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1 Introduction

As the attempts to sequence entire genomes increases the number of protein
sequences by a factor of two each year, the gap between sequence and structural
information stored in public databases is growing rapidly. In stark contrast to
sequencing techniques, experimental methods for structure determination are
time~consuming, and limited in their application, and therefore will not be able
to keep pace with the flood of newly characterized gene products. The develop-
ment of practical methods for predicting protein structure from sequence is
therefore of considerable importance in the field of biology.

Several different approaches have been used to predict protein structure from
sequence, with varying degrees of success. Ab initic methods encompass any
means of calculating co-ordinates for a protein sequence from first principles—
that is, without reference to existing protein structures. Little success has been
seen in this area, with more theory produced than actual useful methodology.
Comparative (or homology) modelling, attempts to predict protein structure on
the strength of a protein’s sequence similarity to another protein of known
structure (following the theory that similar sequence implies similar structure).
Some success has been achieved, but several limitatons to this method, not
least of which are its dependence con alignment quality and the existence of a
good sequence homologue, indicate it is not applicable to a large fraction of pro-
tein sequences. The third main category of protein structure prediction, falling
somewhere between comparative modelling and ab initio prediction, is fold
recognition, or threading.

2 Threading methods

The term ‘threading’ was first coined in 1992 by Jones et al. (1), but the field has
grown considerably since then with many different methods being proposed:
for example, Godzik and Skolnick {2}, Ouzounis et al. (3); Abagyan.et al. (4);
Overington et al. (5 Matsuo et al. (6); Madej et al. (7); Lathrop and Smith (8);
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Flgure 1 An esxample of a pair of protein structures in the same family. (a) Human myogloin
[2mm1], (b) pig haemaglobin, afpha shain [2pghAl. At the family level, proteins have higher
sequences identity {in this case, 32%) and have highlv similar structures. Figures created
using Moiscript (19).

Figure 2 A pair of structures within the same superfamily. (a) A. denitrificans azurin [1azcA],
(k) poplar plastocyanin [1plc]. Membgers of the same superfamily may have insignificant
sequence identity (16% in this case), but still share most fegtures of the protein fold,
refiecting a common evolutionary origin.

Taylor (9) amongst others. The idea behind threading came about from the
observation that a large percentage of proteins adopt one of a limited number of
folds {Figures 1-3). In fact, just 10 different folds (the ‘superfolds'} account for 50%
of the known structural similarities between protein superfamilies {18}, Thus,
rather than trying to find the correct structure for a protein from the huge
number of all possible conformations available to a polypeplide chain, the cor-
rect (or close to correct) structure is likely to have already been observed and
already stored in a structural database. Of course, in cases where the target
protein shares significant sequence similarity to a protein of known 3-D struc
ture, the ‘fold recognition' problem is trivial—simple sequerice comparison will
identify the correct fold. The hope was, however, that threading might be able
to detect structural similarities that are not accompanied by any detectable
sequence similarity, and this has subsequently been proven to be the case.
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Figure 3 A pair of analogous foids. (&) Chicken triosephosphate isomerase [1timA].,

(b} E. coli fructose bisphosphate aldolase [1dosA]. Members of the sarme fold family have
the same major secondary structure elements with the same arrangement and connectivity.
Very low sequence identity and large variations in the details of the structures reflects the
lack of common ancestry between analogous folds. Although the aldolase structure contains
additional helices, the TIM barrel foid is obviously present in both proteins. The TIM barrei Is
one of 10 ‘superfolds' identified by Qrengo et al. (18).

