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That genome centers are able to produce DNA sequence data at very high speed
using robotics and sequencing instruments should not be taken to imply that se-
quencing is always straightforward or routine. The nature of genomes and the lim-
itations of mapping and sequencing techniques still make such projects challenging
and provide scope for improved computing methods. To understand the requirements
of sequence assembly software, it is necessary to know a little about genome se-
quences and sequencing techniques. After a general introduction to the task of se-
quencing and assembly and an illustration of the reality of routine sequencing op-
erations, we describe how the Staden package can be employed in effectively
assembling sequence data. Other packages will include their own, often similar,
methods, to deal with the problems.
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The large-scale organization and local composition of DNA affects the difficulty
and complication of determining its sequence. Genomes of higher organisms vary
considerably in their relative GC-to-AT content and in the number and types of
repetitive elements they contain. For example, within its components of known util-
ity, the human genome consists of genes for proteins which occur in single or few
copies, multigene families scattered throughout the chromosomes, and gene clusters
in a variety of arrangements, including multiple copies of genes for proteins and
RNAs needed in high abundance. A large proportion of the remainder of the genome
consists of various types of repetitive elements including LINEs and SINEs (Hutch-
inson et al., 1989) of which Alu sequences are the most widely known. Many other
simple elements are also repeated, sometimes hundreds of times.

The Sanger dideoxy sequencing technique (Sanger et al., 1977), which is em-
ployed by all the major public genome sequencing projects, uses DNA polymerase
to synthesize a complementary copy of the target DNA. The inclusion of dideoxy
nucleotides (which terminate the growing DNA chains) in the reaction mixture en-
sures that a proportion of all the fragments so produced stop after each base, hence
creating a complete set of nested sequences. The polymerase extends, in the 5’ to
3’ direction, a short segment of DNA (known as a primer) that has to be annealed
to the 5" end of the target sequence to initiate the process. Either the primers or the
dideoxy ‘“‘terminators’ are fluorescently labeled. The fragments are run through a
sieving material such as a gel, which separates them according to their length. The
fluorescence of the separated fragments is measured, and the resulting traces are
analyzed to produce the base calls. The results of individual experiments are known
as ““‘gel readings™ or “‘reads.” If the sequence is 100 bases in length, this requires
separating fragments having length differing by only 1%, and this effectively limits
the size of sequence that can be obtained by a single experiment to around 1,000
bases. Most sequence runs obtain approximately 500 bases.

There are many potential sources of problems when preparing the DNA “‘tem-
plate” for sequencing, performing the sequencing reactions, and loading and running
the sequencing instrument; all of these factors influence the reliability of the data
obtained. The characteristics of individual segments of DNA also influence the dif-
ficulty of obtaining reliable sequence, dictating whether special techniques need to
be applied.

At the level of the individual gel reading, potential sources of problems include
(1) “compressions,” in which secondary structure in the DNA fragments causes them
to move anomalously in the gel so that more than one size of fragment may migrate
to the same position; (2) ““stops,” where the polymerase has a tendency to dissociate
and hence, in dye primer chemistry, produce a large band on the gel; (3) regions of
extreme composition, including high GC or GT composition and homopolymer
regions; and (4) repetitive DNA. These problems all affect the accuracy and relia-
bility of the data obtained from these regions. At the level of joining the readings
together in the correct order, the various types of repeats listed above are the major
difficulty (especially if the problem is compounded by poor quality data).

As mentioned above, the primer sequence (of around 20 bases) must be com-
plementary to the sequence at the 5’ end of the target DNA, and the sequence from
each experiment is limited to around 1,000 bases. These two factors have led to the
widespread use of the so-called ‘‘shotgun” strategy of DNA sequencing in which the
target DNA is randomly broken into overlapping fragments of around 2,000 bases
and cloned into a ‘“‘sequencing vector.”” This sidesteps the problem of having to know
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and synthesize the sequence at the 5’ end of each segment of the target DNA because
they now all have a common sequence, namely, that just to the 5’ side of the cloning
site in the vector. The use of cloning techniques also provides a way of producing
sufficient pure quantities of the DNA. However, this strategy creates the problem of
not knowing the order of the fragments obtained from each sequencing experiment.
An alternative method of producing random samples from along the target DNA
while retaining the ability of using the same primer for each experiment is to use
transposons. One further and important experimental strategy is to determine the
sequence from both ends of each of the cloned fragments. Together, these ‘““forward”
and “‘reverse’ readings, known as ‘“‘read pairs,” give data from opposite strands of
the DNA and provide information about the relative positions and orientations of the
pairs of readings from the same fragment or template. The recent introduction of
capillary electrophoresis instruments has made the production of forward and reverse
readings more useful because this technology removes the problem of gel lanes being
confused and, hence, with readings being assigned the wrong clone name (and sub-
sequent incorrect assignment of read pairs).

THE USE OF BASE CALL ACCURACY ESTIMATES OR
CONFIDENCE VALUES

When the idea of using numerical estimates of base calling was put forward (Dear
and Staden, 1992; Bonfield and Staden, 1995), it was expected that these methods
would be supplied as part of the instrument manufacturers’ base-calling software.
Instead, the first useable numerical values were produced by the program phred,
which was devised by an academic group (Ewing, and Green, 1998). This was a
very important step forward and has had a major impact on genome projects.

Through the program phrap, phred-derived confidence values have been used to
improve the quality of sequence assembly. Through the Staden Package, confidence
values are also extensively used during the finishing stages of sequencing projects.
Here, much of the tedious and time-consuming trace checking is obviated by the
software; the confidence values are used to decide if human expertise is required to
adjudicate between conflicting base calls. The result is that the majority of conflicts
need never be brought to the user’s attention, greatly reducing thetime required to
check and edit a contig (Bonfield and Staden, 1995). When the phred-style confi-
dence values became available, the Staden program was adjusted to work on the
decibel scale that was then defined. Green’s group have written a contig editor known
as consed (Gordon et al., 1998), which has some similarities to the one in gap4
(Bonfield et al., 1995) described later in this chapter.

Phred produces a confidence value that defines the probability that the base call
is correct. The values were calculated by analyzing the traces from which the read-
ings are derived: peak spacing over seven peaks, peak height ratios over seven and
three peaks, and the number of peaks to the nearest uncalled base. The confidence
value is given by the formula

C-value = —10 X log,, (probability of error)

A confidence value of 10 corresponds to an error rate of 1/10, 20 to 1/100, 30 to
1/1000, and so on.
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Another program that does base calling and produces confidence values is
TraceTuner. Also, the program ATQA calculates confidence values and produces
probabilities for insertions and deletions but does not recall the bases.

THE REQUIREMENTS FOR ASSEMBLY SOFTWARE

The task that sequence assembly software needs to accomplish is to infer the original
sequence from the evidence of the readings and ideally to give, for each base, a
probability that it is correct. It might be thought that this is simply a matter of
comparing and aligning all the readings in a fully automated process, but this is not
the case. The combination of limited reading length, reading errors, and repeats
means that this ideal of automation is still some way off; therefore, interactive soft-
ware tools are essential for helping to solve the many problems that confront se-
quencing staffs worldwide. As should be clear from the section above, there is ample
opportunity for joining readings in the wrong order or wrong orientation, for missing
out or duplicating regions, as well as for making minor base assignment errors,
insertions, or deletions. Tools are required to check for these contingencies, some-
times in concert with extra experiments such as restriction enzyme digests. At pres-
ent, the sequencing process is often talked of as consisting of two parts, namely,
assembly and finishing, but in practice there is considerable overlap between the two.
Assembly is the process of attempting to order and align the readings, and finishing
is the task of checking and editing the assembled data. This includes performing
new sequencing experiments to fill gaps or to cover segments where the data is poor
and adjudicating between conflicting readings when editing.

GLOBAL ASSEMBLY
The global sequence assembly problem can be divided into three steps:

1. Find all possible overlaps between readings by comparing each one, in both
orientations, to all the others;

2. from the list of overlaps, produce the best layout of the readings;

3. from the alignment of the readings in the final layout, derive a censensus
sequence.

Step 1 is usually performed in two stages. First, a rapid comparison is performed
to find all pairs of reading that share an exact match of, for example, 14 consecutive
bases. Second, those that contain these matches are aligned using dynamic program-
ming methods. The alignments that satisfy some preset criteria are ‘“‘stored” in a
graph, in which the vertices represent the readings and the edges represent the over-
laps. Several different algorithms have been published that can analyze and prune
these graphs to produce a consistent left-to-right ordering, orientation, and position-
ing for the readings. The resulting layout of the readings usually still requires mul-
tiple sequence alignment, as it is based only on individual pairwise alignments, each
of which may conflict with others that they overlap. Once this has been done, a
consensus can be derived. Elegant descriptions of the assembly problem and partic-
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ular algorithmic solutions can be found in Kececioglu and Myers (1995) and Myers
(1995).

Working programs usually include a number of important and effective extra
methods. All the readings can be prescreened to see if they contain the sequences
of known repeats. Those that do can be set aside or treated in other special ways.
For example, the segments containing repeat elements can be ignored during the
search for an exact initial match but then used during the alignment phase. The
layout can be checked and altered to be consistent with known read-pair data. The
quality of the alignments can be scored by using the confidence values of the bases,
and these scores can be used when the overlap graph is analyzed to produce the
layout.

There are several widely used global assembly engines. Those that are currently
available free of charge to the academic community include phrap (Green, unpub-
lished), FAKII (Myers et al., 1996), CAP3 (Huang, 1996), the TIGR Assembler
(Sutton et al., 1995) and gap4 (Bonfield et al., 1995). Those available commercially
include Sequencher and DNASTAR.

After the global assembly engines have done their best with the initial shotgun
data, the readings will be arranged into overlapping sets, and it is part of the job of
the “finishing” process to complete the project by obtaining readings to fill the gaps.
At the end of the project, there will be only one overlapping set, and it should cover
the whole of the target sequence. Although its usage has now been expanded to
include any set of overlapping clones, even those for which the sequence is unknown,
the word ‘““contig” was originally defined to mean a set of sequence readings that
overlap (Staden, 1982). A consensus sequence can be calculated for each contig.
New readings obtained for the finishing process can be compared against the con-
sensus sequences. If the reading overlaps the end of one contig, it can be extended;
if it overlaps two, these can be joined. This more limited assembly problem can be
performed by the global engines or more quickly by simpler algorithms that use the
consensus sequence.

FILE FORMATS

Raw sequence assembly data consist of traces, base calls, and confidence values, and
most programs store these in SCF-format files (Dear and Staden, 1992). In addition
to this, processing programs need data about how the readings were obtained—which
sequencing vector they were cloned into, which primer was used, which template
they were derived from, and which chemistry was used. A variety of methods are in
use to manage this data. Many groups store their readings in FASTA-format files
and thus have to use so-called “naming conventions” or ‘“‘naming schemes’” in which
the entry name is used to encode data about readings. Others use relational databases,
such as ABI’s BioLIMS system. The Staden package uses Experiment files. The
format is identical to EMBL/SWISS-PROT entries in that two-character record-type
identifiers begin each line, but the record types are extended to include the necessary
data about sequence readings. This simple text format is easily parsed. A set of C
programs for reading and writing SCF and Experiment file formats is available on
the Staden package Web site. Assemblies describe readings, chemistries, contigs,
alignments and edits, and, for this, a “gap4 database” is used for each sequencing
project.
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The remainder of this chapter illustrates the use of the Staden package as it is
applied to sequence assembly data, but readers should be aware that other packages
include similar features. Because the examples here use a specific package, we have
not gone into the details of how to perform particular tasks but instead give a flavor
of the possible operations by describing some of the components of the individual
programs.

PREPARING READINGS FOR ASSEMBLY

Data must be passed through several preassembly steps before being entered into the
gap4 database, usually via a program called pregap4 (Bonfield and Staden, unpub-
lished), which can operate on batches of traces. The possible steps in this process
are shown in Figure 13.1.

Usually, trace files that are in proprietary format, such as those produced by ABI
sequencers, are first converted to SCF files. Confidence values are added to the SCF
file, and then its Experiment file is initialized with copies of the base calls and
confidence values. The trace file is not needed again until the assembly is edited,
and, because these programs can uncompress them on the fly, they are now com-
pressed. The trace files are not altered but are kept as archival data so that it is
always possible to check the original base calls and traces. Any changes to the data
before assembly are made to the copy of the sequence in the Experiment file. It is
recommended that no changes are made to the data until readings can be viewed
aligned with others. The Experiment file is augmented to include data about how
the readings were obtained—which sequencing vector they were cloned into, which
primer was used, which template they were derived from, and which chemistry was
used. This information can be obtained from a variety of sources. Next, the readings
are analyzed to mark segments that are of low confidence, which can aid some
assembly engines. With the use of the information in the Experiment file, the reading
is searched for the presence of sequencing vectors at each end. A similar search is
then done for cloning vectors (for example, for a BAC or cosmid vector). A final
check is then performed for missed vectors or other possible contaminant sequences
such as E. coli or yeast. All of these searches write their results back into the Ex-
periment file, ready for use by later programs in the pipeline. For the assembly stage,
pregap4 can use phrap, CAP3, FAKII, or gap4; at the time of this writing, we believe
that phrap is the most effective method. Only gap4 can read and write to gap4
databases; therefore, if an external assembly engine is used, the resulting assembly
is copied into the gap4 database in the ‘“‘enter assembly’ step. When processing has
finished, pregap4 will produce a report containing information from each module
and the final list of ““passed’ and ‘‘failed” sequences. From this stage on, all changes
are made to the copies of the data in the gap4 database and the Experiment files are
no longer required. Pregap4 provides the interfaces to configure all of the above
operations, to save the configuration for future use, and to perform the actual work.

Phrapview

Before other components of the gap4 package are described, a brief introduction to
the phrapview program is warranted. Phrapview is distributed along with the phrap
assembly engine and is a graphical viewer for phrap assemblies. It is intended to
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[ Augrent experiment files ] :
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[ Mark low quality sequence ]
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Figure 13.1. A schematic of the tasks performed by the program pregap4 when processing
a batch of sequence trace files. See text for details.
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provide a “‘global’ view of the assembly, complementing the individual base and
trace view provided by consed. This global view focuses on information pertaining
to possible incorrectness, incompleteness, or nonuniqueness of the phrap-generated
assembly. Phrapview displays depth of coverage, forward-reverse read pairs, signif-
icant pairwise matches involving reads in different locations in the assembly, and
chimeric reads.

