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Null Hypothesis

The main objective of conducting an animal experiment is to know 
whether the treatment with a test item causes any effect compared to the 
control group. The comparison between the treatment group/s and the 
control group is made using various statistical tools. The selection of an 
appropriate statistical tool is based on certain assumptions. Before we go 
further, we need to understand a hypothesis called ‘null hypothesis’.

In the statistical context, a hypothesis is a statement about a distribution 
(example, normal distribution), or its underlying parameter (example, 
mean value, ) or a statement about the relationship between probability 
distribution (example, there is no statistical difference between the treated 
and the control groups) or its parameter ( 1= 2) (Le, 2009). Why is it 
called as ‘null hypothesis’? Let us try to understand ‘null hypothesis’ using 
the explanation proposed by Yoshida (1980). No pharmaceutical company 
will venture in developing a new drug, A1, if it is not superior to the drug 
currently in use, A2. In a statistical analysis, we  rst hypothesize that drugs 
A1 and A2 have the same therapeutic value. That is, we hypothesize A1 = 
A2, which is contrary to our assumption A1 > A2. When the experimental 
data fail to show A1 = A2, we judge that A1 differs from A2 and reject 
the hypothesis. Thus, in a statistical test, we  rst hypothesize A1 = A2 in 
contrast to our assumption A1 > A2, and then show that it is not true (A1 

 A2). The original hypothesis A1 = A2, which is desirably rejected, is 
called the null hypothesis. In most of the statistical books null hypothesis 
is notated as:
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H0= 1= 2, and the alternate hypothesis is notated as:
H1= 1 2, where 1 and 2 are the mean values of two groups.

Generally, a statistical process starts from the null hypothesis, which 
assumes no difference between the control group and the treated group 
or among the groups, and if a signi  cant difference is detected at 5% 
signi  cant level (P<0.05), the null hypothesis is rejected.

Signi  cant Level, Type I and Type II Errors

In the publications of pharmacological and toxicological experiments one 
would have come across authors using P<0.05, usually as footnotes of the 
Tables to denote a signi  cant difference. P stands for probability. In order 
to detect a signi  cant difference we have to challenge the null hypothesis. 
When P <0.05, the null hypothesis is rejected. It means there is only a 5% 
chance of rejecting null hypothesis, when it is true. We are not supposed 
to reject null hypothesis, when it is true, if we reject it, it is called as Type 
I error. In a pharmacological experiment, if you reject the null hypothesis, 
when actually it is true, i.e., H0= 1= 2 (there is no difference between the 
treated and control groups), you would report that the drug that you tested 
had an effect, causing a Type I error. Hence, this Type I error is also called 
as ‘false positive’. Experimental design in pharmacology should be proper 
so that misleading claims concerning the effectiveness of a treatment 
(Type I error) are not made (Spina, 2007). Type II error is opposite to Type 
I error, also called as ‘false negative’, occurs when you falsely accept the 
null hypothesis.

Why at 5% Signi  cant Level?

In statistical analysis, the smallest probability for rejecting a null hypothesis, 
when it is true, is considered as 5% (Madsen, 2011). The same is used in 
most of the pharmacological and toxicological studies, where a signi  cant 
difference between the treated and the control groups is judged at 5% 
probability level. Why the statisticians look upon 5% probability as the 
cut-off point for assessing a signi  cant difference? Let us try to explain it 
with an example: A tennis player loses several matches against an opponent 
of supposedly equal skill level. How many losses will be required for the 
player to regard the opponent as a better player than him? It is not odd 
for a player to lose three consecutive games to his opponent with equal 
ability, but the fourth consecutive loss leads the player to believe that his 
opponent to be a better player. After losing  ve consecutive games, the 
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player may abandon the null hypothesis (null hypothesis in this case is that 
the player and his opponent have equal skill level) and consider that his 
opponent is a better player than him. If the player and his opponent have 
equal ability, the probability of losing the game once by the player is 1/2, 
but the probabilities of losing four and  ve games consecutively by the 
player are (1/2)4 = 6.3% and (1/2)5 = 3.2%, respectively. The mid-point of 
these probabilities is about 5% [(6.3+3.2)/2=4.8%)]. 

The  ve percent signi  cant level which implies 1 mistake in 20 
observations (1/20) is normally unavoidable in biological experiments 
and has been used for more than half a century in bioassays including 
toxicity tests (Dunnett, 1955; Kornegay et al., 1961). Hence, according 
to Bailey (1995), the  ve percent signi  cant level can be generally used 
for  agging a signi  cant difference. Conventionally, a P value of <0.05 
indicates statistical signi  cance (Doll and Carney, 2005). 

