
Regression Analysis
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History

The origin of the term ‘regression’ in statistics has an interesting history. 
Francis Galton (1822–1911) had deep interest in heredity, biometrics and 
eugenics (Crow, 1993). He found that sons of tall men to be shorter than 
their fathers. He called this phenomenon regression towards the mean, and 
thus the term ‘regression’ originated (Dupont, 2002). 

Unlike correlation, where there is no ‘dependence relationship’, 
there are dependent and independent variables in regression analysis. In 
regression analysis, y is assumed to be a random variable and x is assumed 
to be a  xed variable. The underlying assumption of regression analysis is 
that the dependent variable follows a normal distribution and scatter about 
the regression line.

In animal experiments regression analysis is used to evaluate cause 
(variable x) and effect (variable y) relationships; for example in a repeated 
dose administration study, the rate of decrease in body weight (y) as the 
exposure period (x) increases can be determined using regression analysis.

Linear Regression Analysis 

The regression equation is:
y = a + bx, where y = Dependent variable, x = Independent variable, a = 
Intercept and b = slope. 
The intercept represents the estimated average value of y when x equals 
zero and the slope represents the estimated average change in y when x 
increases/decreases by one unit. Slope and intercept are derived using the 
least-square method. 
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If the underlying assumptions of the least-square model are not met, 
the regression slope and intercept may be incorrect. Two factors that cause 
incorrect regression coef  cients are: (i) imprecision in the measurement 
of the independent (x) variable and (ii) inclusion of outliers in the data 
analysis (Cornbleet and Gochman, 1979). Outliers have profound effect 
on the slope (Farnsworth, 1990; Glaister, 2005).
The slope, b is calculated using the formula:
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The intercept a can be calculated from the equation:
y   = a + b xba

Let us work out an example for calculating b and a. Body weight of 
babies measured in different months is given in Table 10.1. Month is 
the independent variable (x) and the body weight is the dependent 
variable (y).
Table 10.1. Body weight of babies measured in different months

Age (Month) (x) Body weight (kg) (y) x2 y2 xy
1 3.8 1 14.44 3.8
2 4.2 4 17.64 8.4
3 4.8 9 23.04 14.4
5 5.7 25 32.49 28.5
6 6.4 36 40.96 38.4
7 6.9 49 47.61 48.3
8 7.1 64 50.41 56.8
9 7.8 81 60.84 70.2

10 8.6 100 73.96 86
12 10.4 144 108.16 124.8
x= 63

X =6.3
y= 65.7

Y =6.57
x2= 513 y2= 469.55 xy= 479.6

We shall calculate the slope, b  rst: 
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Once the slope, b is calculated, it is easy to calculate the intercept, a: 

y   = a + b x  

6.57 =  a + 0.5658 × 6.3 

a =  6.57  (0.5658 × 6.3) = 3.005 

a

a

Regression equation:
 y = a + bx 
y = 3.005 + 0.5658 x

Signi  cance of regression line can be determined by ANOVA (Table 10.2). 
We wish to test the hypothesis:
H0: b = 0 vs H1: b  0, where b is the slope. 
Table 10.2. Signi  cance of regression line by ANOVA

SS—Sum of squares

Source of variation Degrees of 
freedom 

SS Mean SS F 

Total SS for y = 
n
y

y
2

2 )(
 

9 37.90 4.21 - 

Reduction due to regression (Residual SS)  = 
2

2

x y
xy

N

x x
 

1 37.17 37.17 407 

Error 8 0.73 0.0913 - 

Since the calculated F-value is greater than the F-Table value (Table 
10.3), the null hypothesis is rejected and the alternative hypothesis (H1: b 

 0) is accepted. This means the slope of the regression line is signi  cantly 
different from 0, which implies that there is a signi  cant relationship 
between age and body weight of the babies. 
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The test of signi  cance is based on the assumption that the distribution 
of the deviation from the regression line (residual values) of all the values 
of dependent variable, y is the same for all the independent varable, x. 
The residue of each observation is given by the difference between the 
observed value and the  tted value of the regression line (Chan, 2004). Let 
us understand the terminology the residue of y, by plotting the data given 
in the Table 10.1. Figure 10.1 is the body weight vs age plot.

Table 10.3. F-distribution values at 0.1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
8 25.42 18.49 15.83 14.39 13.49 12.86 12.40 12.05 11.77 11.54

Figure 10.1. Body weight of babies measured in different months

Solid squares are the actual values. The line passing through the actual 
values is the regression line. For each value of x variable, the predicted y
value is computed using the regression equation, y' = 3.005 + 0.5658 x
(predicted y is denoted as y' in order to differentiate it from the actual y). 
Thus, y' is derived for each x, and the predicted y's are joined together to 
obtain the regression line. By closely observing the plot, one can  nd that 
all the actual values do not fall on the regression line, though they are very 
close to the regression line. Linear regression line is called a ‘best  t line’, 
since it best  ts the data points. The “best”  t line minimizes the squared 
vertical distances between the actual values and the line. An estimate 
of the squared vertical distances between the actual values and the line 
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(in other words, variation of the actual values from the predicted values) 
can easily be arrived at (vide Table 10.4). You would have noticed that this 
estimate is the sum of squares for error component given in the ANOVA 
Table (Table 10.2).

Table 10.4. Calculation of variation of the actual y values from the predicted y’ values

Age (Month) 
(x)

Body weight 
(kg) (y)

y'
(y' = 3.005 
+ 0.5658 x)

y – y' (y – y')2

1 3.8 3.5708 0.2292 0.052533
2 4.2 4.1366 0.0634 0.00402
3 4.8 4.7024 0.0976 0.009526
5 5.7 5.834 –0.134 0.017956
6 6.4 6.3998 0.0002 0.00000004
7 6.9 6.9656 –0.0656 0.004303
8 7.1 7.5314 –0.4314 0.186106
9 7.8 8.0972 –0.2972 0.088328

10 8.6 8.663 –0.063 0.003969
12 10.4 9.7946 0.6054 0.366509
- - - - 2(y - y') = 

0.733249

Con  dence Limits for Slope 

95% con  dence limits for the slope (b) can be derived by using the 
formula:

b ± t0.05.n–2 SE (b), where b is the slope (0.5658); t0.05.n–2 is the critical value 
for t at 5 % probability level for n–2 degrees of freedom (2.306);

SE (b) is the standard error of b = 2
0.0913 0.0280
116.1

ErrorMeanSS

x x
    

     

95% con  dence limits for the slope (b) = 0.5658 ± (2.306 x 0.0280) = 
0.5658 ±0.0646.
The signi  cance of slope can be tested using the t-test, when the number 
of samples is smaller than about 30 (Bailey, 1995):

t0.05.n–2 = 
2

/

b

s x x
 where t0.05.n–2 is the critical value for t at 5%

probability level for n–2 degrees of freedom; b is the slope (b=0.5658);
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 is the hypothetical value (  =0) (we are testing whether the observed b 
value is different from the hypothetical value); s is the square root of error 
mean sum of squares

( )3022.00913.0s ;  2x x =116.1. 

t0.05.n-2 = 17.20
0280.0
5658.0

1.116/3022.0
05658.0  

The derived t value (20.17) is greater than the Table t-value (2.228) at 5% 
probability level and 10 degrees of freedom; hence the slope is signi  cant. 

Comparison of Two Regression Coef  cients

The regression coef  cient, b measures how much the dependent variable, 
y changes (increases or decreases), for each unit change in the independent 
variable, x. The slopes of two similar studies can be compared using the 
formula:

d = 1 2

2 2
1 2

2 2

1 1 2 2

b b

s s

X X X X

 

Suf  x 1 refers to independent variable x1, and 2 independent variable x2. 
Since d is normally distributed, the difference between b1 and b2 can be 
examined for statistical signi  cance using t-test:

t = 1 2

2 2

1 1 2 2

1 1

b b

s
X X X X

, where

s=
2 2

1 1 2 2

1 2

( 2) ( 2)
4

n s n s
n n

The calculated t value is compared with the Table t-value at 421 nn  
degrees of freedom.
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R2

R2 is interpreted as the proportion of total variability of the outcome that 
is accounted by the model (Vittinghoff et al., 2005). In other words, it is 
the proportion of the variation in the y variable that is “explained” by the 
variation in the x variable. R2 is called as the ‘coef  cient of determination’. 
R2 can vary from 0 to1. An R2 close to 1 indicates that the actual y values 
fall almost right on the regression line. An R2 close to 0 indicates that there 
is little or no relationship between x and y.

Multiple Linear Regression Analysis

In most situations, the dependent variable is associated with more than one 
independent variable. For example, the body weight of rats measured in a 
repeated dose administration study is associated with several independent 
variables like, age, sex and feed consumption of the animals. Multiple 
regression analysis is a very useful tool for  nding out which independent 
variable/s has/have genuine relationship with the dependent variable. 
Multiple linear regression model is an extension of the simple linear 
regression model (Ambrosius, 2007). 
The regression equation for two independent variables is:
y = a + b1x1 + b2x2, where y = Dependent variable, x1 and x2 are the 
independent variables, a = Intercept and b1 = Slope of x1 and b2 = Slope 
of x2. 
We shall examine the steps involved in calculating multiple linear 
regression coef  cient:

2

1 1x x   = A

1 1 2 2x x x x
  

= B

2

2 2x x   = C

1 1x x y y
  

= D

2 2x x y y
  

= E

2
y y

              
=F
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b1    = 2BAC
BECD

 

 b2    = 2BAC
BDAE  

Once the slopes are derived, a can be calculated using the formula: 
y = a + b1 x1+ b2x2

Multiple correlation coef  cient can be computed using the formula:

R= 
22 '

'
yy

yy
, where 

R = Multiple correlation coef  cient; y = Actual value; y’= Predicted 
y (calculated using the regression equation, y = a + b1x1+ b2 x2;
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Signi  cance of the multiple regression equation can be checked by 
ANOVA (Table 10.5).

