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The first complete genome sequences of cellular life forms have become available
in just the last several years. In 1995, the genomes of the first two bacteria, Hae-
mophilus influenzae and Mycoplasma genitalium, were reported (Fleischmann et al.,
1995; Fraser et al., 1995). One year later, the first archaeal (Methanococcus jannas-
chii) and the first eukaryotic (yeast Saccharomyces cerevisiae) genomes were com-
pleted (Bult et al., 1996; Goffeau et al., 1996). 1997 was marked by a landmark
achievement—the sequencing of the genomes of the two best-studied bacteria, Es-
cherichia coli (Blattner et al., 1997) and Bacillus subtilis (Kunst et al., 1997). Many
more bacterial and archaeal genomes, as well as the first genome of a multicellular
eukaryote, the nematode Caenorhabiditis elegans, have since been sequenced (see
details below), providing ample material for comparative analysis.

A notable (and perhaps disappointing to many biologists) outcome of these first
genome projects is that at least one-third of the genes encoded in each genome had
no known or predictable function; for many of the remaining genes, only a general
functional prediction appeared possible. The depth of our ignorance becomes partic-
ularly obvious on examination of the genome of Escherichia coli K12, arguably the
most extensively studied organism among both prokaryotes and eukaryotes. Even in
this all-time favorite model organism of molecular biologists, at least 40% of the
genes have unknown function (Koonin, 1997). On the other hand, it turned out that
the level of evolutionary conservation of microbial proteins is rather uniform, with
�70% of gene products from each of the sequenced genomes having homologs in
distant genomes (Koonin et al., 1997). Thus, the functions of many of these genes
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can be predicted simply by comparing different genomes and by transferring func-
tional annotation of proteins from better-studied organisms to their orthologs from
lesser-studied organisms. This makes comparative genomics a powerful approach for
achieving a better understanding of the genomes and, subsequently, of the biology
of the respective organisms. Here, we describe databases that store genomic infor-
mation and bioinformatics tools that are used in the computational analysis of com-
plete genomes. The subject of comparative genomics includes a number of distinct
aspects, and it is unrealistic to cover them all in a brief chapter. We limit the dis-
cussion to the analysis of protein sets from completely sequenced genomes. Because
most of the latter are from prokaryotes, there is an inevitable focus on prokaryotic
biology in the presentation. Furthermore, in our choice of the genome analysis tools
to discuss in detail, we decided to concentrate largely on Web-based ones that are
readily accessible to any user, as opposed to stand-alone software that has more
limited applicability.

PROGRESS IN GENOME SEQUENCING

By the beginning of 2000, genomes of 23 different unicellular organisms (5 archaeal,
17 bacterial, and 1 eukaryotic) had been completely sequenced. At least 70 more
microbial genomes were in different stages of completion with respect to sequencing.
Periodically updated lists of both finished and unfinished publicly funded genome
sequencing projects are available in the GenBank Entrez Genomes division and at
the site maintained by The Institute for Genome Research (TIGR) and at Integrated
Genomics. A complete list of sequencing centers world-wide can be found at the
NHGRI Web site. One can retrieve the actual sequence data from the NCBI FTP
site or from the FTP sites of each individual sequencing center. A convenient se-
quence retrieval system is maintained also at the DNA Data Bank of Japan. In the
framework of the Reference Sequences (RefSeq) project, NCBI has recently started
to supplement the lists of gene products with some valuable sequence analysis in-
formation, such as the lists of best hits in different taxa, predicted functions for
uncharacterized gene products, frame-shifted proteins, and the like. On the other
hand, sequencing centers like TIGR have been updating their sequence data, cor-
recting some of the sequencingerrors and, accordingly, their sites may contain more
recent data on unfinished genome sequences.

General-Purpose Databases for Comparative Genomics

Because the World Wide Web makes genome sequences available to anyone with
Internet access, there exists a variety of databases that offer more or less convenient
access to basically the same sequence data. However, several research groups, spe-
cializing in genome analysis, maintain databases that provide important additional
information, such as operon organization, functional predictions, three-dimensional
structure, and metabolic reconstructions.

PEDANT. This useful Web resource provides answers to most standard ques-
tions in genome comparison (Frishman and Mewes, 1997). PEDANT provides an
easy way to ask simple questions, such as finding out how many proteins in H. pylori
have known (or confidently predicted) three-dimensional structures or how many
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NAD�-dependent alcohol dehydrogenases (EC 1.1.1.1) are encoded in the C. elegans
genome (Fig. 15.1). The list of standard PEDANT queries includes EC numbers,
PROSITE patterns, Pfam domains, BLOCKS, and SCOP domains, as well as PIR
keywords and PIR superfamilies. Although PEDANT does not allow the users to
enter their own queries, the variety of data available at this Web site makes it a
convenient entry point into the field of comparative genome analysis.

COGs. The Clusters of Orthologous Groups (COGs) database has been designed
to simplify evolutionary studies of complete genomes and improve functional as-
signments of individual proteins (Tatusov et al., 1997, 2000). It consists of �2,800
conserved families of proteins (COGs) from each of the completely sequenced ge-
nomes. Each COG contains orthologous sets of proteins from at least three phylo-
genetic lineages, which are assumed to have evolved from an individual ancestral
protein. By definition, orthologs are genes that are connected by vertical evolutionary
descent (the ‘‘same’’ gene in different species) as opposed to paralogs—genes re-
lated by duplication within a genome (Fitch, 1970; Henikoff et al., 1997). Because
orthologs typically perform the same function in all organisms, delineation of or-
thologous families from diverse species allows the transfer of functional annotation
from better-studied organisms to the lesser-studied ones. The protein families in the
COG database are separated into 17 functional groups that include a group of un-
characterized yet conserved proteins, as well as a group of proteins for which only
a general functional assignment appeared appropriate (Fig. 15.2). This site is partic-
ularly useful for functional predictions in borderline cases, where protein similarity
levels are fairly low. Due to the diversity of proteins in COGs, sequence similarity
searches against the COG database can often suggest a possible function for a protein
that otherwise has no clear database hits. This database also offers some convenient
tools for a comparative analysis of complete genomes as will be described below.

KEGG. The Kyoto Encyclopedia of Genes and Genomes (KEGG) centers
around cellular metabolism (Kanehisa and Goto, 2000). This Web site presents a
comprehensive set of metabolic pathway charts, both general and specific, for each
of the completely-sequenced genomes, as well as for Schizosaccharomyces pombe,
Arabidopsis thaliana, Drosophila melanogaster, mouse, and human. Enzymes that
are already identified in a particular organism are color-coded, so that one can easily
trace the pathways that are likely to be present or absent in a given organism (Fig.
15.3). For the metabolic pathways covered in KEGG, lists of orthologous genes that
code for the enzymes participating in these pathways are also provided. It is also
indicated whenever these genes are adjacent, forming likely operons. A very con-
venient search tool allows the user to compare two complete genomes and identify
all cases in which conserved genes in both organisms are adjacent or located rela-
tively close (within 5 genes) to each other. The KEGG site is continuously updated
and serves as an ultimate source of data for the analysis of metabolism in various
organisms.

MBGD. The Microbial Genome Database (MBGD) at the University of Tokyo
offers another convenient tool for searching for likely homologs among all sequenced
microbial genomes. In contrast to COGs, MBGD assigns homology relationships
based solely on sequence similarity (BLASTP values of 10�2 or less). MBGD allows
the user to submit several sequences at once (up to 2,000 residues) for searching
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against all of the complete genomes available, displays color-coded functions of the
detected homologs, and shows their location on a circular genome map. The output
of MBGD’s BLAST search also shows the degree of overlap between the query and
target sequences, which could help in discerning multidomain proteins. For each
sequenced genome, MBGD provides convenient lists of all recognized genes that are
involved in a particular function, e.g., the biosynthesis of branched-chain amino acids
or the degradation of aromatic hydrocarbons.

WIT. The WIT (‘‘What Is There?’’) database, like KEGG, aims at metabolic
reconstruction for completely sequenced genomes (Overbeek et al., 2000). The dis-
tinguishing features of the WIT approach are that it (1) considers as a pathway any
sequence of reactions between two bifurcations and (2) includes proteins from many
partially-sequenced genomes. These features allow WIT to offer many more se-
quences of the same enzymes from different organisms than any other database,
which significantly facilitates the recognition of additional members of these enzyme
families. On the other hand, complex pathways like glycolysis or the TCA cycle
have been split into many separate reactions, which sometimes makes pathway anal-
ysis unnecessarily complicated. However, anyone who overcomes the initial diffi-
culties in using the WIT system will be rewarded by the ability to easily predict
metabolic pathways in many organisms with complete and still unfinished genomes.

Organism-Specific Databases

In addition to general genomics databases, there exists a variety of databases that
center around a particular organism or a group of organisms. Although all of them
are useful for specific purposes, those devoted to E. coli, B. subtilis, and yeast are
probably the ones most widely used for functional assignments in other, less studied
organisms. Following are short descriptions of the most frequently used of these
databases.

Escherichia coli. The importance of E. coli for molecular biology is reflected
in the large number of databases dedicated to this organism. Two of these are main-
tained at the University of Wisconsin-Madison and at the Nara Institute of Technol-
ogy, the research groups that carried out the actual sequencing of the E. coli genome.
Because the Wisconsin group is now involved in sequencing the enteropathogenic
E. coli O157:H7 and other enterobacteria, their database is most useful for analysis
of enteric pathogens. The group at the Nara Institute of Technology is primarily
interested in resolving the functions of still-unannotated E. coli genes and strives to
create an ultimate resource for further studies of E. coli. Their site provides a con-
venient link of genomic data to the Kohara restriction map of E. coli and allows one
to search for Kohara clones that cover the region of interest. Another useful database
on E. coli, EcoCyc, lists all experimentallystudied E. coli genes; it also provides
exhaustive coverage of the metabolic pathways identified in E. coli.

The goal of another E. coli database, EcoGene, is to provide curated sequences
of the E. coli proteins. This is a good source for frame-shifted and potentially mis-
translated proteins. Finally, Colibri and RegulonDB are the databases of choice for
those interested in regulatory networks of E. coli. The E. coli Genetic Stock Center
(CGSC) Web site also provides gene linkage and function information; it also lists
the mutations available at the CGSC.
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Mycoplasma genitalium. Mycoplasma has the smallest genome of all known
cellular life forms, which offers some clues as to what is the lower limit of genes
necessary to sustain life (the ‘‘minimal genome’’). Its comparison to the second
smallest known genome, that of Mycoplasma pneumoniae, is available online. Recent
data from TIGR provides insight into the range of M. pneumoniae and M. genitalium
genes that can be mutated without loss of viability. From both computational analysis
and mutagenesis studies, it appears that 250–300 genes are absolutely essential for
the survival of mycoplasmas.