However, strictly adhering to a 5% signi  cant level to delineate a 
signi  cant difference has been questioned by few statisticians. Fisher 
(1955) recommended a 5% signi  cant level based on a single hypothesis, 
H0. Neyman and Pearson (1928, 1936) proposed a decision process which 
seeks to con rm or reject a priori hypothesis and rejected Fisher’s idea that 
only the null hypothesis needs to be tested. Statisticians posed questions 
against Fisher’s 5% probability level; the question was ‘what should be 
the smallest P value that warrants rejection of the null hypothesis?’ In later 
years, Fisher (1971) stated that the Q value can be signi  cant at a ‘higher 
standard, if P is 1%’ and at a ‘lower standard if P is 5%’. It again states, 
though indirectly, that a signi  cant difference can be obtained only when 
the P is between 1 and 5%. (Note: Q value is the ‘false discovery rate’ 
analogue of P). 

Many statisticians do not favor strictly characterizing the result of a 
statistical analysis into a positive or negative  nding on the basis of a 
P value. They suggest, when reporting the results of signi  cance tests, 
precise P values (example, P<0.049 or P<0.051) should be reported rather 
than referring to speci  c critical values. Interpretation of the results of a 
statistical analysis should not be made solely on the basis of null hypothesis. 
The hypothesis testing has been challenged and there has been suggestion 
to report con  dence intervals rather than P (Krantz, 1999). According 
to Gelman and Stern (2006) ‘dichotomization into signi  cant and non-
signi  cant results encourages the dismissal of observed differences in 
favor of the usually less interesting null hypothesis of no difference’. In the 
case of experiments conducted in pharmacology and toxicology, biological 
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relevance of the results also should be considered for interpreting the data. 
Declaring a result non-signi  cant does not mean that the effect is not 
biologically relevant; it only means that there is not suf  cient evidence 
to reject the null hypothesis. In a nutshell, statistical analysis should not 
override the experience of the experimenter in interpreting the results of 
the experiments. 

How to Express P?

The published articles express the P in two ways: P <0.05 or P<0.05. The 
question is how the P should be expressed—P <0.05 or P 0.05? Though, 
technically, it may be better to express P 0.05, P<0.05 also conveys similar 
information on statistical signi  cance. We conducted a small investigation 
on the expression of P in toxicological/pharmacological articles published 
in few journals. In most of the journals investigated, we observed that 
P<0.05 and P <0.05 were used at similar frequencies. In the toxicological/
pharmacological experiments conducted in Japan, P<0.05 tended to be 
used slightly more frequently than P<0.05. In the technological report of 
the National Toxicology Program of NIH, USA, P <0.05 is more widely 
used.

One-sided and Two-sided Tests

Generally, it has been stated that a one-sided test is used in the following 
cases: 1) the difference, large or small is questioned and 2) the inter-group 
difference (plus or minus) is known in advance. On the other hand, a two-
sided test is used in the following cases: 1) only the presence or absence of 
an inter-group difference is questioned and 2) it is not certain whether the 
inter-group difference is plus (positive) or minus (negative). The detection 
rate of a signi  cant difference differs depending on the selection of a 
one-sided or a two-sided test. Let us work out an interesting example: A 
customer went to a grocery shop to buy a loaf of bread. The weight of a 
loaf of bread printed on the bread wrappers was 450 g. On a hunch, the 
customer purchased one loaf of bread from the shop daily for seven days 
and weighed the loaves. The weights were 444, 434, 450, 430, 458, 446 
and 422 g. He informed the grocer that the weight printed on the bread 
wrapper did not match with the actual weight of the bread. The grocer 
offered to analyse the data provided by the customer using a two-sided test. 
The calculated t value (2.14) was less than the value of t-distribution Table 
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(2.447), hence the null hypothesis was not rejected (Note: Normally we 
analyse the data using a statistical formula to obtain a ‘calculated value’. 
Then, we compare this ‘calculated value’ with the value (critical value) 
given in the appropriate statistical Table. If the calculated value is greater 
than the Table value (critical value), we consider the null hypothesis is 
rejected. In this particular example we have analysed the data using a t-test 
and got a t value. This t value was compared with the value given in the 
t Table. You shall learn about various statistical tools and their applications 
in later chapters). Not-rejection of the null hypothesis means there is no 
statistical signi  cant difference among the weights of seven loaves of the 
bread that the customer purchased. The customer was not convinced with the 
result of the two-sided test provided by the grocer. The customer decided to 
analyse the data using a one-sided test, with the assumption that the weight of 
the loaf of the bread is less than 450 g. When the customer analysed the data 
using the one-sided test, he found that the calculated t value (2.14) was greater 
than the value of t-distribution Table (1.943). Therefore, “Null hypothesis” is 
rejected, which means that there is a statistical signi  cant difference among 
the weights of seven loaves of the bread that he purchased. 

Which Test to Use: One-sided or Two-sided? 

