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The discussions of databases and information retrieval in earlier chapters of this book
document the tremendous explosion in the amount of sequence information available
in a variety of public databases. As we have already seen with nucleotide sequences,
all protein sequences, whether determined directly or through the translation of an
open reading frame in a nucleotide sequence, contain intrinsic information of value
in determining their structure or function. Unfortunately, experiments aimed at ex-
tracting such information cannot keep pace with the rate at which raw sequence data
are being produced. Techniques such as circular dichroism spectroscopy, optical ro-
tatory dispersion, X-ray crystallography, and nuclear magnetic resonance are ex-
tremely powerful in determining structural features, but their execution requires many
hours of highly skilled, technically demanding work. The gap in information becomes
obvious in comparisons of the size of the protein sequence and structure databases;
as of this writing, there were 87,143 protein entries (Release 39.0) in SWISS-PROT
but only 12,624 structure entries (July, 2000) in PDB. Attempts to close the gap
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center around theoretical approaches for structure and function prediction. These
methods can provide insights as to the properties of a protein in the absence of
biochemical data.

This chapter focuses on computational techniques that allow for biological dis-
covery based on the protein sequence itself or on their comparison to protein families.
Unlike nucleotide sequences, which are composed of four bases that are chemically
rather similar (yet distinct), the alphabet of 20 amino acids found in proteins allows
for much greater diversity of structure and function, primarily because the differences
in the chemical makeup of these residues are more pronounced. Each residue can
influence the overall physical properties of the protein because these amino acids are
basic or acidic, hydrophobic or hydrophilic, and have straight chains, branched
chains, or are aromatic. Thus, each residue has certain propensities to form structures
of different types in the context of a protein domain. These properties, of course, are
the basis for one of the central tenets of biochemistry: that sequence specifies con-
formation (Anfinsen et al., 1961).

The major precaution with respect to these or any other predictive techniques is
that, regardless of the method, the results are predictions. Different methods, using
different algorithms, may or may not produce different results, and it is important to
understand how a particular predictive method works rather than just approaching
the algorithm as a ‘‘black box’’: one method may be appropriate in a particular case
but totally inappropriate in another. Even so, the potential for a powerful synergy
exists: proper use of these techniques along with primary biochemical data can pro-
vide valuable insights into protein structure and function.

PROTEIN IDENTITY BASED ON COMPOSITION

The physical and chemical properties of each of the 20 amino acids are fairly well
understood, and a number of useful computational tools have been developed for
making predictions regarding the identification of unknown proteins based on these
properties (and vice versa). Many of these tools are available through the ExPASy
server at the Swiss Institute of Bioinformatics (Appel et al., 1994). The focus of the
ExPASy tools is twofold: to assist in the analysis and identification of unknown
proteins isolated through two-dimensional gel electrophoresis, as well as to predict
basic physical properties of a known protein. These tools capitalize on the curated
annotations in the SWISS-PROT database in making their predictions. Although
calculations such as these are useful in electrophoretic analysis, they can be very
valuable in any number of experimental areas, particularly in chromatographic and
sedimentation studies. In this and the following section, tools in the ExPASy suite
are identified, but the ensuing discussion also includes a number of useful programs
made available by other groups. Internet resources related to these and other tools
discussed in this chapter are listed at the end of the chapter.

AACompIdent and AACompSim (ExPASy)

Rather than using an amino acid sequence to search SWISS-PROT, AACompIdent
uses the amino acid composition of an unknown protein to identify known proteins
of the same composition (Wilkins et al., 1996). As inputs, the program requires the
desired amino acid composition, the isoelectric point (pI) and molecular weight of
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the protein (if known), the appropriate taxonomic class, and any special keywords.
In addition, the user must select from one of six amino acid ‘‘constellations,’’ which
influence how the analysis is performed; for example, certain constellations may
combine residues like Asp/Asn (D/N) and Gln/Glu (Q/E) into Asx (B) and Glx (Z),
or certain residues may be eliminated from the analysis altogether.

For each sequence in the database, the algorithm computes a score based on the
difference in compositions between the sequence and the query composition. The
results, returned by E-mail, are organized as three ranked lists:

• a list based on all proteins from the specified taxonomic class without taking
pI or molecular weight into account;

• a list based on all proteins regardless of taxonomic class without taking pI or
molecular weight into account; and

• a list based on the specified taxonomic class that does take pI and molecular
weight into account.

Because the computed scores are a difference measure, a score of zero implies that
there is exact correspondence between the query composition and that sequence
entry.

AACompSim, a variant of AACompIdent, performs a similar type of analysis,
but, rather than using an experimentally derived amino acid composition as the basis
for searches, the sequence of a SWISS-PROT protein is used instead (Wilkins et al.,
1996). A theoretical pI and molecular weight are computed before computation of
the difference scores using Compute pI/MW (see below). It has been documented
that amino acid composition across species boundaries is well conserved (Cordwell
et al., 1995) and that, by considering amino acid composition, investigators can detect
weak similarities between proteins whose sequence identity falls below 25% (Ho-
bohm and Sander, 1995). Thus the consideration of composition in addition to the
ability to perform ‘‘traditional’’ database searches may provide additional insight into
the relationships between proteins.

PROPSEARCH

Along the same lines as AACompSim, PROPSEARCH uses the amino acid com-
position of a protein to detect weak relationships between proteins, and the authors
have demonstrated that this technique can be used to easily discern members of the
same protein family (Hobohm and Sander, 1995). However, this technique is more
robust than AACompSim in that 144 different physical properties are used in per-
forming the analysis, among which are molecular weight, the content of bulky res-
idues, average hydrophobicity, and average charge. This collection of physical prop-
erties is called the query vector, and it is compared against the same type of vector
precomputed for every sequence in the target databases (SWISS-PROT and PIR).
Having this ‘‘database of vectors’’ calculated in advance vastly improves the proc-
essing time for a query.

The input to the PROPSEARCH Web server is just the query sequence, and an
example of the program output is shown in Figure 11.1. Here, the sequence of human
autoantigen NOR-90 was used as the input query. The results are ranked by a distance
score, and this score represents the likelihood that the query sequence and new



256

Fi
g

u
re

11
.1

.
R

es
u

lt
s

o
f

a
PR

O
PS

EA
R

C
H

d
at

ab
as

e
q

u
er

y
b

as
ed

o
n

am
in

o
ac

id
co

m
p

o
si

ti
o

n
.

Th
e

in
p

u
t

se
q

u
en

ce
u

se
d

w
as

th
at

o
f

th
e

h
u

m
an

au
to

an
ti

g
en

N
O

R
-9

0.
Ex

p
la

n
at

o
ry

m
at

er
ia

l
an

d
a

h
is

to
g

ra
m

o
f

d
is

ta
n

ce
sc

o
re

s
ag

ai
n

st
th

e
en

ti
re

ta
rg

et
d

at
ab

as
e

h
av

e
b

ee
n

re
m

o
ve

d
fo

r
b

re
vi

ty
.

Th
e

co
lu

m
n

s
in

th
e

ta
b

le
g

iv
e

th
e

ra
n

k
o

f
th

e
h

it
b

as
ed

o
n

th
e

d
is

ta
n

ce
sc

o
re

,
th

e
SW

IS
S-

PR
O

T
o

r
PI

R
id

en
ti

fi
er

,

th
e

d
is

ta
n

ce
sc

o
re

,
th

e
le

n
g

th
o

f
th

e
o

ve
rl

ap
b

et
w

ee
n

th
e

q
u

er
y

an
d

su
b

je
ct

,
th

e
p

o
si

ti
o

n
s

o
f

th
e

o
ve

rl
ap

(f
ro

m
P
O
S
1

to
P
O
S
2

),
th

e

ca
lc

u
la

te
d

p
I,

an
d

th
e

d
efi

n
it

io
n

lin
e

fo
r

th
e

fo
u

n
d

se
q

u
en

ce
.



PHYS ICAL PROPERT IES BASED ON SEQUENCE 257

sequences found through PROPSEARCH belong to the same family, thereby imply-
ing common function in most cases. A distance score of 10 or below indicates that
there is a better than 87% chance that there is similarity between the two proteins.
A score below 8.7 increases the reliability to 94%, and a score below 7.5 increases
the reliability to 99.6%. Examination of the results showed NOR-90 to be similar to
a number of nucleolar transcription factors, protein kinases, a retinoblastoma-binding
protein, the actin-binding protein radixin, and RalBP1, a putative GTPase target.
None of these hits would necessarily be expected, since the functions of these pro-
teins are dissimilar; however, a good number of these are DNA-binding proteins,
opening the possibility that a very similar domain is being used in alternative func-
tional contexts. At the very least, a BLASTP search would be necessary to both
verify the results and identify critical residues.

MOWSE

The Molecular Weight Search (MOWSE) algorithm capitalizes on information ob-
tained through mass spectrometric (MS) techniques (Pappin et al., 1993). With the
use of both the molecular weights of intact proteins and those resulting from diges-
tion of the same proteins with specific proteases, an unknown protein can be un-
ambiguously identified given the results of several experimental determinations. This
approach substantially cuts down on experimental time, since the unknown protein
does not have to be sequenced in whole or in part.

The MOWSE Web front end requires the molecular weight of the starting se-
quence and the reagent used, as well as the resultant masses and composition of the
peptides generated by the reagent. A tolerance value may be specified, indicating the
error allowed in the accuracy of the determined fragment masses. Calculations are
based on information contained in the OWL nonredundant protein sequence database
(Akrigg et al., 1988). Scoring is based on how often a fragment molecular weight
occurs in proteins within a given range of molecular weights, and the output is
returned as a ranked list of the top 30 scores, with the OWL entry name, matching
peptide sequences, and other statistical information. Simulation studies produced an
accuracy rate of 99% using five or fewer input peptide weights.

PHYSICAL PROPERTIES BASED ON SEQUENCE

Compute pI/MW and ProtParam (ExPASy)

Compute pI/MW is a tool that calculates the isoelectric point and molecular weight
of an input sequence. Determination of pI is based on pK values, as described in an
earlier study on protein migration in denaturing conditions at neutral to acidic pH
(Bjellqvist et al., 1993). Because of this, the authors caution that pI values determined
for basic proteins may not be accurate. Molecular weights are calculated by the
addition of the average isotopic mass of each amino acid in the sequence plus that
of one water molecule. The sequence can be furnished by the user in FASTA format,
or a SWISS-PROT identifier or accession number can be specified. If a sequence is
furnished, the tool automatically computes the pI and molecular weight for the entire
length of the sequence. If a SWISS-PROT identifier is given, the definition and
organism lines of the entry are shown, and the user may specify a range of amino
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acids so that the computation is done on a fragment rather than on the entire protein.
ProtParam takes this process one step further. Based on the input sequence, Prot-
Param calculates the molecular weight, isoelectric point, overall amino acid com-
position, a theoretical extinction coefficient (Gill and von Hippel, 1989), aliphatic
index (Ikai, 1980), the protein’s grand average of hydrophobicity (GRAVY) value
(Kyte and Doolittle, 1982), and other basic physicochemical parameters. Although
this might seem to be a very simple program, one can begin to speculate about the
cellular localization of the protein; for example, a basic protein with a high propor-
tion of lysine and arginine residues may well be a DNA-binding protein.

PeptideMass (ExPASy)

Designed for use in peptide mapping experiments, PeptideMass determines the cleav-
age products of a protein after exposure to a given protease or chemical reagent
(Wilkins et al., 1997). The enzymes and reagents available for cleavage through
PeptideMass are trypsin, chymotrypsin, LysC, cyanogen bromide, ArgC, AspN, and
GluC (bicarbonate or phosphate). Cysteines and methionines can be modified before
the calculation of the molecular weight of the resultant peptides. By furnishing a
SWISS-PROT identifier rather than pasting in a raw sequence, PeptideMass is able
to use information within the SWISS-PROT annotation to improve the calculations,
such as removing signal sequences or including known posttranslational modifica-
tions before cleavage. The results are returned in tabular format, giving a theoretical
pI and molecular weight for the starting protein and then the mass, position, modified
masses, information on variants from SWISS-PROT, and the sequence of the peptide
fragments.