Polynomial Regression

Linear regression does not hold good, when the data of your dependent 
variable follows a curved line, rather than a straight line. Transforming the 
y or x or both the variables to their logarithms, reciprocals, square roots 
etc., may straighten certain curves, but not all. Another way to solve this 
issue is to use a curvilinear regression equation. Polynomial regression 
equation is an example of curvilinear regression equation, which is used 
to predict toxicological variables (Vogt, 1989). Given the complexity of 
the calculations in polynomial regression analysis, it is not being included 
in the coverage of this book. The purpose of touching upon polynomial 
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regression analysis, is to create awareness that before carrying out linear 
regression analysis one should ensure that the trend of the association 
between the two variables is linear. 

Misuse of Regression Analysis

Use of a regression equation is considered to be inappropriate for estimating 
an independent variable, rather than a dependent variable (Williams, 1983). 
It is important to understand the nature of the data before choosing a 
regression model. This can be easily done by plotting the data, which will help 
understanding the nature of the data and selecting appropriate regression model. 
One should not  t a straight line using a linear regression equation for a ‘non-
linear data’. 
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Analysis of More than Two Groups

Student’s t-test is used to test the equality of the means from two different 
populations (Rothmann, 2005). Use of Student’s t-test for comparing more 
than two groups can cause Type I error. This can be better understood from 
the example below:

Absolute weight of the liver of female mice in a 13-week repeated 
dose administration study is given in Table 11.1.
Table 11.1. Liver weight (g) of female mice in a 13-week repeated dose administration 
study

Group N Mean ± SD Tukey’s multiple 
range test

Repeated comparison 
with Student’s t-test

A B C A B C
A 10 1.083±0.057 - - - - - -
B 10 1.098±0.077 NS - - NS - -
C 10 1.154±0.050 NS NS - S NS -
D 10 1.273±0.062 S S S S S S

NS—Not signi  cant; S—Signi  cant (P<0.05).

Repeated analysis by Student’s t-test revealed a signi  cant difference 
between Groups A and C. Actual increase in liver weight in Group C 
compared to Group A is only 6.6%. In this case, the signi  cant difference 
between Groups A and C detected by repeated comparison with the t-test 
is caused by Type I error. When the groups were compared using Tukey’s 
multiple range test, no signi  cant difference was observed between Groups 
A and C (Tukey’s multiple range test is the ideal test in this situation, since 
the number of groups to be compared is more than two).
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There are several methods available for multiple comparison of means, 
but most of them have often been misused (Gill, 1990). An appropriate tool 
for analyzing more than two groups is analysis of variance (Wallenstein et 
al., 1980). One advantage of ANOVA (Analysis of Variance is abbreviated 
as ANOVA) is that it is easy to execute (Muir et al., 2006) and it has great 
utility and  exibility (Armstrong et al., 2000). Like Student’s t-test, for 
carrying out ANOVA, it is a prerequisite that homogeneity of variance 
prevails across all the groups (Moder, 2007) and the data has normal 
distribution. However, normality is rarely tested in ANOVA, because, a 
slight departure from normality does not affect the conclusion drawn from 
the analysis (Norman and Streiner, 2008). 

ANOVA is also an excellent tool for analysing data obtained from 
factorial experiments. In a factorial experiment, there can be several factors 
at several levels. For example, to test a drug against hypercholesterolemia 
in rats, we may use a standard drug for comparison. The test drug and the 
standard drug are called factors. We may test these drugs at different dose 
levels. Depending upon the number and levels of factors, an ANOVA can 
be one-way, two-way or multi-way. 

One-way ANOVA

One-way ANOVA is used to  nd if the given factor has signi  cant effect on 
the expected outcome of the experiment. Jaundice index (x) of a newborn 
baby measured in weeks 36, 38 and 40 is presented in Table 11.2. We want 
to examine if the factor (week) has any signi  cant effect on the jaundice 
index. 
Table 11.2. Jaundice index (x) of newborn baby

Week
36 (Group 1) 38 (Group 2) 40 (Group 3)
x1 13 x11 9 x21 5
x2 6 x12 11 x22 5
x3 11 x13 11 x23 4
x4 12 x14 10 x24 7
x5 14 x15 7 x25 7
x6 10 x16 7 x26 3
x7 9 x17 5 x27 3
x8 11 x18 8 x28 4
x9 11 x19 7 x29 5
x10 10 x20 10 x30 3
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Statistics
Estimates Week

36 (Group 1) 38 (Group 2) 40 (Group 3)
N 10 10 10

Mean ± SD 10.7 ± 2.2 8.5 ± 2.0 4.6 ± 1.5
Sum 107 85 46

Grand sum 238

Total sum of squares =  
N
x

xxxx
2

2
30

2
29

2
2

2
1

)(
)(  

        
= 9.291

30
)238()35613(

2
2222

           
Sum of squares of among the groups

        = 9.190
30

)238(
10
46

10
85

10
107 2222

Total sum of squares for error   = Total sum of squares—Sum of   
            squares of among the groups 

                   = 291.9–190.9 = 101
We have all the estimates required for constructing the ANOVA Table. See 
Table 11.3 given below:
Table 11.3. ANOVA Table

Source of variation SS DF Variance (MS) F-value P
Total 291.9 29 - - -

Groups 190.9 2 95.5 25.5 P<0.001
Error 101 27 3.74

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.
Note: There are 30 observations, hence the DF for SS total is 30–1 = 29; Total number 
of groups are three, hence the DF for SS groups is 3–1 = 2; DF for error SS = DF for SS 
total—DF for groups SS (29–2 = 27).

5.25
74.3

5.952
27calcF

Compare the derived F value with the value given in the F distribution 
Table (Table 11.4):



Multivariate Analysis  87

post hoc Comparison

ANOVA indicates that the jaundice index of the newborn baby is 
signi  cantly different among the groups. The question is, which group is 
different from the other group or groups? Are all the groups are different 
from each other? The possible comparisons that we can make in this 
particular example are:
Group 1 vs Group 2
Group 1 vs Group 3
Group 2 vs Group 3
There are several tests available in the literature for post hoc comparison. 
Few tests that are commonly used in pharmacology and toxicology are 
explained below:

Dunnett’s multiple comparison test

Dunnett’s multiple comparison test (Dunnett, 1955) is a widely used 
approach for comparing all groups with the control (Cheung and Holland, 
1991).

To compare the Jaundice indices of weeks 36 and 38 with that of 
week 40 (i.e., Group 1 vs Group 3 and Group 2 vs Group 3), Dunnett’s 
multiple comparison test is the most appropriate statistical tool. Here, we 
are considering Group 3 as some sort of ‘standard’ or ‘control’. Dunnett’s 
multiple comparison test should not be used for other comparison, such as, 
comparison between Group 1 and Group 2.
Comparison between Group 1 and Group 3:

001.005.7
8648.0

1.6

10
274.3

6.47.10 p

Table 11.4. F-distribution values at 0.1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10

27 13.613 9.019 7.272 6.326 5.726 5.308 4.998 4.759 4.568 4.412
N

1
—DF associated with the numerator (in this example, the DF associated with 95.5); 

N2—DF associated with the denominator (in this example, the DF associated with 3.74). 
Since the calculated F-value is greater than the Table value, it is considered that the 
jaundice index of the newborn baby is signi  cantly different among the weeks at 0.1% 
probability level. 
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Comparison between Group 2 and Group 3:

001.051.4
8648.0

9.3

10
274.3

6.45.8
p

The calculated values (7.05 and 4.51) are greater than the Dunnett’s 
t-test critical value given in Table 11.5. Dunnett’s t-test critical value at 3 
(numerator)/27 (denominator) degrees of freedom is 3.674

Hence, it is considered that Jaundice indices of weeks 36 and 38 are 
different from that of week 40.
Table 11.5. Dunnett’s t-test critical values (one-sided test at 0.1% probability level) 
(Yoshimura, 1987)

DF 2 3 4 5 6 7 8
27 3.422 3.674 3.821 3.922 3.999 4.061 4.114

Note: One-sided t-test is more appropriate in this example as it is an established fact that 
the jaundice index decreases in newborn babies as their age increases.

The power of the Dunnett’s test decreases as the number of groups 
increases. This could be better understood from the data given in Table 
11.6.

Table 11.6. Change in the power of the Dunnett’s test when the number of groups 
increases

Data and tests Control Low dose Mid dose High dose Top dose
Hemoglobin level 

(g/dl) of B6C3F1 male 
mice at Week 78

13.9, 14.3
13.7, 13.8
14.0, 14.3
13.9, 13.7
13.9, 13.5

14.0, 13.3
15.0, 13.8
14.1, 13.3
14.1, 13.9
13.8, 13.4

14.0, 13.8
13.7, 13.8
13.5, 14.1
14.2, 13.8
14.1, 14.0

14.1, 13.9
14.3, 14.0
14.2, 14.1
14.3, 14.4
14.4, 14.4

14.2, 14.2
14.7, 13.9
14.3, 13.7
14.3, 14.4
14.0, 14.3

N 10 10 10 10 10
Mean ± SD 13.9 ± 0.3 13.9 ± 0.4 13.9 ± 0.2 14.2 ± 0.2 14.2 ± 0.3

Rejection value in 
Dunnett’s Table at 0.05 

(two-sided)

2.45

Statistical result NS NS S
Rejection value in 

Dunnett’s Table at 0.05 
(two-sided)

2.53

Statistical result NS NS NS NS
 NS-Not signi  cant; S-Signi  cant (P < 0.05)
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In the four-group setting (control, low dose, mid dose and high dose), 
the high dose group showed a signi  cant difference from the control group, 
whereas in the in the  ve-group setting (control, low dose, mid dose, high 
dose and top dose), no signi  cant difference was seen in the high dose 
group compared to the control group, indicating a decrease in the power 
of Dunnett’s test to detect a signi  cant difference as the number of groups 
increases.

