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INTRODUCTION

When a protein sequence is newly-determined, an important goal is to assign possible
functions to the protein. The first computational step is to search for similarities with
sequences that have previously been deposited in the DNA and protein sequence
databases. If similar sequences are found, they may match the complete length of
the new sequence or only to subregions of the sequence. If more than one similar
sequence is found, then the next important step in the analysis is to multiply align
all of the sequences. Multiple alignments are a key starting point for the prediction
of protein secondary structure, residue accessibility, function, and the identification
of residues important for specificity. Multiple alignments also provide the basis for
the most sensitive sequence searching algorithms (cf. Gribskov et al., 1987; Barton
and Sternberg, 1990; Attwood et al., 2000). Effective analysis of a well-constructed
multiple alignment can provide important clues about which residues in the protein
are important for function and which are important for stabilizing the secondary and
tertiary structures of the protein. In addition, it is often also possible to make pre-
dictions about which residues confer specificity of function to subsets of the
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sequences. In this chapter, some guidelines are provided toward the generation and
analysis of protein multiple sequence alignments. This is not a comprehensive review
of techniques; rather, it is a guide based on the software that have proven to be most
useful in building alignments and using them to predict protein structure and func-
tion. A full summary of the software is available at the end of the chapter.

WHAT IS A MULTIPLE ALIGNMENT, AND WHY DO IT?

A protein sequence is represented by a string a of letters coding for the 20 different
types of amino acid residues. A protein sequence alignment is created when the
residues in one sequence are lined up with those in at least one other sequence.
Optimal alignment of the two sequences will usually require the insertion of gaps in
one or both sequences in order to find the best alignment. Alignment of two residues
implies that those residues are performing similar roles in the two different proteins.
This allows for information known about specific residues in one sequence to be
potentially transferred to the residues aligned in the other. For example, if the active
site residues of an enzyme have been characterized, alignment of these residues with
similar residues in another sequence may suggest that the second sequence possesses
similar catalytic activity to the first. The validity of such hypotheses depends on the
overall similarity of the sequences, which in turn dictate the confidence with which
an alignment can be generated. There are typically many millions of different pos-
sible alignments for any two sequences. The task is to find an alignment that is most
likely to represent the chemical and biological similarities between the two proteins.

A multiple sequence alignment is simply an alignment that contains more than
two sequences! Even if one is interested in the similarities between only two of the
sequences in a set, it is always worth multiply-aligning all available sequences. The
inclusion of these additional sequences in the multiple alignment will normally im-
prove the accuracy of the alignment between the sequence pairs, as illustrated in
Figure 9.1, as well as revealing patterns of conserved residues that would not have
been obvious when only two sequences are directly studied. Although many pro-
grams exist that can generate a multiple alignment from unaligned sequences, ex-
treme care must be taken when interpreting the results. An alignment may show
perfect matching of a known active-site residue with an identical residue in a well-
characterized protein family, but, if the alignment is incorrect, any inference about
function will also be incorrect.

STRUCTURAL ALIGNMENT OR EVOLUTIONARY ALIGNMENT?

It is the precise arrangement of the amino acid side chains in the three-dimensional
structure of the protein that dictates its function. Comparison of two or more protein
three-dimensional structures will highlight which residues are in similar positions in
space and hence likely to be performing similar functional roles. Such comparisons
can be used to generate a sequence alignment from structure (e.g., see Russell and
Barton, 1992). The structural alignment of two or more proteins is the gold standard
against which sequence alignment algorithms are normally judged. This is because
it is the structural alignment that most reliably aligns residues that are of functional
importance. Unfortunately, structural alignments are only possible when the three-
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Figure 9.1. Histogram showing difference in accuracy between the same pairs of se-

quences aligned as a pair and as part of a larger multiple sequence alignment. On average,

multiple alignments improve the overall alignment accuracy, which, in this example, is

judged as the alignment obtained by comparison of the three-dimensional structures of

the individual proteins rather than just their sequences (Russell and Barton, 1992).

dimensional structures of all the proteins to be aligned are known. This is not usually
the case; therefore, the challenge for sequence alignment methods is to get as close
as possible to the structural alignment without knowledge of structure. Although the
structural alignment is the most important alignment for the prediction of function,
it does not necessarily correspond to the evolutionary alignment implied by diver-
gence from a common ancestor protein. Unfortunately, it is rarely possible to deter-
mine the evolutionary alignment of two divergent proteins with confidence because
this would require knowledge of the precise history of substitutions, insertions, and
deletions that have led to the creation of present-day proteins from their common
ancestor.

HOW TO MULTIPLY ALIGN SEQUENCES

Automatic alignment programs such as CLUSTAL W (Thompson et al., 1994) will
give good quality alignments for sequences that are more than 6� similar (Barton
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and Sternberg, 1987). However, building good multiple alignments for sequences
that are not trivially similar is a precise task even with the best available alignment
tools. This section gives an overview of some of the steps to go through to make
alignments that are good for structure/function predictions. This is not a universal
recipe; in fact, there are very few universal recipes in bioinformatics in general. Each
set of sequences presents its own biologically based problems, and only experience
can guide the creation of high-quality alignments. Some collections of expertly cre-
ated multiple alignments exist (described later), and these should always be consulted
when studying sequences that are present there. The key steps in building a multiple
alignment are as follows.

• Find the sequences to align by database searching or by other means.

• Locate the region(s) of each sequence to include in the alignment. Do not try
to multiply align sequences that are substantially different in length. Most
multiple alignment programs are designed to align sequences that are similar
over their entire length; therefore, a necessary first step is to edit the sequences
down to those regions that sequence database searches suggest are similar.

• Ideally, assess the similarities within the set of sequences by comparing them
pairwise with randomizations. Select a subset of the sequences to align first
that cluster above 6�. Automatic alignment of such sequences are likely to be
accurate (Barton and Sternberg, 1987). An alternative to doing randomization
is to align only sequences that are similar to the query in a database search,
say with an E-value of <1.

• Run the multiple alignment program.

• Manually inspect the alignment for problems. Pay particular attention to
regions that appear to be speckled with gaps. Use an alignment visualization
tool (e.g., ALSCRIPT/JalView, see below) to identify positions in the align-
ment that show conserved physicochemical properties across the complete
alignment. If there are no such regions, then look at subsets of the sequences.

• Remove sequences that appear to disrupt the alignment seriously and then
realign the remaining subset.

• After identifying key residues in the set of sequences that are straightforward
to align, attempt to add the remaining sequences to the alignment so as to
preserve the key features of the family.

Assessing Quality of Alignment

Multiple alignment programs will align any set of sequences. However, the fact that
the program produces an alignment does not mean that the alignment has any bio-
logical meaning. Most programs will take unrelated protein sequences and align them
just as easily as two genuinely related sequences. Even for related sequences, there
is no guarantee that the resulting alignment is in any way meaningful. One way of
assessing whether an alignment is meaningful is to perform a randomization or
‘‘Monte Carlo’’ test of significance. To do this, the two sequences are first aligned
and the score (S) for the alignment is recorded. The sequences are then shuffled so
that they maintain their length and amino acid composition but have a randomized
order. The shuffled sequences are then compared again, and the score is recorded.
The shuffling and realigning process is repeated a number of times (typically 100),
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and the mean and standard deviation (�) for the scores are calculated. The Z-score
provides an indication of the significance of the alignment. If Z > 6, then it is highly
likely that the two sequences are alignable, and the alignment correctly relates the
key functional and structural residues in the individual proteins to one another (Bar-
ton and Sternberg, 1987). Unfortunately, this can only be a rough guide. An align-
ment that gives a Z < 6 may be poor, and some alignments with low Z-scores are
actually correct. This is simply a reflection of the fact that, during evolution, sequence
similarity has diverged faster than structural or functional similarity. Z-scores are
preferable to simple percent identities as a measure of similarity because it corrects
for both compositional bias in the sequences as well as accounting for the varying
lengths of sequences. The Z-score, therefore, gives an indication of the overall sim-
ilarity between two sequences. Although it is a powerful measure, it does not help
to locate parts of the sequence alignment that are incorrect. As a general rule, if the
alignment is between two or more sequences that do indeed share a similar three-
dimensional structure, then the majority of errors will be concentrated around regions
where there are gaps (insertions/deletions).

