHz Pentium 

4

 Database Screening 

 Shape Signatures (Screening) 
 1  ×  10 6   6.0  ×  10 7   1.4  ×  10 9   4.3  ×  10 10   5.3  ×  10 11   1  ×  3.5   GHz Intel 

Pentium 4, 2   GB 
 6.4  ×  10 7   3.8  ×  10 9   9.2  ×  10 10   2.8  ×  10 12   3.4  ×  10 13   32  ×  Opteron 

2.6   GHz, 0.5   GB 
 ROCS (Rapid Overlay of Chemical Structures) 

 7.6  ×  10 2   4.6  ×  10 5   1.1  ×  10 7   3.3  ×  10 8   4.0  ×  10 9   1  ×  3.5   GHz Intel 
Pentium 4, 2   GB 

 UNITY (Pharmacophore) 
 3pt  81.6  4.9  ×  10 3   1.2  ×  10 5   3.5  ×  10 6   4.3  ×  10 7   1  ×  RG14000   MIPS 

SGI 1 ×  500   mHz, 
1   GB 

 4pt  68.9  4.1  ×  10 3   9.9  ×  10 4   3.0  ×  10 6   3.6  ×  10 7

 5pt  56.6  3.4  ×  10 3   8.2  ×  10 4   2.4  ×  10 6   3.0  ×  10 7

 Docking GOLD 2.2 
     0.6  34.7  8.3  ×  10 2   2.5  ×  10 4   3.0  ×  10 5   2  ×  3.0   GHz Intel 

Xeon, 4   GB 
 Raptor (Molecule Evaluation) 
     8.0  4.8  ×  10 2   1.2  ×  10  3.5  ×  10 5   4.2  ×  10 6   1  ×  1.8   GHz Pentium 

4
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other previous attempts that use histogram comparisons for recognition of objects 
 [102 – 104]  or for lead discovery  [105] . The Shape Signatures technique is rotationally 
invariant, meaning that it does not require, nor depend on, the orientation of the 
ligand or receptor site to obtain a reproducible histogram profi le    [103, 107] .     

 As an example of the application of the Shape Signatures method, the query 
molecule WHI - P131  [106, 107] , a tyrosine kinase inhibitor of interest as a therapeu-
tic against several diseases (including leukemia and amyotrophic lateral sclerosis), 
is shown along with the top Shape Signatures hits located in the NCI database 
(Table  2.4 ) (were clarifi ed by superimposition, see Section  2.6.3 ). Note the clear 
shape similarity between query and hits that nonetheless differ signifi cantly in 
details of chemical structure. Finding these matches by other CADD methods would 
entail either generating a large set of structural queries based on the molecule of 
interest, or generating a pharmacophore model for the inhibitor. In either case, there 



would be the presumption of specialized knowledge to construct the queries actually 
used to scan the database, and a small omission in constructing that query could 
mean missing important hits. In contrast, the ligand - based Shape Signatures search 
is very easy to carry out; the investigator need only present the single compound of 
interest as the query.   

 There is one potential drawback of Shape Signatures that must be addressed 
up front. Because the method collapses a great deal of chemical space onto very 
compact descriptors, it is inevitable that a Shape Signatures search will turn up false 

WHI-P131 + NCI_HIT2

WHI-P131 
+ 

NCI_HIT1 

NCI_HIT2 NCI_HIT1WHI-P131

 TABLE 2.4     Shape Signatures Search of the NCI Database with WHI - P131 

      

  Rank    Molecule    Score  
 1D 
 1  WHI - P131  0.000000 
 2  NCI_HIT1  0.050280 
 3  NCI - HIT2  0.081440 
 2D 
 1  WHI - P131  0.000000 
 2  NCI_HIT2  0.255917 
 3  NCI_HIT1  0.273748 

    FIGURE 2.16     Examples of molecules selected by Shape Signatures demonstrating estro-
genic activity on human estrogen receptor (ER) based on known controls. Three known 
estrogenic compounds ( top ) — estradiol, diethylbesterol, and tamoxifen — are all known to 
interact with human ER control. Using these as query molecules to screen an in - house data-
base (1.2  ×  10 6  molecules), the returned molecules ( middle ) were tested via assay  [48] . Taking 
each of the selected  “ hits ”  from the search in turn, a 25    μ M sample was tested using the NR 
peptide ER α    ELISA kit (Active Motif, Carlsbad, CA) according to manufacturer ’ s instruc-
tions. 17 β    - estradiol and tamoxifen were included as part of the kit. Briefl y, a precoated 96 - well 
plate was supplied with an optimized peptide containing the consensus binding motif of ER α     
coactivator SRC - 1. Each compound was incubated for 1 hour with MCF - 7 nuclear extract 
and the coactivator peptide in each well. The ligand - activated ER α    was fi rst detected using 
primary antibody specifi c for ER α    and further with HRP - conjugated secondary antibody. 
The ER competitive binding assays used a gel fi ltration displacement assay for estrogen 
receptor alpha (ER α ) and was employed to assess competitive binding by selected ER 
antagonists among the hit compounds. Estrogen receptor binding assays were conducted in 
duplicate in 50   mM Tris - HCl, pH 7.5, 1   mM EDTA, 20% glycerol, and 1   mM DTT buffer. 
Radioligands that were used included [6,7 -  3 H]estradiol (specifi c activity 44 Ci/mmol, Amer-
sham Biosciences). Binding assays were conducted on ice in a volume of 1   mL with 10   ng of 
purifi ed full - length ER α  and 25   nM  3 H - estradiol in fi nal concentration; 10    μ M 17 α  - estradiol 
was used to defi ne specifi c binding. Following a 1 - hour incubation, assays were terminated 
by fi ltration through Whatman GF/B fi lters. Filters were soaked in Ecoscint liquid scintillation 
mixture (National Diagnostics, Somerville, NJ) and fi lter bound radioactivity was counted 
using a Beckman LS 1071 counter. ( Bottom ) One molecule was strongly agonistic (4 - OH 
E2), while two were strongly antagonistic (6:mifepristone and 7:MS_1105). The other three 
molecules were only marginally antagonistic. 
 

DETECTING SIMILARITY WITH IN SILICO TECHNIQUES  79



80 IDENTIFYING SIMILARITIES BETWEEN SMALL MOLECULES

positives in the hit list. To test how signifi cant this issue might be, an independent 
assessment of the quality of the hits produced by a Shape Signatures search with 
the ACE inhibitor Enalapril was established. First, docking of known ACE inhibi-
tors that have measured IC 50  data  [69]  into ACE (PDB code 1O86)  [68]  was carried 
out using GOLD  [72] , producing a signifi cant correlation between inhibitor pIC 50

and the GOLD score, with scores for the known actives ranging from 50 to 87. In 
the second phase of our study, we identifi ed the top 250 hits produced by a Shape 
Signatures search for the single query, Enalapril, conducted on an in - house database 
of 423 drugs and the NCI database  [10]  of over 250,000 compounds. The hit com-
pounds were extracted from the database and docked into the active site of ACE 
using GOLD. Not only did our search, conducted using a single query, immediately 
identify 11 of the 20 well - characterized ACE inhibitors, but the fi tness scores by 
GOLD evaluation of all 250 hits gave > 75 for 4%, and  > 50 for 70% of the hits (Fig. 
 2.17 ). Assuming that the correlation between the experimental IC 50  and the GOLD 
score holds, the Shape Signatures method is shown to readily identify known actives 
and interesting lead molecules, and with a modest proportion of false positives.     

  2.7   CONCLUSION 

 In this chapter we have merely scratched the surface of available methods to 
measure molecular similarity, focusing on methods with which we have experience 
and omitting any number of popular methods. In particular, there are a large and 
steadily growing body of 3D methods that are similar in spirit to CoMFA, but which 
nonetheless incorporate variations and refi nements. In this context we must mention 

FIGURE 2.17     Evaluation of Shape Signatures with the GOLD algorithm. The plot indi-
cates Shape Signatures score (abscissa) versus GOLD (ordinate) with the dashed line at 50 
indicating a good GOLD docking hit. 
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approaches that use descriptors generated using GRID  [83]  and fi rst - cousins to 
CoMFA, such as COMSIA  [108] . We hope that this chapter has provided an intro-
duction to the spirit of molecular similarity methods and will serve as a foundation 
for further exploration by the interested reader.  
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  3.1   INTRODUCTION 

 Living organisms are almost exclusively comprised of four classes of molecules, 
namely, proteins, nucleic acids, polysaccharides, and lipids. Of these, barring lipids, 
all other classes can be regarded as macromolecules that are built from a limited 
number of building blocks or monomers. In the case of proteins, such building blocks 
are amino acids. Proteins are formed by polymerization of essentially twenty 
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 “ standard ”  amino acids. Yet, the myriad of proteins and their diverse functions, 
ranging from basic metabolism to structural and reproductive functions, can be 
astounding and constitute the very basis of life on Earth. For instance, an Escherichia
coli  bacterium contains over 4000 different proteins participating in virtually every 
life sustaining function of the cell. 

