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Variation 

4

Variance 

Even the inbred animals maintained under well controlled animal house 
conditions may show some variations among the individuals in responding 
to a treatment in a pharmacology or toxicology study. Though majority of 
the individual animals respond to the treatment in a similar manner or 
magnitude, few of them will be too sensitive or resistant to the treatment. 
There are several factors that may affect the outcome of an animal 
experimentation, for example factors related to the experimenter. In a nut-
shell, even a well designed animal experimentation is bound to show some 
variations in the result and it is important to understand these variations 
for interpreting the experimental data. We shall work out an example, to 
make it very clear.

For a pharmacology experiment 5 rats are randomly picked up and 
placed them in a cage. As all the rats are of similar age and maintained in 
identical animal house conditions, one would assume that all the animals 
will have comparable body weight. The body weight of the rats is given 
in Table 4.1.

It is evident from the Table that the assumption of ‘all animals having 
comparable body weight’ is incorrect. In animal experiments, one can 
seldom get identical animals. There could be several differences (for 
example difference in water and feed consumption, difference in activity, 
difference in certain clinical chemistry parameters, etc.) among them. 
These differences have an important role in determining the outcome of an 
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animal experimentation. Let us try to  nd an estimate for these differences. In 
the example given in Table 4.1, the mean body weight is calculated as 
252.6 g. Now, calculate the difference of each observation from the 
mean value (X–X ). A better statistical terminology for the difference 
is deviation, which is given in column 3 of Table 4.1. One may think 
that an estimate of the deviations can be obtained easily by summing 
up (X– X ). By doing so what you get is a zero. You cannot go further 
with this zero. When (X–X ) given in column 3 is closely examined, 
one would realize that the sum of the values bearing plus (+) sign is 
equal to the sum of the values bearing minus (–) sign. That is why a 
zero is obtained for the sum of (X–X ). This can be easily solved by 
squaring (X–X ). Squares of (X–X ) are given in column 4 of Table 4.1. 
Summing up (X-X )2, a value 465.2, is called as sum of the squares (SS) 
of deviations is obtained. By dividing 465.2, i.e., the sum of the squares of 
deviations by n–1, a very important statistical parameter called ‘variance’ 
is derived.
Variance = 465.2/(5–1) = 116.3
One may ask why the SS is divided by 4 (n–1), instead of 5 (n). The 
denominator to calculate the variance is called as ‘degrees of freedom’. 
Degrees of freedom is one less than the total number of observations. Let 
us try to explain this logically. Five different coloured boxes, say Black, 
Blue, Green, Red and Yellow are placed on a table. You have the ‘freedom’ 
to pick up the boxes in an unbiased manner, one by one. You may think that 
there are 5 boxes and the number of the ‘freedoms’ that you can exercise 
in picking up the boxes is also 5. You exercised your ‘freedoms’ to pick up  
the boxes as given in Table 4.2.

Table 4.1. Body weight of rats (g)

Column 1 Column 2 Column 3 Column 4
Rat No. Body Weight (X) (X- X ) (X-X )2

1 245 –7.6 57.76
2 254 +1.4 1.96
3 239 –13.6 184.96
4 266 +13.4 179.56
5 259 +6.4 40.96

Number of observations (n)
5 - -

Sum ( ) 1263 0 465.2
Mean (X ) 252.6 - -
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Initially, you thought that you would have had 5 degrees of freedom 
before picking up any box. Firstly, you picked up the red box and your 
degrees of freedom is reduced by 1 (5–1). The next time you picked up 
the yellow box, and now your degrees of freedom is reduced by 2 (5–2). 
When you picked up the black box, you have only 2 degrees of freedom 
left. After picking the green box, you have only 1 degree of freedom left. 
But you cannot exercise any freedom to pick up the blue box. Blue box 
is the last box left out and you have to pick up this without any choice. 
Therefore, the actual degrees of freedom that one can exercise is not equal 
to the total number of observations, but 1 less than the total number of 
observations.

Standard Deviation (SD)

Standard deviation is the square root of variation:

SD = Variance = 3.116  = ±10.78 

A ± sign should always be added as a pre  x to SD.
Some statisticians are of the opinion that the ± symbol is super  uous 
(Everett and Benos, 2004). According to them, a standard deviation is a 
single positive number, the notation of the SD should be: Mean (SD X), 
where X is the value for SD (for example, body weight of rats = 252.6 g 
(SD 10.78). We are in favor of pre  xing a ± sign to SD as it gives an easily 
perceivable indication about the lowest and highest values of the sample 
observations. 

Standard deviation is a useful measure to explain the distribution of the 
sample observations around the mean. SD can also be used to see whether 
a single observation falls within the normal range (Cumming, 2007). If 
the observations follow a normal distribution, mean ± 1 SD covers a range 
of 68% of the observations. About 95% of individuals will have values 
within 2 standard deviations of the mean (mean ± 2 SD), the other 5% 

Table 4.2. Degrees of freedom exercised in picking up coloured boxes

Boxes picked up Degrees of freedom exercised Degrees of freedom left
Red 1 5–1 = 4
Yellow 2 5–2 = 3
Black 3 5–3 = 2
Green 4 5–4 = 1
Blue This is the last box left out. You cannot exercise any degree of 

freedom for picking up this box.
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being equally scattered above and below these limits (Altman and Bland, 
1995). Mean ± 3 SD covers a range of 99.7% of the observations. 