Figure 4 shows an cutline of a generic fold recognition method. Firstly, a library
of utiicue or representative protein structures needs to be derived from the data-
base of all known protein structures. Different groups use different selection
criteria for their fold libraries: in some cases, complete protein chains are used
in the library, but in other cases, structural domains or even conserved proteins
cores are used. Each fold from this library is then considered in turn and the
target sequence optimally fitted (ot aligned) to each library fold jallowing for
relative insertions and deletions in loop regions). Many different algorithms
have been proposed for finding this optimal sequence-structure alignment, with
most groups using some form of dynamic programming algorithm {including
the examples described below}, but other algorithms such as Gibbs sampling {7)
or branch-and-bound searching (8) have also been used with some success.
Finally, some kind of objective function is needed to determine the goodness of
{fit between the sequence and the template structure. It is this objective function
which is oprimized during the sequence-structure alignment. Again opinmions
differ as to the form of this objective function. Most groups use some kind of
‘pseudo energy’ function based on a statistical analysis of observed protein struc-
tures, but other more abstract scoring functions have also been proposed (see
ref. 20 for a recent review). The final result of a fold recognition method is a
ranking of the fold library in descending order of ‘goodness of fit’, with the hest
fitting fold {typically the lowest energy fold) being taken as the most probable
match,
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Figwe 4 This is an outline of the fold recognition approach to protein structure prediction,
and identifies three clear aspects of the problem that need consideration: a fold library, a
method for modelling the object sequence on each fold, and & means for assessing the
goodness-of-fit between the sequence and the structure.

No matter what algorithm or scoring function is used, fold recognition is not
without its limitations, and some progress must be made before it can be con-
sidered a routine protein structure prediction tool. Several different aspects of
this method are particularly open to improvement, namely the question of
potential functions (ie. the calculations used to determine the energy of a
particular sequence once fitted onto 2 template fold), improvements in align-
ments (i.e. correctly aligning the sequence onto the template foid, to produce
the best fit), and the need for progress in post-processing the results (i.e. from
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the energy calculations, etc., choosing the best ‘fit’). Significant progress may
also arise from improvements in the threading library used (i.e. the templates
upon which the sequences will be threaded).

To get some idea of the variety of methods which have been developed, four
distinct approaches to the fold-recognition problem will be described. Virtually
all fold-recognition methods are similar tc at least one of these methods, and
some newer methods incorporate concepts from more than one.

2.1 1-D-3-D profiles: Bowie et al. (1991)

The first true fold recognition method was by Bowie, Liithy, and Eisenberg (10},
where they attempted to match sequences to folds by describing the fold in
terms of the environment of each residue in the structure. The environment was
described in terms of local secondary structure (3 states: «, B, and coil), solvent
accessibility (3 states: buried, partially buried, and exposed), and the degree of
burial by polar rather than apolar atoms. The basic idea of the method is the
assumption that the environment of a particular residue thus defined is expected
to be more conserved than the actual residue itself, and so the method is able to
detect more distant sequence-structure relationships than purely sequence-
based methods. The authors describe this method as a 1-D-3-D profile method,
in that a 3-D structure is translated into a 1-D string, which can then be aligned
using traditional dynamic programming algorithms. Bowie et al. have applied
the 1-D-3-D profile method to the inverse folding problem and have shown that
the method can indeed detect remote matches, but in the cases shown the hits still
retained some weak sequence similarity with the search protein. Environment-
based methods appear to be incapable of detecting structural similarities between
extremely divergent proteins, and between proteins sharing a common fold
through convergent evolution—environment only appears to be conserved up
to a point. Consider a buried polar residue in one structure that is found to be
located in a polar environment. Buried polar residues tend to be functionally
important residues, and so it is not surprising then that a protein with a similar
structure but with an entirely different function would choose to place a hydro-
phobic residue at this position in an apolar environment. A further problem
with environment-based methods is that they are sensitive to the multimeric
state of a protein. Residues buried in a subunit interface of a multimeric protein
will not be buried at an equivalent position in a monomeric protein of similar
fold.