 The Greek root of the word protein,  proteios , meaning  of fi rst importance , identi-
fi es the paramount role of this class of macromolecules in eukaryotes. It is perhaps 
discernible that twenty amino acids can be combined in different manners to yield 
virtually innumerable proteins, with a variety of functions. It is, however, interesting 
to note that even a slight alteration of the amino acid sequence can signifi cantly 
alter the structure and function of a protein molecule. A well known example is the 
modifi cation of hemoglobin in sickle cell anemia. Normal hemoglobin (HbA) con-
tains a Glu at the sixth position of each β  - chain, which is replaced by Val in the 
sickle cell hemoglobin (HbS). This single substitution causes aggregation of HbS 
into stiff fi laments, leading to the deformation of the red blood cells into elongated 
 “ sickled ”  shapes, and the consequent symptoms of sickle cell anemia. 

 Being macromolecules, proteins predominantly interact with other molecules, 
including other proteins, via weak long - range interactions. These are also referred 
to as nonbonded interactions and are of two types, van der Waals and electrostatic. 
As two interacting proteins approach very close to each other, stronger specifi c 
bonds can be formed between them. For instance, the strongest specifi c interaction 
between two proteins occurs in the form of a covalent bond in the so - called disulfi de 
linkage. Hydrogen bonds, less strong than covalent bonds, are more common forms 
of specifi c interactions exhibited by proteins. The four common types of interactions 
observed are listed in Fig.  3.1 . A second factor that modifi es long - range interactions 
is the tertiary structure of proteins. Proteins or peptides with defi ned secondary 
structural elements like helices, strands, and coils fold into three - dimensional 
arrangements, which give them a tertiary structure. For example, an α  - helix, a  β  -
 sheet, and a coil region in the three - dimensional solution structure of an antibacte-
rial peptide are highlighted in Fig.  3.2 . Sequences with less than 50 amino acids are 
generally considered as peptides and more than 50 amino acids are called 
proteins.     

 Protein – protein interactions are key to several biological pathways and thus are 
attractive targets for therapeutic intervention. Such approaches are frequently based 
on a sound assessment of the strong and weak interactions and the protein ’ s second-
ary or tertiary structures. The modulation or disruption of protein – protein inter-

FIGURE 3.1     Long - range and short - range interactions between biomolecules. The energy 
values in parentheses are approximate. 



actions has been diffi cult owing to their large surface areas of interaction. For 
several extracellular protein complexes, antibodies and other proteins have been 
identifi ed as successful antagonists. The main rationale for this being that large 
macromolecules can readily disrupt the interaction between two proteins. From a 
cursory glance, this appears to be an attractive therapeutic option. However, a closer 
inspection of the problem indicates that large proteins are generally not orally bio-
available or cell permeable. Thus, these cannot be particularly effective for targeting 
intracellular protein – protein interactions. In light of this, one might presume that 
small molecules will provide more attractive therapeutic intervention options. 
However, such small molecules have been less successful in this regard, since they 
cannot provide specifi c recognition needed for a large protein surface. Protein sur-
faces do not often present deep indentations for small molecules to bind, and affi nity 
is achieved through summing up several weak interactions. 

 Recent studies report several protein complexes as targets for drug design, with 
some of these targets amenable to small molecule inhibition  [2 – 7] . Here we review 
the interactions between some of the important protein – protein pairs, followed 
by the recent successes in developing peptides, peptidomimetics, or small organic 
molecules as inhibitors of these interactions. This fi eld is still in its infancy as most 
of the compounds identifi ed are still in preclinical stages. Recent developments 
made in this broad fi eld that have pharmaceutical and clinical implications will be 
discussed in this chapter.  

  3.2   PROTEIN – PROTEIN INTERACTIONS AND HUMAN 
PATHOGENESIS

  3.2.1   Oncogenesis 

 Interaction between specifi c regions in a protein has been found to be essential for 
all stages of development and homeostasis. Subsequently, many human diseases 
occur by either loss of essential protein – protein interaction or through the forma-
tion of a protein complex at an inappropriate time or location. Several such inter-
actions have been found to be responsible for the onset of oncogenesis and have 
been well studied  [4, 8] . In the following, interactions between some of the well 
known protein pairs that lead to oncogenesis are discussed. 

FIGURE 3.2     Tertiary structure of an antibacterial peptide (leucocin A) displaying second-
ary structure elements, namely, α  - helix,  β  - sheet, and coil. The fi gure was generated from the 
1CW6 Protein Data Bank coordinates [1] . 
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HDM2-p53  The tumor suppressor protein p53 is involved in the maintenance of 
the genomic integrity of the cell. It coordinates the cellular response to DNA 
damage by binding to specifi c DNA sequences and activating genes responsible for 
growth arrest or apoptosis. The inactivation of p53 by the binding of the cellular 
oncoprotein HDM2 (human double minute 2) has been identifi ed as an important 
step in tumorigenesis  [9] . In normal cells, HDM2 and p53 form a negative feedback 
loop that helps to limit the growth - suppressing activity of p53. The identifi cation of 
this key negative regulator HDM2 provided a great opportunity to manipulate the 
levels of the tumor suppressor p53 in cancer cells. 

 The mouse homolog MDM2 binds the N terminus of p53, thereby interfering 
with the transcriptional ability of p53. The crystal structure of the amino terminal 
domain of MDM2 bound to a small region on the N terminus of p53 displayed the 
specifi c interaction between a hydrophobic cleft in the MDM2 protein and an 
amphipathic α  - helix of p53  [10] . Several van der Waals contacts augmented by two 
intermolecular hydrogen bonds were found at the interface. The MDM2 cleft lined 
with hydrophobic and aromatic amino acids interacts with the hydrophobic face of 
p53 amphipathic helix. As shown in Fig.  3.3 , the side chains of Phe19, Trp23, and 
Leu26 from the p53 α  - helical region nestle deep inside the hydrophobic pocket of 
MDM2. Since residue Leu22 and Trp23 of p53 are critical for its transcriptional 
activity, p53 is rendered transcriptionally inactive after binding to MDM2. Inhibitors 
of the MDM2 – p53 interaction have thus been found as attractive targets to gain 
activity of p53 in tumor cells  [11] .    

Bcl-2/Bcl-XL-BH3  The proteins in the Bcl - 2 family regulate apoptosis by main-
taining a fi ne balance between the pro -  and antiapoptotic proteins within the cell 

FIGURE 3.3     The ribbon representation of the MDM2 – p53 complex (PDB entry 1YCR 
 [10] ) displaying the hydrophobic cleft of MDM2 where the p53 peptide binds as an amphipa-
thic α  - helix. The hydrophobic side chains of Phe19, Trp23, and Leu26 of p53 inserting deep 
into the MDM2 cleft are shown. 
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 [12 – 14] . Proapoptotic members of Bcl - 2 family such as Bax, Bak, Bid, and Bad, and 
antiapoptotic members such as Bcl - 2 and Bcl - X L  exist as homodimers or mixed 
heterodimers. The nature of dimerization between these proteins dictates how a cell 
will respond to an apoptotic signal. Antiapoptotic proteins, Bcl - 2, Bcl - X L , or both, 
are overexpressed in the majority of human cancers and may play a vital role in 
cancer development. Therefore, inhibition of Bcl - 2/Bcl - X L  activity is gaining recog-
nition for the development of potent therapeutics as anticancer drugs. Several 
strategies have been employed to target these proteins, including inhibition of 
expression levels using antisense oligonucleotides and identifi cation of peptide 
ligands that affect protein – protein association  [15, 16] . 

