A Handbook of Applied Statistics in Pharmacology Katsumi Kobayashi K. Sadasiyan Pillai

A Handbook of Applied Statistics in Pharmacology

A Handbook of Applied Statistics in Pharmacology

Katsumi Kobayashi

Safety Assessment Division, Chemical Management Center National Institute of Technology and Evaluation (NITE) Tokyo, Japan

K. Sadasivan Pillai

Frontier Life Science Services (A Unit of Frontier Lifeline Hospitals) Thiruvallur District Chennai, India

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A SCIENCE PUBLISHERS BOOK CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 2012919

International Standard Book Number-13: 978-1-4665-1540-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Life expectancy has significantly increased in the last century, thanks to the discovery and development of new drugs by pharmaceutical industries. Search for new therapeutics is the primary activity of the R&D of pharmaceutical industries and it involves complex network of tasks such as synthetic chemistry, in vitro/in vivo efficacy, safety, preclinical and clinical research. Statistical analysis has always been the foundation to establish the safety and efficacy of drugs. The decision to- or not to- advance preclinical drug candidates to very expensive clinical development heavily relies on statistical analysis and the resulting significance of preclinical data. Recent reports attributed failure of certain drugs in clinical stages of development to improper conduct of preclinical studies and inappropriate application of statistical tools. Applying appropriate statistical tools is sagacious to analysis of data from any research activity. Though scientists expect computerized statistical packages to perform analyses of the data, he/she should be familiar with the underlying principles to choose the appropriate statistical tool.

'A Handbook of Applied Statistics in Pharmacology' by Katsumi Kobayashi and K. Sadasivan Pillai is a very useful book for scientists working in R&D of pharmaceuticals and contract research organizations. Most of the routine statistical tools used in pharmacology and toxicology are covered perspicuously in the book. The examples worked out in the book are from actual studies, hence do not push a reader having less or no exposure to statistics outside his/her comfort zone.

Dr. K.M. Cherian M.S., F.R.A.C.S., Ph.D., D.Sc. (Hon.), D.Sc. (CHC), D.Sc. (HC) Chairman & CEO Frontier Lifeline Hospitals Chennai, India

Scientists involved in pharmacology have always felt that statistics is a difficult subject to tackle. Thus they heavily rely on statisticians to analyse their experimental data. No doubt, statisticians with some scientific knowledge can analyse the data, but their interpretation of results often perplexes the scientists.

Statistics play an important role in pharmacology and related subjects like, toxicology, and drug discovery and development. Improper statistical tool selection to analyze the data obtained from studies conducted in these subjects may result in erroneous interpretation of the performanceor safety- of drugs. There have been several incidents in pharmaceutical industries, where failure of drugs in clinical trials is attributed to improper statistical analysis of the preclinical data. In pharmaceutical Research & Development settings, where a large number of new drug entities are subjected to high-throughput *in vitro* and *in vivo* studies, use of appropriate statistical tools is quintessential.

It is not prudent for the research scientists to totally depend on statisticians to interpret the findings of their hard work. Factually, scientists with basic statistical knowledge and understanding of the underlying principles of statistical tools selected for analysing the data have an advantage over others, who shy away from statistics. Underlying principle of a statistical tool does not mean that one should learn all complicated mathematical jargons. Here, the underlying principle means only 'thinking logically' or applying 'common sense'.

The authors of this book, with decades of experience in contract research organizations and pharmaceutical industries, are fully cognizant of the extent of literacy in statistics that the research scientists working in pharmacology, toxicology, and drug discovery and development would be interested to learn. This book is written with an objective to communicate statistical tools in simple language. Utmost care has been taken to avoid complicated mathematical equations, which the readers may find difficult

viii A Handbook of Applied Statistics in Pharmacology

to assimilate. The examples used in the book are similar to those that the scientists encounter regularly in their research. The authors have provided cognitive clues for selection of an appropriate statistical tool to analyse the data obtained from the studies and also how to interpret the result of the statistical analysis.

Contents

Foreword	
Preface	vii
1. Probability	1
Probability and Possibility	1
Probability—Examples	2
Probability Distribution	2 3
Cumulative Probability	3
Probability and Randomization	4
2. Distribution	6
History	6
Variable	6
Stem-and-Leaf Plot	7
Box-and-Whisker Plot	8
3. Mean, Mode, Median	11
Average and Mean	11
Mean	11
Geometric Mean	12
Harmonic Mean	12
Weighted Mean	13
Mode	13
Median	14
4. Variance, Standard Deviation, Standard Error,	16
Coefficient of Variation	
Variance	16
Standard Deviation (SD)	18
Standard Error (SE)	19
Coefficient of Variation (CV)	19
When to Use a Standard Deviation (SD)/Standard Error (SE)?	20

5.	Analysis of Normality and Homogeneity of Variance	23
	Distribution of Data in Toxicology and Pharmacology	23
	Experiments Analysis of Normality	23
	Tests for Analyzing Normal Distribution	23
	Shapiro-Wilk's W test	24
	Power of Shapiro-Wilk's W test	27
	Parametric and Non-parametric Analyses	31
	Analysis of Homogeneity of Variance	31
	Bartlett's homogeneity test	31
	Levene's homogeneity test	32
	Power of Bartlett's and Levene's homogeneity tests	32
	Do We Need to Examine the Data for Both Normality and Homogeneity?	33
	Which Test to be Used for Examining Homogeneity of Variance?	33
6.	Transformation of Data and Outliers	37
	Transformation of Data	37
	Outliers	38
	Masuyama's Rejection Limit Test	40
	Thompson's Rejection Test	41
	Smirnov-Grubbs' Rejection Test	42
	A Cautionary Note	42
7.	Tests for Significant Differences	47
	Null Hypothesis	47
	Significant Level, Type I and Type II Errors	48
	Why at 5% Significant Level?	48
	How to Express <i>P</i> ?	50
	One-sided and Two-sided Tests	50
	Which Test to Use: One-sided or Two-sided?	51
8.	t-Tests	56
	Student's <i>t</i> -Test—History	56
	<i>t</i> -Test for One Group	56
	<i>t</i> -Test for Two Groups	57
	Student's <i>t</i> -test	58
	Aspin-Welch's <i>t</i> -test	60
	Cochran-Cox's <i>t</i> -test	62
	Paired <i>t</i> -Test	64
	A Note of Caution	65