2.2 Threading: Jones et al. (1992)

The method which introduced the term ‘threading’ (1} went further than the
method of Bowie, Liithy, and Eisenberg in that instead of using averaged residue
environments, a given protein fold was modelled in terms of a ‘network’ of
pairwise interatomic energy terms, with the structural role of any given residue
described in terms of its interactions. Classifying such a set of interactions into
one environmental class such as ‘buried alpha helical’ will inevitably result in
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the loss of useful informarion, reducing the specificity of sequence-structure
matches evaluated in this way. Thus, in true threading methods, a sequence is
matched to a structure by considering detailed pairwise interactions, rather than
averaging them into a crude environimental class. However, incorporation of
such non-local interactions means that simple dynamic programming string-
matching methods cannot be used. There is therefore a trade-off to be made
between the complexity of the sequence-structure scoring scheme and the
algorithmic complexity of the problem.

Jones et al. (1) proposed a novel dynamic programming algorithm (now com-
monly known as ‘double’ dynamic programming} to the problem of aligning a
given sequence with the backbone co-ordinates of a template protein structure,
taking into account the detailed pairwise interactions. The problem of matching
pairwise interactions is somewhat similar to the problem of structural com-
parison methods. The potential environment of a residue 1 can be defined as being
the sum of all pairwise potential terms involving { and all other residues j#i.
This is an analogous definition to that of a residue’s structural environment, as
described by Taylor and Orengo (11). In the simplest case, structural environ-
ment of a residue i may be defined as the set of all inter-Ca distances between
residue i and all other residues j#i. Taylor and Orengo propose a novel dynamic
programming algorithm for the comparison of such residue structural environ-
ments, and this method proved to be effective for the comparison of residue
potential environments, A detailed description of the algerithm has recently
been published (12).

For a sequence-structure compatibility function, Jones et al. chose to use a set
of statistically derived pairwise potentials similar to those described by Sippl
(13). Using the formulation of Sippl., short (sequence separation, k = 10),
medium (11 = k = 30), and long (k > 30} range potentials were constructed
between the following atom pairs: CB - CB, CB - N, CB > O, N> CB, N—=0(,
0O — CB, and O — N. For a given pair of atoms, a given residue sequence
separation and a given interaction distance, these potentials provide a measure
of energy, which relates to the probability of observing the proposed interaction
in native protein structures. In addition to these pairwise terms, a ‘solvation
potential’ was also incorporated. This potential simply measures the frequency
with which each amino acid species is found with a certain degree of solvation,
approximated by the residue solvent accessible surface area.

By dividing the empirical pair potentials intc sequence separation ranges,
specific structural significance may be tentatively conferred on each range. For
instance, the short range terms predominate in the matching of secondary
structural elements, By threading a sequence segment onto the template of an
alpha helical conformation and evaluating the short range potential terms, the
possibility of the sequence folding into an alpha helix may be evaluated. In a
similar way, medium range terms mediate the matching of super-secondary
structural motifs, and the long range terms, the tertiary packing.

Recent features added to the method allow sequence information and pre-
dicted secondary structure information to be considered in the fold-recognition
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process. Sequence information is weighted into the fold recognition potentials
using a transformation of a mutation data matrix (12). By carefully selecting the
weighting of the sequence components in the scoring function it is possible to
balance the influence of sequence matching with the influence of the pairwise
and solvation energy terms. In contrast to this, secondary structure information
is not incorporated into the sequence-structure scoring function, In this case,
secondary structure information is used to mask regions of the alignment path
matrix so that the threading alignments do not align (for example) predicted g
strands with observed « helices. A confidence threshold is applied to the second-
ary structure prediction data so that only the most confidently predicted regions
of the prediction are used to mask the alignment matrix. '

2.3 Protein fold recognition using secondary structure
predictions: Rost (1997)

Although most fold recognition methods employ potentials of one kind or
another, it is quite easy to design a useful fold recognition approach that at first
sight does not employ potentials of any kind. Although not the first example of
this approach, as a good recent example the PHD secondary structure prediction
service (14) has recently been extended to offer a fold recognition option. In this
case the system predicts the secondary structure and accessibility of each residue
in the protein of interest, encodes this information in the form of a string
(similar to the scheme employed by Bowie ¢t al) (10) and then matches this
string against a library of strings computed from known structures. A number of
other similar methods are also int development in other labs, though all based on
the initial prediction of secondary structure by PHD. Clearly no explicit potentials
are being employed in these methods, but potentials are implicitly coded into
the neural network weights used to predict secondary structure in the first
place.