 The antiapoptotic function of Bcl - 2 and Bcl - X L  is partially attributed to their 
ability to heterodimerize with proapoptotic members and antagonize their proapop-
totic function. Three regions of the antiapoptotic proteins, namely, the Bcl - 2 homol-
ogy 1 (BH1), BH2, and BH3 binding sites, participate in their death - inhibiting 
activity and heterodimerization with the proapoptotic protein. However, only the 
BH3 binding site of the Bcl - 2 and Bcl - X L  proteins is found critical for the ability to 
antagonize apoptosis. Small, truncated peptides derived from the BH3 region of Bak 
(16   mer) and Bad (25   mer) have been found necessary and suffi cient both for pro-
moting cell death and binding to Bcl - X L   [17, 18] . Furthermore, a synthetic cell per-
meable BH3 peptide derived from proapoptotic Bad has been shown to induce 
apoptosis  in vitro  and to have  in vivo  activity in human myeloid leukemia growth 
in severe combined immunodefi cient mice  [19] . 

 The NMR solution structures of Bcl - 2 and Bcl - X L  alone  [20, 21]  and Bcl - X L  in 
complex with Bak or Bad BH3 peptides  [17, 18]  have provided detailed information 
about the binding interactions of these proteins to the BH3 peptides (Fig.  3.4 ). The 
three - dimensional structures illustrate the formation of a hydrophobic cleft (the 
BH3 binding site) by the three BH domains of Bcl - 2 and Bcl - X L  in which the Bak 
or Bad BH3 domain binds. The overall binding motif of Bcl - X L /Bak and Bcl - X L /Bad 

    FIGURE 3.4     The ribbon representation of the NMR solution structures of Bcl - X L  in 
complex with (a) Bak BH3 peptide and (b) Bad BH3 peptide derived from the PDB codes 
1BXL  [17]  and 1G5J  [18] , respectively. Bak and Bad BH3 peptides bind in the hydrophobic 
cleft of the Bcl - X L  protein. The hydrophobic side chains Val74, Leu78, Ile81, and Ile85 of Bak 
BH3 peptide inserting into the Bcl - X L  cleft are highlighted as a stick model. 
 

(a) (b)
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complex was found to be very similar with only a few differences at the protein –
 peptide interface. The Bcl - X L /Bak structure shows that the hydrophobic side chains 
of the Bak peptide (Val74, Leu78, Ile81, and Ile85) point into the hydrophobic cleft 
(BH3 binding site) of Bcl - X L  and stabilize complex formation. Several electrostatic 
interactions between the oppositely charged residues of Bcl - X L  (Glu129, Arg139, 
and Arg100) and the Bak peptide (Arg76, Asp83, and Asp84, respectively) were also 
present. Similar interactions were also found between the Bcl - X L  and 25   mer Bad 
peptide. However, the longer Bad peptide makes additional contact at the two ends 
of the BH3 binding site, forming a tighter complex ( Kd  0.6 nM) as compared to the 
Bcl - X L /Bak 16   mer complex ( Kd  480 nM). These observations suggest that the BH3 
binding pocket of Bcl - X L  as well as Bcl - 2 is essential for its antiapoptotic function, 
and small molecules that bind to the BH3 binding pocket of Bcl - X L /Bcl - 2 can block 
the interaction between Bcl - X L /Bcl - 2 and proapoptotic proteins such as Bak, Bax, 
and Bad.    

XIAP-Caspase  Inhibitors of apoptosis proteins (IAPs) are important but incom-
pletely understood negative regulators of apoptosis. Among other mechanisms, 
IAPs selectively bind and inhibit caspases - 3,  - 7, and  - 9, but not caspase - 8. Currently, 
there are eight members of the IAP family. Of these members, X - linked inhibitor 
of apoptosis protein (XIAP) is upregulated in many cancers and has thus garnered 
the most attention as a drug discovery target  [22] . 

 XIAP is a 57   kDa protein with three zinc - binding baculovirus IAP repeat domains 
(BIR1 – 3) and a really interesting new gene (RING) - fi nger that binds and inhibits 
caspases with nanomolar affi nity (Fig.  3.5 ). The BIR2 domain inhibits caspases - 3 
and  - 7, whereas BIR3 domain inhibits caspase - 9. The function of the BIR1 domain 
has not yet been determined. The RING fi nger contains an E3 ubiquitin ligase. The 
proapoptotic protein SMAC is an endogenous human IAP antagonist that binds 
and inhibits XIAP, thereby releasing caspases and reactivating apoptosis. Structural 
studies map the interaction between XIAP and SMAC and provide a basis for the 
development of small molecule XIAP inhibitors. These studies demonstrate that 
SMAC binds to both the BIR3 and BIR2 domains of XIAP. Crystal structure of 
BIR3 domain of XIAP in complex with caspase - 9  [23]  and SMAC  [24]  illustrates 
the key interactions between the complexes. The N terminus of the small subunit 
of caspase - 9 binds the same shallow groove on BIR3 as the N terminus of SMAC 
(Fig.  3.6 ). The N - terminal 4 – 7 amino acids of active SMAC are necessary and suffi -
cient for binding the BIR3 pocket of XIAP and preventing XIAP from binding and 
inhibiting caspase - 9. A 4   mer peptide, Ala - Val - Pro - Ile, derived from SMAC binds 
to XIAP with ∼ 500   nM affi nity  [25] . These results indicate that small molecules that 

FIGURE 3.5     Schematic representation of XIAP showing different domains and their 
functions.
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mimic the actions of SMAC could be identifi ed, providing an opportunity for a 
structure - based approach to the design of BIR3 inhibitors.      

  Stat3 Dimerization     Signal transducer and activator of transcription 3 (Stat3) is a 
cytoplasmic transcription factor that is activated in response to cytokines and growth 
factors. Upstream regulators of Stat3 constitute JAKs, Src, and EGF receptors and 
downstream targets include antiapoptotic and cell cycling genes such as Bcl - X L  and 
cyclin D1. Stat3 is overactivated in a surprisingly large number of cancers including 
head and neck, breast, brain, prostate, lung, leukemia, multiple myeloma, lymphoma, 
and pancreas and has therefore been identifi ed as a potential target for cancer drug 
development  [26] . 

 Stat3 is composed of several domains, namely, an oligomerization domain (N 
terminal), a coiled coil domain, a DNA - binding domain, a linker domain, a Src 
homology 2 (SH2) domain, a critical tyrosine at position 705 (C - terminal end), and 
a C - terminal transactivation domain. On activation, JAK kinase - 2 phosphorylates 
the tyrosine residues of its coreceptor, thereby facilitating the binding of Stat3 to 
specifi c phosphotyrosine residues of JAK - 2 through its SH2 domain. This leads to 
phosphorylation of Tyr705 on the C terminus of Stat3, followed by Stat3 dimeriza-
tion by the reciprocal interaction between the SH2 domain of one monomer and 
the phosphorylated tyrosine of the other. The activated dimers translocate to the 
nucleus, where they bind to specifi c DNA sequences and activate gene expression. 
These observations have pointed out Stat3 inhibition, such as inhibition of JAK - 2/
Stat3 interaction and Stat3 dimerization, as a novel molecular target for the advance-
ment of a broad anticancer therapy. The X - ray elucidation of three - dimensional 

    FIGURE 3.6     The three - dimensional structures of XIAP - BIR3 domain in complex with 
(a) N terminus of the small subunit of caspase - 9 (Ala316, Thr317, Pro318, Phe319, and Gln320 
shown as stick model) and (b) N terminus of SMAC (Ala1, Val2, Pro3, Ile4, Ala5, Gln6, and 
Lys7 shown as stick model). Both caspase - 9 and SMAC bind in the same pocket of BIR3 as 
illustrated by the crystal structures of the complexes (PDB accession codes 1NW9  [23]  and 
1G73  [24] , respectively). 
 

(a) (b)
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structure of the Stat3 homodimer bound to DNA reveals some details about the 
interaction between the two monomers and may facilitate the development of Stat3 
inhibitors  [27] .  

Rac1-GEF  Rho family GTPases, such as Rac1, control signaling pathways that 
are involved in cell adhesion, cell migration, and other cellular processes. Over-
expression or upregulation of Rho GTPases has been discovered in many human 
tumors, including colon, breast, lung, myeloma, and head and neck squamous - cell 
carcinoma  [28] . They can be activated through specifi c interaction with guanine 
nucleotide exchange factor (GEF) proteins that catalyze the exchange of GDP for 
GTP. One strategy to control tumor spreading is the selective inhibition of Rho 
GTPase activation by its GEF TrioN or Tiam1. Trio is a large multifunctional domain 
molecule with the amino - terminal module (TrioN) displaying the Rac1 - specifi c 
GEF activity. Similarly, Tiam1, the T - cell invasion and metastasis gene product of 
the Dbl family, is shown to be an active GEF for Rac1. The three - dimensional 
structures of GEF – Rho protein complexes discern the specifi c interactions between 
GEFs and Rho GTPases needed for the signaling specifi city mediated by Rho pro-
teins. The cocrystal structure of Rac1/Tiam1 complex  [29]  shows that a domain of 
Tiam1, mainly dominated by α  - helices, binds a shallow groove of Rac1, suggesting 
the presence of a small - molecule binding site (Fig.  3.7 ). A micromolar inhibitor of 
Rac1/TrioN interaction that selectively inhibits Rac1/Tiam1 and Rac1/TrioN versus 
related complexes and inhibits Rac1 activation in cells has been reported  [30] . This 
study indicates that inhibition of the Rac1 – GEF protein – protein interaction is pos-
sible, and such interactions have cellular consequences.    

