
413

17

USING PERL TO FACILITATE
BIOLOGICAL ANALYSIS

Lincoln D. Stein

The Cold Spring Harbor Laboratory
Cold Spring Harbor, New York

Consider a situation in which an investigator is studying genes that affect neuronal
signaling in C. elegans, with a primary interest in identifying those with gene prod-
ucts that may be secreted. A Web site that reports the results of a large systematic
study of predicted C. elegans genes using the RNA-induced inhibition of gene ex-
pression (RNAi) technique is available, and the investigator can download a sum-
mary file based on a few thousand experiments. The latest release of WormPep,
which reports peptide sequences of over 19,000 known and predicted worm genes,
is also available. What is now needed is the ability to search the RNAi results file
for those genes that affect worm movement in some way (e.g., a common phenotype
for genes affecting neuronal activity), and extract the sequence of those genes from
WormPep. The ultimate plan is to submit these sequences of interest to SignalP, an
E-mail-based signal peptide cleavage site predictor based at the Technical University
of Denmark (discussed in Chapter 11).

How would one accomplish this? One way is to do the job by hand. First, one
would need to read the RNAi summary file into a word processing program, cull it
for experiments that affected locomotion in some way, and then assemble a list of
all of the genes that produce relevant phenotypes. Next, one would open WormPep,
search for the corresponding sequence for each of these genes, and cut-and-paste
these sequences into another file. The last step would be to reformat the entries into
the format required by the SignalP server, pasting all of the entries into an E-mail
message.

414 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

It should be immediately apparent that there are some problems with this ap-
proach. If there are more than just a few genes of interest to analyze, the job quickly
becomes rather tedious, if not overly time consuming. Worse yet, the next time that
new RNAi results are released, the whole process will need to be repeated, deter-
mining which RNAi entries are new. The step involving loading WormPep into a
word processor might not even be tenable due to the sheer size of the database, well
over 10 megabases.

This is the type of problem that a Perl script can help with. The Perl program-
ming language excels at slicing, dicing, and integrating data files and is the language
of choice for the many bioinformatics researchers. This chapter will provide a gentle
introduction to Perl, with examples designed to illustrate the usefulness of learning
this language.

GETTING STARTED

During the course of this chapter, a solution will be developed for the data integration
problem introduced in the first paragraph of this chapter. Before this problem is
attacked, however, some very simple scripts that illustrate the basics of Perl pro-
gramming will be discussed. In considering these examples, the reader is strongly
encouraged to follow along by typing the examples into a Perl interpreter to get a
better sense for what these short scripts actually do. Modifying and experimenting
with the scripts for individual use is also encouraged.

Perl interpreters are available for the Macintosh, Windows, and UNIX operating
systems and more often than not is made available as freeware. A number of down-
load sites are listed at the end of this chapter. Because Perl program files are usually
compressed to speed downloads, Macintosh users will need to use a utility like
UnStuffIt to uncompress the package, whereas Windows users will need WinZip or
PKZip. Perl should come as part of the standard software installation on most UNIX-
based machines. Typing perl -v at the UNIX prompt will indicate whether the
program is indeed installed and, if so, the version number that is available on that
machine.

Perl consists of two essential parts:

the interpreter, called perl on UNIX systems, MacPerl on Macintoshes, and
perl.exe on Windows machines; and

scripts, text files that are written by the user describing a discrete set of steps
to be performed by the interpreter. The scripts are actually computer programs,
and the words script and program can be used interchangeably.

The process of writing and running a Perl script is similar on Windows and UNIX
systems but slightly different for Macintosh users. The basic steps are described
below.

On a Windows or UNIX system, create a text-only file containing the following
lines:

#!/usr/bin/perl
print “My first Perl script.”;

GETT ING STARTED 415

Any word processing program may be used, as long as the file is saved as text
only. The Windows Notepad program is good for this task, as it saves its files in
text-only format by default. Name the file first.pl.

This newly created file contains two lines. The first line is a comment that
identifies the file as a Perl script (indicated by the #! at the beginning of the line).
The second line is a print statement that tells Perl to print out the text

My first Perl script

The name of the file ends in the extension .pl, which is a standard naming con-
vention for Perl scripts.

To run this command, open a command-line window (the DOS window on
Windows systems, a shell window on UNIX), change to the directory that contains
the file, and type the command

% perl first.pl
My first Perl script.

where % represents the command-line prompts for both the Windows and UNIX
systems, and boldface type represents input typed by the user at the keyboard.

What this particular command does is invoke the Perl command interpreter,
passing to it the name of the file that should be run. The interpreter dutifully pro-
cesses the script line-by-line, sees the single print command, and executes it. The
output of the script appears in the command window.

If Perl is installed in the standard way on the computer, the perl command
does not have to be explicitly typed. On UNIX systems, the script file can be marked
as being directly executable using the chmod command:

% chmod + x first.pl

On Windows systems, the file does not have to be explicitly marked as execut-
able because Perl is usually installed in such a way that any file ending in the .pl
extension is associated with the Perl interpreter. Simply typing in the name of the
program will run it:

% first.pl
My first Perl script.

Mac-based Perl does not have a command window, so the process of creating
and running a Perl script is somewhat different. On Macintoshes, the MacPerl ap-
plication is launched by double clicking on its icon (a pyramid with a camel). This
will launch a special-purpose text editor from which the user can create, run, and
debug Perl scripts. Select New from the File menu to bring up a text-editing window.
Type the script shown above, beginning with the #!/usr/bin/perl line and
choose Save As from the File menu. Give the script a name, such as first.pl,
and from the list of Type options in the Save dialog, choose Droplet. This will save
the script as a miniature application called a droplet, which has a distinctive pyramid-
shaped icon (containing another camel). Double clicking on this new icon will pro-
duce a text window containing the output of the script, which simply reads Myfirst

416 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

Perl script. The script can also be run directly through the MacPerl application
by choosing Run Script from the Script pull-down menu.

HOW SCRIPTS WORK

A script consists of a series of commands, more formally called statements, that are
meaningful to the Perl interpreter. Unless told otherwise, the interpreter starts at the
top of the script file and works its way down to the bottom, executing each statement
in turn.

Consider this new script:

#!/usr/bin/perl
preamble...
print “I can do math!\n”;
do some calculations
$sum = 3 + 4;
print the result
print “The sum of 3 + 4 is ”,$sum,“.\n”;

This script consists of three statements; the first one (print “I can do
math!\n”) tells the interpreter to print out the indicated text. As we shall discuss
in more detail later, the special character sequence \n is not interpreted literally but
instead prints out as a newline character. The second statement, $sum = 3 + 4, adds
the numbers three and four together and stores the result in a variable named $sum.
The last statement prints the text The sum of 3 + 4 is, followed by the contents of
the variable $sum, followed by a period and a newline.

Notice that each statement ends with a semicolon. The semicolon tells Perl where
one statement ends and another begins. Blank lines and other white space can help
make the script more readable but are ignored by the interpreter. Any line that begins
with a pound sign (#) is a comment. When Perl sees a pound sign it simply ignores
everything between it and the end of the line. The use of comments is strongly
encouraged, since it allows other users to better understand what the programmer
was trying to accomplish in a particular block of code, as well as reminding the
programmer themselves of the same when reexamining code written long before.

The topmost line is also a Perl comment, but on UNIX systems it serves double-
duty as a directive to the UNIX shell to tell it to execute the command /usr/bin/
perl when the script file is executed. On Macintosh and Windows systems, this
line is extraneous, but it is better to include it to maintain portability with UNIX
machines and as a matter of good form.

Unless otherwise instructed, the Perl interpreter starts at the first statement and
works its way to the last. When this script is run, the following output is produced:

I can do math!
The sum of 3 + 4 is 7.

Notice that the user only sees the output from the two print statements. The statement
that performs the addition acts silently, behind the scenes.

STR INGS , NUMBERS , AND VARIABLES 417

STRINGS, NUMBERS, AND VARIABLES

Perl can deal with an astonishing number of data types, including but not limited to
text, integers, floating point numbers, complex numbers, and binary numbers.

Following a long computer science tradition of using obscure terms for simple
concepts, the Perl term for text is string. Strings are surrounded by single or double
quotation marks:

‘I am a string.’
“I am another string.”

