
Cluster Analysis

13

What is Cluster Analysis?

Cluster analysis is used to classify observations into a  nite and small 
number of groups based upon two or more variables (Finch, 2005). The 
term cluster analysis was  rst used in 1939 by Tryon (Tryon,1939). 
‘Numerical taxonomy’ is another term used for cluster analysis in some 
areas of biology (Romesburg, 2004). There is no a priori hypothesis in 
cluster analysis, unlike other statistical analysis. In cluster analysis the 
variables are arranged in a natural system of groups (Kirkwood, 1989). The 
heterogeneous data collected are sorted into series of sets. Data in a cluster 
are considered to be ‘similar’ or highly correlated to each other. Clusters 
can be exclusive (a particular variable is included in only one cluster) and 
overlapping (a particular variable is included in more than one cluster). 
Cluster analysis method is used in a variety of research problems (Hartigan, 
1975; Scoltock, 1982; Moore et al., 2010). It is applied extensively in the 
 elds of toxicogenomics (Hamadeh et al., 2002), genetics (Shannon et al., 

2003; Makretsov et al., 2004) and molecular biology (Furlan et al., 2011). 
Cluster analysis only discovers structures in data, but does not explain 
why such structures exist.
Cluster analysis can be carried out using several methods. Three commonly 
used methods are described below:

Hierarchical cluster analysis

As the name indicates, hierarchical cluster analysis produces a hierarchy 
of clusters. The clusters thus produced are graphically presented. This 
graphical output is known as a dendrogram (from Greek dendron ‘tree’, 
gramma ‘drawing’). The dendrogram can be used to examine how clusters 
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are formed in hierarchical cluster analysis (Schonlau, 2002). Hierarchical 
clustering can be of two types. One type is agglomerative clustering, 
where grouping of clusters is done small clusters to large ones. The other 
type is divisive clustering, where grouping of clusters is done large 
clusters to small ones. For illustrative purpose a dendrogram is given in 
Figure 13.1.

Figure 13.1. Dendrogram

The individual observations (A–I) are arranged evenly along the X 
axis of the dendrogram. They are called as leaf nodes. The vertical axis 
indicates a distance or dissimilarity measure. The height of a leaf node 
represents the distance of the two clusters that the node joins. In this 
dendrogram, the similarity of samples A and B is better than the other 
samples, and the  rst cluster is formed by these two samples. 

Ward’s method of cluster analysis (Ward, 1963; Ward and Hook, 1963)

This method is more ef  cient than hierarchical cluster analysis. Ward’s 
method uses the squared distances between-clusters and within-clusters 
(Rencher, 2002). Hence, Ward’s method is also called as the ‘incremental 
sum of squares’ method.
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k-means cluster analysis

This method of clustering is used when a priori hypothesis concerning the 
number of clusters in variables are available. k is the number of clusters 
that we desire. 

Data collected in repeated dose administration toxicity studies is 
enormous and are either qualitative or quantitative in nature. No observed 
adverse effect level (NOAEL) of the test substance is judged based on these 
data. Sometimes the toxicity effects manifested are not dose-dependent, 
which makes judging an NOAEL dif  cult. In such situations, cluster analysis 
is extremely useful for judging an NOAEL. Now the question is whether to 
consider only those data which show a signi  cant difference compared to 
control for the cluster analysis or all data collected in the study, irrespective 
of their difference from the control is signi  cant or not. 

We shall try to understand cluster analysis with the help of an example. 
Groups (10/sex/dose) of seven-week-old Crj: CD rats were administered 
the test substance at low, mid, high and top doses by gastric intubation 
daily for 28 days. A concurrent control group was also maintained. Rats 
were daily examined for general behavior. During the dosing period, 
body weight, food and water consumption of the animals were measured. 
Animals were sacri  ced on day 29 after overnight starvation for assessment 
of hematology, blood biochemistry, serum protein electrophoresis, 
urinalysis, myelogram and ophthalmologic and pathological (organ 
weight measurement and gross and histopathology) examinations 
(Kobayashi, 2004). 