Tukey’s multiple range test (Yoshida, 1980)

Tukey’s multiple range test, also known as Tukey range test, Tukey’s honest 
signi  cance test (Tukey’s HST) or the Tukey–Kramer test (Mathews, 
2005), is used to compare all possible pairs of means.
This is exempli  ed by reviewing the example given in Table 11.2.
The variance of the error is 3.74 (Table 11.3).

6116.0
10
74.3xS

Find the Q (critical) value from the Table of Tukey (Table 11.7). In this 
example, Q at 5% probability level is 2.8882 [Number of groups = 2 ; 
Degrees of freedom for error = 30. Actual degrees of freedom of error is 
27 (Table 11.3); since this value is not given in Table 11.7, the value 30 is 
considered]. 

Table 11.7. Tukey’s critical value at 5% probability level (Yoshida, 1980)

Degrees of 
freedom for error

Number of Groups 
2 3 4 5 6 8 10

24 2.9188 3.5317 3.9013 4.1663 4.3727 4.6838 4.9152
30 2.8882 3.4864 3.8454 4.1021 4.3015 4.6014 4.8241

Next step is the calculation of signi  cant difference D. It is the product of 
xS  and Q ( xS ×Q):

7664.12.88826116.0D=S x  Q
If the difference between any two means is greater than D, the difference 
is considered signi  cant. 

The difference between the means is given in Table 11.8. All means 
are different from each other. 
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Table 11.8. Jaundice index of newborn baby-Difference between mean values

Estimates Week
36 (Group 1) 38 (Group 2) 40 (Group 3)

Mean 10.7 8.5 4.6
Difference of Means Group 1 and Group 2 2.2a Signi  cant (P<0.05)

Group 1 and Group 3 6.1b Signi  cant (P<0.05)
Group 2 and Group 3 3.9c Signi  cant (P<0.05)

Note: The superscripts of the mean values can be explained as—“Values bearing similar 
superscripts are statistically the same”. Since the superscripts of the mean values are 
different, it can be stated that each mean value is different from the other. 

Williams’s test

Most of the regulatory guidelines prescribe that the repeated-dose 
administration studies with rodents should be conducted with a minimum 
of three levels of doses (low, mid and high doses) and a control group 
(OECD, 1995). The high dose is chosen with the aim to induce toxicity 
but not death or severe suffering (OECD, 1998; EPA, 2000), whereas the 
low dose is chosen with the assumption that animals exposed to this dose 
level will not show any effect of the treatment compared to the control 
group (Kobayashi et al., 2010). However, these guidelines do not state 
how to determine the mid dose. It only indicates that this dose is required 
to examine dose dependency. According to Gupta (2007), the mid dose 
selection should consider threshold in toxic response and mechanism of 
toxicity. Choosing the mid dose is as important as choosing the high and 
low doses in repeated dose administration studies, since mid dose plays a 
determining role in establishing the dose dependency. It is not uncommon 
to encounter situations where mid dose alone shows an insigni  cant 
difference compared to the control group, whereas low and high doses 
show a signi  cant difference. In this situation the data are examined for 
a dose-related trend. Williams’ test is generally carried out to test dose-
related trend (Bretz, 2006). 

For the data that show a dose-related trend and a signi  cant difference 
by Dunnett’s test (Dunnett, 1955), the interpretation of the data analysis 
can be done in a straight forward manner. In a four group-setting repeated 
dose administration study, seven different situations can be expected 
(Table 11.9). Interpretation is relatively easier in situations 1–3, whereas 
it is dif  cult in situations 4–7, where further investigation on dose-related 
trend is required. 
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Absolute kidney weight of rats from a repeated dose administration 
study is given in Table 11.10. These data were analysed using Dunnett’s 
and Williams’ tests. Dunnett’s test showed a signi  cant difference in 
low and high dose groups, whereas Williams’ test showed a signi  cant 
difference in all the groups. 

Test Group 
: Significant difference, : No significant difference for the control group  

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 

Control        

Low dose        

Mid-dose        

High dose        

Investigation Not required Not required Not required Required Required Required Required 

Visual dose-
related trends Yes Yes Yes No No No No 

Table 11.9. Signi  cant difference shown by the treatment groups by Dunnett’s test—
Possible situations

Table 11.10. Absolute kidney weights of rats

Absolute kidney weights Dose group
Control Low Mid High

Individual data, (g) 2.558 3.269 3.116 2.706
2.789 3.428 2.791 3.293
2.764 3.083 2.981 3.535
2.707 3.532 3.337 3.387
2.793 3.546 2.432 3.064
3.041 2.677 2.934 3.102
3.000 2.822 3.388 3.279

- 3.656 2.911 -
- 3.271 2.798 -
- 3.348 3.208 -
- 3.031 2.876 -
- 3.742 2.703 -

Number of animal 7 12 12 7
Mean ± Standard deviation 2.807±0.167 3.284±0.329 2.956±0.273 3.195±0.269
Bartlett’s homogeneity test P = 0.4130 (No heterogeneity)

Dunnett’s test P = 0.0026* P = 0.5190 P = 0.0332*
Mean value used for 

Williams’ test
2.807 3.284 3.120 3.195

Williams’ test P<0.05* P<0.05* P<0.05*
Jonckheere’s trend test No signi  cant difference

*Signi  cantly different from control group.

from the control group

Mid dose
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Use of Williams’ test is not recommended when the number of animals 
in the groups is different (Williams, 1972) and extremely less (Williams, 
1971; 1972). But, Sakaki et al. (2000) stated that Williams’ test can be used 
even if number of the animals in a group differs about 2 times compared 
to other group/s.

Williams’ test analyzes the difference of the mean values between each 
treated group and the control, like Dunnett’s test, when the mean value of the 
treated groups changes in one direction. The example given in Table 11.11 
does not show a dose-dependence as the mid dose showed an insigni  cant 
liver weight compared to control (by Dunnett’s test). When the data were 
analysed by Williams’ test, signi  cance in the liver weight is observed in the 
mid dose group. The reason for this may be better explained by elucidating 
the calculation procedure of Williams’ test as given below:

Table 11.11. Liver weight of rats in a 4-week repeated dose administration study 

Group Liver weight (g), 
N=5, (Sum)

 Mean ± SD
(% change 

with respect 
to control)

Results of 
Dunnett’s 

test

Mean for 
Williams’ test

(% change with 
respect to control)

Results of 
Williams’ 

test

Control 10.7, 11.5, 11.6, 
12.0, 11.0 (56.8)

11.36 ± 0.51
(100) 

11.36 

(100) 
Low dose 11.6, 12.3, 12.5, 

12.3, 12.7 (61.4)
12.28 ± 

0.41 (108.1)
P<0.05 12.28 (108.1) P<0.05

Mid dose 11.2, 11.5, 11.6, 
11.5, 11.5 (57.3)

11.46 ± 
0.15 (100.9)

Not 
signi  cant

11.87 (104.5) P<0.05

High dose 12.2, 12.5, 12.0, 
11.9, 13.0 (61.6)

12.32 ± 
0.44 (108.5)

P<0.05 12.32 (108.5) P<0.05

Calculation procedure of Williams’ test:
(1) Control vs High dose

61.4 57.3 61.6 12.02
5 5 5

(Note: Numerator—sums of low dose + mid dose + high dose; denominator—
number of observations of low dose + mid dose + high dose). 

57.3 61.6 11.89
5 5

(Note: Numerator—sums of mid dose + high dose; denominator—number 
of observations of mid dose + high dose). 
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61.6 12.32
5

This largest value is used for the calculation of t value.

(Note: Numerator—sum of high dose; denominator—number of 
observations of high dose). 

We have all estimates for calculating the t value, except the mean SS 
of error variance. Let us analyse the data using ANOVA: 
Liver weight of rats in a 4-week repeated dose administration study

Statistics
Estimates Liver weight (g)

Control Low dose Mid dose High dose
N 5 5 5 5

Mean ± SD 11.36 ± 0.51 12.28 ±0.41 11.46±0.15 12.32 ± 0.44
Sum 56.8 61.4 57.3 61.6

Grand sum 237.1

Total sum of squares

          =  
N
x

xxxx
2

2
30

2
29

2
2

2
1

)(
)(  

= 6095.6
20

)1.237()139.115.117.10(
2

2222

Sum of squares of among the groups

             = 9895.3
20

)1.237(
5
6.61

5
3.57

5
4.61

5
8.56 22222

Total sum of squares for error = Total sum of squares—Sum of squares 
        of among the groups
    = 6095.6  – 9895.3  = 2.62

The ANOVA Table constructed is given below (Table 11.12).
Table 11.12. ANOVA Table

Source of 
variation

SS DF MS F value P

Total 6.6095 19 - - -
Groups 3.9895 3 1.32983 8.12 P<0.001
Error 2.62 16 0.16375

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.