Integrin avb3 – Fibronectin  Another well studied example of cell adhesion pro-
teins is the integrins. Integrins are the cell - surface receptors that act as molecular 
recognition sites for other proteins (for cell – cell and cell – extracellular matrix inter-

FIGURE 3.7     Crystal structure of Rac1 (left) in complex with the guanine nucleotide 
exchange region of Tiam1 (right) determined by Worthylake et al. [29]  (PDB code 1FOE). 
The extensive interface of the complex buries over 3000    Å  2  of primarily hydrophobic surface 
area.
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actions) as well as signaling molecules transferring ligand - binding information to 
the cytoplasm. Integrins are heterodimeric proteins consisting of α  and  β  subunits 
and typically have a high molecular mass of ∼ 300   kDa. At least, 25  αβ  integrin het-
erodimers have been reported and six of them are currently being evaluated in 
clinical trials for cancer  [31] . Integrin  αvβ3  has received particular attention as a 
potential target for anticancer drug design. The expression of αvβ3  is signifi cantly 
increased on vascular cells in human tumors, but is weakly expressed on normal or 
quiescent endothelial cells. Since this integrin is relatively limited in its normal dis-
tribution, inhibition of its action is considered as an effective means of depriving 
tumors of nascent blood vessels without involving normal tissues. 

 Integrin recognition of the extracellular matrix ligands, such as fi bronectin, col-
lagen, and vitronectin, relies on the concerted binding of both the α  and  β  subunits 
to regions of the ligand containing the Arg - Gly - Asp (RGD) sequence  [32] . The 
RGD motif was the fi rst integrin binding motif discovered. Several new motifs have 
been found since then that bind to a specifi c class of integrins  [33] . Studies on RGD 
sequence have led to the discovery of cyclic pentapeptide Arg - Gly - Asp - { d  - Phe} - 
{N - methyl  - Val} or cyclo RGDf{NMe}V that specifi cally binds and inhibits integrin 
αvβ3   [34] .   

  3.2.2   Pathogen – Host Interaction 

 Some viruses and bacteria enter eukaryotes by attachment to specifi c cell - surface 
receptors or cell - surface receptor - binding proteins. Viruses infect higher eukaryotes 
to reproduce themselves, whereas bacterial pathogens invade primarily to gain 
protection against the host immune system. Pathogens have always  “ enjoyed ”  invad-
ing human cells and have coevolved with their hosts to enable effi cient entry, repli-
cation, and exit during their infectious cycles. An excellent review by Dimitrov  [35]  
describes in depth the different virus entry mechanisms at the molecular level and 
opportunities for therapeutic intervention by inhibiting these processes. In this 
section, interaction between specifi c proteins of virus or bacteria and the target cell 
that facilitates pathogen entry into the target cell are discussed. 

Papillomavirus E2 Protein  Infection by papillomavirus causes benign lesions that 
can lead to cervical cancer and other tumors  [36, 37] . Papillomaviruses are small 
DNA viruses that infect higher eukaryotes by invading the basal layer of epithelial 
cells where they replicate successfully. Viral E2 protein has been found essential for 
replication and survival. E2 protein contains two conserved domains, the C - terminal 
viral DNA binding domain and the N - terminal transactivation domain that 
binds the viral E1 protein. Molecules that can bind these two domains of E2, 
thereby inhibiting the E2/DNA or E1/E2 interaction, are attractive targets for the 
development of therapeutics to prevent or treat papillomavirus infections. The 
three - dimensional structure of E1 bound to E2 reveals some important contact 
points between the complex  [38] . The interaction surface, comprised of three helices 
from the N - terminal domain of E2, buries  ∼ 940  Å  2  surface area per protomer on 
E1 – E2 complex formation (Fig.  3.8 ).    

HCV-Envelope Protein 2  Hepatitis C virus (HCV) infection, another important 
target for antiviral drug design, causes severe medical problems, including chronic 
hepatitis, cirrhosis, and hepatocellular carcinoma. HCV genome is composed of a 
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single - stranded positive sense RNA of approximately 9600 nucleotides that are 
translated into a polyprotein precursor of about 3000 amino acids. The HCV poly-
protein precursor is processed by host and viral proteases to yield structural and 
nonstructural proteins, which are essential for replication and assembly of new viral 
particles. The viral envelope E2 protein initiates the infection by association with 
specifi c cell - surface receptor(s). Many groups have demonstrated that the truncated 
soluble versions of E2 bind specifi cally to hepatocytes  [39, 40] . This glycoprotein is 
found to interact with CD81, scavenger receptor class B type 1 (SR - B1), and den-
dritic cell - specifi c intracellular adhesion molecule 3 - grabbing nonintegrin (DC -
 SIGN). Such fi ndings suggest that these proteins may act as receptors for HCV on 
the cell surface. Therefore, inhibition of interaction between E2 and the cell - surface 
receptors, such as CD81, has been identifi ed as a possible target for designing anti -
 HCV molecules  [41, 42] .  

SARS-Angiotensin Receptor  SARS - CoV is a member of the Coronaviridae, a 
family of positive strand RNA virus that have long been known to cause severe 
acute respiratory syndrome in many animals and more recently in humans. Similar 
to other known coronaviruses, SARS - CoV is an enveloped virus containing four 
structural proteins, namely, the membrane (M), envelope (E) glycoprotein, spike (S) 
glycoprotein, and nucleocapsid (NP) proteins  [43] . The spike protein of SARS - CoV 
is a large type I glycoprotein and is made up of two domains, the S1 near the N ter-
minus and the S2 near the C terminus. Unlike other coronaviruses, the spike protein 
of SARS - CoV is not posttranslationally cleaved in virus producing cells. The S1 and 
S2 domains form the globular head and the stalk of the spike protein and play an 
important role in specifi c receptor recognition and cell fusion. The S1 domain medi-
ates receptor association whereas the S2 domain is membrane associated and likely 
undergoes structural rearrangements. This conformational change initiates the 

FIGURE 3.8     The X - ray structure of papillomavirus E1 helicase (upper structure) in 
complex with its molecular partner E2 (lower structure). PDB accession code: 1TUE [38] .   
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fusion of the virus and host cell membrane, allowing for entry of the virus. The fi rst 
step in viral infection is the binding of viral proteins to certain host cell receptors. 
The spike protein of coronavirus is considered as the main site of viral attachment 
to the host cells. It has been demonstrated that a metallopeptidase, angiotensin 
converting enzyme 2 (ACE2) isolated from Vero   E6 cells, effi ciently binds the S1 
domain of the SARS - CoV spike protein  [44] . A discrete receptor binding domain 
(RBD) of the spike protein has been defi ned at residues 318 – 510 of the S1 domain 
 [45]  and this receptor binding domain is the critical determinant of virus receptor 
interaction and thus of viral host range and tropism. It has been demonstrated that 
this RBD binds ACE2 with higher affi nity than does the full length S1 domain  [46] . 
The crystal structure (Fig.  3.9 ) of SARS - CoV RBD complexed with ACE2 receptor 
at 2.9    Å  shows that the RBD presents a gentle concave surface, which cradles the 
N - terminal lobe of the peptidase  [47] .    