Salivation in both sexes in the high dose group, staggering gait in the 
top dose group, slight suppression of the body weight gain in males in the 
top dose group, slight anemic trend in both sexes in the top dose group, 
higher values in alkaline phosphatase in both sexes in the high dose and top 
dose groups, lower values in albumin in males in the top dose group and in 
females in the high dose and top dose groups, bone fractures, mobilization 
of the sinusoidal cell and extramedullary hematopoiesis in the liver in both 
sexes in the top dose group and squamous hyperplasia, and erosion of the 
fore-stomach in both sexes in the high and top dose groups were observed 
as the main changes attributable to the repeated oral administration of 
the test substance. Based on above observations and determinations, the 
NOAEL was considered to be the mid dose for both males and females.

The data obtained in the study was analyzed statistically. Continuous 
data was subjected to Bartlett’s test for examining homogeneity of variance 
and was analysed (two-sided analysis) using the statistical techniques as 
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given in the decision tree proposed by Kobayashi et al. (2000) (Figure 
13.2). Gross and histopathological  ndings were analyzed by the Fisher’s 
exact test (Gad and Weil, 1986). The level of signi  cance for the above 
mentioned statistical analysis was set at P<0.05.

Bartlett’s test

Not Signi  cant                      Signi  cant

Dunnett’s multiple 
comparison test Steel’s test

Figure 13.2. Analytical methods by a decision tree

We shall analyse the data of the study described above using Ward’s 
method of cluster analysis (Milligan 1980). The software used for the 
analysis was JMP (version 5) of the SAS (SAS Institute, Japan).

Cluster-1
The items in the dosed groups that showed a signi  cant difference 
compared to the control group were—body weight gain, food ef  ciency, 
hematocrit, hemoglobin, red blood cell count, platelet count, neutrophil 
(%), lymphocytes (%), blood urea nitrogen, total protein, alanine 
aminotranferase, alkaline phosphatase, glucose, prothrombin time, 
albumin, albumin/globulin ratio, inorganic phosphorus in urine, lung 
weight, relative weights of the lung, liver, kidneys and testes, gross 
pathology  ndings, and microscopic  ndings. These items were grouped 
in Cluster 1. 

Each dosed group was divided into Group 1 and Group 2. Group 1 was 
further divided into Subgroup 1 and Subgroup 2 (Table 13.1). 

Table 13.1. Results of cluster analysis: Cluster 1—Items showing a signi  cant difference 
(P<0.05) compared to control

Dose Group Number of animals
Group 1 Group 2

Subgroup-1 Subgroup-2
Control 10 0 0

Low 10 0 0
Mid 10 0 0
High 2 8 0
Top 0 4 6
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The dendrogram obtained from the above data is given in Figure 13.3. 

Figure 13.3. Dendrogram of items that are signi  cantly different from control (Ward’s 
method)
Note: Animal identi  cation mark, dose group and animal number are given on the left side 
of the dendrogram.
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Cluster 2

The items which did not show a signi  cant difference compared to control 
were—food and water consumption, leucocyte count, lymphocyte count, 
reticulocyte count, activated partial thromboplastin time, total cholesterol, 
free cholesterol, triglyceride, phospholipid, non esteri  ed fatty acid, 
creatinine, total bilirubin, sodium, potassium, chloride, calcium, inorganic 
phosphorus, alanine aminotransferase, lactate dehydrogenase, alpha-1 (%), 
gamma (%), urine volume, urine speci  c gravity, and sodium, potassium, 
chloride, calcium and inorganic phosphorus in urine, and weights of the 
brain, heart, liver, kidneys, spleen, adrenals, testes, thyroid and thymus, 
and relative weights of the brain, heart, spleen, adrenals, thyroid and 
thymus. These items were grouped in Cluster 2. 