=
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Mean SS for error is 0.16375. Now we have all the required estimates for 
calculating t:

751.3

5
1

5
116375.0

32.1236.11t

t-value is signi  cant at 5% level (Table 11.13, Number of groups-4; 
DF-16).
(2) Control vs Mid dose

87.11
55

3.574.61 This largest value is used for the calculation of 

t-value. 
(Note: Numerator—sums of low dose + mid dose; denominator—number 
of observations of low dose + mid dose). 

57.3 11.46
5

(Note: Numerator- sum of mid dose; denominator- number of observations 
of mid dose). 

11.36 11.87 1.993
1 10.16375
5 5

t

t value is signi  cant at 5% level (Table 11.13, Number of groups-3; 
DF-16).
(3) Control vs Low dose

61.4 12.28
5

(Note: Numerator- sum of low dose; denominator- number of observations 
of low dose). 

11.36 12.28 3.595
1 10.16375
5 5

t

t-value is signi  cant at 5% level (Table 11.13, Number of groups-2; 
DF-16). 
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The reason for Williams’ test showing a signi  cant difference in the 
weight of the liver of the mid dose group, when compared with the control 
group, is that the test used 11.87 as the mean value of the mid dose group 
for the comparison instead of the actual value (11.46). 

Williams’ test is a useful statistical tool in toxicology as it provides 
information on evidence of toxicity and also the dose level that causes 
the toxicity (Shirley, 1977). Williams’ test is similar to Dunnett, Tukey 
and Duncan multiple comparison (range) tests as it uses the error variance 
of the ANOVA (Nagata and Yoshida, 1997) in the calculation procedure. 
Williams’ test is a closed procedure. If no signi  cant difference between 
control group and highest dose group is seen, all the other treated groups are 
considered to have no signi  cant difference compared to the control group 
and no further analysis is carried out. If there is a signi  cant difference in 
the highest dose group, then the next highest dose level is examined for the 
signi  cant difference from the control. If this dose group does not show 
a signi  cant difference, no further analysis is carried out. But if it shows 
a signi  cant difference, the next highest dose level is examined for the 
signi  cant difference from the control group. Thus all the dose groups are 
sequentially examined.

Williams’ test is effective in monotonic and non-monotonic dose-
response relationships (Dmitrienko et al., 2007). Since estimated mean 
values are used in the calculation procedure of Williams’ test, it is likely 
that this test might show a dose-related trend, where it actually does not 
exist. It also may be noted in this context that, according to Gad and Weil 
(1988) dose-related trend is necessarily not evident in all the parameters. 

Duncan’s multiple range test (Shibata, 1970)

Duncan’s multiple range test is generally used for comparison of more 
than 2 groups, when the number of observations of the groups is different. 
We shall work on the example given in Table 11.2. The data is slightly 
modi  ed by changing the number of observations of Groups 1 and 2. The 
changed data are given in Table 11.14. 

Table 11.13. Williams’ Table

DF Number of groups
2 3 4 5 6 7 8 9

15 1.753 1.839 1.868 1.882 1.891 1.896 1.900 1.903
16 1.746 1.831 1.860 1.873 1.882 1.887 1.891 1.893
17 1.740 1.824 1.852 1.866 1.874 1.879 1.883 1.885
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Statistics
Estimates Week

36 (Group 1) 38 (Group 2) 40 (Group 3)
N 7 8 10

Mean ± SD 10.7±2.7 8.5±2.1 4.6±1.5
Sum 75 68 46

Grand sum 189

 Calculation steps:
Total sum of squares =

N
x

xxxx
2

2
25

2
24

2
2

2
1

)(
)(

 

 2.260
25

)189()35613(
2

2222   

Sum of squares of among the groups

  = 3.164
25

)189(
10
46

8
68

7
75 2222

 

Total sum of squares for error = Total sum of squares—Sum of squares 
                                                  among the groups
    = 260.2 – 164.3 = 95.9

Let us construct the ANOVA Table (Table 11.15).

Table 11.14. Jaundice index of newborn baby. Reproduced from Table 11.2. Number of 
observations of Groups 1 and 2 was changed

Week
36 (Group 1) 38 (Group 2) 40 (Group 3)

13 9 5
6 11 5

11 11 4
12 10 7
14 7 7
10 7 3
9 5 3

8 4
5
3
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Note: There are 25 observations, hence the DF for total SS is 25–1 = 24; 
Total number of groups are three, hence the DF for SS groups is 3–1 = 
2; DF for error SS = DF for total SS—DF for SS among groups (24 – 
2 = 22). 

2
22

82.2 19.1
4.3

F calc

Compare the derived F values with that of the value given in the F 
Distribution Table (Table 11.16.)

Table 11.15. ANOVA Table

Source of 
variation SS DF MS F value P

Total 260.2 24 - - -
Groups 164.3 2 82.2 19.1 P<0.001
Error 95.9 22 4.3

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.

Table 11.16. F-distribution values at 0.1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
22 14.380 9.612 7.796 6.814 6.191 5.758 5.438 5.190 4.993 4.832

N
1
—DF for the numerator; N

2
–DF for the denominator.

Since the derived F-value is greater than the Table value, it is 
considered that the jaundice index of the newborn baby is signi  cantly 
different among the weeks at 0.1% probability level. 
Let us carry out post hoc comparison using Duncan’s multiple range test. 
The  rst step is calculation of ‘least signi  cant range’, Rp:

Rp = Sm×Q, where 

groups ofNumber /
 anceerror varifor   MS

N
Sm  

Q  = Critical value from Duncan’s table 

= 0.72
4.3

25 / 3
Sm 

Note: 4.3 is variance of error (see Table 11.15); Total number of observation 
= 25; Total number of groups = 3).
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Critical Q values are obtained from Duncan’s Table (Table 11.17). Q 
values at 22 degrees of freedom (Degrees of freedom of the error component; 
see Table 10.15) for 2 and 3 Groups are 2.93 and 3.08, respectively. 
Table 11.17. Duncan’s critical values at 5% probability level (Shibata, 1970)

DF Group
2 3 4 5 6 7 8 9 10

22 2.93 3.08 3.17 3.24 3.29 3.32 3.35 3.37 3.39

2(0..05)

3(0..05)

0.72 2.93 2.11

0.72 3.08 2.22

R

R

Arrange the mean values orderly:
Group 1 (Week 36) = 10.7
Group 2 (Week 38) = 8.5
Group 3 (Week 40) = 4.6

Let us compare the largest sample means range, i.e., 10.7 and 4.6. The 
difference between these two mean values is 6.1, which is greater than the 
‘least signi  cant range’, R3. Hence, the difference between these two mean 
values (Group 1 and Group 3) is considered signi  cant. Let us compare 
the next set of mean values, 10.7 and 8.5. The difference between these 
two mean values is 2.2, which is greater than the ‘least signi  cant range’, 
R2. Hence the difference between the mean values of Group 1 and Group 2 
is also considered signi  cant.

Scheffé’s multiple comparison test (Scheffe, 1953)

We shall use the data given in Table 11.14 for demonstrating Scheffé’s 
multiple comparison test.

Statistics
Estimates Week

36 (Group 1) 38 (Group 2) 40 (Group 3)
N 7 8 10

Mean ± SD 10.7±2.7 8.5±2.1 4.6±1.5
Sum 75 68 46

Grand sum 189
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Comparisons:
Group 3 vs Group 2

05.086.7
)

8
1

10
1(3.4)13(

)5.86.4( 2

pF

Group 3 vs Group 1

05.082.17
)

7
1

10
1(3.4)13(

)7.106.4( 2

pF

Group 2 vs Group 1
2(8.5 10.7) 2.10 0.05( )1 1(3 1) 4.3 ( )

8 7

F p NS

Note: 4.3 is the variance of error (vide Table 11.15). 
These derived F-values are compared with the values given in F distribution 
Table (Table 11.18) given below:
Table 11.18. F-distribution values at 5% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297

N
1
-DF for the numerator; N

2-DF for the denominator. 

All the derived F values, except the one computed for the comparison 
between Group 2 and Group 1, are signi  cant at 5% probability level.

The Scheffé’s multiple comparison test is used for all-pair comparisons, 
like the Duncan’s multiple comparison test. However, the power to detect 
a signi  cant difference is low with the Scheffé’s multiple comparison test 
compared to that of the Duncan’s multiple comparison test (vide Table 
11.19).

Duncan’s multiple comparison test showed a signi  cant difference 
in the mid dose and high dose groups, whereas the Scheffé’s multiple 
comparison test did not show a signi  cant difference in these groups, 
indicating it’s low power to detect a signi  cant difference. Therefore, use 
of Scheffé’s multiple comparison test should be done with little caution in 
the safety evaluation studies with animals.
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Two-way ANOVA

It is an extension of one-way ANOVA. The difference in 2-way ANOVA 
is that it has 2 independent factors. The data is arranged in tabular fashion 
in such a way that the column represents one factor and the row, the other 
factor (Belle et al., 2004). 