TGREASE

TGREASE calculates the hydrophobicity of a protein along its length (Kyte and
Doolittle, 1982). Inherent in each of the 20 amino acids is its hydrophobicity: the
relative propensity of the acid to bury itself in the core of a protein and away from
surrounding water molecules. This tendency, coupled with steric and other consid-
erations, influences how a protein ultimately folds into its final three-dimensional
conformation. As such, TGREASE finds application in the determination of putative
transmembrane sequences as well as the prediction of buried regions of globular
proteins. TGREASE is part of the FASTA suite of programs available from the
University of Virginia and runs as a stand-alone application that can be downloaded
and run on either Macintosh or DOS-based computers.

The method relies on a hydropathy scale, in which each amino acid is assigned
a score reflecting its relative hydrophobicity based on a number of physical char-
acteristics (e.g., solubility, the free energy of transfer through a water-vapor phase
transition, etc.). Amino acids with higher, positive scores are more hydrophobic;
those with more negative scores are more hydrophilic. A moving average, or hydro-
pathic index, is then calculated across the protein. The window length is adjustable,
with a span of 7–11 residues recommended to minimize noise and maximize infor-
mation content. The results are then plotted as hydropathic index versus residue
number. The sequence for the human interleukin-8 receptor B was used to generate
a TGREASE plot, as shown in Figure 11.2. Correspondence between the peaks and
the actual location of the transmembrane segments, although not exact, is fairly good;
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Figure 11.2. Results of a Kyte-Doolittle hydropathy determination using TGREASE. The

input sequence was of the high affinity interleukin-8 receptor B from human. Default win-

dow lengths were used. The thick, horizontal bars across the bottom of the figure were

added manually and represent the positions of the seven transmembrane regions of IL-8R-

B, as given in the SWISS-PROT entry for this protein (P25025).

keep in mind that the method is predicting all hydrophobic regions, not just those
located in transmembrane regions. The specific detection of transmembrane regions
is discussed further below.

SAPS

The Statistical Analysis of Protein Sequences (SAPS) algorithm provides extensive
statistical information for any given query sequence (Brendel et al., 1992). When a
protein sequence is submitted via the SAPS Web interface, the server returns a large
amount of physical and chemical information on the protein, based solely on what
can be inferred from its sequence. The output begins with a composition analysis,
with counts of amino acids by type. This is followed by a charge distribution analysis,
including the locations of positively or negatively charged clusters, high-scoring
charged and uncharged segments, and charge runs and patterns. The final sections
present information on high-scoring hydrophobic and transmembrane segments, re-
petitive structures, and multiplets, as well as a periodicity analysis.

MOTIFS AND PATTERNS

In Chapter 8, the idea of direct sequence comparison was presented, where BLAST
searches are performed to identify sequences in the public databases that are similar
to a query sequence of interest. Often, this direct comparison may not yield any
interesting results or may not yield any results at all. However, there may be very
weak sequence determinants that are present that will allow the query sequence to
be associated with a family of sequences. By the same token, a family of sequences
can be used to identify new, distantly related members of the same protein family;
an example of this is PSI-BLAST, discussed in Chapter 8.
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Before discussing two of the methods that capitalize on such an approach, several
terms have to be defined. The first is the concept of profiles. Profiles are, quite simply,
a numerical representation of a multiple sequence alignment, much like the multiple
sequence alignments derived from the methods discussed in Chapter 9. Imbedded
within a multiple sequence alignment is intrinsic sequence information that represents
the common characteristics of that particular collection of sequences, frequently a
protein family. By using a profile, one is able to use these imbedded, common
characteristics to find similarities between sequences with little or no absolute se-
quence identity, allowing for the identification and analysis of distantly related pro-
teins. Profiles are constructed by taking a multiple sequence alignment representing
a protein family and then asking a series of questions:

• What residues are seen at each position of the alignment?

• How often does a particular residue appear at each position of the alignment?

• Are there positions that show absolute conservation?

• Can gaps be introduced anywhere in the alignment?

Once those questions are answered, a position-specific scoring table (PSST) is con-
structed, and the numbers in the table now represent the multiple sequence alignment.
The numbers within the PSST reflect the probability of any given amino acid oc-
curring at each position. It also reflects the effect of a conservative or nonconser-
vative substitution at each position in the alignment, much like a PAM or BLOSUM
matrix does. This PSST can now be used for comparison against single sequences.

The second term requiring definition is pattern or signature. A signature also
represents the common characteristics of a protein family (or a multiple sequence
alignment) but does not contain any weighting information whatsoever—it simply
provides a shorthand notation for what residues can be present at any given position.
For example, the signature

[IV] - G - x - G - T -[LIVMF] - x(2) - [GS]

would be read as follows: the first position could contain either an isoleucine or a
valine, the second position could contain only a glycine, and so on. An x means that
any residue can appear at that position. The x(2) simply means that two positions
can be occupied by any amino acid, the number just reflecting the length of the
nonspecific run.

ProfileScan

Based on the classic Gribskov method of profile analysis (Gribskov et al., 1987,
1988), ProfileScan uses a method called pfscan to find similarities between a protein
or nucleic acid query sequence and a profile library (Lüthy et al., 1994). In this case,
three profile libraries are available for searching. First is PROSITE, an ExPASy
database that catalogs biologically significant sites through the use of motif and
sequence profiles and patterns (Hofmann, 1999). Second is Pfam, which is a collec-
tion of protein domain families that differ from most such collections in one impor-
tant aspect: the initial alignment of the protein domains is done by hand, rather than
by depending on automated methods. As such, Pfam contains slightly over 500 en-
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tries, but the entries are potentially of higher quality. The third profile set is referred
to as the Gribskov collection.

Searches against any of these collections can be done through the ProfileScan
Web page, which simply requires either an input sequence in plain text format, or
an identifier such as a SWISS-PROT ID. The user can select the sensitivity of the
search, returning either significant matches only or all matches, including borderline
cases. To illustrate the output format, the sequence of a human heat-shock-induced
protein was submitted to the server for searching against PROSITE profiles only.

normalized raw from - to Profile | Description
355.9801 41556 pos. 6 - 612 PF00012 | HSP70 Heat shock hsp70 proteins

Although the actual PROSITE entry returned is no great surprise, the output
contains scores that are worth understanding. The raw score is the actual score cal-
culated from the scoring matrix used during the search. The more informative number
is the normalized or N-score. The N-score formally represents the number of matches
one would expect in a database of given size. Basically, the larger the N-score the
lower the probability that the hit occurred by chance. In the example, the N-score
of 355 translates to 1.94 × 10�349 expected chance matches when normalized against
SWISS-PROT—an extremely low probability of this being a false positive. The
from and to numbers simply show the positions of the overlap between the query
and the matching profile.

BLOCKS

The BLOCKS database utilizes the concept of blocks to identify a family of proteins,
rather than relying on the individual sequences themselves (Henikoff and Henikoff,
1996). The idea of a block is derived from the more familiar notion of a motif, which
usually refers to a conserved stretch of amino acids that confer a specific function
or structure to a protein. When these individual motifs from proteins in the same
family are aligned without introducing gaps, the result is a block, with the term
‘‘block’’ referring to the alignment, not the individual sequences themselves. Obvi-
ously, an individual protein can contain one or more blocks, corresponding to each
of its functional or structural motifs.

The BLOCKS database itself is derived from the entries in PROSITE. When a
BLOCKS search is performed using a sequence of interest, the query sequence is
aligned against all the blocks in the database at all possible positions. For each
alignment, a score is calculated using a position-specific scoring matrix, and results
of the best matches are returned to the user. Searches can be performed optionally
against the PRINTS database, which includes information on more than 300 families
that do not have corresponding entries in the BLOCKS database. To ensure complete
coverage, it is recommended that both databases be searched.

BLOCKS searches can be performed using the BLOCKS Web site at the Fred
Hutchinson Cancer Research Center in Seattle. The Web site is straightforward, al-
lowing both sequence-based and keyword-based searches to be performed. If a DNA
sequence is used as the input, users can specify which genetic code to use and which
strand to search. Regardless of whether the query is performed via a sequence or via
keywords, a successful search will return the relevant block. An example is shown
in Figure 11.3. In this entry (for a nuclear hormone receptor called a steroid finger),
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Figure 11.3. Structure of a typical BLOCKS entry. This is part of the entry for one block

associated with steroid fingers. The structure of the entry is discussed in the text.

the header lines marked ID, AC, and DE give, in order, a short description of the
family represented by this block, the BLOCKS database accession number, and a
longer description of the family. The BL line gives information regarding the original
sequence motif that was used to construct this particular block. The width and
seqs parameters show how wide the block is, in residues, and how many sequences
are in the block, respectively. Some information then follows regarding the statistical
validity and the strength of the construct. Finally, a list of sequences is presented,
showing only the part of the sequence corresponding to this particular motif. Each
line begins with the SWISS-PROT accession number for the sequence, the number
of the first residue shown based on the entire sequence, the sequence itself, and a
position-based sequence weight. These values are scaled, with 100 representing the
sequence that is most distant from the group. Notice that there are blank lines be-
tween some of the sequences; parts of the overall alignment are clustered, and, in
each cluster, 80% of the sequence residues are identical.

CDD

Recently, NCBI introduced a new search service aimed at identifying conserved
domains within a protein sequence. The source database for these searches is called
the Conserved Domain Database or CDD. This is a secondary database, with entries
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derived from both Pfam (described above) and SMART (Simple Modular Architec-
ture Research Tool). SMART can be used to identify genetically mobile domains
and analyze domain architectures and is discussed in greater detail within the context
of comparative genomics in Chapter 15. The actual search is performed using reverse
position-specific BLAST (RPS-BLAST), which uses the query sequence to search a
database of precalculated PSSTs.

The CDD interface is simple, providing a box for the input sequence (alterna-
tively, an accession number can be specified) and a pull-down menu for selecting
the target database. If conserved domains are identified within the input sequence, a
graphic is returned showing the position of each conserved domain, followed by the
actual alignment of the query sequence to the target domain as generated by RPS-
BLAST. In these alignments, the default view shows identical residues in red,
whereas conservative substitutions are shown in blue; users can also select from a
variety of representations, including the traditional BLAST-style alignment display.
Hyperlinks are provided back to the source databases, providing more information
on that particular domain. This ‘‘CD Summary’’ page gives the underlying source
database information, references, the taxonomy spanned by this entry, and a sequence
entry representative of the group. In the lower part of the page, the user can construct
an alignment of sequences of interest from the group; alternatively, the user can
allow the computer to select the top-ranked sequences or a subset of sequences that
are most diverse within the group. If a three-dimensional structure corresponding to
the CD is available, it can be viewed directly using Cn3D (see Chapter 5). Clicking
on the CD link next to any of the entries on the CD Summary page will, in essence,
start the whole process over again, using that sequence to perform a new RPS-
BLAST search against CDD.

SECONDARY STRUCTURE AND FOLDING CLASSES

One of the first steps in the analysis of a newly discovered protein or gene product
of unknown function is to perform a BLAST or other similar search against the
public databases. However, such a search might not produce a match against a known
protein; if there is a statistically significant hit, there may not be any information in
the sequence record regarding the secondary structure of the protein, information
that is very important in the rational design of biochemical experiments. In the
absence of ‘‘known’’ information, there are methods available for predicting the
ability of a sequence to form �-helices and �-strands. These methods rely on ob-
servations made from groups of proteins whose three-dimensional structure has been
experimentally determined.

A brief review of secondary structure and folding classes is warranted before
the techniques themselves are discussed. As already alluded to, a significant number
of amino acids have hydrophobic side chains, whereas the main chain, or backbone,
is hydrophilic. The required balance between these two seemingly opposing forces
is accomplished through the formation of discrete secondary structural elements, first
described by Linus Pauling and colleagues in 1951 (Pauling and Corey, 1951). An
�-helix is a corkscrew-type structure with the main chain forming the backbone and
the side chains of the amino acids projecting outward from the helix. The backbone
is stabilized by the formation of hydrogen bonds between the CO group of each
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amino acid and the NH group of the residue four positions C-terminal (n + 4),
creating a tight, rodlike structure. Some residues form �-helices better than others;
alanine, glutamine, leucine, and methionine are commonly found in �-helices,
whereas proline, glycine, tyrosine, and serine usually are not. Proline is commonly
thought of as a helix breaker because its bulky ring structure disrupts the formation
of n  +  4 hydrogen bonds.