Each dosed group was divided into Group 1 and Group 2. Groups 1 
and 2 were further divided into two Subgroups each (Table 13.2). 
Table 13.2. Results of cluster analysis: Cluster 2—Items showing no signi  cant difference 
(P>0.05) compared to control

Dose group Number of animal
Group 1 Group 2

Subgroup-1 Subgroup-2 Subgroup-1 Subgroup-2
Control 8 2 0 0

Low 6 4 0 0
Mid 7 3 0 0
High 5 0 5 0
Top 0 0 5 5

The dendrogram obtained from the above data is given in 
Figure 13.4. 

As you would have observed from the dendrograms, when the number 
of observations are more, it is very dif  cult to distinguish each observation. 
Dendrograms are only suitable for hierarchical cluster analysis. Schonlau 
(2002) proposed a clustergram, which is suitable for non-hierarchical 
cluster analysis. For hierarchical cluster analysis, a radial clustergram was 
proposed by Agra  otis et al. (2007). In radial clustergram, clusters are 
arranged into a series of layers, each representing a different level of the 
tree. However, for small set of data, a dendrogram is still preferable to a 
clustergram. 
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Figure 13.4. Dendrogram of items that are not signi  cantly different from control (Ward’s  
method)
Note: Animal identi  cation mark, dose group and animal number are given on the left side 
of the dendrogram.
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Introduction

In pharmacology and toxicology experiments three or more than three 
treatment groups are usually used. One of the objectives for carrying 
out the experiment with three or more than three groups is to assess the 
dose-dependency of the test substance. Dose-dependency is an important 
concept for evaluating toxicological data (Hamada et al., 1997). In order 
to examine whether the change in a parameter observed in a study is dose-
dependent, a trend test is used. A trend test examines whether the results 
in all dose groups together increase as the dose increases (EPA, 2005). 
Trend tests have been recommended as a customary method for analyzing 
data from subchronic and chronic animal studies (Selwyn, 1995). For 
examining quantitative data, Jonckheere’s trend test (Jonckheere, 1954) 
is generally used. The frequency data are examined by Cochran-Armitage 
trend test (Cochran, 1954; Armitage, 1955). 

Jonckheere’s trend test

Jonckheere’s test is a frequently used nonparametric trend test for the 
evaluation of preclinical studies and clinical dose-  nding trials (Neuhäuser 
et al., 1999). Predicted trend can be evaluated using this test (Cohen and 
Holliday, 2001). Since it does not require speci  cation of a covariate, it has 
generated a continued interest (Jones, 2001). Jonckheere’s test is based on 
the idea of taking a score in a particular condition and counting how many 
scores in subsequent conditions are smaller than that score (Field, 2004).  
In order to use the Jonckheere’s test, the number of groups should be 3 or 
more than 3 and each group should have equal number of observations. 
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Water consumption of B6C3F1 mice fed on a diet containing a test 
substance at week eight is given in Table 14.1. There are three dose groups 
and one control group. Let us examine whether there is a trend in the water 
consumption across the groups. 
Table 14.1. Water consumption (g/week) of B6C3F1 mice fed on a diet containing a test 
substance at week eight

Group Group 1 
(Control)

Group 2 (Low 
dose)

Group 3 
(Mid dose)

Group 4 (High 
dose)

40.6 31.9 32.7 30.6
38.0 36.8 31.3 35.9
41.1 32.4 32.9 29.6
52.7 34.8 31.9 29.2
48.8 43.1 28.5 28.5
41.1 39.0 31.2 30.8
39.9 33.6 33.1 30.5
43.1 34.3 34.1 29.4
32.7 34.0 31.2 30.8
30.1 33.8 31.7 32.0

Mean 40.8 35.4 31.9 30.7
SD 6.7 3.4 1.5 2.1
N 10 10 10 10

Formula:
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If the computed J value is greater than the Z value given in the standard 
normal distribution Table, it is considered to be signi  cantly different.