An example is provided to illustrate the computations required in 
two-way ANOVA (Kibune and Sakuma, 1999).The diameter of the head 
of the three human embryos was measured by four observers. Each 
observer measured the diameter of three embryos. The data is arranged 
in a tabular fashion as given in Table 11.20. We are interested to know: 
1. Among the observers, is there any difference in the diameter of embryos 
measured 2. Among the embryos, is there any difference in the diameter of 
embryos measured and 3. Is there any simultaneous in  uence of observer 
and embryo in the diameter measured (interaction) 

Calculation steps:

 1)  Correction factor (CF) 
  =(Grand sum)2/N = 558.12/36=8652.1
 2)  Total sum of squares 
  = (14.32+14.02+......+12.92+13.82)-CF=8979.7–8652.1=327.6
 3)  Sum of squares of among the observers
  =1/9 (141.02+137.62+138.22+141.32)-CF=8653.2–8652.1=1.199

Table 11.19. Comparison of the power to detect a signi  cant difference between Scheffés 
and Duncan’s multiple comparison tests. LDH activity (U/l) of F344 female rats at week 
78 in a repeated dose administration study is given.

Estimates Control Low dose Mid dose High dose

-

168, 188, 181, 
250, 122, 89, 
125, 135, 211, 

204

112, 168, 175, 
241, 218, 49, 
49, 76, 66, 30

69, 86, 145, 
244, 135, 46, 

105, 40, 53, 73

43, 59, 73, 99, 
129, 181, 49, 69

N 10 10 10 8
Mean ± SD 167 ± 49 118 ± 76 100 ± 62 88 ± 47

In % of control - 71 60 53
ANOVA P < 0.05

Duncan’s test N.S. S S 
Scheffé’s test N.S. N.S. N.S.

N.S.—Not signi  cant (P > 0.05); S—Signi  cant (P < 0.05)
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 4)  Sum of squares of among the embryos
  =1/12 (167.92+236.32+153.92)-CF=8976.1–8652.1=324
 5)  Embryo  Observer (Interaction)
  =1/3 (43.12+59.42+38.52+41.02+58.92+37.72+41.42+58.82

  +38.02+42.42+59.22+39.72)-CF=8977.8–8652.1=325.7
  Sum of squares of interaction is calculated as given below:
  325.7–1.199–324= 0.501. The DF for interaction is (3–1) (4–1)=6.
 6)  Sum of squares of error
  327.6–1.199–324–0.501=1.9. The DF for error is 35–2–3–6=24

Table 11.20. Diameter of three human embryos (cm) measured by four observers

Observer 1 Observer 2 Observer 3 Observer 4 Sum
Embryo 1 14.3 13.6 13.9 13.8 167.9 (109)

14.0 13.6 13.7 14.7
14.8 13.8 13.8 13.9

Sum 43.1 41.0 41.4 42.4
Embryo 2 19.7 19.8 19.5 19.8 236.3 (154)

19.9 19.3 19.8 19.6
19.8 19.8 19.5 19.8

Sum 59.4 58.9 58.8 59.2
Embryo 3 13.0 12.4 12.8 13.0 153.9 (100)

12.6 12.8 12.7 12.9
12.9 12.5 12.5 13.8

Sum 38.5 37.7 38.0 39.7
Total sum 141.0 

(99.8)
137.6 (97.4) 138.2 (97.8) 141.3 (100) 558.1

Let us construct the ANOVA Table (Table 11.21): 
Table 11.21. Two-way layout ANOVA

Source of variation SS DF MS F value P
Embryo* 324 2 162 2051 P<0.001
Observer* 1.199 3 0.399 5.05 P<0.01

Embryo×Observer** 0.501 6 0.084 1.06 NS
Error 1.9 24 0.079

Total sum 327.6 35
*Main effects **Interaction, SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum 
of squares.
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The computed F values are compared with the F distribution values 
given in F distribution Table (Table 11.22). For the comparison of all the 
sources of variation (embryo, observer and embryo × observer interaction), 
the denominator remains the same (DF of error, which is 24), but the 
numerator differs. The F values should be compared with F distribution 
values at 2/24 (numerator/denominator) for embryo, 3/24 for observer and 
6/24 for embryo × observer interaction.

Table 11.22. F distribution values at 1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168

N
1
- DF for the numerator; N

2 –DF for the denominator.

Discussion:
 1.  Embryo: The F-value is greater than the Table F-value (2051>5.614); 

hence there is a signi  cant difference among embryos.
 2.  Observer: The F-value is greater than the Table F-value (5.05>4.718); 

hence there is a signi  cant difference among observers.
 3.  The embryo × observer interaction: The F-value is less than the 

Table F value (1.06<3.667); hence embryo×observer interaction is 
not signi  cant.

Since the interaction is not signi  cant, the ANOVA Table can be 
reconstructed excluding interaction as a source of variation. The SS of 
interaction is added to the SS of error and the DF of the interaction is 
added to the DF of error. The Table thus reconstructed after excluding 
interaction as a source of variation is given below (Table 11.23): 

Table 11.23. ANOVA Table excluding the interaction

Source of 
variation 

SS DF MS F value P

Embryo 324 2 162 2024 P<0.001
Observer 1.199 3 0.399 4.99 P<0.001

Error 2.40 30 0.080
Total sum 327.6 35 -

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.
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Dunnett’s Multiple Comparison Test and Student’s t Test—
A Comparison  

In pharmacological and toxicological experiments the number of groups 
usually employed is more than two. If the data obtained from such studies 
are anlaysed by Student’s t-test (picking up any two groups and analyzing 
by Student’s t-test), it may cause Type I error.

We analysed data obtained from several repeated dose administration 
studies in rats using Dunnett’s multiple comparison test and Student’s 
t-test to know to what extent repeated analysis by Student’s t-test shows a 
Type I error. Our  nding is given in Table 11.24.

Table 11.24. Analysis of data obtained from repeated dose administration studies in rats by 
Dunnett’s multiple comparison test and Student’s t-test

Item Number of analyses Dunnett’s multiple 
comparison test

Student’s t-testa

Body weight 528 223 246 (10)
Feed consumption 832 235 349 (49)

Hematology 352 123 159 (29)
Blood chemistry 576 215 272 (27)

Urinalysis 64 7 11 (57)
Organ weight 224 47 80 (70)
Organ weight/

body weight ratio
224 82 104 (27)

Total 2800 932 1221 (31)
aValues given in parentheses are percent increase compared to Dunnett’s multiple 
comparison test.

The number of items showing a signi  cant difference by Student’s 
t-test increased, compared to those showing a signi  cant difference by 
Dunnett’s multiple comparison test. Overall, there was an increase by 31% 
in the items, when they were analysed by Student’s t-test. This increase is 
due to the Type I error. Yoshimura and Tsubaki (1993) suggested that to 
assess the toxicity, Dunnett’s multiple comparison test is the appropriate 
statistical approach; on the contrary, from a consumer point of view, 
Student’s t-test, may be more appropriate. 
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Non-parametric and Parametric Tests—Assumptions

Statistical methods are based on certain assumptions. For applying 
parametric statistical tools, the assumptions made are that data follow 
a normal distribution pattern and are homogeneous. In many situations, 
the data obtained from animal studies contradict these assumptions, and 
are not suitable to be analysed with the parametric statistical methods. 
Non-parametric tests do not require the assumption of normality or the 
assumption of homogeneity of variance. Hence, these tests are referred to 
as distribution-free tests. Non-parametric tests usually compare medians 
rather than means, therefore in  uence of one or two outliers in the data 
is annulled. We shall deal with some of the most commonly used non-
parametric tests in toxicology/pharmacology.

Sign Tests

Perhaps, the sign test is the oldest distribution-free test which can be used 
either in the one-sample or in the paired sample contexts (Sawilowsky, 
2005). Sign test is probably the simplest of all the non-parametric methods 
(Whitley and Ball, 2002; Crawley, 2005). The null hypothesis of the sign 
test is that given a pair of measurements (xi, yi), then xi and yi are equally 
likely to be larger than each other (Surhone et al., 2010). Though the sign 
test is rarely used in toxicology, it can be used in certain pharmacological 
in vivo experiments to evaluate whether a treatment is superior to the other. 
The sign test may be used in clinical trials to know whether either of the 
two treatments that are provided to study subjects is favored over the other 
(Nietert and Dooley, 2011). 

The calculation procedure of sign test for small sample size (n <= 25) is 
different from that of large sample size (n>25): 
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Calculation procedure of sign test for small sample size

A study was conducted to evaluate the hypoglycemic effect of an herbal 
preparation in rats. Hyperglycemia was induced in rats by administering 
streptozotozin. Following the administration of streptozotozin, the blood 
sugar was measured in individual rats to con  rm hyperglycemia. Then 
the hyperglycemic rats were given the herbal preparation daily for 14 
consecutive days. On day 15, again blood sugar was measured in these 
rats. The blood sugar measured in hyperglycemic rats before and after the 
administration of the herbal preparation is given in Table 12.1.

Table 12.1. Blood sugar level (mg/dl) in hyperglycemic rats

Rat No. 1 2 3 4 5 6 7 8
Blood sugar level before 
administration of herbal 

preparation (Xa)

236 223 211 229 205 245 243 231

Blood sugar level after 
administration of herbal 

preparation (Xb)

155 156 172 198 209 181 231 231

Difference (Xb- Xa) –81 –67 –39 –31 +4 –64 –12 0

Sign -
(–1)

-
(–1)

-
(–1)

-
(–1)

+
(+1)

-
(–1)

-
(–1)

±
(0)

7

07

6

17 2
1

2
1

2
1 CCp

7

7 1 7 0
1
2

C C

0624.00078.00546.0

Note: 
)( rnr

n
Crn ; Rat No. 8, which did not show any change in the

blood sugar is not included in the analysis.
Since P=0.0624 is >0.05, it is considered that the decrease in blood sugar 
in rats administered with herbal preparation is insigni  cant. 