Bacillus subtilis. The B. subtilis genome also attracts considerable attention
from biologists and, like that of E. coli, is being actively studied from the functional
perspective. The Subtilist Web site, maintained at the Institute Pasteur, is constantly
updated to include the most recent results on functions of new B. subtilis genes. In
addition, a convenient index of B. subtilis sporulation genes is maintained at the
Royal Holloway University of London.

Saccharomyces cerevisiae. The major databases specifically devoted to the
functional analysis of yeast S. cerevisiae genome are the Saccharomyces Genome
Database (SGD) at Stanford University, the Yeast Database at Munich Institute for
Protein Sequences (MIPS), and Yeast Protein Database (YPD) at Proteome, Inc. All
three databases provide periodically updated lists of yeast proteins with known or
predicted functions, appropriate references, and mutant phenotypes and reflect the
ongoing efforts aimed at complete characterization of all yeast proteins. SGD is
probably the largest and most comprehensive source of information on the current
status of the yeast genome analysis and includes the Saccharomyces Gene Registry.
The MIPS database provides most of the same data and serves as a resource for new
results coming from the multinational EUROFAN project. YPD is a curated database
that is an useful resource for current information on the function of yeast proteins.
YPD now allows free access for academic researchers using the database for non-
commercial purposes.

Other useful sites for yeast genome analysis include Saccharomyces cerevisiae
Promoter Database, listing known regulatory elements and transcriptional factors in
yeast; TRansposon-Insertion Phenotypes, Localization, and Expression in Sacchar-
omyces (TRIPLES) database, which tracks the expression of transposon-induced mu-
tants and the cellular localization of transposon-tagged proteins, and the Saccharo-
myces Cell Cycle Expression Database, presenting the first results on changes in
mRNA transcript levels during the yeast cell cycle.

GENOME ANALYSIS AND ANNOTATION

With recent progress in rapid, genome-scale sequencing, sequence analysis and an-
notation of complete genomes have become the limiting steps in most genome pro-
jects. This task is particularly daunting given the paucity of functional information
for a large fraction of genes even in the best-understood model organisms, let alone
poorly-studied ones such as those from Archaeal species. The standard steps involved
in the structural-functional annotation of uncharacterized proteins includes (1) se-
quence similarity searches using programs such as BLAST, FASTA, or the Smith-
Waterman algorithm; (2) identifying functional motifs and structural domains by
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comparing the protein sequence against PROSITE, BLOCKS, SMART, or Pfam; (3)
predicting structural features of the protein, such as likely signal peptides, transmem-
brane segments, coiled-coil regions, and other regions of low sequence complexity;
and (4) generating a secondary (and, if possible, tertiary) structure prediction. All
these steps have been automated in several software packages, such as GeneQuiz,
MAGPIE, PEDANT, Imagene, and others. Of these, however, MAGPIE and PED-
ANT do not allow outside users to submit their own sequences for analysis and
display only the authors’ own results. GeneQuiz offers a limited number of searches
(up to 100 a day) to general users but is still a good entry point for comparative
genome analysis (Andrade et al., 1999; Hoersch et al., 2000). However, GeneQuiz
relies on unrealistically high cutoff scores to infer homology, which inevitably results
in relatively low sensitivity. In some cases, the user may be better off by simply
using the same tools that are packaged in the aforementioned programs separately.
To perform sequence analysis on a large scale, it is frequently desirable to run the
requisite software locally, in batch mode. One such package that is currently available
for free downloading is SEALS, developed at NCBI. It consists of a number of
UNIX-based tools for retrieving sequences from GenBank, running database search
programs such as BLAST and MoST, viewing and parsing search outputs, searching
for sequence motifs, and predicting protein structural features (Walker and Koonin,
1997). A similar package, Imagene, has been developed at Université Paris VI
(Medigue et al., 1999).

Using Genome Comparison for Prediction of Protein Functions

Analysis of the first several bacterial, archaeal, and eukaryotic genomes to be se-
quenced showed that the sequence comparison methods mentioned above failed to
predict protein function for at least one-third of gene products in any given genome.
In these cases, other approaches can be used that take into consideration all other
available data, putting them into ‘‘genome context’’ (Huynen and Snel, 2000). By
taking advantage of the availability of multiple complete genomes, these approaches
offer new opportunities for predicting gene functions in each of these genomes. All
these approaches rely on the same basic premise, that the organization of the genetic
information in each particular genome reflects a long history of mutations, gene
duplications, gene rearrangements, gene function divergence, and gene acquisition
and loss that has produced organisms uniquely adapted to their environment and
capable of regulating their metabolism in accordance with the environmental con-
ditions. This means that cross-genome similarities can be viewed as meaningful in
the evolutionary sense and thus are potentially useful for functional analysis. The
most promising comparative methods—specifically employ information derived
from multiple genomes to achieve robustness and sensitivity that are not easily at-
tainable with standard tools. It seems that they are indeed the tools for the ‘‘new
genomics,’’ whose impact will grow with the increase in the amount and diversity
of genome information available. Here, some of these new approaches are briefly
reviewed using for illustration, whenever possible, examples provided by currently
available Web-based tools. A disproportionate number of these examples are from
the COG system. This should not be construed as a claim that this is, in any sense,
the best tool for genome annotation; rather, it reflects a degree of flexibility in for-
mulating queries that is provided by the COGs as well as the subjective factor of
the authors’ familiarity with the organization of this system.
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Transfer of Functional Information. The simplest and by far the most com-
mon way to utilize the information embedded in multiple genomes (at least at this
time) is the transfer of functional information from well-characterized genomes to
poorly-studied ones. Implicitly, this is done whenever a prediction is made for a
newly sequenced gene on the basis of a database hit(s). There are, however, many
pitfalls that tend to hamper accurate functional prediction on the basis of such hits.
Perhaps the most important ones relate to the lack of sufficient sensitivity, error
propagation because of reliance on incorrect or imprecise annotations already present
in the general-purpose databases, and the difficulty in distinguishing orthologs from
paralogs. The issue of orthology vs. paralogy is critical because transfer of functional
information is likely to be reliable for orthologs (direct evolutionary counterparts)
but may be quite misleading if paralogs (products of gene duplications) are involved.
All these problems are, in part, obviated in the COG system, which consists of
carefully annotated sets of likely orthologs and does not rely on arbitrary cutoffs for
assigning new proteins to them.

The COGs can be employed for annotation of newly-sequenced genomes using
the COGNITOR program. This program assigns new proteins to COGs by comparing
them to protein sequences from all genomes included in the COG database and
detecting genome-specific best hits (BeTs). When three or more BeTs fall into the
same COG, the query protein is considered a likely new COG member. The reasoning
is that it is extremely unlikely that such coherence occurs by chance, even if the
observed sequence similarity per se is not statistically significant. The requirement
of multiple BeTs for a protein to be assigned to a COG serves, to some extent, as a
safeguard against the propagation of errors that might be present in the COG database
itself. Indeed, if a COG contains one or even two false-positives, this will not result
in a false assignment by COGNITOR under the three-BeT cutoff rule. Figure 15.4
shows two examples of the COGNITOR application to proteins from the bacterium
Deinococcus radiodurans and the archaeon Aeropyrum pernix that have not been
assigned a function in the original genome annotation.

Phylogenetic Patterns (Profiles). The COG-type analysis applied to multiple
genomes provides for the derivation of phylogenetic patterns, which are potentially
useful in many aspects of genome analysis and annotation (Tatusov et al., 1997).
Similar concepts have been introduced by others in the form of phylogenetic profiles
(Gaasterland and Ragan, 1998; Pellegrini et al., 1999). The phylogenetic pattern for
each protein family (COG) is defined as the set of genomes in which the family is
represented. The COG database is accompanied by a pattern search tool that allows
the user to select COGs with a particular pattern (Fig. 15.5A). Predictably, genes
that are functionally related (e.g., those that encode different subunits of the same
enzyme or participate in consecutive steps of the same metabolic pathway) tend to
have the same phylogenetic pattern (Fig. 15.5B). In a complementary fashion, closely
related species tend to co-occur in COGs. Because of these features, phylogenetic
patterns can be used to improve functional predictions in complete genomes. When
a particular genome is represented in the COGs for a subset of components of a
particular complex or pathway but is missing in the COGs for other components, a
focused search for the latter is justified. The same applies to cases in which a gene
is found in one of two closely related genomes, but not the other, particularly if it
is conserved in a broad range of other genomes (Fig. 15.5C). There are several
reasons why unexpectedly incomplete phylogenetic patterns may be observed.
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(A)(B)

Figure 15.5. Applications of phylogenetic patterns. (A) The COG phylogenetic pattern
search tool. Species name abbreviations: A (Afu), Archaeoglobus fulgidus; M (Mja), Meth-
anococcus jannaschii; T (Mth), Methanobacterium thermoautotrophicum; K (Pho), Pyrococ-
cus horikoshii; Y (Sce), yeast Saccharomyces cerevisiae; Q (Aae), Aquifex aeolicus; V (Tma),
Thermotoga maritima; C (Ssp), Synechocystis sp.; E (Eco), Escherichia coli; B (Bsu), Bacillus
subtilis; R (Mtu), Mycobacterium tubeculosis; H (Hin), Haemophilus influenzae; U (Hpy),
Helicobacter pylori; J (Jhp), Helicobacter pylori J strain; G (Mge), Mycoplasma genitalium;
P (Mpn), Mycoplasma pneumoniae; O (Bbu), Borrelia burgdorferi; L (Tpa), Treponema pal-
lidum; I (Ctr), Chlamydia trachomatis; N (Cpn), Chlamydia pneumoniae; X (Rpr), Rickettsia
prowazekii. (B) Phylogenetic pattern conservation in the threonine biosynthesis pathway.
The patterns are shown using the one-letter designations for species as in (A); a letter
indicates that the given species is represented in the respective COG and a dash means that
it is not. Note that aspartokinase and aspartate-semialdehyde dehydrogenase are found in
Chlamydiae and Rickettsiae, even though these parasitic bacteria do not encode the entire
pathway of threonine biosynthesis or those for methionine and lysine biosynthesis that
share the same first stages. The functions of these enzymes in these cases remain unclear.
The absence of detectable homoserine kinase in A. fulgidus and M. thermoautotrophicum
is probably due to nonorthologous gene displacement with a distinct kinase(s). (C) Differ-
ential genome display—COGs represented in C. trachomatis, but not in C. pneumoniae. In
the generalized representation of the phylogenetic pattern above the list of COGs, asterisks
indicate that the respective species may be either present or absent.
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(B)(B)