It is interesting to note that scientists have different views in choosing 
between one-sided test and two-sided test. Kobayashi et al. (2008) examined 
whether a one-sided or a two-sided test was used in the analysis of the 
data obtained from 122 numbers of 28-day repeated dose administration 
studies in rats. The studies were conducted as per Chemical Substances 
Control Law, Japan (CSCL, 1986) or OECD test guideline (OECD, 2008). 
Out of 122 studies examined, quantitative data of 22 studies were analysed 
by the one-sided test, 87 studies were analysed by two-sided test, whereas 
there was no mention about whether the one-sided or two-sided test was 
used in 13 studies. With regard to qualitative data, in 34 and 22 studies 
the data were analysed by the one-sided and two-sided tests, respectively, 
whereas there was no mention about whether the one-sided or two-sided 
test was used in 66 studies.

Drewitt et al. (1993) used a two-sided t-test for preliminary studies 
and one-sided test for the main studies. Shertzer and Sainsbury (1991) 
used a one-sided t-test for the detection of a signi  cant difference between 
two groups. Yoshimura and Ohashi (1992) recommended the one-sided 
test because the results of a toxicity study are evaluated by the presence or 
absence of an increase in the mean value of the treated groups in comparison 
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with the control group. Shirley (1997) used a two-sided test for Student’s 
t-test and Cochran’s t-test, and if a signi  cant difference is observed in 
the ANOVA, used the one-side test in Dunnett’s multiple comparison test. 
Dunnett (1955) recommended the use of a two-sided test to determine 
simultaneously the upper and lower limits to the difference between the 
control group and each treated group and a one-sided test to determine 
either the upper or lower limit to the difference between the control group 
and each treated group. Gad and Weil (1988) explained the signi  cant 
difference between the control and treated groups in body weight by using 
the two-sided test. Sakuma (1977) suggested to select either a one- or a 
two-sided test referring to the reports of similar studies. Nakamura (1986) 
stated that selection of one- or two-sided test may depend on the objective 
of the study, and he suggested that the statistical signi  cance of the data 
should not be foreseen. Kobayashi (1997) recommended a one-sided test 
for the analysis of data obtained from toxicological studies.

A signi  cant difference is more apt to be observed in a one-sided 
test than in a two-sided test. According to a survey, the detectability of a 
signi  cant difference by the two-sided test was 71–95% of that by a one-
sided test in the Dunnett’s t-test (Table 7.1) (Kobayashi, 1997). 

Table 7.1. Difference in number of signi  cant differences (P < 0.05) by one- and two-sided 
test by Dunnett’s t-test in a chronic toxicity and carcinogenicity study

Items No. of statistical
analyses

Dunnett’s t-test
One-sided Two-sided

Body weight (b.w.) 528 223 212 (95)
Feed consumption 832 235 189 (80)
Hematology 352 123 105 (85)
Blood chemistry 576 215 181 (84)
Urinalysis 64 7 5 (71)
Organ weight 224 47 42 (89)
Organ weight/b.w. 224 82 67 (81)
Total 2800 932 801 (86)

Note: Values in parentheses show the percent signi  cant difference by two-sided test with 
regard to one-sided test.

Overall signi  cant difference shown by the two-sided test is 86% of 
the one-sided test. The reason for this is that one-sided test requires less 
strength of evidence than the two-sided test for a signi  cant difference. 
It is likely that an item shown as insigni  cant by a two-tailed test can be 
signi  cant by a one-sided test. One-sided test should never be used to 
make a conventionally non-signi  cant difference signi  cant (Bland and 
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Bland, 1994). Therefore, it is important to decide to use a one-sided or a 
two-sided test before the data collection (Rosner, 2010). 

The rejection limit value at 5% probability level of t-test and Dunnett’s 
multiple comparison test was excerpted and is shown in Table 7.2. The 
rejection limit value of the one-sided test does not become 1/2 the value 
of the Table of the two-sided test, but it becomes 78% of two-sided test 
in t-test, and it becomes 85% of two-sided test at four groups setting in 
Dunnett’s multiple comparison test. 
Table 7.2. Rejection limits of t-test and Dunnett’s multiple comparison test with one- and 
two-sided (Yoshimura, 1987) 

DF Rejection limit at 5% level
t-Table Dunnett’s Tablea

Two-sided One-sided Two-sided One-sided
1 12.706 6.314 – –
2 4.303 2.920 – –
3 3.182 2.353 3.867 2.912
4 2.776 2.132 3.310 2.598
5 2.571 2.015 3.030 2.433
6 2.447 1.943 2.863 2.332
7 2.365 1.895 2.752 2.264
8 2.306 1.860 2.673 2.215
9 2.262 1.833 2.614 2.178

10 2.228 1.812 2.268 2.149
• • • • •
• • • • •

21 2.080 1.721 2.370 2.021
22 2.074 1.717 2.363 2.016
• • • • •
• • • • •

31 2.040 1.696 2.317 1.986
32 2.037 1.694 2.314 1.984
• • • • •
• • • • •

41 2.020 1.683 2.291 1.969
42 2.018 1.682 2.289 1.968
• • • • •
• • • • •

60 2.000 1.671 2.265 1.952
120 1.980 1.657 2.238 1.934
240 1.970 1.651 – –

       
1.960 1.645 2.212 1.916

Rateb 1:0.78 1:0.85
aFour groups setting.
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bValue when total of two-sided is assumed to be one.