Bacterial Fibronectin -Binding Proteins  One of the mechanisms by which bacte-
rial pathogens invade cells is by displaying fi bronectin - binding proteins (FBPs) on 
their surface. This approach to internalize into the host cell has been adopted by 
some pathogenic gram - positive bacteria. FBPs contain tandem arrays of intrinsically 
disordered repeat sequences that bind fi bronectin – integrin complexes. The NMR 
solution structure of a complex comprising a peptide fragment of a streptococcal 
fi bronectin - binding protein bound to the fi rst two domains of human fi bronectin 
reveals the tandem β  - zipper interactions between the two fragments  [48] . The tandem 
β  - zipper is created by the  β  - strand conformation of the repeat sequences of FBP 
peptide fragment that extends existing antiparallel β  - sheets in both directions upon 
binding to fi bronectin. The binding affi nity of these complexes is relatively weak but 

FIGURE 3.9     Crystal structure of SARS - CoV spike protein RBD (lower ribbon structure) 
in complex with human receptor ACE2 (upper structure). PDB accession code 1AJF [47] .   
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increases signifi cantly when additional domains of both proteins are present. For 
example, the binding affi nity ( K  A ) of two FBP repeats to pairs of fi bronectin domains 
is  ∼ 10 6    M   −  1 . The tandem  β  - zipper interaction is a common phenomenon found in 
several pathogenic gram - positive bacteria, such as  Staphylococcus aureus, Strepto-
coccus pyogenes , and  Borrelia burgdorferi , and may prove to be a widespread mecha-
nism for bacterial foray of host cells  [49 – 51] . Molecules that disrupt these  β  - zipper 
interactions may prove to be useful therapeutics for bacterial infections.   

  3.2.3   Loss of Normal Protein – Protein Interaction 

 Modular protein – protein interactions mediated by the tandem  β  - zipper have also 
been observed in eukaryotes  [52, 53] . The LIM domains, found only in eukaryotes, 
are proteins with diverse functions such as transcription factors and protein kinases 
 [54] . They are known to mediate specifi c protein – protein interactions through 
their LIM domains. Human genome encodes four LIM - only (LMO) and 12 LIM -
 homeodomain (LIM - HD) proteins each with a pair of tandem LIM domains at their 
N terminus (Fig.  3.10a ). Three out of four LMO proteins have been implicated in 
oncogenesis. The LIM domains of all LMO and LIM - HD proteins bind the LIM 
domain - binding protein, Ldb1, through the 30 residue LIM interaction domain 
(LID) of this protein. Ldb1 is a ubiquitously expressed protein that contains an N -
 terminal dimerization domain, LID, and several other binding domains and is an 

    FIGURE 3.10     (a) Schematic representation of different domains of LMO2, LMO4, and 
Ldb1 proteins. (b) The schematic of LMO4 in complex with the Ldb1 - LID domain displaying 
the  “ tandem  β  - zipper ”  interaction (PDB code 1RUT)  [52] . The  β  - strand conformation of the 
peptide extends the existing  β  - structure in the partner protein in a modular fashion.   
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essential cofactor that plays diverse roles in the development of complex organisms. 
Since LMO proteins bind the same region of Ldb1 (LID) as the LIM - HD, LMO 
proteins can regulate the transcriptional activity of LIM - HD by competing for 
binding to Ldb1. The displacement of endogenous LMO4 by ectopically expressed 
LMO2, as the normal binding partner for Ldb1, has been directly linked with the 
overexpression of LMO2 in T cells and the onset of T - cell acute lymphoblastic leu-
kemia in children  [55] .   

 The three - dimensional structures of the complexes comprising LIM domains and 
Ldb1 - LID present that the intrinsically disordered Ldb1 - LID forms a  “ tandem  β  -
 zipper ”  upon binding to LIM domains (Fig.  3.10b )  [52] . In the complex, the four  β  -
 strands of Ldb1 - LID extend across one face of LMO4 and remain in continuous 
contact with the LIM domains, mainly by backbone – backbone hydrogen bonds, 
burying a total surface area of 3800    Å  2 . Ldb1 is known to interact with LMO and 
LMO - HD proteins only and not with any other LIM domain containing proteins. 
Recent studies  [52, 53] ,   highlight the specifi c features of the interaction between 
Ldb1 and the LMO2 or LMO4 proteins. Structural, mutagenesis, and yeast two 
hybrid   analysis are used to identify the key binding determinants for the complex 
formation. The differences in the binding interaction between the two protein com-
plexes suggest that molecules that could bind specifi cally to LMO2 or LMO4 may 
have potential uses in the treatment of neoplastic disorders. 

 The protein complexes discussed above are a few examples of interaction pairs 
that have been identifi ed as possible drug design targets where the interactions have 
been mapped at the atomic level. A wide variety of approaches are utilized in the 
identifi cation of these protein – protein interaction pairs and their inhibitors. Some 
of the most popular approaches are discussed in the following section.   

  3.3   SCREENING OF PROTEIN – PROTEIN INTERACTION INHIBITORS 

 Several approaches have been utilized in the identifi cation of protein – protein inter-
action inhibitors with the aim of developing therapies for a variety of human dis-
eases  [6, 56, 57] . An analysis of current strategies employed for the identifi cation of 
lead molecules demonstrates that a search for competitors of a known binder is the 
basis of traditional screening as well as more modern approaches. In the following 
sections, some of these approaches are described in detail. 

  3.3.1   Structure – Activity Relationship 

 A common approach relies on the experimentally determined (NMR or X - ray) 
structure of the protein complex. In this approach, one attempts to disrupt the 
interfacial interactions between the two proteins by developing mimics of the inter-
face amino acid residues (peptide fragment) for one of the binding partners. The 
structure of the interface peptide fragment is modifi ed using computer docking and 
molecular dynamics simulations to obtain peptidomimetics or small organic mole-
cules  [3] . The resulting peptides or peptide analogues present the interacting func-
tional groups in similar spatial orientations as the interface amino acid residues. 
Peptidomimetic or small molecule inhibitors have higher affi nity, better selectivity, 
and often better pharmacokinetic properties than the parent peptide. A second 

SCREENING OF PROTEIN–PROTEIN INTERACTION INHIBITORS 99



100 PROTEIN–PROTEIN INTERACTIONS

approach involves screening of a huge library of compounds using computer docking 
to fi nd molecules with high affi nity toward one of the binding partners of the protein 
complex. The lead structures identifi ed using the above procedures are further 
optimized for potency and selectivity by structure – activity relationship (SAR) 
studies  [58] . The SAR methods utilize experimental techniques, like nuclear mag-
netic resonance (NMR) spectroscopy, or computation methods, such as docking 
studies, and provide a structural perspective throughout the discovery and optimiza-
tion of a lead molecule.  

  3.3.2   Genetic Screening Systems and Phage Display 

 The new library methodologies, such as phage display, allow generation of a large 
number of molecules with a fast screening and selection procedure to identify the 
most interesting lead candidates. Phage display technology has proved to be a very 
powerful in vitro  technique for generating libraries containing millions of different 
peptides, proteins, or small molecules. Using the same technique, these libraries have 
been screened to identify ligands for peptide receptors, to defi ne epitopes for mono-
clonal antibodies, to select substrates for enzymes, and to screen cloned antibody 
repertoires  [59, 60] .

 In the phage display technique, fi lamentous virus is used as a platform for cloning 
of a DNA library (a library of genes or gene segments) encoding millions of variants 
of certain ligands into the phage genome and is fused to the gene encoding the 
phage coat or tail protein. Upon expression in the E. coli  host in the presence of 
helper phage, the fusion protein (e.g., Coat protein - scFv) is incorporated into new 
phage particles that are assembled in the periplasmic space of the bacterium. Expres-
sion of the target gene fusion product and its subsequent incorporation into the 
mature phage coat results in the ligand being presented on the phage surface, while 
its genetic material resides within the phage genome. The proteins that are encoded 
by the library are expressed on the surface of phage and can be selected on the 
immobilized target molecule by biopanning. This interaction allows selection of high 
affi nity binders for a variety of biomedical applications. Phages that bind the target 
molecule contain the gene for the protein and have the ability to replicate while 
nonadherent phages are washed away. This method can be used to effi ciently clone 
genes encoding proteins with particular binding characteristics. In antibody phage 
display, the Fab or single chain fragment of IgG variable proteins is displayed on 
phage. This approach for antibody development offers advantages over immuniza-
tion of animals and hybridoma technology  [61] . Phage display can produce anti-
bodies more quickly in a cost effective manner than traditional approaches. 
Additionally, antibody phage display techniques can potentially isolate antibodies 
to molecules that are not immunogenic in animals due to tolerance mechanism. 
Phage selection is not limited to the isolation of antibodies or short peptides. This 
approach has also been instrumental in studies and manipulation of a variety of 
other biologically active molecules and their designer variants  [62] .  

  3.3.3   Yeast Two Hybrid System and Intracellular Antibodies   

 Cell - based assays that monitor the intracellular behavior of target molecules, rather 
than binding or catalytic activity of purifi ed proteins, are also being used in high 



throughput screening of protein interaction inhibitors. These assays offer an oppor-
tunity to discover entirely new classes of compounds, molecules that act primarily 
by modulating protein interactions in living cells. 