(C)

Figure 15.5. Continued

In the simplest case, certain proteins, typically small ones, could have been
missed in genome translation (Natale et al., 2000). Thus, the apparent absence of
secE genes in the genomes of Aquifex aeolicus and Helicobacter pylori that encoded
all the other components of the Sec protein translocation machinery suggests that
the secE genes could have been missed in the original genome annotation for these
two bacteria. Indeed, these genes are easily recognized by searching the six-frame
translation of the respective genomes using TBLASTN. Examination of the COGs
that miss one representative from a group of close species similarly may result in
the identification of otherwise undetected genes. For example, only one COG
(COG1546) contained an M. genitalium protein but not an M. pneumoniae protein.
A search for a possible missing M. pneumoniae counterpart identified a candidate,
whose inclusion into this COG was subsequently verified by COGNITOR and se-
quence alignment (Natale et al., 2000).
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An unexpected absence of a species in a phylogenetic pattern also may indicate
that the given species encodes a highly diverged member of the respective ortholo-
gous family. For example, the presence of easily-recognizable A, B, D, and I subunits
of the archaeal type H�-ATPase in Borrelia burgdorferi, Treponema pallidum, and
both chlamydia (COGs 1155, 1156, 1394, and 1269) immediately suggests that
membrane-bound subunits of this enzyme should also be encoded in these genomes.
Indeed, genes for the E and K subunits of the H�-ATPase could be recognized in
these genomes (COGs 1390 and 0636) despite their low sequence similarity to the
corresponding subunits of the archaeal enzymes. The gene for the F subunit, however,
has been identified so far only in T. pallidum but not in the three other bacterial
species (see COG1436), whereas the gene for the C subunit (COG1527) has not been
recognized in any of them.

Finally, unexpected ‘‘holes’’ in phylogenetic patterns and differences between
components of the same complex or pathway may be the manifestation of a phe-
nomenon termed nonorthologous gene displacement, in which unrelated or distantly
related proteins are responsible for the same function in different organisms. When
essential functions are involved, this tends to result in phylogenetic patterns that are
perfectly or partially complementary, together spanning the entire range of genomes.
Figure 15.6 shows two examples of COGs with such complementary phylogenetic
patterns. Note that, in each case, the complementarity is not perfect because certain
genomes encode both forms of the respective enzyme. In the case of lysyl-tRNA
synthetases (Fig. 15.6A), the two forms of the enzyme are completely unrelated,
whereas the two fructose-biphosphate aldolases (Fig. 15.6B) are distantly related, but
are not orthologs. During the analysis of new genomes, it is possible to focus on
families with complementary phylogenetic patterns to identify candidates for missing
components of complexes and pathways.

Use of Phylogenetic Patterns for Differential Genome Display. The
phylogenetic pattern approach and, specifically, the pattern search tool associated
with the COGs can be used in a systematic fashion to perform formal logical op-
erations (AND, OR, NOT) on gene sets—an approach suitably dubbed ‘‘differential
genome display’’ (Huynen et al., 1997). Figure 15.7 shows examples of such anal-
yses. This type of genome comparison allows a researcher to delineate subsets of
gene products that are likely to contribute to the specific lifestyles of the respective
organisms, for example, thermophily (Fig. 15.7A). The use of this approach to iden-
tify candidate drug targets in pathogenic bacteria is perhaps of special interest. It
seems logical to look for such targets among those genes that are shared by several
pathogenic organisms, but are missing in eukaryotes. Simple exercises in this direc-
tion show, however, that this is not a straightforward strategy. It is tempting to
suggest that the best targets for new broad-spectrum antimicrobial agents would be
genes that are shared by all pathogenic microbes, but not by any other organisms.
The trouble is that such genes do not seem to exist, even if one allows for those
that are missing in mycoplasmas, which have by far the smallest genomes (Fig.
15.7B). Furthermore, even when the conditions are relaxed so that it is only required
that the genes be present in all pathogenic bacteria (except possibly mycoplasmas)
and absent in yeast and E. coli (the dominant component of the normal gut microbial
population), the net comes back empty (Fig. 15.7C). It seems therefore that the best
one can do to search for such potentially universal antimicrobial agents is to isolate
the genes that are present in all pathogens, possibly in other bacteria and archaea
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but not in eukaryotes. This results in a list of 35 families, most of which are, in fact,
represented in all bacteria (Fig. 15.7D); it seems likely that some of these proteins
are indeed good candidates for drug targets. More specifically directed searches can
be easily set up; for example, searching for families that are represented in two
species of chlamydia, possibly other pathogenic bacteria, but not any other genomes
produces just two COGs (Fig. 15.7E). These could be of interest for a detailed
experimental study aimed at the development of new agents that could be active
against both chlamydia and spirochetes.

Examination of Gene (Domain) Fusions. Another recently developed com-
parative genomic approach involves systematic analysis of protein and domain fusion
(and fission) (Enright et al., 1999; Marcotte et al., 1999; Snel et al., 2000). The basic
assumption is that fusion would be maintained by selection only when it facilitates
functional interaction between proteins, for example, kinetic coupling of consecutive
enzymes in a pathway. Thus, proteins that are fused in some species can be expected
to interact, perhaps physically or at least functionally, in other organisms. A straight-
forward example of functional inferences that can be drawn from domain fusion is
seen in the histidine biosynthesis pathway, which in E. coli and H. influenzae includes
two two-domain proteins, HisI and HisB (Fig. 15.8). The two domains of HisI cat-
alyze two sequential steps of histidine biosynthesis and thus represent subunits that
are likely to physically interact even when produced as separate proteins; this cor-
relates with the predominance of the domain fusion among these enzymes (Fig.
15.8A). In contrast, the two domains of HisB catalyze the seventh and ninth steps
of the pathway and hence are not likely to physically interact, which is compatible
with the relative rarity of the fusion (Fig. 15.8B). The COG database includes about
700 distinct multidomain architectures that have stand-alone counterparts. Thus, us-
ing domain fusion for functional prediction has considerable heuristic potential al-
though this approach will not work for ‘‘promiscuous’’ domains such as, for example,
the DNA-binding helix-turn-helix domain, which can be found in combination with
a wide variety of other domains (Marcotte et al., 1999).

In addition, several databases (with accompanying search tools) have recently
been developed for detecting domains and exploring architectures of multidomain
proteins: Pfam (Bateman et al., 2000), ProDom (Corpet et al., 2000), and SMART
(Schultz et al., 1998, 2000).

Although not comprehensive as of this writing, SMART seems to be the most
advanced of these systems, combining high sensitivity of domain detection with
accuracy, high speed, and extremely informative presentation of domain architec-
tures. Rapid searches for protein domains, based on a modification of the PSI-BLAST
program is now available through the Conserved Domains Database (CDD) at NCBI
(cf. Chapter 11).

It seems worth considering an example of a complex multidomain protein anal-
ysis in some detail, to see how assigning functions to various domains of a multi-
domain protein helps one understand its likely cellular role(s). The M. tuberculosis
protein Rv1364c consists of 653 amino acid residues. Its annotation in GenBank
correctly indicates that it has statistically significant similarity to the B. subtilis sigma
factor regulation protein, RSBU BACSU, which, however, is only 335 amino acids
long. The region of similarity between these two proteins is said to be even shorter,
244 amino acid residues. Thus, in addition to the portion apparently homologous to
RsbU, Rv1364c probably contains other domains. Submitting Rv1364c for a Pfam
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(E)

(D)

Figure 15.7. Delineation of distinct subsets of COGs using the phylogenetic pattern search

tool. (A) COGs represented exclusively in thermophiles. (B) Search for COGs represented

exclusively in pathogens (with a possible exception of the mycoplasmas). (C) Search for

COGs represented in pathogens (with a possible exception of the mycoplasmas), but not

in yeast or E. coli. (D) COGs represented in all pathogens, but not in yeast. (E) COGs rep-

resented in the two Chlamydia and possibly in other pathogens, but not in free-living

organisms.
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search gives an unexpected result: Pfam search identifies a SpoIIAA(RsbV)-like do-
main in the 550–652 region of the protein. The confidence level is not particularly
high (E = 0.0049), but examination of the alignment shows conservation of the
phosphorylatable serine residue and the surrounding motif, as well as conservation
of the secondary structure elements (not shown). This suggests that Rv1364c actually
contains four domains, the second and the fourth of which correspond to B. subtilis
RsbU and RsbV proteins. The structures and functions of the first (residues 1–155)
and the third (334–550) domains remain to be analyzed. This could be done by PSI-
BLAST analysis of individual segments encompassing the presumptive domains, but
this route would involve careful examination of the complex search outputs. In con-
trast, SMART provides a one-step solution (Fig. 15.9). The SMART output indicates
that the protein under analysis contains N-terminal PAS and PAC domains, which
are ligand-binding sensor domains present in many histidine kinases and other signal-
transduction proteins, a PP2C-like phosphatase domain (the actual biochemical ac-
tivity of the RsbU domain) and a histidine kinase-type ATPase domain (residues
433–527). For the latter domain, however, the statistical significance of the hit is
low (E = 0.16) and the assignment needs further verification. A PSI-BLAST search
started with the segment of Rv1364c identified by SMART as the ATPase domain
reveals similarity to the RsbW proteins, a distinct group of serine kinases of the
histidine kinase fold involved in the anti-sigma regulatory systems (hence, the low-
significance hit to the general profile for this domain in SMART). SMART does not
detect the C-terminal SpoIIAA domain of Rv1364c, which has been identified by
Pfam, emphasizing the importance of complementary methods for complete assign-
ments of domains and functions. The domain organization of the protein can also be
probed using the COG database. Entering Rv1364c as a COGNITOR query assigns
its domains to four COGs (where the protein already belongs since it originates from
a completely sequenced genome): (1) Rv1364c 1-COG2202 ‘‘PAS/PAC domain,’’
(2) Rv1364c 2-COG2208 ‘‘Serine phosphatase RsbU, regulator of sigma subunit,’’
(3) Rv1364c 3-COG2172 ‘‘Anti-sigma regulatory factor (Ser/Thr protein kinase),’’
and (4) Rv1364c 4-COG1366 ‘‘Anti-anti-sigma regulatory factor (antagonist of anti-
sigma factor).’’ Thus, taken together, the results obtained using different methods
converge on an unprecedented four-domain architecture for Rv1364c that juxtaposes
the sensor PAS/PAC domain with all three components of the anti-sigma regulatory
system fused within a single protein (Fig. 15.9). The PAS/PAC domain is most likely
involved in sensing the energetic state of the cell, similarly to the recently charac-
terized Aer protein of E. coli (Taylor and Zhulin, 1999), whereas the phosphatase,
kinase, and phosphorylatable adapter domains are expected to efficiently transmit
this information to the downstream signal response machinery. Thus, we can tenta-
tively annotate Rv1364c protein as a complex regulator of sigma factor activity; the
exact implications of the unusual domain fusion remain to be investigated
experimentally.