The decision to use a one-sided or a two-sided test should be made 
carefully, as it has an impact on sample size calculation. Minimum sample 
size required for one-sided test is less, because it focuses on only tail of 
the probability distribution (Moye and Tita, 2002). The decision to use a 
one-sided or a two-sided test also has an impact on assessment of study 
results by regulatory authorities (Freedman, 2008). When you carry out 
initial pharmacological or toxicological tests with an unknown molecule, 
it would be appropriate to use a two-sided test. In subsequent tests, for 
con  rming the  ndings of the initial tests, one-sided test may be used. 
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Student’s t-Test—History

The history of statistical signi  cance tests dates back 17th century. Perhaps 
the earliest statistical analysis published was by John Arbuthnot on London 
birth rates with regards to gender in 1710 (Hacking, 1965). One of the 
most popular signi  cance tests is the Student’s t-test, which has wide 
scienti  c applications (Papana and Ishwaran, 2006). The Student’s t-test 
is a parametric test for comparing two groups. Readers may be interested 
to know why it is called as Student’s t-test. ‘Student’ was the pseudonym 
of W.S. Gossett (1876–1937) (Box, 1987). He worked as a chemist at the 
Guinness brewery, Ireland. He chose this pseudonym because his company 
did not allow its scientists to publish con  dential data (Raju, 2005). His 
company regarded use of statistics in quality control as a trade secret. In 
an article published in Biometrika, Gossett described a procedure to assess 
population means by using small samples under the pseudonym, “Student” 
(Student, 1908). 

t-Test for One Group
The temperature of an animal room was set at 22°C. The temperature of 
the room measured everyday at 9.00 am for seven days is given in Table 
8.1. The temperature measured was not the same as the temperature set 
(22°C) in any of these days. Let us examine whether the temperature 
measured during the seven days is statistically similar to the temperature 
set (22°C). 
Table 8.1. Temperature of the animal room 

Day 1 2 3 4 5 6 7
Temperature (°C) 22.3 22.6 22.4 22.4 22.6 22.5 22.4

N = 7; Mean = 22.46; SD = 0.1134; SE =0.0429
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723.10
0429.0

0.2246.22
tcal  

The t-distribution Table value (Table 8.2.) at 0.05 probability, for 6 (7–1) 
degrees of freedom is 2.447 (two-sided). Since calculated value (10.723) 
is greater than the Table value (2.447), it is considered that the temperature 
measured in the animal room during the seven days differed from the 
temperature set (22°C). 
Table 8.2. t-distribution Table (Yoshimura, 1987)

DF\2 * 0.2 0.1 0.05 0.02 0.01 0.002 0.001
DF\ ** 0.1 0.05 0.025 0.01 0.005 0.001 0.0005

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

DF, Degrees of freedom; *One-sided; **Two-sided

t-Test for Two Groups

The use of a repeated t-test for comparison of three or more groups might 
cause the error of the  rst kind (Type I error). Three kinds of t-tests are 
commonly used (Figure 8.1). Depending on the variance ratio (F) and the 
number of samples in the group, a t-test is selected.

F-test
P=0.05

Not signi  cant             Signi  cant

Number of samples

Equal              Not equal

Student’s t-test Aspin-Welch’s t-test Cochran-Cox’s t-test

Figure 8.1. Selection of a t-test

F-value is the variance ratio. It is calculated by dividing the larger 
variance by the smaller variance. If the calculated F-value is smaller than 
the value given in F-distribution Table at 5% probability level, the two 
groups are regarded to have the same distribution and the data are analysed 
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using Student’s t-test. On the contrary, if the calculated F-value is greater 
than the value given in F-distribution Table at 5% probability level, the 
two groups are regarded to have different distributions and the data are 
analysed using either Aspin-Welch’s t-test (if the number of samples in the 
two groups is equal) or Cochran-Cox’s t-test (if the number of samples in 
the two groups is not equal). Cochran-Cox’s test has a low power to detect 
a signi  cant difference. This may be the reason why Aspin-Welch’s t-test 
is often used regardless of the number of samples in the two groups.