Calculation procedure of sign test for large sample size

The effect of two analgesics, drugs A and B was evaluated  ve times by 
32 doctors and their  ndings are given in Table 12.2. The objective of the 
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study was to know whether the analgesic effect of drugs A and B is similar 
or different. 

The pairs, which showed a difference of 0 (± sign) are excluded from 
the calculation procedure. In this example four pairs showed a difference 
of 0 (± sign). Therefore, number (n) of data becomes 32–4=28. Number 
of + sign, which indicates that the effect of drug B is better than drug A, is 
11. Z is obtained from the equation given below: 

94.0
65.2

145.115.0

r

rr
z

 

14
2
28Mean r

 

65.2
2
28)(SDr  

r = Total number of + sign = 11
The 0.94 0.9 0.36812p z  from normal distribution Table (Table 
12.3) is greater than 0.05 (two-sided test). Therefore, it can be concluded 
that both the drugs have similar effect.
Table 12.3. Normal distribution table (Yoshimura, 1987)

% Two-sided P Upper P
Z 2

0.8 0.423711 0.211855
0.9 0.368120 0.184060
1.0 0.317311 0.158655

Signed Rank Sum Tests

The major disadvantage of the sign test is that it considers only the 
direction of difference between pairs of observations, not the size of the 
difference (Mc Donald, 2009). Ranking the observations and then carrying 
out the statistical analysis can solve this issue. Signed rank sum test is 
more powerful than the sign test (Elston and Johnson, 1994).

Wilcoxon Rank-Sum test (Wilcoxon, 1945)

The Wilcoxon rank-sum test is one of the most commonly used non-
parametric procedures (Le, 2003). This is the non-parametric analogue to 
the paired t-test. The null hypothesis of Wilcoxon rank-sum test is that the 
median difference between pairs of observations is zero.
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The performance of six classes of two schools expressed in average 
scores is given in Table 12.4. We shall analyse this data using Wilcoxon 
rank-sum test. 
Table 12.4. Average scores of six classes of two schools

School Average score
School A 79.5 85.5 83.5 93.5 91.5 77.5
School B 95.5 87.5 89.5 98.0 97.5 81.5

Step 1: Combine the scores of both the schools and arrange them from the 
smallest to the largest. Then assign a rank from 1 to 12 to the scores as 
given in Table 12.5. (Note: if there are tied observations, assign average 
rank to each of them). 

Table 12.5. Ranks assigned to the combined scores of two schools

Scores arranged from smallest to largest Rank
77.5 1
79.5 2
81.5 3
83.5 4
85.5 5
87.5 6
89.5 7
91.5 8
93.5 9
95.5 10
97.5 11
98 12

Step 2: Arrange the rank corresponding to the original scores as given in 
Table 12.6 and calculate the sum of the ranks. 
Table 12.6. Ranks arranged to the original scores

School Ranks Sum of rank
School A 2 5 4 9 8 1 29
School B 10 6 7 12 11 3 49

Calculation Procedure:
The number of samples (classes) in each group = 6
Sum of rank of School B, R2=10+6+7+12+11+3=49
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222222
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Where,

12
49295.6

12 = Sum of number of samples (classes) of School A and School B 
11 = (Sum of number of samples (classes) of School A and School B) – 1
Let us calculate T

601.1
39

2
13649

T

Where,
13 = (Sum of number of samples (classes) of School A and School B) + 1
2 = Constant

Calculated T value (T=1.601) is smaller than the U( ) = 1.644854 at 
P= 0.05 (see Table 12.7). Hence, it is considered that there is no signi  cant 
difference in scores between the schools.

Table 12.7. Standard normal distribution Table (Yoshimura, 1987)

Two tailed P Upper P % point
2 U( )

0.05000 0.025000 1.959964
0.06000 0.030000 1.880791
0.07000 0.035000 1.811911
0.08000 0.040000 1.750686
0.09000 0.045000 1.695398
0.10000 0.050000 1.644854

Fisher’s exact test
Fisher’s exact test is used in the analysis of contingency tables with small 
sample sizes (Fisher, 1922; 1954). It is similar to 2 test, since both Fisher’s 
exact test and 2 test deal with nominal variables. In Fisher’s exact test, it is 
assumed that the value of the  rst unit sampled has no effect on the value 
of the second unit. It is interesting to learn how the Fisher’s exact test 
was originated. Dr Muriel Bristol of Rothamsted Research Station, UK 
claimed that she could tell whether milk or tea had been added  rst to a 
cup of tea. Fisher designed an experiment to verify the claim of Dr Muriel 
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Bristol. Eight cups of tea were made. In four cups, milk was added  rst 
and in the other four cups tea was added  rst. Thus, the column totals were 
 xed. Dr. Bristol was asked to identify the four to ‘tea  rst’, and the four 

to ‘milk  rst’ cups. Thus, the row totals were also  xed in advance. Fisher 
proceeded to analyse the resulting 2 × 2 table, thus giving birth to Fisher’s 
exact test (Clarke, 1991; Ludbrook, 2008).

Manual analysis of data using Fisher’s exact test is beyond the scope of 
this book, hence not covered. The power to detect a signi  cant difference 
is more with Fisher’s exact test than the 2 test as seen in Table 12.8.

Table 12.8. Power to detect a signi  cant difference—Comparison between 2 test and 
Fisher’s exact test

Incidence of pathological lesions
(Control vs dosed group)

P-value
Chi-square test* Fisher’s test ( )

0/5 vs 1/5 1.00000 0.50000
0/5 vs 2/5 0.42920 0.22222
0/5 vs 3/5 0.16755 0.08333
0/5 vs 4/5 0.05281 0.02381
0/5 vs 5/5 0.01141 0.00397
1/5 vs 2/5 1.00000 0.50000
1/5 vs 3/5 0.51861 0.26190
1/5 vs 4/5 0.20590 0.10317
1/5 vs 5/5 0.05281 0.02381
2/5 vs 3/5 1.00000 0.50000
2/5 vs 4/5 0.51861 0.26190
2/5 vs 5/5 0.16755 0.08333

*Yetes’s correction (Note on Yetes’s correction: 2 slightly overestimates the ‘difference 
between expected and observed’ results. This overestimation can be corrected by decreasing 
the ‘difference between expected and observed’ by 0.5). 

McKinney et al. (1989) reviewed the use of Fisher’s exact test in 71 
articles published between 1983 and 1987 in six medical journals. Nearly 
60% of articles did not specify use of a one- or two-sided test. The authors 
concluded that the use of Fisher’s exact test without speci  cation as a one- 
or two-sided version may misrepresent the statistical signi  cance of data. 
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Mann-Whitney’s U test

Mann-Whitney’s U test, a test equivalent of Student’s t-test for comparing 
two groups, was independently developed by Mann and Whitney (1947) 
and Wilcoxan (1945). The calculation procedure of Mann-Whitney’s U test 
is very much similar to Wilcoxan signed rank sum test. For understanding 
Mann-Whitney’s U test in a detailed manner, let us analyse the data given 
in Table 12.9. Our objective of the analysis is to  nd whether there is 
a signi  cant difference in hemoglobin content between Group A and 
Group B. 

Table 12.9. Hemoglobin content (g/dl) in two experimental groups of rats following the 
administration of a drug at 10 mg/kg b.w. (Group A) and at 20 mg/kg b.w. (Group B)

Group A 9.3 6.4 10.8 5.6
Group B 5.9 9.7 9.9 6.7

Let us pool the data and arrange them from the smallest to the largest, 
ignoring the Group to which they belong and rank them. Then, tag them 
with the identity of the Group to which they belong (Table 12.10).

Table 12.10. Ranking the data

Pooled data 5.6 5.9 6.4 6.7 9.3 9.7 9.9 10.8
Ranked data 1 2 3 4 5 6 7 8

Tagged data with 
respective group

A B A B A B B A

(Note for tied observations: Assign mean score for the tied observations. For example, if 
the value of ranks 2nd and 3rd is 5.9, give each value a rank of 2.5). 

Let na = Number of observations in Group A, nb = Number of observations 
in Group B, Ta = Rank sum for Group A, Tb = Rank sum for Group B: 
Ta = 1+3+5+8 = 17 
Tb = 2+4+6+7 = 19
Let us calculate U1 and U2:

 U1 = Ta- 2
1)(nn aa    = 17- 

2
1)4(4  = 7 

U2 = Tb- 2
1)(nn bb    = 19 - 

2
1)4(4  = 9 
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The smallest value 7 is the U value. 
The smallest U value, 7 is compared with the Mann-Whitney U Table 

value at n1=4 and n2=4. Relevant part of the U Table is reproduced in Table 
12.11.

Table 12.11. Mann-Whitney U Table

n1 n2 Two-sided One-sided
=0.05 =0.01 =0.05 =0.01

2 2 --- --- --- ---
3 3 --- --- --- ---
4 4 0 --- 1 ---
5 5 2 0 4 1
6 6 5 2 7 3

Since the computed U value is greater than the values given in the 
Mann-Whitney U Table, it is not signi  cant at 5% level by two-sided and 
one-sided tests (at 5 % signi  cant level the U Table values are 0 and 1 for 
two-sided and one-sided tests, respectively).
When the size of either of the groups exceeds 20, the signi  cance of U can 
be tested using the Z statistic: 

12/)1(
2/

2121

21

nnnn

nnU
Z

Z score for normal distribution is shown in Appendix 3. 
(A note on Z statistic: Z is designated to a standard normal variate. It 

is computed by subtracting the measured value from the population mean, 
then dividing by the population SD( ). A standard normal variate has 
a normal distribution with mean 0 and variance 1. The total area under 
a normal distribution curve is unity (or 100%). The notation, Prð(–1 < z 
< 1) = 0.6826, indicates that about 68% of the area is contained within 
± 1 SD).