Having two types of quotation marks available makes it easier to create strings
that contain embedded quotation marks:

‘“Anna,” she wailed “come quickly! The tiara is gone!”’

There are also some more substantial differences between the two types of quotes
that will be discussed later in this chapter under Variable Interpolation.

Numbers are written just as one would expect:

1
49
28.2
-109
6.04E23

The last example shows how one represents scientific notation. The E means expo-
nent, and the number should be interpreted as 6.02 1023.

If you want your strings to contain special characters, such as tabs or new lines,
Perl provides special escape sequences to represent them. These escape sequences
consist of a backslash followed by a single character. The two most commonly used
are \n, which begins a new line, and \t, which inserts a tab. For example,

print “There is a newline\nhere and a tab\tthere.\n”;

produces the following output:

There is a newline
here and a tab there.

Perl only interprets escape sequences when they occur in double-quoted strings.
In single-quoted strings, the backslash and the character that follows it are interpreted
literally.

Variables provide temporary storage for strings, numbers, and other values. In
Perl, variables are arbitrary names preceded by a dollar sign. Examples of valid
variable names are shown below.

$x
$X

418 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

$i am a variable
$LongVariableName

Perl variables are case sensitive. In the list above, $x is one variable, and $X is a
different one entirely.

When first created, variables are empty or undefined. Values are assigned to
variables using the = sign, also known as the assignment operator:

$x = 42;
print ‘The value of $x is ’,$x,“\n”;

Assignment works from right to left. In the example above, the number 42 is
assigned to the variable $x. Once assigned, the variable can be used in the place of
a value, as the print statement above shows. The same variable can be used multiple
times, using the assignment operator to change its contents.

print ‘The value of $x is still ’,$x,“\n”;
$x = ‘Mary had a little lamb’;
print ‘But now the value of $x is ’,$x,“\n”;

This code fragment will now print out the following:

The value of $x is still 42
But now the value of $x is Mary had a little lamb

Note that there is no restriction on the type of data a variable can hold. In this
example, $x initially contained an integer and then held a string. Unlike some pro-
gramming languages, Perl does not require the user to declare (formally describe)
variables before using them, although this type of checking can be activated if de-
sired. Perl actually has several types of variables. In addition to variables that hold
a single value, which are technically called scalar variables, there are arrays and
hashes, two types of variables that are capable of holding multiple values. These
will be discussed in an upcoming example.

ARITHMETIC

Perl knows basic arithmetic. Symbols known as operators are responsible for the
various arithmetic operations:

+ addition
- subtraction
* multiplication
/ division
** exponentiation
() grouping

The following example does a little math and prints out the result:

VARIABLE INTERPOLAT ION 419

$x = 4;
$y = 2;
$z = 3 + $x * $y;
print $z,“\n”;

The result that gets printed out is 11. However, a more succinct way to express this
would be to combine the first three lines into a single expression passed to print:

print 3 + 4*2,“\n”;

Note that the arithmetic expression is processed as 3 + (4*2) rather than (3 + 4)*2.
When evaluating numeric expressions, Perl uses the standard rules of precedence.
The precedence can be changed by explicitly using parentheses:

print (3 + 4)*2,“\n”;

VARIABLE INTERPOLATION

Another interesting difference between double- and single-quoted strings is what
happens when a variable is embedded inside a string. In double-quoted strings, the
variable is expanded to its contents, a process known as string interpolation. This
can aid readability considerably:

print “The value of $x is $x\n”;

Assuming that $x again contains ‘‘Mary had a little lamb,’’ the above statement
outputs

The value of Mary had a little lamb is Mary had a little lamb

Single-quoted strings do not work in this fashion. If the print statement used a
single-quoted string instead, it would print

The value of $x is $x\n

The user can precisely control whether variable interpolation occurs in double-
quoted strings by placing a backslash in front of variables that should not be
interpolated.

print “The value of \$x is $x\n”;

In this statement, the first occurrence of the $x variable is protected against
interpolation because of the backslash, but the second is not.

The value of $x is Mary had a little lamb

420 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

The backslash character can also be used to embed a double-quote character
inside a double-quoted string. How is the following different from the outputs shown
above? Run it through the Perl interpreter to check your conclusion:

print “The value of \$x is \”$x\“\n”;

Variable interpolation only extends to the contents of the variable itself. Perl will
not try to evaluate arithmetic expressions or other programming statements that are
embedded in double-quoted strings. For example, the statements

$y = 19;
print “The result is $y+3\n”;

produces the output

The result is 19+ 3

To evaluate the expression, put it outside the double quotes. Perl will do the arith-
metic, and the print statement will output the result.

print “The result is ”,$y + 3,“\n”;

BASIC INPUT AND OUTPUT

Input, in programming parlance, is how data ‘‘get into’’ a script. Output is, of course,
what comes out of the script. Most scripts will do both, inputting data from one
source and outputting it to another.

The main way of producing output is to use the print function. Print takes a list
of one or more arguments separated by commas and sends them to the current output
device, which by default is the computer’s screen. As already shown, print can deal
equally well with text, numbers, and variables:

$sidekick = 100;
print “Maxwell Smart’s sidekick is ”,$sidekick-1,“.\n”;
print “If she had a twin, her twin might be called”
2*($sidekick-1),“.\n”;

The result of this script is

Maxwell Smart’s sidekick is 99.
If she had a twin, her twin might be called 198.

The main way to read input data is to use the angle bracket operator (<>), which
reads a line of input from the current input device. You will usually call this operator
in conjunction with the assignment operator to save the returned information into a
variable:

BAS IC INPUT AND OUTPUT 421

$line = <>;
print “Got $line”;

With these two operations, one can now write a fully interactive program named
‘‘dog years,’’ which converts your age in human years to your age in dog years:

#!/usr/bin/perl
print “Enter your age: ”;
$age = <>;
print “Your age in dog years is ”,$age/7,“\n”;

When this program is run, the result will look like this:

% dog years.pl
Enter your age: 42
Your age in dog years is 6

where the 42 is typed in at the keyboard. Another tiny program illustrates one of the
idiosyncrasies of the <> operator:

#!/usr/bin/perl
print “Enter your name: ”;
$name = <>;
print “Hello $name, happy to meet you!\n”;

Running this program produces output that might not be what is expected:

% hello.pl
Enter your name: Lincoln
Hello Lincoln
, happy to meet you!

What’s going on? In fact, when the <> operator reads a line of input, the newline
character at the end of the typed data is still there! More often than not, the newline
character must be removed. Obligingly, Perl provides a function named chomp that
will do exactly that, removing the terminal newline from a string. The rewritten
program looks like this:

#!/usr/bin/perl
print “Enter your name: ”;
$name = <>;
chomp $name;
print “Hello $name, happy to meet you!\n”;

With the newline removed, the output looks the way it should:

% hello.pl
Enter your name: Lincoln
Hello Lincoln, happy to meet you!

422 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

The program can still be made a bit shorter by combining the input and chomp
statements into a single statement, at the risk of making the program slightly harder
to understand:

#!/usr/bin/perl
print “Enter your name: ”;
chomp($name = <>);
print “Hello $name, happy to meet you!\n”;

The parentheses control the precedence of the operation so that Perl does the input
first and then passes $name to the chomp function.

FILEHANDLES

When lines of input are read, the data come from the keyboard by default. When
the script writes lines of output, the output goes to the screen by default. What if
one wants to change these defaults so that input comes from a file or output goes
into one?

There are several ways to do this, but the most straightforward is to use file-
handles. A filehandle is the connection between a script and a file. Scripts can read
from a filehandle to get the contents of the file a line at a time and print to a filehandle
to add data to a file.

To open a file for reading, use the open function:

open MYFILE,’data.txt’;

The open function expects exactly two arguments. The first is a name for the
filehandle (MYFILE). This is an arbitrary name that the user chooses, with the con-
vention being to use all uppercase letters. The second argument is the name of the
file to open. If just the file name is provided, as shown in the example, Perl will
attempt to open a file by that name in the current directory (on Windows and UNIX
systems, the directory in which the command to run the script was given; on Mac-
intoshes, the folder that the script is located in). The full path, explicitly giving the
location of the file, can also be given.