Calculation of T values:
We need this information for the calculation of J. Arrange the data in each 
group in the order of prediction. Let us calculate T12 (Control Group vs Low 
Dose Group). For each control value the number of values that are lesser 
than it in the low dose group are counted, and their total is calculated:
T

12 
= 9+ 8+ 9+10+10+9+ 9+ 9+ 2+ 0 = 75  

The  rst value of the control group is 40.6 and there are 9 values of the low 
dose group, which are lesser than 40.6. The second value of the control 
group is 38.0 and there are 8 values of the low dose group, which are lesser 
than 38.0, and so on. 
Similarly, values are counted for other trends.
T

13  
=10+10+10+10+10+10+10+10+ 6+ 1  = 87  

T
 14  

=10+10+10+10+10+10+10+10+ 9+ 4  = 93  
T

 23 
= 5+10+ 6+10+10+10+ 9+10+ 9+ 9  = 88  

T
 24 

= 8+10+ 9+ 9+10+10+ 9+ 9+ 9+ 9  = 92  
T

 34  
= 9+ 8+ 9+ 8+ 0+ 8+ 9+ 9+ 8+ 8  = 76

where, T
13 is Control Group vs Mid Dose Group, T14 is Control Group vs 

High Dose Group, T23 is Low Dose Group vs Mid Dose Group, T24 is Low 
Dose Group vs High Dose Group and T34 is Mid Dose Group vs High Dose 
Group.

 Values: We also need to know how many times a value repeated 
within a group and across the groups. 43.1 is repeated twice-one each in 
Groups 1 and 2 ( 1), 41.1is repeated twice within the Group 1 ( 2), 32.7 is 
repeated twice-one each in Groups 1 and 3 ( 3), 31.9 is repeated twice-one 
each in Groups 2 and 3 ( 4), 30.8 is repeated twice within Group 4 ( 5), 
31.2 is repeated twice within Group 3 ( 6)and 28.5 is repeated twice-one 
each in Groups 3 and 4 ( 7). 

72
4)520)(110(10)5402)(140(40V

)240)(140(36
)22)(12(2)22)(12(2

)22)(12(2)22)(12(2)22)(12(2)22)(12(2)22)(12(2)210)(110(104

003.1717
)140(408

)12(2)12(2)12(2)12(2)12(2)12(2)12(24)110(10
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13.5
4.41
5.212

003.1717

5.0
4

41040
2

101011769288938775
22

J

Note: 40 is total number of observations, 10 is number of observations in 
each group, 4 is total number of groups and the denominators 2 and 4, and 
0.5 are the constants.
1+1+0+1+0+1= S

12
+S

13
+S

14
+S

23
+S

24
+S

34
; Number of values repeated 

across the groups (not within the groups)—the value 43.1 repeated in 
Groups 1 and 2 (S

12
=1), 32.7 is repeated in Groups 1 and 3 (S

13
=1), no 

value is repeated in Groups 1 and 4 (S
14

=0), 31.9 is repeated in Groups 2 
and 3 (S

23
=1), no value is repeated in Groups 2 and 4 (S

24
=0), and 28.5 is 

repeated in Groups 3 and 4 (S
34

=1).
Computed value for J=5.13 is greater than the point and ( ) = 3.290 

(Table 14.2). Therefore, it could be stated that there is a dose-related 
trend in the decrease of water consumption of B6C3F1 mice fed on diet 
containing the test substance at week eight.
Table 14.2. Standard normal distribution Table (Yoshimura, 1987)

Two tailed P Upper P % point
2 U( )

0.00100 0.000500 3.290527
0.00200 0.0010000 3.090232

The Cochran-Armitage test

The Cochran-Armitage trend test is commonly used to examine whether 
a dose-response relationship exists in toxicological risk assessment, 
carcinogenicity studies and several other biomedical experiments (Mehta 
et al., 1998) including mutagenicity studies (Kim et al., 2000). It is also 
widely used in genetics and epidemiology to test linear trend (Buonaccorsi 
et al., 2011). The Cochran-Armitage test for trend is used in categorical 
data analysis. It can be used to test for linear correlation between a binomial 
response and an ordinal group variable (Walker and Shostak, 2010). In 
1985, the US Federal Register recommended that the analysis of tumour 
incidence data is carried out with a Cochran-Armitage’s trend test (Gad, 
2009). 

