
Chapter 10
SRS—Access to molecular
biological databanks and
integrated data analysis tools
D. P. Kreil and T. Etzold
EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus,
Cambridge, UK.

1 Introduction
This first section gives an introduction to SRS. Section 2 (A user's primer) is a
tutorial that demonstrates basic tasks: simple database queries, exploiting links
between databases, exploration of results, and launching analysis tools. Section 3
(Advanced tools and concepts) builds on the skills imparted by the tutorial, and
shows how to refine queries, create custom views on data, and use distributed
SRS resources. Section 4 (SRS server side) introduces aspects of using a local SRS
installation, and outlines how to take advantage of one. Section 5 (Where to
turn for help) suggests where to turn to, if this chapter does not address a par-
ticular question or problem.

1.1 SRS fills a critical need
Everyone who has faced the problem of finding particular information (e.g.
experimental results) in the printed literature knows to value computer-read-
able storage of data. Besides allowing advanced methods of data retrieval and
visualization, computerized storage also facilitates systematic combination of
data from multiple sources, comparative studies, and methodical application of
analysis tools to large sets of data. The rapid growth of available molecular
biological databases now gives us access to an unprecedented amount of infor-
mation by computer.

The increasing specialization of research and the resulting fragmentation of
molecular biology is clearly reflected in the choice of databases, which are many
and varied in content type and form. The wide differences that can be observed
in the database formats and technologies employed are partly caused by the
different nature of the results gathered, and cannot solely be blamed on an in-
difference on the part of the database designers towards efforts at standardization

215

D. P. KREIL AND T. ETZOLD

While adhering to present standards is certainly to be advocated, it would often
significantly impede the progress of individual research groups. Also, many data-
bases, and consequently the respective data formats, have grown over history.

The large number of different databases alone is a serious problem for knowing
where to turn for specific information. DBCAT, a manually maintained catalogue
of databases, currently lists around 400 databases relevant to biology (1). The
variation in database formats and technologies that need to be dealt with yet
adds significantly to an already complex task of fruitfully accessing the available
data. The technical difficulties encountered particularly obstruct more sophisti-
cated leverage of data, such as systematic application of analysis tools, or bring-
ing data from different areas together. Even though many databases directly or
indirectly reference data stored elsewhere, these links are difficult to exploit,
owing to the large differences between individual database implementations.
While a standardization of formats, or at least an agreed upon interface for data-
base interconnectivity, would greatly alleviate these problems, none of the
attempts so far has achieved the hoped-for degree of acceptance (2).

SRS has evolved to overcome many critical technical difficulties in database
access, and the integration of databases, and analysis tools. Already in earlier
versions SRS was considered a promising approach to the problems it set out to
solve—respected as 'the paragon of connectivity' (3). The current version SRS-5.1
now offers an automatically maintained catalogue-database of over 350 different
databases and their documentation to help users identify databases of interest
and locate an appropriate server (4). Users can access all these databases through
the uniform SRS query interface on the Web. The interface is simple to use, yet
allows complex queries, including the use of logical operators, combining fields
from multiple databases, and following implicit and explicit links between
databases. Results can be browsed in various views, combining data from several
databases. Database entries can be passed to analysis tools such as sequence simi-
larity search programs, restriction map analysis, or phylogenetic algorithms.
The results generated can be used in further queries or analyses.

1.2 History, philosophy, and future of SRS
The SRS system started out as a Sequence Retrieval System (5) that employed
sophisticated parsing and indexing of database text files (a parser is a computer
program that breaks down text into recognized strings of characters for further
analysis). Plain text is the lingua franca of data exchange. Whether a researcher
has entered experimental results into a spreadsheet, or a database centre main-
tains a repository of complex data structures using an advanced database
management system, everyone can provide a dump of their data in the form of
plain text files. SRS does not convert these files, but rather leaves the original
data in place and reads items directly from there, preserving the original con-
text when the complete entry is viewed. The parsed items are used for display of
selected details of a database record, and for the construction of index files that
allow efficient data retrieval (6) and searchable links (7) between database

216

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

entries. SRS was first applied to databases with information on protein or nucleo-
tide sequences. It has since developed into a much more general data-retrieval
tool. It is used, for example, for bibliographical databases, hierarchically struc-
tured databases like taxonomies, or clinical data on mutations.

Besides giving researchers the freedom to store information the way they
want to, an approach centred on the use of plain text files benefits from a
medium that is portable across different computer architectures and is usually
easy to read for humans. In the integration of distributed resources, this can be
quite helpful in resolving conflicts that may be triggered by the individually
evolving components.

SRS parsers, definitions of database structures and interfaces to analysis tools,
and a considerable amount of the SRS core functionality itself are written in
Icarus, a language especially designed for that task. Icarus is used to define de-
scriptive data structures (meta-data) which are extensively used to represent SRS
concepts like database structures. Icarus code in parsers is interpreted. These
two design features allow rapid development: using meta-data reduces the
amount of code to be written, and interpreted parsers can be modified and
tested fast—it often takes just a few hours to integrate a new database starting
from scratch. Not only has this approach proven to scale very well with the
number of databases to integrate, the flexible combination of a recursive break-
down of structure and the powerful in-place processing of parsed data that is
characteristic of SRS parsers handles even very complex database formats
elegantly. Developers who have used an interpreted language before will have
little difficulty adapting to Icarus. We think this is reflected by its ready
acceptance by SRS server maintainers around the world who have added well
over hundred databases to the system.