Unfortunately, the way one specifies a file path is different on the three different
operating systems. On UNIX systems, a path begins with a forward slash and each
directory is separated by additional slashes. On Windows systems, a path begins with
the drive letter (e.g., C:) and uses backslashes to separate directories. On Macin-
toshes, the path begins with the name of the hard disk, and colons separate the name
of each successive folder. Examples of fully qualified path names on UNIX, Win-
dows, and Macintosh systems are shown below.

UNIX /usr/local/blast/data/cosmids.txt
Windows C:\Documents\Blast\Data\Cosmids.txt
Macintosh HD:Sequence Data:Blast:cosmids

TE
AM
FL
Y

Team-Fly®

F I LEHANDLES 423

The open command may not be able to open a file for reading if, for instance, the
file does not actually exist. Ways to detect and handle this kind of error will be
discussed in the section Filehandle Errors.

Once a filehandle is open, it can be read from using the <> operator:

$line = <MYFILE>;
chomp $line;
$next line = <MYFILE>;
chomp $next line;

The only difference between reading from the keyboard and reading from a file is
that, instead of using an empty pair of angle brackets (<>), the open filehandle is
placed between them (<MYFILE>).

Each time you call <MYFILE>, a new line of data will be read from the file.
When the last line has been read, the operation will return the undefined value;
detecting this type of error will be discussed later. When a filehandle is no longer
needed, it can be closed using the close function:

close MYFILE;

Writing to a file works in much the same way. The main difference is that, when
the file is opened, Perl is instructed to write to the file by placing a > sign before
the filename:

open MYFILE,’>data.txt’;

If the file does not already exist, Perl will create it and open it for writing. If
the file already exists, then Perl will empty out its existing contents before opening
it. This ensures that the new data written to the file will replace anything that was
already there. To add data to the end of the file without disrupting its current contents,
the file can be opened for appending using the >> sign:

open MYFILE,’>>data.txt’;

Data written to the file will now be appended to the end of its current contents
rather than writing over the file. If the file does not already exist, then an empty one
is automatically created.

Once a filehandle is opened for writing, data can be sent to it, using the filehandle
as the print command’s first argument:

print MYFILE “Your age in dog years is ”,$age/7,“\n”;

This will write the indicated line of text to the file associated with MYFILE.
Notice that there is no comma between the filehandle and the list of data arguments!
The full, generalized syntax for print is

print [FILEHANDLE] $data1 [,$data2 [,$data3]]

424 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

The square brackets mean an argument is optional. One or more spaces is used to
separate the optional filehandle from the first data argument, and commas are used
to separate the individual items to be written to the filehandle.

When finished writing to a filehandle, use the close function to close it as
before. If the program ends without explicitly closing the filehandle, Perl will close
the file automatically.

Nothing prevents a script from having multiple filehandles open at the same
time. This odd little program will write the first two odd-numbered lines of input to
the file odd.txt and even-numbered lines to the file even.txt:

#!/usr/bin/perl
open ODD,“>odd.txt”;
open EVEN,“>even.txt”;
$line = <>;
print ODD $line;
$line = <>;
print EVEN $line;
$line = <>
print ODD $line;
$line = <>
print EVEN $line;
close ODD;
close EVEN;

There is a certain amount of repetition in this script, for sake of clarity. This
script will be revisited shortly, using a more elegant loop to perform the same
function.

Each time <> is called, a new line of input is obtained either from the keyboard
or the file. What happens when the end of the file is reached? Because there aren’t
any more lines to read, <> simply returns the undefined value.

MAKING DECISIONS

So far, the programs that have been discussed have been very linear (see Fig. 17.1).
The Perl interpreter starts at the first statement and works its way to the last, exe-
cuting each of them along the way.

Life is full of decisions, however, and so are Perl scripts. Often, there should be
different paths followed if a particular condition is true, another if the condition is
false. Considering the dog years calculator shown above, what would happen if the
user had entered a negative number for the age or a number that’s unreasonably
large? It would be desirable to reject the input outright, rather than produce and
output a preposterous answer. This simple modification to the original script achieves
this goal.

#!/usr/bin/perl
print “Enter your age: ”;
$age = <>;
die “Preposterous age” if $age <= 0 or $age >= 100;
print “Your age in dog years is ”,$age/7,“\n”;

MAKING DECIS IONS 425

Figure 17.1. The ‘‘dog years’’ calculator provides an example of entirely linear program flow.

The fourth line is the new one, consisting of two parts. The first part (die
“Preposterous age”) introduces the die function, which is a lethal form of the
print command. It prints out the error message given to it, along with information
indicating the current line number. It then immediately terminates the program. It is
great for handling those occasions when a fatal, unrecoverable error has occurred.
The second part of the line (if $age <= 0 or $age >= 100) tests the $age var-
iable’s numeric value. If $age is either less than or equal to zero or greater than or
equal to 100, then the test is true and the die function is executed. If $age satisfies
neither test, then the die function is skipped and the program goes on as before. In
plain English, the statement can be read as, ‘‘Die if the age is either less than or
equal to zero or the age is greater than or equal to 100.’’ If the age is invalid, the
program will terminate at the die statement, and the last print statement will never
be executed. Testing the potential scenarios of the now-modified program, we find

% dog years.pl
Enter your age: -20
Preposterous age at dog years.pl line 4, <> chunk 1.
% dog years.pl
Enter your age: as old as Methuselah
Preposterous age at dog years.pl line 4, <> chunk 1.
% dog years.pl
Enter your age: 42
Your age in dog years is 6

426 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

T A B L E 17.1. Numeric Comparison Operators

Operator Description Example

== Equality $a == $b
!= Not equal $a != $b
< Less than $a < $b
> Greater than $a > $b
<= Less than or equal to $a <= $b
>= Greater than or equal to $a >= $b
! Logical not $ = !$b

T A B L E 17.2. String Comparison Operators

Operator Description Example

eq Equality $a eq $b
ne Not equal $a ne $b
lt Less than $a lt $b
gt Greater than $a gt $b
le Less than or equal to $a le $b
ge Greater than or equal to $a ge $b
=� Pattern match $a =� /gattc/

Perl has a complete set of comparison operators that work on numbers and
strings. To compare numbers, use any of the operators shown in Table 17.1. To
compare strings, use any of the operators shown in Table 17.2. The numeric com-
parison operators are straightforward because they look, for the most part, like con-
ventional expressions used in algebra. The big trap is the == operator that is used
to test the equality of two numbers. Two equal signs are used instead of just one.

If you forget and accidentally use the assignment operator (=), then you will not
get the result you expect:

$a == $b; # compare $a to $b, return true if equal
$a = $b; # assign contents of $b to $a

Read the ! operator as not. Unlike the other operators, it takes a single argument
and reverses its truth. True expressions become false and vice versa. For example

print “the number is not greater than 0” if !($a > 0);

This statement first compares the current value of $a to zero and returns a true
value if $a is greater than zero. The ! operator then reverses the test so that the
expression as a whole is true only if $a is less than or equal to zero.

The string comparison operators are funny two-letter commands. The one used
most frequently is eq, for testing whether two strings are the same. Consider this
new version of the hello.pl script.

CONDIT IONAL BLOCKS 427

#!/usr/bin/perl
print “Enter your name: ”;
chomp($name = <>);
print “Hello $name, happy to meet you!\n”;
print “Hail great leader!\n” if $name eq ‘Lincoln’;

The output of the program uses eq to give Lincoln a special greeting:

% hello.pl
Enter your name: George
Hello George, happy to meet you!
% hello.pl
Enter your name: Lincoln
Hello Lincoln, happy to meet you!
Hail great leader!

Other handy string comparison operators are lt, which is true if the first string
is less than the second string, and gt if the first is greater than the second. Perl
compares strings alphabetically but uses criteria different from the telephone book.
Among other subtle (and not-so-subtle) differences, the set of uppercase letters is
less than the set of lowercase letters; in Perl, Z is less than a. Be careful not to use
== to compare strings or eq to compare numbers. The handiest string comparison
operator of them all is =~, the pattern matching operator. This is the most powerful
of Perl operators, deserving its own discussion later in this chapter.

Two or more comparison operations can be combined using the operators and
and or. An expression involving and is true only if both the right and left sides
are true, whereas or expressions are true if either side is true. There is also a not
operator, which reverses the sense of whatever comes to the right, making true
expressions false and false ones true, just like Big Brother did in George Orwell’s
1984.