The presence of the antibody to the house dust was investigated 
in individuals of different age groups (see Table 14.3). Let us examine 
whether there is a tendency to increase the antibodies to the house dust as 
the age of the individuals increases.
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A value of 10 is assigned to the age forties. Half of the value of the age 
forties (10/2=5) is assigned to the age  fties and half of the value of age 
 fties (5/2=2.5) is assigned to the age sixties. The value assigned for the 

age thirties is 20 (10x2). 
Number of group = 4, Sum of number of sample = 40, rate of positive in 
total = (2+4+6+8)/40= 20/40= 0.5

8495.0
40

301.110000.110699.010398.010(Mean

2
2

2 2 2 20.5 (1 0.5) 10 (0.398 0.8495) (0.699 0.8495) (1.000 0.8495) (1.301 0.8495)

(2 0.398 4 0.699 6 1.000 8 1.301) 40 0.5 0.8495
X

9.0601 8.000
1.1325

From the chi-square Table (Table 14.4), for one degree of freedom, we 
 nd that the calculated value (8.000) is greater than the chi-square Table 

value (6.635) at 0.01 probability level. Hence, we conclude that there is 
a tendency to increase the antibodies to the house dust as the age of the 
person increases.

Table 14.3. Individuals of different age groups expressing antibodies to house dust

Age Conversion 
value

Independent variable 
(log transformed)

Number of 
investigations

Number of 
antibody 
positives

One’s sixties 2.5 0.398 10 2
One’s  fties 5 0.699 10 4
One’s forties 10 1.000 10 6
One’s thirties 20 1.301 10 8

Table 14.4. Chi-square (Yoshimura, 1987)

DF
0.100 0.050 0.010 0.001

1 2.705 3.841 6.635 10.82
2 4.605 5.991 9.210 13.81
3 6.251 7.814 11.34 16.26
4 7.779 9.487 13.27 18.46
5 9.236 11.07 15.08 20.51
6 10.64 12.59 16.81 22.45
7 12.01 14.06 18.47 24.32
8 13.36 15.50 20.09 26.12
9 14.68 16.91 21.66 27.87
10 15.98 18.30 23.20 29.58
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Armitage (1955) recommended the Cochran-Armitage test in case there 
is no a priori knowledge of the type of the trend. The Cochran-Armitage 
test is asymptotically ef  cient for all monotone alternatives (Tarone and 
Gart, 1980). But, this test should not be used for the data showing an extra-
Poisson variability (Astuti and Yanagawa, 2002), where estimated variance 
exceeds estimated means. Antonello et al. (1993) stated that Tukey trend 
test is more powerful for monotonic dose-response toxicologic effects than 
the pair-wise comparison tests. But dichotomous endpoints are frequently 
observed in several toxicologic effects. For analysing dichotomous 
endpoints, Neuhauser and Hothorn (1997) proposed a trend test analogous 
to the nonparametric Jonckheere’s trend test. 

We propose Jonckheere’s trend test for the analysis of quantitative 
data, such as body weight, erythrocyte count, alkaline phosphatase and 
organ weights. For qualitative data, such as a macroscopic-, microscopic- 
pathological  ndings and urinalysis (color, pH, protein, glucose, ketone, 
bilirubin and urobilinogen) we propose Cochran-Armitage test.
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Introduction