In contrast, the �-strand is a much more extended structure. Rather than hydro-
gen bonds forming within the secondary structural unit itself, stabilization occurs
through bonding with one or more adjacent �-strands. The overall structure formed
through the interaction of these individual �-strands is known as a �-pleated sheet.
These sheets can be parallel or antiparallel, depending on the orientation of the N-
and C-terminal ends of each component �-strand. A variant of the �-sheet is the �-
turn; in this structure the polypeptide chain makes a sharp, hairpin bend, producing
an antiparallel �-sheet in the process.

In 1976, Levitt and Chothia proposed a classification system based on the order
of secondary structural elements within a protein (Levitt and Chothia, 1976). Quite
simply, an �-structure is made up primarily from �-helices, and a �-structure is made
up of primarily �-strands. Myoglobin is the classic example of a protein composed
entirely of �-helices, falling into the � class of structures (Takano, 1977). Plasto-
cyanin is a good example of the � class, where the hydrogen-bonding pattern be-
tween eight �-strands form a compact, barrel-like structure (Guss and Freeman,
1983). The combination class, �/�, is made up of primarily �-strands alternating
with �-helices. Flavodoxin is a good example of an �/�-protein; its �-strands form
a central �-sheet, which is surrounded by �-helices (Burnett et al., 1974).

Predictive methods aimed at extracting secondary structural information from
the linear primary sequence make extensive use of neural networks, traditionally
used for analysis of patterns and trends. Basically, a neural network provides com-
putational processes the ability to ‘‘learn’’ in an attempt to approximate human learn-
ing versus following instructions blindly in a sequential manner. Every neural net-
work has an input layer and an output layer. In the case of secondary structure
prediction, the input layer would be information from the sequence itself, and the
output layer would be the probabilities of whether a particular residue could form a
particular structure. Between the input and output layers would be one or more
hidden layers where the actual ‘‘learning’’ would take place. This is accomplished
by providing a training data set for the network. Here, an appropriate training set
would be all sequences for which three-dimensional structures have been deduced.
The network can process this information to look for what are possibly weak rela-
tionships between an amino acid sequence and the structures they can form in a
particular context. A more complete discussion of neural networks as applied to
secondary structure prediction can be found in Kneller et al. (1990).

nnpredict

The nnpredict algorithm uses a two-layer, feed-forward neural network to assign the
predicted type for each residue (Kneller et al., 1990). In making the predictions, the
server uses a FASTA format file with the sequence in either one-letter or three-letter
code, as well as the folding class of the protein (�, �, or �/�). Residues are classified
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as being within an �-helix (H), a �-strand (E), or neither (—). If no prediction can
be made for a given residue, a question mark (?) is returned to indicate that an
assignment cannot be made with confidence. If no information is available regarding
the folding class, the prediction can be made without a folding class being specified;
this is the default. For the best-case prediction, the accuracy rate of nnpredict is
reported as being over 65%.

Sequences are submitted to nnpredict by either sending an E-mail message to
nnpredict@celeste.ucsf.edu or by using the Web-based submission form. With the
use of flavodoxin as an example, the format of the E-mail message would be as
follows:

option: a/b
>flavodoxin - Anacystis nidulans
AKIGLFYGTQTGVTQTIAESIQQEFGGESIVDLNDIANADASDLNAYDYLIIGCPTWNVGELQSDWEGIY
DDLDSVNFQGKKVAYFGAGDQVGYSDNFQDAMGILEEKISSLGSQTVGYWPIEGYDFNESKAVRNNQFVG
LAIDEDNQPDLTKNRIKTWVSQLKSEFGL

The Option line specifies the folding class of the protein: n uses no folding class for
the prediction, a specifies �, b specifies �, and a/b specifies �/�. Only one
sequence may be submitted per E-mail message. The results returned by the server
are shown in modified form in Figure 11.4.

PredictProtein

PredictProtein (Rost et al., 1994) uses a slightly different approach in making its
predictions. First, the protein sequence is used as a query against SWISS-PROT to
find similar sequences. When similar sequences are found, an algorithm called
MaxHom is used to generate a profile-based multiple sequence alignment (Sander
and Schneider, 1991). MaxHom uses an iterative method to construct the alignment:
After the first search of SWISS-PROT, all found sequences are aligned against the
query sequence and a profile is calculated for the alignment. The profile is then used
to search SWISS-PROT again to locate new, matching sequences. The multiple align-
ment generated by MaxHom is subsequently fed into a neural network for prediction
by one of a suite of methods collectively known as PHD (Rost, 1996). PHDsec, the
method in this suite used for secondary structure prediction, not only assigns each
residue to a secondary structure type, it provides statistics indicating the confidence
of the prediction at each position in the sequence. The method produces an average
accuracy of better than 72%; the best-case residue predictions have an accuracy rate
of over 90%.

Sequences are submitted to PredictProtein either by sending an E-mail message
or by using a Web front end. Several options are available for sequence submission;
the query sequences can be submitted as single-letter amino acid code or by its
SWISS-PROT identifier. In addition, a multiple sequence alignment in FASTA format
or as a PIR alignment can also be submitted for secondary structure prediction.

The input message, sent to predictprotein@embl-heidelberg.de, takes the follow-
ing form:
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Joe Buzzcut
National Human Genome Research Institute, NIH
buzzcut@baldguys.org
do NOT align
# FASTA list homeodomain proteins
>ANTP
---KRGRQTYTRYQTLELEKEFHFNRYLTRRRRIEIAHALSLTERQIKIWFQNRRMKWKK
>HDD
MDEKRPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKIKK
>DLX
-KIRKPRTIYSSLQLQALNHRFQQTQYLALPERAELAASLGLTQTQVKIWFQNKRSKFKK
>FTT
---RKRRVLFSQAQVYELERRFKQQKYLSAPEREHLASMIHLTPTQVKIWFQNHRYKMKR
>Pax6
--LQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQVWFSNRRAKWRR

Above is an example of a FASTA-formatted multiple sequence alignment of
homeodomain proteins submitted for secondary structure prediction. After the name,
affiliation, and address lines, the # sign signals to the server that a sequence in one-
letter code follows. The sequence format is essentially FASTA, except that blanks
are not allowed. For this alignment, the phrase do NOT align before the line start-
ing with # assures that the alignment will not be realigned. Nothing is allowed to
follow the sequence. The output sent as an E-mail message is quite copious but
contains a large amount of pertinent information. The results can also be retrieved
from an ftp site by adding a qualifier return no mail in any line before the line
starting with #. This might be a useful feature for those E-mail services that have
difficulty handling very large output files. The format for the output file can be plain
text or HTML files with or without PHD graphics.

The results of the MaxHom search are returned, complete with a multiple align-
ment that may be of use in further study, such as profile searches or phylogenetic
studies. If the submitted sequence has a known homolog in PDB, the PDB identifiers
are furnished. Information follows on the method itself and then the actual prediction
will follow. In a recent release, the output can also be customized by specifying
available options. Unlike nnpredict, PredictProtein returns a ‘‘reliability index of
prediction’’ for each position ranging from 0 to 9, with 9 being the maximum con-
fidence that a secondary structure assignment has been made correctly. The results
returned by the server for this particular sequence, as compared with those obtained
by other methods, are shown in modified form in Figure 11.4.

PREDATOR

The PREDATOR secondary structure prediction algorithm is based on recognition
of potentially hydrogen-bonded residues in the amino acid sequence (Frishman and
Argos, 1997). It uses database-derived statistics on residue-type occurrences in dif-
ferent classes of local hydrogen-bonded structures. The novel feature of this method
is its reliance on local pairwise alignment of the sequence to be predicted between
each related sequence. The input for this program can be a single sequence or a set
of unaligned, related sequences. Sequences can be submitted to the PREDATOR
server either by sending an E-mail message to predator@embl-heidelberg.de or by
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using a Web front end. The input sequences can be either FASTA, MSF, or CLUS-
TAL format. The mean prediction accuracy of PREDATOR in three structural states
is 68% for a single sequence and 75% for a set of related sequences.

PSIPRED

The PSIPRED method, developed at the University of Warwick, UK, uses the knowl-
edge inferred from PSI-BLAST (Altschul et al., 1997; cf. Chapter 8) searches of the
input sequence to perform predictions. PSIPRED uses two feedforward neural net-
works to perform the analysis on the profile obtained from PSI-BLAST. Sequences
can be submitted through a simple Web front end, in either single-letter raw format
or in FASTA format. The results from the PSIPRED prediction are returned as a text
file in an E-mail message. In addition, a link is also provided in the E-mail message
to a graphical representation of the secondary structure prediction, visualized using
a Java application called PSIPREDview. In this representation, the positions of the
helices and strands are schematically represented above the target sequence. The
average prediction accuracy for PSIPRED in three structural states is 76.5%, which
is higher than any of the other methods described here.

SOPMA

The Protein Sequence Analysis server at the Centre National de la Recherche Scien-
tifique (CNRS) in Lyons, France, takes a unique approach in making secondary
structure predictions: rather than using a single method, it uses five, the predictions
from which are subsequently used to come up with a ‘‘consensus prediction.’’ The
methods used are the Garnier–Gibrat–Robson (GOR) method (Garnier et al., 1996),
the Levin homolog method (Levin et al., 1986), the double-prediction method (De-
léage and Roux, 1987), the PHD method described above as part of PredictProtein,
and the method of CNRS itself, called SOPMA (Geourjon and Déleage, 1995).
Briefly, this self-optimized prediction method builds subdatabases of protein se-
quences with known secondary structures; each of the proteins in a subdatabase is
then subjected to secondary structure prediction based on sequence similarity. The
information from the subdatabases is then used to generate a prediction on the query
sequence.

The method can be run by submitting just the sequence itself in single-letter
format to deleage@ibcp.fr, using SOPMA as the subject of the mail message, or by
using the SOPMA Web interface. The output from each of the component predictions,
as well as the consensus, is shown in Figure 11.4.

Comparison of Methods

On the basis of Figure 11.4, it is immediately apparent that all the methods described
above do a relatively good, but not perfect, job of predicting secondary structures.
Where no other information is known, the best approach is to perform predictions
using all the available algorithms and then to judge the validity of the predictions
in comparison to one another. Flavodoxin was selected as the input query because
it has a relatively intricate structure, falling into the �/�-folding class with its six �-
helices and five �-sheets. Some assignments were consistently made by all methods;
for example, all the methods detected �1, �3, �4, and �5 fairly well. However, some
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methods missed some elements altogether (e.g., nnpredict with �2, �3, and �4), and
some predictions made no biological sense (e.g., the double-prediction method and
�4, where helices, sheets, and turns alternate residue by residue). PredictProtein and
PSIPRED, which both correctly found all the secondary structure elements and, in
several places, identified structures of the correct length, appear to have made the
best overall prediction. This is not to say that the other methods are not useful or
not as good; undoubtedly, in some cases, another method would have emerged as
having made a better prediction. This approach does not provide a fail-safe method
of prediction, but it does reinforce the level of confidence resulting from these
predictions.

A new Web-based server, Jpred, integrates six different structure prediction meth-
ods and returns a consensus prediction based on simple majority rule. The usefulness
of this server is that it automatically generates the input and output requirements for
all six prediction algorithms, which can be an important feature when handling large
data sets. The input sequence for Jpred can be a single protein sequence in FASTA
or PIR format, a set of unaligned sequences in PIR format, or a multiple sequence
alignment in MSF or BLC format. In case of a single sequence, the server first
generates a set of related sequences by searching the OWL database using the
BLASTP algorithm. The sequence set is filtered using SCANPS and then pairwise-
compared using AMPS. Finally, the sequence set is clustered using a 75% identity
cutoff value to remove any bias in the sequence set, and the remaining sequences
are aligned using CLUSTAL W. The Jpred server runs PHD (Rost and Sander, 1993),
DSC (King and Sternberg, 1996), NNSSP (Salamov and Solovyev, 1995), PRED-
ATOR (Frishman and Argos, 1997), ZPRED (Zvelebil et al., 1987), and MULPRED
(Barton, 1988). The results from the Jpred server is returned as a text file in an E-
mail message; a link is also provided to view the colored graphical representation
in HTML or PostScript file format. The consensus prediction from the Jpred server
has an accuracy of 72.9% in the three structural states.

SPECIALIZED STRUCTURES OR FEATURES

Just as the position of �-helices and �-sheets can be predicted with a relatively high
degree of confidence, the presence of certain specialized structures or features, such
as coiled coils and transmembrane regions, can be predicted. There are not as many
methods for making such predictions as there are for secondary structures, primarily
because the rules of folding that induce these structures are not completely under-
stood. Despite this, when query sequences are searched against databases of known
structures, the accuracy of prediction can be quite high.