The use of the if statement has already been demonstrated, executing a state-
ment only when the condition that follows is true. As always with Perl, the opposite
operator exists, called unless, executing a statement only when the condition fol-
lowing is false. Returning to the program testing for preposterous ages, the test could
be rewritten this way:

die “Preposterous age” unless 0 < $age and $age < 100;

Read the statement this way: ‘‘Die unless the age is greater than zero and less
than 100.’’ The effect is the same. Sometimes it will seem more natural to write the
conditional with an if sometimes with an unless.

CONDITIONAL BLOCKS

How would one approach executing several statements conditionally? In this case,
the statements can be grouped into a block, using curly braces. The grouped state-
ments can then be executed altogether, using the block form of if. Returning again
to the dog-age calculator

428 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

Figure 17.2. If blocks can change the flow of execution.

#!/usr/bin/perl
print “Enter your age: ”;
$age = <>;
if ($age <= 0 or $age >= 100) {
print “That age doesn’t look reasonable to me.\n”;
die “Preposterous age”;

}
print “Your age in dog years is ”,$age/7,“\n”’;

In this example, if controls a block of two statements surrounded by the curly
braces. The first statement prints out a warning, and the second one terminates the
program with die. If the age does not fall within the range of 0–100, then the
statements within the block will execute and the program will end before reaching
the last line of code. If the age does fall within the specified range, the two statements
in the if block are ignored and the program goes on to print out the calculated
result, as before. The effect is to create two alternative paths in the program, one of
which leads to termination with an error statement (Fig. 17.2).

If blocks have this general form:

if (TEST) {
STATEMENT 1;
STATEMENT 2;
STATEMENT 3;

...
}

The test itself must be enclosed by parentheses in the manner shown, but any
comparison operation involving numbers or strings is allowed. The indentation is a
matter of style—although Perl does not depend on the indentation to interpret the

CONDIT IONAL BLOCKS 429

code, indenting code in this fashion is invaluable when debugging a program, as it
is easier to see where a given block of code begins and ends.

Perl can also handle situations in which one set of statements should be executed
if the test condition is true, and another set of statements if the test condition is false.
To do so, an else block is added to the if structure, changing the construct from
an if statement to an if—else statement.

#!/usr/bin/perl
print “Enter your age: ”;
$age = <>;
if ($age <= 0 or $age >= 100) {
print “That age doesn’t look reasonable to me.\n”;

} else {
print “Your age in dog years is ”,$age/7,“\n”;

}

The if-else statement shown above has two blocks, each surrounded by curly
braces. The contents of the first block is executed when the test is true. Otherwise
the second block is executed. The result is that, if the entered age falls outside the
acceptable range for the program, an error message is printed; if not, it prints the
calculated results instead.

% dog years.pl
Enter your age: eighteen
That age doesn’t look reasonable to me.
% dog years.pl
Enter your age: 21
Your age in dog years is 3

There happens to be a single statement in each block in this example, but there
is no limit to the number of statements that can be enclosed within a block. Finally,
for sake of completeness, code that specifies what is wrong with bad input data can
be included in the program. A handy elsif block can test one string after another.

#!/usr/bin/perl
print “Enter your age: ”;
$age = <>;
if ($age <= 0) {
print “You are way too young to be using a computer.\n”;

} elsif ($age >= 100) {
print “Not in a dog’s life!\n”;

} else {
print “Your age in dog years is ”,$age/7,“\n”;

}

There are now two $age checks in this program. The first test compares the
age with zero and prints out a warning message if it is less than or equal to zero. If
the test is false, then the program proceeds to the elsif block and tries the second
test, which compares $age with 100. If this test is true, then the second error

430 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

message is printed out. Otherwise, if both tests are false, the program falls through
to the else block. The possible outcomes are now as follows:

% dog years.pl
Enter your age: -20
You are way too young to be using a computer.
% dog years.pl
Enter your age: 999
Not in a dog’s life!
% dog years.pl
Enter your age: 28
Your age in dog years is 4

WHAT IS TRUTH?

The words true and false have been tossed around rather blithely in this chapter. It
is now appropriate to define these terms more pricisely. Regardless of the meaning
of truth in the broader, philosophical sense, truth in Perl boils down to four very
simple rules:

Zero (0) is false.

The empty string (“ ”) is false.

The undefined value is false.

Everything else is true.

The various numeric and string comparison tests that were illustrated in the
previous section evaluate to 1 when true and to the undefined value when false.

LOOPS

Conditional statements allow the flow of a program to be modified so that sections
of code can be executed or skipped over as needed. They cannot, however, make
the program execute a particular section of code more than once. For this, Perl (and
most programming languages) utilizes what are known as loops. Perl has a lot of
different types of loops available to the user, but the most useful one is the while
loop. The while loop looks very much like an if block, but instead of executing the
contents of the block once if the test is true, it executes the statements repeatedly so
long as the test is true. An example of this type of loop is illustrated by this simple
counting program:

#!/usr/bin/perl
$count = 1;
while ($count <= 5) {
print “$count potato\n”;
$count = $count + 1;

}

LOOPS 431

Figure 17.3. While loops execute the same block repeatedly until a defined condition is

satisfied.

Before the loop begins, the program creates a variable named $count and sets
its value to 1. The while loop test checks whether $count is less than or equal
to 10 and executes the two statements contained in the curly braces as long as this
condition holds true. The first statement prints out the current value of $count, and
the second increments the variable by 1. The first time the while statement is en-
countered, $count was set to 1, so the block is executed. The second time, $count
is 2, and the block is executed again. This continues until $count is 6, at which
point the test is no longer true (because $count is greater than 5) and the loop
terminates. The output for the program is quite simply

% count.pl
1 potato
2 potato
3 potato
4 potato
5 potato

In the same way that unless reverses the sense of the if statement, until
can be used as an alternative to while. Until loops will execute the contents of
a block until a certain test becomes true. The counting program could then be re-
written as follows, to yield the same output:

#!/usr/bin/perl
$count = 1;

432 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

until ($count > 5) {
print “$count potato\n”;
$count = $count + 1;

}

COMBINING LOOPS WITH INPUT

Loops become very powerful when combined with input statements. Consider this
simple example:

#!/usr/bin/perl
print “Type something> ”;
while (defined($line = <>)) {
chomp $line;
print “You typed ‘$line’\n\n”;
print “Type something> ”;
}

This script prints out the prompt Type something> and immediately enters
a while loop. The while loop here is a little different from the ones shown before.
Instead of doing a comparison, the while loop’s test contains the expression de-
fined($line = <>). This expression looks a bit bizarre but can be explained very
simply. The first thing that happens is that a line of input is read and assigned to the
variable $line. Then, $line is then passed to a new function named defined,
which returns true if the contents of a variable are defined, false otherwise. Recall
that <> reads lines from a file (or keyboard) until it reaches the end of the file, at
which point it returns undefined. This test is telling the while loop to read input lines
one at a time until the end of the file is reached. The parentheses ensure that defined
is called after the line is read into $line, not before.

For each line read in this way, the while loop executes three statements. The
first statement calls chomp to remove the newline character from the end of $line.
The second statement uses variable interpolation to insert the input line into the
string “You typed ‘$line’\n\n” and then prints the resulting string out. The
last statement displays the prompt again. The result looks like this:

% echo.pl
Type something> hi there
You typed ‘hi there’
Type something> this is something
You typed ‘this is something’
Type something> ^D
%

As you can see, this program echoes back everything typed in, like a particularly
annoying child. Even if nothing were typed in, the program would simply echo back
an empty string; this is because the script would read a single newline character,
which it would then remove with chomp, yielding an empty string. To stop the
program, an end-of-file character has to be sent. On UNIX and Macintosh systems,

TE
AM
FL
Y

Team-Fly®

STANDARD INPUT AND OUTPUT 433

this is done by typing control-D (written ^D for short). On Microsoft Windows systems,
this is done by typing control-Z (^Z). An alternative is to kill the program by typing
control-C (^C). This stops the program dead in its tracks.