The input to phrapview is a .view file, which is produced by running phrap
with the View option. Note that phrapview does not perform any of the analyses
itself; rather, it provides a way of displaying a file that contains an already completed
analysis of the project. A screen dump for a typical phrapview display of a 40-kb
cosmid sequencing project (still in three pieces) is shown in Figure 13.2. In this
display, color-coded lines are drawn between read pairs, where red indicates a prob-
lem and black indicates ‘“OK.”” Here, 48 problems and 120 OKs are reported. Read
pairs will only be indicated properly if the read-naming convention assumed by phrap
is used. The other types of data mentioned above can also be displayed in the same
window.

(r Phrapview: phrap assembly of test.fastascreen

701 reads total: 168 FPwd-Rev links:

607 in 3 contigs: 48 problems, 120 ok MUHING USSR Al
0 exact duplicates;

94 singletons. Color code: red = problem;

1 chimeras. black = ok; blue = grayzone

contigl 28199 bp
(395 reads)
Contig2
(188 reads)
contigl  AexZF7175 hp
(24 reads)
Chimeral — 651 bp
Show Depths J Show Contig Matches | Show Fwd-Rev Links i Show Quality |
show Reduced Depths | show chimera Matches | ghow Same-Strand Links ! clear Display |
Horiz mag: [100 - min fwd-rewv; [0
ing mag: [100 el ety E max fwd-rev: [5000
SHRCANG mag. max unalign: 55 ’ Quit
Depth mag: [0 qual cutoff: [ min ss: e
Qual mag: ]mu max ss5: |'-|gnn
N 1= |4

Figure 13.2. A screen dump from the program phrapview, showing a graphical display of
the state of the data immediately after a run of the phrap assembly engine. See text for
details. (See color plate.)
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INTRODUCTION TO GAP4

Gap4 is an interactive program used for working on data from sequencing projects.
It contains a comprehensive set of functions, many of which present their results
graphically. Others, such as the Experiment Suggestion functions, produce textual
output ready for parsing by external programs. One of its important components,
used by many of the other functions, is the consensus algorithm. The gap4 database
does not store the consensus sequence; rather, it is calculated whenever it is needed.
When appropriate, it can be calculated separately for each strand, and, in the Contig
Editor and Contig Joining Editor, it is instantly updated for each edit made. When
phred-style confidence values are available, the algorithm uses them with strand and
chemistry data to calculate a confidence value for each base in the consensus. At the
end of a project, the algorithm can produce a FASTA-format file or an Experiment
file containing the consensus and its confidence values. Preprocessing programs used
by pregap4 and routines within gap4 can add annotations to readings (for example,
the position of an Alu segment or a custom primer). Throughout the text, these
annotations are referred to as ‘‘tags.”

The gap4 top-level window is divided into an Output Window for showing
textual results, an Error Window for displaying error messages, and, at the top, an
array of menus for selecting the main functions. The contents of the two text win-
dows can be searched, edited, and saved. Each set of results is preceded by a header
containing the time and date when it was generated. Most of gap4’s tools are used
within other windows, which are invoked when required or when an analytic function
producing graphical output is selected. The most important windows are the Contig
Selector, Contig Comparator, Template Display, Consistency Plot, Restriction Map,
Contig Editor, Contig Joining Editor, and Trace Display. All of the graphical displays
and the Contig Editors can be scrolled in register. The base of the graphical display
windows usually contains an Information Line that shows short textual data about
results or items touched by the mouse cursor. The next sections give short descrip-
tions of the windows in order of their resolution.

THE CONTIG SELECTOR

When an assembly database is opened, gap4 will bring up the Contig Selector, which
is used to display, select and reorder contigs. In the Contig Selector, all contigs are
shown as colinear horizontal lines separated by short vertical lines. The length of
the horizontal lines is proportional to the length of the contigs, and their left-to-right
order represents the current ordering of the contigs. The contig order can be changed
by using the mouse to drag the lines representing the contigs. The Contig Selector
can also be used to select contigs for processing. For example, clicking with the
right mouse button on the line representing a contig will invoke a menu containing
the commands that can be performed on that contig. As the mouse is moved over a
contig, it is highlighted and the contig name and length are displayed in the Infor-
mation Line.

A sample Contig Selector is shown in Figure 13.3. Along the top are three
menus: File, View, and Results. Below this are buttons for zooming, activating the
crosshair, and showing its position. The leftmost button, labeled Next, is used to
sequentially step through sets of results. For example, if the user employs the Find
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— Contig Selector -
File View Resulis Help
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Contig: zf22bh1.51 (+#356) Length: 12365 Hum readings: 207

Figure 13.3. A screen dump of the gap4 Contig Selector, which gives an overview of the
state of a sequencing project and provides a method for users to select contigs for proc-
essing. See text for details. (See color plate.)

Internal Joins option (see below), which finds possible overlaps between contigs, the
results are automatically sorted into descending order of overlap quality, and the
Next button can be used to process them in that order. Each time the user clicks on
the Next button, the Contig Joining Editor will be invoked to show the next overlap,
enabling the user to examine the match and edit the two contigs and make the join.
Below this row of buttons is the schematic of the contigs. The small boxes around
the contig lines show the positions of tags on the readings and the consensus
sequence.

THE CONTIG COMPARATOR

Gap4 commands such as Find Internal Joins, Find Repeats, Check Assembly, and
Find Read Pairs automatically transform the Contig Selector to produce the Contig
Comparator. For this transformation, a copy of the Contig Selector is added at right
angles to the original window to create a two-dimensional rectangular surface on
which to display the results of comparing or checking contigs. It is therefore equiv-
alent to the ‘““dot plot” display commonly used for comparing pairs of sequences (cf.
Chapter 8).

As mentioned above, Find Internal Joins compares the ends of contigs to see if
there are possible overlaps. Find Repeats is similar, but, unlike Find Internal Joins,
it does not require the found matches to continue to the ends of contigs. Check
Assembly compares every reading with the segment of the consensus it overlaps to
see how well they align. Those that align poorly are plotted along the main diagonal
of the Contig Comparator. Find Read Pairs plots the positions of consistent read
pairs that may indicate the order of contigs. Each of the functions plots its results
as diagonal lines of different colors. Lines parallel to the main diagonal represent
contigs that are in the correct orientation relative to one another. Those perpendicular
to the main diagonal show results for which one contig would need to be reversed
before the pair could be joined. The manual contig-dragging procedure mentioned
above can be used to change the relative positions of contigs. As the contigs are
dragged, the plotted results will automatically be moved to their corresponding new
positions. Because this plot can simultaneously show the results of independent types
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of search, users are able to determine whether different analyses produce corrobo-
rating or conflicting evidence for the ordering of readings or contigs. The plotted
results can be used to invoke a subset of commands by the use of pop-up menus.
For example, if the user clicks the right mouse button over a result from Find Internal
Joins, a menu containing Invoke Join Editor and Invoke Contig Editors will pop up.
If the user selects Invoke Join Editor, the Join Editor will be started with the two
contigs aligned at the match position contained in the result. If required, one of the
contigs will be complemented to allow their alignment.

A typical display from the Contig Comparator is shown in Figure 13.4. Although
they cannot be distinguished without their usual color coding, this screen dump
includes results for Find Internal Joins (black), Check Assembly (green), and Find
Read Pairs (blue). Superimposed on the bottom left corner are the View menu and
the Results Manager menu. The crosshairs show the positions for a pair of contigs.
The vertical line continues into the Contig Selector part of the display, and the
position represented by the horizontal line is also duplicated there.

THE TEMPLATE DISPLAY

The next level of resolution is the Template Display, which can show schematic plots
of readings, templates, tags, restriction enzyme sites, and the consensus quality. It
can show one or several contigs and uses color coding to distinguish reading, primer,
and template types. It is often used to view the results of the Order Contigs option,
which uses read-pair data to find the most likely left-to-right order of the contigs.
These data may contain errors due to misnaming of readings (and hence which
templates they were obtained from); thus, it is useful to view the results and, if
required, modify the order. Again, this can be done by dragging the lines representing
the contigs (but this time in the Template Display rather than in the Contig Selector).
If the contigs are dragged, the plot is immediately redrawn to reflect the new order-
ing. Figure 13.5 shows a Template Display containing the data for several contigs
after they have been ordered by Order Contigs.

Under the menus and buttons, the largest section of the display contains stacks
of lines and arrows representing the readings and templates for the contigs (shown
by single nonoverlapping lines surrounded by tags directly below). Beneath this is
a representation of the consensus quality for one contig and below that its restriction
map. Note that the high depth of coverage seen here is template coverage. An alter-
native plot in which only the readings (and not their templates) are drawn would
show much lower coverage. The template and reading sections of the display are in
two parts. The top part contains the templates that have been sequenced from both
ends but that are in some way inconsistent—for example, given the current relative
positions of their readings, they may have a length that is larger or greater than that
expected or the two readings may point in opposite directions. In this screen dump,
there are four inconsistent templates, three within contigs and one spanning a pair
of contigs. Color coding is used to distinguish between different types of inconsis-
tencies and whether the inconsistencies involve readings within or between contigs.
The rest of the data (mostly for templates sequenced from only one end) is plotted
below the data for the inconsistent templates. Templates with only one reading are
shown in dark blue. Superimposed on the lines representing the templates are forward
readings, shown as light blue arrows, and reverse readings, shown as orange arrows.
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Figure 13.4. A screen dump of the gap4 Contig Comparator. This transformed version of
the Contig Selector is used to display the results of analytical methods that give information
about the relationships between contigs. For example, it can show sequence matches be-
tween contigs and the positions of read pairs that span contigs. See text for details. (See
color plate.)

Templates in bright yellow have been sequenced from both ends, are consistent, and
span a pair of contigs (and thus show the relative orientation and separation of the
contigs). All data are scaled: the templates with one reading are given their expected
length (here, 2,000 bases), templates within single contigs and with readings from
both ends are shown with their actual length, and templates spanning contigs are
shown with a length calculated from the positions of their readings. The screen dump
contains two vertical lines that extend the full height of the plot. One is the crosshair,
and the other shows the position of the Contig Editor editing cursor. Not only does
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Figure 13.5. A screen dump of the gap4 Template Display, which shows the positions of

DNA templates and the extent of readings derived from them. Color coding is used to

distinguish between forward and reverse readings and to show consistent and inconsistent

read pairs. See text for details. (See color plate.)

this vertical line show the editing cursor position but, by using the mouse, it can be
used to scroll the editor.

In the plot, below the line representing the longest contig, the quality of its
consensus is illustrated by color and line height. Here, the “‘quality’’ of the consensus
is calculated using a simple algorithm and is mostly useful for data that has no
confidence values. If a consensus base in a contig has good data from both strands
and the consensus, when calculated separately for each of the two strands, is in
agreement, then the plot for that position will show nothing. However, if the two
strands disagree, or there are good data for only one strand, lines will be plotted of
a color and height that signifies the problem. An alternative plot for data with con-
fidence values, which shows the confidence for the consensus, is also available.

The position of a crosshair is shown in the two leftmost boxes in the top right-
hand corner. The leftmost shows the distance in bases between the crosshair and the
start of the contig underneath the crosshair. The middle box shows the distance
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between the crosshair and the start of the first contig. The bottom plot is of the
positions of restriction enzyme cut sites, and the rightmost box at the top of the
display shows the distance between two selected cut sites. Comparing the predicted
restriction pattern and that obtained from the original physical map clone can be an
important final check on the overall correctness of the assembly.

THE CONSISTENCY DISPLAY

An alternative way of viewing the data at a scale similar to that of the Template
Display is provided by the Consistency Display, which can plot histograms of the
reading coverage and the read-pair coverage. An example is shown in Figure 13.6.
The blocky histogram shows two lines (one red, one black) depicting the number of
readings covering each position in a contig. The coverage for each strand is sum-
marized below by the two sets of horizontal lines; where a line appears, there is no
data for the strand. In the example, there are no data for the minus strand at the left
end of the contig and none for the plus strand just left of the right-hand cursor or
crosshair.

THE CONTIG EDITOR

The most detailed level of resolution provided by gap4 is the Contig Editor and its
associated Trace Display, which are used for the final checking and editing of the
aligned readings. It makes this an efficient and rapid procedure by providing a variety

— Consistency display: zf22b1.s1 1 12365 #358 ==
File View Results Help

+10%

+50% zoom out W crosshairs | 5971 | 5971 | 0

Y

~1

1 ~ =
Strand coverage (#33)

Figure 13.6. A screen dump of the gap4 Consistency Display. Here, it is being used to plot
a histogram of the number of readings from each strand covering each position along a
contig. Below that it is showing the segments with no data from one strand or the other.
See text for details. (See color plate.)



THE CONTIG EDITOR

of search methods and by automatically displaying the trace data for any problems
found. Users can alter bases or their confidence values to resolve errors, and the
consensus sequence is instantly updated. Editing should be performed only to obtain
the correct consensus at the required level of confidence. The less editing done, the
quicker the project will be completed, and the more original base calls visible in the
Contig Editor, the easier it will be to check if any doubts arise in the future. The
consensus calculation is the same as that used to produce the final consensus to be
sent to the sequence library, and it will remove all padding characters that appear in
the Contig Editor consensus. Note that the numbering shown along the top of the
Contig Editor window can be set in two ways: positions can include or exclude
consensus padding characters.

Figure 13.7 shows a screen dump from the Contig Editor that contains segments
of aligned readings, their consensus, and a three-phase translation. Below this is the
Trace Display. The Search dialogue is obscuring the right-hand side of the Editor
window. The main components of the editor are the controls at the top, reading
names on the left, sequences to their right, and status lines at the bottom. To the left
of each reading name is the reading number, which is negative for readings that have
been reversed and complemented. The reliability of the individual base calls is shown
using gray scale—the lighter the background, the higher the confidence. Below the
reading data is their consensus sequence, with its reliability again shown using gray
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Figure 13.7. A screen dump of the gap4 Contig Editor and Trace display. See text for
details. (See color plate.)
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)

scale. The first of the status lines, labeled *“Strands,” shows a summary of strand
coverage. The left end of the segment of sequence being displayed is covered only
by readings from one strand of the DNA (+), but the rest contains data from both
strands (=). Two positions are marked with an exclamation mark (!), indicating that,
when the consensus is calculated separately for each strand, they disagree.

Along the top of the editor window is a row of command buttons and menus.
The rightmost pair of buttons provide help and exit. To their left are two menus,
Settings and Commands. To the left of this is a button that initially displays the
search dialogue (shown); by pressing it again, the selected search will be performed.
Further left is the Undo button; each time the user clicks on this box, the program
reverses the previous edit command. The next button, labeled Cutoffs, is used to
toggle between showing or hiding the reading data of poor quality or are vector
sequences. The next button to the left is the Edit Modes menu, which allows users
to select which editing commands are enabled. The next command toggles between
insert and replace and thus governs the effect of typing in the edit window. The
Information Line at the bottom of the window can show information about readings,
annotations, and base calls, depending on what is under the mouse cursor.