Standard Error (SE)

SE is the SD of the mean. SE is considered as a measure of the precision 
of the sample mean (Altman and Bland, 2005). It provides an estimate of 
the uncertainty of the true value of the population mean (Everett, 2008). 
In simple words, SE measures the variation in the means of the samples. It 
can be calculated using the formula:

SE = SD/ n  = 10.78/ 5  = ± 4.82

Always pre  x ± sign to SE.

Coef  cient of Variation (CV)

CV is a numerical value where the proportion of the standard deviation in 
the mean value is shown as a percentage:

%27.4100
6.252

78.10100
Mean
SDCV

CV is an excellent statistical tool that can be used to compare different 
analytical methods and performance of equipments. Since CV is independent 
of the scale of measurement, it can be used to compare variables measured 
on different scales (Daniel, 2007). In a clinical chemistry laboratory, 
biochemists routinely use the commercially available reagent kits for 
analyzing clinical chemistry parameters in blood. It is dif  cult to choose 
from the plenty of kits available in the market. In such cases, kit with the 
lowest CV given in the packet insert should be chosen. 

CV plays a very important role in determining the signi  cant difference 
in pharmacology and toxicology experiments. Kobayashi et al. (2011) 
examined 59 parameters from 153 numbers of 28-day repeated dose 
administration studies conducted in 12 test facilities in order to understand 
the in  uence of CV in determining signi  cant difference of quantitative 
values. CV of electrolytes was comparatively small, whereas enzymes 
had large CV. A signi  cant difference between the sexes was observed 
in the CVs of feed consumption, reticulocyte, platelet and leucocyte 
counts, cholesterol, total protein, albumin, albumin/globulin ratio, alkaline 
phosphatase, inorganic phosphorus, and pituitary and adrenals weights. 
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Large differences in CV were observed for major parameters among 7 test 
facilities. The authors inferred that a statistically signi  cant difference is 
usually detected if there is a difference of 7% in mean values between the 
groups and the groups have a CV of about 7%. A parameter with a CV as 
high as 30% in two groups can be signi  cantly different from each other, if 
the difference between the two mean values of the groups is about 30% and 
the number of observation (n) in each group is 10. The authors suggested 
that it would be ideal to use median value to assess the treatment-related 
effect, rather than mean, when the CV is very high. 

Matsuzawa et al. (1993) analyzed historical control data pertaining to 
clinical pathology of study population covering 14000 rats, 10000 dogs 
and 1400 monkeys. The authors stated that the serum assay values showed 
greater variation than the plasma values. Aoyama (2005) suggested that 
when the number of animals is adjusted, the decentralization of data, like 
body weight and the organ weight, become comparatively smaller, and a 
CV of about 10% is obtained. CV for blood levels of various hormones, 
even in control animals is large. Often, the standard deviation exceeds the 
mean value by more than 50% for these parameters. 

There is a misconception that the variability in the experimental data 
occurs only in animal experiments. One may think that the instruments 
used in bioanalytical laboratories are highly sophisticated and automated, 
hence the results obtained from these instruments show minimum to no 
variation. This is not true. There is variability in analytical chemistry and 
the measured values differ from the actual values and ‘if the variability 
of a measurement is not characterized and stated along with the result of 
the measurement, then the data can only be interpreted in a limited sense’ 
(USP, 2008).

When to Use a Standard Deviation (SD)/Standard Error (SE)? 

Pharmacologists and toxicologists ambiguously use SD and SE in their 
study reports. A confusion in the use of SD and SE is evident in scienti  c 
articles published in various journals (Herxheimer, 1988; Nagele, 2003). 

Figure 4.1. SD and SE calculated for human -GTP dataa

aData—42, 60, 26, 48, 56, 31, 30, 80, 79, 93 -GTP (IU/l)

0              100             200 
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Since SE is smaller than the SD (see Figure 4.1), some authors use SE, 
perhaps intentionally, in order to reduce the variability of their samples 
(Streiner, 1996; Lang, 1997; Fisher, 2000). 

Although SD and SE are related, they give two very different types of 
information (Carlin and Doyle, 2000). In animal experiments, generally 
SD is 8–20% of the mean of the measured values, hence, the bar presented 
by the SD in a graph seems to be well balanced against the mean value. It 
is not permitted to use SE intentionally just to show a small width of the 
bar (Matsumoto, 1990). The next question is how precisely mean and SD 
should be speci  ed? Mean should not be speci  ed with more than one 
extra decimal place over the raw data but for SD greater precision can be 
given (Altman and Bland, 1996). 