Because it can be inconvenient to remember obscure control characters, the program
can be made a bit friendlier by allowing the user to type quit to exit the loop:

#!/usr/bin/perl
print “Type something. ‘quit’ to finish> ”;
while (defined($line = <>)) {
chomp $line;
last if $line eq ‘quit’;
print “You typed ‘$line’\n\n”;
print “Type something> ”;
}

print “goodbye!\n”;

The main change is the line that immediately follows the chomp. This introduces
a new function named last, which acts as a loop modifier. It is only allowed to
occur within the body of a loop. When executed, last causes the script to exit the
loop immediately, even though the loop test may still be true. This statement com-
pares the contents of $line to the string quit. If they match, the last function
is executed and the loop finishes. Running the program now, entering the word quit
exits the loop so that the last line (which prints ‘‘goodbye!’’) can be executed.

Because the process of reading and processing incoming data a line at a time is
so common, Perl provides a handy shortcut. If <> appears all alone in the test part
of a while statement, Perl will read a line into an automatic variable with the odd-
looking name $ (which is read as ‘‘dollar sign underscore’’) and then call defined
on your behalf. Furthermore, many text-processing functions operate on $ by de-
fault, including chomp. Taking advantage of this shortcut, one can rewrite the pre-
vious example in this way:

#!/usr/bin/perl
print “Type something. ‘quit’ to finish> ”;
while (<>) {
chomp;
last if $ eq ‘quit’;
print “You typed ‘$ ’\n\n”;
print “Type something> ”;
}

print “goodbye!\n”;

STANDARD INPUT AND OUTPUT

When a Perl script reads a line from <> and prints without using a specified file-
handle, it instead uses two automatic filehandles called STDIN and STDOUT. The
statements

434 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

print “The answer to life is...”;
print STDOUT “The answer to life is...”;

are exactly equivalent. In the same vein, the statements $line = <>; and $line
= <STDIN>; are almost equivalent. The subtle differences between <> and
<STDIN> will be discussed below.

The names STDIN and STDOUT are derived from standard input and standard
output, an idea popularized by the UNIX operating system. Standard input and stan-
dard output are abstract files from which a script can accept input and send output,
respectively. When a script is first launched, standard input corresponds to the key-
board and standard output corresponds to the computer screen. On Windows and
UNIX systems, standard output appears in the command interpreter window. On
Macs, the output appears in a small scrolling window that MacPerl creates specifi-
cally for this purpose. When a Perl script is launched, the user has the option of
changing where standard input and output come from and go to. The user can also
arrange for the standard output of one script to be sent to the standard input of
another script in assembly-line fashion. This is actually a very powerful facility, but
one that is beyond the scope of this chapter.

To redirect standard input from a file in either Microsoft Windows or UNIX
systems, use the less-than (<) symbol to indicate the file:

% count words.pl <C:\My Documents\cosmids\11 22 00cosmids.txt

To redirect standard output to a file on Windows or UNIX systems, use the
greater-than (>) symbol:

% reverse translate.pl > dna.txt

Standard input and output can be redirected simultaneously by using both sym-
bols on the same command line:

% reverse translate.pl < protein.txt > dna.txt

There is actually a third automatic filehandle called STDERR, for standard error.
Perl sends its error messages and other diagnostics to standard error rather than
standard output. When die is used to display error messages, the messages go to the
STDERR filehandle automatically. STDERR is initially attached to the screen, just
like STDOUT. On UNIX systems, STDERR can be redirected using >&. The follow-
ing command will send the standard output of reverse translate.pl to a file named
dna.txt, and send any warnings or errors to a file named errors.out.

% reverse translate.pl > dna.txt >& errors.out

Perl in Windows and Macintosh systems do not use the concept of a separate,
standard error, so this type of redirection will not work on those systems.

Returning to the idea that <STDIN> and <> are almost—but not exactly—
the same, the difference lies in the fact that <> contains some additional magic
that makes it easy to process command line arguments. Given a file named

F INDING THE LENGTH OF A SEQUENCE F ILE 435

unsorted.txt that is to be processed using a file named odd even.pl, one
way to process this file would be to redirect standard input, like so:

% odd even.pl < unsorted.txt

However, because odd even.pl contains a line using <> operator to read
from standard input, the command can also be written in the following way:

% odd even.pl unsorted.txt

The file name unsorted.txt is now being passed to the script as an argument
and not as standard input. When <> is used, it looks for any filenames on the
command line, opens them, and reads from them a line at a time. If no files are
mentioned on the command line, <> reads from standard input. This feature can be
used to process multiple files at once as well, reading from each of the files men-
tioned on the command line as is they were all a single, continuous file. Macintosh
users, who do not have a command line available to them, can still take advantage
of this <> feature. When a Perl script is saved as a droplet, text files can be dragged
and dropped on top of its icon. Each of the dropped text files will be passed to <>
for reading.

FINDING THE LENGTH OF A SEQUENCE FILE

Moving to a biologically based example, consider a text file containing a large DNA
sequence in single-letter format. The sequence is of unknown length, and it would
be desirable to quickly determine the number of bases in the sequence. Using the
file size alone would not be appropriate, since the presence of end-of-line characters
at the end of each line would artificially inflate the number. The Perl script that will
be developed in this section will answer this question as well as count up the number
of lines in the original text file. This short script will read in the file, one line at a
time, removing each line’s terminal newline character and determining the length of
what is left. The length for that line is added to a running total, with a counter
tracking the number of lines in the file.

#!/usr/bin/perl
file size.pl
$length = 0; # set length counter to zero
$lines = 0; # set number of lines to zero
while (<>) { # read file one line at a time
chomp; # remove terminal newline
$length = $length + length $;
$lines = $lines + 1;

}
print “LENGTH = $length\n”;
print “LINES = $lines\n”;

436 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

A built-in function named length is invoked to determine the length of the
line once the terminal newline is removed. When the script is done, it prints out the
ultimate values of $length and $lines:

% file size.pl dna.txt
LENGTH = 50649
LINES = 1387

PATTERN MATCHING

The script from the previous section was useful only for calculating DNA lengths in
the unusual case of having a file that contains nothing but raw DNA sequence. More
frequently, however, sequence data come in FASTA format. To tally up the length
of all the sequences in a FASTA file, the lines that begin with > must be ignored.
Perl’s pattern-matching operations make this easy to do.

A pattern match is a special type of text comparison. It is something like eq,
but, instead of testing for an exact match between two strings, it tests a string against
a pattern, using a pattern description language known as a regular expression. A
simple example of a pattern match would be

print “EcoRI site found!” if $dna =~/GAATTC/;

This if statement compares the contents of the variable $dna against the pattern
GAATTC. The funny-looking = ~ symbol is the pattern match comparison operator;
think of it as an ‘‘approximately equal’’ comparison. If the string to the left of the
pattern match operator contains the indicated pattern, it will return true. In the script
fragment above, the program will print out EcoRI site found! if the string con-
tains GAATTC anywhere along its length.

Regular expression patterns are delimited by forward slashes. The simplest ones
contain a sequence of normal characters that must match somewhere within the body
of a string. The EcoR I-site detector is one such example. Regular expressions are
much more powerful than this, however. For example, square brackets can be used
to specify a set of alternative characters in the manner shown here:

$dna =~/GGG[GATC]CCC/

This pattern matches a sequence of characters beginning with GGG, followed
by any of the characters G, A, T, or C, followed by the sequence CCC. In other
words, this pattern searches for GGGNCCC.

To search for a series of alternative patterns, you can use the | symbol to separate
the alternatives. For example, this will search for either EcoR I sites or Hind III
sites:

$dna =~/GAATTC|AAGCTT/;

This facility is greatly enhanced by metacharacters and quantifiers. A meta-
character represents a whole class of characters. For example, a single dot (.) will
match any character except the end of a line, whereas \d signifies any digit. There

PATTERN MATCHING 437

T A B L E 17.3. Regular Expression Metacharacters

Metacharacter Description

. Any character except newline
� The beginning of a line
$ The end of a line
\w Any word character (non-punctuation, non-white space)
\W Any non-word character
\s White space (spaces, tabs, carriage returns)
\S Non-white space
\d Any digit
\D Any non-digit

are also metacharacters that will match the beginning and ending of lines and match
the boundaries between one word and the next. Table 17.3 lists some of the more
common metacharacters. Notice that there are many cases in which a metacharacter
representing a character set is paired with its complement. For example, \s matches
white space, and \S matches nonwhite space (in other words, printing characters).
Another frequently used pair, ^ and $, match the beginning and end of lines,
respectively.

