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1 Introduction
Understanding the structure, function and evolution of genes is one of the main
goals of genome sequencing projects. Classically, gene function has been investi-
gated experimentally through the analysis of mutant phenotypes. More recently,
comparative analysis of homologous sequences has proved to be a very efficient
approach to study gene function (this approach has been coined 'comparative
genomics' or 'phylogenomics'). Indeed, the evolution of living organisms may be
considered as an ongoing large-scale mutagenesis experiment. For more than
three billion years, genomes have continuously undergone mutations (substitu-
tions, insertion, deletions, recombination, and so on). Deleterious mutations are
generally rapidly eliminated by natural selection, while mutations that have no
phenotypic effect (neutral mutations) may, by random genetic drift, eventually
become fixed in the population. Globally, advantageous mutations are very rare,
and hence residues that are poorly conserved during evolution generally corres-
pond to regions that are weakly constrained by selection (1). Thus, studying
mutation patterns through the analysis of homologous sequences is useful not
only to study evolutionary relationships between sequences, but also to identify
structural or functional constraints on sequences (DNA, RNA, or protein).

The alignment of homologous sequences consists of trying to place residues
(nucleotides or amino acids) in columns that derive from a common ancestral
residue. This is achieved by introducing gaps (which represent insertions or de-
letions) into sequences. Thus, an alignment is a hypothetical model of mutations
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(substitutions, insertions, and deletions) that occurred during sequence evolution.
The best alignment will be the one that represents the most likely evolutionary
scenario. Generally, this best alignment cannot be unambiguously established.
Firstly, because of the computational complexity of this problem, alignment
algorithms that are usable in practice cannot guarantee to find the best solution
(see Section 4.1). Secondly, even with an ideal algorithm, finding the best align-
ment would not be guaranteed because current knowledge of the probability of
occurrence of the different types of mutation is still limited (see Section 2.3).
However, as long as homologous sequences are not too divergent, fast approxi-
mate algorithms may be used to provide reliable alignments. In practice, such
alignments are commonly used in molecular or evolutionary biology. Typical
examples of usage of multiple alignments are indicated in Table 1.

Table 1 Examples of usage of multiple alignments

• Identification of functionally Important sites
Multiple alignments allow the identification of highly conserved residues are likely to
correspond to essential sites for the structure or function of the sequence and may thus be
useful to design mutagenesis experiments.

• Demonstration of homology between sequences (see Section 2.1)

• Molecular phylogeny
Molecular phylogenetic trees rely on multiple alignments (protein or DNA) to infer mutation
events from which it is possible to retrace evolutionary relationships between sequences.
Such trees are useful to reconstruct the history of species or multigenic families, and notably
to identify gene duplication events to distinguish orthologues from paralogues. It is important
to note that unreliable parts of alignments should not be used to build phylogenetic trees
since they do not reflect the real pattern of mutations that occurred during evolution and may
lead to artifactual results.

• Search for weak but significant similarities In sequence databases
The sensitivity of sequence similarity search may be improved by weighting sites according to
their degree of conservation. Thus, multiple alignments of homologous sequences are used
by methods such as profile searches (see the chapter by Henikoff in this volume) or PSI-
BLAST (24) to identify distantly related members of a family.

• Structure prediction
The use of multiple alignments increases significantly the efficiency of protein secondary
structure prediction. Moreover, the identification of covariant sites (or compensatory
mutations) in alignments (protein or RNA) is a strong argument to suggest that these sites
interact in the molecule In vivo. Finally, alignments are commonly used for homology
modeling, i.e. for the structure prediction of sequences by comparison with homologues of
known structure.

• Function prediction
The three-dimensional (3D) structure of homologous proteins or RNA is often much more
conserved than their primary sequence. Similar shape usually implies similar function. Thus, if
a new gene is found to be homologous to an already characterized gene it is possible to infer
the likely function of the new gene from the known one. Such inferences should however be
used with great caution.

• Design of primers for PCR (polymerase chain reaction) Identification of related genes
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The general procedure to compute a multiple alignment of homologous
sequences consists of three steps:

(a) Search for homologues in sequence databases.

(b) Compute alignments.

(c) Check and edit alignments.