Student’s t-test

The height of male and female students in a class room is given in Table 
8.3. We would like to examine whether the male and female students have 
similar heights.
Table 8.3. Height (cm) of male and female students

Male (Group 1) Female (Group 2)
170 160
168 154
170 162
169 160
179 151
162 159
172 148
169 159
169 150
179 162

Statistics
Estimates Male (Group 1) Female (Group 2)

N 10 10
Sum 1707 1565
Mean 170.7 156.5
SD 5.0783 5.2546

Variance 25.79 27.61
Sum of squares 232.10 248.50

Let us examine the distribution of the data of males and females by 
calculating F-value:

07.1
8.25
6.279

9F

Note: 9
9F —The superscript and subscript to F indicate the degrees of 

freedom of the numerator and denominator, respectively.



t-Tests  59

Compare the calculated F-value with the F-distribution Table value 
(Table 8.4). F-distribution Table value is the value, where the degrees of 
freedom of numerator and denominator intercept.
(Note: The F-distribution is named after Sir Ronald A. Fisher (1890 –1962), 
who is known to be the father of modern statistics (Kennedy, 2003). F-test 
is a ratio of the sample variances. However, F-test is not suitable for the 
data showing a non-normal distribution.). 

N1 N2                      1      2   3  4  5        6       7       8       9       10     12     14     16     18     20     30 

7 5.59  4.73  4.34  4.12  3.97  3.86  3.78  3.72  3.67  3.63  3.57  3.52  3.49  3.46  3.44  3.37 

8 5.31  4.45  4.06  3.83  3.68  3.58  3.50  3.43  3.38  3.34  3.28  3.23  3.20  3.17  3.15  3.07 

9 5.11  4.25  3.96  3.63  3.48  3.37  3.29  3.22  3.17  3.13  3.07  3.02  2.98  2.96  2.93  2.86 

10 4.96  4.10  3.70  3.47  3.32  3.21  3.13  3.07  3.02  2.97  2.91  2.86  2.82  2.79  2.77  2.69 

11 4.84  3.98  3.58  3.35  3.20  3.09  3.01  2.94  2.89  2.85  2.78  2.73  2.70  2.67  2.64  2.57 

N
1
= Degrees of freedom of numerator, N

2
= Degrees of freedom of denominator 

Table 8.4. F-distribution values at 5% probability level (Yoshimura, 1987)

The calculated F value (1.07) is less than the Table value (3.17). 
Hence, 9

9F  is not considered signi  cant, indicating that the variances of 
both the groups having a similar distribution. Therefore, as given in Figure 
8.1, the data can now be analysed using Student’s t-test.
The t value is calculated using the equation,

221
21

21

21

21 NN
NN
NN

SSSS

XX
tcal  

Where, 

1X  = Mean of Group 1; 2X  = Mean of Group 2; SS1 = Sum of squares of 
Group 1; SS2= Sum of squares of Group 2; N1 = Degrees of freedom of 
Group 1; N2 = Degrees of freedom of Group 2. 

145.6)21010(
1010
1010

5.2481.232
5.1567.170

tcal  

Compare the calculated t value with the t-test critical value given 
in Table 8.5.
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The t-test critical value at 5% probability level for N1+N2–2 (10+10–
2=18) degrees of freedom is 1.734. Since calculated t-value (6.145) is 
greater that the t-test critical value, it is considered that the height of male 
and female students is different.

Aspin-Welch’s t-test

This test is used to compare the means of two groups having different 
distributions, but number of samples (observations) is the same.

A study was conducted in volunteers to  nd the effect of high fat 
content. Diet containing high fat content was given to 10 individuals 
(Group 1). Concurrently, normal diet was given to another 10 individuals 
for comparison (Group 2). At the end of the 7 days treatment, alanine 
aminotransferase (ALT) activity was measured in the individuals of both 
the Groups. The ALT determined in the individuals is given in Table 8.6. 

Table 8.5. t-test critical values (Yoshimura, 1987)
 P= 2  0.20 0.10 0.05 0.02 0.01 0.002 0.001
 P=  0.10 0.05 0.025 0.01 0.005 0.001 0.0005
 DF 
 16  1.337 1.746 2.120 2.583 2.921 3.686 4.015
 17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
 18 1.330 1.734 2.101 2.552 2.878 2.610 3.922
 19  1.328 1.729 2.093 2.539 2.861 3.579 3.883
 20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
Note: =one-sided, 2 =two-sided.