Analysis of Conserved Gene Strings (Operons). An approach that is con-
ceptually similar to the analysis of gene fusions, but is more general, if less definitive,
involves systematic analysis of gene ‘‘neighborhoods’’ in genomes (Overbeek et al.,
1999). Because functionally linked genes frequently form operons in bacteria and
archaea, gene adjacency may provide important functional hints. Of course, many
functionally related genes never form operons, and, in many instances, adjacent genes
are not connected in any way. However, due to the lack of overall conservation of
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Figure 15.9. Elucidation of a protein’s domain architecture using SMART. The SMART out-

put for the Rv1364c protein is shown. The additional bar above the line shows the location

of the SpoIIAA(RbsV) domain that is not recognized by SMART.

gene order in prokaryotes, the presence of a pair of adjacent orthologous genes in
three or more genomes or the presence of three orthologs in a row in two genomes
can be considered a statistically meaningful event and can be used to infer potential
functional interaction for the products of these genes. The simplest current tool for
identification of conserved gene strings in any two genomes is available as part of
KEGG. It allows the user to select any two complete genomes (e.g., B. burgdorferi
and R. prowazekii) and look for all genes whose products are similar to each other
(e.g., have BLAST scores greater than 100) and are located within a certain distance
from each other (that is, separated by 0–5 genes). The results are displayed in a
graphical format illustrating the gene order and the presumed functions of gene
products. In the example shown in Fig. 15.10, the uncharacterized conserved protein
BB0788 from B. burgdorferi is similar to the RP042 protein of R. prowazekii, and
BB0789 is similar to RP043. These pairs of genes indeed have been identified as
orthologs in the COGs (COG0037 and COG0465, respectively), and examination of
the relative genomic locations of other members of these COGs shows that orthol-
ogous gene strings are present in the genomes of C. trachomatis (CT840-CT841),
C. pneumoniae (CPn0997-CPn0998), and T. maritima (TM0579-TM0580), whereas
in B. subtilis the corresponding genes (yacA and ftsH) are one gene apart. This
conservation of gene juxtaposition in phylogenetically distant bacteria is suggestive
of a functional connection. The functions of one of the genes in all these pairs are
well known, as they are clear orthologs of the E. coli ftsH (hflB) gene. This gene
encodes an ATP-dependent metalloprotease, which is responsible for the degradation
of short-lived cytoplasmic proteins and a distinct class of membrane proteins. By
association, BB0788 and its orthologs may be expected to also play some, perhaps
regulatory, role in the degradation of specific protein classes. The E. coli ortholog
of BB0788, MesJ, is annotated in the SWISS-PROT database as a putative cell cycle
protein. We have been unable to identify the source of this information. Nevertheless,
it is compatible with a functional (and possibly also physical) interaction between
MesJ and FtsH, which also has been implicated in cell division on the basis of genetic
data. In the COG database, MesJ and its orthologs (COG0037) are annotated as
‘‘Predicted ATPases of the PP-loop superfamily.’’ All these enzymes share a diag-
nostic sequence motif, which has been discovered previously in a number of ATP
pyrophosphatases (Bork and Koonin, 1994). This motif is clearly seen in the multiple
alignment accompanying the COG and in the ProDom entry PD000352. Therefore,
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Figure 15.10. The results of a search for conserved gene strings (operons) in Borrelia

burgdorferi (upper arrows) and Rickettsia prowazekii (lower arrows) using the KEGG gene

cluster tool. The arrows are color-coded according to the gene function. Genes without an

assigned function (all of the genes in this page) are shown in white.

by combining operon information with sequence-based prediction of the biochemical
activity, we hypothesize that MesJ and its orthologs are ATP-pyrophosphatases in-
volved in the regulation of FtsH-mediated proteolysis of specific bacterial proteins,
which may be important for cell division. Because a PP-loop superfamily ATPase
would comprise a novel class of cell division regulators, experimental verification
of this hypothesis will be of considerable interest.

APPLICATION OF COMPARATIVE GENOMICS—RECONSTRUCTION
OF METABOLIC PATHWAYS

To succinctly recap the genome analysis tools discussed above, we present here a
reconstruction of the glycolytic pathway in the archaeon Methanococcus jannaschii.
Metabolic reconstruction is one of the indispensable final steps of all genome anal-
yses and a natural convergence point for the data produced by different methods.
Glycolysis is perhaps the central pathway of cellular biochemistry as it becomes
obvious from a cursory exploration of the general scheme of biochemical pathways,
available in the interactive form on the ExPASy Web site. The names of all the
enzymes and metabolites on this map are hyperlinked and searchable. Entering ‘‘gly-
colysis’’ as the search term finds three fields, B5, F5 and U6, the first two of which
indicate the border areas of glycolysis, which actually stretches from C5 to E5. The
enzyme names are hyperlinked to the ENZYME database, which is now the official
site of the Enzyme Commission (IUPAC-IUBMB Joint Commission for Biochemical
Nomenclature). The ENZYME database lists names and catalyzed reactions for all

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



APPL ICAT ION OF COMPARATIVE GENOMICS — RECONSTRUCT ION OF METABOL IC PATHWAYS 383

the enzymes that have been assigned official Enzyme Commission (EC) numbers,
whether or not their protein sequences are known. Thus, clicking on the name ‘‘phos-
phoglucomutase’’ will bring up the corresponding page in the ENZYME database,
which will also indicate that the official name of this enzyme is glucose-6-phosphate
isomerase (EC 5.3.1.9).

Glycolysis Step-by-Step

1. Glucose-6-Phosphate Isomerase. Each page in the ENZYME database
lists all enzymes with the corresponding EC number that are included in the current
release of SWISS-PROT. There is, however, no entry for M. jannaschii under
glucose-6-phosphate isomerase; therefore, we will instead use the KEGG database.
On entering KEGG, one can go to Open KEGG, then to Metabolic Pathways, then
to Glycolysis. This takes one to an easy-to-navigate chart of compounds and enzymes
that participate in glycolysis and gluconeogenesis. The pull-down menu in the upper
left corner allows one to select the organism of choice. When Methanococcus jan-
naschii is selected, the boxes that indicate enzymes already recognized in this or-
ganism become shaded green. One can see that the box 5.3.1.9 is highlighted. Click-
ing on this box shows M. jannaschii protein MJ1605, which indeed can be
confidently identified as phosphoglucomutase (glucose-6-phosphate isomerase). In
the SWISS-PROT/TREMBL database, this protein (Q59000) is currently annotated
as ‘‘similar to prokariota glucose-6-phosphate isomerase.’’ To verify that MJ1605 is
indeed the ortholog of known glucose-6-phosphate isomerases, one can use the
COGs, WIT, or MBGD systems. For example, in the COG database, MJ1605 is the
only member of COG0166 from M. jannaschii; since this COG includes glucose-6-
phosphate isomerases from a number of species, identification of the M. jannaschii
protein appears to be reliable. This can be confirmed by examination of the multiple
sequence alignment associated with this COG, which shows a particularly high sim-
ilarity between MJ1605 and phosphoglucoisomerases from Thermotoga maritima and
B. subtilis. The WIT database will show that MJ1605 is even more similar to the
(predicted) glucose-6-phosphate isomerases of Campylobacter jejuni and Streptococ-
cus pyogenes. Collectively, this evidence leaves no doubt that we have identified the
correct M. jannaschii protein.

2. Phosphofructokinase. The next glycolytic enzyme, phosphofructokinase
(EC 2.7.1.11), illustrates the opportunities and limitations of metabolic reconstruction
based on comparative genomics. The most common version of this enzyme, PfkA,
uses either ATP (in bacteria and many eukaryotes) or pyrophosphate (primarily in
plants) as the phosphate donor. In addition, E. coli encodes a second version of this
enzyme, PfkB, which is unrelated to PfkA and instead belongs to the ribokinase
family of carbohydrate kinases. All the databases we can use agree that there is no
readily identifiable candidate for this activity in M. jannaschii. Indeed, the KEGG
chart for M. jannaschii does not show this enzyme as predicted, WIT does not
suggest any candidates for this function, and the COG database does not show any
archaeal members in its COG0205 (6-phosphofructokinase) or COG1105 [fructose-
1-phosphate kinase and related fructose-6-phosphate kinase (PfkB)] entries. Ther-
mophilic archaea possess a distinct, ADP-dependent phosphofructokinase, the gene(s)
for which has been recently identified in Pyrococcus furiosus (Tuininga et al., 1999).
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An ortholog of this protein is readily identifiable in other Pyrococci and in M. jan-
naschii (MJ1604) but not in any other archaeal or bacterial species; its sequence
shows no detectable similarity to other kinases. This is a clear case of nonorthologous
gene displacement; due to the limited phylogenetic distribution of this novel Pfk, the
candidate protein in M. jannaschii could not have been detected by computational
means until its ortholog had been experimentally characterized in P. furiosus.