With the use of the Settings menu, the Contig Editor can be configured to display
disagreements and edits. Disagreements between the consensus and individual base
calls are shown in dark green. Edits are shown with a light green background, re-
placements/insertions are shown in pink, deletions are shown in red, and confidence
value changes are shown in purple. As can be seen from the contents of the Search
dialogue superimposed on the Contig Editor, there are many types of search that can
be performed. For example, the cursor can explicitly be moved to any position in
the contig, either ignoring or counting padding characters. Other operations include
finding the next non-ACGT character in the consensus; the next edit, the next place
where the confidence of the consensus falls below some user-defined value, and the
next place where an edit has been performed, but there is no evidence for the change
in the original data (i.e., the current base does not appear in any of the original
readings covering the position). The type of search used varies depending on the
user’s role. For example, a user finishing a sequence project may search mainly for
low-confidence consensus sequences, whereas someone in a supervisory role may
go through and check every edit made.

The Contig Editor can display the traces for any reading or set of readings. The
number of rows and columns of traces displayed can be set by the user. The traces
scroll in register with one another, as well as with the cursor in the Contig Editor.
Conversely, the Contig Editor cursor can be scrolled by the trace cursor. A typical
view containing three traces is shown in the screen dump of the Contig Editor (Figure
13.7). These are the best two traces from each strand plus a trace from a reading
that contains a disagreement with the consensus. With the use of the Settings menu,
the program can be configured to automatically bring up this combination of traces
for each problem located by the Next Search option. The histogram or vertical bars
plotted top-down show the original confidence values for each base call. The reading
number, together with the direction of the reading (+ or — ) and the chemistry by
which it was determined, is given at the top left of each subwindow. There are three
buttons (Info, Diff, and Quit) arranged vertically, with X and Y scale bars to their
right. The Info button produces a window containing notes about the trace. The Diff
button is mostly used for mutation detection and causes a pair of traces to be sub-
tracted from one another and the result plotted, hence revealing their differences.
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THE CONTIG JOINING EDITOR

The Join Editor looks like a pair of Contig Editors stacked one above the other with
a strip in between, labeled Diffs for displaying the disagreements between the two
consensus sequences. The other two main differences are the Align and Lock buttons.
The former performs an alignment between the two consensus sequences and inserts
padding characters accordingly, and the latter toggles between scrolling the contigs
separately or in unison. Each contig can be edited separately, and it is important that,
before a join is confirmed, the alignment is checked over its full extent. The Contig
Join Editor is usually invoked by clicking on a Find Internal Joins or Find Repeats
result in the Contig Comparator, in which case the two contigs will appear aligned
at the match found by these searches. The few differences between the Join Editor
and the Contig Editor can be seen in Figure 13.8. This figure shows the right-hand
end of one contig in the lower editor and the left-hand end of another in the top
editor. The Cutoff or Hidden data are displayed for the right-hand contig but not for
the left-hand contig.

DISASSEMBLING READINGS

Pregap4 and gap4 use lists of readings and contigs for processing batches of data.
Obviously, the input to pregap4 is usually a list of trace files. Within gap4, users can
create these lists in a number of ways. For example, when using the Contig Editor,
users can create a list of readings to be disassembled. These are automatically sent
to the gap4 Disassemble Readings function when the editor is exited. Readings can
either be removed from the database or from the contigs they were in. If they are
removed only from the contigs, they each start new contigs of their own; therefore,
if the Find Internal Joins function is applied to all the contigs in the database, it will
reveal any overlaps they may have elsewhere. If they are removed from the database,
the list can be used by the assembly function to reassemble them. During its disas-
sembly, if a reading is the only one covering part of a contig, the contig will be
automatically broken in two. Gap4 also has a specific function for this purpose that
will break a contig at the start of a given reading.

EXPERIMENT SUGGESTION AND AUTOMATION

Much of the foregoing has been to illustrate the types of tools that are available for
solving difficult problems interactively, but ideally one would prefer to automate as
much of the work as possible. Genome sequencing center staff have put many hours
into developing their own in-house procedures for automating their work. The current
release of gap4 enables this approach in two ways. The first is by use of its Exper-
iment Suggestion functions, and the second is by use of the gap4 scripting language.

Using its consensus algorithms, gap4 can analyze assembly databases to find
segments of sequence that require further readings, either to resolve disagreements,
to fill the requirement for data from both strands of the DNA, or to extend contigs
to try join them to others. It can then suggest the experiments to perform and the
templates to use because it has all the necessary information in its assembly database.
However, in the current version of gap4, the types of experiments are limited, and
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it has no knowledge of the very latest techniques or the ones that may be available
in any particular laboratory. For large laboratories using gap4, at present, it is better
to use its algorithms to analyze the database and to use the results of that analysis
with a set of external routines customized to local methods. As outlined below, this
is enabled by the design of gap4.

An entirely new set of gap4 finishing functions is currently being tested at the
Sanger Center. In addition to the consensus algorithm, these new functions employ
an analysis of reading and template depthas well as a knowledge of sequencing
chemistry to design sets of potential problem-solving experiments. These experi-
ments are geared towards satisfying the finishing criteria specified by the user.

Tcl (Ousterhout, 1994) is a portable and extensible scripting language written in
the C language. The programs in the Staden package are written in the form of
additional commands understood by the Tcl interpreter. Each of gap4’s algorithms
can therefore be used in Tcl scripts. This means that users can write scripts to perform
analysis of gap4 databases (e.g., apply a consensus calculation or read-pair analysis
algorithm), and these scripts could also be linked to local laboratory information
management systems and robotics. A further type of automation is furnished by the
fact that the gap4 Contig Editor can be driven by an external file of commands.

CONCLUDING REMARKS

We have tried to give insight into the types of tasks performed during routine se-
quence assembly projects and used our own software as an illustration. We recom-
mend interested readers to look at the Web sites of some of the main sequencing
centers to find out more about their finishing criteria and the software they have
developed to aid their projects. At the time of this writing, much of the effort of
publicly funded genome centers was devoted to producing a low-coverage sequence
of the human genome; therefore, the emphasis was on assembly. When that stage is
completed, the low-coverage data will need to be finished, which will require more
detailed attention of the types we have attempted to describe here.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 13

ATQA http://www.wagner.com

CAP3 http://www.cs.mtu.edu.faculty/Huang. html

Consed http://bozeman.genome.washington.edu/consed/consed.html

DNASTAR http://www.dnastar.com

FAKII http://'www.cs.arizona.edu/faktory

Phrap http://bozeman.genome.washington.edu/phrap.docs/
phrap.html

Phred http://bozeman.genome.washington.edu/phrap.docs/
phred.html

Gap4 http://mrc-lmb.cam.ac.uk/pubseq/index.html

Sequencher http://www.genecodes.com

Staden package http://www.mrc-lmb.cam.ac.uk/pubseq/index. html

TIGR Assembler http://www.tigr.org/softlab
TraceTuner http://www.paracel.com/html/tracetuner.html
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PROBLEM SET

Data and lecture notes for a short course in the use of pregap4 and gap4 are available
on the book’s Web site (http://www.wiley.com/bioinformatics). This information is
derived from a two-day practical course, but the notes are written such that users
can perform the exercises in an autotutorial fashion. The exercises revolve around a
series of ABI trace files and expose the user to format conversion, experiment file
creation, vector clipping, quality clipping, contaminant screening, assembly, join
finding, read-pair analysis, finishing experiments, use of confidence values, use of
the contig editor and trace display, and consensus calculation. The notes are available
in both PostScript and Microsoft Word format, and the data can be used with either
the UNIX or Microsoft Windows versions of the programs.
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Phylogenetics is the study of evolutionary relationships. Phylogenetic analysis is the
means of inferring or estimating these relationships. The evolutionary history inferred
from phylogenetic analysis is usually depicted as branching, treelike diagrams that
represent an estimated pedigree of the inherited relationships among molecules
(““gene trees’’), organisms, or both. Phylogenetics is sometimes called cladistics be-
cause the word ““clade,” a set of descendants from a single ancestor, is derived from
the Greek word for branch. However, cladistics is a particular method of hypothe-
sizing about evolutionary relationships.

The basic tenet behind cladistics is that members of a group or clade share a
common evolutionary history and are more related to each other than to members
of another group. A given group is recognized by sharing unique features that were
not present in distant ancestors. These shared, derived characteristics can be anything
that can be observed and described—from two organisms having developed a spine
to two sequences having developed a mutation at a certain base pair of a gene.
Usually, cladistic analysis is performed by comparing multiple characteristics or
“characters” at once, either multiple phenotypic characters or multiple base pairs or
amino acids in a sequence.
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e There are three basic assumptions in cladistics: Any group of organisms is
related by descent from a common ancestor (fundamental tenet of evolutionary
theory).

* There is a bifurcating pattern of cladogenesis. This assumption is controversial.

* Change in characteristics occurs in lineages over time. This is a necessary
condition for cladistics to work.

The resulting relationships from cladistic analysis are most commonly represented
by a phylogenetic tree:

A node

Human

A clade

Mouse

Fly

Even with this simple tree, a number of terms that are used frequently in phylogenetic
analysis can be introduced:

* A clade is a monophyletic taxon. Clades are groups of organisms or genes
that include the most recent common ancestor of all of its members and all of
the descendants of that most recent common ancestor. Clade is derived from
the Greek word ‘“‘klados,” meaning branch or twig.

¢ A taxon is any named group of organisms but not necessarily a clade.

* In some analyses, branch lengths correspond to divergence (e.g., in the above
example, mouse is slightly more related to fly than human is to fly).

* A node is a bifurcating branch point.

Macromolecules, especially sequences, have surpassed morphological and other
organismal characters as the most popular form of data for phylogenetic or cladistic
analysis. It is this molecular phylogenetic analysis that we will introduce here.

It is unrealistic to believe that an all-purpose phylogenetic analysis recipe can
be delineated (Hillis et al., 1993). Although numerous phylogenetic algorithms, pro-
cedures, and computer programs have been devised, their reliability and practicality
are, in all cases, dependent on the structure and size of the data. The merits and
pitfalls of various methods are the subject of often acrimonious debates in taxonomic
and phylogenetic journals. Some of these debates are summarized in a series of useful
reviews of phylogenetics (Saitou, 1996; Li, 1997; Swofford et al., 1996). An espe-
cially concise introduction to molecular phylogenetics is provided by Hillis et al.
(1993).

The danger of generating incorrect results is inherently greater in computational
phylogenetics than in many other fields of science. The events yielding a phylogeny
happened in the past and can only be inferred or estimated (with a few exceptions,



FUNDAMENTAL ELEMENTS OF PHYLOGENETIC MODELS

see Hillis et al., 1994). Despite the well-documented limitations of available phy-
logenetic procedures, current biological literature is replete with examples of con-
clusions derived from the results of analyses in which data had been simply run
through one or another phylogeny program. Occasionally, the limiting factor in phy-
logenetic analysis is not so much the computational method used; more often than
not, the limiting factor is the users’ understanding of what the method is actually
doing with the data.

This brief guide to phylogenetic analysis has several objectives. First, a concep-
tual approach that describes some of the most important principles underlying the
most widely and easily applied methods of phylogenetic analyses of biological se-
quences and their interpretation will be introduced. The aim is to show that practical
phylogenetic analysis should be conceived as a search for a correct model, as much
as a search for the correct tree. In this context, some of the particular models assumed
by various popular methods and how these models might affect analysis of particular
data sets will be discussed. Finally, some examples of the application of particular
methods to the inferences of evolutionary history are provided.

Note that the principles for DNA analysis will be initially discussed, although
most also apply to protein sequences (except where further description of protein
sequences is indicated). As there is a growing interest in the analysis of protein
sequences, the reader is directed to further descriptions of protein-specific problems,
as reviewed by Felsenstein (1996).

FUNDAMENTAL ELEMENTS OF PHYLOGENETIC MODELS

Phylogenetic tree-building methods presume particular evolutionary models. For a
given data set, these models can be violated because of occurrences such as the
transfer of genetic material between organisms. Thus, when interpreting a given
analysis, one should always consider the model used and its assumptions and enter-
tain other possible explanations for the observed results. As an example, consider
the tree in Figure 14.1. An investigation of organismal relationships in the tree sug-
gests the eukaryote 1 is more related to the bacteria than to the other eukaryotes.
Because the vast majority of other cladistic analyses, including those based on mor-
phological features, suggest that eukaryote 1 is more related to the other eukaryotes
than to bacteria, we suspect that for this analysis the assumptions of a bifurcating
pattern of evolution are incorrect. We suspect that horizontal gene transfer from an
ancestor of the bacteria 1, 2, and 3 to the ancestor of eukaryote 1 occurred because
this would most simply explain the results.

Models inherent in phylogenetics methods make additional ‘‘default” assump-
tions:

1. The sequence is correct and originates from the specified source.

2. The sequences are homologous (i.e., are all descended in some way from a
shared ancestral sequence).

3. Each position in a sequence alignment is homologous with every other in
that alignment.

4. Each of the multiple sequences included in a common analysis has a common
phylogenetic history with the others (e.g., there are no mixtures of nuclear
and organellar sequences).
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Protozoan eukaryote 2

— Protozoan eukaryote 3

L~ Protozoan eukaryote 4

Bacteria 6
Bacteria 5
_I: Bacteria 4

Protozoan eukaryote 1 -+

Bacteria 1
Bacteria 2

Bacteria 3

Figure 14.1. Example of a phylogenetic tree based on genes that do not match organismal
phylogeny, suggesting horizontal gene transfer has occurred. The ancestor of protozoan
eukaryote 1 (underlined and marked with an arrow) appears to have obtained the gene
from the ancestor of Bacteria 1, 2, and 3, as this is the simplest explanation for the results.
This unexpected result is not without precedent: there have been a number of reported
phylogenetic analyses that suggest that protozoa have taken up genes from bacteria, most
likely from bacteria that they have ingested.

5. The sampling of taxa is adequate to resolve the problem of interest.

6. Sequence variation among the samples is representative of the broader group
of interest.

7. The sequence variability in the sample contains phylogenetic signal adequate
to resolve the problem of interest.

There are additional assumptions that are defaults in some methods but can be
at least partially corrected for in others:

1. The sequences in the sample evolved according to a single stochastic process.

2. All positions in the sequence evolved according to the same stochastic
process.

3. Each position in the sequence evolved independently.

Errors in published phylogenetic analyses can often be attributed to violations
of one or more of the foregoing assumptions. Every sequence data set must be
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evaluated against these assumptions, with other possible explanations for the ob-
served results considered.