In conclusion, SD gives a fairly good indication about the distribution 
of the observed values around the mean. SE gives an indication about the 
variability of the mean. In toxicology experiments, especially with rodents, 
where the number of animals in a group is usually 10, it would be more 
ideal to use SD and in pharmacology experiments, where the number of 
animals in a group is usually <5 it would be more ideal to use SE, though 
there is no hard and fast rule for these. 
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Analysis of Normality and 
Homogeneity of Variance

5

Distribution of Data in Toxicology and Pharmacology Experiments

It is important to know how the data are distributed for selecting a 
statistical tool for the analysis of the data (Bradlee, 1968). In toxicology 
and pharmacology experiments, data could be distributed in various 
patterns. The three commonly seen patterns of data distribution are given 
in Figure 5.1.

A B C 

Figure 5.1. Three patterns of data distribution in toxicology and pharmacology 
experiments
A. Normal distribution and homogeneity of variance, B. Non-normal distribution and 
homogeneity of variance, C. Non-normal distribution in and heterogeneity in variance.

Analysis of Normality

The two types of non-normal distributions that are generally encountered 
in statistical analysis are skewness and kurtosis. The mean and median are 
different in a skewed distribution. Skewness can be positive or negative. 
The data are positively skewed, when the tail of the distribution curve is 
extended towards more positive values and the data are negatively skewed, 
when the tail of the distribution curve is extended towards more negative 
values ( isar and isar, 2010).

Peakedness of a distribution is depicted by kurtosis. A distribution 
can be ‘platykurtic’ or ‘leptokurtic’. Platykurtic is more  at-topped and 
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leptokurtic is less  at-topped. Usually platykurtic has long tails, whereas 
leptokurtic has short tails. In a leptokurtic distribution, the individual 
measures are concentrated near the mean, whereas in a platykurtic 
distribution, the individual measures are spread out across their range.

Most of the results obtained from toxicity studies do not follow a 
normal distribution. When Weil (1982) examined the distribution pattern 
of hematological and blood chemistry parameters of toxicological studies, 
skewness and kurtosis were observed in many cases. Kobayashi (2005) 
examined the measured items of a carcinogenicity/chronic toxicity study in 
rats. He reported that majority of hematological and biochemical parameters 
presented a non-normal distribution—mean corpuscular volume, mean 
corpuscular hemoglobin, platelets, protein, alanine aminotransferase, 
aspartate aminotransferase, gamma-glutamyl transpeptidase, creatinine 
phosphokinase, cholesterol and potassium were skewed positively, 
whereas hematocrit, hemoglobin, red blood cells and mean corpuscular 
hemoglobin concentration were negatively skewed. 

Tests for Analyzing Normal Distribution

Several tests are available for analyzing normal distribution of the data, 
for example, Kolmogorov-Smirnov (Chakravarti et al., 1967; Park, 
2008), Lilliefors (1967), Shapiro-Wilk’s W (Shapiro and Wilk, 1965) and 
Chi-distribution using goodness of  t tests (Snedecor and Cochran, 1989).

The Kolmogorov-Smirnov test is used to analyse continuous 
distributions. The Lilliefors test is a modi  ed Kolmogorov-Smirnov test. 
The Shapiro-Wilk W test is capable of detecting non-normality for a wide 
variety of statistical distributions. Owing to this, a lot of attention has been 
paid to this test in the literature (Sen et al., 2003). The power of Shapiro-
Wilk’s W test for detecting a non-normal distribution is better than other 
normality tests (Chen, 1971; Liang et al., 2009). The chi-square test is an 
excellent test to examine whether the data are normally distributed. The 
major advantage of the chi-square test is that it can be applied to discrete 
distributions and its disadvantage is that it requires a larger sample size. 

Shapiro-Wilk’s W test

Let us understand Shapiro-Wilk’s W test in detail by working out an 
example given in Table 5.1, body weight of F344 male rats. The data are 
arranged in an orderly fashion.
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The data in Table 5.1. is analysed using SAS-JMP and the statistics 
are given in Tables 5.2. and 5.3. The body weight distribution is given in 
Figure 5.2.

Table 5.1. Body weight of F344 male rats

Animal No. 1 2 3 4 5 6 7 8 9 10
Body weight (g) 71 86 92 95 100 102 105 108 118 123

Observation 1 1 2 4 1 1

Table 5.2. Quantiles

100% Maximum 123.0
99.5% 123.0
97.5% 123.0
90.0% 122.5
75.0% Quartile 110.5
50.0% Median 101.0
25.0% Quartile 90.5
10.0% 72.5
2.5% 71.0
0.5% 71.0
0.0% Minimum 71.0

Note: The term, quantile was introduced by Kendall (1940). Quantiles divide the 
distributions such that there is a given proportion of observations below the quantile. 
Quartiles and percentiles are quantiles. Quartile divides the quantile into four equal parts 
(0–25%, 25–50%, 50–75% and 75–100%). A percentile is the value of a variable below 
which a certain percent of observations fall. For example, the 10th percentile is that position 
in a data set which has 90% of data points above it, and 10% below it.