3. Aldolase. The next glycolytic enzyme, fructose-1,6-bisphosphate aldolase
(EC 4.1.2.13), is found in two substantially different variants, namely, metal-
independent (class I) and metal-dependent (class II) aldolases in bacteria and eukar-
yotes. There is no ortholog of either of these in M. jannaschii. Instead, predicted
archaeal aldolases comprise COG1830 (‘‘DhnA-type fructose-1,6-bisphosphate al-
dolase and related enzymes’’), which includes two M. jannaschii proteins, MJ0400
and MJ1585. This COG includes orthologs of the recently described class I aldolase
of E. coli, which is only very distantly related to the typical class I enzymes (Galperin
et al., 2000). As indicated above, the phylogenetic patterns for typical bacterial class
II aldolase (COG0191) and this DhnA-type aldolase (COG1830) complement each
other, with the exception that both types of aldolases are encoded by E. coli and A.
aeolicus. This complementarity allows one to predict that the DhnA-type enzyme
functions as the only fructose-1,6-bisphosphate aldolase in chlamydiae and archaea,
including M. jannaschii.

4–6. Triosephosphate Isomerase, Glyceraldehyde-3-Phosphate De-
hydrogenase, and Phosphoglycerate Kinase. These enzymes catalyze the next
three steps of glycolysis and are nearly-uniformly represented in all organisms. The
M. jannaschii candidates for these activities (MJ1528, MJ1146, and MJ0641, re-
spectively) can be easily identified by a BLAST search. Accordingly, all major da-
tabases converge on these functional assignments.

7. Phosphoglycerate Mutase. The activity of phosphoglycerate mutase (EC
5.4.2.1) has been experimentally demonstrated in a close relative of M. jannaschii,
but there are no obvious candidate proteins to carry out this function. As a result,
KEGG does not show this enzyme as encoded in the M. jannaschii genome. WIT
does suggest a candidate protein (MJ1612 or RMJ05975 in WIT) but annotates it as
‘‘phosphonopyruvate decarboxylase.’’ Indeed, WIT shows only limited sequence sim-
ilarity of this protein to the phosphoglycerate mutases from the mycoplasmas and
H. pylori, whereas all close homologs of MJ1612 seem to be phosphonopyruvate
decarboxylases. Finally, a search of the COG database for ‘‘phosphoglycerate mu-
tase’’ retrieves three COGs, only one of which, COG1015 (phosphopentomutase/
predicted phosphoglycerate mutase and related enzymes), contains archaeal mem-
bers, including two M. jannaschii proteins, MJ1612 and MJ0010. A detailed analysis
shows that both of them could possess phosphoglycerate mutase activity (Galperin
et al., 1998). The definitive identification of the phosphoglycerate mutase in M.
jannaschii awaits direct biochemical studies.

8–9. Enolase and Pyruvate Kinase. In M. jannaschii, these enzymes are
readily identified through strong sequence similarity to the corresponding bacterial
orthologs. As a result, there is general consensus on assigning these functions to
MJ0232 and MJ0108, respectively. Thus, although no glycolytic enzymes has been
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experimentally characterized in M. jannaschii, computational analysis provides for
the identification of all of them, with uncertainty remaining with regard to just one
step.

Glycolysis in H. pylori? A Cautionary Note. Metabolic reconstruction
based on genome analysis requires considerable caution to be exerted with regard to
the plausibility of functional predictions in the general context of the biology of the
organism in question. So as to not depart from glycolysis, consider the case of
phosphofructokinase in the gastric ulcer-causing bacterium, Helicobacter pylori. This
organism lacks a homolog of PfkA but does encode a close homolog of PfkB. Ac-
cordingly, WIT suggests this PfkB homolog, HP0858, as a candidate for the phos-
phofructokinase function in H. pylori. Perusal of the COG database, however, sug-
gests a different solution, since HP0858 consists of two distinct domains, one of
which indeed belongs with PfkB and other sugar kinases (COG0524), whereas the
other one is predicted to be a nucleotidylyltransferase (COG0615). Given this domain
architecture, it appears most likely that this protein is an ADP-heptose synthetase,
an enzyme of peptidoglycan biosynthesis. A simple analysis of the biology of H.
pylori as an acid-tolerant bacterium shows that it is likely to use gluconeogenesis,
but not glycolysis, which makes phosphofructokinase unnecessary for this organism.
Thus, the assignment of this activity to HP0858, which appeared to be statistically
supported, is, in all likelihood, biologically irrelevant. Examination of this protein’s
domain architecture could be the first indication of its role in a process other than
glycolysis, with biological considerations further supporting this interpretation.

AVOIDING COMMON PROBLEMS IN GENOME ANNOTATION

Due to its intrinsic complexity, genome annotation defies full automation and is
inherently errorprone. Accidental error rate can be minimized only through further
development of the semiautomated annotation systems and the appropriate training
of annotators. There are, however, several sources of systematic error that plague
genome analysis. Awareness of these could help improve the quality of genome
annotation (Brenner, 1999; Galperin and Koonin, 1998).

Error Propagation and Incomplete Information in Databases

Sequence databases are prone to error propagation, whereby erroneous annotation of
one protein causes multiple errors as it is used for annotation of new genomes.
Furthermore, database searches have the potential for noise amplification, so that the
original annotation could have involved a minor inaccuracy or incompleteness, but
its transfer on the basis of sequence similarity aggravates the problem and eventually
results in outright false functional assignments (Bhatia et al., 1997). These aspects
of current sequence databases make the common practice of assigning gene function
on the basis of the annotation of the best database hit (or even a group of hits with
compatible annotations) highly error-prone. Time- and labor-consuming as this
may be, adequate genome annotation requires that each gene be considered in the
context of both its phylogenetic relationships and the biology of the respective or-
ganism, hence the rather disappointing performance of automated systems for ge-
nome annotation. There are numerous reasons why functional annotation may be
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wrong in the first place, but two main groups of problems have to do with database
search methods and with the complexity and diversity of the genomes themselves.

False Positives and False Negatives in Database Searches

It is customary in genome annotation to use a cutoff for ‘‘statistically significant’’
database hits. It can be expressed in terms of the false-positive expectation (E) value
for the BLAST searches and is set routinely at values such as E = 0.001 or E =
10�5. The problem with this approach is that the distribution of similarity scores for
evolutionarily and functionally relevant sequence alignments is very broad and that
a considerable fraction of them fail the E-value cutoff, resulting in undetected rela-
tionships and missed opportunities for functional prediction (false negatives). Con-
versely, spurious hits may have E-values lower than the cutoff, resulting in false
positives. The latter is most frequently caused by compositional bias (low-complexity
regions) in the query sequence and in the database sequences. Clearly, there is a
trade-off between sensitivity (false-negative rate) and selectivity (false-positive rate)
in all database searches, and it is particularly difficult to optimize the process in
genome-wide analyses. There is no single recipe to circumvent these problems. To
minimize the false-positive rate, appropriate procedures for filtering low-complexity
sequences are critical (Wootton and Federhen, 1996). Filtering using the SEG pro-
gram is the default for Web-based BLAST searches, but additional filtering is justified
for certain types of proteins. For example, filtering of predicted nonglobular domains
using SEG with specifically adjusted parameters and filtering for coiled-coil domains
using the COILS2 program is one way to minimize the false positive rate. Minimiz-
ing the false-negative rate (that is, maximizing sensitivity) is an open-ended problem.
It should be kept in mind that a standard database search (e.g., using BLAST) with
the protein sequences encoded in the given genome as queries is insufficient for an
adequate annotation. To increase the sensitivity of genome analysis, it should be
supplemented by other, more powerful methods such as screening the set of protein
sequences from the given genome with preformed profile libraries (see above).

Genome, Protein, and Organismal Context as a Source of Errors

As discussed above, protein domain architecture, genomic context and an organism’s
biology may serve as sources of important, even if indirect, functional information.
However, those same context features, if misinterpreted, may become one of the
major sources of error and confusion in genome annotation. Standard database search
programs are not equipped with the means to explicitly address the implications of
the multidomain organization of proteins. Therefore, unless specialized tools such as
SMART or COGs are employed and/or the search output is carefully examined,
assignment of the function of a single-domain protein to a multidomain homolog
and vice versa becomes frequent in genome annotation. Promiscuous, mobile do-
mains are particularly likely to wreak havoc in the annotation process, as demon-
strated, for example, by the proliferation of ‘‘IMP-dehydrogenase-related proteins’’
in several genomes. In reality, most or all of these proteins (depending on the ge-
nome) share with IMP dehydrogenase the mobile CBS domain but not the enzymatic
part (Galperin and Koonin, 1998).

As discussed above, it is also critical for reliable genome annotation that the
biological context of the given organism is taken into account. In a simplistic ex-
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ample, it is undesirable to annotate archaeal gene products as nucleolar proteins,
even if their eukaryotic homologs are correctly described as such. As a general guide
to functional annotation, it should be kept in mind that current methods for genome
analysis, even the most powerful and sophisticated of them, facilitate, but do not
supplant the work of a human expert.

CONCLUSIONS

With an increasing number of complete genome sequences becoming available and
specialized tools for genome comparison being developed, the comparative approach
is becoming the most powerful strategy for genome analysis. It seems that the future
should belong to databases and tools that consistently organize the genomic data
according to phylogenetic, functional, or structural principles and explicitly take
advantage of the diversity of genomes to increase the resolution power and robust-
ness of the analysis. Many tasks in genome analysis can be automated, and, given
the rapidly growing amount of data, automation is critical for the progress of gen-
omics. This being said, the ultimate success of comparative genome analysis and
annotation critically depends on complex decisions based on a variety of inputs,
including the unique biology of each organism. Therefore, the process of genome
analysis and annotation taken as a whole is, at least at this time, not automatable,
and human expertise is necessary for avoiding errors and extracting the maximum
possible information from the genome sequences.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 15

GENERAL

NCBI http://www.ncbi.nlm.nih.gov/
EBI http://www.ebi.ac.uk/
DDBJ http://www.ddbj.nig.ac.jp/
ExPASy http://www.expasy.ch/

GENOME PROJECTS

GenBank Entrez Genomes
division

http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/
bact.html

The Institute for Genome
Research (TIGR)
Microbial Database

http://www.tigr.org/tdb/mdb/mdb.html

Integrated Genomics Inc. http://wit.integratedgenomics.com/GOLD
NHGRI List of Genetic

and Genomic Resources
http://www.nhgri.nih.gov/Data

The Sanger Centre http://www.sanger.ac.uk
Washington University-St.