TREE INTERPRETATION—THE IMPORTANCE OF IDENTIFYING
PARALOGS AND ORTHOLOGS

As more genomes are sequenced, we are becoming more interested in learning about
protein or gene evolution (i.e., investigating gene phylogeny, rather than organismal
phylogeny). This can aid our understanding of the function of proteins and genes.

Studies of protein and gene evolution involve the comparison of homologs—
sequences that have common origins but may or may not have common activity.
Sequences that share an arbitrary, threshold level of similarity determined by align-
ment of matching bases are termed homologous. They are inherited from a common
ancestor that possessed similar structure, although the structure of the ancestor may
be difficult to determine because it has been modified through descent.

Homologs are most commonly either orthologs, paralogs, or xenologs.

* Orthologs are homologs produced by speciation. They represent genes derived
from a common ancestor that diverged due to divergence of the organisms
they are associated with. They tend to have similar function.

* Paralogs are homologs produced by gene duplication. They represent genes
derived from a common ancestral gene that duplicated within an organism and
then subsequently diverged. They tend to have different functions.

e Xenologs are homologs resulting from horizontal gene transfer between two
organisms. The determination of whether a gene of interest was recently trans-
ferred into the current host by horizontal gene transfer is often difficult. Oc-
casionally, the %(G + C) content may be so vastly different from the average
gene in the current host that a conclusion of external origin is nearly inescap-
able, however often it is unclear whether a gene has horizontal origins. Func-
tion of xenologs can be variable depending on how significant the change in
context was for the horizontally moving gene; however, in general, the func-
tion tends to be similar.

An example of how the identification of orthologs and paralogs can be used to
aid prediction of protein function is illustrated in Figure 14.2.

PHYLOGENETIC DATA ANALYSIS: THE FOUR STEPS

A straightforward phylogenetic analysis consists of four steps:

1. Alignment (both building the data model and extracting a phylogenetic
dataset)

2. Determining the substitution model

b

Tree building
4. Tree evaluation
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OnrM OprJ
Opm
OprM
Family OpmE
{Multidrug
Efflux?) OprN
OpmD
OpmQ
E. coli AprF
OpmM
Protein
Secretion? OpmN OpmH
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Figure 14.2. Insight into protein function from an investigation of paralogs and orthologs
—an example. Pseudomonas aeruginosa, a bacteria that is one of the top three causes of
opportunistic infections, is noted for its antimicrobial resistance and resistance to deter-
gents. Three homologous outer membrane proteins, OprJ, OpM, and OprN, have been
identified as playing a role in this antimicrobial resistance, by pumping different antimi-
crobials out of the cell as they entered. When the genome of this bacterium was sequenced,
it was found that there were no less than 14 homologs of the genes encoding these three
proteins (given names starting with “Opm"”). Phylogenetic analysis of these protein se-
quences, using the neighbor joining distance method within the PHYLIP 5.3 package,
showed that this 17-member family was divided into two clades, one containing all three
genes with roles in antimicrobial efflux pumps (underlined italics). Two members of the
other clade were found to share highest similarity with proteins AprF and TolC from an-
other organism, E. coli. AprF and TolC are both involved in secreting proteins. This analysis
allowed us to hypothesize that the clade containing OprM, OprlJ, and OprN, nicknamed
the OprM family, comprises a series of paralogous genes involved in efflux of different
antimicrobials or antimicrobial-like compounds. The other cluster with homologs to AprF
and TolC may be a functionally rated group of paralogs involved in secretion of proteins
(of which OpmM appears to be the ortholog of AprF and OpmH is likely the ortholog of
TolC). Currently, efforts are expanding to characterize P. aeruginosa with mutations in these
genes to evaluate their ability to efflux antimicrobials. This phylogenetic analysis allows us
to prioritize the analysis of genes in this extended family, analyzing the OprM family genes
first as they are more likely to have the functions of interest. This tree was drawn using
Treeview.

Each step is critical for the analysis and should be handled accordingly. For example,
trees are only as good as the alignment they are based on. When performing a
phylogenetic analysis, it often insightful to build trees based on different modifica-
tions of the alignment to see how the alignment proposed influences the resulting
tree.
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ALIGNMENT: BUILDING THE DATA MODEL

Phylogenetic sequence data usually consist of multiple sequence alignments; the
individual, aligned-base positions are commonly referred to as “‘sites.”” These sites
are equivalent to ‘“‘characters” in theoretical phylogenetic discussions, and the actual
base (or gap) occupying a site is the ‘“‘character state.”

Multiple alignment methods are reviewed in Chapter 9. This chapter reviews
similar alignment methods in the context of phylogenetic analysis. Aligned sequence
positions subjected to phylogenetic analysis represent a priori phylogenetic conclu-
sions because the sites themselves (not the actual bases) are effectively assumed to
be genealogically related, or homologous. Sites at which one is confident of homol-
ogy and that contain changes in character states useful for the given phylogenetic
analysis are often referred to as ‘“‘informative sites.”

Steps in building the alignment include selection of the alignment procedure(s)
and extraction of a phylogenetic data set from the alignment. The latter procedure
requires determination of how ambiguously aligned regions and insertion/deletions
(referred to as indels, or gaps) will be treated in the tree-building procedure.

A typical alignment procedure involves the application of a program such as
CLUSTAL W, followed by manual alignment editing and submission to a tree-
building program. This procedure should be performed with the following questions
and considerations in mind:

How much computer dependence? Fully computational multiple alignment is
sometimes advocated on the grounds that manual editing is inexplicit and/or
unobjective (Gatesy et al., 1993). Usually, however, manual alignment editing
is advocated (e.g., Thompson et al., 1994) because alignment algorithms and
programs are not optimally adapted for phylogenetic alignment (see Fig.
14.3).

Phylogenetic criteria preferred. Some computational multiple alignment methods
align sequences strictly based on the order they receive them (the input order)
without any consideration of their relationship. However, many current meth-
ods (e.g., CLUSTAL W, PileUp, ALIGN in ProPack) align according to an
explicitly phylogenetic criterion (a ‘““guide tree’’). These guide trees are gen-
erated on the basis of initial pairwise sequence alignments. SAM (Hughey et
al.,, 1996) and MACAW (Lawrence et al., 1993) are examples of multiple
alignment programs that do not explicitly invoke phylogenetic criteria, al-
though it is possible to manipulate parameters in these programs to mimic
phylogenetic processes. Theory holds that more closely related sequences
should be aligned first and then the resulting groups of sequences, which may
be less related to one another but still have a common ancestor, should share
the same ancestral indels. This means that they could then be more accurately
aligned.

The guide tree from CLUSTAL W (Fig. 14.4) is formatted as a PHYLIP tree
file and can be imported in various tree-drawing programs. Some programs are de-
signed to simultaneously (recursively) optimize an alignment and a phylogenetic tree
(e.g., TreeAlign and MALIGN). In theory, an optimal simultaneous solution or set
of solutions to an alignment/phylogeny problem exists, but the hazard of the recur-
sive approach lies in the possibility of funneling the analysis toward a wrong or
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ALIGNMENT: BUILDING THE DATA MODEL

incomplete solution (Thorne and Kishino, 1992). Thus, when the tree-building anal-
ysis based on the alignment is followed, one should consider whether other evolu-
tionary relationships might be favored using a slightly modified alignment.

Alignment Parameter Estimation. The most important parameters in an align-
ment method are those that determine the placement of indels or gaps in an
alignment of length-variable sequences. Alignment parameters should vary
dynamically with evolutionary divergence (Thompson et al., 1994), such that
base mismatches are more likely as the sequences become more divergent.
Alignment parameters should also be adjusted to prevent closely related, ov-
errepresented sequences from adversely influencing the alignment of under-
represented sequences (Thompson et al., 1994, Hughey et al., 1996). This is
accomplished by downweighting the alignment score contribution of closely
related sequences. These dynamic parameter adjustments are both imple-
mented in CLUSTAL W, whereas sequence weighting is implemented in
SAM.

Which Alignment Procedure is Best for Phylogenetic Analysis? The short answer
is “‘the method that is closest to understanding the evolutionary relationships

Figure 14.3. Alignment modification for phylogenetic analysis. (A) Alignment showing a
length-variable region (boxed) of 5.85 rDNA for the taxa in the guide tree of Figure 14.4
Taxa 1-8 are angiosperms; 9 and 10, gnetophytes; 11-13, conifers; 14 and 15, ferns; 16,
moss; 17-21, green algae; 22-27, fungi; and 28-33, protists. The alignment positions cor-
respond to those published elsewhere (Hershkovitz and Lewis, 1996). Each sequence is
unique in the shaded region. Taxa represented in the Figure 14.4 tree having the same
sequence as any shown here were omitted for brevity. Note that taxa grouped in the guide
tree (based on the entire sequence) appear to form alignment groups in the length-variable
region. On a pairwise basis, alternative alignments of some of the distantly related taxa
seem plausible. For example, if moved two spaces to the left, the TAC in the center of the
CLADO sequence might appear to align better with YAY in several angiosperms than the
YYC in other green algae. Sufficient sampling, however, shows that YAY is not universal in
the angiosperms, and the guide tree supports the present alignment, which allows no
length variability in green algae. In the absence of sufficient sampling, a guide tree, or
other prior phylogenetic evidence, no such conclusion could be drawn. Note also that the
taxa of the green plant lineage (1-21) do not align well with the fungi and protists. The
variability in the shaded region and the divergences indicated in the guide tree suggest
that there is no true alignment between these distantly related groups, that the alignment
indicated is arbitrary, and that the actual bases are not likely homologous. (B) The same
alignment, modified as follows for phylogenetic analysis: (1) the fungi and protists are
rescored as “missing” for all positions in the shaded region, where alignment with the
green plant lineage is ambiguous; (2) the length-variable regions of the fungi were ap-
pended to the end of the alignment because these sequences are alignable among fungi
and include phylogenetically useful variation; and (3) multiple-position gaps were rescored
as one gap position and the rest missing, so that, in MP analysis, multiposition gaps are
not counted as several independent deletions. The length-variable region of protists was
not appended to the end of the alignment because both the alignment and the guide tree
indicate that the original alignment is arbitrary.
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ALIGNMENT: EXTRACTION OF A PHYLOGENETIC DATA SET

between the sequences being examined.” Unless the actual phylogenetic re-
lationships are known beforehand, there is no clear way to determine which
alignment procedure is best for a given phylogenetic analysis. In general, it
is inadvisable to simply subject a computer-generated alignment to a tree-
building procedure because the latter is blind to errors in the former. This
caution especially applies to tree-building programs included in alignment
packages (e.g., CLUSTAL W and TREE in ProPack) because the tree-building
methods in these programs are not rigorous (Feng and Doolittle, 1996). How-
ever, as long as the entire alignment is scrutinized in view of independent
phylogenetic evidence, methods such as CLUSTAL W that utilize some de-
gree of phylogenetic criteria are among the best currently available.

Mathematical optimization and analysis of structures. Some alignment programs
(e.g., MACAW, SAM) optimize according to a statistical model, but the re-
lationship of these statistics to phylogenetic models is not yet clear. No meth-
ods are yet available for determining whether one multiple alignment is sig-
nificantly better than another based on a phylogenetic model.

Aligning according to secondary or tertiary sequence structure is considered
phylogenetically more reliable than sequence-based alignment because confidence in
homology assessment is greater when comparisons are made to complex structures
rather than to simple characters (primary sequence). However, there does not appear
to be any way to computationally facilitate phylogeny-based structural multiple align-
ment. Hopefully, new insights into these areas will be developed in the near future.

ALIGNMENT: EXTRACTION OF A PHYLOGENETIC DATA SET

In alignments that include length variation, the phylogenetic data set is usually not
identical to the alignment. Even in alignments of length-invariable sequences, the
data set can be different—for example, when only first and second codon positions
are to be analyzed to avoid the strong G + C bias in the third codon position from
affecting the final results.

Figure 14.4. CLUSTAL guide tree for 5.8S rDNA sequences of selected plants, fungi, and
protists. The taxa and sequences corresponding to the acronyms are described elsewhere
(Hershkovitz and Lewis, 1996). The tree is a neighbor-joining (distance) resolution of pair-
wise sequence similarities determined by pairwise alignment according to specified (in this
case, default) gap penalties in CLUSTAL. Similarity is calculated as the proportion of pair-
wise shared bases, ignoring gap positions in either sequence. The tree can be generated
as an end product or as a preliminary step in a multiple-alignment procedure. Either way,
it is saved to a PHYLIP-formatted tree file. For the multiple-alignment procedure, the guide
tree topology determines the sequence input order (outermost clusters are aligned first)
and the branch lengths determine the sequence weights. This tree includes (see Hershkovitz
and Lewis, 1996) several groupings that contradict broader evidence (e.g., polyphyly of
conifers and red algae; monophyly of ferns plus moss). Such inaccuracies potentially mislead
the multiple alignment. This tree was drawn and printed using the tree-drawing feature
in the Macintosh version of PAUP.
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In the case of length-variable sequences, the degree of difference between an
alignment and the phylogenetic data set is determined mainly by how alignment
ambiguities and indels are treated. The most extreme way to treat indels is to remove
from the analysis all sites that include gaps (cf. Swofford et al., 1996). This approach
has the advantage of permitting all the variation in the sequences to be described in
terms of the substitution model, without the need for an ad hoc model to account
for indels. The disadvantage of this approach is that phylogenetic signals contained
within the indel regions are discarded.

Maximum parsimony (MP; see below) is the only method that permits for the
incorporation of alignable gaps as characters. These can be included in either of two
ways: as an additional character state (a ““fifth”” nucleotide base or ‘“‘twenty-first”
amino acid) or as a set of characters independent of base substitutions. The first
approach is not tenable for gaps occupying more than one site, for these will be
counted as independent character state changes. The latter approach is useful for
analyzing an alignment in which subsets of sequences contain perfectly aligned gaps.
A set of gap characters can be appended to the aligned sequence data set, or the
gaps can be scored “in place” by using the extra base approach but scoring only
one of the gap positions in a sequence as a gap and the remainder as missing. These
approaches can be implemented using PAUP.

For some alignments, procedures that ignore all gap scores or all sites including
gap scores are less than ideal. However, there is not yet any program that allows
one to ignore individual sites in individual sequences. When alignment might be
unambiguous within groups of sequences but ambiguous among them, alignment
“surgery” is warranted to ensure that unambiguous information relevant to groups
of sequences can be retained and ambiguous information removed.