Icarus is evolving towards a general-purpose object-oriented programming
language with special support for recursive lazy parsing and definition of meta-
data structures. We expect that it will play a central role in scripting and large-
scale data analysis in the future of SRS.

SRS integrates and interfaces to databases and analysis tools of other re-
searchers, and it is also often used as an engine for database access in other
systems like 0PM (8), and BioKleisli (9)—'wrap and be wrapped'! Communi-
cation with an SRS system can be through the World Wide Web (the most
popular form of access), from the Unix command line, from within an Icarus
script, or using the C application programming interface (API). Current new
developments include prototypes of a Corba server, and of a Perl API. Adding
support for other language API's (e.g. for Java via JNI) would be straightforward.

2 A user's primer
This section will introduce core SRS functionality with simple step-by-step
instructions. It concludes with an overview of the screens covered in the primer.
We suggest that new users follow the examples given below. The concepts are
much more readily understood with some hands-on experience.

217

Figure 1 (a) The SRS Home Page at EMBLEBI, http: //srs.ebi.ac.uk/. (b) The 'Top Page': Select the databases to query.

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

2.1 A simple query
SRS is a very powerful and complex system. Nevertheless, the basic features are
easy to use, and its interface also caters for the not so experienced user. Protocol 7
is a guide to performing a simple query and should be accessible for absolute
beginners.

Performing a simple SRS query

1 Connect to an SRS server, e.g. http://srs.ebi.ac.uk/ at EMBL-EBI (Figure la).
2 Press the 'Start' button to begin a new SRS session.a

3 Select one or severalb databases to query, e.g. SWISSPROT. Database names are
displayed in groups. If necessary, expand and collapse groups by clicking on the '+'
and '-' buttons respectively (Figure 1b).

4 Press the 'Continue' button to get the Query Form (Figure 2).
5 Select the field to query in the drop-down box, e.g. 'Description'.
6 Enter the term to search for, e.g. 'Tetracycline' (without the quotes). By default,

the wildcard '*' will be appended, thus also matching 'Tetracyclines' etc. Deselect
this option for a verbatim search.c

7 Press the 'Do Query' button to submit your query.
a SRS will store your work. If you plan to come back to it. add the 'resume' link from this page
to your bookmarks. At EMBL-EBI, an SRS work session is deleted when it has not been used for
two consecutive days. Other public sites may have similar mechanisms in place.
b When several databases are selected, only fields present in all the selected databases are
available in the Query Form.
c Avoid using wildcards when not needed since this considerably speeds up the search.

Figure 2 An SRS query form showing an example of a simple query.

219

D. P. KREIL AND T. ETZOLD

If the list of results is long, the user can page through the list using the links
at the bottom of the screen ('go to entries in chunk [. . .]'). Every item in the list
of results has an identifier composed of database name and entry-i.d., such as
'SWISSPROT:LPTR_BACST'. They are hyper-linked to the respective complete
entries.

To submit another query of the same database(s), press the 'Query Form'
button and continue with Protocol 1. step 5. For a new query, press the 'Top Page'
button and go to Protocol 1, step 3, See Figure 6 for more options,

2.2 Exploiting links between databases
In contrast to many other systems, SRS allows queries that search so-called links.
The meaning of links between entries depends on the databases involved, yet it
is usually evident. For example, an entry E in SWISS-PROT is linked to those
EMBL entries which contain nucleotide sequences that belong to the protein
described by the entry E. Similarly, a SWISS-PROT entry E is Linked to those PDB
entries which hold a 3D-structure for the protein described by the entry E. EMBL
entries are linked to updates in EMBLNEW that supersede the original entries in
EMBL. The example given in the next protocol assumes that the reader has
followed Protocol 1.

Applying a link query to selected entries

Selecting a set of entries
1 Start from a page showing the results of a query, e.g. after following Protocol 1.

Performing a simple SRS query.

2 Mark the tick boxes next to the entries you wish to include or exclude. Use the
radio button to choose to operate on the 'selected' or on 'all but selected' entries.
For example, chose 'selected' and mark entry 'SWISSPROT:TCRB_BACSU+.

Performing a link query
1 Press the 'Link' button.

2 Select the database(s) to link to [cL Protocol 1. step 3], e.g. EMBL.

3 Press the 'Continue' button to ask for the list of results.

Protocol 2 shows how to apply a link query to a selected set of entries. The
example query retrieves an EMBL entry that contains the nucleotide sequence of
the gene that encodes the protein described by 'SWISSPROT:TCRB_BACSU'. In
addition, entries that hold larger stretches of genomic DNA containing this gene
are retrieved (such as the complete genome of Bacillus subtilis).

220

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

2.3 Using Views to explore query results
There are several pre-defined Views, which present various aspects of a list of
results. Besides the Views that display just the entry-id's, or the complete
entries, the selection of Views available is database dependent. Protocol 3 shows
how to display a set of selected entries in a specific View. The example given in
the next protocol assumes that the reader has followed Protocol 1.

Displaying selected entries with one of the pre-defined
views

Selecting a set of entries

1 Start from a page showing the results of a query, e.g. after following Protocol 1.

2 Mark the tick boxes next to the entries you wish to include or exclude. Use the radio
button to choose to operate on the 'selected' or on 'all but selected' entries. For
example, chose 'selected' and mark the entries 'SWISSPROT:LPTR_BACST',
'SWISSPROT:LPTR_BACSU', 'SWISSPROT:TCR1_ECOLI', and 'SWISSPROT:

TCR3_ECOLI'.

Changing the View
1 Select a View from the drop-down menu next to the 'view' button, e.g. 'Sequence

Simple'.