 The yeast two hybrid system is a cell - based genetic selection assay that has been 
successfully used to identify protein – protein interactions  in vivo . The model origi-
nally developed by Fields and Song  [63]  exploits the fact that transcription factors 
are comprised of two domains, a DNA binding domain and a transactivation domain. 
As an example, GAL4 protein of yeast ( Saccharomyces cerevisiae ) is a transcrip-
tional activator required for the expression of genes encoding enzymes of galactose 
utilization. The native GAL4 protein contains two domains: an N - terminal domain 
that binds to specifi c DNA sequences but fails to activate transcription; and the C -
 terminal acidic domain that is necessary to activate transcription but cannot initiate 
function without the N - terminal domain. The basic strategy of the two hybrid system 
involves two proteins of interest that are expressed as two different fusion proteins. 
One fusion protein, known as the bait, is fused to the DNA binding domain to bind 
at specifi c sites upstream of the reporter gene. The second fusion protein, known as 
prey, is fused to the transactivation domain. If a physical interaction occurs between 
the two proteins, it brings the GAL4 domain in suffi cient proximity to activate the 
GAL4 - dependent transcription of a reporter gene. There will be no expression of 
the reporter gene if the two proteins do not interact in the intracellular milieu. 

 The two hybrid system may not be a useful tool for all protein – protein inter-
actions. The limitation of the technique includes where the protein of interest is able 
to initiate GAL4 - dependent transcription. Toxicity of the expressed protein or mis-
folding of the chimeric protein inside the cell might result in a limited activity or 
inaccessibility of binding site to the other protein. Furthermore, some protein –
 protein interactions depend on posttranslational modifi cation (S − S bond, glycosyl-
ation, and phosphorylation) that may not appropriately occur in yeast. Two hybrid 
systems need the fusion protein to be targeted to the yeast nucleus and it might be 
a disadvantage for extracellular proteins. Weak and transient interactions are often 
the most interesting in signaling cascades. These are more rapidly detected in the 
two hybrid system in view of the signifi cant amplifi cation of the reporter gene in 
this system. 

 Intracellular antibodies are antibody fragments that are targeted and expressed 
inside the cells for interaction with cellular target antigens. This strategy can inhibit 
the regular function or in some cases mediate cell killing following antigen binding. 
Specifi c activity of certain intracellular proteins has been blocked by microinjection 
of full length antibodies  [64, 65]  or of hybridoma mRNA  [66, 67]  into the cytoplasm 
of various cell types. Recent advances in DNA technology and antibody engineering 
have allowed the development of specifi c, high affi nity antibodies to target antigens. 
These probes could be targeted intracellularly as unique nontoxic therapeutics. 
Recombinant antibody reductants that provide many of the essential features of 
antibodies are suitable forms to be expressed in vivo  or internalized effi ciently 
inside the cells. The recombinant single chain Fv fragment (scFv) has been the most 
widely used for intracellular antibodies  [68] . Intracellular single domain antibodies 
have also been isolated from yeast libraries with good antigen binding affi nities 
 [69] . 

 The fi rst step of intracellular antibody isolation is the derivation of the V regions 
of the heavy and light chains of a high affi nity monoclonal antibody against a 
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target antigen. The VH and VL sequences could be amplifi ed by RT - PCR of 
mRNA isolated from the hybridoma cells, assembled and cloned as a scFv  [70] . 
Alternatively, one of the in vitro  display systems, such as phage display  [60] , yeast 
display  [71] , or ribosome display  [72]  techniques, could be employed to generate 
the scFv libraries from immunized mouse spleen total mRNA and screen scFv 
libraries with the desired antigen to select specifi c scFv clones. Intracellular anti-
body capture technology  [73, 74]  has also been developed for  in vivo  screening 
of scFv libraries for a target antigen. This involves in vitro  biopanning of diverse 
scFv libraries developed by phage display, followed by in vivo  screening of 
antigen – antibody interaction using the yeast two hybrid system. The coding 
sequences of the antigen are cloned in one of the two hybrid vectors expressing 
the GAL4 DNA binding domain – antigen fusion protein. The coding sequence of 
scFv is cloned in the other two hybrid vector resulting in expression of GAL4 
activation domain – scFv fusion protein. Yeast cells cotransformed with both the 
vectors will result in the expression of the reporter gene if the antigen and scFv 
interact with each other. There will be no reporter gene expression if the antibody 
fragment does not functionally interact with the antigen inside the yeast cells. By 
this technology it is possible to select and isolate intracellular antibodies, which 
could widely interact with the target protein inside the cells to alter or affect the 
protein function. Such induced intracellular protein – protein interactions could be 
an effi cient pathogen neutralizing strategy for several viral and bacterial diseases 
 [68, 75] .   

  3.4   INHIBITORS OF PROTEIN – PROTEIN INTERACTIONS 

 As mentioned earlier, a large number of protein interaction complexes are emerging 
as potential targets for developing therapeutic agents. However, a big portion of 
these are ruled out at the onset due to the intricacies involved at the interaction site 
such as innate mutations and the atomic details of the binding site. The binding site 
may not present particular indentations, or if a pocket is present, its dimensions may 
be too small, or its geometry may be too shallow. Such features do not support tight 
binding of a drug - like molecule. Some of the above issues can be handled and a 
drug can be produced by generating antibodies against the target. In fact, therapeu-
tic antibodies, including chimeric, humanized, and multivalent antibodies, and anti-
body fragments have been utilized in several instances and comprise over 30% of 
biopharmaceuticals currently undergoing clinical trials  [76] . Several monoclonal 
antibodies against growth factors or their receptors are found effective in the treat-
ment of solid tumors  [77] . Antibodies tend to bind their targets with both high 
affi nity and specifi city and therefore block protein – protein interactions effi ciently. 
However, antibodies are incompatible for intracellular targets, encountering prob-
lems such as poor delivery due to their relatively large size and lower stability of 
their disulfi de - bonded structure in the reducing environment of the cell. Peptide 
inhibitors provide a much smaller substitute for in vitro  inhibition of protein – protein 
interactions but are often not stable in vivo  to be successful drugs. More stable vari-
ants, such as crosslinked peptides, peptide mimetics, and small molecule inhibitors, 
may prove to be better blocking agents for both intracellular and extracellular 
protein – protein interactions. 



  3.4.1   Peptide and Peptidomimetic Inhibitors 

 Specifi c recognition needed for a large protein surface seeks at least  ∼ 6   nm 2  area 
buried at the interface. The unique spatial distribution of the charged, polar, and 
hydrophobic residues at the interface are deemed important for recognition. Despite 
being conceptually simple, mimetics of the large interfacial area required for specifi c 
recognition remains a challenging endeavor. Nonetheless, steady progress has been 
made in the discovery of compounds that mimic protein surface and function. 

 A variety of peptide inhibitors have been reported over the last decade for block-
ing the MDM2 – p53 association  [11] . These peptides have been helpful in mapping 
out the interaction between the two proteins. The key interactions between MDM2 
and p53 involve a relatively small area represented by three amino acids, namely, 
Phe19, Trp23, and Leu26 of p53. Optimization of peptides has led to the discovery 
of several low nanomolar inhibitors of MDM2 that have recently been reviewed by 
Fotouhi and Graves  [11] . Peptide mimetics have also been explored in order to 
increase the metabolic and proteolytic stability over α  - peptide inhibitors. Schepartz 
and colleagues  [78]  targeted the HDM2 – p53 interaction with a 14 - helical structure 
made of beta amino acids to display the functional groups of Phe19, Trp23, and 
Leu26 in the same spatial orientation as found in p53. These synthetic β3  - peptides 
exhibited signifi cant helical character in aqueous buffer and one of the oligomers, 
1  (Fig.  3.11 ), selectively inhibited HDM2 interaction with nanomolar affi nity. Simi-
larly, Hamilton and associates  [79]  have utilized terphenyl scaffold to mimic one 
face of α  - helical peptides. Substitution of the three ortho positions of the scaffold 
projected one side of the molecule analogous to the i, i + 4, and i + 7 residues of an 
α  - helix. A terphenyl derivative with three hydrophobic side chains, compound  2
(Fig.  3.11 ), was found to bind specifi cally at the p53 binding site of HDM2 and 
exhibited a Ki  of 182   nM. More recently,  α  - helical peptidomimetics with the terphe-
nyl scaffold and more soluble terephthalamide scaffold inhibited the Bak BH3 – 
Bcl - X L  interactions in the low micromolar range  [80, 81] .   