An example of alignment surgery is given in Figure 14.3. In gapped regions,
one should determine whether alternative alignments seem reasonably plausible and,
just as important, whether they might bias the tree-building analysis. When alignment
ambiguities are resolved manually, phylogenetic relations, substitution processes, and
base composition should be considered. It is perfectly reasonable at this stage to
resolve ambiguities in favor of phylogenetic evidence and in some cases to delete
ambiguous regions in the alignment. The advantage of this latter approach is that
unambiguous information relevant to particular sequences can be retained over am-
biguous data. The disadvantage is that parsimony and likelihood tree-building meth-
ods can interpret the “missing’’ information as zero divergence.

In summary, the following points should be considered when constructing a
multiple sequence alignment for a phylogenetic analysis:

e The alignment step in phylogenetic analysis is one of the most important
because it produces the data set on which models of evolution are used.

e It is not uncommon to edit the alignment, deleting unambiguously aligned
regions and inserting or deleting gaps to more accurately reflect probable evo-
lutionary processes that led to the divergence between sequences.

e It is useful to perform phylogenetic analyses based on a series of slightly
modified alignments to determine how ambiguous regions in the alignment
affect the results and what aspects of the results one may have more or less
confidence in.
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DETERMINING THE SUBSTITUTION MODEL

The substitution model should be given the same emphasis as alignment and tree
building. As implied in the preceding section, the substitution model influences both
alignment and tree building; hence, a recursive approach is warranted. At the present
time, two elements of the substitution model can be computationally assessed for
nucleotide data but not for amino acid or codon data. One element is the model of
substitution between particular bases; the other is the relative rate of overall substi-
tution among different sites in the sequence. Simple computational procedures have
not been developed for assessing more complex variables (e.g., site- or lineage-
specific substitution models). An overview of substitution models is presented below.

Models of Substitution Rates Between Bases

In general, substitutions are more frequent between bases that are biochemically more
similar. In the case of DNA, the four types of transition (A - G, G > A, C > T,
T — C) are usually more frequent than the eight types of transversion (A — C,
A —> T, C > G, G —> T, and the reverse). Such biases will affect the estimated
divergence between two sequences.

Specification of the relative rates of substitution among particular residues usu-
ally takes the form of a square matrix; the number of rows/columns is four in the
case of bases, 20 in the case of amino acids (e.g., in PAM and BLOSUM matrices),
and 61 in the case of codons (excluding stop codons). The off-diagonal elements
of the matrix correspond to the relative costs of going from one base to another.
The diagonal elements represent the cost of having the same base in different se-
quences.

The cost schedule can be fixed a priori to ensure that the tree-building method
will tally an exact cost for each substitution incurred. Fixed-cost matrices are char-
acter-state weight matrices and are applied in maximum parsimony (MP) tree build-
ing (Fig. 14.5). When such weights are applied, the method is referred to as
“weighted parsimony.”” For distance and maximum likelihood (ML) tree building,
the costs can be derived from instantaneous rate matrices representing ML estimators
of the probability that a particular type of substitution will occur (Fig. 14.6). Al-
though application of the MP weight matrix is just simple arithmetic, application of
the distance and ML rate matrices can involve complex algebra. To avoid the blind
application of possibly inappropriate methods, practitioners are advised to familiarize
themselves with the relevant underlying theory (see Li, 1997; Swofford et al., 1996).

Character-state weight matrices have usually been estimated more or less by eye,
but they can also be derived from a rate matrix. For example, if it is presumed that
each of the two transitions occurs at double the frequency of each transversion, a
weight matrix can simply specify, for example, that the cost of A-G is 1 and the
cost of A-T is 2 (Fig. 14.5). (The parsimony method dictates that the diagonal ele-
ments of the matrix, or the cost of having the same base in different sequences, be
zero. This proves to be a shortcoming of parsimony; this will be discussed further
below.) In the subsequent tree-building step, this set of assumptions will minimize
the overall number of transversions and tend to cluster sequences differing mainly
by transitions.

A simplified substitution rate matrix used in ML and distance phylogenetic anal-
ysis is presented in Figure 14.6. The matrix is analogous to that presented in Figure
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A C G T
Al- 2 1 2
clz - 2 1
A Gl1 2 - 2
Tz 1 2 -

C.

Figure 14.5. Character weight matrix and application in MP phylogenetic analysis. (A)
Matrix indicating that a transversion substitution costs twice that of a transition. Because,
according to MP bases shared between two sequences cannot ever have changed, diagonal
elements of the matrix are ignored. (B, C) Two phylogenetic resolutions and reconstructions
of the evolution of a hypothetical pattern of aligned bases at a particular site in eight
sequences. With unweighted MP, both reconstructions (among several others) have the
same cost (three steps); hence, they are equally acceptable. With the weight matrix in (A),
the reconstruction of (B) requires four steps, and the reconstruction of (C) requires five.
Thus, the first reconstruction (B) and others requiring four steps are preferred.

14.5, but the actual computation of divergence involves more complex algebra and
cannot be determined by simply counting steps between bases.

The paralinear or ‘log-det” transformation corrects for nonstationarity (see
Swofford et al., 1996). In this method, which is applicable only to distance tree
building, the numbers of raw substitutions of each type and in each direction are
tallied for each sequence pair in a four-by-four matrix as shown in Figure 14.7. Each
matrix has an algebraic determinant, the log of which becomes a factor in estimating
sequence divergence, hence the name “‘log-det.” Pairwise comparisons of sequences
having various and assorted patterns of base frequencies will yield a variety of matrix
patterns, giving a variety of determinant values. Thus, each estimated pairwise dis-
tance will be affected by the determinant particular to each pair, which effectively
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A C G T
A [ -{a;+a,+ay) a, ay a,
C |a, ~(a +as+8) as 8
G |a 3, ~a,+85+8;) 2,
T |aw ay Ay -(@yp+ay+aqy)

Figure 14.6. Simplified substitution rate matrix used in ML and distance phylogenetic
analysis. The off-diagonal values a, represent a product of an instantaneous rate of change,
a relative rate between the different substitutions, and the frequency of the target base.
In practice, the forward rates (upper triangular values) are presumed to equal the reverse
rates (corresponding lower triangular values). The diagonal elements are nonzero, which
effectively accounts for the possibility that more divergent sequences are more likely to
share the same base by chance. In the simplest model of sequence evolution (the Jukes-
Cantor model), all values of a are the same: all substitution types and base frequencies are
presumed equal.

allows the substitution model to be different for each, varying along different
branches of a phylogenetic tree. Log-det is especially sensitive to among-site rate
heterogeneity (see below), since base frequency bias can exist only in sites that are
subject to variation.

Models of Among-Site Substitution Rate Heterogeneity

In addition to variation in substitution patterns, variation in substitution rates among
different sites in a sequence has been shown to profoundly affect the results of tree
building (Swofford et al., 1996). The most obvious example of among-site rate var-
iation, or heterogeneity, is that evident among the three codon positions in a coding

Sclerotinium sclerotiorum

A C G T | total

A | 340 6 13 4 | 2383
Spingcia C | 10 229 6 36 | 281
oleracea G| 95 g 220 12 | 372
5 22 6 312 | 345
tolal [ 380 265 352 364 | 1361

—

Figure 14.7. Pairwise sequence comparison. The table compares 1,361 sites of 185 rDNA
aligned between spinach (Spinacia oleracea) and a rust fungus (Sclerotinium sclerotiorum).
The rows indicate the distribution of bases in the fungus aligned to particular bases in
spinach. The columns indicate the reverse. The diagonal values are the number of site-wise
identities between the sequences. Note the AT bias in the fungus: 83 (10 + 36 + 25 + 12)
sites that are G or C in spinach are A or T in the fungus. In contrast, only 47 sites (6 + 22 +
13 + 6) that are G or C in the fungus are A or T in spinach. This bias is muted in simple
comparison of base frequencies in the two sequences (the totals) because most sites are
the same in both sequences and are probably mutationally constrained. Note also the ob-
viously larger number of transition (13 + 36 + 25 + 22 = 96) versus transversion (6 + 4 +
10+6+ 8 + 12 + 5+ 6 = 57) substitutions and that C-T transitions account for 58/153
total differences. The data shown can be generated using the PAUP or MEGA programs.
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sequence. Due to the degeneracy of the genetic code, changes in the third codon
position can more frequently occur without affecting the ultimately encoded protein
sequence. Therefore, this third codon position tends to be much more variable than
the first two. For this reason, many phylogenetic analyses of coding sequences ex-
clude the third codon position. In some cases, however, rate variation patterns are
more subtle (e.g., those corresponding to conserved regions of proteins or rRNA).

Approaches to the estimation of substitution rate heterogeneity are the nonpar-
ametric models (Yang et al., 1996), the invariants model, and the gamma distribution
models (Swofford et al., 1996). The nonparametric approach derives categories of
relative rates for particular sites. This approach can be used with MP tree building
simply by weighting particular sites according to relative mutation frequency, al-
though such weighting tends to require prior knowledge of the true tree. The ap-
proach is also applicable to ML tree building, but it is considered computationally
impractical (Yang et al., 1996). The invariants approach estimates a proportion of
sites that are not free to vary. The remaining sites are presumed to vary with equal
probability. The gamma approach assigns a substitution probability to sites by as-
suming that, for a given sequence, the probabilities vary according to a gamma
distribution. The shape of the gamma distribution, as described by the shape param-
eter , describes the distribution of substitution probabilities among sites in a sequence
(Swofford et al., 1996, p. 444, Fig. 13; cf. Li, 1997, p. 76, Fig. 3.10; note that the
scales differ). In a combined approach, it can be presumed that a proportion of sites
are invariant and that the remainder varies according to a gamma distribution.

In practice, gamma correction can be continuous, discrete, or ‘“‘autodiscrete”
(Yang et al., 1996). “Continuous gamma’’ means that sites are assigned to a change
probability along a continuous curve. At present, this approach is computationally
impractical in most cases. The discrete gamma approximation assigns sites to a
specified number of categories that approximate the shape of the gamma curve. The
autodiscrete model assumes that adjacent sites have correlated rates of change.
Groups of sites are assigned to categories, and sites within a category can be assumed
to have either constant or heterogeneous rates.

Various rate heterogeneity corrections are implemented in several tree-building
programs. For nucleotide data, PAUP 4.0 implements both invariants and discrete
gamma models for separate or combined use with time-reversible distance and like-
lihood tree-building methods and invariants in conjunction with the log-det distance
method (see below). For nucleotide, amino acid, and codon data, PAML implements
continuous, discrete, and autodiscrete models. For nucleotide and amino acid data,
PHYLIP implements a discrete gamma model.

Models of Substitution Rates Between Amino Acids

The most widely used models of amino acid substitution include distance-based
methods, which are based on matrixes such as PAM and BLOSUM. Again, such
matrices are described further in other chapters in this book. Briefly, Dayhoff’s PAM
001 matrix (Dayhoff, 1979) is an empirical model that scales probabilities of change
from one amino acid to another in terms of an expected 1% change between two
amino acid sequences. This matrix is used to make a transition probability matrix
that allows prediction of the probability of changing from one amino acid to another
and also predicts equilibrium amino acid composition. Phylogenetic distances are
calculated with the assumption that the probabilities in the matrix are correct. The
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distance that is computed is scaled in units of expected fraction of amino acids
changed. Kimura’s distance is another method used in PROTDIST, one of the PHY-
LIP family of programs (mentioned further below), and is a rough distance formula
for approximating PAM distance by simply measuring the fraction of amino acids
that differ between two sequences and computing the distance by a set formula (see
Kimura, 1983). This is a more rapid method, but it has some obvious limitations. It
does not take into account which amino acids differ or what amino acids are changed,
so some information is lost. The distance measure is represented as the fraction of
amino acids differing; this is also the case with PAM distances. If the fraction of
amino acids differing gets larger than 0.8541, the distance becomes infinite.

Although PROTDIST is one of the most widely used programs providing sub-
stitution models for calculating protein distances, others that are faster and make use
of additional matrices such as BLOSUM are now more widely-used (e.g., PUZZLE).

The model used in parsimony (not a distance-based method) insists that any
amino acid changes be consistent with the genetic code so that, for example, lysine
is allowed to substitute to methionine but not to proline. However, changes between
two amino acids via a third are allowed and are counted as two changes if each of
the two replacements is individually allowed. This sometimes allows changes that,
at first sight, one would think should be outlawed. Thus, phenylalanine can be
changed to glutamine via leucine in two steps total. Genetic code translation tables
show that there is a leucine codon one step away from a phenylalanine codon; there
is also a leucine codon one step away from a glutamine codon. These leucine codons,
however, are not identical. It actually takes three base substitutions to get from either
of the phenylalanine codons (UUU and UUC) to either of the glutamine codons
(CAA or CAG). Why, then, does this program count only two? The answer is that
recent DNA sequence comparisons seem to show that synonymous changes (changes
in the nucleotide sequence of a codon region that do not change what amino acids
are encoded by that region) are considerably faster and easier than ones that change
the amino acid outright. We are assuming that, in effect, synonymous changes occur
so much more readily that they need not be counted. Thus, in the chain of changes
UUU (Phe) —» CUU (Leu) —» CUA (Leu) —» CAA (Glu), the middle one is not
counted because it does not actually change the amino acid (leucine).

Which Substitution Model to Use?

Although any of the parameters in a substitution model might prove critical for a
given data set, the best model is not always the one with the most parameters. To
the contrary, the fewer the parameters, the better. This is because every parameter
estimate has an associated variance. As additional parametric dimensions are intro-
duced, the overall variance increases, sometimes prohibitively (see Li, 1997, p. 84,
Table 4.1). For a given DNA sequence comparison, a two-parameter model will
require that the summed base differences be sorted into two categories and into six
for a six-parameter model. Obviously, the number of sites sampled in each of the
six categories would be much smaller (and perhaps too small) to give a reliable
estimate.

A good strategy for substitution model specification for DNA sequences is the
“describe tree’” feature in PAUP, which uses likelihood to simultaneously estimate
the six reversible substitution rates, the -shape parameter of the gamma distribution,
and the proportion of invariant sites. These parameters can be estimated by means
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of equal or specified base frequencies. Usually, any reasonable phylogenetic tree
(e.g., an easily generated neighbor-joining tree) is suitable for this procedure because
parameter estimates are apparently influenced predominantly by the character pattern
rather than by the tree topology (Swofford et al., 1996). This estimation procedure
is not overly time consuming for up to 50 sequences. If there will be more sequences
or less time, the test tree can be selectively pruned to reduce the number of taxa
while retaining the overall phylogenetic range and structure. From the estimated
substitution parameters, one can determine whether a simpler model is justified (e.g.,
whether the six substitution categories can be reduced to two) by comparing likeli-
hood scores estimated for this tree using more or fewer parameters. Parameters for
and the proportion of invariant sites sometimes can substitute for each other, so one
should compare likelihoods with each estimated alone versus both together. Note
that, unlike MP and ME, the ML scores derived using different parameter values are
directly comparable (Swofford et al., 1996).