2 Optionally change the number of entries to be shown per screen (. . . entries in chunks
of. . .').

3 Press the 'view' button.

Figure 3 Showing a selection of entries in the View 'SequenceSimple'.

221

Figure 4 More examples of Views showing the same selection of entries. The screen on the right (b) employs a Java Applet to display
various local protein properties as controlled by the user.

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

Some pre-defined Views present connected fields from multiple databases by
linking the displayed entries to other databases and integrating the results. See
below for an example.

2.4 Launching analysis tools
Besides browsing results of database field and link queries, external application
programs can be used to analyse data. Typical of such applications are database
searches by sequence similarity, e.g. BLAST (10), construction of multiple
sequence alignments, e.g. CLUSTALW (11), restriction map analysis, and tools
predicting various sequence properties (trans-membrane regions, protein second-
ary structure, etc).

Launching an external application program for selected
entries

Selecting a set of entries

1 Start from a page showing the results of a query, e.g. after a query for 'uroplakin'
in the 'Description' field of SWISS-PROT (cf. Protocol 1).

2 Mark the tick boxes next to the entries you wish to include or exclude. Use the
radio button to choose to operate on the 'selected' or on 'all but selected' entries.
For example, chose 'selected' and mark the entry 'SWISSPROT:UPKB_MUSVI'.

Request an application launch

1 Select a tool from the drop-down menu next to the 'launch' button, e.g. 'SW', the
Smith & Waterman hardware accelerated search at EMBL-EBI.

2 Press the 'launch' button to get a page of application options.

Adjusting launch parameters and starting the analysis

\ Check and/or amend your original selection of input to the application (for
example, by selecting only a fragment of the sequence to be searched for),

2 Adjust the application parameters according to your data and your preferences.
Hyper-links offer additional help that is displayed in a separate window to aid data
entry (see Figure 5a).

3 Consider turning off the 'automatically display result' feature because some
browsers do not correctly support it.

4 Press the 'Continue' button.

5 If the 'automatically display result' feature was disabled, wait until the next page
has completely loaded; this may take a while. Then follow the 'Display Results' link
at the top of the screen.

223

Figure 5 The application launch page of the 'SW' (Smith-Waterman search) application program. Here users can set application
parameters. Clicking on a hyper-finked parameter prompts will open a separate window with related help text. This window is re-used to
reduce screen clutter. (b) Results of an 'SW' application launch as seen with the view 'SwMofeFamilies'.

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

Follow Protocol 4 to launch an external application for selected entries. The
results of the application launch as shown in Figure 5b are an example of a more
sophisticated pre-defined View. (See Protocol 3 on how to choose a pre-defined
View.) For each sequence hit by the search, a normalized score (Z-score), the raw
score, and the number of gaps in the alignment of the query sequence with the
hit sequence are displayed. Then each hit is linked to the database searched
(SWISS-PROT, in this case) to display the full-length description and the sequence
length from that record. Further links to PROSITE and PFAM give information
on membership to well classified families. In our example, the search returned
related Uroplakin 1A/B sequences as top hits. Examination of the match data
together with the family classifications strongly suggests that the longer rank-
ing sequences are not distantly related to the query, but rather scored because
they all have a trans-membrane-4 domain. Also, note how the data in PROSITE
and PFAM augment each other.

2.5 Overview
Here we give a flow-chart like overview of the interface screens covered by the
protocols of this section (Figure 6). Users may abort operations and return to the
Top Page or a new Query Form by pressing the respective buttons shown at the
top of most screens.

3 Advanced tools and concepts
In this section we introduce advanced methods of working with SRS. Users are
advised to become familiar with these as soon as they have mastered the basics,
as the complexity of the molecular biological data and their storage demands
fairly sophisticated data handling skills.

3.1 Refining queries
Due to the nature of molecular biological databases, even simple questions often
require a complex query. Here we explain several techniques that help the user
go beyond the first simple queries.

3.1.1 How the system works
As in many cases, it helps to know a little about what is happening under the
hood. In a nutshell, SRS parsers read text from a file into entries. These are then
parsed into fields, which usually are further decomposed or processed. In par-
ticular, it is the parser's job to extract terms to be written into index files. These
index files make fast queries of database fields possible. Obviously, they also
determine what fields are available for queries, and what terms a query can be
matched against.

3.1.2 The index browser
Consider searching for human SWISS-PROT entries. SWISS-PROT has an 'organ-
ism' field which can be queried for 'human'—or should it be 'homo sapiens', or

225

D. P. KREIL AND T. ETZOLD

Figure 6 An overview of the pages discussed so far. The thick arrows show the path of
usual progression as described in the protocols. There may be an intermediate page before
the list of results after an application launch.

'homo sapiens sapiens', or a combination of all these terms? The index browser is
the easiest way to inspect the terms a query can be matched against. Always
consult the index browser when working with an unfamiliar database or data-
base field, and when in doubt. Protocol 5 shows how to do that.

Looking at the returned values, one sees the need to restrict the search to
'human' without a trailing wildcard '*' (to exclude, e.g. the human viruses).
Checking the index for terms matching 'homo*', one respectively finds the same
number of entries for 'homo' and 'homo sapiens' as for 'human'. Queries using
logical operators (see below) can be used to check the suspicion that the three
terms are equivalent and that it suffices to use only one of them.