In this chapter, we will focus, essentially, on steps (b) and (c). Firstly, we will
define some general concepts underlying multiple alignment methodology. We
will then describe and compare different methods that have been developed to
align sequences. As far as possible, we will indicate WWW sites where these tools
are available, so that they may be used from any computer with an appropriate
WWW browser software and internet connection. The list of WWW sites that
we provide here is also available at the following address:

http://pbil.univ-lyonl.fr/alignment.html

Some problems such as contig assembly, related to multiple alignment will
not be treated in this chapter. We will only describe methods intended for the
alignment of homologous sequences and, in particular, we will not deal with the
problem of finding common motifs in a set of unrelated sequences. Note that
there is not an absolute difference between motif search and multiple align-
ments: when homologous sequences have diverged too much there may remain
only a few short conserved fragments, separated by regions of variable length.
Motif-based methods have been developed to identify and align such conserved
fragments within highly divergent sequences. In Section 4.4 we will mention
some of these methods. However, for a more exhaustive review on this topic, see
Chapter 7 by Jonassen in this volume.

2 Basic concepts for multiple sequence alignment

2.1 Homology: definition and demonstration
Two sequences are said to be homologous if they derive from a common ancestor.
Generally, homology is inferred by sequence similarity. It should be stressed,
however, that similarity does not necessarily reflect homology: similarity be-
tween short sequence fragments may result from evolutionary convergence (2),
or may simply occur by chance. Moreover many sequences contain relatively long
fragments of very biased nucleotide or amino acid composition (e.g. CA-repeats in
DNA, proline-rich domains in proteins) (3). Generally, similarities between such
'low complexity regions' do not reflect evolutionary relationship. However, in the
absence of such compositional bias, similarity over an extended region usually
implies homology. Statistical tests can be used to evaluate the chances that an
observed similarity occurred purely by chance and thus accept or reject the
hypothesis of homology (4). Such tests are now generally provided by similarity
search programs.

Multiple alignments may be useful to help demonstrate homology: a weak
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similarity which would be considered as non-significant in a pairwise sequence
comparison may prove to be highly significant if the same residues are con-
served in other distantly related sequences. It should be emphasized that if
sequences have diverged too much, homology may not be recognizable on the
basis of sequence similarity alone.

2.2 Global or local alignments
In the above paragraph, we implicitly considered sequences that are homologous
over their entire length. However, in many cases, homology is restricted to a
limited region of the sequences. Indeed, many proteins consist of a combination
of discrete 'modules' that have been shuffled during evolution. It is clear that
many protein-coding genes result from recombination between different frag-
ments of other genes. This modular evolution has played a major role in protein
evolution and has been particularly facilitated in eukaryotes thanks to the
presence of introns within genes (5).

Multiple copies of a given module may be repeated within a sequence, and a
set of modules may occur at different relative positions in different genes. In
such cases, it is not possible to align sequences over their whole length (global
alignment) and it is thus necessary to perform alignments only on homologous
modules (local alignment) See Figure 1 for an illustration.

2.3 Substitution matrices, weighting of gaps
As indicated earlier, searching for the best alignment consists of searching for
the one that represents the most likely evolutionary scenario. Thus, the prob-

Flgure 1 Global versus local alignment, (a) Conserved regions occur in the same order in all
sequences. They can be represented in a single global alignment, (b) Some conserved
regions are duplicated or occur in a different order along sequences. It is necessary to
perform local alignments to display similarities between all conserved regions.
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ability of occurrence of the different mutational events during evolution must
be taken into consideration when computing a multiple alignment. In align-
ments, three types of mutations are considered: substitutions, insertions or
deletions (the two latter events are often indistinguishable, and are commonly
referred as 'indels').

2.3.1 Substitutions
The probability of substitution of one amino acid by another depends on the
structure of the genetic code (i.e. on the number of mutations necessary to pass
from one codon to another) and also on the phenotypic effect of that mutation.
Substitutions of one amino acid by another with similar biochemical properties
generally do not greatly affect the structure and hence the function of the
protein. Thus, during evolution, such conservative substitutions are relatively
frequent compared to other substitutions. It is important to note that the prob-
ability of substitution of one amino acid by another depends on the evolutionary
distance between sequences. At short evolutionary distances, probabilities of
substitution mainly reflect the structure of the genetic code, whereas at larger
distances, probabilities of substitution depend essentially on biochemical simi-
larities between amino acids. Various methods have been proposed to build
series of matrices that give estimates of probabilities of all possible substitutions
for different evolutionary distances (6-8). The most commonly used are the PAM
and BLOSUM substitution matrices. PAM matrices suitable for increasing
evolutionary distances are indicated by increasing indices (e.g. PAM80, PAM120,
and PAM250). The opposite convention has been used for the BLOSUM series (e.g.
BLOSUM80 for short evolutionary distances, BLOSUM45 for large evolutionary
distances). Generally, alignment programs allow users to choose which substitu-
tion matrix to use. In the CLUSTAL W program (9) (see Section 4.2) substitution
matrices are automatically selected and varied at different alignment stages
according to the divergence of the sequences to be aligned.