In the case of protein-coding DNA sequences, it is sometimes obvious that,
depending on the divergence of the samples, the useful variation is essentially either
in the first and second codon positions, with the third positions randomized across
the data set, or in the third position, with the first and second positions invariant.
The procedure above will correct for this rate heterogeneity, although removing the
“useless” sites may permit a more precise estimate of rate heterogeneity in the
remaining sites.

For protein sequences, the model used is often dependent on the degree of se-
quence similarity. For more divergent sequences, the BLOSUM matrices are often
better, whereas the PAM matrix is suited for more highly similar sequences. Both
parsimony and distance matrix methods (mentioned further below) have benefits and
disadvantages, and their use depends on one’s philosophy about protein sequence
changes: Is it better to retain information about each character when determining a
tree (i.e., through parsimony) or to derive distance measures to base the tree (i.e.,
using a distance matrix)? Is a matrix based on empirical data a more accurate re-
flection of evolutionary change than a matrix based on generated theories about
sequence change? Again, although cladistic analysis can be a powerful method for
investigating evolutionary relationships, keep in mind that there is no one clear
method that is better than the other. Each has its own benefits and disadvantages that
differ depending on the type of analyses performed and the philosophy of the
investigator.

TREE-BUILDING METHODS

Tree-building methods implemented in available software are discussed in detail in
the literature (Saitou, 1996; Swofford et al., 1996; Li, 1997) and described on the
Internet. This section briefly describes some of the most popular methods. Tree-
building methods can be sorted into distance-based vs. character-based methods.
Much of the discussion in molecular phylogenetics dwells on the utility of distance-
and character-based methods (e.g., Saitou, 1996; Li, 1997). Distance methods com-
pute pairwise distances according to some measure and then discard the actual data,
using only the fixed distances to derive trees. Character-based methods derive trees
that optimize the distribution of the actual data patterns for each character. Pairwise
distances are, therefore, not fixed, as they are determined by the tree topology. The
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most commonly applied distance-based methods include neighbor-joining and the
Fitch-Margoliash method, and the most common character-based methods include
maximum parsimony and maximum likelihood.

Distance-Based Methods

Distance-based methods use the amount of dissimilarity (the distance) between two
aligned sequences to derive trees. A distance method would reconstruct the true tree
if all genetic divergence events were accurately recorded in the sequence (Swofford
et al.,, 1996). However, divergence encounters an upper limit as sequences become
mutationally saturated. After one sequence of a diverging pair has mutated at a
particular site, subsequent mutations in either sequence cannot render the sites any
more ‘‘different.” In fact, subsequent mutations can make them again equal (for
example, if a valine mutates to an isoleucine, which mutates back to a valine).
Therefore, most distance-based methods correct for such ‘““unseen’ substitutions. In
practice, application of the rate matrix effectively presumes that some proportion of
observed pairwise base identities actually represents multiple mutations and that this
proportion increases with increasing overall sequence divergence. Some programs
implement, at least optionally, calculation of uncorrected distances, whereas, for ex-
ample, the MEGA program (Kumar et al., 1994) implements only uncorrected dis-
tances for codon and amino acid data. Unless overall divergences are very low, the
latter approach is virtually guaranteed to give inaccurate results.

Pairwise distance is calculated using maximum-likelihood estimators of substi-
tution rates. The most popular distance tree-building programs have a limited number
of substitution models, but PAUP 4.0 implements a number of models, including the
actual model estimated from the data using maximum likelihood, as well as the log-
det distance method.

Distance methods are much less computationally intensive than maximum like-
lihood but can employ the same models of sequence evolution. This is their biggest
advantage. The disadvantage is that the actual character data are discarded. The most
commonly applied distance-based methods are the unweighted pair group method
with arithmetic mean (UPGMA), neighbor joining (NJ), and methods that optimize
the additivity of a distance tree, including the minimum evolution (ME) method.
Several methods are available in more than one phylogenetics software package but
not all implementations allow the same parameter specifications and/or tree optimi-
zation features (e.g., branch swapping; see below).

Unweighted Pair Group Method with Arithmetic Mean (UPGMA).
UPGMA is a clustering or phenetic algorithm—it joins tree branches based on the
criterion of greatest similarity among pairs and averages of joined pairs. It is not
strictly an evolutionary distance method (Li, 1997). UPGMA is expected to generate
an accurate topology with true branch lengths only when the divergence is according
to a molecular clock (ultrametric; Swofford et al., 1996) or approximately equal to
raw sequence dissimilarity. As mentioned earlier, these conditions are rarely met in
practice.

Neighbor Joining (NJ). The neighbor-joining algorithm is commonly applied
with distance tree building, regardless of the optimization criterion. The fully re-
solved tree is ‘“‘decomposed” from a fully unresolved *‘star” tree by successively
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Figure 14.8. Star decomposition. This is how tree-building algorithms such as neighbor-
joining work. The most similar terminals are joined, and a branch is inserted between them
and the remainder of the star. Subsequently, the new branch is consolidated so that its
value is a mean of the two original values, yielding a star tree with n-1 terminals. The
process is repeated until only one terminal remains.

inserting branches between a pair of closest (actually, most isolated) neighbors and
the remaining terminals in the tree (Fig. 14.8). The closest neighbor pair is then
consolidated, effectively reforming a star tree, and the process is repeated. The
method is comparatively rapid.

Fitch-Margoliash (FM). The Fitch-Margoliash (FM) method seeks to maxi-
mize the fit of the observed pairwise distances to a tree by minimizing the squared
deviation of all possible observed distances relative to all possible path lengths on
the tree (Felsenstein, 1997). There are several variations that differ in how the error
is weighted. The variance estimates are not completely independent because errors
in all the internal tree branches are counted at least twice (Rzhetsky and Nei, 1992).

Minimum Evolution (ME). Minimum evolution seeks to find the shortest tree
that is consistent with the path lengths measured in a manner similar to FM; that is,
ME works by minimizing the squared deviation of observed to tree-based distances
(Rzhetsky and Nei, 1992; Swofford et al., 1996; Felsenstein, 1997). Unlike FM, ME
does not use all possible pairwise distances and all possible associated tree path
lengths. Rather, it fixes the location of internal tree nodes based on the distance to
external nodes and then optimizes the internal branch length according to the min-
imum measured error between these “‘observed” points. It thus purports to eliminate
the nonindependence of FM measurements.

Which Distance-Based Tree-Building Procedure Is Best? ME and FM
appear to be the best procedures, and they perform nearly identically in simulation
studies (Huelsenbeck, 1995). ME is becoming more widely implemented in computer
programs, including METREE (Rzhetsky and Nei, 1994) and PAUP. For protein data,
the FM procedure in PHYLIP offers the greatest range of substitution models but no
correction for among-site rate heterogeneity. The MEGA (Kumar et al., 1994) and
METREE packages include a gamma correction for proteins, but only in conjunction
with a raw (“‘p-distance’”) divergence model (no distance or bias correction), which
is unreliable except for small divergences (Rzhetsky and Nei, 1994). MEGA also
computes separate distances for;synanymous and nonsynonymous sites, but this
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method is valid only in the absence of substitution or base frequency bias and when
there is no correction for among-site rate heterogeneity. Thus, for most data sets,
using the nucleotide data under a more realistic model might be preferable to
MEGA’s methods.

Simulation studies indicate that UPGMA performs poorly over a broad range of
tree shape space (Huelsenbeck, 1995). The use of this method is not recommended;
it is mentioned here only because its application seems to persist, as evidenced by
UPGMA gene trees appearing in publications (Huelsenbeck, 1995).

NIJ is clearly the fastest procedure and generally yields a tree close to the ME
tree. (Rzhetsky and Nei, 1992; Li, 1997). However, it yields only one tree. Depending
on the structure of the data, numerous different trees might be as good or significantly
better than the NJ tree (Swofford et al., 1996).

Character-Based Methods

The character-based methods have little in common with each other, besides the use
of the character data at all steps in the analysis. This allows the assessment of the
reliability of each base position in an alignment on the basis of all other base
positions.

Maximum Parsimony (MP). Maximum parsimony is an optimization crite-
rion that adheres to the principle that the best explanation of the data is the simplest,
which in turn is the one requiring the fewest ad hoc assumptions. In practical terms,
the MP tree is the shortest—the one with the fewest changes—which, by definition,
is also the one with the fewest parallel changes. There are several variants of MP
that differ with regard to the permitted directionality of character state change (Swof-
ford et al., 1996).

To accommodate substitution bias, MP is amenable to weighting; for example,
the transformation of a transversion can be weighted relative to a transition (see
above). The easiest way to do this is to create a weighting step matrix in which the
weights are the reciprocal of the rates estimated using ML as described above. How-
ever, step-matrix weighting can greatly slow MP computation.

The MP method performs poorly when there is substantial among-site rate het-
erogeneity (Huelsenbeck, 1995). There are few good fixes for this problem. One
approach is to modify the data set to include only sites that exhibit little or no
heterogeneity as determined by likelihood estimation (see above). Another approach
is to recursively reweight positions according to their propensity to change as ob-
served in preliminary trees. This ‘‘successive approximations’ approach is automat-
ically facilitated in PAUP, but it is prone to error to the degree that the preliminary
trees are incorrect.

MP analyses tend to yield numerous (and sometimes many thousands of) trees
that have the same score. Because each is held to be as optimal as any other, only
groupings present in the strict consensus of all trees are considered to be supported
by the data. The reason that distance and ML tree methods tend to arrive at a single
best tree is that their calculations involve division and decimals, whereas MP merely
counts discrete steps. For a given data set, a strict consensus of all ME or ML trees
that are not significantly worse than optimal probably would yield resolution more
or less comparable to the MP consensus. Unfortunately, whereas MP users conven-
tionally present strict consensus (and sometimes consensus of trees one or two steps
worse), ME and ML users typically do not.

343



344

PHYLOGENETIC ANALYSIS

Simulation studies have shown that MP performs no better than ME and worse
than ML when the amount of sequence evolution since lineages diverged is much
greater than the amount of divergence that occurred between lineage splits (i.e., in
a tree with very long terminal branches and short internal internodes) (Huelsenbeck,
1995). This condition produces ‘“‘long branch attraction” —the long branches become
artificially connected because the number of nonhomologous similarities the se-
quences have accumulated exceeds the number of homologous similarities they have
retained with their true closest relatives (Swofford et al., 1996). Character weighting
improves the performance of MP under these conditions (Huelsenbeck, 1995).

Maximum Likelihood (ML). ML turns the phylogenetic problem inside out.
ML searches for the evolutionary model, including the tree itself, that has the highest
likelihood of producing the observed data.

In practice, ML is derived for each base position in an alignment. The likelihood
is calculated in terms of the probability that the pattern of variation at a site would
be produced by a particular substitution process, given a particular tree and the
overall observed base frequencies. The likelihood becomes the sum of the probabil-
ities of each possible reconstruction of substitutions under a particular substitution
process. The likelihoods for all the sites are multiplied to give an overall ““likelihood
of the tree” (i.e., the probability of the data given the tree and the substitution
process). As one can imagine, for one particular tree, the likelihood of the data is
low at some sites and high at others. For a “good” tree, many sites will have higher
likelihood, so the product of likelihoods is high. For a “poor” tree, the reverse will
be true.

The substitution model should be optimized to fit the observed data. For ex-
ample, if there is a transition bias, evident by an inordinate number of sites that
include only purines or pyrimidines, the likelihood of the data under a model that
assumes no bias will never be as good as one that does. Likewise, if a substantial
proportion of the sites are occupied by a single base and another substantial pro-
portion have equal base frequencies, the likelihood of the data under a model that
assumes that all sites evolve equally will be less than that of a model that allows
rate heterogeneity. Modifying the substitution parameters, however, modifies the like-
lihood of the data associated with particular trees. Thus, the tree yielding the highest
likelihood under one substitution model might yield much lower likelihood under
another.

Because ML uses great amounts of computational time, it is usually impractical
to perform a complete search that simultaneously optimizes the substitution model
and the tree for a given data set. An economical, heuristic approach is recommended
(Adachi and Hasegawa, 1996; Swofford et al., 1996). Perhaps the best time saver in
this regard is preliminary ML estimation of the substitution model (as can be per-
formed using PAUP). This procedure can be applied iteratively, searching for better
ML trees, then reestimating the parameters, and then searching for better trees.

As algorithms, computers, and phylogenetic understanding have improved, the
ML criterion has become more popular for molecular phylogenetic analysis. In sim-
ulation studies, ML has consistently outperformed ME and MP when the data anal-
ysis proceeds according to the same model that generates the data (Huelsenbeck,
1995). ML will always be the most computationally intensive method of all, however,
so there will always be situations in which it is not practical.
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DISTANCE, PARSIMONY, AND MAXIMUM LIKELIHOOD:
WHAT’S THE DIFFERENCE?

Distance matrix methods simply count the number of differences between two
sequences. This number is referred to as the evolutionary distance, and its exact
size depends on the evolutionary model used. The actual tree is then computed
from the matrix of distance values by running a clustering algorithm that starts
with the most similar sequences (i.e., those that have the shortest distance
between them) or by trying to minimize the total branch length of the tree. The
principle of maximum parsimony searches for a tree that requires the smallest
number of changes to explain the differences observed among the taxa under
study.

A maximum-likelihood approach to phylogenetic inference evaluates the
probability that the chosen evolutionary model has generated the observed data.
The evolutionary model could simply mean that one assumes that changes
between all nucleotides (or amino acids) are equally probable. The program
will then assign all possible nucleotides to the internal nodes of the tree in turn
and calculate the probability that each such sequence would have generated the
data (if two sister taxa have the nucleotide ““A,” a reconstruction that assumes
derivation from a “C” would be assigned a low probability compared with a
derivation that assumes there already was an “A’). The probabilities for all
possible reconstructions (not just the more probable one) are summed up to
yield the likelihood for one particular site. The likelihood for the tree is the
product of the likelihoods for all alignment positions in the data set.