Table 5.3. Estimates

N 10
Sum ( ) 1000
Mean ( X) 100
Standard error (SE) 4.7981478
Upper 95% mean 110.85416
Lower 95% mean 89.145836

Sum of squares (X- X)2 2072

Standard deviation (SD) 15.173076
Variance 230.22222
Coef  cient of variation (CV) 15.173076
Skewness –0.36285
Kurtosis 0.3549171
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Shapiro-Wilk’s W test-calculation steps

Step 1: Find the difference between the  rst set of extreme values (123 
and 71 g from Table 5.1). Then  nd the difference between the second 
set of extreme values (118 and 86 g). In such a manner  nd the difference 
between the extreme values of remaining sets sequentially. If the number 
of samples is an odd number, ignore the remaining value.
Step 2: Find the Shapiro-Wilk W coef  cients corresponding to the 
difference between the extreme values from the Appendix 1. In this 
example, the number of samples, N=10. The Shapiro-Wilk W coef  cients 
corresponding to the difference between the 1st, 2nd, 3rd, 4th and 5th 
sets of extreme values are 0.5739, 0.3291, 0.2141, 0.1224 and 0.0399, 
respectively. Calculate the product of difference between extreme values 
and Shapiro-Wilk W coef  cients (Table 5.4).

Step 3: Calculate the statistic, W, as given below:

98166.0
2072

10.45 2

W

Compare W (0.98166) with the quantiles of the Shapiro-Wilk W test 
statistic given in Appendix 2. At 10 degrees of freedom the quantiles at 
0.95 and 0.98 are 0.978 and 0.983, respectively. Since, the calculated W 
(0.98166) falls between 0.978 and 0.983, it could be concluded that the 
body weight of all the 10 animals follow a normal distribution. The same 
is con  rmed by Test for goodness of  t:

Figure 5.2. Body weight of F344 male rats
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Test for goodness of  t by Shapiro-Wilk test
 W  Prob < W
 0.981120 0.9673
Since the probability 0.9673<0.981120 (W), it is con  rmed that the body 
weight of all the 10 animals follow a normal distribution pattern.
Table 5.4. Product of difference between extreme values and Shapiro-Wilk W coef  cients

Animal 
No.

Body 
weight (g)

Difference between 
extreme values (D)

Shapiro-Wilk W 
coefficients (C)

Product
(DxC)

1 71 First set 123–71=52 0.5739 29.8428
2 86 Second set 118–86=32 0.3291 10.5312
3 92 Third set 108–92=16 0.2141 3.4256
4 95 Fourth set 105–95=10 0.1224 1.2240
5 100 Fifth set 102–100=2 0.0399 0.0798
6 102 - - - -
7 105 - - - -
8 108 - - - -
9 118 - - - -

10 123 - - - -
Sum    45.10

Power of Shapiro-Wilk’s W test

Shapiro-Wilk’s W test can be used in small as well as large sample sizes 
(Singh, 2009). 
However, the power of this test varies with the number of animals in the 
group. This can be demonstrated with the help of an example of weight of 
rats on week 13, in a repeated dose administration study. Four situations 
are simulated in the example:

Situation 1 (Seventeen observations): 70, 80, 85, 90, 94, 99, 101, 102, 
104, 105, 108, 111, 112, 114, 121, 125, and 131. The distribution of the 
observations is given in Figure 5.3a.

Statistics
 Mean 103.05882
 SD 16.009648
 SE 3.8829099
 Upper 95% mean 111.29022
 Lower 95% mean 94.827422
 N 17
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Shapiro-Wilk’s W test
 W Prob <W
 0.987278 0.9891
Situation 2 (Thirty four observations, the observations of situation 1 are 
used twice): 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 114, 
121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 
114, 121, 125, and 131. The distribution of the observations is given in 
Figure 5.3b.

Figure 5.3a. Distribution pattern of body weight (g) of rats—17 observations

Figure 5.3b. Distribution pattern of body weight (g) of rats—34 observations

Body Weight (g) 

Body Weight (g) 
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Statistics
 Mean 103.05882
 SD 15.765211
 SE 2.7037114
 Upper 95% mean 108.55957
 Lower 95% mean 97.558081
 N 34

Shapiro-Wilk’s W test
 W Prob <W
 0.968746 0.5017
Situation 3 (Fifty one observations, the observations of situation 1 are used 
thrice ): 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 114, 121, 
125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 114, 
121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 
114, 121, 125, and 131. The distribution of the observations is given in 
Figure 5.3c.

Figure 5.3c. Distribution pattern of body weight (g) of rats—51 observations

Statistics
 Mean 103.05882
 SD 15.686187
 SE 2.1965056
 Upper 95% mean 107.47063
 Lower 95% mean 98.647012
 N 51
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Test for goodness of  t, Shapiro-Wilk’s W test
 W Prob <W
 0.959888 0.1486
Situation 4 (Sixty eight observations, the observations of situation 1 are 
used four times): 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 
114, 121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 
112, 114, 121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 
111, 112, 114, 121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 
108, 111, 112, 114, 121, 125, and 131. The distribution of the observations 
is given in Figure 5.3d.