Coiled Coils

The COILS algorithm runs a query sequence against a database of proteins known
to have a coiled-coil structure (Lupas et al., 1991). The program also compares query
sequences to a PDB subset containing globular sequences and on the basis of the
differences in scoring between the PDB subset and the coiled coils database, deter-
mines the probability with which the input sequence can form a coiled coil. COILS
can be downloaded for use with VAX/VMS or may more easily be used through a
simple Web interface.
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The program takes sequence data in GCG or FASTA format; one or more se-
quences can be submitted at once. In addition to the sequences, users may select one
of two scoring matrices: MTK, based on the sequences of myosin, tropomyosin, and
keratin, or MTIDK, based on myosin, tropomyosin, intermediate filaments types I–
V, desmosomal proteins, and kinesins. The authors cite a trade-off between the scor-
ing matrices, with MTK being better for detecting two-stranded structures and
MTIDK being better for all other cases. Users may invoke an option that gives the
same weight to the residues at the a and d positions of each coil (normally hydro-
phobic) as that given to the residues at the b, c, e, f, and g positions (normally
hydrophilic). If the results of running COILS both weighted and unweighted are
substantially different, it is likely that a false positive has been found. The authors
caution that COILS is designed to detect solvent-exposed, left-handed coiled coils
and that buried or right-handed coiled coils may not be detected. When a query is
submitted to the Web server, a prediction graph showing the propensity toward the
formation of a coiled coil along the length of the sequence is generated.

A slightly easier to interpret output comes from MacStripe, a Macintosh-based
application that uses the Lupas COILS method to make its predictions (Knight,
1994). MacStripe takes an input file in FASTA, PIR, and other common file formats
and, like COILS, produces a plot file containing a histogram of the probability of
forming a coiled coil, along with bars showing the continuity of the heptad repeat
pattern. The following portion of the statistics file generated by MacStripe uses the
complete sequence of GCN4 as an example:

89 89 L 5 a 0.760448 0.000047
90 90 D 5 b 0.760448 0.000047
91 91 D 5 c 0.760448 0.000047
92 92 A 5 d 0.760448 0.000047
93 93 V 5 e 0.760448 0.000047
94 94 V 5 f 0.760448 0.000047
95 95 E 5 g 0.760448 0.000047
96 96 S 5 a 0.760448 0.000047
97 97 F 5 b 0.760448 0.000047
98 98 F 5 c 0.774300 0.000058
99 99 S 5 d 0.812161 0.000101
100 100 S 5 e 0.812161 0.000101
101 101 S 5 f 0.812161 0.000101
102 102 T 5 g 0.812161 0.000101

The columns, from left to right, represent the residue number (shown twice), the
amino acid, the heptad frame, the position of the residue within the heptad (a-b-
c-d-e-f-g), the Lupas score, and the Lupas probability. In this case, from the
fifth column, we can easily discern a heptad repeat pattern. Examination of the results
for the entire GCN4 sequence shows that the heptad pattern is fairly well maintained
but falls apart in certain areas. The statistics should not be ignored; however, the
results are easier to interpret if the heptad pattern information is clearly presented.
It is possible to get a similar type of output from COILS but not through the COILS
Web server; instead, a C-based program must be installed on an appropriate Unix
machine, a step that may be untenable for many users.



SPEC IAL IZED STRUCTURES OR FEATURES 271

Transmembrane Regions

The Kyte-Doolittle TGREASE algorithm discussed above is very useful in detecting
regions of high hydrophobicity, but, as such, it does not exclusively predict trans-
membrane regions because buried domains in soluble, globular proteins can also be
primarily hydrophobic. We consider first a predictive method specifically for the
prediction of transmembrane regions. This method, TMpred, relies on a database of
transmembrane proteins called TMbase (Hofmann and Stoffel, 1993). TMbase, which
is derived from SWISS-PROT, contains additional information on each sequence
regarding the number of transmembrane domains they possess, the location of these
domains, and the nature of the flanking sequences. TMpred uses this information in
conjunction with several weight matrices in making its predictions.

The TMpred Web interface is very simple. The sequence, in one-letter code, is
pasted into the query sequence box, and the user can specify the minimum and
maximum lengths of the hydrophobic part of the transmembrane helix to be used in
the analysis. The output has four sections: a list of possible transmembrane helices,
a table of correspondences, suggested models for transmembrane topology, and a
graphic representation of the same results. When the sequence of the G-protein-
coupled receptor (P51684) served as the query, the following models were generated:

2 possible models considered, only significant TM-segments used

-----> STRONGLY preferred model: N-terminus outside
7 strong transmembrane helices, total score : 14211
# from to length score orientation
1 55 74 (20) 2707 o-i
2 83 104 (22) 1914 i-o
3 120 141 (22) 1451 o-i
4 166 184 (19) 2170 i-o
5 212 235 (24) 2530 o-i
6 255 276 (22) 2140 i-o
7 299 319 (21) 1299 o-i

-----> alternative model
7 strong transmembrane helices, total score : 12079
# from to length score orientation
1 47 69 (23) 2494 i-o
2 84 104 (21) 1470 o-i
3 123 141 (19) 1383 i-o
4 166 185 (20) 1934 o-i
5 219 236 (18) 2474 i-o
6 252 274 (23) 1386 o-i
7 303 319 (17) 938 i-o

Each of the proposed models indicates the starting and ending position of each
segment, along with the relative orientation (inside-to-outside or outside-to-inside)
of each segment. The authors appropriately caution that the models are based on the
assumption that all transmembrane regions were found during the prediction. These
models, then, should be considered in light of the raw data also generated by this
method.



272 PREDICT IVE METHODS US ING PROTE IN SEQUENCES

Joe Buzzcut
National Human Genome Research Institute, NIH
buzzcut@nhgri.nih.gov
predict htm topology
# pendrin
MAAPGGRSEPPQLPEYSCSYMVSRPVYSELAFQQQHERRLQERKTLRESLAKCCSCSRKRAFGVLKTLVPILEWLPKYRV
KEWLLSDVISGVSTGLVATLQGMAYALLAAVPVGYGLYSAFFPILTYFIFGTSRHISVGPFPVVSLMVGSVVLSMAP...

                  ....,....37...,....38...,....39...,....40...,....41...,....42
AA      |YSLKYDYPLDGNQELIALGLGNIVCGVFRGFAGSTALSRSAVQESTGGKTQIAGLIGAII|

         PHD htm |                      HHHHHHHHHHHHHH              HHHHHHHHHH|
Rel htm |368899999999999998641104667777655431257778887777621467788888|

 detail:         |                                                            |
         prH htm |310000000000000000124457888888877765321110000111135788899999|
         prL htm |689999999999999999875542111111122234678889999888864211100000|
                                        .
                                        .
                                        .

PHDThtm |iiiiiiiiiiiiiiiiiiiTTTTTTTTTTTTTTTTTToooooooooooooooTTTTTTTT|

Figure 11.5. Partial output from a PHDtopology prediction. The input sequence is pendrin,

which is responsible for Pendred syndrome (Everett et al., 1998). The row labeled AA shows

a portion of the input sequence, and the row labeled Rel htm gives the reliability index

of prediction at each position of the protein; values range from 0 to 9, with 9 representing

the maximum possible confidence for the assignment at that position. The last line, labeled

PHDThm, contains one of three letters: a T represents a transmembrane region, whereas an

i or o represents the orientation of the loop with respect to the membrane (inside or

outside).

PHDtopology

One of the most useful methods for predicting transmembrane helices is PHDtopol-
ogy, which is related to the PredictProtein secondary structure prediction method
described above. Here, programs within the PHD suite are now used in an obviously
different way to make a prediction on a membrane-bound rather than on a soluble
protein. The method has reported accuracies that are nearly perfect: the accuracy of
predicting a transmembrane helix is 92% and the accuracy for a loop is 96%, giving
an overall two-state accuracy of 94.7%. One of the features of this program is that,
in addition to predicting the putative transmembrane regions, it indicates the orien-
tation of the loop regions with respect to the membrane.

As before, PHDtopology predictions can be made using either an E-mail server
or a Web front end. If an E-mail server is used, the format is identical to that shown
for PredictProtein above, except that the line predict htm topology must pre-
cede the line beginning with the pound sign. Regardless of submission method,
results are returned by E-mail. An example of the output returned by PHDtopology
is shown in Figure 11.5.

Signal Peptides

The Center for Biological Sequence Analysis at the Technical University of Denmark
has developed SignalP, a powerful tool for the detection of signal peptides and their
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cleavage sites (Nielsen et al., 1997). The algorithm is neural-network based, using
separate sets of Gram-negative prokaryotic, Gram-positive prokaryotic, and eukar-
yotic sequences with known signal sequences as the training sets. SignalP predicts
secretory signal peptides and not those that are involved in intracellular signal
transduction.

Using the Web interface, the sequence of the human insulin-like growth factor
IB precursor (somatomedin C, P05019), whose cleavage site is known, was submitted
to SignalP for analysis. The eukaryotic training set was used in the prediction, and
the results of the analysis are as follows:

******************** SignalP predictions ********************
Using networks trained on euk data
>IGF-IB length = 195
# pos aa C S Y
.

.
46 A 0.365 0.823 0.495
47 T 0.450 0.654 0.577
48 A 0.176 0.564 0.369
49 G 0.925 0.205 0.855
50 P 0.185 0.163 0.376
.
.
.
< Is the sequence a signal peptide?
# Measure Position Value Cutoff Conclusion
max. C 49 0.925 0.37 YES
max. Y 49 0.855 0.34 YES
max. S 37 0.973 0.88 YES
mean S 1 - 48 0.550 0.48 YES

# Most likely cleavage site between pos. 48 and 49: ATA-GP

In the first part of the output, the column labeled C is a raw cleavage site score.
The value of C is highest at the position C-terminal to the cleavage site. The column
labeled S contains the signal peptide scores, which are high at all positions before
the cleavage site and very low after the cleavage site. S is also low in the N-termini
of nonsecretory proteins. Finally, the Y column gives the combined cleavage site
score, a geometric average indicating when the C score is high and the point at
which the S score shifts from high to low. The end of the output file asks the question,
‘‘Is the sequence a signal peptide?’’ On the basis of the statistics, the most likely
cleavage site is deduced. On the basis of the SWISS-PROT entry for this protein,
the mature chain begins at position 49, the same position predicted to be the most
likely cleavage site by SignalP.

Nonglobular Regions

The use of the program SEG in the masking of low-complexity segments prior to
database searches was discussed in Chapter 8. The same algorithm can also be used
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Figure 11.6. Predicted nonglobular regions for the protein product of the neurofibro-

matosis type 2 gene (L11353) as deduced by SEG. The nonglobular regions are shown in

the left-hand column in lowercase. Numbers denote residue positions for each block.

to detect putative nonglobular regions of protein sequences by altering the trigger
window length W, the trigger complexity K1, and extension complexity K2. When
the command seg sequence.txt 45 3.4 3.75 is received, SEG will use a
longer window length than the default of 12, thereby detecting long, nonglobular
domains. An example of using SEG to detect nonglobular regions is shown in Figure
11.6.

TERTIARY STRUCTURE

By far the most complex and technically demanding predictive method based on
protein sequence data has to do with structure prediction. The importance of being
able to adequately and accurately predict structure based on sequence is rooted in
the knowledge that, whereas sequence may specify conformation, the same confor-
mation may be specified by multiple sequences. The ideas that structure is conserved
to a much greater extent than sequence and that there is a limited number of back-
bone motifs (Chothia and Lesk, 1986; Chothia, 1992) indicate that similarities be-
tween proteins may not necessarily be detected through traditional, sequence-based
methods only. Deducing the relationship between sequence and structure is at the
root of the ‘‘protein-folding problem,’’ and current research on the problem has been
the focus of several reviews (Bryant and Altschul, 1995; Eisenhaber et al., 1995;
Lemer et al., 1995).