Hierarchical Methods

The most accurate, practical methods for automatic multiple alignment are hierar-
chical methods. These work by first finding a guide tree and then following the guide
tree to build the alignment. The process is summarized in Figure 9.2. First, all pairs
of sequences in the set to be aligned are compared by a pairwise method of sequence
comparison. This provides a set of pairwise similarity scores for the sequences that
can be fed into a cluster analysis or tree calculating program. The tree is calculated
to place more similar pairs of sequences closer together on the tree than sequences
that are less similar. The multiple alignment is then built by starting with the pair of
sequences that is most similar and aligning them and then aligning the next most
similar pair, and so on. Pairs to be aligned need not be single sequences but can be
alignments that have been generated earlier in the tree. If an alignment is compared
with a sequence or another alignment, then gaps that exist in the alignment are
preserved. There are many different variations of this basic multiple alignment tech-
nique. Because errors in alignment that occur early in the process can get locked in
and propagated, some methods allow for realignment of the sequences after the initial
alignment (e.g., Barton and Sternberg, 1987; Gotoh, 1996). Other refinements include
using different similarity scoring matrices at different stages in building up the align-
ment (e.g., Thompson et al., 1994). Gaps (insertions/deletions) do not occur randomly
in protein sequences.

Since a stable, properly-folded protein must be maintained, proteins with an
insertion or deletion in the middle of a secondary structure (�-helix or �-strand) are
usually selected against during the course of evolution. As a consequence, present-
day proteins show a strong bias toward localizing insertions and deletions to loop
regions that link the core secondary structures. This observation can be used to
improve the accuracy of multiple sequence alignments when the secondary structure
is known for one or more of the proteins in practice by making the penalty for
inserting a gap higher when in secondary structure regions than when in loops (Bar-
ton and Sternberg, 1987; Jones, 1999. A further refinement is to bias where gaps are
most likely to be inserted in the alignment by examining the growing alignment for
regions that are most likely to accommodate gaps (Pascarella and Argos, 1992).
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CLUSTAL W and Other Hierarchical Alignment Software

CLUSTAL W combines a good hierarchical method for multiple sequence alignment
with an easy-to-use interface. The software is free, although a contribution to de-
velopment costs is required when purchasing the program. CLUSTAL W runs on
most computer platforms and incorporates many of the techniques described in the
previous section. The program uses a series of different pair-score matrices, biases
the location of gaps, and allows you to realign a set of aligned sequences to refine
the alignment. CLUSTAL W can read a secondary structure ‘‘mask’’ and bias the
positioning of gaps according to it; the program can also read two preexisting align-
ments and align them to each other or align a set of sequences to an existing align-
ment. CLUSTAL W also includes options to calculate neighbor-joining trees for use
in inferring phylogeny. Although CLUSTAL W does not provide general tools for
viewing these trees, the output is compatible with the PHYLIP package (Felsenstein,
1989) and the resultant trees can be viewed with that program. CLUSTAL W can
read a variety of different common sequence formats and produce a range of different
output formats. The manual for CLUSTAL W is clearly written and explains possible
limitations of the alignment process. Although CLUSTAL W can be installed and
run locally, users can also access it through a faster Web service via the EBI server
by clicking the ‘‘Tools page’’. With the exception of manual editing and visualization,
CLUSTAL W contains most of the tools that are needed to build and refine a multiple
sequence alignment. When combined with JalView, as described below, the process
of building and refining a multiple alignment is greatly simplified. Although CLUS-
TAL W is probably the most widely used multiple alignment program and for most
purposes is adequate, other software exists having functionality not found in CLUS-
TAL W. For example, AMPS (Barton, 1990) provides a pairwise sequence compar-
ison option with randomization, allowing Z-scores to be calculated. The program can
also generate alignments without the need to calculate trees first. For large numbers
of sequences, this can save a lot of time because it eliminates the need to perform
all pairwise comparisons of the sequences. AMPS also has software to visualize trees,
thus helping in the selection of sequences for alignment. However, the program has
no simple menu interface; therefore, it is more difficult for the novice or occasional
user to use.

More Rigorous Nonhierarchical Methods

Hierarchical methods do not guarantee finding the one mathematically optimal mul-
tiple alignment for an entire set of sequences. However, in practice, the mathematical
optimum rarely makes any more biological sense than the alignment that is found
by hierarchical methods. This is probably because a great deal of effort has gone
into tuning the parameters used by CLUSTAL W and other hierarchical methods to
produce alignments that are consistent with those that a human expert or three-
dimensional structure comparison might produce. The widespread use of these tech-
niques has also ensured that the parameters are appropriate for a wide range of
alignment problems. More rigorous alignment methods that attempt to find the math-
ematically optimal alignment over a set of sequences (cf. Lipman et al., 1989) may
be capable of giving better alignments, but, as shown in recent benchmark studies,
they are, on average, no better than the hierarchical methods.
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Multiple Alignment by PSI-BLAST

Multiple sequence alignments have long been used for more sensitive searches of
protein sequence databases than is possible with a single sequence. The program
PSI-BLAST (Altschul et al., 1997) has recently made these profile methods more
easily available. As part of its search, PSI-BLAST generates a multiple alignment.
However, this alignment is not like the alignments made by CLUSTAL W, AMPS,
or other traditional multiple alignment tools. In a conventional multiple alignment, all
sequences in the set have equal weight. As a consequence, a multiple alignment will
normally be longer than any one of the individual sequences, since gaps will be
inserted to optimize the alignment. In contrast, a PSI-BLAST multiple alignment is
always exactly the length of the query sequence used in the search. If alignment of
the query (or query profile) to a database sequence requires an insertion in the query,
then the inserted region from the database sequence is simply discarded. The re-
sulting alignment thus highlights the amino acids that may be aligned to each position
in the query. Perhaps for this reason, PSI-BLAST multiple alignments and their
associated frequency tables and profiles have proved very effective as input for pro-
grams that predict protein secondary structure (Jones, 1999; Cuff and Barton, 2000).

Multiple Protein Alignment From DNA Sequences

Although most DNA sequences will have translations represented in the EMBL-
TrEMBL or NCBI-GenPept databases, this is not true of single-pass EST sequences.
Because EST data are accumulating at an exponential pace, an automatic method of
extracting useful protein information from ESTs has been developed. In brief, the
ProtEST server (Cuff et al., 1999) searches EST collections and protein sequence
databases with a protein query sequence. EST hits are assembled into species-specific
contigs, and an error-tolerant alignment method is used to correct probable sequenc-
ing errors. Finally, any protein sequences found in the search are multiply aligned
with the translations of the EST assemblies to produce a multiple protein sequence
alignment. The JPred server (version 7.3) will generate a multiple protein sequence
alignment when presented with a single protein sequence by searching the SWALL
protein sequence database and building a multiple alignment. The JPred alignments
are a good starting point for further analysis with more sensitive methods.

TOOLS TO ASSIST THE ANALYSIS OF MULTIPLE ALIGNMENTS

A multiple sequence alignment can potentially consist of several hundred sequences
that are 500 or more amino acids long. With such a volume of data, it can be difficult
to find key features and present the alignments in a form that can be analyzed by
eye. In the past, the only option was to print out the alignment on many sheets of
paper, stick these together, and then pore over the massive poster with colored high-
lighter pens. This sort of approach can still be useful, but it is rather inconvenient!
Visualization of the alignment is an important scientific tool, either for analysis or
for publication. Appropriate use of color can highlight positions that are either iden-
tical in all the aligned sequences or share common physicochemical properties.
ALSCRIPT (Barton, 1993) is a program to assist in this process. ALSCRIPT takes
a multiple sequence alignment and a file of commands and produces a file in
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Figure 9.3. Example output from the program ALSCRIPT (Barton, 1993). Details can be

found within the main text.