2.4 Combining sequence similarity and threading: Jones
(1999)

Jones (15) has recently proposed a hybrid fold recognition method which is
designed to be both fast and reliable, and is particularly aimed at automated
genome annotation. The method uses a sequence profile-based alignment
algorithm to generate alignments which are then evaluated by threading tech-
niques. As a last step, each threaded model is evaluated by a neural network in
order to produce a single measure of confidence in the proposed prediction. The
speed of the method, along with its sensitivity and very low false-positive rate
makes it ideal for automatically predicting the structure of all the proteins in a
translated bacterial genome. The method has been applied to the genome of
Mycoplastna genitalium, and analysis of the results shows that as many as 46%
(now 51%) of the proteins derived from the predicted protein coding regions
have a significant relationship to a protein of known structure. The fact that
alignments are generated by a sequence alignment step means that the method
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Probably non-globular
proteins
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Flgure & Hypothetical applicability of different categories of fold-recognition methods to the
Open Reading Frames of small bacterial genomes, At present sequence-based fold
recognition {e.g. GenTHREALER) is successful for around 90% of the ORFs. Structures for a
further 15% of ORFs can prokably be assigned by full threading methods such as
THREADER, and the remaining 35% cannot currently be recognized either because the fold
has not yet been observed, or because the ORF encodes a non-globular protein (e.g. a
transmembrane protein}.

is only expected to wark for family or superfamily level similarities between the
target and template proteins. This is both a positive and negative teature of the
method. The negative aspect is that, of course, many purely structaral similari-
ties will not be detected by the method. The positive aspect is that superfamily
relationships produce the most reliable results, and also allow some aspects of
the function of the target protein to be inferred from the matched template
structure. This latter point is particularly useful when annotating unknown
genome sequences. Figure 5 shows the current applicability of different types of
fold recognition method to a genome such as that of M. genitalium.

Unlike full threading methods, which require a great deai of computer power
to run, this type of method can be made readily available to the public via a
simple Web server. The GenTHREADER method is available from the following
URL:

http:ffglobin.bio.warwick.ac.uk/psipred

3 Assessing the reliability of threading methods

Although the published results for the fold recognition methods can look im-
pressive, showing that threading is indeed capabie of recognizing folds in the
absence of significant sequence similarity, it can be argued that in all cases rhe
correct answers were already known and se it is not clear how well they would
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perform in real situations where the answers are not known at the time the
predictions are made. It was not until these methods were tested in a set of blind
trials—the Critical Assessment in Structure Prediction experiments (CASP)—
that it became clear how powerful these methods could be when used without
prior knowledge of the correct answer. The CASP experiment has now been run
three times (CASP1 in 1994, CASP2 in 1996, CASP3 in 1998): and in the last meet-
ing results from over 30 methods were evaluated by the independent assessors.
Up to date information on all of the CASP experiments can be obtained from the
following Web address:

http:f/predictioncenter.llnl. gov

3.1 Alignment accuracy

Most published methods are evaluated solely on the basis of fold assignment, i.e.
the method is evaluated on its ability to correctly pick the correct fold. However,
in practice, fold assignment is not sufficient in its own right. Given a correct fold
assignment the next step is of course to generate an accurate sequence structure
alignment and to use this alignment to generate an accurate 3-D model for the
target protein. In cases where a fold has been assigned, the alignment can be
passed to an automatic comparative modelling program (e.g. MODELLER3) so
that loops and side chains can be built in.