The most robust of the structure prediction techniques is homology model build-
ing or ‘‘threading’’ (Bryant and Lawrence, 1993; Fetrow and Bryant, 1993; Jones
and Thornton, 1996). The threading methods search for structures that have a similar
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fold without apparent sequence similarity. This method takes a query sequence whose
structure is not known and threads it through the coordinates of a target protein
whose structure has been solved, either by X-ray crystallography or NMR imaging.
The sequence is moved position by position through the structure, subject to some
predetermined physical constraints; for example, the lengths of secondary structure
elements and loop regions may be either fixed or varying within a given range. For
each placement of sequence against structure, pairwise and hydrophobic interactions
between nonlocal residues are determined. These thermodynamic calculations are
used to determine the most energetically favorable and conformationally stable align-
ment of the query sequence against the target structure. Programs such as this are
computationally intensive, requiring, at a minimum, a powerful UNIX workstation;
they also require knowledge of specialized computer languages. The threading meth-
ods are useful when the sequence-based structure prediction methods fail to identify
a suitable template structure.

Although techniques such as threading are obviously very powerful, their current
requirements in terms of both hardware and expertise may prove to be obstacles to
most biologists. In an attempt to lower the height of the barrier, easy-to-use programs
have been developed to give the average biologist a good first approximation for
comparative protein modeling. (Numerous commercial protein structure analysis
tools, such as WHAT-IF and LOOK, provide advanced capabilities, but this discus-
sion is limited to Web-based freeware.)

The use of SWISS-MODEL, a program that performs automated sequence-struc-
ture comparisons (Peitsch, 1996), is a two-step process. The First Approach mode is
used to determine whether a sequence can be modeled at all; when a sequence is
submitted, SWISS-MODEL compares it with the crystallographic database (ExPdb),
and modeling is attempted only if there is a homolog in ExPdb to the query protein.
The template structures are selected if there is at least 25% sequence identity in a
region more than 20 residues long. If the first approach finds one or more appropriate
entries in ExPdb, atomic models are built and energy minimization is performed to
generate the best model. The atomic coordinates for the model as well as the struc-
tural alignments are returned as an E-mail message. Those results can be resubmitted
to SWISS-MODEL using its Optimize mode, which allows for alteration of the
proposed structure based on other knowledge, such as biochemical information. An
example of the output from SWISS-MODEL is shown in Figure 11.7.

Another automated protein fold recognition method, developed at UCLA, in-
corporates predicted secondary structural information on the probe sequence in ad-
dition to sequence-based matches to assign a probable protein fold to the query
sequence. In this method, correct assignment of the fold depends on the ranked scores
generated for the probe sequence, based on its compatibility with each of the struc-
tures in a library of target three-dimensional structures. The inclusion of the predicted
secondary structure in the analysis improves fold assignment by about 25%. The
input for this method is a single protein sequence submitted through a Web front
end. A Web page containing the results is returned to the user, and the results are
physically stored on the UCLA server for future reference.

The second approach compares structures with structures, in the same light as
the vector alignment search tool (VAST) discussed in Chapter 5 does. The DALI
algorithm looks for similar contact patterns between two proteins, performs an op-
timization, and returns the best set of structure alignment solutions for those proteins
(Holm and Sander, 1993). The method is flexible in that gaps may be of any length,



Figure 11.7. Molecular modeling using SWISS-MODEL. The input sequence for the struc-

ture prediction is the homeodomain region of human PITX2 protein. The output from

SWISS-MODEL contains a text file containing a multiple sequence alignment, showing the

alignment of the query against selected template structures from the Protein Data Bank

(top). Also provided as part of the output is an atomic coordinate file for the target struc-

ture (center). In this example, the atomic coordinates of the target structure have been

used to build a surface representation of the derived model using GRASP (lower left) and

a ribbon representation of the derived model using RASMOL (lower right). (See color plate.)
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and it allows for alternate connectivities between aligned segments, thereby facili-
tating identification of specific domains that are similar in two different proteins,
even if the proteins as a whole are dissimilar. The DALI Web interface will perform
the analysis on either two sets of coordinates already in PDB or by using a set of
coordinates in PDB format submitted by the user. Alternatively, if both proteins of
interest are present in PDB, their precomputed structural neighbors can be found by
accessing the FSSP database of structurally aligned protein fold families (Holm and
Sander, 1994), an ‘‘all-against-all’’ comparison of PDB entries.

The final method to be discussed here expands on the PHD secondary structure
method discussed above. In the TOPITS method (Rost, 1995), a searchable database
is created by translating the three-dimensional structure of proteins in PDB into one-
dimensional ‘‘strings’’ of secondary structure. Then, the secondary structure and sol-
vent accessibility of the query sequence is determined by the PHD method, with the
results of this computation also being stored as a one-dimensional string. The query
and target strings are then aligned by dynamic programming, to make the structure
prediction. The results are returned as a ranked list, indicating the optimal alignment
of the query sequence against the target structure, along with a probability estimate
(Z-score) of the accuracy of the prediction.

The methods discussed here are fairly elementary, hence their speed in returning
results and their ability to be adapted to a Web-style interface. Their level of per-
formance is impressive in that they often can detect weak structural similarities
between proteins. Although the protein-folding problem is nowhere near being
solved, numerous protein folds can reliably be identified using intricate methods that
are continuously being refined. Because different methods proved to have different
strengths, it is always prudent to use a ‘‘consensus approach,’’ similar to the approach
used in the secondary structure prediction examples given earlier. The timing of these
computational developments is quite exciting, inasmuch as concurrence with the
imminent completion of the Human Genome Project will give investigators a pow-
erful handle for predicting structure-function relationships as putative gene products
are identified.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 11

PREDICTION OF PHYSICAL PROPERTIES

Compute pI/MW http://www.expasy.ch/tools/pi tool.html
MOWSE http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse
PeptideMass http://www.expasy.ch/tools/peptide-mass.html
TGREASE ftp://ftp.virginia.edu/pub/fasta/
SAPS http://www.isrec.isb-sib.ch/software/SAPS form.html

PREDICTION OF PROTEIN IDENTITY BASED ON COMPOSITION

AACompIdent http://www.expasy.ch/tools/aacomp/
AACompSim http://www.expasy.ch/tools/aacsim/
PROPSEARCH http://www.embl-heidelberg.de/prs.html

MOTIFS AND PATTERNS

BLOCKS http://blocks.fhcrc.org
Pfam http://www.sanger.ac.uk/Software/Pfam/
PRINTS http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html
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ProfileScan http://www.isrec.isb-sib.ch/software/PFSCAN form.html

PREDICTION OF SECONDARY STRUCTURE AND FOLDING CLASSES

nnpredict http://www.cmpharm.ucsf.edu/�nomi/nnpredict.html
PredictProtein http://www.embl-heidelberg.de/predictprotein/
SOPMA http://pbil.ibcp.fr/
Jpred http://jura.ebi.ac.uk:8888/
PSIPRED http://insulin.brunel.ac.uk/psipred
PREDATOR http://www.embl-heidelberg.de/predator/predator info.html

PREDICTION OF SPECIALIZED STRUCTURES OR FEATURES

COILS http://www.ch.embnet.org/software/COILS form.html
MacStripe http://www.york.ac.uk/depts/biol/units/coils/mstr2.html
PHDtopology http://www.embl-heidelberg.de/predictprotein
SignalP http://www.cbs.dtu.dk/services/SignalP/
TMpred http://www.isrec.isb-sib.ch/ftp-server/tmpred/www/TMPRED

form.html

STRUCTURE PREDICTION

DALI http://www2.ebi.ac.uk/dali/
Bryant-Lawrence ftp://ncbi.nlm.nih.gov/pub/pkb/
FSSP http://www2.ebi.ac.uk/dali/fssp/
UCLA-DOE http://fold.doe-mbi.ucla.edu/Home
SWISS-MODEL http://www.expasy.ch/swissmod/SWISS-MODEL.html
TOPITS http://www.embl-heidelberg.de/predictprotein/

PROBLEM SET

The sequence analyzed in the problem set in Chapter 10 yields at least one protein
translation. Characterize this protein translation by answering the following ques-
tions.

1. Use ProtParam to determine the basic physicochemical properties of the unknown
(leave the def line out when pasting the sequence into the query box).
• What is the molecular weight (in kilodaltons) and predicted isoelectric point

(pI) for the protein?

2. Based on the pI and the distribution of charged residues, would this unknown
possibly be involved in binding to DNA? Perform a BLASTP search on the
unknown, using SWISS-PROT as the target database. Run BLASTP using pair-
wise as the Alignment View. For each part of this question, consider the first
protein in the hit list having a non-zero E-value.
• What is the identity of this best, non-zero E-value hit, and what percent identity

does the unknown share with this protein? For each alignment given, show the
percent identity and the overall length of the alignment.

• Based on the BLASTP results alone, can any general observations be made
regarding the putative function or cellular role of the unknown? Do not just
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name the unknown—tell what you think the function of the unknown might be
in the cell, based on all of the significant hits in the BLASTP results.

3. Does ProfileScan yield any additional information about the domain structure of
this protein?
• What types of domains were found? How many of each of these domains are

present in the unknown?
• Does the protein contain any low-complexity regions? If so, where?
• Following the PDOC links to the right of the found domains, can any conclu-

sions be made as to the cellular localization of this protein?

4. Does this protein have a putative signal sequence, based on SignalP? If so, what
residues comprise the signal sequence? Is the result obtained from SignalP con-
sistent with the BLASTP results and any associated GenBank entries?

5. Submit the sequence of the unknown to PHDtopology. On the basis of the results,
draw a schematic of the protein, showing
• the approximate location of any putative transmembrane helices and
• the orientation of the N- and C-termini with respect to the membrane.
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at 1.9 Å resolution. J. Biol. Chem. 249, 4383–4392.

Chothia, C. (1992). One thousand families for the molecular biologist. Nature 357, 543–544.



280 PREDICT IVE METHODS US ING PROTE IN SEQUENCES

Chothia, C., and Lesk, A. M. (1986). The relation between the divergence of sequence and
structure in proteins. EMBO J. 5, 823–826.

Cordwell, S. J., Wilkins, M. R., Cerpa-Poljak, A., Gooley, A. A., Duncan, M., Williams, K.
L., and Humphery-Smith, I. (1995). Cross-species identification of proteins separated by
two-dimensional electrophoresis using matrix-assisted laser desorption ionization/time-of-
flight mass spectrometry and amino acid composition. Electrophoresis 16, 438–443.
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The benefits arising from the rapid generation of large numbers of low-quality cDNA
sequences were not universally recognized when the concept was originally proposed
in the late 1980s. Proponents of this approach argued that these cDNA sequences
would allow for the quick discovery of hundreds or thousands of novel protein-
coding genes. Their critics countered that cDNA sequencing would miss important
regulatory elements that could be found only in the genomic DNA. In the end, the
cDNA sequencing advocates appear to have won. Since the original description of
609 Expressed Sequence Tags (ESTs) in 1991 (Adams et al., 1991), the growth of
ESTs in the public databases has been dramatic. The number of ESTs in GenBank
surpassed the number of non-EST records in mid-1995; as of June 2000, the 4.6
million EST records comprised 62% of the sequences in GenBank. Although the
original ESTs were of human origin, NCBI’s EST database (dbEST) now contains
ESTs from over 250 organisms, including mouse, rat, Caenorhabditis elegans, and
Drosophila melanogaster. In addition, several commercial establishments maintain
privately funded, in-house collections of ESTs. ESTs are now widely used throughout
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Figure 12.1. Overview of how ESTs are constructed.

the genomics and molecular biology communities for gene discovery, mapping, poly-
morphism analysis, expression studies, and gene prediction.

WHAT IS AN EST?

An overview of an EST sequencing project is shown in Figure 12.1. In brief, a
cDNA library is constructed from a tissue or cell line of interest. Individual clones
are picked from the library, and one sequence is generated from each end of the
cDNA insert. Thus, each clone normally has a 5� and 3� EST associated with it. The
sequences average ~400 bases in length. Because the ESTs are short, they generally
represent only fragments of genes, not complete coding sequences. Many sequencing
centers have automated the process of EST generation, producing ESTs at a rapid
rate. For example, at the time of this writing, the Genome Sequencing Center at
Washington University was producing over 20,000 ESTs per week.