PostScript format suitable for printing out or viewing with a utility such as ghostview.
Figure 9.3 illustrates a fragment of ALSCRIPT output (the full figure can be seen
in color in Roach et al., 1995). In this example, identities across all sequences are
shown in white on red and boxed, whereas positions with similar physicochemical
properties are shown black on yellow and boxed. Residue numbering according to
the bottom sequence is shown underneath the alignment. Green arrows illustrate the
location of known �-strands, whereas �-helices are shown as black cylinders. Further
symbols highlight specific positions in the alignment for easy cross-referencing to
the text. ALSCRIPT is extremely flexible and has commands that permit control of
font size and type, background coloring, and boxing down to the individual residue.
The program will automatically split a large alignment over multiple pages, thus
permitting alignments of any size to be visualized. However, this flexibility comes
at a price. There is no point-and-click interface, and the program requires the user
to be familiar with editing files and running programs from the command line. The
ALSCRIPT distribution includes a comprehensive manual and example files that
make the process of making a useful figure for your own data a little easier.

Subalignments—AMAS

ALSCRIPT provides a few commands for calculating residue conservation across a
family of sequences and coloring the alignment accordingly. However, it is really
intended as a display tool for multiple alignments rather than an analysis tool. In
contrast, AMAS (Analysis of Multiply Aligned Sequences; Livingstone and Barton,
1993) is a program for studying the relationships between sequences in a multiple
alignment to identify possible functional residues. AMAS automatically runs AL-
SCRIPT to provide one output that is a boxed, colored, and annotated multiple
alignment.

Why might you want to run AMAS? A common question one faces is, ‘‘Which
residues in a protein are important for its specificity?’’ AMAS can help identify these
residues by highlighting similarities and differences between subgroups of sequences
in a multiple alignment. For example, given a family of sequences that shows some
variation, positions in a multiple alignment that are conserved across the entire family
of sequences are likely to be important to stabilize the common fold of the protein
or common functions. Positions that are conserved within a subset of the sequences,
but different in the rest of the family, are likely to be those important to the specific
function or specificity of that subset, and these positions can be easily identified
using AMAS. There are a number of subtle types of differences that AMAS will
search for, and these are summarized in Figure 9.4. To use AMAS, one must first
have an idea of what subgroups of sequences exist in a multiple alignment of interest.
One way to do this is to take a tree generated from the multiple alignment and
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<
Figure 9.4. Stylized output from the program AMAS. The sequence alignment has been

shaded to illustrate similarities within each subgroup of sequences. Conservation numbers

(Livingstone and Barton, 1993; Zvelebil et al., 1987) run from 0 to 10 and provide a nu-

merical measure of the similarity in physicochemical properties of each column in the align-

ment. Below the alignment, the lines ‘‘Similar Pairs’’ show the conservation values obtained

when each pair of subgroups is combined and the combined conservation number is not

less than a threshold. For example, at position 7, subgroups A and B combine with a con-

servation number of 9. The lines ‘‘Different Pairs’’ illustrate positions at which a combina-

tion of subgroups lowers the conservation number below the threshold. For example, at

position 3, there is an identity in subgroup B and one in C, but, when the groups are

combined, the identity is lost and the conservation drops below the threshold of 8 to 7. A

summary of the similarities and differences is given as a frequency histogram. Each upward

bar represents the proportion of subgroup pairs that preserve conservation, whereas each

downward bar shows the percentage of differences. For example, at position 6, 3/3 pairs

are conserved (100%), whereas at positions 3 and 8, 1/3 pairs show (33%) differences With

a large alignment, the histogram can quickly draw the eye to regions that are highly con-

served or to regions where there are differences in conserved physicochemical properties.

identify clusters of sequences at some similarity threshold. This is also illustrated in
Figure 9.4, in which three groups have been selected on the basis of the tree shown
at the top left. Alternatively, if one knows in advance that finding common features
and differences between, for example, sequences 1–20 and 21–50 in a multiple
alignment is important, one can specify these ranges explicitly. The output of AMAS
is a detailed text summary of the analysis as well as a colored and shaded multiple
sequence alignment. By default, AMAS searches for general features of amino acid
physicochemical properties. However, this can be narrowed down just to a single
feature of amino acids such as charge. An example of a charge analysis is shown in
Figure 9.5 for repeats within the annexin supergene family of proteins (Barton et al.,
1991). The analysis highlights a charge swap within two subgroups of the sequences,
correctly predicting the presence of a salt bridge in the native folded protein (Huber
et al., 1990). The AMAS program may either be downloaded and run locally, or a
subset of its options can be accessed over the Web at a server hosted by EBI.

Secondary Structure Prediction and the Prediction of Buried
Residues From Multiple Sequence Alignment

When aligning sequences, it is important to remember that the protein is a three-
dimensional molecule and not just a string of letters. Predicting secondary structure
either for the whole collection of sequences or subsets of the sequences can be used
to help discover how the protein might fold locally and guide the alignment of more
distantly related sequences. For example, it is common for proteins with similar
topologies to have quite different sequences and be unalignable by an automatic
alignment method (e.g., see Russell and Barton, 1994; cf. the SCOP database, see
Murzin et al., 1995, Chapter 5). In these circumstances, the secondary structure may
suggest which blocks of sequences should be equivalent. The prediction of secondary
structure (�-helix and �-strand) is enhanced by around 6% when performed from a
multiple alignment, compared with prediction from a single sequence (Cuff and
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Figure 9.5. Illustration of an AMAS output used to find a charge pair in the annexins.

There are four groups of sequences in the alignment. The highlighted positions highlight

locations where the charge is conserved in each group of sequences yet different between

groups. A change from glutamine to arginine is shown at position 1.

Barton 1999). The best current methods [PSIPRED (Jones, 1999) and JNET (Cuff
and Barton, 2000)] give over 76% accuracy for the prediction of three states (�-
helix, �-strand, and random coil) in rigorous testing. This high accuracy is possible
because the prediction algorithms are able to locate regions in the sequences that
show patterns of conserved physicochemical properties across the aligned family.
These patterns are characteristic of particular secondary structure types and can often
be seen by eye in a multiple sequence alignment, as summarized below:

• Short runs of conserved hydrophobic residues suggest a buried �-strand.
• i, i + 2, and i + 4 patterns of conserved hydrophobic amino acids suggest a

surface �-strand, since the alternate residues in a strand point in the same
direction. If the alternate residues all conserve similar physicochemical prop-
erties, then they are likely to form one face of a �-strand.

• i, i + 3, i + 4, and i + 7, and variations of that pattern, (e.g., i, i + 4, i +
7) of conserved residues suggest an �-helix with one surface facing the solvent.

• Insertions and deletions are normally only tolerated in regions not associated
with the buried core of the protein. Thus, in a good multiple alignment, the
location of indels suggests surface loops rather than �-helices or �-strands.
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• Although glycine and proline may be found in all secondary structure types,
a glycine or proline residue that is conserved across a family of sequences is
a strong indicator of a loop.

Secondary structure prediction programs such as JNET (Cuff and Barton, 2000) and
PHD (Rost and Sander, 1993) also exploit multiply aligned sequences to predict the
likely exposure of each residue to solvent. Knowledge of solvent accessibility can
help in the identification of residues key to stabilizing the fold of the protein as well
as those that may be involved in binding. Both the JNET and PHD programs may
be run from the JPred prediction server, whereas JNET may also be run from within
JalView. [For further discussion of methods used to predict secondary structure, the
reader is referred to Chapter 11.]

JalView

AMAS and ALSCRIPT are not interactive: they run a script or set of commands and
produce a PostScript file, which can be viewed on-screen using a Postscript viewer
or just printed out. Although this provides the maximum number of options and
flexibility in its display, it is comparatively slow and sometimes difficult to learn. In
addition, the programs require a separate program to be run to generate the multiple
alignment for analysis. If the alignment requires modification or subsets of the align-
ment are needed, a difficult cycle of editing and realigning is often required. The
program JalView overcomes most of these problems. JalView encapsulates many of
the most useful features of AMAS and ALSCRIPT in an interactive, mouse-driven
program that will run on most computers with a Java interpreter. The core of JalView
is an interactive alignment editor. This allows an existing alignment to be read into
the program and individual residues or blocks of residues to be moved around. A
few mouse clicks permit the sequences to be subset into a separate copy of JalView.
JalView can call CLUSTAL W (Thompson et al., 1994) either as a local copy on
the same computer that is running JalView or the CLUSTAL W server at EBI. Thus,
one can also read in a set of unaligned sequences, align them with CLUSTAL W,
edit the alignment, and take subsets with great ease. Further functions of JalView
will calculate a simple, neighbor-joining tree from a multiple alignment and allow
an AMAS-style analysis to be performed on the subgroups of sequences. If
the tertiary structure of one of the proteins in the set is available, then the three-
dimensional structure may be viewed alongside the alignment in JalView. In addi-
tion, the JNET secondary structure prediction algorithm (Cuff and Barton, 2000)
may be run on any subset of sequences in the alignment and the resulting prediction
displayed along with the alignment. The JalView application is available for free
download and, because it is written in Java, can also be run as an applet in a Web
browser such as Netscape or Internet Explorer. Many alignment services such as the
CLUSTAL W server at EBI and the Pfam server include JalView as an option to
view the resulting multiple alignments. Figure 9.6 illustrates a typical JalView session
with the alignment editing and tree windows open.