The accuracy of alignments that can be produced by fold recognition methods
can be measured in terms of the Root Mean Square Deviation (RMSD) between
the implied prediction model and the observed experimental structure. Analysis
of the results of the CASP experiments has shown that alignment accuracy
correlates strongly with the degree of evolutionary and structural divergence
between the available template structures and the target protein. The degree of
model accuracy that can be expected can be broken down into three categories
of structure relationship:

(2) Family (e.g. Figure 1). Evident sequence similarity. Threading models will be
almost entirely accurate, with an RMSD of between 1.0 and 3.0 Angstroms,
depending on the degree of sequence similarity.

{b) Superfamily (e.g. Figure 2). No significant sequence similarity, but evident
common ancestry between the template and target structure. Models for this
class of similarity will be partially correct (mostly in active site regions) and
will have an RMSD of between 3.0 and 6.0 Angstroms typically {though some-
times more depending on the accuracy of the alignment produced).

(c) Amalogy (e.g. Figure 3). No apparent common ancestry between the template
and target structure. Low quality models are expected for this category of
similarity. RMSD is not a good way to evaluate models of this quality as very
large shifts in the alignment produce virtually random RMSD values. At best,
alipnments in this class are “topologically correct’, in that the correct elements
of secondary structure are equivalenced, but frequently shifts in the align-
ment are so large as to render the models entirely incorrect.
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3.2 Post-processing threading results

Perhaps one of the most significant observations that came from the CASP2
prediction experiment was that a great deal of success in fold recognition can be
achieved purely from a deep background knowledge of protein structure and
function relationships. Alexey Murzin {one of the authors of the SCOP protein
structure classification scheme) identified a number of key evolutionary clues
which led him to correctly assign membership of some of the target proteins to
known superfamilies (16). Also in two cases he was able to confidently assign a
‘null prediction’ to targets with unique folds purely by considering their pre-
dicted secondary structure. These feats are quite remarkable, but not easily
reproduced by non-experts in protein structure and function. Despite this, it is
very clear that an important future development of practical fold-recognition is
to take both structure and function into account when ranking the sequence-
structure matches.

Even without new developments in fold recognition algorithms, information
on function and other sources of information can be applied to the results of a
threading method as a ‘post-processing’ step. Rather than simply taking the top
scoring fold to be the assumed correct answer, a fold from, say, the top 10
matches can be selected by human intervention. Such intervention might
involve visual inspection of the proposed alignment, inspection of the proposed
3-D structure on a graphics workstation, comparison of proposed secondary
structure with that obtained from secondary structure prediction or even con-
sideration of common function between the target and template proteins.

3.3 Why does threading work?

Although many different formulations of energy function have been used for
fold recognition, it has been shown that the principal factor in the most success-
ful of these empirical potentials essentially encodes the general ‘hydrophobic
effect’, rather than specific interactions between specific side chains. (e.g. the
interaction potential between like charges is the same as that derived for unlike
charges, reflecting not the specific interaction between side chains, but their
overall preference to lie on the surface). Despite this observation that specific
pair interactions are not vital to successful fold recognition, threading methods
based on pairwise interactions do seem to work better than profile methods (as
evidenced for example in the predictions made during the CASP experiments).
This might at first sight seem contradictory, particularly as it is apparent that
specific pairwise interactions are not conserved between analogous fold families
(17). Nevertheless, threading methods do seem to be picking up signals which
are not detected by simple 1-D profile methods. Why might this be the case?
One reasonable explanation may be that profile-based fold-recognition methods
make the assumption that the pattern of accessibility between two divergent
protein structures is perfectly conserved, and it is this assumption that resuits in
their relatively poor performance. Threading methods, on the other hand, are
able to model the environment of a residue by summing the hydrophobic pair
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interactions surrounding a particular residue. These pair interaction environments
of course change as the threading alignment changes, and it is this sensitivity of
residue environments to changes in the sequence-structure alignment that
results in the increased predictive power of threading methods. Although this
explains why threading works even when specific contacts are not being
conserved, it also explains why sequence-structure alignments are generally of
poor quality when compared with known structure-structure alignments.