Figure 5.3d. Distribution pattern of body weight (g) of rats—68 observations

Statistics
 Mean 103.05882
 SD 15.647118
 SE 1.8974918
 Upper 95% mean 106.84623
 Lower 95% mean 99.271414
 N 68

Shapiro-Wilk’s W test
 W Prob <W
 0.954862 0.0383
The statistics given in Figure 5.3a–Figure 5.3d are consolidated in Table 
5.5. Shapiro-Wilk’s W test revealed a signi  cant P, when the number of 
animals was 68, indicating a non-normal distribution. 

Body Weight (g) 
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Parametric and Non-parametric Analyses 

The two basic assumptions for any statistical analysis are the distribution 
of the data (normal or non-normal) and homogeneity of variance 
(homogeneous or heterogeneous). If the variances of the groups are 
heterogeneous and or the data are non-normally distributed, the choice 
of the statistical tools is non-parametric (Kobayashi et al., 2011a). Non-
parametric tests are also called as ‘distribution-free tests’. A parametric 
test is always based on the assumption that the data follow a normal 
distribution and variances of the groups are homogeneous. 

Analysis of Homogeneity of Variance

One of the assumptions of parametric analysis is that variances of the 
observations in the individual groups are equal (the other assumption is that 
the data are normally distributed). When the variances of the groups are 
equal, the situation is referred to as homogeneity of variance (also called 
as homoscedasticity of variance). When the variances of the groups are 
different (not homogeneous), the situation is called as heteroscedasticity.

Bartlett’s homogeneity test

In most of the pharmacological and toxicological studies, Bartlett’s test is 
commonly used to examine the data for homogeneity of variance (Bartlett, 
1937). However, according to Finney (1995) “Bartlett’s test is notorious 
for its unwanted sensitivity to non-normality of error distribution, and is an 
untrustworthy instrument for classifying some data sets as homogeneous 
in variance, other as heterogeneous.”

Table 5.5. Change in power of Shapiro-Wilk’s W test with the change in number of 
animals

N Mean Coef  cient of variance (%) Shapiro-Wilk’s W test
W P

17 103 15.5 0.987278 0.9891 (NS)
34 15.3 0.968746 0.5017 (NS)
51 15.2 0.959888 0.1486 (NS)
68 15.2 0.954862 0.0383 (S)

NS-Not signi  cant (normal distribution); S-Signi  cant (non-normal distribution)
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Homogeneity of variance by Bartlett’s test is calculated using the below 
given formula:

1

(Sum of N Number of group) log N of each group 1 log Sum of Variance2 2.3026
1 1

Sum of (N of each group Sum of total number Number of group
1

3 (Numbe of group 3)

V
X cal

where,

groupofNumber)ofSum(
1ofSumgroupeachofVariance

N
NV  

X 2 cal (chi square calculated) is compared with the value given in chi square 
Table (N=number of groups-1) at 5% probability level. If the computed 
value is less than the table value, it is interpreted that the variances of the 
groups are similar (no heterogeneity). It may be noted that Bartlett’s test 
is not suitable for detecting a heterogeneity when the number of animals 
in a group very small.

Levene’s homogeneity test

Another test used to examine the data for homogeneity of variance is 
Levene’s test (Levene, 1960; Nichols, 1994), which has less sensitivity to 
non-normality of error distribution. Interestingly, compared to Bartlett’s 
test, Levene’s test is less commonly used to analyse the data obtained from 
toxicological and pharmacological experiments.

Power of Bartlett’s and Levene’s homogeneity tests

Bartlett’s test is used for testing the homogeneity of variance of the data 
that follow a normal distribution. Bartlett’s test is very sensitive to the 
data that are non-normal to the slightest extent. According to Finney 
(1995), Bartlett’s test is not necessarily to be carried out for examining 
homogeneity of variance before ANOVA (Analysis of variance, an 
important statistical tool for comparing more than two groups; you will 
learn more about ANOVA in Chapter 11). The reason for this is that the 
power of the Bartlett’s homogeneity test is too strong for examining 
homogeneity of variance, as mentioned above. Toxicity studies using 
Bartlett’s test for testing homogeneity of variance at 1% probability level, 
which is not so conventional, have been reported (Hayashi et al., 1994; 
Katsumi et al., 1999; Kudo et al., 2000; Mochizuki et al., 2009; Ishii 
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et al., 2009). The reason for setting a 1% probability level for detecting 
a signi  cant difference probably could be: if a signi  cant difference is 
detected by Bartlett’s test at the conventional 5% probability level, then 
the data should be analysed using the non-parametric Dunnett type rank 
sum test (joint type) (Yamazaki et al., 1981) and/or Dunn test (Hollander 
and Wolfe, 1973), which have low detection power. Therefore, when 
the probability level is set at 1%, it is unlikely that the data show a 
heteroscedacity in variance by Bartlett’s test. The reason for this is that to 
detect a signi  cant difference at 1% probability level, the chi square value 
has to be larger than that of the 5% probability level.

Do We Need to Examine the Data for Both Normality and 
Homogeneity?

Kobayashi et al. (2011b) made an attempt to compare the statistical tools 
used to analyse the data of repeated dose administration studies with 
rodents conducted in 45 countries, with that of Japan. They found that the 
statistical techniques used for testing the above data for homogeneity of 
variance are similar in Japan and other countries. In most of the countries, 
including Japan, the data are generally not tested for normality.