COLLECTIONS OF MULTIPLE ALIGNMENTS

This chapter has focused on methods and servers for building multiple protein se-
quence alignments. Although proteins that are clearly similar by the Z-score measure
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Figure 9.6. An example JalView alignment editing and analysis session. The top panel

contains a multiple alignment, and the bottom left is the similarity tree resulting from that

alignment. A vertical line on the tree has separated the sequences into subgroups, which

have been colored to highlight conservation within each subgroup. The panel at the bot-

tom right illustrates an alternative clustering method.

should be straightforward to align by the automatic methods discussed here, getting
good alignments for proteins with more remote similarities can be a very time-
consuming process. A number of groups have built collections of alignments using
a combination of automation and expert curation [e.g., SMART (Schultz et al., 1998),
Pfam (Bateman et al., 1999), and PRINTS (Attwood et al., 2000)], and these, together
with the tools available at their Web sites, can provide an excellent starting point
for further analyses.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 9

CLUSTAL W ftp://ftp.ebi.ac.uk/pub/software
AMAS http://barton.ebi.ac.uk/servers/amas.html
JPred http://barton.ebi.ac.uk/servers/jpred.html
ProtEST http://barton.ebi.ac.uk/servers/protest.html
JalView http://barton.ebi.ac.uk/new/software.html
AMPS http://barton.ebi.ac.uk/new/software.html
European Bioinformatics Institute http://www.ebi.ac.uk
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PROBLEM SET

The following problems are based on the annexin supergene family, the same family
used throughout the discussion in this chapter. This family contains a 100 amino
acid residue unit that repeats either four, eight, or 16 times within each protein. The
analysis required below will focus on the individual repeat units, rather than the
organization of the repeat units within the full-length protein sequences.

The problems will require the use of CLUSTAL W and Jalview, which you may
have to install (or have installed) on a UNIX- or Linux-based system to which you
have access. The files referred to below are available on the book’s Web site.

The file ann rep1.fa contains the sequence of a single annexin domain. This
sequence has been used as the query against the SWALL protein sequence database,
using the program scanps to make the pairwise sequence comparisons. A partial
listing of the results can be found in the file named ann rep1 frags.fa.

Generation of a Multiple Sequence Alignment

1. Copy the file ann rep1 frags.fa to a new directory.

2. Run CLUSTAL W on ann rep1 frags.fa. Accept all defaults, and create
an output file called ann rep1 frags.aln.

3. Pass this output file to Jalview by typing Jalview ann rep1 frags.aln
CLUSTAL.

4. Select the fragment sequences by clicking on the ID code. Select Delete Selected
Sequences from the Edit menu.

5. Save the modified alignment to a CLUSTAL-formatted file called ann rep1
frags del1.aln.

6. Select Average Distance Tree from the Calculate menu. A new window will now
appear, and after a few moments, a tree (dendrogram) will be rendered within
that window. There should be outliers at the very top of that tree, and these outliers
will need to be eliminated.

7. Click on the tree to the left of where the outliers join the tree. A vertical line
should now appear, and the outliers will be highlighted in a different color.

8. Return to the Alignment window and delete the outliers from the alignment, in
the same way as was done in Step 4. Save the resulting alignment to a file named
ann rep1 frags del2.aln.

This series of steps produces a ‘‘clean alignment’’ for inspection. Positions within
the alignment can be colored in different ways to highlight certain features of the
amino acids within the alignment. For example, selecting Conservation from the
Calculate menu will shade each column on the basis of the relative amino acid
conservation seen at that particular position in the alignment. By doing so, it im-
mediately becomes apparent which parts of the protein may lie within regions of
secondary structure. Examine the area around positions 60 to 70 of the alignment;
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the pattern observed should be two conserved, two unconserved, and two conserved
residues, a parttern that is characteristic of an alpha-helix.

Select Jnet from the Align menu. This will return a secondary structure prediction
based on the alignment. Alternatively, the alignment file can be submitted to the
JPRED2 server at EBI. In order to submit the alignment to the JPRED2 server, the
alignment must first be saved in MSF format (ann rep1 frags del2.msf).
Either of these methods should corroborate that there is an alpha-helical region in
the area around residues 60–70.

By ‘‘cleaning’’ the alignment in this way, information about sequences (and
sequences themselves) has been discarded. It is advisable to always save files at
intermediate steps: the clean alignment will be relatively easy to interpret, but the
results of the intermediate steps will have information about the parts of the align-
ment requiring more thought.

Subfamily Analysis

The following steps will allow a subfamily analysis to be performed on the annexin
family. The input file is ideal annexins.als.

1. Start Jalview and read in the alignment file by typing ideal annexins.blc
BLC.

2. Select Average Distance Tree from the Calculate menu. The resultant tree will
have four clear clusters with one outlier. Click on the tree at an appropriate
position to draw a vertical line and highlight the four clusters.

3. Return to the Alignment window. Select Conservation from the Calculate menu.
The most highly-conserved positions within each subgroup of sequences will be
colored the brightest. Examine the alignment, and identify the charge-pair shown
as an example in this Chapter. Selecting either the Taylor or Zappo color schemes
may help in identifying the desired region.

4. Submit the file ideal annexins.blc to the AMAS Web server. On the Web
page, paste the contents of ideal annexins.blc into the Alignment win-
dow, then paste the contents of the file ideal annexins.grp into the Sen-
sible Groups window. The server should return results quickly, providing links to
a number of output files. The Pretty Output file contains the PostScript alignment,
which should be identical to ideal annexins amas.ps provided here.
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With the announcement of the completion of a ‘‘working draft’’ of the sequence of
the human genome in June 2000 and the Human Genome Project targeting the com-
pletion of sequencing in 2002, investigators will be faced with the challenge of
developing a strategy by which they can deal with the oncoming flood of both
unfinished and finished data, whether the data are generated in their own laboratories
or at one of the major sequencing centers. These data undergo what can best be
described as a maturation process, starting as single reads off of a sequencing ma-
chine, passing through a phase where the data become part of an assembled (yet
incomplete) sequence contig, and finally ending up as part of a finished, completely
assembled sequence with an error rate of less than one in 10,000 bases. Even before
such sequencing data reach this highly polished state, investigators can begin to ask
whether or not given stretches of sequence represent coding or noncoding regions.
The ability to make such determinations is of great relevance in the context of
systematic sequencing efforts, since all of the data being generated by these projects
are, in essence, ‘‘anonymous’’ in nature—nothing is known about the coding poten-
tial of these stretches of DNA as they are being sequenced. As such, automated
methods will become increasingly important in annotating the human and other ge-
nomes to increase the intrinsic value of these data as they are being deposited into
the public databases.

In considering the problem of gene identification, it is important to briefly go
over the basic biology underlying what will become, in essence, a mathematical
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Figure 10.1. The central dogma. Proceeding from the DNA through the RNA to the pro-

tein level, various sequence features and modifications can be identified that can be used

in the computational deduction of gene structure. These include the presence of promoter

and regulatory regions, intron-exon boundaries, and both start and stop signals. Unfortu-

nately, these signals are not always present, and, when they are present, they may not

always be in the same form or context. The reader is referred to the text for greater detail.

problem (Fig. 10.1). At the DNA level, upstream of a given gene, there are promoters
and other regulatory elements that control the transcription of that gene. The gene
itself is discontinuous, comprising both introns and exons. Once this stretch of DNA
is transcribed into an RNA molecule, both ends of the RNA are modified, capping
the 5� end and placing a polyA signal at the 3� end. The RNA molecule reaches
maturity when the introns are spliced out, based on short consensus sequences found
both at the intron-exon boundaries and within the introns themselves. Once splicing
has occurred and the start and stop codons have been established, the mature mRNA
is transported through a nuclear pore into the cytoplasm, at which point translation
can take place.