4 Limitations: strong and weak fold-recognition

What are the limitations of current fold-recognition methods? Let's consider
two forms of the fold-recognition problem. In the first form of the problem we
seek a set of potentials (and a method for performing the sequence-structure
alignment) which will reliably recognize the closest matching fold for a given
sequence from the thousands of alternatives—as many as 7000 naturally occur-
ring folds have been estimated (18). This form of the problem is referred to as
the ‘strong’ fold-recognition problem. It is possible that the strong fold-recog-
nition problem is actually insoluble because, quite simply, the real protein free
energy function is itself almost certainly incapable of satisfying this require-
ment. In other words, given the physical ‘unreality’ of threaded models, there
may exist no energy function which is capable of uniquely recognizing the
correct fold in all cases. One possible aventue for moving towards this goal may
be to consider simulated folding pathways for each fold in the fold library, but
for the time being, perfect fold recognition is but a distant dream.

The ‘weak’ fold-recognition problem is a far more practical formulation of the
problem. Here the goal is to recognize and exclude folds which are not com-
patible with the given sequence with the eventual aim of arriving at a shortlist of
possible conformations for the protein being modelled. At first sight this may not
seem different from the goal of strong fold recognition, but the distinction is
quite important. Even without a sophisticated fold-recognition method, weak
recognition can be achieved by the application of simple common-sense rules.
For example, if it is known that a protein is comprised entirely of alpha-helices
{which might be known from circular dichroism spectroscopy, for example) then
a large number of possible folds can be eliminated immediately (the correct fold
could not be the all-beta immunoglobulin fold, for example}. By applying a set of
such rules, the 7000 or so possible folds could quickly be whittled down to a
shortlist of say 10.

In reality, most, if not all of the published fold recognition methods really im-
plement weak fold recognition. In the hands of an experienced user, however,
who can make use of functional or structural clues in the prediction experi-
ment, even weak fold recognition can be very powerful.

4.1 The domain problem in threading

Perhaps the main practical limitation of most ‘'weak’ threading methods is that
they are aimed at recognizing single giobular protein domains, and perform very

11
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poorly when tried on proteins which comprise multiple domains. Unfortunately,
threading cannot be used for identifying domain boundaries with any degree of
confidence, and indeed the general problem of detecting domain boundaries
from amino acid sequence remains an unsolved problem in structural biology. If
the domain boundaries in the target sequence are already known, then of
course the target sequence can be divided into domains before threading it, with
each domain being threaded separately. Predictions can be attempted on very
long multi-domain sequences, but in these cases the results will not be reliable
unless it is clear that the matched protein has an identical domain structure to
the target. For example, the periplasmic small-molecule binding proteins (e.g.
leucine-isoleucine-valine binding protein} are two domain structures {two doubly
wound parallel pha/beta domains), but they all have identical domain organ-
ization. Proteins within this superfamily can thus be recognized by threading
methods despite their multi-domain structure.

5 The future

One major difference between the academic challenge of protein structure
prediction and the practical applications of such methods is that in the latter
case there is an eventual end in sight. As more structures are solved, more target
sequences will find matches in the available fold libraries-~matched either by
sequence comparison or threading methods. In terms of practical application,
the protein-folding problem will thus begin to vanish. There will of course still
be a need to better understand protein-folding for applications such as de novo
protein design, and the problem of modelling membrane protein structure will
probably remain unsclved for some time to come, but nonetheless, from a
practical viewpoint, the problem will be effectively solved. How long until this
point is reached? Given the variety of estimates for the number of naturally
occurring protein folds, it is difficult to come to a definite conclusion, but taking
an average of the published estimates for the number of naturally occurring
protein folds and applying some intelligent guesswork, it seerns likely that when
threading fold libraries contain arcund 1300 different domain folds it will be
possible to build useful models for almost every globular protein sequence in a
given proteome. At the present rate at which protein structures are being
solved, this point is possibly 15-20 years away. However, pilot projects are now
underway to explore the possibility of crystallizing every globular protein in a
typical bacterial proteome. If such projects get fully under way, which seems
likely, then a complete domain fold library may be only five years away.
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