Kobayashi et al. (2008; 2011b) suggested that the data may be examined 
for both homogeneity of variance and normal distribution. However, in 
bioequivalence clinical trials, because of the limited sample size a reliable 
determination of the distribution of the data set is not required (EMEA, 
2006). 

Which Test to be Used for Examining Homogeneity of Variance? 

In pharmacological and toxicological experiments, treatments that lower 
mean values often decrease variance in the treated groups, substantially 
(Colquhoun, 1971). In these cases, statistical analyses based on the 
assumption of normal distribution and homogeneity of variance are 
inappropriate (Spector and Vesell, 2006). 

Water consumption of B6C3F1 female mice during the week 13 of a 
repeated dose administration study is given in Table 5.6. There were four 
groups and each group consisted of 10 mice. Homogeneity of variances 
among the groups was analysed using Brown-Forsythe’s (Brown and 
Forsythe, 1974), O’Brien’s, Levene’s and Bartlett’s tests.
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It is clear from the table that the sensitivity of Bartlett’s test is higher, 
followed by Levene’s test. O’Brien’s and Brown-Forsythe’s tests have 
very low sensitivity.

Brown-Forsythe’s test is a modi  ed Levene’s test. Both Brown-
Forsythe’s and Levene’s tests use transformed values (Maxwell and 
Delaney, 2004). It is more appropriate to use the Levene’s, Brown-
Forsythe’s or O’Brien’s tests (O’Brien, 1979; 1981) for testing the 
homogeneity of variance of the data that follow a non-normal distribution 
(SAS, 1996). Kobayashi et al. (1999) suggested Levene’s test for examining 
homogeneity of variance of the data obtained from toxicity studies. 
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Transformation of Data and 
Outliers 

6

Transformation of Data

There are situations in pharmacological and toxicological experiments 
that the data show heterogeneous variance across the groups of animals. 
Using parametric tests to analyse such data may give rise to Type I error. 
One way to overcome this situation is to transform the data (Wallenstein et 
al., 1980). It is most likely that the variance of the transformed data show 
homogeneity. 

In Table 6.1, transformed values of alanine aminotransferase activity 
of Wistar rats of the control group in a 14-day repeated dose administration 
study is given. 
Table 6.1. Alanine aminotransferase activity (U/L) of Wistar rats of the control group in 
a 14-day repeated dose administration study

45.3, 63.8, 82, 42, 40.8, 38.2, 35.9, 37.9, 39.1, 35.5 (N=10)
Transformation Mean±SD CV (%)

None 46 ± 15 32.7
Logarithm 1.6 ± 0.12 7.2
Square root 6.7 ± 1.0 15.0
Reciprocal 0.02 ± 0.005 22.8

For the non-transformed data, the CV was 32.7%, which substantially 
decreased, when the data were transformed to logarithms. CV also 
decreased when the data were transformed to square roots and reciprocals, 
but in a lesser magnitude than the logarithmic-transformed data. 

Concentrations of blood constituents usually show a non-normal 
distribution (Flynn et al., 1974). Therefore, statistical analysis is usually 
carried out with the transformed values of blood constituents (Niewczas 
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et al., 2009). According to Lew (2007), in pharmacology, the data may 
be transformed to their logarithms in order to eliminate heterogeneity in 
variation. For example, plasma/serum concentration of drug and/or its 
metabolites in drug metabolism and pharmacokinetic studies (DMPK) in 
laboratory animals (Girard et al., 1992; Steinke et al., 2000; Zheng et al., 
2010) and bioavailability/bioequivalence (BA/BE) studies in volunteers 
(Dubey et al., 2009) are usually analysed in their logarithmic-transformed 
values. FDA (2003) and EMEA (2006) recommend logarithmic-
transformation of exposure measures before statistical analysis in BA/BE 
studies. It should be borne in mind that the data showing a non-normal 
distribution may also display other patterns of uneven variation that cannot 
be easily eliminated (Keppel and Wickens, 2004).

Statistical analysis using transformed values are not the same as using 
measured values. Therefore, interpreting the transformed values may be 
dif  cult (Jenifer, 2010). In the words of Finney (1995), “When a scientist 
measures a quantity such as concentration of a chemical compound in a 
body  uid, his interest usually lies in the scale, perhaps mg/ml, that he has 
used; he is less likely to be interested in a summary of results relating to 
a transformed quantity such as the logarithm of blood concentration. If he 
analyzes in terms of logarithm, encouraged perhaps by an elementary but 
uncritical statistical textbook or by a convenient software package, he may 
 nd signi  cant differences but to express his conclusions in meaningful 

numbers may be impossible. I do not assert that a scientist should never 
transform data before analysis; I urge that data should be transformed only 
after careful consideration of all consequences. Textbook implications 
that; ‘In certain speci  ed circumstance, data must be transformed’ should 
not be unthinkingly accepted. Remember that any transformation is likely 
to increase the dif  culty of interpreting results in relation to the original 
measurements.” Therefore, when a signi  cant difference is obtained for 
transformed values, following a statistical analysis, it is necessary to 
describe that the signi  cant difference obtained is for the transformed 
values.