Although the process of moving from DNA to protein is obviously more complex
in eukaryotes than it is in prokaryotes, the mere fact that it can be described in its
entirety in eukaryotes would lead one to believe that predictions can confidently be
made as to the exact positions of introns and exons. Unfortunately, the signals that
control the process of moving from the DNA level to the protein level are not very
well defined, precluding their use as foolproof indicators of gene structure. For ex-
ample, upward of 70% of the promoter regions contain a TATA box, but, because
the remainder do not, the presence (or absence) of the TATA box in and of itself
cannot be used to assess whether a region is a promoter. Similarly, during end mod-
ification, the polyA tail may be present or absent or may not contain the canonical



GRAIL 235

AATAAA. Adding to these complications is the fact that an open reading frame is
required but is not sufficient for judging a region as being an exon. Given these and
other considerations, there is at present no straightforward method that will allow
for 100% confidence in the prediction of an intron or an exon. Despite this, a com-
binatorial approach can be used, relying on a number of methods, to increase the
confidence with which gene structure is predicted.

Briefly, gene-finding strategies can be grouped into three major categories. Con-
tent-based methods rely on the overall, bulk properties of a sequence in making a
determination. Characteristics considered here include how often particular codons
are used, the periodicity of repeats, and the compositional complexity of the se-
quence. Because different organisms use synonymous codons with different fre-
quency, such clues can provide insight into determining regions that are more likely
to be exons. In site-based methods, the focus turns to the presence or absence of a
specific sequence, pattern, or consensus. These methods are used to detect features
such as donor and acceptor splice sites, binding sites for transcription factors, polyA
tracts, and start and stop codons. Finally, comparative methods make determinations
based on sequence homology. Here, translated sequences are subjected to database
searches against protein sequences (cf. Chapter 8) to determine whether a previously
characterized coding region corresponds to a region in the query sequence. Although
this is conceptually the most straightforward of the methods, it is restrictive because
most newly discovered genes do not have gene products that match anything in the
protein databases. Also, the modular nature of proteins and the fact that there are
only a limited number of protein motifs (Chothia and Lesk, 1986) make predicting
anything more than just exonic regions in this way difficult. The reader is referred
to a number of excellent reviews detailing the theoretical underpinnings of these
various classes of methods (Claverie, 1997a; Claverie, 1997b; Guigó, 1997; Snyder
and Stormo, 1997; Claverie, 1998; Rogic et al., 2001). Although many of the gene
prediction methods belong strictly to one of these three classes of methods, most of
the methods that will be discussed here use the strength of combining different
classes of methods to optimize predictions.

With the complexity of the problem at hand and the various approaches described
above for tackling the problem, it becomes important for investigators to gain an
appreciation for when and how each particular method should be applied. A recurring
theme in this chapter will be the fact that, depending on the nature of the data, each
method will perform differently. Put another way, although one method may be best
for human finished sequences, another may be better for unfinished sequences or for
sequences from another organism. In this chapter, we will examine a number of the
commonly used methods that are freely available in the public domain, focusing on
their application to human sequence data; this will be followed by a general discus-
sion of gene-finding strategy.

GRAIL

GRAIL, which stands for Gene Recognition and Analysis Internet Link (Uberbacher
and Mural, 1991; Mural et al., 1992), is the elder statesman of the gene prediction
techniques because it is among the first of the techniques developed in this area and
enjoys widespread usage. As more and more has become known about gene structure
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in general and better Internet tools have become more widespread, GRAIL has con-
tinuously evolved to keep in step with the current state of the field.

There are two basic GRAIL versions that will be discussed in the context of this
discussion. GRAIL 1 makes use of a neural network method to recognize coding
potential in fixed-length (100 base) windows considering the sequence itself, without
looking for additional features such as splice junctions or start and stop codons. An
improved version of GRAIL 1 (called GRAIL 1a) expands on this method by con-
sidering regions immediately adjacent to regions deemed to have coding potential,
resulting in better performance in both finding true exons and eliminating false pos-
itives. Either GRAIL 1 or GRAIL 1a would be appropriate in the context of searching
for single exons. A further refinement led to a second version, called GRAIL 2, in
which variable-length windows are used and contextual information (e.g., splice junc-
tions, start and stop codons, polyA signals) is considered. Because GRAIL 2 makes
its prediction by taking genomic context into account, it is appropriate for determin-
ing model gene structures.

In this chapter, the output of each of the methods discussed will be shown using
the same set of input data as the query. The sequence that will be considered is that
of a human BAC clone RG364P16 from 7q31, a clone established as part of the
systematic sequencing of chromosome 7 (GenBank AC002467). By using the same
example throughout, the strengths and weaknesses of each of the discussed methods
can be highlighted. For purposes of this example, a client-server application called
XGRAIL will be used. This software, which runs on the UNIX platform, allows for
graphical output of GRAIL 1/1a/2 results, as shown in Figure 10.2. Because the
DNA sequence in question is rather large and is apt to contain at least one gene,
GRAIL 2 was selected as the method. The large, upper window presents an overview
of the �98 kb making up this clone, and the user can selectively turn on or off
particular markings that identify features within the sequence (described in the figure
legend). Of most importance in this view is the prediction of exons at the very top
of the window, with the histogram representing the probability that a given region
represents an exon. Information on each one of the predicted exons is shown in the
Model Exons window, and the model exons can be assembled and shown as both
Model Genes and as a Protein Translation. Only putative exons with acceptable
probability values (as defined in the GRAIL algorithm) are included in the gene
models. The protein translation can, in turn, be searched against the public databases
to find sequence homologs using a program called genQuest (integrated into
XGRAIL), and these are shown in the Db Hits window. In this case, the 15 exons
in the first gene model (from the forward strand) are translated into a protein that
shows significant sequence homology to a group of proteins putatively involved in
anion transport (Everett et al., 1997).

Most recently, the authors of GRAIL have released GRAIL-EXP, which is based
on GRAIL but uses additional information in making the predictions, including a
database search of known complete and partial gene messages. The inclusion of this
database search in deducing gene models has greatly improved the performance of
the original GRAIL algorithm.

FGENEH/FGENES

FGENEH, developed by Victor Solovyev and colleagues, is a method that predicts
internal exons by looking for structural features such as donor and acceptor splice
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sites, putative coding regions, and intronic regions both 5� and 3� to the putative
exon (Solovyev et al., 1994a; Solovyev et al., 1994b; Solovyev et al., 1995). The
method makes use of linear discriminant analysis, a mathematical technique that
allows data from multiple experiments to be combined. Once the data are combined,
a linear function is used to discriminate between two classes of events—here,
whether a given stretch of DNA is or is not an exon. In FGENEH, results of the
linear discriminant approach are then passed to a dynamic programming algorithm
that determines how to best combine these predicted exons into a coherent gene
model. An extension of FGENEH, called FGENES, can be used in cases when
multiple genes are expected in a given stretch of DNA.

The Sanger Centre Web server provides a very simple front-end for performing
FGENES. The query sequence (again, the BAC clone from 7q31) is pasted into the
query box, an identifier is entered, and the search can then be performed. The results
are returned in a tabular format, as shown in Figure 10.3. The total number of
predicted genes and exons (2 and 33, respectively) is shown at the top of the output.
The information for each gene (G) then follows. For each predicted exon, the strand
(Str) is given, with + indicating the forward strand and – indicating the reverse.
The Feature list in this particular case includes initial exons (CDSf), internal exons
(CDSi), terminal exons (CDSl), and polyA regions (PolA). The nucleotide region
for the predicted feature is then given as a range. In the current example, the features
of the second predicted gene are shown in reverse order, since the prediction is based
on the reverse strand. On the basis of the information in the table, predicted proteins
are given at the bottom of the output in FASTA format. The definition line for each
of the predicted proteins gives the range of nucleotide residues involved, as well as
the total length of the protein and the direction (+ /-) of the predicted gene.