For example, to match a ‘‘ZIP+ 4’’ format ZIP code, the required regular expression
would be written as follows:

$address =~ /\d\d\d\d\d-\d\d\d\d/;

For a regular expression to match a metacharacter literally, it must be preceded
by a backslash. For example, to match DNA sequence IDs of the form ‘‘M58200.2,’’
where a dot is used literally, the regular expression should be written

$sequence id =~ /\w+\.\d+/;

By default, any character or metacharacter in a regular expression matches ex-
actly once. By placing a quantifier after the character, Perl can match a character a
specific number of times or a range of times. The simplest type of quantifier is {M},
which tells Perl to match the pattern exactly M times. Using this notation, the ZIP+ 4
regular expression could be rewritten as

$address =~ /\d{5}-\d{4}/;

Similar quantifiers include the form {M,N}, which will match at least M times
but no more than N; {M,}, which matches at least M times; and {,N}, which will
match no more than N times. To bring the examples back into a biological context,
the following expression will match the plant mcrBC methylation site Pu-C-X(40–
80)-Pu-C, in which the center of the recognition site can be anywhere from 40 to
80 nucleotides long.

$sequence =~ /[AG]C[GATC]{40,80}[AG]C/;

438 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

T A B L E 17.4. Refular Expression Quantifiers

Quantifier Description

? 0 or 1 occurrence
� 1 or more occurrences
• 0 or more occurrences
{N,M} Between N and M occurrences
{N, } At least N occurrences
{ ,M} No more than M ocurrences

Although the curly braces can be used to describe any quantification, there are
some short-cut metacharacters that are used for the frequent cases (Table 17.4).

Parentheses can be used to group parts of a regular expression, and then a
quantifier can be applied to the entire group. For example, this regular expression
will match normal five-digit ZIP codes as well as the ZIP + 4 form:

$address =~ /\d{5}(-\d{4})?/;

The \d{5} part matches a digit repeated exactly five times. This is followed
by an optional section containing -\d{4}, a hyphen followed by four digits. The
optional section is completely surrounded by parentheses to group it, and the group
is followed by a ? symbol, meaning that it can match at most once and possibly not
at all. Parenthesized groups can also be used to extract portions of regular
expressions.

With regular expressions, the DNA length calculator can be rewritten so that it
correctly ignores lines that begin with the > sign. The modified program looks like
this:

#!/usr/bin/perl
file size2.pl
$length = 0;
$lines = 0;
while (<>) {
chomp;
$length = $length + length $ if $ =~ /^[GATCNgatcn]+ $/;
$lines = $lines + 1;
}
print “LENGTH = $length\n”;
print “LINES = $lines\n”;

The key modification to the original script is the insertion of a conditional test
on the statement that tallies the length of each line of text. The script tests $ for
a pattern match with the regular expression / [̂GATCNgatcn]+ $/, which matches
lines containing DNA sequence. The initial ^ character matches the beginning of the line,
[GATCNgatcn]+ matches one or more of the characters GATCN or their lower-case
equivalents, and the $ matches the end of the line. Other lines in the FASTA file, in-
cluding blank lines and the description lines, are ignored. The file length that is printed
out corresponds now to the sequence only.

PATTERN MATCHING 439

T A B L E 17.5. Assignment Shortcut Operators

Operator Example Description

�= $a �= 3 Add a number to a variable
-= $a -= 3 Subtract a number from a variable
*= $a *= 10 Multiply variable by a number
/= $a /= 2 Divide a variable by a number
.= $txt .= “abc” Append a string to a variable

Before leaving this script, some syntactical tricks can be applied to make the script
more concise. If a regular expression appears alone without a =~ operator, then Perl
assumes that the variable to be tested for a pattern match is $. The string length function
also behaves this way, returning the length of $ if no variable is explicitly specified.
So, the length-tallying line can be rewritten as

$length = $length + length if /^[GATCNgatcn]+$/;

A second shortcut is to append an i flag at the end of the regular expression
right after the second slash. This puts the regular expression into case-insensitive
mode, and allows the statement to be written as

$length = $length + length if /^[GATCN]+ $/i;

Finally, because adding a value to a variable and storing the sum back into the
same variable is such a common operation, Perl provides the shortcut operator + =
(read as ‘‘plus equals’’). This operator takes a numeric value on its right side, adds
it to the contents of the variable on its left side, and stores the result back into the
same variable, all in one graceful step. Taking advantage of this feature gives state-
ments of the form

$length + = length if /^[GATCN]+ $/i;

Similar assignment shortcuts are summarized in Table 17.5. Putting all these
shortcuts together gives the final version of the DNA length-tallying script:

#!/usr/bin/perl
file size3.pl
$length = 0;
$lines = 0;
while (<>) {
chomp;
$length + = length if /^[GATCN]+ $/i;
$lines + = 1;

}
print “LENGTH = $length\n”;
print “LINES = $lines\n”;

440 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

EXTRACTING PATTERNS

Not only are regular expressions good for detecting patterns in text, but they can be
used to extract matching portions of the text as well. To see how this might be
useful, consider a FASTA description line like this one:

>M18580 Clone 305A4, complete sequence

In addition to the initial >, the description line contains two different fields that
we might like to capture. The first is ‘‘M18580,’’ the mandatory sequence ID. The
second is ‘‘Clone 305A4, complete sequence,’’ an optional human-readable comment.
In regular expression terms, the description line looks like this:

/^>\S+ \s*.*$/

Reading from left to right is the beginning of the line (^), a > sign, one or more
non-white-space characters corresponding to the sequence ID, zero or more spaces or
other white space, zero or more of any character corresponding to the optional descrip-
tion, and the end of the line ($). This regular expression match can be made to extract
the ID and description lines simply by putting parentheses around the parts that should
be captured:

/^>(\S+)\s*(.*)$/;
$id = $1;
$description = $2;

When a string successfully matches a regular expression, any portions of the
expression that are contained within parentheses are extracted and placed into the
automatic variables $1, $2, $3, and so forth. The extraction works from left to
right and only happens if the entire regular expression matches.

This trick can be used to fix a deficiency in the DNA length calculator from the
previous section. Previous versions of this script naively treated the entire FASTA
file as a single DNA sequence. However, a FASTA file usually contains entries for
multiple sequences. With pattern matching, the description lines can be identified
and the sequence IDs extracted, allowing for the length of each sequence to be
printed out separately.

#!/usr/bin/perl
$id = ‘’; # holds sequence ID of current sequence
$length = 0; # holds length of current sequence
$total length = 0; # tallies aggregate length of all seqs
while (<>) {
chomp;
if (/^>(\S+)$/) { # found a new description line
print “$id: $length\n” if $length > 0;
$id = $1;
$length = 0;

} else {
$length �= length;

ARRAYS 441

$total length + = length;
}

}
print “$id: $length\n” if $length > 0; # last entry
print “TOTAL LENGTH = $total length\n”;

After initializing the three variables at the top of the program, the script enters
a while loop. As before, it reads a line at a time into $ and removes the terminating
newline. The new feature is an if-else block. The block performs a pattern match on
the line, looking for a FASTA description line. If one is found, it signals the begin-
ning of a new sequence. The following then occurs:

• If $length is non-zero, the ID and length of the previous sequence are
printed. The check on $length prevents the program from printing out an
empty line when it hits the very first sequence in the file.

• The matched sequence ID is copied into $id.

• $length is set to zero.

Otherwise, the program is in the middle of a sequence, in which case the length
of the current line is added to the appropriate counters. After the last line is read,
the ID and length of the last sequence in the file are printed, as well as the total
length of all the sequences:

% fasta length.pl ests.fasta
D28205: 1105
BCD207F: 402
BCD207R: 332
BCD386F: 192
BCD386R: 362
CDO98F: 374
TOTAL LENGTH = 2767

ARRAYS

Previous examples have worked with single-valued scalar variables only. However,
Perl has the ability to work with multivalued variables as well. There are two basic
multivalued variables, named arrays and hashes. An array is a list of data values
indexed by number. A hash is a list of data values indexed by string. Both are very
easy to use and incredibly handy. To understand arrays, consider how one might
keep track of a large number of identifiers, such as clone names. With scalar vari-
ables, one approach could be to assign each clone name to a different variable:

$clone1 = ‘192a8’;
$clone2 = ‘18c10’;
$clone3 = ‘327h1’;
...