The ESTs that have been submitted to the public sequence databases to date
were created from thousands of different cDNA libraries representing over 250 or-
ganisms. The libraries may be from whole organs, such as human brain, liver, lung,
or skeletal muscle, specialized tissues or cells, such as cerebral cortex or epidermal
keratinocyte, or cultured cell lines such as liver HepG2 or gastric carcinoma. Some
libraries have been constructed to compare transcripts from different developmental
stages, such as fetal versus infant human brain or embryonic 7-day versus neonatal
10-day rat heart ventricle. Others are used to highlight gene expression differences
between normal and transformed tissue, such as normal colonic epithelium and co-
lorectal carcinoma cell line. The libraries are constructed by isolating mRNA from
the tissue or cell line of interest. The mRNA is then reverse-transcribed into cDNA,
usually with an oligo(dT) primer, so that one end of the cDNA insert derives from
the polyA tail at the end of the mRNA. The other end of the cDNA is normally
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within the coding sequence but may be in the 5� untranslated region if the coding
sequence is short. The resulting cDNA is cloned into a vector. In many libraries, the
cDNA is cloned directionally. Some of the libraries are normalized to bring the
frequency of occurrence of clones representing individual mRNA species into a narrow
range (Bonaldo et al., 1996; Soares et al., 1994). Other libraries are constructed by a
process of subtractive hybridization, in which a pool of mRNA sequences is removed
from a library of interest, leaving behind sequences unique to that library (Bonaldo et
al., 1996). For example, to construct a library for the study of bipolar disorder, re-
searchers started with human frontal lobe cDNA from individuals with bipolar dis-
order, and subtracted out cDNA that hybridized to cDNA from mentally normal
individuals (see http://www.ncbi.nlm.nih.gov/dbEST/dbest libs.html#lib1475).

With the use of primers that hybridize to the vector sequence, the ends of the
cDNA insert are sequenced. Automatic DNA sequencers generate most EST data. If
the cDNA has been directionally cloned into the vector, the sequences can be clas-
sified as deriving from the 5� or 3� end of the clone. In most cases, both the 5� and
3� sequences are determined, but some EST projects have concentrated only on 5�
ESTs to maximize the amount of coding sequence determined. Because the sequence
of each EST is generated only once, the sequences may (and often do) contain errors.
Contaminating vector, mitochondrial, and bacterial sequences are routinely removed
before the EST sequences are deposited into the public databases (Hillier et al.,
1996). ESTs in the databases are identified by their clone number as well as their 5�
or 3� orientation, if known.

The I.M.A.G.E. Consortium (Lennon et al., 1996) has picked individual clones
from many of the libraries used for EST sequencing and arrayed them for easy
distribution. These clones can be obtained royalty-free from I.M.A.G.E. Consortium
distributors. As of the time of this writing, more than 3.8 million cDNA clones have
been arrayed from 360 human and 108 mouse cDNA libraries; zebrafish and Xenopus
clones have also been arrayed. I.M.A.G.E. Consortium sequences currently comprise
more than half of the ESTs in GenBank. Most of the sequencing of I.M.A.G.E. clones
is performed by the Genome Sequencing Center at Washington University/St. Louis.
Merck sponsored human clone sequencing in 1995 and 1996; since then, the collab-
orative EST project has been sponsored by the National Cancer Institute as part of
the Cancer Genome Anatomy Project. Sequencing by Washington University/St.
Louis of mouse cDNAs is sponsored by the Howard Hughes Medical Institute. Se-
quence trace data from the ESTs sequenced by the Washington University/St. Louis
projects are available online.

How to Access ESTs

ESTs are submitted to all three international sequence databases (GenBank, EMBL,
and DDBJ), under the data-sharing agreement described in Chapter 2. Therefore, all
ESTs can be accessed through all of these databases, regardless of where the se-
quence was originally submitted. The same ESTs are also available from the NCBI’s
dbEST, the database of Expressed Sequence Tags (Boguski et al., 1993). Instructions
about how to submit EST sequences to GenBank are available online.

Like other sequences in GenBank, ESTs can be accessed through Entrez (see
Chapter 7). Single ESTs are retrieved by accession or gi number. Advanced searches
with multiple search terms can be limited to ESTs by selecting the Properties
limit and entering EST. The two ESTs deriving from a particular I.M.A.G.E. clone
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can be retrieved by searching for “IMAGE:clone number” (e.g., “IMAGE:
743313”). The Entrez version of the EST with accession AW592465 is shown in
Figure 12.2. Various identifiers for the EST, including the accession number and
GenBank gi, are shown in the top block. The CLONE INFO section specifies the
number of the clone (2934602) and whether this EST derives from the 5� or 3� end
of the clone (here, 3�). The nucleotide sequence is shown next, along with a note
supplied by the submitter about where the high-quality sequence stops. The COM-
MENTS block tells how to order the clone from the I.M.A.G.E. Consortium. The
last few sections present other information supplied by the submitter, including de-
tails about the cDNA library. Although many ESTs (especially 5� ESTs) can be
translated into a partial or sometimes full-length protein sequence, coding sequence
features are not provided. Other views of the data, including a FASTA-formatted
DNA sequence, can be selected from a pull-down at the top of the Entrez entry (not
shown).

EST sequences are also available for BLAST searching. Because ESTs are nu-
cleotide sequences, they can be retrieved only by using BLAST programs that search
nucleotide databases (BLASTN for a nucleotide sequence query, TBLASTN for a
protein sequence query, and TBLASTX for a translated nucleotide sequence query).
Because they make up such a high proportion of sequences in GenBank, ESTs are
not included in the BLAST nr database. To search against ESTs, select the dbest
database or, for a specific organism, the mouse ests, human ests, or other ests da-
tabase. Note that ESTs are also included in the month database, which contains all
new or revised sequences released in the last 30 days.

Limitations of EST Data

Although ESTs are an excellent source of sequence data, these data are not of as
high a quality as sequences determined by conventional means. Because EST se-
quences are generated in a single pass, they have a higher error rate than sequences
that are verified by multiple sequencing runs, on the order of 3% (Boguski et al.,
1993). In contrast, the standard for the human genome project is an error rate of
<0.01% (Collins et al., 1998). ESTs may contain substitutions, deletions, or insertions
compared with the parent mRNA sequence. The region of an EST between positions
100 and 300 may be the most accurate part of the sequence (Hillier et al., 1996).

Hillier et al. (1996) have performed a comprehensive analysis of potential EST
artifacts. They found that ESTs may contain bacterial, mitochondrial, or vector se-
quence contamination. Most EST cDNA libraries are oligo(dT) primed, and the 3�
EST derives from the 3� untranslated region of the gene. However, Hillier et al.
found that 1.5% of oligo(dT)-primed 3� ESTs do not align with the known 3� end
of the mRNA. These ESTs either represent nonspecific priming or indicate alternative
splicing. cDNA for some libraries is synthesized with random primers, so the location
of the 3� EST is unknown. Another potential problem comes from inverted clones
in directionally cloned libraries, in which the 5� and 3� EST are mislabeled. cDNA
inserts may be inverted because of failures in the directional cloning procedure, or
simply because of human error. Hillier et al. found that 6.25% of ESTs that match
a known mRNA align in an inverted orientation. Chimeric clones, in which the 5�
EST matches one mRNA and the 3� EST another mRNA, may arise either during
library construction or sample handling. Hillier et al. found a chimera frequency of
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IDENTIFIERS

dbEST Id:       4025315
EST name:       hf43a02.x1
GenBank Acc:    AW592465
GenBank gi:     7279647

CLONE INFO
Clone Id:       IMAGE:2934602 (3')
Source:         NCI
DNA type:       cDNA

PRIMERS
Sequencing:     -40UP from Gibco
PolyA Tail:     Unknown

SEQUENCE
                TTTTTTTTTAAATTGCCAAGTGATTTTACTTCAAGATGACATCAGAATTGCTAAAAGGTG
                ATGTAACCGTCAGAGTGACTATTGATTATAACTCCCAGTAAGTGTCAACGTGATTTTCTC
                CATTGTGTGGGCTTCCATTAGTATTTACTCATTAGGTTCAGTAGTTTTCATTATTTTCTC
                TTCCATAAATTCTATTGCTTGTGAAAAGCCACCAAAGAGAAGTGAAACCAGAAAAAGGAT
                GCAACGAGTAAATATTAAAAGTAGTGCTCAGTTTATATTCGCAAGTGTGCTGGCTGTAAT
                ACGATATTGTTTGTCAGGTGGAGGGCCACTATCTATACTACCTCCTTTTCCTCAGTTCAC
                ATGTTGGTGGTTGCCACCCATGCAGACAGTGACAATGTTTTTTGTTGTTACATACTCCTT
                TGTAATTGCATGTGTTAAGAACACACTCAAAATGCAGGTCTTGATAAGAAGGCAATTGTG
                TTTAAGACAGTAGCTGCCTGGGCCACAGGTTGCACCATCCACTGACCGCCCCATTTCTGG
                CAAGTCTGGACCCTGGTGTGGCTAATAACCAAGGCATTTATT
Quality:        High quality sequence stops at base: 356

Entry Created:  Mar 22 2000
Last Updated:   Mar 22 2000

COMMENTS
                This clone is available royalty-free through LLNL ; contact
                the IMAGE Consortium (info@image.llnl.gov) for further
                information.

PUTATIVE ID     Assigned by submitter
                TR:Q60815 Q60815 ADAM 4 PROTEIN PRECURSOR ;

LIBRARY
Lib Name:       Soares_NFL_T_GBC_S1
Organism:       Homo sapiens
Organ:          pooled
Lab host:       DH10B
Vector:         pT7T3D-Pac (Pharmacia) with a modified polylinker
R. Site 1:      Not I
R. Site 2:      Eco RI
Description:    Equal amounts of plasmid DNA from three normalized libraries
                (fetal lung NbHL19W, testis NHT, and B-cell NCI_CGAP_GCB1)
                were mixed, and ss circles were made in vitro. Following HAP
                purification, this DNA was used as tracer in a subtractive
                hybridization reaction. The driver was PCR-amplified cDNAs
                from pools of 5,000 clones made from the same 3 libraries.
                The pools consisted of I.M.A.G.E. clones 297480-302087,
                682632-687239, 726408-728711, and 729096-731399. Subtraction
                by Bento Soares and M. Fatima Bonaldo.

SUBMITTER
Name:           Robert Strausberg, Ph.D.
Tel:            (301) 496-1550
E-mail:         Robert_Strausberg@nih.gov

CITATIONS
Title:          National Cancer Institute, Cancer Genome Anatomy Project
                (CGAP), Tumor Gene Index
Authors:        NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap
Year:           1997
Status:         Unpublished

MAP DATA

Figure 12.2. The Entrez view of an EST, accession AI273896.
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1%, but a separate study estimated the frequency at 11% (Wolfsberg and Landsman,
1997).

EST CLUSTERING

As of mid-2000, GenBank contained just under 1.9 million human EST records.
Although original estimates of the number of genes in the human genome hovered
around the 100,000 mark, predictions made based on experimental data and presented
at the 2000 Cold Spring Harbor Genome meeting have drastically reduced the esti-
mate to below 50,000. In any event, it is clear, even without doing any sequence
comparisons, that these ESTs cannot each represent a unique sequence. Even with
the process of library normalization, abundant transcripts are represented more fre-
quently in dbEST than rare ones. For example, dbEST contains more than 200 ESTs
for human alpha-fetoprotein alone. A number of efforts are geared at simplifying this
abundance of DNA sequences by grouping together records that likely derive from
the same gene. Other resources, including those for mapping and gene discovery,
can then make use of this condensed set of gene-based clusters, rather than the
expansive and relatively unorganized collection of all ESTs and other mRNA
sequences.

UniGene

The UniGene resource, developed at NCBI, clusters ESTs and other mRNA se-
quences, along with coding sequences (CDSs) annotated on genomic DNA, into
subsets of related sequences (Boguski and Schuler, 1995; Wagner, L. et al., unpub-
lished observations). In most cases, each cluster is made up of sequences produced
by a single gene, including alternatively spliced transcripts (Fig. 12.3). However,
some genes may be represented by more than one cluster. The clusters are organism
specific and are currently available for human, mouse, rat, zebrafish, and cattle. They
are built in several stages, using an automatic process based on special sequence
comparison algorithms. First, the nucleotide sequences are searched for contami-
nants, such as mitochondrial, ribosomal, and vector sequence, repetitive elements,
and low-complexity sequences. After a sequence is screened, it must contain at least
100 bases to be a candidate for entry into UniGene. mRNA and genomic DNA are
clustered first into gene links. A second sequence comparison links ESTs to each
other and to the gene links. At this stage, all clusters are ‘‘anchored,’’ and contain
either a sequence with a polyadenylation site or two ESTs labeled as coming from
the 3� end of a clone. Clone-based edges are added by linking the 5� and 3� ESTs
that derive from the same clone. In some cases, this linking may merge clusters
identified at a previous stage. Finally, unanchored ESTs and gene clusters of size 1
(which may represent rare transcripts) are compared with other UniGene clusters at
lower stringency. The UniGene build is updated weekly, and the sequences that make
up a cluster may change. Thus, it is not safe to refer to a UniGene cluster by its
cluster identifier; instead, one should use the GenBank accession numbers of the
sequences in the cluster. A summary of the UniGene build procedure is shown in
Figure 12.4a. Additional information about the UniGene build is available online.