 Verdine and co - workers  [82]  targeted the BID/ Bcl - X L  interaction by synthesiz-
ing hydrocarbon stapled helices to mimic the amphipathic α  - helix BH3 domain of 
BID. These molecules, for example, 3  (Fig.  3.11 ), with constraint helix became pro-
teolytically stable, cell permeable, and bound Bcl - X L  with nanomolar affi nity. In a 
cell - based assay, these compounds induced apoptosis and in an  in vivo  experiment 
inhibited the growth of human leukemia xenografts. Gellman and co - workers  [83]  
generated chimeric ( α / β  +  α ) - peptides that mimic the  α  - helical display of BH3 
domain of Bak. These peptides are tight binders and therefore potent inhibitors 
(Ki  = 0.7   nM) of Bak/ Bcl - X L  interaction. 

 RGD motif present in the extracellular matrix ligands, such as fi bronectin, was 
the fi rst integrin binding motif identifi ed. Since then, development of RGD mimetics 
that bind selectively to a single integrin has been a subject of intense research  [33] . 
Studies have primarily focused on four integrins —  α4β1 ,  α5β1 ,  αvβ3 , and  αIIbβ3  — that 
bind RGD containing ligands and are thought to have the most clinical signifi cance. 
An important RGD containing molecule that emerged out of these efforts is cyclo 
RGDf{NMe}V pentapeptide  [34] . This cyclic peptide specifi cally inhibits integrin 
αvβ3  with an IC 50  of 0.6   nM and is in Phase II clinical trials as an anticancer drug 
under the name cilengitide. The crystal structure (Fig.  3.12 ) of the cyclic peptide 
bound to the extracellular segment of αvβ3  integrin in the presence of Mn 2+  metal 
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    FIGURE 3.11     Structure of peptide or peptidomimetic inhibitors of protein – protein 
interactions. 
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    FIGURE 3.12     (a) Crystal structure of cyclo RGDf{NMe}V peptide (stick model) bound in 
the active site of integrin  α  v  β  3  (PDB accession code 1L5G  [84] ). The Asp side chain carboxyl 
of the cyclic peptide interacts with one of the Mn 2+ . The interacting residues (stick model) 
from integrin  α  v  β  3  are derived from both the  α  and  β  subunits. (b) Surface representation of 
the two subunits of integrin  α  v  β  3  bound to the cyclic peptide (stick model). 
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cation reveals important binding interactions in the complex  [84] . The peptide binds 
at the major interface between the αv  and  β3  subunits burying about 45% (355    Å  2 ) 
of its total surface area. The RGD sequence makes the main contact with the 
integrin subunits. The availability of the complex structure has prompted search 
of nonpeptide antagonists of αvβ3  integrin using detailed computer docking 
experiments.   

 Peptides have also been exploited in the design of antiviral agents  [85] . A suc-
cessful example in this case is the HIV antiviral drug Fuzeon ( 4 ), enfuvirtide, or T - 20, 
Fig.  3.11 )  [86] . Fuzeon is a 36 amino acid  α  - peptide that was introduced in 2003 into 
the clinics as a potent HIV entry inhibitor  [87] . HIV entry into the target cells takes 
place in several steps, beginning with the binding of viral envelope protein gp120 
to CD4 receptors on the target cells, followed by the exposure of the buried trans-
membrane fusion protein gp41 and conformational changes for the assembly of the 
hexameric six - helix bundle gp41 that allows the fusion to take place. As depicted in 
Fig.  3.11 , the gp41 is made of an N - terminal fusion peptide (FP), two heptad repeat 
regions HR1 and HR2, and a transmembrane region. Fuzeon ( 4 ) is a small peptide 
derived from the HR2 region of gp41 that competitively inhibits the last step of the 
viral fusion. Peptidomimetics of the HR2 region would serve as good alternate 
inhibitors of the HIV fusion, perhaps with better pharmacokinetic profi le than the 
α  - peptide. Hamilton and co - workers  [88]  have utilized the terphenyl derivatives to 
mimic the helical HR2 domain. The most potent molecule with hydrophobic side 
chains at the ortho position of the three phenyl rings effi ciently inhibits HIV - 1 infec-
tion in a cell fusion assay (IC 50  15.7    μ g/mL). Furthermore,  in vivo  studies of these 
molecules as anti - HIV agents are in progress. 

 Nozaki et al.  [89]  discovered that a small peptide fragment from the milk glyco-
protein human lactoferrin is able to block the entry of hepatitis C virus (HCV) 
particles into the hepatocytes. Virus entry inhibitors act extracellularly by blocking 
the binding of the virus to the host cell and this process of shielding the virus from 
attachment to the target cells seems more facile compared to targeting other intra-
cellular sites that require exacting precision. The authors demonstrated that the 
mechanism of action of this peptide fragment is by binding to the E2 protein of 
HCV, thereby blocking its entry into the host cell, rather than binding to the host 
cell - surface receptors. Peptide mimics of this 33 amino acid fragment that can resist 
proteolysis and are metabolically stable will be of great clinical interest, as there is 
no vaccine for HCV and current therapeutic strategies yield roughly 40% response 
rates. English et al.  [90]  have attempted to construct peptidomimetic entry inhibitors 
of human cytomegalovirus (HCMV).   The authors have prepared and tested several 
β  - peptides, oligomers of  β  - amino acid, as entry inhibitors of HCMV. The most potent 
β  - peptide,  5  (Fig.  3.11 ), inhibited HCMV infection in a cell - based assay with an 
IC50   ≈  30    μ M. 

 The above examples reveal the prospect of peptides and peptidomimetics as 
potential therapeutics for various diseases. Currently, there are more than 40 mar-
keted peptides worldwide and about 670 peptides are in either clinical or advanced 
preclinical phases. Several different classes of peptidomimetics are also entering the 
preclinical stages. Peptidomimetics like β  - peptides, peptoids, and azapeptides are 
receiving particular attention as these unnatural oligomers, also called foldamers, 
fold into a conformationally ordered state in solution, like the natural biopolymers. 
These unnatural oligomers do not have disadvantageous peptide characteristics 
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and therefore may generate viable pharmaceuticals. They are protease resistant, 
resistant to metabolism, and may have reduced immunogenicity relative to peptide 
analogues.

  3.4.2   Small - Molecule Inhibitors 

 A broad range of screening initiatives has helped identify several protein – protein 
complexes that are amenable to inhibition by small molecules. Several compounds 
have been identifi ed that help characterize proteins such as MDM2, Bcl - 2, and 
XIAP as drug targets. Additionally, small - molecule antagonists have recently been 
described for several new targets, including Rac1 – Tiam1,  β  - catenin – T cell factor, 
and Sur - 2 - ESX. Several of these small molecule protein – protein inhibitors are virtu-
ally at the threshold of becoming therapeutics. 

 Fotouhi and Graves  [11]  have reviewed some interesting new scaffolds and leads 
as MDM2 inhibitors. Among several reported molecules, only a series of compounds 
termed Nutlins ( 6 , Fig.  3.13 ) possessed  in vivo  activity and therefore drug - like pro-
perties  [58] . The Nutlins with a core imidazoline mimic the  α  - helical structure of 
the p53 backbone. The three aryl rings on the imidazoline are presented in the same 
space as the side chains of Phe19, Trp23, and Leu26 of p53. Furthermore, it was 
demonstrated by 2D NMR spectroscopy that they bind to MDM2 at the p53 - binding 
site. The specifi c interaction of Nutlins with MDM2 indeed translated to the selec-
tive growth inhibition of cells containing wild - type p53 (IC 50   ≈  1.5    μ M) and showed 
10 – 20 - fold selectivity for cells with active versus mutated p53. Compound  6  was well 
tolerated, orally bioavailable, and inhibited the growth of an MDM2 - overexpressing 
tumor in mice. It achieved a high steady - state concentration during the study, indi-
cating good pharmacokinetic properties.   

 Bad and Bak proteins bind to Bcl - 2 and Bcl - X L  by inserting  ∼ 20 residue long  α  -
 helical Bad/Bak BH3 peptide into a hydrophobic groove  [91] . Isolated BH3 - like 
peptides also bind in this groove, suggesting the existence of a small - molecule 
binding site. There has been signifi cant progress in developing compounds that bind 
in this groove on Bcl - 2 and/or Bcl - X L  and thereby augment cell death  [15, 16] . 
Recently, several molecules, such as 7   [92] ,  8   [93] , and  9   [94]  (Fig.  3.13 ), have been 
developed and are moving into clinical trials. GX15 - 070, a small - molecule inhibitor 
from Gemin X, is specifi cally designed to inhibit all of the antiapoptotic members 
of the Bcl - 2 protein family and is the fi rst such small - molecule inhibitor tested in 
clinical trials. Phase I clinical trials of GX15 - 070 in patients with refractory solid 
tumors and lymphomas showed promising results, advancing GX15 - 070 into Phase 
II clinical trials. 