Searching for Trees

The number of unique phylogenetic trees increases exponentially with the number
of taxa, becoming astronomical even for, say, 50 sequences (Swofford et al., 1996;
Li, 1997). In most cases, computational limitations permit exploration of only a small
fraction of possible trees. The exact number will depend mainly on the number of
taxa, the optimality criterion (e.g., MP is much faster than ML), the parameters (e.g.,
unweighted MP is much faster than weighted; ML with fewer preset parameters is
much faster than with more and/or simultaneously optimized parameters), computer
hardware, and computer software (some algorithms are faster than others; some soft-
ware allows multiprocessing; some software limits the number and kind of trees that
can be stored in memory). The search procedure is also affected by data structure:
poorly resolvable data produce more ‘‘nearly optimal” trees that must be evaluated
to find the most optimal.

Branch-swapping algorithms successively modify existing trees built by an initial
step (Swofford et al., 1996). The algorithms range from those that generate all pos-
sible unique trees (exhaustive algorithms) to those that evaluate only minor
modifications.

Quartet puzzling is a relatively rapid tree-searching algorithm available for ML
tree building (Strimmer and von Haeseler, 1996) and is available in PUZZLE.

One of the best ways to economize the search effort is to prune the data set.
For example, it might be apparent from the data alone or from preliminary searching
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that a particular cluster of five terminals is unresolvable, that the arrangement of
these terminals does not impact the remainder of the topology, and/or that resolution
of these terminals is not the objective of the analysis. Removing four of the terminals
from the analysis simplifies the search by several orders of magnitude.

Every analysis is unique. The elements that influence the choice of optimal
search strategy (amount of data, structure of data, amount of time, hardware, objec-
tive of analysis) are too variable to suggest a foolproof recipe. Thus, researchers
must be familiar with their data; they must also have specific objectives in mind,
understanding the various search procedures as well as the capabilities of their hard-
ware and software.

Rooting Trees

The methods described above produce unrooted trees (i.e., trees having no evolu-
tionary polarity). To evaluate evolutionary hypotheses, it is often necessary to locate
the root of the tree. Rooting phylogenetic trees is not a trivial problem (Nixon and
Carpenter, 1993).

If one accepts a molecular clock, then the root will always be at the midpoint
of the longest span across the tree (Weston, 1994). Whether molecular evolution is
indeed clocklike generally remains a contentious issue (Li, 1997), but most gene
trees exhibit unclocklike behavior regardless of where the root is placed. Thus, root-
ing is generally evaluated by extrinsic evidence, that is, by means of determining
where the tree would attach to an ‘““outgroup,” which can be any organism/sequence
not descended from the nearest common ancestor of the organisms/sequences ana-
lyzed (for example, a bird sequence could be used to root an analysis of mammals).
Outgroup rooting, however, creates a dilemma: an outgroup that is closely related to
the ingroup might be simply an erroneously excluded member of the ingroup. A
clearly distant outgroup (e.g., a fungus for an analysis of plants) can have a sequence
so diverged that its attachment to the ingroup is subject to the long-branch attraction
problem mentioned above. It is wise to examine the results obtained for trees both
with and without an outgroup.

Another means of rooting involves analysis of a duplicated gene or gene with
an internal duplication (Lawson et al., 1996). If all the paralogs from most or all of
the organisms are included in the analysis, then one can logically root the tree exactly
where the paralog gene trees converge, assuming that there are not long branch
problems in all trees.

TREE EVALUATION

Several procedures are available that evaluate the phylogenetic signal in the data and
the robustness of trees (Swofford et al., 1996; Li, 1997). The most popular of the
former class are tests of data signal versus randomized data (skewness and permu-
tation tests). The latter class includes tests of tree support from resampling of ob-
served data (nonparametric bootstrap). The likelihood ratio test provides a means of
evaluating both the substitution model and the tree.

Randomized Trees (Skewness Test)

Simulation studies indicate that the distribution of random MP tree lengths generated
using random data sets will be symmetrical, whereas those using data sets with
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phylogenetic signal will be skewed. The critical value of the g, statistic of skewness
will vary with the number of taxa and variable sites in the sequence. The test does
not estimate the reliability of a particular topology, and it is sensitive to even very
small amounts of signal present in an otherwise random data set. If taxa from groups
that are obviously well supported by the data are selectively deleted, the test can be
used to determine whether a phylogenetic signal remains, provided at least 10 var-
iable characters and 5 taxa are examined. The procedure is implemented in PAUP.

Randomized Character Data (Permutation Tests)

The randomized data approach determines whether an MP tree or portion of it de-
rived from the actual data could have arisen by chance. The data are not truly
randomized but permuted within each aligned column, so that covariation in the
initial data is removed. The result is an alignment of sequences that are not random
sequences; rather, the base at each site in these sequences is randomly drawn from
the population of bases occupying that site in the overall alignment. The permutation
tail probability test (PTP) compares the score for the MP tree with trees generated
by numerous permutations of the data at each site, determining only whether there
is a phylogenetic signal in the original data. A topology-dependent test (T-PTP)
compares the scores for specific trees to determine whether the difference can be
attributed to chance. This method does not evaluate whether the tree or any portion
of it is correct (Swofford et al., 1996). In particular, the T-PTP test will appear to
corroborate groups that are in trees close to the MP tree but not in it. This is because
the method detects the collective signal that places a taxon even approximately, if
not actually, in its correct position. The results can be fine-tuned, however, by ad-
ditional applications using relevant subsets of the data (Faith and Trueman, 1996).
The procedure is implemented in PAUP.

Bootstrap

Bootstrapping is a resampling tree evaluation method that works with distance, par-
simony, likelihood, and just about any other tree derivation method. It was invented
in 1979 (Efron, 1979) and introduced as a tree evaluation method in phylogenetic
analysis by Felsenstein (1985). The result of bootstrap analysis is typically a number
associated with a particular branch in the phylogenetic tree that gives the proportion
of bootstrap replicates that supports the monophyly of the clade.

How is this done practically? Bootstrapping can be considered a two-step process
comprising the generation of (many) new data sets from the original set and the
computation of a number that gives the proportion of times that a particular branch
(e.g., a taxon) appeared in the tree. That number is commonly referred to as the
bootstrap value. New data sets are created from the original data set by sampling
columns of characters at random from the original data set with replacement. “With
replacement’ means that each site can be sampled again with the same probability
as any of the other sites. As a consequence, each of the newly created data sets has
the same number of total positions as the original data set, but some positions are
duplicated or triplicated and others are missing. It is therefore possible that some of
the newly created data sets are completely identical to the original set—or, on the
other extreme, that only one of the sites is replicated, say, 500 times, whereas the
remaining 499 positions in the original data set are dropped.
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Although it has become common practice to include bootstrapping as part of a
thorough phylogenetic analysis, there is some discussion on what exactly is measured
by this method. It was originally suggested that the bootstrap value is a measure of
repeatability (Felsenstein, 1985). In more recent interpretations, it has been consid-
ered to be a measure of accuracy—a biologically more relevant parameter that gives
the probability that the true phylogeny has been recovered. On the basis of simulation
studies, it has been suggested that, under favorable conditions (roughly equal rates
of change, symmetric branches), bootstrap values greater than 70% correspond to a
probability of greater than 95% that the true phylogeny has been found (Hillis and
Bull, 1993). By the same token, under less favorable conditions, bootstrap values
greater than 50% will be overestimates of accuracy (Hillis and Bull, 1993). Simply
put, under certain conditions, high bootstrap values can make the wrong phylogeny
look good; therefore, the conditions of the analysis must be considered. Bootstrap-
ping can be used in experiments in which trees are recomputed after internal branches
are deleted one at a time. The results provide information on branching orders that
are ambiguous in the full data set (cf. Leipe et al., 1994).

Parametric Bootstrap

The parametric bootstrap differs from the nonparametric in that it uses simulated
(yet actual) replicates rather than pseudoreplicates. In the case of phylogenetic se-
quence analysis, replicate data sets of the same size as the original data set are
generated according to a specified model of sequence evolution, including the opti-
mal tree topology determined according to that model (Huelsenbeck et al., 1996).
Each data set is then analyzed according to the method of interest. Support for the
branches in the test tree can be determined in much the same way as in the non-
parametric bootstrap.

Likelihood Ratio Tests

As the name implies, likelihood ratio tests are applicable to ML analyses. A subop-
timal likelihood value is evaluated for significance against a normal distribution of
the error in the optimal model. In ideal applications, the error curve is presumed to
be a X2 distribution. Thus, the test statistic is twice the difference between the optimal
and test values, and the degrees of freedom is the number of parameter differences.

Application of the y’ test to alternative phylogenetic trees is problematic, es-
pecially because of the ‘“‘irregularity of [the] parameter space” (Yang et al., 1995),
but its use has been advocated for evaluating optimality of the substitution model
when the number of parameters between models is known.

PHYLOGENETICS SOFTWARE

PHYLIP and PAUP compete as the most widely used phylogenetic analysis software,
although other newer applications such as PUZZLE are beginning to compete. Here,
PHYLIP and PAUP will be described in the most detail, with references made to
other available packages that have useful features. However, the number of programs
available is now so numerous, many each having their own useful features, that the
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reader is referred to the list of Internet resources at the end of this chapter for further
information.

PHYLIP

PHYLIP (for phylogeny inference package) is a package now consisting of about
30 programs that cover most aspects of phylogenetic analysis. PHYLIP is free and
available for a wide variety of computer platforms (Mac, DOS, UNIX, VAX/VMS,
and others). According to its author, PHYLIP is currently the most widely used
phylogeny program.

PHYLIP is a command-line program and does not have a point-and-click inter-
face, as programs like PAUP do. The documentation is well written and very com-
prehensive, and the interface is straightforward. A program within PHYLIP is in-
voked by typing its name, which automatically causes the data to be read from a
file called ““infile” or a file name you specify if no infile exists. This infile must be
in PHYLIP format; this format is clearly described in the documentation, and most
sequence analysis programs offer the ability to export sequences in this format. For
example, if an alignment is produced using CLUSTAL W or edited using GeneDoc,
the alignment may be saved in PHYLIP format and then used in PHYLIP programs
directly. Once the user activates a given PHYLIP program and loads the infile, the
user can then choose from an option menu or accept the default values. The program
will write its output to a file called “‘outfile’” (and ‘‘treefile” where applicable). If
the output is to be read by another program, “outfile’” or “treefile’” must be renamed
before execution of the next program, as all files named outfile/tree file in the current
directory are overwritten at the beginning of any program execution. The tree file
generated is a widely used format that can be imported into a variety of tree-drawing
programs, including DRAWGRAM and DRAWTREE that come with this package.
However, these PHYLIP tree-drawing programs produce low-resolution graphics, so
a program such as TreeView (described below) is instead recommended. Particulars
of some of the PHYLIP tree-inference programs are discussed below.

PROTDIST is a program that computes a distance matrix for an alignment of
protein sequences. It allows the user to choose between one of three evolutionary
models of amino acid replacements. The simplest, fastest (and least realistic) model
assumes that each amino acid has an equal chance of turning into 1 of the other 19
amino acids. The second is a category model in which the amino acids are redis-
tributed among different groups; transitions in this model are evaluated differently
depending on whether the change would result in an amino acid in the same or in
a different group. The third (default) method, which is recommended, uses a table
of empirically observed transitions between amino acids, the Dayhoff PAM 001
matrix (Dayhoff, 1979). More details can be found in the PHYLIP documentation
and in a publication (Felsenstein, 1996).

NEIGHBOR is a tree-generating program that utilizes the distance matrix data
generated from a program such as PROTDIST and generates a tree using the neighbor-
joining method. This is one of the more popular methods, due to its speed of com-
putation.

FITCH is another tree-generating program similar to NEIGHBOR but much
more robust. It also uses distance matrix data, such as that described in PROTDIST,
and generates a tree using the method of Fitch-Margoliash. This method, while more
robust than NEIGHBOR, tends to produce a similar final answer, yet takes longer
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to compute. Although computational times are often significantly longer, the quality
of the results produced by the method often makes this method the method of choice
in these types of analyses.

PROTPARS is a parsimony program for protein sequences that generates trees
without utilizing a distance matrix. The evolutionary model is different from the ones
used in the PROTDIST program in that it considers the underlying changes in the
nucleotide sequence to evaluate the probabilities of the observed amino acid changes.
Specifically, it makes the (biologically meaningful) assumption that synonymous
changes [e.g., GCA (alanine) — GCC (alanine)] occur more often than nonsynon-
ymous changes. As a consequence, a transition between two amino acids that would
require, for example, three nonsynonymous changes in the underlying nucleotide
sequences, is assigned a lower probability than an amino acid change calling for two
nonsynonymous changes and one synonymous change. PROTPARS does not have
an option that uses empirical values for amino acid changes (e.g., PAM matrices).

DNADIST computes a distance matrix from nucleotide sequences. Trees are
generated by running the output through NEIGHBOR or other distance matrix pro-
grams in the PHYLIP package. DNADIST allows the user to choose between three
models of nucleotide substitution. The older Jukes and Cantor model is similar to
the simple model in the PROTDIST program in that it assumes equal probabilities
for all changes. The more recent Kimura two-parameter model is very similar but
allows the user to weigh transversion more heavily than transitions. PHYLIP also
comprises DNAML, a maximum-likelihood program for nucleotide data. Because
the program is fairly slow, the use of its faster “‘sibling,” the fastDNAmI program
(Olsen et al., 1994) described below, is recommended.

SEQBOOT and CONSENSE are required for bootstrap analysis. SEQBOOT is
used to generate any number of replicates of the data; these replicates are then used
in programs within the PHYLIP suite for analysis. The resulting tree file contains as
many trees as there are replicates of the data, so this file needs to be run through
CONSENSE to generate the consensus tree from the analysis. As an example, the
steps involved in building a bootstrapped neighbor-joining tree for protein sequences
are outlined in Figure 14.9.

Figure 14.9. Work flow for bootstrap analysis with the PHYLIP program. SEQBOOT accepts
a file in PHYLIP format as input and multiplies it a user-specified number of times (e.g.,
1,000). The resulting outfile can be used to calculate 1,000 distance matrices for DNA
(DNADIST) or protein (PROTDIST) data. In this step, the actual data (nucleotides, amino
acids) are discarded and replaced by a figure that is a measure for the amount of diver-
gence between two sequences. The NEIGHBOR program will create 1,000 trees from these
matrices. The CONSENSE program reduces the 1,000 trees to a single one and indicates the
bootstrap values as numbers on the branches. The topology of the CONSENSE tree can be
viewed with any text editor in the “outfile,” whereas the “treefile” can be further processed
for publication purposes. Treetool and TreeView allow the user to manipulate the tree
(rerooting, branch rearrangements, conversions from dendrograms to phylograms, and so
forth) and to save the file in commonly used graphic formats. Although these are not part
of the PHYLIP package (indicated by boxes with dashed lines), they are freely available (see
end-of-chapter list). Different file formats used during date processing through the stages
of bootstrap analysis are also shown. Periods to the right and at the bottom of a box
indicate files that were truncated to save space.
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PAUP

The objective of the development of PAUP is to provide a phylogenetics program
that includes as many functions (including tree graphics) as possible in a single,
platform-independent program with a menu interface. PAUP stands for phylogenetic
analysis using parsimony and still contains one of the most sophisticated parsimony
programs available. Version 3 performed only MP-associated tree-building and an-
alytical functions. PAUP version 4 also includes distance and ML functions for nu-
cleotide data and other new features.