As of July 2000, the human subset of UniGene contained 1.7 million sequences
in 82,000 clusters; 98% of these clustered sequences were ESTs, and the remaining
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ATG TAA

genomic DNA

mRNA variant 2

mRNA variant 1

Present in  mRNA

3’ EST5’ EST Variants 1 and 2

3’ EST5’ EST Variants 1 and 2

3’ EST5’ EST Variant 2

3’ EST5’ EST Variant 1

3’ EST5’ EST Variants 1 and 2

Figure 12.3. Sequences in a UniGene cluster. This cluster contains a genomic DNA se-

quence with an annotated coding sequence (CDS), two alternatively-spliced mRNA se-

quences, and 10 ESTs from five clones that derive from the mRNA sequences.

2% were from mRNAs or CDSs annotated on genomic DNA. These human clusters
could represent fragments of up to ~82,000 unique human genes, implying that many
human genes are now represented in a UniGene cluster. (This number is undoubtedly
an overestimate of the number of genes in the human genome, as some genes may
be represented by more than one cluster.) Only 1.4% of clusters totally lack ESTs,
implying that most human genes are represented by at least one EST. Conversely, it
appears that the majority of human genes have been identified only by ESTs; only
16% of clusters contain either an mRNA or a CDS annotated on a genomic DNA.
Because fewer ESTs are available for mouse, rat, and zebrafish, the UniGene clusters
are not as representative of the unique genes in the genome. Mouse UniGene contains
895,000 sequences in 88,000 clusters, and rat UniGene contains 170,000 sequences
in 37,000 clusters.

A new UniGene resource, HomoloGene, includes curated and calculated orthol-
ogs and homologs for genes from human, mouse, rat, and zebrafish. Calculated
orthologs and homologs are the result of nucleotide sequence comparisons between
all UniGene clusters for each pair of organisms. Homologs are identified as the best
match between a UniGene cluster in one organism and a cluster in a second organ-
ism. When two sequences in different organisms are best matches to one another (a
reciprocal best match), the UniGene clusters corresponding to the pair of sequences
are considered putative orthologs. A special symbol indicates that UniGene clusters
in three or more organisms share a mutually consistent ortholog relationship. The
calculated orthologs and homologs are considered putative, since they are based only
on sequence comparisons. Curated orthologs are provided by the Mouse Genome
Database (MGD) at the Jackson Laboratory and the Zebrafish Information Database
(ZFIN) at the University of Oregon and can also be obtained from the scientific
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GenBank mRNAs GenBank genomic CDSs dbEST ESTs

Cluster known genes (LocusLink and
megablast)

Add ESTs to clusters  by sequence 
similarity (megablast) and clone IDs

Select 3’ anchored clusters (contain 
polyadenlyation signal or tail, 
or two 3’ ESTs)

Merge some single-member clusters
with other clusters (megablast)

Add previously unclustered ESTs
to clusters (megablast)

UniGene

UniGene

Preliminary clusters

Unanchored clusters

(a)

TIGR Gene Indices

Pairwise alignment. 

Assemble each cluster with CAP3

Clusters

TCs

Cluster preliminary TCs, and assembly with CAP3

Chimeric, low-quality, and 
non-overlapping sequences; 
rare splice forms

Redundancy

Species-specific Gene Index

Load

Singletons from previous buildTCs from previous buildESTsGenBank CDSs from mRNA and genomic

Preliminary TCs

Singletons

(b)

Figure 12.4. Schematics for clustering of ESTs. All three methods prescreen ESTs for con-

taminating sequence. (a) UniGene. Most sequence analysis is done with MegaBLAST (Zhang

et al., 2000), a fast version of BLAST. The minimum alignment length is 70 nucleotides, and

an alignment must extend over at least 70% of the alignable region in the first two steps

or 55% of the alignable region in the last two steps. (b) TIGR Gene Indices. Sequences are

clustered if they share a minimum of 95% identity over a 40 nucleotide region, with fewer

than 20 nucleotides of mismatched sequence at either end. Sequences are assembled with

CAP3 (Huang and Madan, 1999). (c) STACK. Sequences are clustered if they share 96%

identity over 150 nucleotides. Clustering is done with d2 cluster (Burke et al., 1999) and

aligned with PHRAP (Green, 1996).
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STACK

Human ESTs

Partition by tissue

Tissue-specific EST sets

Cluster with d2_cluster

Clusters

Assemble each cluster with PHRAP

Preliminary assemblies

Alignment analysis with CRAW and CONTIGPROC

Add 5’ ESTs based on clone IDs

STACK

(c)

Figure 12.4. Continued

literature. Direct links to HomoloGene are provided for UniGene clusters that have
a candidate ortholog or homolog.

Queries to UniGene are entered into a text box on any of the UniGene pages.
Query terms can be, for example, the UniGene identifier, a gene name, a text term
that is found somewhere in the UniGene record, or the accession number of an EST
or gene sequence in the cluster. For example, the cluster entitled ‘‘A disintegrin and
metalloprotease domain 10’’ that contains the sequence for human ADAM10 can be
retrieved by entering ADAM10, disintegrin, AF009615 (the GenBank acces-
sion number of ADAM10), or H69859 (the GenBank accession number of an EST
in the cluster). Enter multiple terms to get a list of entries containing all terms. To
query a specific part of the UniGene record, use the @ symbol. For example,
@gene(symbol) looks for genes with the name of the symbol enclosed in the
parentheses, @chr(num) searches for entries that map to chromosome num,
@lib(id) returns entries in a cDNA library identified by id, and @pid(id) se-
lects entries associated with a GenBank protein identifier id.

The query results page contains a list of all UniGene clusters that match the
query. Each cluster is identified by an identifier, a description, and a gene symbol,
if available. Cluster identifiers are prefixed with Hs for Homo sapiens, Rn for Rattus
norvegicus, Mm for Mus musculus, or Dn for Danio rerio. The descriptions of
UniGene clusters are taken from LocusLink, if available, or from the title of a se-
quence in the cluster. The UniGene report page for each cluster links to data from
other NCBI resources (Fig. 12.5). At the top of the page are links to LocusLink,
which provides descriptive information about genetic loci (Pruitt et al., 2000),
OMIM, a catalog of human genes and genetic disorders, and HomoloGene. Next are



Figure 12.5. UniGene cluster for ADAM10. The contents of the cluster are subject to

change as additional sequences are submitted to the public databases.
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listed similarities between the translations of DNA sequences in the cluster and pro-
tein sequences from model organisms, including human, mouse, rat, fruit fly, and
worm. The subsequent section describes relevant mapping information. It is followed
by ‘‘expression information,’’ which lists the tissues from which the ESTs in the
cluster have been created, along with links to the SAGE database (see below). Se-
quences making up the cluster are listed next, along with a link to download these
sequences.

It is important to note that clusters that contain ESTs only (i.e., no mRNAs or
annotated CDSs) will be missing some of these fields, such as LocusLink, OMIM,
and mRNA/Gene links. UniGene titles for such clusters, such as ‘‘EST, weakly sim-
ilar to ORF2 contains a reverse transcriptase domain [H. sapiens],’’ are derived from
the title of a characterized protein with which the translated EST sequence aligns.
The cluster title might be as simple as ‘‘EST’’ if the ESTs share no significant
similarity with characterized proteins.

TIGR GENE INDICES

The TIGR Gene Indices represent another effort to consolidate EST and other an-
notated gene sequences (Quackenbush et al., 2000). A significant difference between
the Gene Indices and UniGene is that the Gene Indices are assemblies of ESTs and
other gene sequences rather than clusters (Figure 12.4b). The assemblies tend to
represent one transcript, so alternatively spliced products are grouped separately.
Furthermore, the process generates a single consensus sequence per assembly.

A Gene Index is maintained for 14 organisms, including human, mouse, rat,
Drosophila, zebrafish, Arabidopsis, and several crop plants. Gene Indices are created
from publicly available GenBank and dbEST sequences by clustering ESTs with the
DNA sequences encoding the coding sequences annotated on DNA and mRNA se-
quences. The elements of a cluster are assembled with other EST sequences into
tentative consensus sequences (TCs, or THCs for human). TCs are updated as se-
quence flow into the public databases. The TIGR databases, as of mid-2000, contain
85,000 THCs, 43,000 TCs from mouse, and 18,000 TCs from rat. These numbers
are somewhat lower than the numbers of UniGene clusters, probably due to different
methods used for clustering. The TIGR Gene Indices, like UniGene, can be queried
with text searches. A BLAST interface, for BLASTN and TBLASTN, is also avail-
able. A related project at TIGR is to identify orthologous genes between human,
mouse, and rat using the TCs. The TIGR Orthologous Gene Alignment (TOGA)
database represents the ortholog sets.

STACK

The STACK resource at the South African National Bioinformatics Institute (SANBI)
uses a third method, a combination of clustering and assembly, to group related ESTs
into clusters (Burke et al., 1999; Miller et al., 1999). At this time, STACK clusters
are available only for human ESTs (Fig. 12.4c). STACK clusters consolidate ESTs
into a smaller number of groups than does UniGene. Unlike UniGene or the TIGR
Gene Indices, ESTs in STACK are separated by tissue type before being clustered.
BLAST queries can be performed on STACK clusters.
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ESTs AND GENE DISCOVERY

ESTs have been widely used for gene discovery (Boguski et al., 1994). Because
ESTs outnumber other nucleotide sequences in GenBank, researchers hunting for a
novel gene are much more likely to find it in dbEST than in the rest of GenBank.
ESTs are not included in the BLAST nr database, and sequence similarity searches
for ESTs must target the est database. Gene discovery methods using ESTs include,
for example, hunting for new members of gene families in the same species (par-
alogs), for functionally equivalent genes in other species (orthologs), or even for
alternatively spliced forms of known genes.

Gene discovery using dbEST is very rapid, requiring only a few minutes for the
BLAST search. For example, ADAM 10, also known as ‘‘kuzbanian,’’ is a well-
studied gene with known orthologs in human, mouse, rat, cow, frog, pig, fruit fly,
and worm. A TBLASTN search of dbest with the human protein sequence quickly
reveals not only many of these known genes but also an additional likely ortholog
in zebrafish. Discovering alternatively spliced transcripts among ESTs is more prob-
lematic. For one, it is difficult to determine if the new sequences are due to alternative
splicing or to the presence of contaminating genomic DNA sequence in EST libraries
(Wolfsberg and Landsman, 1997). An analysis of the TIGR Human Gene Index using
a spliced alignment algorithm provided evidence that up to 35% of human genes
may undergo alternative splicing and that the majority of these events occur in the
5� untranslated regions (Mironov et al., 1999).

The uses of ESTs extend beyond mammals. For example, until recently, the
public databases contained little sequence data from Toxoplasma gondii, a disease-
causing protozoan parasite of human. A large scale project generated 7,000 5� ESTs,
representing ~4,000 unique sequences, from T. gondii (Ajioka et al., 1998). Com-
parisons between the ESTs and sequences in public databases identified potential
functions for 500 novel T. gondii genes. Some ESTs are phylogenetically restricted
to T. gondii and other members of the Apicomplexa phylum.

THE HUMAN GENE MAP

ESTs are also being used to create gene maps by the use of sequence-tagged sites
(STSs), short stretches of unique sequence identified by polymerase chain reaction
(PCR) assays. An international consortium agreed to coordinate a mapping effort for
the human genome, using UniGene clusters to represent individual human genes. In
the initial effort, the gene-based STSs were mapped relative to two radiation hybrid
(RH) maps and one YAC panel; in subsequent work, the STSs have been mapped
only to the two RH panels, the Genebridge4 (GB4) and Stanford G3. STSs were
generated from the 3� untranslated regions of UniGene clusters. GeneMap ‘96 re-
ported the mapping of 16,000 gene-based STSs (Schuler et al., 1996), and GeneMap
‘98 nearly doubled that number to 30,000 (Deloukas et al., 1998). Thus, current
maps detail the position of up to one-half of all human protein-coding genes. The
gene map is updated as new STSs are mapped. GeneMap ‘98 is described in more
detail in Chapter 6.