226

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

Browsing the index for a database field

1 In the query form, select a database field from the drop-down box, e.g. 'Organism'.

2 Press the 'Info' button next to the selected field name to get the respective Index
Browser.

3 Modify the query mask, e.g. enter 'human*' (without the quotes),

4 Press the 'List values' button.

Typical use of the index browser includes:

(a) Checking whether single words or phrases are available from the index for
searching. Most free-text fields (such as 'Description') are usually indexed
using single words, while fields with a more standardized vocabulary often
store longer phrases in the index (e.g. the 'Keywords' field of SWISS-PROT).
When a field is indexed using single words, logical operators must be used to
combine words. Instead of asking for 'tetracycline represser', the query must
request 'tetracycline' and 'represser' (see below).

(b) Learning about the terms used in fields that have a controlled vocabulary
(e.g. the SWISS-PROT Feature Key. 'FtKey').

(c) Learning about special standardized formats used to represent data in indices
of particular fields (see the 'Citation' of SWISS-PROT, as an example).

(d) Looking for alternative spellings or words with typing errors using wildcards
or a regular expression. SRS regular expressions arc delimited by forward
slashes, e.g. ' /p[0—9] | /', matching 'p' followed by one or more digits.

The index browser also shows documentation for the database field, and
status information on the respective index (Figure 7).

3.1.3 Complex queries with logical operators
Logical operators are a powerful extension to queries, whether one needs to
refine or broaden a search, or it is necessary to combine words of a phrase for
searching a field with a single word index. SRS supports the following logical
operators:

• 'a AND b', which requires both the terms a and b to be present—in queries: V;

• 'a OR b', which requires at least one of the terms a and b to be present—in
queries:' |':

• 'a BUTNOT b', which requires the term a to be present and b to be absent—in
queries: ' I'.

The short forms of the logical operators ('&' '|', and '!') can be used when typing
in the query form. Please note that parentheses cannot be used for grouping,

227

D. P. KREIL AND T. ETZOLD

Figure 7 The index browser page for the database field 'Organism'.

Figure 8 This query retrieves all entries on tetracycline that are relevant to antibiotic
resistance but are neither trans-membrane proteins nor peptides. Note that one can directly
search for the phrase 'antibiotic resistance' in the 'Keyword' index. To search for
entries described by 'resistance protein', one has to ask for each word separately
(namely, 'resistance & protein') because the index for 'Description' only contains single
words (cf. Index Browser, above).

and that expressions are evaluated strictly left to right (all operators have the
same precedence). However, the drop-down menu 'Combine searches with' can
be used to select a logical operator that will be applied to join the lines of the
query form, figure 8 shows a query that retrieves all entries on tetracycline that
are relevant to antibiotic resistance but are neither trans-membrane proteins
nor peptides.

3.1.4 The Query Manager
Often it is helpful or even necessary to break complex operations into smaller.
more manageable tasks. SRS stores user queries and makes them available for
later reuse through the Query Manager, Selected query results may be anno-
tated, saved to disk, deleted, displayed in particular Views, or combined using
logical operators.

Given the previous example, consider the wish to exclude those entries with
an uncertain sequence. Following the next few steps as outlined below will
accomplish just that. To avoid editing the original query, which one might want

228

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

Figure 9 A query to retrieve entries described as 'tetracycline' and with a sequence about
which there is disagreement in the available literature.

Figure 10 The Query Manager page offers previous results for reuse and allows for more
complex operations.

to keep for reference, run a new query as shown in Figure 9. Go to the Query
Manager page, select the last two entries, and finally choose 'BUTNOT' as
operator and click on the 'combine' button (Figure 10).

Advanced users will learn to appreciate the option to enter more complex
query expressions directly. The previous result can also be obtained by entering
'[SWISSPROT-Description: tetracycline ! peptide] & [SWISSPROT-
Keywords: antibiotic resistance 1 transmembrane] ! ([SWISSPROT-
FtKey: conflict] > parent)' (without the quotes) into the window next to
the 'expression' button. Press the 'expression' button to request the evaluation
of the query. This example demonstrates several features:

(a) Simple queries take the form '[DatabaseName-FieldName:QueryString]'.
Logical operators may be used with the same restrictions as in the Query
Form. For brevity, the abbreviation of the field name, as displayed in the
Index Browser, can be used, e.g. ' [SWISSPROT-des: tetracyc*]' to query
the 'Description' field.

229

D. P. KREIL AND T. ETZOLD

(b) Queries can be combined using logical operators. Here, parentheses may be
used for grouping.

(c) The syntax for a link query is 'A < B' or 'A > B', where A and B can each be a
database name or the name of a set of entries (such as those automatically
assigned, e.g. 'Q2'). The first expression retrieves those entries of A that are
linked to B, while the second one retrieves the entries of B that are linked to
A (as suggested by the points of the 'arrows'). Thus, 'A > B' and 'B < A' are
equivalent expressions.

(d) Special links: Some entries can have sub-entries (such as the SWISS-PROT
Features). These are indexed and can be queried just like the main entries.
Linking with the special pre-defined 'parent' provides a mechanism to access
the entries that contain the retrieved sub-entries. There are other special
links for moving up and down in hierarchical databases and to link hits of
a search application to the originally searched database (. . .searchdb').

SRS Links can always be searched in both directions; they are bi-directional. If a
specialized database explicitly refers to a common (e.g. repository) database, one
can thus also request linked entries of the specialized database starting from an
entry in the common database. The designers of the common database do not
need to know even of the existence of the specialized database. SRS also finds
entries that are linked via an intermediary. For example, a SWISS-PROT entry
that has links to both EMBL and PDB creates (indirect) links between the respect-
ive EMBL and PDB entries. Consequentially, indirect links can involve any
number of intermediate linking steps. SRS uses the shortest way through the
net of databases when resolving a link. SRS server administrators can set up
penalties reflecting the desirability of using a particular inter-database link.
Users can chose a different path through the network by explicitly requesting a
series of links (. . . A > B > ... > C').