MZEF

MZEF stands for ‘‘Michael Zhang’s Exon Finder,’’ after its author at the Cold Spring
Harbor Laboratory. The predictions rely on a technique called quadratic discriminant
analysis (Zhang, 1997). Imagine a case in which the results of two types of predic-
tions are plotted against each other on a simple XY graph (for instance, splice site
scores vs. exon length). If the relationship between these two sets of data is nonlinear
or multivariate, the resulting graph will look like a swarm of points. Points lying in
only a small part of this swarm will represent a ‘‘correct’’ prediction; to separate the
correctly predicted points from the incorrectly predicted points in the swarm, a quad-
ratic function is used, hence the name of the technique. In the case of MZEF, the
measured variables include exon length, intron-exon and exon-intron transitions,
branch sites, 3� and 5� splice sites, and exon, strand, and frame scores. MZEF is
intended to predict internal coding exons and does not give any other information
with respect to gene structure.

There are two implementations of MZEF currently available. The program can
be downloaded from the CSHL FTP site for UNIX command-line use, or the program
can be accessed through a Web front-end. The input is a single sequence, read in
only one direction (either the forward or the reverse strand); to perform MZEF on
both strands, the program must be run twice. Returning to the BAC clone from
chromosome 7, MZEF predicts a total of 27 exons in the forward strand (Fig. 10.4).
Focusing in on the first two columns of the table, the region of the prediction is
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Figure 10.3. FGENES output using the human BAC clone RG364P16 from 7q31 as the

query. The columns, going from left to right, represent the gene number (G), strand (Str),

feature (described in the main text), start and end points for the predicted exon, a scoring

weight, and start and end points for corresponding open reading frames (ORF-start and

ORF-end). Each predicted gene is shown as a separate block. The tables are followed by

protein translations of any predicted gene products.

given as a range, followed by the probability that the prediction is correct (P). Pre-
dictions with P > 0.5 are considered correct and are included in the table. Immedi-
ately, one begins to see the difference in the predictions between methods. MZEF is
again geared toward finding single exons; therefore, the exons are not shown in the
context of a putative gene, as they are in GRAIL 2 or FGENES. However, the exons
predicted by these methods are not the same, a point that we will return to later in
this discussion.
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Figure 10.4. MZEF output using the human BAC clone RG364P16 from 7q31 as the query.

The columns, going from left to right, give the location of the prediction as a range of

included bases (Coordinates), the probability value (P), frame preference scores, an ORF

indicator showing which reading frames are open, and scores for the 3� splice site, coding

regions, and 5� splice site.

GENSCAN

GENSCAN, developed by Chris Burge and Sam Karlin (Burge and Karlin, 1997;
Burge and Karlin, 1998), is designed to predict complete gene structures. As such,
GENSCAN can identify introns, exons, promoter sites, and polyA signals, as do a
number of the other gene identification algorithms. Like FGENES, GENSCAN does
not expect the input sequence to represent one and only one gene or one and only
one exon: it can accurately make predictions for sequences representing either partial
genes or multiple genes separated by intergenic DNA. The ability to make these
predictions accurately when a sequence is in a variety of contexts makes GENSCAN
a particularly useful method for gene identification.

GENSCAN relies on what the author terms a ‘‘probabilistic model’’ of genomic
sequence composition and gene structure. By looking for gene structure descriptions
that match or are consistent with the query sequence, the algorithm can assign a
probability as to the chance that a given stretch of sequence represents an exon,
promoter, and so forth. The ‘‘optimal exons’’ are the ones with the highest probability
and represent the part of the query sequence having the best chance of actually being
an exon. The method will also predict ‘‘suboptimal exons,’’ stretches of sequence
having an acceptable probability value but one not as good as the optimal one. The
authors of the method encourage users to examine both sets of predictions so that
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alternatively spliced regions of genes or other nonstandard gene structures are not
missed.

With the use of the human BAC clone from 7q31 again, the query can be issued
directly from the GENSCAN Web site, using Vertebrate as the organism, the default
suboptimal cutoff, and Predicted Peptides Only as the print option. The results for
this query are shown in Figure 10.5. The output indicates that there are three genes
in this region, with the first gene having 11 exons, the second gene having 13 exons,
and the third gene having 10 exons. The most important columns in the table are
those labeled Type and P. The Type column indicates whether the prediction is
for an initial exon (Init), an internal exon (Intr), a terminal exon (Term), a
single-exon gene (Sngl), a promoter region (Prom), or a polyA signal (PlyA). The
P column gives the probability that this prediction is actually correct. GENSCAN
exons having a very high probability value (P > 0.99) are 97.7% accurate where the
prediction matches a true, annotated exon. These high-probability predictions can be
used in the rational design of PCR primers for cDNA amplification or for other
purposes where extremely high confidence is necessary. GENSCAN exons that have
probabilities in the range from 0.50 to 0.99 are deemed to be correct most of the
time; the best-case accuracies for P-values over 0.90 is on the order of 88%. Any
predictions below 0.50 should be discarded as unreliable, and those data are not
given in the table. An alternative view of the data is shown in Figure 10.6. Here,
both the optimal and suboptimal exons are shown, with the initial and terminal exons
showing the direction in which the prediction is being made (5� → 3� or 3� → 5�).
This view is particularly useful for large stretches of DNA, as the tables become
harder to interpret when more and more exons are predicted.

By the time of this printing, a new program named GenomeScan will be avail-
able from the Burge laboratory at MIT. GenomeScan assigns a higher score to pu-
tative exons that overlap BLASTX hits than to comparable exons for which similarity
evidence is lacking. Regions of higher similarity (according to BLASTX E-value,
for example) are accorded more confidence than regions of lower similarity, since
weak similarities sometimes do not represent homology. Thus, the predictions of
GenomeScan tend to be consistent with all or almost all of the regions of high
detected similarity but may sometimes ignore a region of weak similarity that either
has weak intrinsic properties (e.g., poor splice signals) or is inconsistent with other
extrinsic information. The accuracy of GenomeScan tends to be significantly higher
than that of GENSCAN when a moderate or closely related protein sequence is
available. An example of the improved accuracy of GenomeScan over GENSCAN,
using the human BRCA1 gene as the query, is shown in Figure 10.7.

PROCRUSTES

Greek mythology heralds the story of Theseus, the king of Athens who underwent
many trials and tribulations on his way to becoming a hero, along with Hercules. As
if Amazons and the Minotaur were not enough, in the course of his travels, Theseus
happened upon Procrustes, a bandit with a warped idea of hospitality. Procrustes,
which means ‘‘he who stretches,’’ would invite passersby into his home for a meal
and a night’s stay in his guest bed. The problem lay, quite literally, in the bed, in
that Procrustes would make sure that his guests fit in the bed by stretching them out
on a rack if they were too short or by chopping off their legs if they were too long.
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Figure 10.5. GENSCAN output using the human BAC clone RG364P16 from 7q31 as the

query. The columns, going from left to right, represent the gene and exon number (Gn.Ex),

the type of prediction (Type), the strand on which the prediction was made (S, with + as

the forward strand and - as the reverse), the beginning and endpoints for the prediction

(Begin and End), the length of the prediction (Len), the reading frame of the prediction

(Fr), several scoring columns, and the probability value (P). Each predicted gene is shown

as a separate block; notice that the third gene has its exons listed in reverse order, reflecting

that the prediction is on the reverse strand. The tables are followed by the protein trans-

lations for each of the three predicted genes.
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GENSCAN predicted genes in sequence Human

0.0 3 6.0 9 12.0 15.0 18.0 21.0 24.0 27.0 30.0
kb

30.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0 54.0 57.0 60.0
kb

60.0 63.0 66.0 69.0 72.0 75.0 78.0 81.0 84.0 87.0 90.0
kb

90.0 93.0 96.0
kb

Optimal exon

Suboptimal exon
Key: Initial

exon
Internal

exon
Terminal

exon
Single-exon

gene

Figure 10.6. GENSCAN output in graphical form, using the human BAC clone RG364P16

from 7q31 as the query. Optimal and suboptimal exons are indicated, and the initial and

terminal exons show the direction in which the prediction is being made (5� → 3� or 3�

→ 5�).