9.	Correlation Analysis	67
	Correlation and Association	67
	Pearson's Product Moment Correlation Coefficient	68
	Significance of <i>r</i>	69
	Confidence Interval of Correlation Coefficient	70
	Coefficient of Determination	71
	Rank Correlation	71
	Spearman's Rank Correlation	71
	Canonical Correlation	72
	Misuse of Correlation Analysis	72
10.	Regression Analysis	74
	History	74
	Linear Regression Analysis	74
	Confidence Limits for Slope	78
	Comparison of Two Regression Coefficients	79
	\mathbb{R}^2	80
	Multiple Linear Regression Analysis	80
	Polynomial Regression	81
	Misuse of Regression Analysis	82
11.	Multivariate Analysis	84
	Analysis of More than Two Groups	84
	One-way ANOVA	85
	post hoc Comparison	87
	Dunnett's multiple comparison test	87
	Tukey's multiple range test	89
	Williams's test	90
	Duncan's multiple range test	95
	Scheffé's multiple comparison test	98
	Two-way ANOVA	100
	Dunnett's Multiple Comparison Test and Student's	103
	t Test—A Comparison	
12.	Non-Parametric Tests	106
	Non-parametric and Parametric Tests—Assumptions	106
	Sign Tests	106
	Calculation procedure of sign test for small sample size	107
	Calculation procedure of sign test for large sample size	107

	Signed Rank Sum Tests	109
	Wilcoxon rank-sum test	109
	Fisher's exact test	111
	Mann-Whitney's U test	113
	Kruskal-Wallis Nonparametric ANOVA by Ranks	117
	Comparison of Group Means	119
	Dunn's multiple comparison test for more than three groups	120
	Steel's multiple comparison test for more than three groups	121
	Rank Sum Tests—Some Points	123
13.	Cluster Analysis	127
	What is Cluster Analysis?	127
	Hierarchical cluster analysis	127
	Ward's method of cluster analysis	128
	k-means cluster analysis	129
14.	Trend Tests	136
	Introduction	136
	Jonckheere's trend test	136
	The Cochran-Armitage test	139
15.	Survival Analysis	143
15.	Survival Analysis Introduction	143 143
15.	·	
15.	Introduction	143
15.	Introduction Hazard Rate	143 144
	Introduction Hazard Rate Kaplan-Meier Method	143 144 144
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships	143 144 144 144
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage	143 144 144 144 150
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL	143 144 144 144 150
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage	143 144 144 144 150 150
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL	143 144 144 144 150 150 150
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL Benchmark Dose	143 144 144 144 150 150 150 152 153
	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL Benchmark Dose Probit Analysis	143 144 144 144 150 150 150 150 152 153 154
16.	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL Benchmark Dose Probit Analysis IC ₅₀ and EC ₅₀ Determination	143 144 144 144 150 150 150 152 153 154 157
16.	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL Benchmark Dose Probit Analysis IC_{50} and EC_{50} Determination Hormesis	143 144 144 150 150 150 152 153 154 157 158
16.	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL Benchmark Dose Probit Analysis IC_{50} and EC_{50} Determination Hormesis Analysis of Pathology Data	143 144 144 150 150 150 150 152 153 154 157 158 163
16.	Introduction Hazard Rate Kaplan-Meier Method Kaplan-Meier product-limit estimator Dose Response Relationships Dose and Dosage Margin of Exposure, NOAEL, NOEL Determining NOEL and NOAEL Benchmark Dose Probit Analysis IC_{50} and EC_{50} Determination Hormesis Analysis of Pathology Data Pathology in Toxicology	143 144 144 150 150 150 150 152 153 154 157 158 163

Poly- <i>k</i> Type test	167
Analysis of Tumour Incidence—Comparison with Historical Control Data	168
Analysis of Incidence of Tumour Using X^2 Test	170
Comparison of Incidence of Tumours in Human, Rats, Mice and Dogs	170
Analysis of Organ Weight Data	172
Interpretation of Pathology Observations	173
18. Designing An Animal Experiment in Pharmacology and Toxicology—Randomization, Determining Sample Size	178
Designing Animal Experiments	178
Acclimation	179
Randomization	179
Determining Sample Size	183
Animal Experimental Designs	185
19. How to Select An Appropriate Statistical Tool?	188
Good Statistical Design	188
Decision Trees	188
Statistical Procedures Used by National Toxicology Program (NTP), USA	191
Decision Tree Produced by OECD	193
Incongruence in Selection of a Statistical Tool	194
Selection of a Statistical Tool—Suggested Decision Trees or Flow Charts	195
Statistical Tools Suggested for the Analysis of Toxicology Data	196
Use of Statistics in Toxicology-Limitations	196
Appendices	201
Appendix 1. Coefficient for Shapiro-Wilk <i>W</i> Test	202
Appendix 2. Quantiles of the Shapiro-Wilk Test Statistic	206
Appendix 3. Z Score for Normal Distribution	208
Index	211