Probabilities of substitutions also vary along sequences according to the local
environment of amino acids in the folded protein. Thus, several environment-
specific substitution matrices have been developed (e.g. for ot-helix, or p-sheet)
(10). However, to our knowledge, these matrices are rarely used for multiple
alignments.

At the DNA level, probabilities of substitution vary according to the bases.
Notably, transitions (substitutions between two purines—A, G—or two pyri-
midines—C, T) are generally more frequent than transversions (substitutions
between a purine and a pyrimidine). Thus, multiple alignment programs
generally propose a parameter to weight more heavily transversions than
transitions. Probabilities of nucleotide substitution also depend on neighbouring
bases (e.g. in vertebrates, C in CG dinucleotides is hypermutable) (11, 12).
However, currently available alignment programs do not make use of such
information.
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2.3.2 Insertions, deletions
The probability of occurrence of an indel depends on its length. Thus, when
computing an alignment, penalties (p) associated with gaps are often estimated
using a linear or 'affine' model such as:

where L is the length of the gap, a the gap opening penalty, and b the gap
extension penalty. However, analyses of alignment of homologous sequences
have shown, both for protein and nucleic sequences, that this model under-
estimates the probability of long indels (7, 13, 14). Indeed, more realistic indel
penalties can be estimated with models of the following form:

However, because of computational complexity, such models have not been im-
plemented in commonly used alignment programs. Fortunately, other approaches
have been proposed to align sequences with large indels (see Section 4.3).

The probability of occurrence of indels in proteins also depend on the degree
of divergence between sequences (7, 13). Thus, as for amino-acids substitution
matrices, indel penalty parameters should ideally be varied according to the
divergence of the sequences to be aligned. The probability also depends on the
nature of the sequences: protein, structural RNA, non-coding DNA (in which
transposable elements may be inserted), etc. Moreover, probabilities of indel
may vary along sequences. In proteins notably, indels are more frequent within
external loops than in the core of the structure. Thus, knowledge on the
structure of proteins can be used to weight indels. For example, the CLUSTAL W
program uses residue specific indel penalties and locally reduced indel penalties
to encourage new gaps in potential loop regions rather than in regular second-
ary structure. In cases where secondary structure information is available, indel-
penalty masks can also be used to guide the alignment.

It is important to note that, in most programs, default parameters for gap
penalties have been set for typical globular proteins. These may not be optimal
for other sequences.

3 Searching for homologous sequences
The first step in the analysis of a family of homologous sequences consists of
searching for all available members of that family. Published sequences are
stored in databases: GenBank (15) or EMBL (16) for nucleic acid sequences and
SWISSPROT-TREMBL (17) or PIR (18) for protein sequences. Retrieval systems
such as Entrez (19), SRS (20), or ACNUC (21) have been developed to query those
databases and extract sequences according to the associated annotation (e.g.
keywords, taxon, authors). Some WWW addresses for commonly used database
retrieval systems are shown in Table 2. Unfortunately, it is not possible to rely on
the annotation to identify in a database all homologous sequences belonging to
a given family. Presently, the most efficient way to identify those homologues
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Table 2 Websites for text-based searches in sequence databases

Entrez at NCBI

SRS at EBI

WWW-QUERY at PBIL

ExPASy

DBGET at GenomeNet

http://www.ncbi.nlm.nih.gov/Entrez/

http://srs.ebi.ac.uk/

http://pbil .univ-lyonl.fr/

http://www.expasy.ch/sprot/

http://www.genome.ad.jp/

Table 3 Websites for sequence similarity searches in databases

BLAST at NCBIa

WU-BLAST at EMBLb

FASTA at EBI

Smith-Waterman search at EBI

BCM search launcher

BLAST at PBILC

http://www.ncbi.nlm.nih.gov/BLAST/

http://dove.embl-heidelberg.de/Blast2e/

http://www2.ebi.ac.uk/fasta3/

http://www2.ebi.ac.uk/bic_sw/

http://gc.bcm.tmc.edu:8088/search-launcher.html

http://pbil.univ-lyonl.fr/BLAST/blast.html

' Possibility to select BLAST output results by taxa.