Theseus made short order of Procrustes by fitting him to his own bed, thereby sparing
any other traveler the same fate. On the basis of this story, the phrase ‘‘bed of
Procrustes’’ has come to convey the idea of forcing something to fit where it normally
would not.

Living up to its namesake, PROCRUSTES takes genomic DNA sequences and
‘‘forces’’ them to fit into a pattern as defined by a related target protein (Gelfand et
al., 1996). Unlike the other gene prediction methods that have been discussed, the
algorithm does not use a DNA sequence on its own to look for content- or site-based
signals. Instead, the algorithm requires that the user identify putative gene products
before the prediction is made, so that the prediction represents the best fit of the
given DNA sequence to its putative transcription product. The method uses a spliced
alignment algorithm to sequentially explore all possible exon assemblies, looking for
the best fit of predicted gene structure to candidate protein. If the candidate protein
is known to arise from the query DNA sequence, correct gene structures can be
predicted with an accuracy of 99% or better. By making use of candidate proteins
in the course of the prediction, PROCRUSTES can take advantage of information
known about this protein or related proteins in the public databases to better deter-
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mine the location of the introns and the exons in this gene. PROCRUSTES can
handle cases where there are either partial or multiple genes in the query DNA
sequence.

The input to PROCRUSTES is through a Web interface and is quite simple. The
user needs to supply the nucleotide sequence and as many protein sequences as are
relevant to this region. The supplied protein sequences will be treated as being sim-
ilar, though not necessarily identical, to that encoded by the DNA sequence. Typical
output from PROCRUSTES (not shown here) includes an aligned map of the pre-
dicted intron-exon structure for all target proteins, probability values, a list of exons
with their starting and ending nucleotide positions, translations of the gene model
(which may not be the same as the sequence of the initially supplied protein), and
a ‘‘spliced alignment’’ showing any differences between the predicted protein and
the target protein. The nature of the results makes PROCRUSTES a valuable method
for refining results obtained by other methods, particularly in the context of positional
candidate efforts.

GeneID

The current version of GeneID finds exons based on measures of coding potential
(Guigó et al., 1992). The original version of this program was among the fastest in
that it used a rule-based system to examine the putative exons and assemble them
into the ‘‘most likely gene’’ for that sequence. GeneID uses position-weight matrices
to assess whether or not a given stretch of sequence represents a splice site or a start
or stop codon. Once this assessment is made, models of putative exons are built. On
the basis of the sets of predicted exons that GeneID develops, a final refinement
round is performed, yielding the most probable gene structure based on the input
sequence.

The interface to GeneID is through a simple Web front-end, in which the user
pastes in the DNA sequence and specifies whether the organism is either human or
Drosophila. The user can specify whether predictions should be made only on the
forward or reverse strand, and available output options include lists of putative ac-
ceptor sites, donor sites, and start and stop codons. Users can also limit output to
only first exons, internal exons, terminal exons, or single genes, for specialized anal-
yses. It is recommended that the user simply select All Exons to assure that all
relevant information is returned.

GeneParser

GeneParser (Snyder and Stormo, 1993; Snyder and Stormo, 1997) uses a slightly
different approach in identifying putative introns and exons. Instead of predetermin-
ing candidate regions of interest, GeneParser computes scores on all ‘‘subintervals’’
in a submitted sequence. Once each subinterval is scored, a neural network approach
is used to determine whether each subinterval contains a first exon, internal exon,
final exon, or intron. The individual predictions are then analyzed for the combination
that represents the most likely gene. There is no Web front-end for this program, but
the program itself is freely available for use on Sun, DEC, and SGI-based systems.
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HMMgene

HMMgene predicts whole genes in any given DNA sequence using a hidden Markov
model (HMM) method geared toward maximizing the probability of an accurate
prediction (Krogh, 1997). The use of HMMs in this method helps to assess the
confidence in any one prediction, enabling HMMgene to not only report the ‘‘best’’
prediction for the input sequence but alternative predictions on the same sequence
as well. One of the strengths of this method is that, by returning multiple predictions
on the same region, the user may be able to gain insight onto possible alternative
splicings that may occur in a region containing a single gene.

The front-end for HMMgene requires an input sequence, with the organismal
options being either human or C. elegans. An interesting addition is that the user
can include known annotations, which could be from one of the public databases or
based on experimental data that the investigator is privy to. Multiple sequences in
FASTA format can be submitted as a single job to the server. Examples of sequence
input format and resulting output are given in the documentation file at the
HMMgene Web site.

HOW WELL DO THE METHODS WORK?

As we have already seen, different methods produce different types of results—in
some cases, lists of putative exons are returned but these exons are not in a genomic
context; in other cases, complete gene structures are predicted but possibly at a cost
of less-reliable individual exon predictions. Looking at the absolute results for the
7q31 BAC clone, anywhere between one and three genes are predicted for the region,
and those one to three genes have anywhere between 27 and 34 exons. In cases of
similar exons, the boundaries of the exons are not always consistent. Which method
is the ‘‘winner’’ in this particular case is not important; what is important is the
variance in the results.

Returning to the cautionary note that different methods will perform better or
worse, depending on the system being examined, it becomes important to be able to
quantify the performance of each of these algorithms. Several studies have syste-
matically examined the rigor of these methods using a variety of test data sets (Burset
and Guigó, 1996; Claverie, 1997a; Snyder and Stormo, 1997, Rogic et al., 2001).
Before discussing the results of these studies, it is necessary to define some terms.

For any given prediction, there are four possible outcomes: the detection of a
true positive, true negative, false positive, or false negative (Fig. 10.8). Two measures
of accuracy can be calculated based on the ratios of these occurrences: a sensitivity
value, reflecting the fraction of actual coding regions that are correctly predicted as
truly being coding regions, and a specificity value, reflecting the overall fraction of
the prediction that is correct. In the best-case scenario, the methods will try to op-
timize the balance between sensitivity and specificity, to be able to find all of the
true exons without becoming so sensitive as to start picking up an inordinate amount
of false positives. An easier-to-understand measure that combines the sensitivity and
specificity values is called the correlation coefficient. Like all correlation coefficients,
its value can range from - 1, meaning that the prediction is always wrong, through
zero, to + 1, meaning that the prediction is always right.
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Figure 10.8. Sensitivity vs. specificity. In the upper portion, the four possible outcomes of

a prediction are shown: a true positive (TP), a true negative (TN ), a false positive (FP), and

a false negative (FN ). The matrix at the bottom shows how both sensitivity and specificity

are determined from these four possible outcomes, giving a tangible measure of the ef-

fectiveness of any gene prediction method. (Figure adapted from Burset and Guigó, 1996;

Snyder and Stormo, 1997.)

As a result of a Cold Spring Harbor Laboratory meeting on gene prediction,1 a
Web site called the ‘‘Banbury Cross’’ was created. The intent behind creating such
a Web site was twofold: for groups actively involved in program development to
post their methods for public use and for researchers actively deriving fully char-
acterized, finished genomic sequence to submit such data for use as ‘‘benchmark’’
sequences. In this way, the meeting participants created an active forum for the
dissemination of the most recent findings in the field of gene identification. Using
these and other published studies, Jean-Michel Claverie at CNRS in Marseille com-
pared the sensitivity and specificity of 14 different gene identification programs
(Claverie, 1997, and references therein); PROCRUSTES was not one of the 14 con-
sidered, since the method varies substantially from that employed by other gene
prediction programs. In examining data from these disparate sources, either the best
performance found in an independent study or the worst performance reported by
the authors of the method themselves was used in making the comparisons. On the
basis of these comparisons, the best overall individual exon finder was deemed to
be MZEF and the best gene structure prediction program was deemed to be GEN-
SCAN. (By back-calculating as best as possible from the numbers reported in the
Claverie paper, these two methods gave the highest correlation coefficients within
their class, with CCMZEF ~ 0.79 and CCGENSCAN ~ 0.86.)