442 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

The problem with this approach, besides being tedious, is that it does not offer
any way to step through the entire list of clones one by one, performing the same
operation on each one. Arrays circumvent this problem. An array can be defined as
follows:

@clones = (’192a8’,’18c10’,’327h1’,’201e4’);

This new array, named @clones, contains four strings. Array variables begin
with an @ sign to distinguish them from scalar variables, which begin with a $.
Scalars and array variables are completely separate. In fact, a scalar variable can be
named $clones and an array variable can be named @clones within the same
program. They will not interact in any way. As alluded to above, operations can be
applied to arrays as a whole. For example, the = operator can be used to copy one
array into another:

@old clones = @clones;

Items can be added to the end of an array using the push function:

push @clones,’281e3’;

After this statement executes, @clones will contain five items. The opposite
of push is pop, which removes the last item from the array, reducing it in size by
one, and returns the removed item as its result. This statement will reduce @clones
back to a length of four , assigning 281e3 to the scalar variable $last clone:

$last clone = pop @clones;

Two array operations are particularly common: accessing an arbitrary array ele-
ment by its positions in the array using indexing and looping over each element of
the array in order using the foreach loop. Considering indexing first, to copy the
third element of @clones into a variable named $third clone, the statement
would be written as

$third clone = $clones[2];

This will—and should—look strange at first. The numeral in the square brack-
ets, [2], is the index. Perl numbers its arrays starting with zero, so the first item is
actually index 0, the second item is index 1, and the third item is index 2. Any
expression can be placed within the square brackets, as long as that expression
ultimately evaluates to an integer. As an example, if a scalar variable $i contains a
number, to address the next element in the series, it could be referred to as
$clones[$i+ 1]. More mystifying, however, is the $ at the beginning of the array
name. What happened to @clones?

When one indexes into an array, the symbol at the front refers to the individual
array element, not the array as a whole. Because the element itself is a scalar, the
symbol at the front should be a $. To clarify, look at the following two examples.

TE
AM
FL
Y

Team-Fly®

ARRAYS 443

@old clones = @clones;
$first clone = $clones[0];

The first line would copy the entire array, whereas the second line copies just a
single element within the array.

Arrays can be extremely long; ones with thousands of elements are not unusual.
A common operation is to loop through each member of an array and do something
with it. The foreach loop makes this possible. For instance, say that the array
@dna contains a list of DNA sequences and that a printout of the length of each
element would be helpful. The following small loop would accomplish this.

foreach $dna (@dna) {
print length $dna,“\n”;

}

The foreach loop has three parts: the name of a scalar variable known as the
loop variable, an array name enclosed in parentheses, and a block containing the
statements to be executed. Foreach steps through the array one element at a time,
placing each element in the loop variable and executing the statements within the
block. The statements may examine the contents of the loop variable and act on it
or even change the loop variable to change the corresponding array element. After
the loop is finished, the loop variable will again contain whatever it had before the
loop began or be undefined if this is the only time it was used.

To illustrate how assigning to the loop variable changes the contents of the array,
below is a fragment of code that will treat every element of an array as a DNA
sequence, replacing it with its reverse complement:

foreach $dna (@dna) {
$dna = reverse $dna; # reverse it
$dna =~ tr/gatcGATC/ctagCTAG/; # complement it

}

The two statements in the block show off a pair of Perl functions that have not
yet been discussed. The first of these, reverse, returns the reverse of a scalar variable,
turning GGGGTTTT into TTTTGGGG. The reversed sequence is assigned back into
the loop variable. The next statement uses the tr function (for translate) to substitute
one set of characters with another. tr has an unusual syntax that is rooted in Perl’s
historical origins. It uses the slash as a delimiter, replacing the list of characters
between the first set of delimiters with the characters in the second set. The replace-
ment occurs on whatever variable tr is bound to using the =~operator (the syntax
should be reminiscent of pattern matching). Characters not mentioned in the list are
left unchanged. In the example above, the list gatcGATC is replaced with ctagCTAG.
What happens is that ‘‘g’’ is replaced with ‘‘c,’’ ‘‘a’’ with ‘‘t’’, and so forth. Thus
TTTTGGGG becomes AAAACCCC, which is the reverse complement of the orig-
inal element, GGGGTTTT.

444 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

ARRAYS AND LISTS

Perl lists are closely related to arrays. Lists are a set of constants or variables enclosed
in parentheses. An example of a list of strings would be (“one”, “two”, “buc-
kle my shoe”), whereas an example of a list of variables would be ($a, $b, $c).
A list that combines variables, constant strings, and constant numbers might be some-
thing like ($a, “the Roman empire”, 3.1415926, $ipath). Lists can be
thought of as being related to array variables in the same way that the constant 123.4
might be related to the scalar variable $total.

Lists are useful for performing operations in parallel. For example, lists can be
assigned to array variables to make the array identical to the list. In fact, one example
of this was shown earlier:

@clones = (’192a8’,’18c10’,’327h1’,’201e4’);

Arrays can be assigned to lists, provided that each element of the list is a variable
and not a constant. For example, to extract the first three elements of an array, one
could write

($first,$second,$third) = @clones;

After this operation, $first will contain 18c10, and so on. Naturally enough,
lists can be assigned to lists as well, again provided that the list on the left contains
variables only:

($one,$two,$three) = (1,2,3);

SPLIT AND JOIN

It is often very useful to transform strings into arrays and to join the elements of
arrays together into strings. The split and join functions allow for these operations.
Split takes two arguments: a delimiter and a string. It splits the string at delimiter
boundaries, returning an array consisting of the split elements. The delimiters them-
selves are discarded. To illustrate this, consider a case requiring the manipulation of
a long file containing comma-delimited files, such as the following:

192a8,The Sanger Centre,GGGTTCCGATTTCCAA,CCTTAGGCCAAATTAAGGCC

Split makes it easy to convert the long string into a more manageable array. To split
on the comma, the comma is used as the delimiter:

chomp($line = <>); # read the line into $line
@fields = split ‘,’,$line;

@fields will now contain the five individual elements, which can now be indexed
or looped over. Split is often used with a list on the left side instead of an array,
allowing one to go directly to assigning to the list. For example, rather than creating

HASHES 445

an array named @fields, the result of a split command can assign values to a list
of named, scalar variables:

($clone,$laboratory,$left oligo,$right oligo)= split ‘,’,$line;

The join function has exactly the opposite effect of split, taking a delimiter
and an array (or list) and returning a scalar containing each of the elements joined
together by the delimiter. Thus, continuing the earlier example, the @fields array
can be turned into a tab-delimited string by joining on the tab character (whose
escape symbol is \t):

$tab line = join “\t”,@fields;

After this operation, $tab line will look like this:

192a8 The Sanger Centre GGGTTCCGATTTCCAACCTTAGGCCAAATTAAGGCC

HASHES

The last Perl data type that will be considered is the hash. Hashes are similar to
arrays in many respects. They hold multiple values, they can be indexed, and they
can be looped over, one element at a time. What distinguishes hashes from arrays is
that the elements of a hash are unordered, and the indexes are not numbers but
strings. A few examples will clarify this:

%oligos = ();
$oligos{’192a8’} = ‘GGGTTCCGATTTCCAA’;
$oligos{’18c10’} = ‘CTCTCTCTAGAGAGAGCCCC’;
$oligos{’327h1’} = ‘GGACCTAACCTATTGGC’;

In this example, an empty hash named %oligos is created, and three elements
are then added to it. Each element has an index named after the clone from which
it was derived, and a value containing the sequence of the oligo itself. After the
assignments, the values can be accessed by indexing into the hash with curly braces.

$s = $oligos{’192a8’};
print “oligo 192a8 is $\n”;
print “oligo 192a8 is ”,length $oligos{’192a8’},“ base pairs long\n”;
print “oligo 18c10 is $oligos{’18c10’}\n”;

This will print out

oligo 192a8 is GGGTTCCGATTTCCAA
oligo 192a8 is 16 base pairs long
oligo 18c10 is CTCTCTCTAGAGAGAGCCCC

Just as a variable containing an integer can be used as an index into an array, a
variable containing a string can be used as the index into a hash. The following

446 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

example uses a loop to print out the sequence of each of the three oligos previously
defined by %oligos:

foreach $clone (’327h1’,’192a8’,’18c10’) {
print “$clone: $oligos{$clone}\n”;

}

As with arrays, there is a distinction between the hash as a whole and individual
elements of a hash. When referring to an element of a hash using its index surrounded
by curly braces, one is referring to the scalar value contained within the hash, so
the $ symbol must be used as a prefix. To refer to the hash variable as a whole, use
the % symbol as the prefix. This allows for one hash to be assigned to another, as
well as the ability to perform other whole-hash operations.