Louis
http://genome.wustl.edu

Ohlahoma University http://www.genome.ou.edu/
Microbial Genome

Database
http://mbgd.genome.ad.jp



388 COMPARATIVE GENOME ANALYS IS

GENOME ANALYSIS SYSTEMS

MAGPIE http://genomes.rockefeller.edu/magpie
GeneQuiz http://jura.ebi.ac.uk:8765/ext-genequiz/
PEDANT http://pedant.mips.biochem.mpg.de
Clusters of Orthologous

Groups of Proteins
(COGs)

http://www.ncbi.nlm.nih.gov/COG

Kyoto Encyclopedia of
Genes and Genomes
(KEGG)

http://www.genome.ad.jp/kegg

What Is There (WIT) http://wit.integratedgenomics.com/IGwit/

DATABASES AND TOOLS FOR ANALYSIS OF PROTEIN DOMAINS

ProDom http://protein.toulouse.inra.fr/prodom.html
Pfam http://pfam.wustl.edu
SMART http://smart.embl-heidelberg.de
Protein modules http://www.bork.embl-heidelberg.de/Modules/

sinput.shtml
CDD search http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

INDIVIDUAL MICROBIAL GENOME DATABASES

Escherichia coli
University of Wisconsin-

Madison
http://www.genetics.wisc.edu

Nara Institute of
Technology

http://ecoli.aist-nara.ac.jp

EcoCyc http://ecocyc.doubletwist.com
EcoGene http://bmb.med.miami.edu/ecogene
Colibri http://bioweb.pasteur.fr/GenoList/Colibri
RegulonDB http://www.cifn.unam.mx/Computational Biology/

regulondb
E. coli Genetic Stock

Center (CGSC)
http://cgsc.biology.yale.edu

Mycoplasma genitalium
Mycoplasma genome http://www.zmbh.uni-heidelberg.de/M pneumoniae/
Essential genes http://www.sciencemag.org/feature/data/1042937.shl

Bacillus subtilis
Subtilist http://bioweb.pasteur.fr/GenoList/SubtiList
Sporulation genes http://www1.rhbnc.ac.uk/biological-sciences/cutting
Yeast
Saccharomyces Genome

Database (SGD)
http://genome-www.stanford.edu/Saccharomyces

MIPS Yeast Database http://www.mips.biochem.mpg.de/proj/yeast
Yeast Protein Database

(YPD)
http://www.proteome.com/databases

Promoter Database http://cgsigma.cshl.org/jian
TRIPLES database http://ygac.med.yale.edu
Cell Cycle Expression

Database
http://genomics.stanford.edu
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Metabolic reconstruction
Biochemical pathways map http://www.expasy.ch/cgi-bin/search-biochem-index
ENZYME http://www.expasy.ch/enzyme/

PROBLEMS FOR ADDITIONAL STUDY

The reader who decides to address these problems is expected to use the tools de-
scribed in this chapter including general-purpose ones such as different versions of
BLAST. In most cases, it is advisable to apply more than one method when trying
to solve a problem. The reader should keep in mind that some of the problems may
not have a single ‘‘correct’’ solution but rather one or perhaps even two or three
most likely solutions.

1. Three archaeal species, M. jannaschii, M. thermoautotrophicum, and A. fulgidus,
typically are found in COGs together. The fourth species, P. horikoshii, is fre-
quently missing from these COGs (see the table of co-occurrence of genomes
in COGs, which is available on the COG Web site). How do you explain this?
What kind of genes are absent from P. horikoshii?

2. Which bacterial species share the greatest number of genes with Archaea, if
measured as the ratio of the shared genes (COGs) to the total number of genes
in the bacterial genome? Use the table of co-occurrence of genomes in COGs
to identify the trend. Once it is clear, discuss different explanations for the
observations.

3. What is the function of the E. coli HemK protein and its orthologs? Explain the
basis for your conclusion and possible alternatives.

4. How many IMP dehydrogenases are there in A. fulgidus? In A. aeolicus? What
are the domain organizations and functions of ‘‘IMP dehydrogenase-related’’
proteins?

5. Methanobacterial protein MTH1425 is annotated in GenBank as O-sialoglyco-
protein endopeptidase. Describe the domain organization of this protein. Should
you detect an unexpected domain fusion, could it be due to a sequencing error?
What are the possible functional implications?

6. What are the functions of the following proteins:

a) MJ1612
b) MJ1001
c) E. coli NagD

7. Describe the domain architectures and functions and of the following proteins:

a) E. coli YfiQ
b) B. subtilis YtvA
c) slr1759
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8. Suggest a comparative-genomic approach to search for new targets for anti-ulcer
drugs; which of the identified proteins could be also potential targets for anti-
tuberculosis drugs?

9. The Glu-tRNAGln amidotransferase consists of A, B, and C subunits. Compare
the phylogenetic patterns for these. How can you explain the differences? Test
some of the explanations. What is unusual about the Glu-tRNAGln amidotrans-
ferase complex of the mycoplasmas?

10. Families of orthologous proteins involved in translation frequently contain one
representative of each of the bacterial and archaeal genomes, but two members
from yeast. How would you explain this pattern? Use at least two lines of
evidence in support of your explanation.
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LARGE-SCALE GENOME ANALYSIS
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INTRODUCTION

The availability of complete or near-complete catalogs of genes for organisms of
increasing complexity has created opportunities for studying numerous aspects of
gene function at the genomic level. Gene expression, defined by steady-state levels
of cellular mRNA, has emerged as the first aspect of gene function amenable to
genome-scale measurement with readily-available technology. It is now possible to
carry out massively parallel analysis of gene expression on tens of thousands of
genes from a given sample. For model organisms such as S. cerevisiae, total genome
expression analysis is now routine (Lashkari et al., 1997; Wodicka et al., 1997). For
higher eukaryotes, expression measurements that cover a significant proportion of
the genome are currently possible, and complete genome expression analysis appears
to be an achievable goal. Moreover, this analysis can be repeated on multiple sam-
ples, allowing for the statistical analysis of the behavior of genes across a large
number of conditions. The massive quantities of data generated by this type of anal-
ysis have created new bioinformatics challenges, but these obstacles are well worth
overcoming as this type of information has already begun to provide new insights
into genome function. So far, this promise has been best realized in S. cerevisiae, in
which whole-genome measurements have been used to examine fundamental pro-
cesses such as the cell cycle and the roles of specific transcription factors (DeRisi
et al., 1997; Cho et al., 1998; Spellman et al., 1998; Holstege et al., 1998; Chu et
al., 1998; Roberts et al., 2000). Although significantly more difficult, similar prob-
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lems are now being productively approached in mammalian systems (DeRisi et al.,
1996; Amundson et al., 1999; Khan et al., 1999; Iyer et al., 1999; Feng et al., 2000).
In addition to their impact on fundamental questions in biology, these technologies
are being used to probe the complexity of human diseases, particularly cancer (Khan
et al., 1998; Golub et al., 1999; Alon et al., 1999; Alizadeh et al., 2000; Ross et al.,
2000; Scherf et al., 2000; Bittner et al., 2000).

Access to large numbers of measurements allows for the statistical analysis of
gene expression across multiple samples. In the broadest sense, this opens the pos-
sibility of identifying patterns of coregulation among genes, which, in turn, reflects
underlying regulatory mechanisms and functional interrelationships. Because mam-
malian genomes are mainly populated by genes of unknown function, it is theoret-
ically possible to assign anonymous genes to pathways or at least to generate hy-
potheses as to function by identifying the circumstances that alter their expression.
Computational techniques for processing gene expression data are rapidly evolving
as many investigators attack the problem from diverse perspectives. The following
discussion will present an overview of the technologies for generating and processing
expression data, with an emphasis on those techniques and databases that are publicly
available.

TECHNOLOGIES FOR LARGE-SCALE GENE EXPRESSION

Measurements

Two broad categories of technology have emerged that can provide large-scale ex-
pression data. The first is sequence-based, as exemplified by the serial analysis of
gene expression (SAGE) (Velculescu et al., 1995). An alternative hybridization ap-
proach is generically termed microarray hybridization (Schena et al., 1995; Lockhart
et al., 1996). These two technologies have distinct advantages and disadvantages. In
SAGE, a short unique sequence tag is generated from each gene by a PCR-based
strategy (Fig. 16.1). Concatemerized tags are sequenced, and the abundance of these
tags provides a measurement of the level of gene expression in the starting material.
As illustrated below, SAGE tags can be linked to a specific transcript designation in
an appropriate database of unique transcripts, such as UniGene. Thus, SAGE is
essentially an accelerated technique for cDNA library sequencing. Because it is se-
quence intensive, SAGE is not well suited to the analysis of large numbers of sam-
ples. However, because SAGE does not require a priori knowledge of the pattern of
gene expression in a given mRNA source, the same biochemical and bioinformatics
procedure can be applied to any sample, given the availability of the appropriate
reference database of SAGE tags.

By contrast, in the microarray strategy, labeled cDNAs (the ‘‘target’’) are hy-
bridized to an array of DNA elements (the ‘‘probes’’) affixed to a solid support (Fig.
16.2). The array elements can either be synthetic oligonucleotides or larger DNA
fragments. High densities are achievable and enable the measurement of over 10,000
genes with either type of microarray. In contrast to SAGE, microarray analysis can
only measure the expression of genes that correspond to the sequences included in
the array fabrication process. Therefore, complete genome expression analysis by
microarrays requires the construction of complete microarrays. This difficulty is
counterbalanced by the ease of individual experiments that enable the analysis of
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Figure 16.1. Serial Analysis of Gene Expression (SAGE) depends on the generation of a

tag from the 3� end of an mRNA. Tags are concatemerized and sequenced. These data are

compared with a database of tags linked to individual transcripts to generate the frequency

of each tag in the library, a measure of the expression level for that gene. (See color plate.)

numerous samples. Microarray expression databases are being developed that contain
information derived from hundreds or even thousands of samples.