Current tree-building functions in PAUP include MP, and, for nucleotide data,
distance and ML using the fastDNAmlI algorithm. In addition, PAUP performs Lake’s
method of invariants (Swofford et al., 1996; Li, 1997). Each tree-building program
permits a variety of options. The MP options include specification of any character-
weighting scheme. Distance options include choice of NJ, ME, FM (see PAUP re-
lease notes regarding PHYLIP), and UPGMA procedures. The full range of options
and their current values can be examined using the menu and/or by typing pse
[ttings] ?, dse[ttings] ?, and lse[ttings] ? for parsimony, distance,
and likelihood, respectively. Both distance and ML allow detailed specification of
the substitution model (values of substitution, gamma, and invariant-sites parameters,
assuming equal, specified, or empirical base frequencies), and these can be estimated
for any tree by setting the parameter values to est[imate] and applying the
des[cribe tree] command with a desired tree in memory.

According to the release notes accompanying PAUP test version 4, PAUP* usu-
ally finds trees with likelihoods as high or higher [i.e., better] than PHYLIP (both
because PAUP*’s tree rearrangements are more extensive and because its conver-
gence criterion for branch-length iteration is stricter).

With any tree-building method, PAUP allows a variety of tree search options.
These include algorithm specification for generating the initial tree (starting tree):
NIJ, stepwise addition, or input tree(s). The stepwise-addition algorithm allows nu-
merous options, including addition of taxa ‘“‘as is” (taxa added in file order): closest,
furthest, or random with any number of replicates. All the stepwise options allow
for any maximal number of partial trees to be retained and built on during taxon
addition. Increasing this number to, say, 100, is another means of increasing the
diversity of starting topologies, although these are not random.

A random addition strategy provides a useful complement to the default search
strategy (closest addition, TBR swapping, saving all best trees). In the random search,
a large number of replicates can be combined with the faster NNI swapping algo-
rithm. For MP analysis, in which a large number of equal-length trees might exist,
the search should specify saving from each replicate only a few trees that match or
are better than the score of the slower search. In addition, the number of suboptimal
trees (the trees that will be swapped on to find better trees) should be limited by
setting MAXTREES to a low number (e.g., 10). By using this strategy to explore
areas of “‘tree space’ possibly missed in the slow search, one sometimes finds better
trees and/or additional unique optimal trees.

PAUP performs the nonparametric bootstrap for distance, MP, and ML, using all
options available for tree building with these methods. When a bootstrap or jackknife
with MP is under way, MAXTREES should be set between 10 and no more than
100. This is because poorly resolvable portions of an MP tree will usually be even
less resolvable with resampled data; hence, a replicate could find astronomical num-
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bers of equal-length trees. Because tree branches weakly supported by the full data
set will not have high bootstrap or jackknife values, limiting MAXTREES will have
little, if any, bearing on the results, especially if the number of replicates is increased
to, say, 1,000.

In addition, PAUP performs the Kishino-Hasegawa test to compare MP or ML
trees, computes four types of consensus of multiple trees (usually used for multiple
equal-length MP trees), computes stepwise differences between MP trees, and eval-
uates signal conflicts between specified partitions of sites (e.g., nuclear and organellar
sequence data in a combined analysis).

Other Programs

In addition to PAUP and PHYLIP, there are phylogenetics programs that have some
unique capabilities but are generally more limited in their procedures and portability.
These include FastDNAml, PUZZLE, MACCLADE, and MOLPHY.

FastDNAmI. FastDNAml (Olsen et al., 1994) is a freestanding maximum-like-
lihood, tree-building program. Although it is currently not part of the PHYLIP pack-
age, it uses largely the same input and output conventions, and the results of
fastDNAml and PHYLIP’s DNAML should be very similar or identical. FastDNAml
can be run on parallel processors, and it comes with a number of useful scripts (in
particular for bootstrapping and jumbling the sequence input order). To take full
advantage of the program, knowledge of UNIX is beneficial. The source code for
UNIX systems is publicly available from the RDP Web site, and a Power Macintosh
version is available by FTP.

PUZZLE or TREE-PUZZLE

PUZZLE or TREE-PUZZLE (Strimmer and von Haeseler, 1996), as it is now called,
is a maximum likelihood-based program that implements a fast tree search algorithm
(quartet puzzling) that allows analysis of large data sets and automatically assigns
estimations of support to each internal branch. PUZZLE also computes pairwise
maximum-likelihood distances as well as branch lengths for user-specified trees.
PUZZLE also offers a novel method, likelihood mapping, to investigate the support
of a hypothesized internal branch without computing an overall tree and to visualize
the phylogenetic content of a sequence alignment. It conducts a number of statistical
tests (x” test for homogeneity of base composition, likelihood ratio clock test, Kish-
ino-Hasegawa test) and includes a large range of models of substitution. Rate het-
erogeneity is modeled by a discrete gamma distribution and by allowing invariable
sites.

MACCLADE. MACCLADE is an interactive Macintosh program for manipu-
lating trees and data and studying the phylogenetic behavior of characters (Maddison
and Maddison, 1992). It uses the NEXUS file format and will read PAUP data and
tree files. Some information in PAUP files will be ignored in MACCLADE (e.g.,
gap mode), but information in a PAUP “assumptions’ block will be imported, in-
cluding character weightings and character and taxon sets. Several subtle differences
exist between PAUP and MACCLADE files. Thus, PAUP files edited with MAC-
CLADE and vice versa should be saved under new names and the unedited file
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maintained separately. PHYLIP, NBRF-PIR, and text files are also readable by MAC-
CLADE. Any method can be used to generate the trees, but MACCLADE’s functions
are based strictly on parsimony. For example, the program allows one to trace the
evolution of each individual character on any tree. The MP and ML reconstruction
functions differ, however, and the ML function is considered more realistic (Swofford
et al., 1996). Tree topologies can be manipulated by dragging branches, and flipping
branches can produce aesthetic modifications in tree symmetry.

MACCLADE includes additional features relevant to sequence analysis, includ-
ing a chart of character number versus number of changes in a tree, which is useful
for visualizing among-site rate heterogeneity, and a chart of the overall numbers of
changes from one base to another over an MP tree (‘‘state changes and stasis’ chart:
the values are sometimes erroneously reported in the literature as substitution ‘‘rates,”
but there is no correction for branch lengths or among-site rate heterogeneity).

MOLPHY. MOLPHY is a shareware package of programs and utilities for ML
analysis and statistics of nucleotide or amino acid sequences (Adachi and Hasegawa,
1996). It has been tested on Sun OS and HP9000/700 systems. Practical application
requires some knowledge of UNIX file management. The ML procedures are similar
to those in PHYLIP, but there is a wider range of amino acid substitution models
and options for faster, heuristic searches, including an option to use ‘“‘local bootstrap”
analyses (i.e., a bootstrap on subtrees under the assumption that the remainder of the
tree is correct) to search for better ML trees. The output includes branch-length
estimates and standard error. Analysis of separate codon positions is possible. MOL-
PHY uses a subset of the nucleotide substitution models available in PAUP, although
it allows user-specified parameter values. The current MOLPHY lacks a bootstrap
option and also has no accommodation for among-site rate heterogeneity.

Tree Drawing. There are a number of tree-drawing programs available now,
such as TreeTool (X-windows), TreeDraw (Macintosh), PHYLODENDRON (Mac-
intosh), TreeView (Macintosh, Microsoft Windows), or the tree-drawing tool in
PAUP, and all handle standard tree files. These programs facilitate not only the
generation of trees suitable for publication or other presentation but also facilitate
viewing of the data in general. For example, programs such as the freely available
TreeView enable the user to manipulate the view of branching order, root the tree,
and other graphical manipulations that aid the user.

INTERNET-ACCESSIBLE PHYLOGENETIC ANALYSIS SOFTWARE

Currently, there are few Web-based applications that will permit an investigator to
perform phylogenetic analyses over the Web. However, these kinds of resources are
appearing in increasing numbers, and, presumably as the Internet bandwidth in-
creases and servers have faster CPUs, this may become even more common. High-
lighted here are three Internet-based applications that provide phylogenetic analysis
capabilities: WEBPHYLIP, PhyloBLAST, and the “BLAST2 & Orthologue Search
Server.” These illustrate the variety of applications currently available. Although all
use PHYLIP programs, the latter two combine phylogenetic analysis with BLAST
to aid the user in retrieving sequences for analysis.
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WEBPHYLIP

WEBPHYLIP uses CGI/Perl scripts to produce a Web-based cut-and-paste interface
to the PHYLIP programs. Unfortunately, the programs are not linked together; there-
fore, to generate a neighbor-joining tree, for example, the user must run multiple
analyses (PROTDIST and NEIGHBOR in this case). Analyses may time-out if too
intensive of an analysis is requested. Also, the trees cannot be easily viewed; for
example, if the user has a PC, they must have ghostview or another such PostScript
viewer installed to actually view the results. However, the Web site provides excellent
flowcharts and other helpful documentation about running the programs, and an
extensive collection of the PHYLIP programs is available.

PhyloBLAST

PhyloBLAST is also based on CGI/Perl scripts. PhyloBLAST compares a user’s
protein sequence to the SWISS-PROT/TREMBL databases using BLAST?2 and then
allows user-defined phylogenetic analyses to be performed on selected sequences
from the BLAST output. Neighbor-joining and parsimony analyses may be per-
formed, either with or without bootstrapping, using PHYLIP programs. Flexible fea-
tures, such as the ability to input premade multiple sequence alignments and use all
options found in the PHYLIP programs, provide additional functionality that goes
beyond the simple analysis of a BLAST result. Because PHYLIP programs need to
generate trees that are linked, there is less input required by the user than for WEB-
PHYLIP; however, DNA analysis and analysis using some programs (for example,
FITCH) are not currently available. However, PhyloBLAST’s ability to generate
trees-containing hyperlinks to further protein sequence information or generate JPEG
graphics of trees is a considerable advantage. Also, the program is set up to handle
Web page time-outs so long analyses are not a problem (and can be E-mailed to the
user if preferred).

BLAST2 & Orthologue Search Server

This is a fairly specialized application of phylogenetic analysis of a BLAST output
for the identification of orthologs verses paralogs. It is based on the use of CLUS-
TALW, WU-BLAST?2, and the tree-reconciling algorithm of Page (1994). This tool
first performs a BLAST analysis and then performs a phylogenetic analysis on user-
selected sequences based on a CLUSTAL W alignment and PHYLIP’s neighbor-
joining methods. This resulting neighbor-joining tree (‘“‘gene tree’’) is ultimately
compared with a predicted species tree and the reconciled tree viewed for analysis.
The philosophy here is that, whenever the phylogeny of the species matches the
phylogeny of the gene tree, these genes will be deemed orthologous.

Although this is a useful tool, users should be cautioned that this does not
represent a comprehensive phylogenetic analysis, due to the automated nature of the
application. Its use should be primarily as intended: to gain insight into what ho-
mologous sequences are orthologous in an automated fashion. Further analysis
should be performed for any particularly in-depth investigation using less automated
alignment and phylogenetic analysis that suits the sequences being investigated.
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SOME SIMPLE PRACTICAL CONSIDERATIONS

1. Paradoxical as it may sound, by far the most important factor in inferring

phylogenies is not the method of phylogenetic inference but the quality of
the input data. The importance of data selection and in particular of the align-
ment process cannot be overestimated. Even the most sophisticated phylo-
genetic inference methods are not able to correct for erroneous input data.

. Look at the data from as many angles as possible. Use each of the three main
methods (distance, maximum parsimony, maximum likelihood) and compare
the resulting trees for consistency. At the same time, be aware that one cannot
rely on having arrived at a good estimate for the true phylogeny just because
all three methods produce the same tree. Unfortunately, consistency among
results obtained by different methods does not necessarily mean that the result
is statistically significant (or represents the true phylogeny), since there can
be several reasons for such correspondence.

. The choice of outgroup taxa can have as much influence on the analysis as
the choice of ingroup taxa. Complication will occur in particular when the
outgroup shares an unusual property (e.g., composition bias or clock rate)
with one or several ingroup taxa. It is therefore advisable to compute every
analysis with several outgroups and check for congruency of the ingroup
topologies.

. Be aware that programs can give different answers (trees) depending on the
order in which the sequences appear in the input file. PHYLIP, PAUP and
other phylogenetic software provide a “jumble” option that reruns the anal-
ysis with different (jumbled) input orders. If for whatever reason the tree
must be computed in a single run, sequences that are suspected of being
“problematic” should be placed toward the end of the input file, to lower the
probability that tree rearrangement methods will be negatively influenced by
a poor initial topology stemming from any problematic sequences.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 14

Compilation of available

phylogeny programs
BLAST2 & Orthologue
Search
CLUSTAL W
GeneDoc
GeneTree

PHYLIP

PhyloBLAST
Phylogenetic Resources
PUZZLEBOOT
ReadSeq

RDP Tree

http://evolution.genetics.washington.edu/phylip/
software.html
http://www.Bork. EMBL-Heidelberg. DE/Blast2e/

http://www-igbmc.u-strasbg.fr/Biolnfo/
http://www.psc.edu/biomed/genedoc/
http://taxonomy.zoology.gla.ac.uk/rod/genetree/
genetree.html
http://evolution. genetics.washington.edu/phylip.html
http://www.pathogenomics.bc.ca/phyloBLAST/
http://www.ucmp.berkeley.edu/subway/phylogen.html
http://www.tree-puzzle.de
http://dot.imgen.bem.tmce.edu:933 1/seq-util/Options/
readseq.html
http://rdp.life.uiuc.edu/RDP/commands/sgtree.html
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TreeView http://taxonomy.zoology.gla.ac.uk/rod/treeview. html
WebPHYLIP http://sdmc.krdl.org.sg:8080/~ Ixzhang/phylip/
WHS http://www.cladistics.org/education.html
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