Outliers

Data obtained from pharmacological and toxicological studies are not 
free from outliers. An outlier can be de  ned as ‘an observation which 
deviates so much from other observations as to arouse suspicion that it 
was generated by a different mechanism’ (Hawkins, 1980). Outliers 
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can have deleterious effects on statistical analyses (Rasmussen, 1988; 
Schwager and Margolin, 1982). Outliers increase error rates and distort 
statistical estimates when using either parametric or nonparametric tests 
(Zimmerman, 1995; 1998). Outliers arise from two sources—from errors 
in the data and from the inherent variability of the data (Anscombe, 1960). 
According to Barnett and Lewis (1994), ‘not all outliers are illegitimate 
contaminants, and not all illegitimate scores show up as outliers’. 

Hypoglycemic property of a drug was evaluated in alloxan-induced 
hyperglycemic rats. These rats were divided into two groups (5 rats/group), 
Groups 1 and 2. Group 1 (control) was treated with vehicle and Group 2 
was treated with the drug. Following the administration of vehicle or drug, 
blood glucose was determined in individual rat (Table 6.2.).
Table 6.2. Blood glucose (mg/dl) in alloxan-treated rats following administration of drug

Group 1 (Vehicle treated) Group 2 (Drug treated)
189, 195, 169, 206, 175 138, 161, 156, 171, 259

Mean ± SD = 186.8 ± 14.9 (n=5) Mean ± SD = 177.0 ± 47.4 (n=5)
Mean ± SD = 156.5 ± 13.4 (n=4)

The blood glucose level of the vehicle treated group was 186.8 ± 14.9 
mg/dl (mean ± SD), whereas the drug treated group was 177.0 ± 47.4 mg/
dl (mean ± SD). Though a decrease in blood glucose level was observed in 
the drug treated animals, it was statistically insigni  cant by Aspin Welch’s 
t-test using one-sided (we used Aspin Welch’s t-test because the variance 
of the groups is different. You will read more about this test in Chapter 8). 
The SD of drug treated group exploded considerably, indicating a large 
variance. Close observation of the individual values of the drug treated 
animals shows that all the values in this group are close to each other, 
except the value, 259. Let us recompute the mean and SD of this group, 
after removing 259 from the data. The revised mean ± SD is 156.5 ± 13.4 
(n=4). We are comfortable with this SD, as this is very close to the SD of 
the vehicle treated group, indicating a homogeneity of variance between 
the vehicle treated and drug treated animals. The blood glucose of drug 
treated animals (after removing the value, 259) is statistically different 
from the vehicle treated animals by Student’s t-test (we used the Student’s 
t-test because the variance of the groups is not different. You will read more 
about this test in Chapter 8). In this example, the value 259 is an outlier, 
as it clearly stands out of other values, but in many pharmacological and 
toxicological experiments it is not easy to spot an outlier. A simple method 
to identify an outlier mentioned in several books on statistics is given 
below (Hogan and Evalenko, 2006):
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Lower outlier = 25th percentile – (1.5 x IQR)
Upper outlier = 75th percentile + (1.5 x IQR)
Readers may go back to Chapter 2 and refresh their memory on box-and-
whisker plot and IQR (inter-quartile range or hinge spread). 

There are several statistical tools available for detecting an outlier. 
Among them, the Dixon test and Grubb test are widely used (Verma and 
Ruiz, 2006) and these tests are suggested by ASTM (2008). Outlier tests 
suggested in USP (2008) are ESD test, Dixon-Type test and Hampel’s 
rule. 
We shall discuss 3 outlier tests in detail:

1. Masuyama’s Rejection Limit Test (Shibata, 1970) 

Let us examine whether the value 259 of the example given in Table 6.2 is 
an outlier. Masuyama’s rejection limit test is calculated using the following 
equation:

05.0)1(
1

nt
n

nSxX , where

Sx: Standard deviation; t(n-1)0.05 is t value at 5% probability level (n–1 
degrees of freedom). 
The mean and SD of the data (138, 161, 156, 171, 259) given in Table 6.2 
are;
Mean = 177.0; SD = 47.4 (n=5)

776.205.0)15(t  [from t Table by two-tailed test]

Rejection limits 89.157177)776.2
5

154.47(177

19.11~334.89
As indicated above, Masuyama’s rejection limit test gives the rejection 
limits in a wider range. Masuyama’s rejection test is not sensitive in 
detecting an outlier. Hence, use of this test should be done in toxicology/
pharmacology with a little caution.
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2. Thompson’s Rejection Test (Thompson, 1935)

Let us again work out the example of blood glucose levels of drug-treated 
rats given in Table 6.2. The values are 138, 161, 156, 171, 259 mg/dl. We 
shall apply Thompson’s rejection test to examine whether the value, 259 
mg/dl is an outlier.