 Small molecules that inhibit the BIR domains of XIAP have been found to be 
promising candidates for the development of therapeutic XIAP inhibitors  [4, 22] . 
Molecules have been developed to specifi cally target BIR2 and BIR3 regions of 
XIAP. This is due to the difference in the mechanism of caspase inhibition by the 
BIR2 and BIR3 domains and their ability to inhibit different caspases. The structural 
data available for the interaction between the BIR3 domain of XIAP and caspase - 9 
suggests that small molecules binding the BIR3 pocket of XIAP could mimic the 
action of SMAC and inhibit the interaction between XIAP and caspase - 9. These 
structural studies have facilitated several research groups toward the discovery of 
cell - active ligands for XIAP. Tripeptide inhibitors, such as  10  and  11  (Fig.  3.13 ) with 



unnatural amino acids were identifi ed and tested for their binding to the BIR3 
domain of XIAP by NMR spectroscopy and fl uorescent polarization assay  [95 – 97] . 
These molecules bound to the BIR3 domain at SMAC binding site with nanomolar 
affi nity. Unlike  10 , the BIR3 ligand  11  could activate apoptosis in a caspase - depen-
dent manner in the absence of additional stimuli. Li et al.  [98]  used computer - aided 
drug design to mimic SMAC peptide. Lead compound identifi ed included a tetrazoyl 
thioether moiety and was modifi ed to form a C 2  - symmetric diyne. The compound 
 12  (Fig.  3.13 ) bound the BIR3 domain of XIAP with an affi nity similar to SMAC 
peptides and also bound cIAP - 1 and cIAP - 2 in cells. The proposed bivalent binding 
mechanism of  12  to XIAP resembled the wild - type SMAC, inter acting simultane-
ously with the BIR2 and BIR3 domains of XIAP. SMAC is a dimer and interacts 
with the BIR2 and BIR3 domains at the same time to inhibit XIAP. 
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    FIGURE 3.13     Small - molecule inhibitors of protein – protein interactions in cancer. 
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 Compounds with polyphenylurea pharmacophore were identifi ed by screening a 
large combinatorial library for activation of caspase - 3 in the presence of XIAP  [99] . 
Compound  13  (Fig.  3.13 ) was found to be selective for caspases - 3 and  - 7 over 
caspase - 9 and did not inhibit the SMAC - XIAP interaction. The polyphenylurea 
inhibitors were toxic to a wide spectrum of malignant cell lines and demonstrated 
preferential toxicity to primary malignant cells over normal cells. In xenograft 
models, these compounds were found to delay the growth of tumors of the prostate, 
breast, and colon carcinoma cells without any unpleasant toxicity to the mice. 
The above examples of XIAP inhibitors clearly suggest additional studies are 
required to discern the feasibility of small - molecule XIAP inhibitors as potential 
therapeutics. However, the data already point to XIAP as an interesting target for 
therapy. 

 The strategy of inhibiting protein – protein interactions with a small molecule has 
also been applied to the design of antiviral and antibacterial compounds. White 
et al.  [100]  reported a small - molecule inhibitor of papilloma virus E1 – E2 dimeriza-
tion. The inandione inhibitor  14  (Fig.  3.14 ) binds to the hydrophobic pocket of the 
E2 protein as shown by the cocrystal structure of the complex (Fig.  3.15 )  [101] . A 
second weakly bound inandione molecule was also observed in the crystal structure, 
suggesting the presence of additional binding region on the E2 protein for exploiting 

    FIGURE 3.14     Small - molecule inhibitors of papilloma virus E1  –  E2 heterodimerization 
( 14 ), HCV - E2  –  CD81 interaction ( 15 ), and HIV - 1 protease dimerization ( 16 ). 
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inhibitor design. Todd and colleagues  [41]  developed molecules like  15  (Fig.  3.14 ), 
with a novel bis - imidazole scaffold, as mimics of helix D of CD81 that reversibly 
inhibited binding of HCV - E2 to CD81 receptor protein.     

 Inhibition of HIV - 1 protease dimerization is a promising strategy for anti - HIV 
drug design as opposed to the active - site directed inhibitors. In this regard, 
Chmielewski and co - workers  [102]  discovered a nanomolar inhibitor ( 16 ,  Ki  = 
71   nM, Fig.  3.14 ) of HIV - 1 protease dimerization using a focused library approach. 
More importantly, the potent molecules of this class were equally active against 
wild - type and a mutant form of the enzyme. The mutant enzyme was resistant to 
active - site directed inhibitors, suggesting the importance of alternative drug design 
strategy.

  3.4.3   Molecules Containing Porphyrin or Peptidocalixarene Scaffolds 

 Protein surface recognition by molecular architectures such as porphyrin and calix-
arene scaffolds has also been utilized in several instances. Hamilton and co - workers 
 [103, 104]  have used tetraphenylporphyrin derivatives to recognize the surface of 
cytochrome -c  and identifi ed subnanomolar binders. These molecules consist of 
peripheral anionic groups that bind positively charged Arg and Lys residues present 
on the cytochrome -  c  surface. The binding of phenylporphyrins induces unfolding of 
the protein, leading to disruption of tertiary and secondary structure. This denatur-
ation of the protein facilitates proteolytic degradation. Another group used similar 

FIGURE 3.15     The structure of a small - molecule inhibitor, an inandione bound to papilloma 
virus E2 protein (PDB accession code 1R6N [101] ). The inhibitor binding to E2 prevents 
E1 – E2 heterodimerization and disrupts viral replication. A second weakly bound inhibitor 
(top) suggests that additional functional groups could be added to the side chains of the 
inhibitor to gain binding affi nity.  
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porphyrin - based derivates for blocking potassium channels. Trauner and colleagues 
 [105]  used porphyrins to match the fourfold symmetry of the homotetrameric human 
Kv 1.3 potassium channel. Using competitive binding assays, the authors showed that 
tetraphenylporphyrin derivatives with peripheral cationic groups strongly interact 
with potassium channel, thereby reducing the current through the channel. 

 Several synthetic receptors containing calixarene scaffolds have been designed 
to bind protein surfaces to block protein – protein interactions or the entry of small 
molecules into the active site of certain enzymes  [106 – 109] . For example, calix [8] arene 
receptors decorated with basic amino acids competitively inhibit recombinant lung 
tryptase by binding to the acidic residues at the central junction of the tetrameric 
protein  [107] . These molecules, most likely, bind at the entrance of the active site 
and block the approach of the substrate. Similarly, peptidocalix [4] arenes have been 
shown to bind the surface of transglutaminase, inhibiting its acitivity  [108] . However, 
the competition assays suggest that these molecules bind to the surface of protein 
other than the enzyme active site, causing a conformational change in the protein 
or sterically blocking the approach of the substrate. Aachmann et al.  [109]  have 
designed β  - cyclodextrin that binds to a specifi c site on the insulin surface via its 
solvent - exposed aromatic side chain. These studies suggest that porphyrin and calix-
arene scaffolds are certainly promising candidates for protein surface recognition 
and further work in this area may lead to novel therapeutic agents.   

  3.5   CONCLUSION 

 Over the past decade, protein complexes have become prime targets for therapeutic 
intervention. This has opened immense opportunities in the treatment of hitherto 
incurable diseases such as cancer. A large number of protein pairs have been identi-
fi ed as drug targets with reported successful inhibitors, suggesting the possibility of 
fi ghting disease in near future. However, with the identifi cation of hundreds of pos-
sible drug targets in the  “ class ”  of protein – protein interaction complexes, picking 
targets for inhibition by peptides, peptide mimetics, or small molecules is going to 
be critical. Many protein pairs have interfaces where a small, linear region of one 
protein binds into a hydrophobic cleft of the other. Inhibitors for such interfaces 
have been discovered, using several approaches ranging from screening to structure -
 based design, that display suffi cient potency and cellular activity. Unfortunately, a 
potent, specifi cally binding molecule does not necessarily make a good drug. The 
true potential of these molecules as therapeutics will only be realized following 
successful clinical trials.  
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