Table 8.6. Alanine aminotransferase activity (IU/l) of individuals

Diet containing high fat content (Group1) Normal diet (Group 2)
42 30
60 34
26 35
48 32
56 36
31 41
30 42
80 28
79 71
93 35
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Statistics
Estimates Diet containing 

high fat content (Group 1)
Normal diet 
(Group 2)

N 10 10
Sum 545 384
Mean 55 38
SD 23.4011 12.2493
Variance (Sx2) 548 150

F-ratio =

65.3
150
5489

9F

Compare the calculated F-value with the Table value (Table 8.4). The 
derived F value (3.65) is greater than the Table value (3.17). Hence, 9

9F  is 
considered signi  cant, indicating that the variances of both the groups are 
distributed differently. According to Figure 8.1, Aspin-Welch’s t-test is the 
appropriate statistical tool for the analysis of this data. The t is calculated 
using the following formula:

2

2

1

1

21

N
Sx

N
Sx

XX
tcal

Where, 

1X  = Mean of Group 1; 2X  = Mean of Group 2; Sx1= Variance of Group 
1; Sx2= Variance of Group 2; N1= Degrees of freedom of Group 1; N2 = 
Degrees of freedom of Group 2.
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150548

3855
tcal  

Unlike Student’s t-test, where the degrees of freedom is N1+N2–2, degrees 
of freedom needs to be calculated for Aspin-Welch’s t-test. The degrees of 
freedom for Aspin-Welch’s t-test is calculated as given below: 
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Where,

2

2
2

1

2
1
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1

N
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N
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N
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C  

79.0
0.158.54

8.54C  

5.13

9
)79.01(

9
79.0

1
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Compare the derived t value with the t-test critical value given in Table 
8.7 at 5% probability level for fourteen degrees of freedom (14 degrees 
of freedom is obtained by rounding up the calculated N, 13.5). Since the 
calculated t-value, 2.03 is greater than the t-test critical value given in the 
Table 8.7 (1.761), it can be stated that there is a difference in ALT between 
the high fat diet-treated and normal diet treated-individuals.
Table 8.7. t-test critical values (Yoshimura, 1987)

2 0.20 0.10 0.05 0.02 0.01 0.002 0.001
0.10 0.05 0.025 0.01 0.005 0.001 0.0005

DF=14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
=one-sided, 2 =two-sided.

Cochran-Cox’s t-test

Cochran-Cox’s t-test is used to compare the means of two samples having 
different distributions and different number of observations. We shall 
modify the data given in Table 8.6 and analyse it using Cochran-Cox’s 
t-test. The values modi  ed are given in Table 8.8. We have not made 
any change in the ALT values of Group 1. But, the values of Group 2 are 
changed and only nine individuals of this group are used for the analysis.  
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Statistics
Estimates Diet containing 

high fat content (Group 1)
Normal diet 
(Group 2)

N 10 9
Sum 545 381
Mean 55 42
SD 23.4011 10.0374

Variance (Sx2) 548 101
F-ratio =

43.5
101
5489

8F

Compare the derived F-value with the Table value (Table 8.4). The calculated 
F-value (5.43) is greater than the Table value (3.38). Hence, 9

8F  is considered 
signi  cant, indicating that the variances of both the groups are distributed 
differently. According to Figure 8.1, Cochran-Cox’s t-test is the appropriate 
statistical tool for the analysis of the data given in Table 8.8.

In Cochran-Cox’s t-test, we need to calculate two t values 
(t calculated and t' calculated).
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XX
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Table 8.8. Alanine aminotransferase activity (IU/l) of individuals

Diet containing 
high fat content (Group1)

Normal diet (Group 2)

42 57
60 45
26 55
48 46
56 26
31 33
30 41
80 35
79 43
93 -
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Since the t calculated (tcal = 1.21) is smaller than the t' calculated 
(t’cal=1.83), it is concluded from the analysis that there is no signi  cant 
difference in ALT between the high fat diet-treated and normal diet treated-
individuals.

Paired t-Test

Let us assume one needs to test an antidiabetic drug in diabetic rats. One 
way to do is to measure the blood sugar before and after treatment with 
the drug and calculate the respective mean values, and compare the mean 
values using an appropriate t-test (select the appropriate t-test as per Figure 
8.1). Another way is to analyse the data using paired t-test. 

Blood sugar values of individual rats before and after the drug treatment 
is given Table 8.9.

Table 8.9. Blood sugar values (mg/dl) of individual rats

Rat Number 1 2 3 4 5 Mean Variance SD SE

Before treatment 274 287 277 259 237 - - - -

After treatment 165 142 215 209 198 - - - -

Difference 
between before 
and after 
treatments

109 145 62 50 39 81 1992 44.6 19.9
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..ES
Meantcal  

07.4
9.19

81tcal

SE

Compare the calculated t-value with the t-test critical value given in Table 
8.10 at 5% probability level for N-1 degrees of freedom. N is number of 
pairs, hence N–1=4. Since the calculated t value, 4.07 is greater than the 
t-test critical value given in the Table 8.10 (2.132), it can be stated that 
treatment with the drug signi  cantly decreased the blood sugar in rats.
Table 8.10. t-test critical values (Yoshimura, 1987)

2 0.20 0.10 0.05 0.02 0.01 0.002 0.001
0.10 0.05 0.025 0.01 0.005 0.001 0.0005

DF=4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
 =one-sided, 2 =two-sided.