For historical reasons, the indexes of a hash are called its keys. Calling the keys
function produces a list of all the keys in the hash. Using a command of the form
@clones = keys %clones; will assign to the array three string elements
(’327h1’,’192a8’,’18c10’), but in no predictable order. The elements of a
hash are unordered, and the order in which they are put into a hash has no effect on
the order in which they are returned.

To get all the values of a hash, use the values function:

@oligos = values %clones;

The @oligos array will now contain a three-element list consisting of each of
the oligo sequences that were placed into the hash. As with keys, the values are
returned in an unpredictable order. However, the order of elements retrieved by keys
will match the order retrieved by values. Hence, the position of clone 192a8 in the
@clones array will match the position of its corresponding oligo in @oligos.

A REAL-WORLD EXAMPLE

At this point in the discussion, all the tools needed to solve the problem posed at
the very beginning of this chapter are now at hand. The problem will be approached
in steps. The first task is to scan through a file of RNAi results, collecting the genes
that have anything to do with locomotion. Assume that the input file is named
rnai.txt and contains lines in the following format; each field is separated by a
tab.

Gene Date Status Phenotype Summary

B0310.2 2/18/2000 complete larval arrest
B0379.4 2/18/2000 complete none
B0496.8 2/19/2000 incomplete
ZK899.6 2/19/2000 complete uncoordinated, coils and kinks
ZK945.6 2/19/2000 complete hermaphrodites sterile
M6.1 2/19/2000 complete flaccid paralysis
...

A REAL-WORLD EXAMPLE 447

Figure 17.4. This script reformats a set of neuron-related C. elegans genes for submission

to the SignalP signal peptide prediction program.

The main challenge here is to search the Phenotype Summary field for results
having to do with locomotion. This is a fuzzy sort of problem, best solved using
Perl’s pattern-matching facility. After scanning through the results for a while, we
decide to search for any of the following keywords: uncoordinated, paralysis, para-
lyzed, coils, coiler, movement, kinky, and jerky.

With this decision made, the first part of the script can be written (Fig. 17.4,
Step 1). The script attempts to open the file rnai.txt. If unsuccessful, it dies with
an error message. If successful, it initializes the hash %interesting genes to
empty. This hash will be used to hold the list of locomotion-related genes and will
be set up so that the keys are gene names and the values are the corresponding
phenotypes. The program then steps through the input file, one line at a time. It
chomps off the newline from the end of each line and then uses the split function
to split each line into fields, using the tab character as the delimiter. This results in
a four-element list, which is assigned to an array containing the variables $gene,
$date, $status, and $phenotype.

Once this is done, the contents of $phenotype are compared to a regular
expression. The regular expression is a series of alternatives, separated by the |
character. Any phenotype that contains any of the strings listed will produce a match.
Notice that some of the keywords have been shortened to reduce the length of the
expression, as well as pull in some terms that may not have been anticipated. For
example, paraly will match both paralysis and paralyzed, without much

448 US ING PERL TO FACIL ITATE B IOLOGICAL ANALYS IS

risk of matching something unintended. If the pattern matches, then the correspond-
ing gene is recorded. By the end of the loop, %interesting genes will be
populated with all of the genes whose phenotypes matched the target list. Because
rnai.txt will no longer be used, its filehandle is closed.

In Step 2 of Figure 17.4, the WormPep set of predicted C. elegans proteins will
be stepped through, pulling out all the ones matching the collection of genes iden-
tified in Step 1. WormPep’s format is similar to the standard FASTA format:

>2L52.1 CE20433 Zinc finger, C2H2 type (CAMBRIDGE) protein id:CAA21776.1
MSMVRNVSNQSEKLEILSCKWVGCLKSTEVFKTVEKLLDHVTADHIPEVIVNDDGSEEVV
CQWDCCEMGASRGNLQKKKEWMENHFKTRHVRKAKIFKCLIEDCPVVKSSSQEIETH...

The portion of the definition line that immediately follows the > is the name of
the gene. The program needs to step through all of these entries, extracting the gene
names and saving the sequences of those contained in the collection of interesting
genes. The script begins Step 2 by opening the WormPep file using a filehandle
named WP. If successful, it initializes a hash named %sequences. This hash will
have keys corresponding to the names of the interesting genes, with values consisting
of their peptide sequences. The script then enters a loop in which it retrieves each
line of the WormPep file, pattern-matching it against a regular expression that ex-
amines the def lines. If the program detects a definition line, meaning the beginning
of a new sequence, it puts the gene name into a scalar variable named $id, taking
advantage of Perl’s ability to extract parenthesized portions of regular expressions.

If the current line does not match the regular expression, then the program has
hit a sequence line, with the name of the current gene being held in $id. The if
statement tests whether the current gene is an element of %interesting genes,
and, if so, the sequence will be read in, growing one line at a time, until the next
definition line is reached. At the end of the loop, %interesting genes will be
fully populated with the sequences of interest. Note that the newline has not been
removed from the end of each line of input sequence data; in this case, it is desirable
to keep the newlines, to facilitate later parts of the program.

In Step 3 of Figure 17.4, the gene sequences are formatted into an E-mail mes-
sage for submission to the SignalP server. The server expects E-mail submissions in
the following format:

euk
graphics
>ID1 Comments (ignored)
MLETLCYNYLPLCEQLEPVLNVRDKEDLATSLVRVMYKHNLAKEFLCDLIMKEVEKL...
>ID2 More comments (ignored)
MPARRHLSQPAREGSLRACRSHESLLSSAHSTHMIELNEDNRLHPVHPSIFEVPNCF...
.

The first two lines contain information required by SignalP to properly process
the sequences; here, the server is being instructed that the sequences are from a
eukaryote and that graphics of the predictions should be returned. Following these
flags are the sequences, in FASTA format. The sequence ID is required, and anything
following it is ignored by the server. A dot follows the last sequence in the file.

SUGGESTED READING 449

The script begins Step 3 by attempting to open the file signalP.txt for
writing. If successful, it writes the top two lines of the outgoing E-mail message to
the file. The program then enters a foreach loop, calling the keys function to
recover all keys from the %sequences hash. This retrieves all of the names of all
of the genes for which sequence information has been assembled. For each gene, a
description line containing the gene name and its phenotype is printed to the file-
handle. Although the phenotype will be ignored by SignalP, the information is re-
tained for future reference. After this, the sequence of the gene is printed, newlines
and all. At the end of the loop, the signalP.txt filehandle is closed. The final
step in the analysis is for the researcher to take the newly created signalP.txt
file and to e-mail it to the SignalP server. The most useful part of this script is that
it can be automatically rerun each time WormPep is updated to repeat the analysis.

WHERE TO GO FROM HERE

Perl has many features that cannot be covered in a single chapter. For example,
subroutines allow one to define customized functions that take arguments and return
a result. References allow sophisticated data structures such as lists of lists to be
created. Objects allow large, complex programs to be written so that code can be
reused in different contexts. Pipes and processes allow for the control of external
programs, perhaps to create an automated pipeline invoking commonly used
programs.

Last, but not nearly least, there are modules, which are libraries of useful code
routines put together by Perl programmers around the world and made available for
public use. For example, the Mail::Sendmail module would enable the SignalP-
processing script to E-mail its formatted message directly to the SignalP server with-
out creating an intermediate file. Other modules allow for the creation of interactive,
graphical front ends for programs or the creation of dynamic Web pages. Most rel-
evant for biologists are the modules that form Bioperl, an extremely powerful col-
lection of tools for searching biological databases, manipulating and processing se-
quences, and analyzing nucleotides and proteins.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 17

Perl home page http://www.perl.com/
Comprehensive Perl Archive Network http://www.cpan.org/
BioPerl http://www.bioperl.org/

SUGGESTED READING

Schwartz, R. L. (1998). Learning Perl, 2nd Ed. (O’Reilly & Associates).

Christiansen, T., and Torkington, N. (1999) Perl Cookbook (O’Reilly & Associates).