3.2 Creating custom Views
The simplest way to have query results displayed in a custom View is specifying
the fields of interest in the Query Form. There are two conceptually different
View types that can be requested.

(a) List Views usually try to conserve as much as possible of the entry as for-
matted in the original database text file. List Views thus typically act as a
filter, displaying only those lines of the entry that have information pertain-
ing to the selected fields. Often, the text is pretty-printed and contains hyper-
links where appropriate. It is not, however, altered in content. List Views are
best employed when information in a database entry needs to be read in its
original context. This is typically the case for fields that implicitly or ex-
plicitly refer to information elsewhere in the entry. Figure 11 shows an
excerpt of an entry that would considerably lose in clarity when displayed
out of context as fields in a table.

(b) Table Views give a better overview by collecting only requested data for

230

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

display. Values are extracted from the original entry format of the database
text file, and the data are usually re-formatted for easy readability and con-
cise display. Table Views are ideal for summaries, excerpts, and also when
data from different databases needs to be combined. All the Views shown in
Figure 3, Figure 4, and Figure 5 are Table Views.

The View Manager allows the creation of more complicated Views, such as the
one show in Figure 5b. Also, Views can be deleted. Named custom Views can be
created from scratch, or derived by editing existing Views. Named custom Views
are then available just like the pre-defined Views. Users can specify the type of
the View (List View or Table View), and whether the abbreviated forms or the
complete names of the displayed database fields are to be shown in Table Views.
Views are defined for a set of databases (the root-libraries). Views also may in-
clude fields that are only present in some of the chosen root-libraries. Many
elaborate Views link to additional databases that are to be specified (the leaves of
the View). When all the involved databases have been selected, the user chooses
the respective database fields that should be shown, and the formats in which to
display data objects (e.g. sequences, alignments) of particular fields.

Advanced options allow the following:

(a) 'Display only number of linked entries': The query that links a displayed
entry to a leaf database may result in a set of several entries. For summaries,
the size of this set (instead of the individual entries) can be displayed; this
includes a hyper-link to the set of entries for inspection of details.

(b) 'Use view to display entries': In List Views, the entries of each leaf-database
can be shown in a specified View.

Figure 11 For this List View, the fields 'AccNumber' (accession number), 'Description',
'CitationNo', 'Authors', 'Citation', 'Sequence', and 'FtDescription' (feature sub-entry
description) have been selected for display. The 'Swiss' (SWISS-PROT) format has been
chosen for the sequence field.

231

D. P. KREIL AND T. ETZOLD

(c) 'Use query instead of link': This allows complex operations, such as per-
forming a link following a specified path through the net of databases, or
excluding certain entries. The set 'entry' holds the entry to be displayed and
can be used in the query expression.

3.3 SRS world wide: using DATABANKS
The public network of SRS servers currently provides the scientific community
with access to ~350 different databases. The 40 sites located in 26 countries
offer a total of ~ 1300 databank copies.

To facilitate identification of databases of interest and choosing an appro-
priate server, a new component of SRS version 5.1 generates DATABANKS, a
database of databanks, by traversing the public SRS servers around the world (4),
Automated nightly compilation of the data guarantees that the catalogue is up
to date.

SRS provides a framework for database documentation in form of the 'data-
bank information page', which has & standardized layout for easy reference and
includes a general description, references and internet links, as well as detailed
documentation of database fields. Each entry in DATABANKS contains a copy of
the SRS databank information page as provided by the server it was collected
from, and it concludes with an overview of alternate sites. A typical entry is
shown in Figure 12. If a stable connection to a particular site could not be
established, the site is moved to the end of the list of alternatives. In these cases,
data from previous runs are used as backup. A record of when the backup was
originally retrieved indicates whether it might be out of date.

DATABANKS is typically searched by databank name or description. Protocol
6 is a guide to solving common questions using DATABANKS. More generally,
any field present in the databank information pages, as well as site and server
characteristics, can be queried.

Search SRS world wide

Query DATABANKS
1 Connect to an SRS server that offers DATABANKS, for example http://srs.ebi.ac.uk/ at

EMBL-EBI.

2 Select 'SRS World Wide' from the SRS home page. This leads to a list of known
public SRS servers.

3 Select 'Search' to get to the Query Form for DATABANKS.

Identification of databases of Interest

1 Enter a query into the form. (See Figure 13 for an example.)

2 Restrict the search to a subset of DATABANKS that includes only one site from each
group of alternativesa as shown in Figure 13.b

232

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

3 Press the 'Continue' button to submit your query.

Choosing an appropriate server
1 Go back to the DATABANKS Query Form.

2 Enter your query into the form, e.g. ask for databanks named 'PIRALN' (without the
quotes).

3 Press the 'Continue' button to submit your query.
a Currently, this representative site is chosen as the site that has the most extensive databank
information page,
b This requests the 'selection flag' by including' [DATABANKS-SelFag:*]' in your query.

Consider a user who is interested in databases offering sequence alignments,
which hold information on well-characterized protein domains or families and
can be used for functional assignments or phylogenetic examinations. Selecting
the field 'Description' in the query form and asking for 'sequence' and 'align',
yields a list of approximately 60 databank copies. By restricting the search as in-
structed by Protocol 6, part B; however, the query only fetches a more man-
ageable list of 15 representative databanks. In addition to general databases of
protein domains or families such as PFAM(12), PRINTS (13), or PIRALN (14), a user
will also find specialized databases, such as HOVERGEN (vertebrates, 15), AMmtDB
(vertebrate mitochondria, 16), RDP (ribosomes, 17), FSSP and HSSP (protein struc-
ture, 18 and 19), or TRAKSFAC (transcription factors, 20), The user can now browse
the descriptions of the databases retrieved and refine or broaden the search.