Survival analysis is one of the oldest  elds of statistics, going back to 
the 17th century. The  rst life-table was presented by John Graunt in 
1662 (Kreager, 1988). Life-tables are used extensively in analysing the 
mortality data obtained from toxicology studies, especially carcinogenicity 
and long-term repeated dose administration studies (Portier, 1988; FDA, 
2007) and ecotoxicology studies (Gentile et al., 1982; Van Leeuwen et al., 
1985; Bechmann, 1994). A major advancement in the survival analysis 
took place in 1958, when Kaplan and Meier proposed their ‘estimator 
of the survival curve’ (Kaplan and Meier, 1958). Since then, the  eld of 
survival analysis progressed signi  cantly with the contributions from 
several statisticians (Mantel and Haenszel, 1959; Cox, 1972; Aalen, 1976; 
Aalen, 1980; Diggle, et al., 2007; Aalen et al., 2008). The term “survival” 
is a bit misleading. Originally the analysis was concerned with time 
from treatment until death, hence the name, “survival analysis”. Survival 
analysis is a collection of statistical procedures for data analysis for which 
the outcome variable of interest is time until an event occurs (Kleinbaum 
and Klein, 2005). According to Akritas (2004), survival analysis is a 
method for the analysis of data on an event observed over time and the 
study of factors associated with the occurrence rates of this event. The 
event could be the time until a generator’s bearing seizes, the time until 
a patient dies or the time until a person  nds employment (Cleves et al., 
2008). Survival analysis can be used in many  elds, such as medicine, 
biology, public health and epidemiology (Kul, 2010). In pharmacology 
and toxicology survival analysis is used in analyzing the events like time 
to death, time to signs occurrence, disappearance and reoccurrence, time 
to recovery etc. of the experimental animals.
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Another terminology that we need to understand in survival analysis 
is ‘censored observation’. When animals do not have an event during the 
observation time, they are described as censored. Censored animals may 
or may not have an event after the end of observation time.

Hazard Rate

‘Hazard rate’ is an important concept in survival analysis. It provides 
information on the risk of event happening as a function of time, condition 
on not having happened previously (Aalen et al., 2009), whereas survival 
curve provides information on how many have survived upto a certain 
time. Hazard function can be estimated using the equation:
H (t) = Number of individuals experiencing an event in interval beginning 
at t/(number of individuals surviving at time t) x (interval width)

The hazard function describes the risk of an outcome of an event in 
an interval after time t, conditional on the individual having experienced 
the event to time t. The hazard function is useful in determining whether 
toxicity is constant over time, or it increases or decreases as the exposure 
continues (Wright and Welbourn, 2002). 

Kaplan-Meier Method

Survival analysis is normally carried out using Kaplan-Meier method or 
the log rank test. The log rank test is ideal for the analysis of two groups. 
The Kaplan–Meier estimator uses product-limit methods to estimate the 
survival ratio (Kaplan and Meier, 1958). This is a nonparametric maximum 
likelihood estimate of survival analysis and is used in animal experiments 
to measure the fraction of animals that lives after treatment.

Distribution of the survival time T from the start of the experiment 
(  rst dose administration) to the event of interest (for example mortality) 
is considered as a random variable. The survival rate, St, is de  ned as the 
probability that an animal survives longer than t units of time:
St=P (T> t); for example, if t is in years, S2 is the two-year survival rate; 
if S2=P (T> 2)=0.10, it indicates 10% is the probability the time from a 
treatment to death is greater than 2 years

Kaplan-Meier product-limit estimator

i

ii
t r

dr
S ,
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ri is the number of animals lived just before ti; di is the number of animals 
which died in ti.  denotes the product (geometric sum) across all cases 
less than or equal to t. Kaplan-Meier product-limit estimator measures the 
fraction of animals living for a certain amount of time after treatment.

Let us review an example to understand Kaplan-Meier product-limit 
estimator. The survival rate of F344 rats in a 110-week chronic toxicity 
study is given in Table 15.1. The experimental group of rats (20 rats/group) 
was treated with 1000 ppm pesticide in diet. The control group of rats (20 
rats/group) was given normal diet without the pesticide.