A Note of Caution

It is well known that with Student’s two-independent-sample t-test, the 
actual level of signi  cance can be well above or below the nominal level, 
con  dence intervals can have inaccurate probability coverage, and power 
can be low relative to other methods.

In Student’s two-independent-sample t-test, the variance heterogeneity 
can distort rates of Type I error (Kaselman et al., 2004). Therefore, when 
the variance of the two populations is different, Student’s t-test is not 
suitable (Ruxton, 2006). When the number of the groups is more than two, 
multiple comparison with Student’s t-test can cause Type I error. 
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9

Correlation and Association 

Correlations are relationships between two or more variables or sets of 
variables (Cohen and Cohen, 1983). In statistics there is a distinction 
between an association and a correlation, though these terms are often 
used interchangably. Two variables are associated if one of them provides 
information about the likely value of the other. If the association between 
two variables is linear, there is a correlation. Therefore, strictly speaking, 
“non-linear correlation” is an incorrect terminology, a better term is 
“non-linear association”. 

Statisticians’ de  nition of correlation is that it is ‘a parameter of the 
bivariate normal distribution’. The variables are random variables when one 
variable is not depended on the other. In statistics, correlation is referred to 
as coef  cient of correlation (Paler-Calmorin and Calmorin-Piedad, 2008). 
The correlation coef  cient is denoted by the letter r which might have 
originated from the letter, r of the word, relation. A number between –1 
and +1 is used to ‘quantify’ the correlation of the variables (Glantz, 2005). 
The closer the absolute value of r to 1 or –1, the higher the degree of 
correlation. When one variable increases as the other variable increases, 
it is called a ‘positive correlation’, and when one variable decreases as 
the other variable increases, it is called a ‘negative correlation’. When r 
= –1, there is a 100% negative correlation, when r = +1, there is a 100% 
positive correlation and when r = 0, there is a 100% no correlation. But, if 
r = 0.5, it does not mean that there is a 50% correlation. Therefore, r does 
not indicate the percent of correlation (Gurumani, 2005). 
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Pearson’s Product Moment Correlation Coef  cient

A commonly used measure of correlation is Pearson’s product moment 
correlation coef  cient. Correlation coef  cient is a standardised covariance 
(Field, 2009; Berkman and Reise, 2011). Covariance is a measure of joint 
variances of two variables; the deviation of each variable is computed and 
multiplied. Since there are two variables, there are two standard deviations. 
Multiply these standard deviations and divide joint variances by it. 

Standardised covariance, r =   
1

1
n ))((

))((

yx ss
yyxx , where

sx and sy are the standard deviations of variable x and variable y, respectively. 
Above equation can be rewritten as follows:
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The above equation was formulated by Karl Perason, hence called 
Pearson’s correlation coef  cient. 

 Let us compute correlation coef  cient, r for the variables x and y 
given in Table 9.1.

Table 9.1. Calculation of correlation coef  cient

x y x2 y2 xy
1 93 1 8649 93
2 87 4 7569 174
3 76 9 5776 228
4 70 16 4900 280
5 62 25 3844 310
6 45 36 2025 270
7 40 49 1600 280
8 32 64 1024 256
9 25 81 625 225

10 10 100 100 100
x= 55 y=540 x2=385 y2=36112 xy= 2216
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996.0
32.757

754
69525.82

754r  

Signi  cance of r

When the sample size is not too large, the signi  cance of a correlation 
coef  cient can be tested using a t-test: 

51.31
0894.0
8171.2

)996.0(1

210996.0

1

2
22r

nrt

Above is Students t-test with n–2 degrees of freedom.
Alternatively, signi  cance of a correlation coef  cient can be tested as 

given below, which involves no calculation procedure:
Compare the correlation coef  cient, r with the value given in 

correlation coef  cient table (Table 9.2) for eight degrees of freedom. The 
computed correlation coef  cient, r (–0.996) is less than the correlation 
coef  cient Table value (–0.765) at 1% probability level. Hence the 
correlation coef  cient is considered to be signi  cant. The negative sign of 
the correlation coef  cient indicates that the variables x and y are negatively 
correlated. Had the r been 0.996 (positively correlated), we would have 
compared it with 0.765 (without a minus sign). In this case, in order to 
consider the r to be signi  cant, it has to be greater than 0.765. 

r =
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Con  dence Interval of Correlation Coef  cient

A con  dence interval of correlation coef  cient, r can be determined by 
using a transformation of r to a quantity z, which has an approximately 
normal distribution. This transformed z is calculated using the equation:

r
rZ

1
1ln

2
1

For the example given in Table 9.1, r = 0.996. The transformed Z is:

)996.0(1
)996.0(1ln

2
1Z 1063.3

996.1
004.0ln

2
1

Now, we need to calculate an estimate called Error of Estimate:
Error of Estimate = 3/1 n = 310/1  = 0.3780 
Using the Error of Estimate we can calculate Z1 and Z2 with 95% con  dence 
level:

= 1063.3  (1.96x0.3780) = 3.8472 
= 1063.3 + (1.96x0.3780)  = 2.3654 

Z1
Z2

Table 9.2. Correlation coef  cient Table (Shibata, 1970)

DF 5% 1% DF 5% 1% DF 5% 1%
1 0.997 1.000 17 0.456 0.575 45 0.288 0.372
2 0.950 0.990 18 0.444 0.561 50 0.273 0.354
3 0.878 0.959 19 0.433 0.549 60 0.250 0.325
4 0.811 0.917 20 0.423 0.537 70 0.232 0.302
5 0.754 0.874 21 0.413 0.526 80 0.217 0.283
6 0.707 0.834 22 0.404 0.515 90 0.205 0.267
7 0.666 0.798 23 0.396 0.505 100 0.195 0.254
8 0.632 0.765 24 0.388 0.496 125 0.174 0.228
9 0.602 0.735 25 0.381 0.487 150 0.159 0.208

10 0.576 0.708 26 0.374 0.478 200 0.138 0.181
11 0.553 0.684 27 0.367 0.470 300 0.113 0.148
12 0.532 0.661 28 0.361 0.463 400 0.098 0.128
13 0.514 0.641 29 0.355 0.456 500 0.088 0.115
14 0.497 0.623 30 0.349 0.449 1000 0.062 0.081
15 0.482 0.606 35 0.325 0.418
16 0.468 0.590 40 0.304 0.393
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Next step is to transform the Z1 and Z2 back to original scale. Con  dence 
interval of r is:

1
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Con  dence interval of r is calculated as 0.983–0.999.

Coef  cient of Determination

The coef  cient of determination is the square of r (R 2; coef  cient of 
determination is usually denoted by the capital letter R 2), which expresses 
the strength of the relationship between the x and y variables (McDonald, 
2009). This is reviewed in Chapter 10, in greater detail.

Rank Correlation

When the variables are not linearly associated, Pearson’s product moment 
correlation analysis does not work well. In this situation the association 
is transformed into linear by ranking the variables. Rank correlation is 
a nonparametric alternative to the linear correlation coef  cient (Ruby, 
2008). There are several rank correlation analyses available, amongst 
them, Spearman’s rank correlation is more commonly employed (Hassard, 
1991).

Spearman’s Rank Correlation

As stated, in Spearman correlation analysis, the variables are converted to 
ranks. Spearman rank correlation analysis is also used, when there are two 
measurement variables and one “hidden” nominal variable. If you measure 
body weight and body surface area of rats with the rat identi  cation 
number, the identi  cation number of the rat is the nominal variable. The 
major advantages of Spearman’s rank correlation are that it is not affected 
by the distribution of the population and it can be applied to small samples 
(Gauthier, 2001). 
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Canonical Correlation

Canonical correlation analysis developed by Hotelling (1936), is the study 
of the linear relationships between two sets of variables, and is considered 
as a fundamental statistical tool (Bulut et al., 2010). It is the multivariate 
extension of correlation analysis and it measures the interrelationships 
among sets of multiple dependent variables and multiple independent 
variables (Green, 1978). Canonical correlation simultaneously predicts 
multiple dependent variables from multiple independent variables. It is a 
very useful tool in pharmacology and toxicology (Kelder, 1982; Hu et al., 
2003; Tanaka, 2010), where interrelationships between several dependent 
and independent variables need to be assessed. 

An elaborative discussion on canonical correlation is beyond the scope 
of this book. Several books are available that cover the subject in depth 
(Green and Carroll, 1978; Das and Sen, 1994). 

Misuse of Correlation Analysis

There are a several situations in which the correlation coef  cient can be 
misinterpreted. Fifteen errors related to correlation and regression were 
identi  ed in articles published in three leading medical journals in the 
year, 1997 (Porter, 1999). Perhaps the most important error committed 
in these articles was, not presenting con  dence intervals of correlation 
coef  cient (this error could be seen in many of the scienti  c articles, 
even today). Another error in interpreting the correlation coef  cient is, 
the failure to consider that there may be a third variable related to both 
of the variables being investigated, which is responsible for the apparent 
correlation. Often the correlation coef  cient fails to detect the existence of 
a nonlinear association between two variables (Bewick et al., 2003).

A high correlation coef  cient (for example, r = >0.997) is not always 
a useful indicator of linearity in method validation; other statistical tests 
like Lack-of-  t and Mendel’s  tting test may be used for evaluating the 
linearity (Loco et al., 2002).

A correlation coef  cient will have limited use as a stand-alone quantity 
without reference to the number of observations, the pattern of the data and 
the slope of the regression line (Sonnergaard, 2006). It is recommended to 
plot the variables and understand the pattern of the data before interpreting 
the correlation analysis.
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