Having decided on a particular database, e.g. PIRALN, one usually finds that
more than one server maintains a copy of the database, and the list of results
shows alternative sites (see Figure 14). The number of indexed entries and the
release number (where assigned by the server maintainers) help users to choose
a nearby site that has a current version of the database.

Both the list of results and the overview of alternate sites compiled for each
entry of DATABANKS provide direct links for remote queries. These lead to the
respective query forms of the databases at the remote sites as specified.

3.4 Interfacing with SRS over the network
This section demonstrates with a few examples how to access SRS directly over a
network connection. Currently, that means using the Web to request specific
parts of the SRS Web interface. The Web interface is rendered by the program
'wgetz'. which sites may provide in different locations, e.g. 'http://srs.ebi .
ac.uk/srs5bin/cgi-bin/wgetz' for EMBL-EBI, An easy way of getting the
path to wgetz is looking at the 'Databanks' hyper-link on the SRS home page.
To request the launch of wgetz, append the character '?' and any parameters
that you wish to supply. If you specify more than one parameter, separate them

233

D. P. KREIL AND T. ETZOLD

Figure 12 A typical DATABANKS entry. The entry contains a copy of the respective remote
SRS databank information page, which includes a description, references and links, as well
as detailed documentation of database fields and indices. It concludes with a listing of
alternative sites that offer ENZYME. Direct links to these sites and the remote query forms
for ENZYME are provided. For uses in the network vicinity of a particular DATABANKS server,
the relative response times compiled by that server give a clue to the net distances to other
sites ('N/A1 indicates problems connecting at the specified time).

234

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

Figure 13 Query for databanks that have a description containing the terms 'sequence'
and 'align'. The second line of the query form requests that the results be restricted to
one representative databank for each group of alternatives.

Figure 14 The results of a query for databanks named 'PIRALN', The number of indexed
entries and the release number (where assigned by the server maintainers) help users to
choose a nearby server that offers a current version of the appropriate database.

with '| ' instead of with spaces. To include literal spaces in your parameters,
replace them with ' % 2 0'.

There are various ways in which entries can be displayed, for example:

(a) As plain lists of entries: Specify your query as you would in the expression
box of the Query Manager.

(b) As individual entries: Specify the '-e' (entry) switch together with an SRS
query, e.g..../wgetz?-e+ [SWISSPROT-ID:LPTR_BACST].

(c) As lists of entries that can be browsed: Specify the '-sl' (sequence list)
switch with an SRS queiy. This yields a page that looks like the list of results
in the standard SRS Web interface.

235

D. P. KREIL AND T. ETZOLD

For each of the above, a particular View may be requested, e.g. '-view +
SequenceSimple'.

Some SRS functions can be accessed directly as entry points into the system,
e.g. requesting the query form for a specified set of databases. The switch '-l'
(libraries) sets the databases to operate on, the '-fun' (function) switch selects
the operation requested: e.g. '.../wgetz?-fun+PageQueryForm+-l+SWISS
PROT%20SWISSNEW'.

Coming back to a previous session, or to maintain data across several wgetz
calls, a user context needs to be specified with the '-id' switch. The id of a
session is part of most of the links it displays; it is easily seen in the 'resume'
link on the Top Page (cf. Figure 6). Chapter 3 of the on-line manual contains
further information on linking to SRS servers using the Web.

Future versions of SRS will also support other mechanisms of remote access
to SRS servers. We have already developed a prototype Corba server. Generally,
SRS is able to serve structured data and methods that operate on them to any
object oriented or procedural environment.

4 SRS server side
SRS may be installed locally on your site. This section outlines how to take
advantage of a local SRS system.

4.1 User's point of view
In addition to accessing their SRS system over the Web, local users can run
queries from the command line, use scripting to automate repetitive tasks or
perform elaborate analyses, and modify parsers (if the administrators of the
system permit that).

To activate a particular installation of SRS on your site, use '. prep_srs. sh'
from Bourne, Korn or POSIX shells, or'source prep_srs' from C shells. If the
sourced files are not in your path, they are provided in the 'etc' sub-directory of
the place where SRS was installed (the SRS root directory). After this initial-
ization, one can use the 'getz' program to query the SRS system; e.g. 'getz
[SWiSSPROT-Des:tetracycline] -f des ' will print those lines of the
matching entries that hold the Description field. Use Chapter 4 of the on-line
manual as a reference and for more examples.

While 'getz' is quite popular among users and is frequently used within
shell scripts or Perl programs, it is inefficient for repeated fine-grained access to
data. The only way to avoid a huge number of 'getz' invocations is to request
many fields in one query, and users often end up parsing the resulting 'getz'
output—what a waste considering that SRS has already parsed the entry into
fields! A better solution is integrating a programming language with SRS:

(a) The entire SRS functionality can be accessed through the C application pro-
gramming interface (API). See Chapter 12 of the on-line manual for instruc-
tions on linking your C code with the SRS library, and several examples.

236

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

More examples can be found in the 'demo' sub-directory of the SRS installa-
tion. This is the interface to use for the most extensive access to SRS features.
However, only the functions introduced in the examples are guaranteed to
be supported in future versions—other functions may change as we improve
and extend the system.