X = 885, X  = 177, Sum of squares (SS), (X-X )
2
= 8978

= 177–259 = –82

37.426.1795
5

8978Sn  

94.1
37.42

82

When you substitute these calculations for the expression of t:

2)25(
94.115

2594.1t  

2.14)3(t  

The Table value for t at 0.001 probability level (Table 6.3) for three 
degrees of freedom, is 12.923. Since the calculated t value is greater 
than the table value, we consider the blood glucose value, 259 mg/
dl is an outlier.

Table 6.3. t test critical values (Yoshimura, 1987)

df \2 0.2 0.1 0.05 0.02 0.01 0.002 0.001
df \ 0.1 0.05 0.025 0.01 0.005 0.001 0.0005

2 1.885 2.919 4.302 6.964 9.924 22.327 31.59
3 1.637 2.353 3.182 4.540 5.840 10.214 12.923
4 1.533 2.131 2.776 3.746 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 2.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
=One-sided, 2 =Two-sided test.
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3. Smirnov-Grubbs’ Rejection Test (Grubbs, 1969)

Smirnov-Grubbs’ rejection test is one of the tests for outliers used widely 
in various  elds of biology (Sunaga et al., 2006; Kawano et al., 2007; 
Ishikawa et al., 2010; Okubo et al., 2010).

In animal experiments, the Smirnov-Grubbs’ test is used more 
frequently than the Thompson’s rejection test. Smirnov-Grubbs’ test has 
a high power when the outlier is only one observation. However, when 
outliers are two or more observations, power of this test decreases due to 
the masking effect of one outlier to the other.

The calculation procedure of Smirnov- Grubbs’ test is very simple. We 
can use the same example that we used for Thompson’s rejection test.
First, calculate Tn . 

,)( 1

V
XX

Tn

Where n = Number of samples; X1= The outlier.
Blood glucose level of drug treated rats are 138, 161, 156, 171, 259 mg/
dl.

X = 885, X  = 177, Sum of squares (SS), (X– X )
2
= 8978, Variance (V) 

= 1795.6.

94.1
37.42

82
1795.6

177259
5T  

The Table value for Smirnov- Grubbs at 0.01 probability level (Table 6.4) 
for 5 degrees of freedom, is 1.749. Since the calculated value (1.94) is 
greater than the table value (1.749), the test con  rms that the blood glucose 
value 259 mg/dl is an outlier.

A Cautionary Note 

Though human and other errors are major contributing factors for outliers, 
a positive outcome from an outlier test should be investigated (Ellison et 
al., 2009). Before discarding an outlier, one has to con  rm that the value 
discarded as an outlier is not a genuine data point. Hubrecht and Kirkwood 
(2010) suggested that one way to deal with an outlier is to carry out the 
statistical analysis with and without it. If the analytical results provide 
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similar interpretation, the outlier should not be discarded. By merely not 
falling in the ‘expected’ range should not be the only reason for considering 
a data point as an outlier and discarding it (Petrie and Sabin, 2009). Let us 
examine the data on hemoglobin concentration of F344 male rats on week 
104 in a repeated dose administration study given in Figure 6.1.

Table 6.4. Smirnov-Grubbs’ Tablea (Aoki, 2002; 2006)

N 0.1 0.05 0.025 0.01
3 1.148 1.153 1.154 1.155
4 1.425 1.462 1.481 1.493
5 1.602 1.671 1.715 1.749
6 1.729 1.822 1.887 1.944
7 1.828 1.938 2.020 2.097
8 1.909 2.032 2.127 2.221
9 1.977 2.110 2.215 2.323

10 2.036 2.176 2.290 2.410
11 2.088 2.234 2.355 2.484
12 2.134 2.285 2.412 2.549
13 2.176 2.331 2.462 2.607
14 2.213 2.372 2.507 2.658
15 2.248 2.409 2.548 2.705
16 2.279 2.443 2.586 2.747
17 2.309 2.475 2.620 2.785
18 2.336 2.504 2.652 2.821
19 2.361 2.531 2.681 2.853
20 2.385 2.557 2.708 2.884

aOne-sided table.

Figure 6.1. Hemoglobin concentration (g/dl) of F344 male rats on week 104
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 The data between 9 and 13 g/dl, appear to be outliers. Box-and-
Whisker plot given in the upper section of the Figure provides useful 
information on the spread of the data and two outlier data points. It may be 
also possible that an outlier test done on the data of the Figure 6.1 con  rms 
this view. But the values lower than 13 g/dl should not be considered as 
outliers, since this is how hemoglobin is distributed in the rat population 
of the study, which is non-normal. However, according to Ye (2003), an 
outlier is valid if it represents an accurate measurement and still falls well 
outside range of majority of values. 

Non-normal distribution of several parameters is normally seen in 
biological experiments. In a non-normal distribution, the data points that 
fall outside the range of majority of the values should not be considered 
as outliers. It is worth mentioning here that in bioequivalence trials the 
regulatory agencies may permit exclusion of outliers from the statistical 
analysis if they are caused by product or process failure but the regulatory 
agencies may not permit exclusion of outliers from the statistical analysis if 
they are caused by subject-by-treatment interaction (Schall et al., 2010).
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