1 Finding Genes: Computational Analysis of DNA Sequences. Cold Spring Harbor Laboratory, March
1997.
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Because these gene-finding programs are undergoing a constant evolution, add-
ing new features and incorporating new biological information, the idea of a com-
parative analysis of a number of representative algorithms was recently revisited
(Rogic et al., 2001). One of the encouraging outcomes of this study was that these
newer methods, as a whole, did a substantially better job in accurately predicting
gene structures than their predecessors did. By using an independent data set con-
taining 195 sequences from GenBank in which intron-exon boundaries have been
annotated, GENSCAN and HMMgene appeared to perform the best, both having a
correlation coefficient of 0.91. (Note the improvement of CCGENSCAN from the time
of the Burset and Guigó study to the time of the Rogic et al. study.)

STRATEGIES AND CONSIDERATIONS

Given these statistics, it can be concluded that both MZEF and GENSCAN are
particularly suited for differentiating introns from exons at different stages in the
maturation of sequence data. However, this should not be interpreted as a blanket
recommendation to only use these two programs in gene identification. Remember
that these results represent a compilation of findings from different sources, so keep
in mind that the reported results may not have been derived from the same data set.
It has already been stated numerous times that any given program can behave better
or worse depending on the input sequences. It has also been demonstrated that the
actual performance of these methods can be highly sensitive to G + C content. For
example, Snyder and Stormo (1997) reported that GeneParser (Snyder and Stormo,
1993) and GRAIL2 (with assembly) performed best on test sets having high G + C
content (as assessed by their respective CC values), whereas GeneID (Guigó et al.,
1992) performed best on test sets having low G + C content. Interestingly, both
GENSCAN and HMMgene were seen to perform ‘‘steadily,’’ regardless of G + C
content, in the Rogic study (Rogic et al., 2001).

There are several major drawbacks that most gene identification programs share
that users need to be keenly aware of. Because most of these methods are ‘‘trained’’
on test data, they will work best in finding genes most similar to those in the training
sets (that is, they will work best on things similar to what they have seen before).
Often methods have an absolute requirement to predict both a discrete beginning and
an end to a gene, meaning that these methods may miscall a region that consists of
either a partial gene or multiple genes. The importance given to each individual
factor in deciding whether a stretch of sequence is an intron or an exon can also
influence outcomes, as the weighing of each criterion may be either biased or in-
correct. Finally, there is the unusual case of genes that are transcribed but not trans-
lated (so-called ‘‘noncoding RNA genes’’). One such gene, NTT (noncoding tran-
script in T cells), shows no exons or significant open reading frames, even though
RT-PCR shows that NTT is transcribed as a polyadenlyated 17-kb mRNA (Liu et
al., 1997). A similar protein, IPW, is involved in imprinting, and its expression is
correlated to the incidence of Prader-Willi syndrome (Wevrick et al., 1996). Because
hallmark features of gene structure are presumably absent from these genes, they
cannot be reliably detected by any known method to date.

It begins to become evident that no one program provides the foolproof key to
computational gene identification. The correct choice will depend on the nature of
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the data and where in the pathway of data maturation the data lie. On the basis of
the studies described above, some starting points can be recommended. In the case
of incompletely assembled sequence contigs (prefinished genome survey sequence),
MZEF provides the best jumping-off point, since, for sequences of this length, one
would expect no more than one exon. In the case of nearly finished or finished data,
where much larger contigs provide a good deal of contextual information, GEN-
SCAN or HMMgene would be an appropriate choice. In either case, users should
supplement these predictions with results from at least one other predictive method,
as consistency among methods can be used as a qualitative measure of the robustness
of the results. Furthermore, utilization of comparative search methods, such as
BLAST (Altschul et al., 1997) or FASTA (Pearson et al., 1997), should be considered
an absolute requirement, with users targeting both dbEST and the protein databases
for homology-based clues. PROCRUSTES again should be used when some infor-
mation regarding the putative gene product is known, particularly when the cloning
efforts are part of a positional candidate strategy.

A good example of the combinatorial approach is illustrated in the case of the
gene for cerebral cavernous malformation (CCM1) located at 7q21–7q22; here, a
combination of MZEF, GENSCAN, XGRAIL, and PowerBLAST (Zhang and Mad-
den, 1997) was used in an integrated fashion in the prediction of gene structure
(Kuehl et al., 1999). Another integrated approach to this approach lies in ‘‘work-
benches’’ such as Genotator, which allow users to simultaneously run a number of
prediction methods and homology searches, as well as providing the ability to an-
notate sequence features through a graphical user interface (Harris, 1997).

A combinatorial method developed at the National Human Genome Research
Institute combines most of the methods described in this chapter into a single tool.
This tool, named GeneMachine, allows users to query multiple exon and gene pre-
diction programs in an automated fashion (Makalowska et al., 1999). A suite of Perl
modules are used to run MZEF, GENSCAN, GRAIL2, FGENES, and BLAST.
RepeatMasker and Sputnik are used to find repeats within the query sequence. Once
GeneMachine is run, a file is written that can subsequently be opened using NCBI
Sequin, in essence using Sequin as a workbench and graphical viewer. Using Sequin
also has the advantage of presenting the results to the user in a familiar format—
basically the same format that is used in Entrez for graphical views. The main feature
of GeneMachine is that the process is fully automated; the user is only required to
launch GeneMachine and then open the resulting file with NCBI Sequin. Gene-
Machine also does not require users to install local copies of the prediction programs,
enabling users to pass-off to Web interfaces instead; although this reduces some of
the overhead of maintaining the program, it does result in slower performance. An-
notations can then be made to these results before submission to GenBank, thereby
increasing the intrinsic value of these data. A sample of the output obtained using
GeneMachine is shown in Figure 10.9, and more details on GeneMachine can be
found on the NHGRI Web site.

The ultimate solution to the gene identification problem lies in the advancement
of the Human Genome Project and other sequencing projects. As more and more
gene structures are elucidated, this biological information can in turn be used to
develop better methods, yielding more accurate predictions. Although the promise
of such computational methods may not be completely fulfilled before the Human
Genome Project reaches completion, the information learned from this effort will
play a major role in facilitating similar efforts targeting other model genomes.
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Figure 10.9. Annotated output from GeneMachine showing the results of multiple gene

prediction program runs. NCBI Sequin is used at the viewer. The top of the output shows

the results from various BLAST runs (BLASTN vs. dbEST, BLASTN vs. nr, and BLASTX vs. SWISS-

PROT). Toward the bottom of the window are shown the results from the predictive meth-

ods (FGENES, GENSCAN, MZEF, and GRAIL 2). Annotations indicating the strength of the

prediction are preserved and shown wherever possible within the viewer. Putative regions

of high interest would be areas where hits from the BLAST runs line up with exon predic-

tions from the gene prediction programs. (See color plate.)

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 10

Banbury Cross http://igs-server.cnrs-mrs.fr/igs/banbury
FGENEH http://genomic.sanger.ac.uk/gf/gf.shtml
GeneID http://www1.imim.es/geneid.html
GeneMachine http://genome.nhgri.nih.gov/genemachine
GeneParser http://beagle.colorado.edu/~eesnyder/GeneParser.htl
GENSCAN http://genes.mit.edu/GENSCAN.html
Genotator http://www.fruitfly.org/~nomi/genotator/
GRAIL http://compbio.ornl.gov/tools/index.shtml
GRAIL-EXP http://compbio.ornl.gov/grailexp/
HMMgene http://www.cbs.dtu.dk/services/HMMgene/
MZEF http://www.cshl.org/genefinder
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PROCRUSTES http://www-hto.usc.edu/software/procrustes
RepeatMasker http://ftp.genome.washington.edu/RM/RepeatMasker.html
Sputnik http://rast.abajian.com/sputnik/

PROBLEM SET

An anonymous sequence from 18q requiring computational analysis is posted on the
book’s Web site (http://www.wiley.com/bioinformatics). To gain a better appreciation
for the relative performance of the methods discussed in this chapter and how the
results may vary between methods, use FGENES, GENSCAN, and HMMgene to
answer each of the following questions.

1. How many exons are in the unknown sequence?

2. What are the start and stop points for each of these exons?

3. Which strand (forward or reverse) are the putative exons found on?

4. Are there any unique features present, like polyA tracts? Where are they located?

5. Can any protein translations be derived from the sequence? What is the length
(in amino acids) of these translations?

6. For HMMgene only, can alternative translations be computed for this particular
DNA sequence? If so, give the number of exons and the length of the coding
region (CDS) for each possible alternative prediction. Note on which strand the
alternative translations are found.
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