(b) More and more, Icarus allows access to SRS functionality. Already now, SRS
queries and access to token tables is supported. Token tables hold the results
of the parsing process. In future versions, application launching and all other
SRS functions and data will be accessible through Icarus. The example shown
in Figure 15a prints the entry-ids and the molecular weights of all matches to
the query 'SWISSPROT-des:Tetracycline*'. The example shown in Figure
15b takes an SRS query string on the command line and dumps the 'fields'
token table. See Chapters 5-7 of the on-line manual to learn more about
Icarus.

(c) Future versions of SRS will offer native language interfaces to other general
purpose languages like C++ or Java, and to popular scripting languages like
Perl (for which a prototype has already been developed)

Sometimes users find they struggle to extract particular data through a query.
Often a simple modification or extension of the parsers involved helps a lot.
Clearly, many users do not want to deal with the parsers themselves, or they
even may not have permission to do so. Still, they need to know when it pays to
ask for help. Typical problems that can be solved include:

Figure 15 Example for using Icarus as a cripting language (for SRS version 5.1 or higher).
The program displayed on the left prints the entry-ids and the molecular weights of all
matches to the query 'SWlSSPROT-des:Tetracycline*'. The program shown on the right takes
an SRS query string as its argument on the command line and prints the parser's 'fields'
token table: For each token, it shows both the token code (a label, which can be used to
determine how a token is further processed), and the token string. The token object (which
is used, e.g. to hold the sequence object) could have been accessed using Stoken.obj.
$Query returns a $Set object. See Chapter 7 of the on-line manual for a reference of Icarus
classes and chapters 5 and 6 to learn more about Icarus syntax and functions.

237

D. P. KREIL AND T. ETZOLD

(a) Extracting data from a field: If you find yourself trying to query certain
parts of a field regularly, that extraction process should be delegated to the
parser. In a parser, this extraction can also be much more sophisticated.

(b) Querying phrases: The parser controls which terms can be matched by a
query (see Sections 3.1.1 and 3.1.2). Sometimes the way a parser breaks a field
into indexed terms is not well suited for answering a particular question.
Changing the parser or adding a new field that takes particular requirements
into account solves the problem. Consider a comment field, for which the
parser extracts single words for indexing; the query 'not & known' will not
only find the phrase 'not known', but also retrieve instances that contain the
two words out of context. To address this problem, the parser might be
changed to watch, e. g., for words preceded by 'not', and write the two word
phrase to the index.

(c) Similarly, queries that use logical operators to combine data from several fields
are sometimes not sufficient if the necessary context has been lost in the
indexing process. Changing the parser is again the only satisfactory solution.

4.2 Administrator's point of view
Within the scope of this chapter, we can only give some help in getting an SRS
system up and running. Each of the following topics, however, should be of
further interest to SRS server administrators:

(a) The automation of tasks in server, database, and application maintenance.
(b) The design and implementation of new modules for the integration of data-

bases and application programs. This must include a discussion of lazy, forced,
and explicit parsing, and how to best make use of this layered approach.

(c) A manual of Icarus that introduces new users, and serves as a reference to
experienced programmers. Icarus is an efficient, expressive scripting lan-
guage that has been particularly designed for the purpose of describing data-
structures and the rapid development of highly flexible parsers. Yet Icarus
has evolved towards a general-purpose object-oriented programming language,
which we expect to play a central role in scripting and large-scale data
analysis in the future of SRS.

Clearly, these issues are all rather complex and deserve a dedicated discussion
in themselves.

4.2.1 How to get your own SRS system
Download SRS from ftp://ftp.ebi.ac.uk/pub/software/unix/srs/.
the current version is in file 'srsS.l.tar.gz' and is freely available to the
public. Please note that future versions of SRS will continue to be freely
available for academic non-commercial use. Future versions of SRS and services
are provided by LION Bioscience Ltd (http: //www.lionbio.co.uk/).

To install SRS in a place of your choice, unpack the distribution file (e.g.
'gzip —cd srs5. l.tar.gz | tar —xf -'). This creates a directory for SRS,

238

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

which we call the SRS root directory, and which we will print as '. . .' for the rest
of this chapter. From this directory, first run './srsinstall all'. To also
install the SRS web interface, run './srsinstall www' next. At completion,
this prints two lines that have to be inserted into the 'srm.conf file of your
web server. Ask your system administrator to do this if necessary. If there is no
web server installed on your site, save the lines for later reference. You then
need to have a Web server installed. We now normally use Apache (see
http://www.apache.org/).

4.2.2 Basic configuration steps
SRS obviously conies without any databases or applications. However, a large
number of database modules come with the distribution. These modules allow
SRS to index and access the respective databases. The files that constitute a
module are stored in '.../icarus/db/'. For each database, respectively, there is:

(a) A 'module-name. is'-file that holds the parser.

(b) A 'module-name. i'-file defines the database fields and links that can be queried.

(c) A 'module-name. it'-file that contains optional database documentation, which
is used to construct the databank information page.

The databank information pages usually contain fields that report database
sources, indicating where the required files can be downloaded. This can directly
be read in the 'module-name. it' -files. More conveniently, this information can
be queried for in the Database of Databanks as introduced in Section 3.3. This
also gives access to the hundreds of modules developed worldwide, of which
only some are included with the standard distribution. If a database module is
offered by remote servers only, download the files that constitute the respective
database module by following the hyper-links provided in the 'SRS Description'
field of the DATABANKS entry.