Mann-Whitney’s U test works well in the analysis of data obtained 
from toxicity studies, where the number of animals in each group is 27 or 
less. By Mann-Whitney’s U test, a signi  cant difference (one-sided test) 
can be detected even with three animals in each group. Therefore, this test 
can be used in experiments with dogs, where each group usually consists 
of three animals/sex. This test seems to be extensively used for analyzing 
urinalyses data and pathological  ndings in repeated dose administration 
studies in rodents. 
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The power to detect a signi  cant difference is more with Mann-
Whiney’s U test than the Fisher’s test. Analysis of pathological  ndings of 
a repeated dose administration study by Mann-Whitney’s U and Fisher’s 
tests is given in Table 12.12.
Table 12.12. Analysis of pathological  ndings of a repeated dose administration study by 
Mann-Whitney’s U and Fisher’s tests

Groups Lesions grades and 
number of animals 
with lesions grade

Mann-Whitney’s 
U test

Lesions 
grades and 
number of 

animals with 
lesions grade

Fisher’s test

- ± + ++ P=0.0032
(One-sided)

- > ± P=0.0238 
(One-sided) Control 4 1 0 0 4 1

High dose 0 0 3 2 0 5

The computed P value for Mann-Whitney’s U test (P=0.0032) is 
considerably less than that of the Fisher’s test (P = 0.0238), indicating that 
the power to detect a signi  cant difference is more with Mann-Whitney’s 
U test than the Fisher’s test.

The power of the Mann-Whitney’s U test decreases when the groups to 
be compared have the same order of rank. There is a possibility in having 
the same order of rank, when the number of digits after decimal of the 
raw data is truncated. This can be better understood from the data given 
in Table 12.13.
Table 12.13. Change in the pattern of signi  cant difference detection as the number of 
digits after decimal of the raw data decreases. Absolute liver weight (g) of male rats from 
a 28-day repeated dose administration study is given in the Table.
Number of 
digits after 

decimal

Items Groups P
Control
(N = 6)

High dose
(N = 6)

Mann-Whitney’s
U test

3 Raw data 10.391, 11.442, 
13.653, 10.224, 
10.783, 10.414 

13.194, 11.444, 
13.701, 11.572, 
12.683, 12.661 

< 0.05

Mean ± SD 11.151 ± 1.301 12.543 ± 0.889
Mean rank 4.3 8.6

2 Raw data 10.39, 11.44, 
13.65, 10.22, 
10.78, 10.41

13.19, 11.44, 
13.70, 11.57, 
12.68, 12.66

Not signi  cant

Mean ± SD 11.15 ± 1.30 12.54 ± 0.89
Mean rank 4.4 8.5

1 Raw data 10.4, 11.4, 13.7, 
10.2, 10.8, 10.4

13.2, 11.4, 13.7, 
11.6, 12.7, 12.7

Not signi  cant

Mean ± SD 11.2 ± 1.3 12.6 ± 0.9
Mean rank 4.5 8.5
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The high dose group is signi  cantly different from the control group 
as per Mann-Whitney’s U test, when the data of both the groups have 
three digits after decimal and no data from the control group is repeated 
in the high dose group and vice versa. When the number of digits after 
the decimal of the data was truncated to two decimals, the value 11.44 
was repeated in both the groups, resulting in an insigni  cant difference 
between the control and high dose groups. When the number of digits 
after the decimal of the data was restricted to one decimal, the values 11.4 
and 13.7 were repeated in both the groups, resulting in an insigni  cant 
difference between the control and high dose groups. 

There are two methods for calculating the Mann-Whitney’s U test. 
When the number of observations in each group is small (N= <27), the 
Mann-Whitney’s U test can be calculated by using a ready reckoner (http://
aoki2.si.gunma-u.ac.jp/lecture/Average/u-tab.html). When the number of 
observations in each group is large (N= >27), it is calculated using the 
Z distribution Table method. Table 12.14 demonstrates the analysis of a 
simulated data with a strong dose-related pattern by Mann-Whitney’s U 
test using the Z distribution Table method. Table 12.15 demonstrates the 
analysis of a simulated data with strong dose-related pattern by Mann-
Whitney’s U test using the ready reckoner.

Table 12.14. Power of Mann-Whitney’s U test for three and four samples with a strong 
dose-related pattern (calculated by using Z distribution Table)

Number 
of samples

Group Raw data 
(ranked)

Mean rank Z value P value
Two-sided One-sided

3 Control 1, 2, 3 2 1.96 0.04953 0.02500
Dose 4, 5, 6 5

4 Control 1, 2, 3, 4 2.5 2.30 0.0209 0.010
Dose 5, 6, 7, 8 6.5

Table 12.15. Power of Mann-Whitney’s U test for three and four samples with a strong 
dose-related pattern (calculated by using the ready reckoner—http://aoki2.si.gunma-u.
ac.jp/lecture/Average/u-tab.html)

Number of 
samples

Group Raw data 
(ranked)

Mean rank U value P value
Two-sided One-sided

3 Control 1, 2, 3 2 0.0 Not signi  cant P<0.05.
Dose 4, 5, 6 5

4 Control 1, 2, 3, 4 2.5 0.0 P=0.05 P<0.05.
Dose 5, 6, 7, 8 6.5
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The Tables 12.14 and 12.15 indicate that there is not much difference in 
P values between Z distribution Table and ready reckoner methods, when 
the number of samples is as small as 3 to 4. However, we recommend a 
ready reckoner when the number of observations in each group is small 
(N= <27) and a Z distribution Table when the number of observations in 
each group is large (N= >27).

Kruskal-Wallis Nonparametric ANOVA by Ranks 
(Kruskal and Wallis, 1952)
The Kruskal–Wallis test is identical to one-way ANOVA with the data 
replaced by their ranks. It has also been stated that this test is an extension 
of the two-group Mann-Whitney’s U (Wilcoxon rank) test (Mc Kight and 
Najab, 2010). It assumes that the observations in each group come from 
populations with the same shape of distribution, so if different groups have 
different shapes (for example, one is skewed to the right and another is 
skewed to the left or they have different variances), the Kruskal–Wallis 
test may give inaccurate results (Fagerland and Sandvik, 2009). 

Calculation Procedure:
The data is ranked and the sum of the ranks is calculated. Then the test 
statistic, H, is calculated (hence this test is also called as Kruskal-Wallis H 
test). H is approximately chi-square distributed. Kruskal-Wallis test is not 
suitable if the sample size is small, say less than 5.
The formula for the calculation of chi-square value is given below 
(Equation 1):
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as given below (Equation 2):
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If the derived chi-square value is larger than the chi distribution Table 
value, then it indicates a signi  cant difference.

Let us work out an example. Lymphocyte count determined in four 
groups in a clinical study is given in Table 12.16.

Table 12.16. Lymphocyte counts (%) determined in a clinical study

Group A Group B Group C Group D
40.6 31.9 32.7 30.6
38.0 36.8 31.3 35.9
41.1 32.4 32.9 29.6
52.7 34.8 31.9 29.2
48.8 43.1 28.5 28.5
41.1 39.0 31.2 30.8
39.9 33.6 33.1 30.5
43.1 34.3 34.1 29.4
32.7 34.0 31.2 30.8
30.1 33.8 31.7 32.0

Mean 40.8 35.4 31.9 30.7
N 10 10 10 10

Number group = 4; Total number of samples = 40.

Combine the lymphocytes counts of all the four groups, and arrange 
them from the smallest to the largest. Then assign a rank from 1 to 40 
to them as given in Table 12.17. (Note: we have done a similar exercise 
while working out the example of scores for performance of six classes of 
two schools for explaining Wilcoxon rank-sum test; vide Tables 12.4 and 
12.5). 
Table 12.17. Ranks assigned to the lymphocyte counts (%) of four groups

Group A Group B Group C Group D
34 15.5 19.5 8
31 30 13 29
35.5 18 21 5
40 28 15.5 3
39 37.5 1.5 1.5
35.5 32 11.5 9.5
33 23 22 7
37.5 27 26 4
19.5 25 11.5 9.5
6 24 14 17

Mean rank 31.1 26 15.55 9.35
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Equation 2 (page 117) is used to calculate the chi-square value.
Let us calculate r1, r2. r3 and r4:

r = 34+31+ +19.5+6 =311 
 
r = 15.5+30+ +25+24=260 
 
r =19.5+13+ +11.5+14=155.5 
 
r = 8+29+ +9.5+17=93.5 

S is calculated as 2914.35 (see below):

35.2914
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X 2 is calculated as 21.3 (see below):
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=
5326.5

113659.7
 = 21.3 

The computed X 2 value is compared with the X 2 Table value (Table 12.18) 
at 4–1=3 degrees freedom. Since the computed X 2 value (21.3) is greater 
than the X 2 Table value (16.266), it is considered that there is a signi  cant 
difference in lymphocyte counts among the groups (P<0.001). 
Table 12.18. Chi square Table (Yoshimura, 1987)

DF\ 0.1 0.05 0.01 0.001
1 2.706 3.841 6.635 10.828
2 4.605 5.991 9.210 13.816
3 6.251 7.815 11.345 16.266
4 7.779 9.488 13.277 18.467
5 9.236 11.070 15.086 20.515

Comparison of Group Means

Wilcoxon Rank-Sum test or Kruskal-Wallis test provides the information, 
whether a signi  cant difference exists among the group means. If these 
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tests reveal a signi  cant difference, it does not indicate that every group 
means are signi  cantly different from each other. One of the robust tests 
used to  nd out which group means are signi  cantly different from each 
other is the Dunn’s multiple comparison test. Dunn’s multiple comparison 
test can be used to  nd the difference of 3 or more groups (Israel, 2008). 
Dunn’s multiple comparison test for more than three groups (Gad and 
Weil, 1986; Hollander and Wolf, 1973)

Let us review the example given in Table12.17. The mean rank values 
are reproduced in Table 12.19.