Information about the map location of individual ESTs is provided by UniGene.
If an STS exists for an EST in the cluster, the map position of that STS is indicated
in the record. This data may confirm what is already known about the location of a
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mapped human disease gene, but, for the majority of cases involving yet unmapped
ESTs, GeneMap ’98 provides novel information. Because the STS markers corre-
spond to individual genes, the project also shows the density of genes on each human
chromosome. For example, chromosomes 1, 17, and 22 have a higher than expected
gene density, and chromosomes 4, 13, 18, and X have a lower than expected density.

GENE PREDICTION IN GENOMIC DNA

Another use of ESTs is to predict or refine computational predictions of the location
of genes in genomic DNA. With the appropriate use of sequence alignment param-
eters, up to 90% of genes annotated on human genomic DNA are also detected by
ESTs (Bailey et al., 1998). ESTs can complement other algorithms used for gene
prediction because they may do a better job at predicting alternative splicing and 3�
untranslated regions. A study is underway to reannotate the C. elegans genome using
EST sequences (Kohara, Y., unpublished observations). With the use of the acembly
program, 126,000 ESTs were aligned to 98 Mb of genomic DNA. The genes pre-
dicted by EST clones were compared with those predicted by the C. elegans genomic
sequencing consortium, which were constructed using GeneFinder with hand editing
(The C. elegans Sequencing Consortium, 1998). The following points are note-
worthy:

1. In about half the cases, the computationally predicted genes were identical
to the EST alignments; 25% of the genes were predicted with less accuracy,
and the remaining 25% were predicted poorly. In some cases, 5� sequences
from ESTs showed that the gene predictions were either too long or too short.

2. Comparisons of the EST sequences to the genomic sequence confirm that the
error rate of the worm genome sequence is less than 1 mistake per 10,000
nucleotides. Instances where many ESTs share identical sequence may indi-
cate errors in genomic sequence. Alternatively, these differences could be
sequence polymorphisms.

3. About 30% of the ESTs exist in alternatively-spliced forms. Many of these
alternative splices are not annotated on the genomic sequence.

4. Computational methods may predict separate genes, whereas EST analysis
shows that these segments are actually exons of a single gene. Conversely,
the computational method may predict exons in cases that should be separate
genes.

ESTs have also been used in genome sequencing projects to make estimates
about gene expression along the chromosome. In the complete sequences of Arabi-
dopsis thaliana chromosomes 2 (Lin et al., 1999) and 4 (Mayer et al., 1999), about
one-third of the computationally predicted genes have an EST match. Histograms
plotting the EST distribution along the chromosomes predict that some genes are
highly expressed, at least within the tissues from which EST libraries were con-
structed. On chromosome 4, 75% of the matching ESTs aligned with only 6% of the
genes, implying that these genes are transcribed at high rates.
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ESTs AND SEQUENCE POLYMORPHISMS

Single nucleotide polymorphisms (SNPs) can help to associate sequence variations
with heritable phenotypes, facilitate studies in population and evolutionary biology,
and aid in positional cloning and physical mapping. On average, SNPs occur every
500–1,000 nucleotides in human DNA. Gene-associated SNPs are found in untran-
slated regions as well as coding sequences (cSNPs). Because ESTs are sequenced
redundantly from libraries prepared from different individuals, they seem an ideal
source of polymorphic data. Indeed, a number of recent studies demonstrate that
analysis of aligned EST sequences can lead to SNP discovery (Buetow et al., 1999;
Garg et al., 1999; Marth et al., 1999; Picoult-Newberg et al., 1999). All rely on
alignment of EST sequences, identification of sequence differences, and a method to
distinguish real polymorphisms from base calling (sequencing) errors and other ar-
tifacts. The public database for SNPs, dbSNP, is maintained at the NCBI (Sherry et
al., 1999; Smigielski et al., 2000). dbSNP accepts submissions not only of single
nucleotide polymorphisms but of other polymorphisms, such as short deletions and
inserts, microsatellites, and polymorphic insertion elements like retrotransposons. As
of mid-July 2000, dbSNP contains data from 600,000 SNPs. dbSNP is integrated
with other NCBI resources such as GenBank, PubMed, genome sequences, and
LocusLink.

ASSESSING LEVELS OF GENE EXPRESSION USING ESTs

Because ESTs are generated by random sequencing of clones from many different
libraries, they appear, at least at first glance, to be a good source of data source for
studies of gene expression levels. However, any conclusions about transcript levels
must be made very carefully. Many libraries are normalized or generated by sub-
tractive hybridization. Both of these processes change the relative representation of
cDNAs. Normalization results in abundant messages being seen less frequently and
rare messages more frequently, whereas subtractive hybridization removes entire
pools of transcripts from the library. Although libraries made by these processes can
provide very general ideas about which genes are expressed at higher levels, detailed
analysis is not possible.

CGAP

A subset of the EST libraries was constructed for the purpose of gene expression
profiling, and these libraries were not normalized or created by subtractive hybridi-
zation. Many of these libraries were constructed by the Cancer Genome Anatomy
Project (CGAP), an NCI initiative that is working to decipher the molecular anatomy
of the cancer cell (Wheeler et al., 2000). CGAP has developed libraries from normal,
precancerous, and cancerous cell types. Comparing the genes expressed in these three
tissue types can lead to predictions about the genes involved in cancer progression.
ESTs from the CGAP project are submitted to dbEST and are available in UniGene.
CGAP has developed online tools to compare computationally gene expression levels
between libraries. Digital Differential Display (DDD) uses a statistical test to cal-
culate the number of times sequences from different libraries are assigned to a par-
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ticular UniGene cluster (Krizman et al., 1999). By selecting pools of libraries, users
can compare gene expression levels between tissues (e.g., liver, lung, muscle, and
spleen) or cancer stages (e.g., normal vs. premalignant vs. cancerous prostate tissue).
The DDD results show the genes that are expressed at different levels in the selected
pools (i.e., the UniGene clusters in which the number of ESTs from one set of
libraries is significantly different from the number of ESTs from another set of li-
braries). The results are presented as an easily interpreted graphic similar to a
Northern blot and also as text. A detailed explanation of how to perform a DDD
experiment, including a worked example, is provided on the CGAP Web site. The
CGAP xProfiler compares gene expression levels between two pools of libraries by
listing the genes that are expressed either in both library pools or in one pool but
not the other. The calculations are also based on the tissue distribution of ESTs in
UniGene clusters.

SAGE

Serial analysis of gene expression (SAGE) is an experimental technique used for
quantitative, high throughput gene expression analysis (Velculescu et al., 1995).
SAGE involves the isolation of short unique sequence tags from a specific location
within each transcript. These sequence tags are concatenated, cloned, and sequenced.
The frequency of particular transcripts within the starting cell population is reflected
by the number of times the associated sequence tag is encountered within the se-
quence population. The SAGEmap database is a repository for some of this SAGE
data, and tools that allow gene expression analysis are also available on the
SAGEmap Web site (Lal et al., 1999). The virtual Northern predicts the SAGE tag
in a user-supplied mRNA sequence and calculates the distribution of the tag in the
SAGE libraries, thus providing a virtual picture of the expression pattern of the
mRNA. In the SAGE xProfiler, the user selects two pools of libraries, such as colon
cancer versus normal colon. The tool calculates which SAGE tags are more abundant
in one pool or the other. The SAGE tags are mapped to UniGene clusters to provide
biological context for the results.

Microarrays

High-density oligonucleotide and cDNA microarrays are a relatively new technique
being used to monitor gene expression on a genome-wide scale. The technique uses
the same principles of nucleic acid hybridization as do Northern and Southern blots
but on a much larger scale. Thousands of gene-specific probes are arrayed on a small
matrix, such as a glass slide or microchip, and this matrix is probed with labeled
nucleic acid synthesized from a tissue type, developmental stage, or other condition
of interest. The expression profiles of thousands of genes under that condition can
thus be assayed simultaneously. The array probes can be derived from oligonucleo-
tides or cDNAs. In many cases, the probes for cDNA arrays are 3’ ESTs (Duggan
et al., 1999). For human expression analysis, UniGene clusters can be used as a
source of additional information about the ESTs on the array. Microarray technolo-
gies and the bioinformatics challenges surrounding them are discussed in Chapter
16.
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INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 12

dbEST home page http://www.ncbi.nlm.nih.gov/dbEST/
List of dbEST libraries http://www.ncbi.nlm.nih.gov/dbEST/libs byorg.html
dbEST summary by

organism
http://www.ncbi.nlm.nih.gov/dbEST/dbEST

summary.html
How to submit ESTs to

dbEST
http://www.ncbi.nlm.nih.gov/dbEST/how to

submit.html
EST Projects at

Washington University
http://genome.wustl.edu/gsc/est/navest.pl

The I.M.A.G.E.
Consortium

http://image.llnl.gov/

UniGene http://www.ncbi.nlm.nih.gov/UniGene/
The UniGene build

procedure
http://www.ncbi.nlm.nih.gov/UniGene/build.html

UniGene query engine http://www.ncbi.nlm.nih.gov/UniGene/query.cgi
HomoloGene http://www.ncbi.nlm.nih.gov/HomoloGene/
STACK http://www.sanbi.ac.za/Dbases.html
TIGR Gene Indices http://www.tigr.org/tdb/tgi.html
TIGR Orthologous Gene

Alignment database
http://www.tigr.org/tdb/toga/toga.html

GeneMap ’98 http://www.ncbi.nlm.nih.gov/genemap/
dbSNP http://www.ncbi.nlm.nih.gov/SNP/
Cancer Genome Anatomy

Project (CGAP)
http://www.ncbi.nlm.nih.gov/ncicgap/

CGAP Digital Differential
Display (DDD)

http://www.ncbi.nlm.nih.gov/CGAP/info/ddd.cgi

CGAP xProfiler http://www.ncbi.nlm.nih.gov/CGAP/hTGI/xprof/
cgapxpsetup.cgi

Serial Analysis of Gene
Expression (SAGE)

http://www.ncbi.nlm.nih.gov/SAGE/

SAGE virtual Northern http://www.ncbi.nlm.nih.gov/SAGE/sagevn.cgi
SAGE xProfiler http://www.ncbi.nlm.nih.gov/SAGE/sagexpsetup.cgi

PROBLEM SET

You have been studying the histone deacetylase gene, RPD3, in the yeast Sacchar-
omyces cerevisiae. You are moving to a lab that works on zebrafish, and you would
like to continue your work on this gene. You wonder how difficult it will it be to
clone the zebrafish ortholog of RPD3.

1. What is the GenBank accession number of the first listed RPD3 protein sequence
from Saccharomyces cerevisiae?

2. Do the public sequence databases already contain any zebrafish proteins that are
likely orthologs of RPD3?
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a. What type of sequence comparison search should you perform?
b. To interpret the search results of your sequence comparison, you will need

to know the scientific name for zebrafish. What is the scientific name?
c. Are there any zebrafish protein orthologs of yeast RPD3?

3. You remember that the EST database is an excellent source of sequence data.
a. What type of sequence comparison should you perform to find EST hits to

the yeast protein sequence?
b. Are there any zebrafish EST hits to this yeast protein sequence?

4. Do the five top scoring ESTs belong to the same UniGene cluster?

5. What is the GenBank accession number of the human sequence that matches
this UniGene cluster?

6. What cDNA clone does the top scoring EST hit come from?

7. Is this EST from the or 3� end of the cDNA clone?

8. From which cDNA library was this clone sequenced?

9. Is the EST that comes from the opposite end of this cDNA clone also a member
of this UniGene cluster?

10. Does this EST also align with the yeast RPD3 protein sequence? Why or why
not?

11. Is the top-scoring zebrafish EST also present in the TIGR Zebrafish Gene Index?

12. Is the EST that comes from the opposite end of the cDNA clone also in this
TIGR TC?

13. Are the sequences in the UniGene cluster and the TIGR TC basically the same?

14. How does the TIGR consensus sequence for the 5� EST TC compare with that
produced by UniGene?

15. Is the top-scoring zebrafish EST hit to the yeast RPD3 protein present in
STACK?

16. Based on what you have learned, how would you get a cDNA clone of the
zebrafish RPD3 gene?
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