Edit '.../icarus/db/srsdb.i' to reflect the databases available at your
installation:

(a) There needs to be a 'file:module-name.i' command to include the appro-
priate field definitions.

(b) Each database needs a unique id number: Edit the list 'libIds' accordingly.
When adding a new database, specify the database as defined by '$Library'
in the 'module-name. i'-file.

(c) The locations of the database files are declared in the 'libs' list of '$LibLoc'
statements. SRS uses this list to determine which databases are available.
Therefore, remove statements for databases not kept at your site, or turn
them into comment lines, which start with a hash ('#'). Edit the other
directories as appropriate. Again, when adding a new database, specify the
database as defined by $Library in the 'module-name, i'-file.

To commit your changes, run 'srssection'. In preparation for this or any other
SRS program, initialize your environment: Users of Bourne, Korn or POSIX shells

239

D. P. KREIL AND T. ETZOLD

execute '. . . ./etc/prep_srs.sh', while C shell users 'source . . ./etc/
prep_srs'. (This sets the path for executables, the environment variable
'$SRSROOT' and several others.)

All of the above also applies to modules for application programs, only they
are not yet included in DATABANKS.

4.2.3 Prepare your databases for access through SRS
After preparing the appropriate database text files and configuring SRS accord-
ingly, a set of indices has to be created for each database. These indices allow
fast queries of database fields and links.

The program 'srscheck' generates the script 'srsupdate' and shows which
indices need to be created or updated. Use the '-l' (library) switch to check the
indices of a particular database only. Run srsupdate to actually build the
required indices. For small databases, this is a matter of minutes. Indexing large
databases like EMBL may take several hours, though. At successful completion,
your databases are ready for SRS queries.

5 Where to turn to for help
If you experience difficulties, do not despair!

(a) If you have installation problems, please read carefully through the README
file that comes with the distribution.

(b) Try to make good use of the on-line manuals. While it is sometimes difficult
to find particular bits of information there, they are quite extensive, and
should certainly be consulted first. As the individual sections can be quite
large, using the text search feature of your browser can be quite helpful. Users
will want to focus on Chapters 1 and 2, which deal with the Web interface
and the Query language, respectively. Administrators should start with
Chapters 4, 10, and 11. Chapters 10 and 11 contain a lot of information on
installation and set-up, and Chapter 4 is a reference of SRS programs avail-
able from the command line. Use the to search within chapters, and do not
be fooled by the section headings. Please note that the chapter numbers refer
to the on-line manual of SRS-5.1.

(c) Try asking colleagues for help. There is a strong community of SRS
aficionados out there that will be happy to help (that is, if you have looked
through the on-line manual first).

(d) Send your question to news://localnews/bionet.software.srs, a
newsgroup dedicated to SRS related questions.

(e) If you discover a bug, or have a problem of very technical nature, report it by
e-mail to srsdev@ebi .ac.uk.

If you need more help configuring and customising your system, you may want
to learn about SRS workshops and consultancy available from LION Bioscience
Ltd (srs-info@lionbio.co, uk).

240

SRS—ACCESS TO MOLECULAR BIOLOGICAL DATABANKS

Acknowledgements
Many people have contributed to the wealth of SRS database and application
modules that is publicly available now, and we are indebted to them all!

We wish to warmly thank Rob Falla for his help and the fruitful late-night
discussions. Also, we gratefully thank Mark Wooding who thoroughly examined
the final draft of this chapter. Any errors were certainly introduced afterwards!

References
1. Discala, C., et al. (1998). DBCAT, the public catalog of databases. INFOBIOGEN,

Villejuif, France;contact discala@infobiogen.fr.
2. Frishman, D., Heumann, K., Lesk, A., and Mewes, H.-W. (1998). Bioinformatics, 14, 551.
3. Brenner, S. E. (1995). Science, 268, 622.
4. Kreil, D. P. and Etzold, T. (1998). Trends Biochem. Set., 24, 155.
5. Etzold, T., Ulyanov, A, and Argos, P. (1996). In Methods in enzymology (ed. R. F. Doolittle).

Vol. 266, p. 114. Academic Press.
6. Etzold, T. and Argos, P. (1993). Comput. Appl. Biosci., 9, 49.
7. Etzold, T. and Argos, P. (1993). Comput. Appl. Biosci., 9, 59.
8. Markowitz, V. M. and Ritter, O. (1995). J. Comput. Biol., 2, 537.
9. Davidson, S. B., Overton, C., Tannen, V., and Wong, L. (1997). Int. J. Digit. Libr., 1, 36.

10. Altschul, S. F., et al. (1990). J. Mol. Biol., 215, 403.
11. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Nucleic Acids Res., 22, 4673.
12. Sonnhammer, E. L, et al. (1998). Nucleic Acids Res., 26, 320.
13. Attwood, T. K., Beck, M. E., Bleasby, A. J., and Parry-Smith, D. J. (1994). Nucleic Acids Res.,

24, 182.
14. Barker, W. C., et al. (1998). Nucleic Acids Res., 26, 27.
15. Duret, L, Mouchiroud, D., and Gouy, M. (1994). Nucleic Acids Res., 22, 2360.
16. Lanave, C., et al. (1999). Nucleic Acids Res., 27, 134.
17. Maidak, B. L, et al (1997). Nucleic Acids Res., 25, 109.
18. Holm, L, et al. (1992). Protein Set., 1, 1691.
19. Sander, C. and Schneider, R. (1991). Proteins, 9, 56.
20. Heinemeyer, T., et al. (1998). Nucleic Acids Res., 26, 362.

241

This page intentionally left blank