Table 15.1. Survival rate of F344 rats in a 110-week chronic toxicity (Funaki and Origasda, 
2001)

Control group (Normal diet) Treatment group (1000 ppm pesticide in 
diet)

Animal 
ID-No.

Survival 
period 
(week)

Survival 
rate (st)

Size of 
effective 

sample (n’)

Animal 
ID-No.

Survival 
period 
(week)

Survival 
rate (st)

Size of 
effective 

sample (n’)
1001 85 0.950 20 1101 66 0.900 20
1002 87 0.900 19 1102 66
1003 95 0.800 18 1103 62 0.850 18
1004 95 1104 63 0.800 17
1005 99 0.650 16 1105 68 0.750 16
1006 99 1106 70 0.650 15
1007 99 1107 70
1008 101 0.550 13 1108 72 0.550 13
1009 101 1109 72
1010 102 0.500 11 1110 75 0.400 11
1011 103 0.350 10 1111 75
1012 103 1112 75
1013 103 1113 77 0.300 8
1014 104 0.250 7 1114 77
1015 104 1115 78 0.57 7
1016 106 0.150 5 1116 79 0.154 5
1017 106 1117 79
1018 110 0.050 3 1118 80 0.051 3
1019 112 0.025 2 1119 80
1020 120 - 1 1120 88 - 1

The survival rate is calculated using the equation:

i

ii
t r

dr
S



146 A Handbook of Applied Statistics in Pharmacology

Calculation procedure of St is given below by working out few selected 
survival period of control group: 

Week 85 (S85): 20
120950.0

Week 87 (S87): 19
119950.0900.0

Week 95 (S95): 18
218900.0800.0

Week 112 (S112): 2
1205.0025.0  

Thus St is calculated for all survival periods of control group and given in 
Table 15.1.
Calculation of standard error of St:

n
SE

)S1(S tt

Let us calculate SE for (S104):

Week 104 (S104): 7
2735.025.0

164.0
7

)25.01(25.0
SE

Survival rate at 95% con  dence interval is:
0.25 (1.96 0.164) 0.25 (1.96 0.164)∼ =0–0.57

The 95% con  dence interval exploded in a wide range, because of the 
small sample size (N=7).

Similarly survival rate of the treatment group is computed and given in 
Table 15.1. Plot of survival curves is an important part of survival analysis 
(Freeman et al., 2008). A plot of the survival curves of data (Table 15.1) is 
given in Figure 15.1.

Though the survival curves provide a good information on the mortality 
rates in two groups, the comparison of the curves should be made using a 
statistical tool (Altman, 1991). Log-rank test is the common method used 
to compare survival curves (Cox, 1972). This test assigns equal weight 
to each event at whatever time it occurs (Tinazzi et al., 2008). The null 
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hypothesis for the log-rank test is that there is no difference between 
the survivals of two or more populations that are being compared. The 
comparison is based on the difference between the observed number of 
events in each group and the expected number of events in case of non-
difference between the two groups. The 2 equation is:

log

2

2
rank

g g

g g

O E

E

where O is the number of observed events in each group g, and E is the 
total number of expected events in each group g. O and E are computed 
each time an event happens; if a survival time is censored, then the subject 
is considered to be at risk during the interval of censoring, but not anymore 
for the subsequent intervals. The test statistic is then compared with a 2 
with g-1 degrees of freedom. The limitation of log rank test and Cox’s 
proportional hazards model is that they are based on the assumption that 
the hazard ratio is constant over time (Bewick et al., 2004).

Both the life-table and the Kaplan-Meier methods have advantages 
and disadvantages. In small data sets in which the time of occurrence event 
is measured precisely the Kaplan-Meier method is best used, whereas the 
life-table methods works well with large data sets and when the time of 
occurrence of an event cannot be measured precisely. The Kaplan-Meier 
method handles censored data better than life-table method.

Figure 15.1. Survival rate of F344 rats in a 110-week chronic toxicity
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