Informatics Aspects of Microarray Production

For organisms with completely sequenced and well-annotated genomes such as S.
cerevisiae, the production of arrays is relatively straightforward. By selecting a pri-
mer pair that amplifies each ORF from genomic DNA, a set of PCR products en-
compassing the complete genome can be produced. Primer pairs for this purpose are
commercially available. Likewise, a series of oligonucleotide array elements can be
selected from each ORF. More complex genomes, which may not yet be fully an-
notated, are more problematic. The consensus at this juncture is to utilize a catalog
of genes such as UniGene, generated by reduction of EST sequencing data to unique,
clustered transcripts. Clustered ESTs can then be used to predict oligonucleotide
sequences for array fabrication or to select a representative EST clone for each
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Figure 16.2. The process of microarray hybridization using printed DNA probes. A robotic

printer deposits DNA in a regular array on a series of glass slides. After they are processed,

the slides are hybridized to a mixture of two cDNA pools derived from test and reference

samples that have been labeled with spectrally distinct fluorochromes. After stringency

washes, the microarray is scanned in a laser-scanning device, and the image is processed

to generate numerical data. (See color plate.)

cluster; in turn, this is then used to generate a cDNA fragment by PCR for deposition
on a microarray. This approach is intrinsically limited by the quality and complete-
ness of the EST database, as well as the intrinsic instability of EST cluster desig-
nations that evolve along with the EST sequencing projects. A further practical dif-
ficulty unique to the cDNA microarray strategy is brought about by the requirement
of this system for a physical clone. Recovery of low-redundancy clones may prove
difficult due to problems intrinsic to the handling of arrayed libraries. Ideally, EST-
based approaches will be supplemented (or even supplanted) by gene catalogs based
on genomic sequence that will ultimately provide stable databases for array
construction.

In order for the information generated by expression analysis to be useful, it is
necessary for each EST to be linked to as much biological information as possible.
The accessibility and quality of this information depend on the organism. Because
the interpretation of results often relies on the expertise of an individual investigator,
issues surrounding gene nomenclature and annotation are significant. For example,
an investigator may be familiar with a gene by its common literature alias, but it is
cataloged under a more cryptic ‘‘official’’ name. ESTs from known genes may fail
to be annotated as genes altogether if the available sequence is of insufficient quality
to pass the filters required for cluster assembly with known mRNAs. Fortunately,
mammalian gene catalogs such as NCBI’s LocusLink are being developed that at-
tempt to address these problems.

What is Actually Measured?

A detailed review of array technologies is beyond the scope of this chapter, but the
user of expression data must have an understanding of the types of measurement
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reported by various expression platforms and incorporated in databases. To under-
stand the options available to mine information in expression data, it is essential to
understand the measurements generated by the various technologies presently avail-
able. Ideally, an expression measurement would be converted into copies of a given
mRNA per cell. Unfortunately, no technology measures this value directly. The va-
riety of expression measurement platforms in use creates problems in the cross-
comparison of data generated by technologies and in some cases even within a given
technology. For example, SAGE measures the abundance of a particular tag. The
validity of this number will depend on the number of tags sequenced. A sample of
1,000 tags will be much less reliable than a sample of 20,000 tags. Hybridization-
based systems measure the abundance of cDNAs in a synthetic population of nucleic
acids, which is a representation of the mRNA composition of the cell. Variations in
biochemical manipulations, hybridization efficiency across array elements, and cross-
hybridization may distort the accuracy of measurements. This calls for caution when
comparing data generated by different techniques. For example, most synthetic oli-
gonucleotide array assays are based on hybridization of a representation synthesized
by amplification from a cDNA template that has been engineered to contain a phage
promoter. In contrast, most fluorescent cDNA microarray assays use direct incor-
poration of tagged nucleotides in the cDNA prepared by reverse transcription of
mRNA from the source of interest.

There are few data that directly compare the results of these three assays on the
same samples. Moreover, abundance measurements from oligonucleotide array as-
says are reported as expression levels on a continuous scale. In contrast, printed
fluorescent cDNA arrays require the use of a two-color system incorporating a ref-
erence mRNA to compensate for variations in the performance of individual array
elements and array slides. Although the intensities of each channel are measured and
reported, the most robust measurement is expressed as the normalized ratio of in-
tensities for each gene. Radioactive hybridization to cDNA microarrays printed on
nylon membranes presents additional problems because only a single channel is
measured in a given hybridization, and normalization must rely on cross-comparison
of experiments. In addition, expression scales vary in an individual way from li-
nearity and have distinct thresholds and saturation levels depending on the technol-
ogy and instrumentation utilized. In principle, measurements from these various sys-
tems could be converted to a common format, but as yet there are no standards for
such a conversion. To be certain that computational techniques are appropriately
applied, users of array expression databases and experimentalists venturing into mi-
croarray research need to be aware of the characteristics of the data generated by
the particular experimental platform in use.

Aspects of the primary analysis of array data are illustrated for printed cDNA
microarrays in the following example. This methodology achieves accurate ratio
measurements of the relative abundance of each mRNA in the test and reference
sources by combining the test cDNA pool with a reference cDNA labeled with a
spectrally distinct fluorophore (Fig. 16.2). This is accomplished by obtaining images
of the hybridized microarray with a two-channel laser-scanning device for analysis
with software (such as DeArray, ScanAlyze, CrazyQuant, or proprietary software
bundled with scanner instruments) that measures the signal intensity over back-
ground, normalizes the two channels, calculates ratios, generates overall array sta-
tistics, and outputs a pseudocolor image and data spreadsheet. This process is illus-
trated here using DeArray, a module of Array Suite. Examining the scatter plot of
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Figure 16.3. (a) Scatter plot illustrating the fluorescent intensity measurements in two

channels plotted against each other. Note that most measurements fall on the diagonal.

Deviation from this pattern at low intensity indicates that the data are skewed due to

nonspecific fluorescence in one channel. For analysis, the data should be filtered to exclude

these points. (b) After data are filtered for intensity and a minimum spot size (to exclude

spurious measurements), an outlier list can be displayed. A spreadsheet containing the data

from the entire microarray can also be saved.

one channel versus the other (Fig. 16.3) is extremely useful. In most hybridizations,
the majority of genes will show minimal differences, so the scatter plot would then
be centered on the diagonal line. Deviation from this behavior, as illustrated in the
example at lower intensities, indicates the signal intensity level at which the data
should be filtered. In other cases, the scatter plot might simply tend to widen as
intensities drop, again indicating that confidence in ratio measurements declines with
intensity. A similar scatter plot constructed from single-channel data from two one-
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color or radioactive hybridizations is a useful adjunct to the analysis of data generated
from these platforms. The analysis of a single microarray experiment is straightfor-
ward but not usually very illuminating. The real power of high-throughput gene
expression technologies emerges when multiple experiments are subjected to com-
parison and statistical analysis. To accomplish this goal, expression data must be
stored in an appropriate database.

COMPUTATIONAL TOOLS FOR EXPRESSION ANALYSIS

Public Databases

At the present time, the only centralized, publicly maintained repositories of high-
throughput gene expression data, aside from EST sequencing databases, contain
SAGE data. A single, central repository for all expression data comparable to
GenBank is presently not available. This situation may change if standards for the
uniform reporting of expression data are adopted. Many useful databases containing
the results of various studies are maintained by individual laboratories listed at the
end of this chapter.

NCBI maintains a SAGE database called SAGEmap, currently containing data
from 69 libraries (Lal et al., 1999). These data can be searched either for data on
individual genes or for lists of genes differentially expressed between libraries or
pools of libraries. Given a cDNA sequence (which must include the 3� end), the user
can search for its representation in a number of SAGE libraries. SAGE library data
are downloadable, and a submission tool for SAGE laboratories is also available. To
search the SAGEmap database for data on a given gene using the ‘‘virtual Northern
tool,’’ the target cDNA sequence is submitted and possible tags are returned (Fig.
16.4). As in the example, one gene may contain multiple tags. Linked to this tag is
a display indicating the relative abundance of this tag in a SAGE library with a
proportional gray scale image providing a ‘‘virtual Northern’’ (Fig. 16.5). In addition,
the data are linked to the UniGene cluster(s) corresponding to this tag. The UniGene
designation provides a link to an abundance table of all tags for this particular
UniGene entry (Fig. 16.6).

Instead of searching for individual genes, SAGEmap can be queried using x-
Profiler, a tool that carries out a ‘‘virtual subtraction’’ to develop lists of tags that
are present in one library or group of libraries at a differing frequency from a ref-
erence set. After the user selects the libraries to compare (Fig. 16.7a) and the ratio
cutoff between the libraries, xProfiler returns a list (Fig. 16.7b) of differentially
expressed genes in the two sources that can be downloaded for further analysis. It
should be noted that SAGE data are subject to error, primarily related to sequencing
error in the SAGE libraries and in the sequence databases that are used to define
gene clusters. The impact of this error is inversely proportional to the number of
times a given tag is counted. Tags that occur only once in the library, therefore,
represent the least reliable data. xProfiler can be applied in essentially the same
fashion to provide a virtual subtraction of EST sequence data compiled as part of
the Cancer Genome Anatomy Project (CGAP). Another tool available for screening
CGAP and dbEST library data, digital differential display (DDD), provides a gray-
scale output indicating the relative abundance of statistically significant differentially
expressed genes.
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Figure 16.4. Searching SAGEmap for tags representing a given gene (‘‘virtual Northern’’).

The example illustrates the cDNA sequence of human p53 (TP53). Potential tags and their

positions in the p53 mRNA are returned.

Most public microarray data are accessible only through individual laboratory
Web sites, many of which are listed at the end of this chapter. It can be anticipated
that unified public expression databases will be developed once issues as to data
format and cross-platform comparison are resolved. One of the preliminary efforts
currently under development and aimed at the public use and dissemination of gene
expression data is the NCBI Gene Expression Omnibus (GEO). This database is
intended to house different types of expression data, including oligonucleotide and
cDNA microarray data, hybridization filter data, and SAGE data. Although this plat-
form will undoubtedly evolve as more and more gene expression information be-
comes available, GEO is currently envisioned as having four primary entities:

1. Submitter, which contains contact and login information on the submitter,

2. Platform, which contains information on the physical reagents used in the
actual experiment,

3. Sample, which deals with the mRNA samples in question and the data gen-
erated from the actual experiment, and
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Figure 16.5. Following the link from a given tag in the virtual Northern results (Fig. 16.4)

provides a display of the abundance of the tag in the database with a gray scale ‘‘virtual

Northern’’ to facilitate scanning the long list.
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Figure 16.6. The complete list of tags from the virtual Northern results (Figs. 16.4 and

16.5) can also be used to query the database, finding the occurrence of their tags in all

SAGE libraries.

4. Series, which houses information on collections of samples and the relation-
ship between the samples. The series entity will also contain the results of
any data clustering.