Table 12.19. Mean rank of lymphocyte (%) 

Group A Group B Group C Group D
Mean rank 31.1 26 15.6 9.4

N 10 10 10 10 Sum=40

Calculation procedure

Group A vs Group B:

Difference of mean rank: 31.1–26=5.1
The Probability value:

7.13
10
1

10
1

12
)41)(40(63.2

)3(4
05.0

00417.0Z

Group A vs Group C: 

Difference of mean rank: 31.1–15.6=15.5
The Probability value:

7.13
10
1

10
1

12
)41)(40(63.2

)3(4
05.0

00417.0Z

Group A vs Group D: 

Difference of mean rank: 31.1-9.4=21.7
The Probability value:

7.13
10
1

10
1

12
)41)(40(63.2

)3(4
05.0

00417.0Z
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4 (3) = Number of group Number of group – 1; The value 2.63 is obtained 
from Table 12.20 (the value, 0.00417 can be rounded to 0.0042. This 
value lies between 0.0043 and 0.0041 of Z value. In this case, 0.0043 was 
considered. The Z value corresponding to 0.0043 is 2.63). 

The numerator (40) is total number of samples, (41) is total number 
of sample + 1; The denominator 12 is a constant, whereas 10 is number of 
samples in the groups.

Table 12.20. Z score for normal distribution (Gad and Weil, 1986)

Z Proportional parts

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

The difference between the two mean scores is compared with the 
Probability (critical) value (13.7). If the difference between the two mean 
scores is greater than the Probability (critical) value, then the difference is 
considered signi  cant (see below given Table 12.21). 

Table 12.21. Signi  cant difference between the groups

Analysis Difference Critical 
value

P

Group A vs Group B 31.1–26=5.1 13.7 Not signi  cant (P>0.05)
Group A vs Group C 31.1–15.6=15.5 Signi  cant (P<0.05)
Group A vs Group D 31.1–9.4=21.7 Signi  cant (P<0.05)

Steel’s multiple comparison test for more than three groups 
(Steel, 1961)

The power of Steel’s test is higher than the other multiple comparison 
tests. Usually the number of groups employed is four (three treatment 
groups + one control group) in most of the animal studies. For a parameter 
which shows a strong dose-related pattern, a signi  cant difference can be 
detected by Steels’s test, even if the number of animals in a group is as low 
as four (Yoshimura and Ohashi, 1992; Inaba, 1994). Let us work out an 
example (Table 12.22).

Calculation procedure:

Control group vs Low dose group
 1)  Sum of rank of low dose group, R

2
=5+6+7+8=26
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 2)  Calculation of SS(S
2
) and Variance (V

2)
  S

2
= (1–4.5)2 + (2–4.5)2 + (3–4.5)2 + (4–4.5)2 + (5–4.5)2 + (6–4.5)2 + 

(7–4.5)2 + (8–4.5)2 = 42, where
4.5 = Sum of number of samples of control group and number of samples 
of low dose group + 1 divided by number of groups [(4+4+1)/2]= 4.5).

75.0
784

424
2V , where 

4 42 = Number of sample in control group × S
2
value, 42; 4×8×7 = 

Number of sample in low dose × Sum of number of samples of control 
and low dose groups ×Sum of number of samples of control and low dose 
groups – 1.
 3)  Calculation of t

2

309.2
866.0
2

75.0
2

144
4

26

2t , where 

26/4 =R
2
/4 (4=Number of sample in low dose), (4+4+1)/2 =(Number of 

samples in control group + Number of samples in low dose group + 1)/2; 
0.75 = 2V .
 4)  Calculated t

2 
value, 2.309 is compared with the critical value given 

in Table 12.23. As the size of each group is similar, the critical value 
becomes ( , 4) =2.062.

 5)  Since computed t
2 
value, 2.309 is greater than the Table value,2.062, 

it is considered that the low dose group is signi  cantly different from 
the control. 

Table 12.23. Dunnett’s t test critical values, one-sided at 0.05 probability level (Yoshimura, 
1987)

Number of group 2 3 4 5 6 7 8
1.645 1.916 2.062 2.160 2.234 2.292 2.340

Table 12.22. Quantitative data from a toxicity study

Group Control Low dose Mid dose High dose
1 5 9 13 
2 6 10 14 
3 7 11 15 
4 8 12 16 

Mean rank 2.5 6.5 10.5 14.5
Note: Ranked values are given. 
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Using the calculation procedure mentioned above for comparing 
control group vs low dose group, comparison between other groups 
(control group vs mid dose group and control group vs high dose group) 
can be made.

Rank Sum Tests—Some Points

An interesting example of a rank sum test analysis is given in Table 12.24. 
Creatinine value of F344 rats on week 52 in a repeated dose administration 
study is given in the Table.

Table 12.24. Creatinine value (mg/dl) of F344 rats at 52 weeks after dosing

Group Individual value (20 animals/group) Mean ± SD

Control 0.70 0.68 0.70 0.74 0.60 0.65 0.65 0.72 0.63 0.78 0.67 0.64 
0.63 0.66 0.88 0.73 0.57 0.79 0.78 0.65

0.69 ± 0.07

Low dose 0.72 0.64 0.66 0.66 0.88 0.68 dead 0.51 0.65 0.63 0.79 0.60 
0.69 0.68 0.62 0.57 dead 0.66 0.59 0.54

0.65 ± 0.09

Middle 
dose

0.56 0.59 0.66 0.68 0.57 0.67 0.70 0.83 0.86 0.68 0.60 0.68 
0.57 0.67 0.53 0.57 0.64 0.61 0.86 0.67

0.66 ± 0.10

High dose 0.51 0.59 0.49 0.60 0.58 0.62 0.51 0.57 0.60 2.96 0.56 0.65 
0.71 0.55 0.54 0.41 0.52 0.62 0.59 0.59

0.69 ± 
0.54**

**Signi  cantly different from control by rank sum test (P<0.01).

Bartlett’s test for homogeneity of variance showed a signi  cant 
difference, therefore Dunnett type rank test was used for the analysis 
of the data. The Dunnett type rank test revealed a signi  cant difference 
between the high dose group and the control group (P<0.01), though the 
mean values of these groups are the same (0.69). Close examination of the 
individual values of the high dose group revealed that one of the values 
among them (2.96) is extremely high compared with the other values. If a 
number slightly higher than 0.88, which is the next highest value among 
the high dose and control groups, replaces 2.96 of the high dose group, the 
mean value of this group becomes lower than that in the control group, 
but the rank is not changed, i.e., the result of the rank sum test will not be 
changed. Thus, the signi  cant difference between the control group and 
high dose group detected by the rank sum test is understandable, though 
the mean values of these groups are the same.

Another important point in rank sum test analysis is that one should 
know the minimum number of animals required in each group to detect a 
signi  cant difference. Table 12.25 shows the minimum number of animals 
required in four-group and  ve-group settings to detect a signi  cant 
difference.
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Table 12.25. Minimum number of animals in four-group and  ve-group settings necessary 
to show a signi  cant difference 

Test Four groups Five groups
Scheffé type 22 40

Hollander-Wolfe* 19 30
Tukey type 18 32

Dunnett type 15 26
Wilcoxon 8 12
Steel type 4 6

Mann-Whitney U** 3
*Dunn’s test. **Test for 2 group alone.

The power also depends on the number of treatment groups, which 
implies that inclusion of further non-signi  cant treatment group/s can 
result in overlooking signi  cant effects (Hothorn, 1990). 

As mentioned earlier, the power to detect a signi  cant difference is 
high with Steel’s test. A comparison of the power to detect a signi  cant 
difference between Dunnett type rank test and Steel’s test is given in Table 
12.26.

Table 12.26. Comparison of the power to detect a signi  cant difference between Dunnett 
type rank test and Steel’s test

Parameter analysed 
and tests

Control (N=5) Low dose 
(N=5)

Mid dose 
(N=5)

High dose 
(N=4)

Top dose 
(N=4)

Urine volume (ml) 2.4, 2.8, 2.4, 
2.4, 2.4

43, 45, 40, 
41, 46

62, 48, 68, 
52, 55

73, 72,
102, 104

52, 97, 99, 
103

Mean ± SD 2.5 ± 0.18 43 ± 2.55 57 ± 8.0 87.8 ± 
17.6

87.8 ± 24

Bartlett’s 
homogeneity test

P = 0.0001

Kruskal-Wallis’s 
test

P = 0.0006

Dunnett type rank 
test

NS S S S

Steel’s test S S S S
NS-Not signi  cant (P>0.05); S-Signi  cant (P<0.05)

The low dose group was not signi  cantly different, when analysed 
using Dunnett type rank test, whereas, this dose group was signi  cantly 
different, when analysed using Steel’s test. 

Most of the pharmacologists and toxicologists express their concern 
about use of non-parametric tests like rank sum tests, because of their 
low sensitivity in detecting a signi  cant difference. However, some 
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biostatisticians are of the opinion that the rank sum tests are more useful 
for analyzing the biological data than the parametric tests.
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