Even when public databases for microarray expression data are established, in-
vestigators who are setting up microarray laboratories soon learn that data storage is
an essential requirement for their research. Sources for freely available software for
expression databases are listed at the end of this chapter. One example of such a
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Figure 16.8. Ratio histogram of a microarray hybridization retrieved from ArrayDB.

database is ArrayDB (Masiello et al., 1999). ArrayDB, which requires either a Sybase
or Oracle client, was designed for printed microarray data and allows the storage of
experimental data and simple data queries. ArrayDB is designed to store a database
of clones used for array fabrication and the data output from individual hybridization
experiments. Links to the UniGene database are maintained. Data can be downloaded
or viewed through a Web-based Java applet. On entry to the database, one selects
the experiment to view from a pull-down menu and, on loading, a histogram of ratios
appears (Fig. 16.8). This window contains several selectable options for viewing
portions of the data. Importantly, the data can be filtered according to intensity and
spot size to remove insignificant measurements from subsequent analyses. On sub-
mitting a query, a new window opens providing an image of the array and a table
of genes that match the query results (Fig. 16.9). The image is useful because it
allows confirmation that a given value is not the consequence of hybridization artifact
such as a scratch or dye precipitate. The table contains the relevant intensity, spot
size, and ratio data for each gene meeting the search criteria. Clicking on the Clone
ID field in this view opens a window containing data on the clone printed at that
point on the array with links to relevant databases including UniGene, OMIM,
GenBank, and GeneCards, which are useful for acquiring functional information
about a given gene. Additional features of ArrayDB include the ability to see a list
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Figure 16.9. In ArrayDB, query for outliers returns an image of the microarray, with out-

lying genes highlighted in the image and listed below the image, along with intensity data

and clone identifiers. (See color plate.)

of biological pathways that gene products of interest are involved in; the positions
of these gene products within known biological pathways are also shown graphically
using image maps from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Investigators involved in microarray research soon learn the critical importance of
rapid access to descriptive information on gene function. Most of the genes of interest
in individual experiments are unfamiliar, and an efficient mechanism for obtaining
a synopsis of gene function is essential to the interpretation of microarray data.

Central storage of microarray data with investigator access via individual work
stations is clearly the preferred mode for information management for centers gen-
erating significant quantities of microarray data and ultimately will be required for
public distribution of expression data. However, it is important to note that projects
of significant size can be accommodated in low-cost databases maintained on desktop
computers. As an example of this approach, FileMaker Pro templates for cDNA
microarray data can be downloaded from the NHGRI microarray site. Projects of up
to 50 experiments can easily be accommodated. Although, as discussed below, the
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Figure 16.10. Display of microarray results retrieved from FileMaker Pro. This example

illustrates the results of a query for genes upregulated in a series of cancer cell lines with

ratios coded by a red to green color map (Khan et al., 1998). (See color plate.)

statistical analysis of expression data with specialized tools is important, the value
of simple relational databases should not be underestimated. Even in a database such
as FileMaker Pro, it is possible to define patterns of genes expressed consistently
across experiments and possible to generate useful graphs displaying numerical data
as color blocks (Fig. 16.10). This type of graphic display is much easier to scan by
eye than a large table of numbers. Reanalyzing a data set using various filters is
greatly facilitated by placing the entire set of experiments in a searchable database.
Various settings can be tested until the output is optimized.

Initial processing of data requires the application of significance filters to the
raw data set so that only meaningful measurements enter into downstream analysis.
This requires the application of a sensitivity threshold to remove genes that have not
been measured accurately. The importance of this step was illustrated earlier in this
chapter. Individual laboratories will need to establish thresholds applicable to their
own data, and investigators should exercise caution when using publicly accessible
databases to be certain whether the data has been filtered for a detection threshold.
Of course, there is no fixed cutoff that must be applied to all expression data, but,
in general, as the threshold is lowered toward the background noise of an assay, the
quality of the data will diminish. To maximize the yield of information from an
experiment and to simplify data displays by removing uninformative genes, in most
cases it is also useful to apply a filter that removes genes that, although measured
accurately, do not fluctuate across a series of experiments.

Once an appropriately filtered data set has been extracted, the data are ready for
analysis. In some instances, simple searches may be sufficient to generate lists of
genes that are expressed under a given condition. For example, from a set of exper-
iments in which cells have been treated with a drug or transfected with a gene,
simple searching and sorting of the filtered data will yield a list of genes induced or
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Figure 16.11. Portion of a scatter plot matrix illustrating pairwise plots of log ratios across

a series of microarray experiments. Each scatter plot is used to calculate a Pearson corre-

lation coefficient between the two sets of measurements (Khan et al., 1998).

repressed by the treatment. However, the limitations of simple searches are quickly
reached with larger data sets involving multiple samples or conditions and compu-
tational techniques for data organization are essential.

Cluster Analysis

The goal of cluster analysis is to reveal underlying patterns in data sets that contain
hundreds of thousands of measurements and to present this data in a user-friendly
manner. Ideally, patterns of similarities and difference among samples are identified
and genes are coregulated in distinct patterns. A number of tools for clustering have
been developed, which are freely available. In general, these are based on conven-
tional statistical techniques widely used in other contexts and are largely dependent
on linear correlation analysis. It is certain that future research efforts will be directed
at the development of increasingly sophisticated tools designed for mining expression
data. By applying statistical analysis, definition of subsets in apparently homogene-
ous tissue samples, development of classifiers for various disease entities, and iden-
tification of groups of coregulated genes may be possible. These possibilities are
especially intriguing because they may provide a way to assign the large number of
anonymous genes in higher eukaryotes to functional groups.

HIERARCHICAL CLUSTERING

Agglomerative hierarchical clustering has established itself as the most frequently
applied technique for processing array data for inspection (Weinstein et al., 1997;
Khan et al., 1998; Eisen et al., 1998). All pairwise comparisons of expression levels
are made between experiments (Fig. 16.11). The resulting matrix of scatter plots can
be reduced to a matrix of Pearson correlation coefficients. This is readily displayed
in two dimensions as a hierarchical dendrogram (Fig. 16.12). Both genes and samples
can be clustered in this fashion. By color coding expression levels, a large numerical
table can be replaced by a much more compact and easily inspected color plot
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Figure 16.12. Hierarchical clustering dendrogram plotted from the Pearson correlation

coefficients calculated across a series of experiments (Khan et al., 1998).

(Weinstein et al., 1997; Eisen et al., 1998). Inspection of the dendrogram and color
plot will reveal samples with closely related patterns of gene expression as well as
clusters of genes with similar expression pattern. Software for this type of display
is freely available. This approach has been productively applied to yeast and human
expression data. It is important to note that there is an arbitrary character to the
manner in which a dendrogram is drawn. Clusters can be rotated about the point of
bifurcation affecting the apparent proximity of the edges of a cluster with adjacent
clusters. The important information is contained in the cluster contents and their
similarity.

An alternative approach for displaying the same information is multidimensional
scaling (MDS) (Fig. 16.13). MDS software is available in standard statistical software
such as MATLAB. The distance measure for plotting individual samples is based on
1 – r where r is the Pearson correlation coefficient. Thus samples that are closely
related will plot closely together, and widely differing samples plot farther apart.
Although MDS does not allow simultaneous display of gene and sample clusters, it
has the virtue of retaining a graphical display that places each sample (or gene)
plotted in relation to every other. Ideally, an MDS plot, which is a reduction of
multidimensional data to a three-dimensional display, should be viewed on a com-
puter screen that allows rotation of the data so that the viewer is not deceived by
any single two-dimensional projection.

Several other statistical tools based on linear and nonlinear methods have been
used to analyze array data, including self-organizing maps, k-means clustering, and
principal component analysis (Tamayo et al., 1999; Ben-Dor et al., 1999). Each of
these tools has merit, and software for some of these is publicly available. However,
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Figure 16.13. Multidimensional scaling plot of the same data represented in Figure 16.12.

Note that the samples that fall closely together in the dendrogram also plot near to one

another in the MDS plot. Ideally, this plot should be viewed in three dimensions on a

computer screen so that it can be rotated to allow better inspection of the distances be-

tween the data points.

the precise selection of statistical methods for the analysis of array data is still the
subject of active investigation, and the limits of these techniques are not well defined
(Bittner et al., 1999). No single method can be recommended at this time to the
exclusion of others, and most investigators will base their choice on the availability
of software tools and Web-based resources. The range and quality of these tools will
certainly improve rapidly in the coming years.

PROSPECTS FOR THE FUTURE

Existing technologies for high-throughput gene expression analysis and the infor-
matics approaches to analysis of data arising from these methods are already pro-
ducing an extremely interesting and novel view of genome function. However, it is
apparent that there are limitations to current approaches that present the opportunity
for significant improvements. At the level of technology, it can be anticipated that
microarrays will move progressively closer to whole genome analysis with improved
sensitivity and reduced sample requirements. At the level of informatics, several areas
of progress can be foreseen. Tools for providing precomputed informative summaries
of function for named genes are likely to be developed. Methods of linking gene
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expression data to genomic sequence would be of great value in dissecting networks
of coregulated genes by identifying regulatory motifs shared by clustered genes. Most
far-reaching would be methods of defining gene networks in terms of codetermina-
tion through the development of computational tools that predict the expression of
a gene based on the expression of other genes (Seungchan et al., 2000). It is hoped
that the recognition of gene networks will facilitate the assignment of function to
anonymous genes and the definition of pathways. Ultimately, models may be devel-
oped that accurately reflect the mesh of self-compensating regulatory networks that
maintain ordered genome function.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 16

NCBI DATABASES AND TOOLS

DDD http://www.ncbi.nlm.nih.gov/CGAP/info/ddd.cgi
NCBI Gene Expression

Omnibus
http://www.ncbi.nlm.nih.gov/geo

SAGEmap http://www.ncbi.nlm.nih.gov/SAGE/
xProfiler http://www.ncbi.nlm.nih.gov/CGAP/hTGI/xprof/

cgapxpsetup.cgi
SOFTWARE

ArrayDB http://genome.nhgri.nih.gov/arraydb/
Cluster, TreeView, and

ScanAlyze
http://rana.Stanford.EDU/software/

CrazyQuant http://chroma.mbt.washington.edu/mod www/tools/
index.html

GeneCluster http://www.genome.wi.mit.edu/MPR/
GeneX http://www.ncgr.org/research/genex/
P-SCAN http://abs.cit.nih.gov/main/pscan.html
ScanAlyze; AMAD http://www.microarrays.org/

An up-to-date list of the links to laboratories involved in microarray technology
development can be found at the NHGRI Web site (http://www.nhgri.nih.gov/DIR/
LCG/15K/HTML/).
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