* Performs multiple alignment on homologous sequences detected by BLAST.
c Possibility to select BLAST output results by taxa or keyword.

consists in taking one member of the family and comparing it to the entire
database with a similarity search program such as FASTA (22) or BLAST (23, 24).
To guarantee a more exhaustive search, one may repeat this procedure with
several distantly related homologues identified in the first step. See the review
by Altschul, et al. (25) for a comprehensive discussion of sequence similarity
searches.

The sensitivity of a sequence similarity search may be improved by weighting
sites according to their degree of conservation. Thus, once several homologous
sequences have been identified, it is possible to use methods such as profile
searches (see Chapter 5 in this volume) or PSI-BLAST (24) that rely on a multiple
alignment to identify more distantly related members of the family. A list of
some similarity search WWW servers is presented Table 3.

4 Multiple alignment methods
Once homologous sequences have been identified, which program should be
preferentially used to align them? Several multiple alignment methods (algo-
rithms) have been developed, but none of them is ideal. Thus, it is important to
have an idea of what these algorithms try to solve, in order to make an informed
choice of the most appropriate method(s) for a particular problem. The multiple
alignment problem is algorithmically hard: methods that guarantee to find the
best alignment (for a given measure of alignment score and for a given set of
substitution matrix and gap penalty parameters) require so much time and
space (memory) that they cannot be used in practice with, say, more than 10 to
15 sequences of length 100. Thus, alternative algorithms have been developed
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using heuristics to gain speed and limit space requirements. Although these
heuristics do not guarantee to find the optimal alignment, they are very useful
in practice and often give results very close to the exact solution. In the follow-
ing we will focus on four families of multiple alignment algorithms:

(a) Algorithms that guarantee to find the optimal alignment for a given scoring
scheme; these algorithms can be used only for a limited number of short
sequences.

(b) Heuristic algorithms that are based on a progressive pairwise alignment
approach.

(c) Heuristic algorithms that build a global alignment based on local alignments.

(d) Heuristic algorithms that build local multiple alignments.

It should be noted that this list is not exhaustive. Other multiple alignment
methods such as those based on hidden Markov models (26) or genetic algorithms

Table 4 Websites for multiple alignments

• Optimal global multiple alignment
MSA at IBC http://www.ibc.wustl.edu/ibc/msa.html

• Progressive global multiple alignment
ClustalW at EBIa http://www2.ebi.ac.uk/clustalw/

ClustalW, Multalin at PBILb http://pbil.univ-lyonl.fr/

MAP, ClustalW at BCM http://kiwi.imgen.bcm.tmc.edu:8088/search-
launcher/launcher.html

Multalin at INRAb http://www.toulouse.inra.fr/multalin.html

ClustalW at Pasteur0 http://bioweb.pasteur.fr/seqanal/alignment/intro-uk.html

ClustalW at DDBJ http://www.ddbj.nig.ac.jp/searches-e.html

MAP http://genome.cs.mtu.edu/map.html

• Block-based global multiple alignment
DCA at BiBiServ http://bibiserv.techfak.uni-bielefeld.de/dca/

DIALIGN2 at BiBiServ http://bibiserv.TechFak.Uni-Bielefeld.DE/dialign/

DCA at Pasteurc http://bioweb.pasteur.fr/seqanal/alignment/intro-uk.html

DIALIGN2 at Pasteurc http://bioweb.pasteur.fr/seqanal/alignment/intro-uk.html

ITERALIGN at Stanford http://giotto.stanford.edu/~luciano/iteralign.html

• Motif-based local multiple alignment
MEME at SDSC http://www.sdsc.edu/MEME/

MEME at Pasteur http://bioweb.pasteur.fr/seqanal/motif/meme/

MATCH-BOX http://www.fundp.ac.be/sciences/biologie/bms/matchbox_
submit.html

BLOCK Maker at FHCRC http://www.blocks.fhcrc.org/blockmkr/make_blocks.html

PIMA at BCM http://kiwi.imgen.bcm.tmc. edu:8088/search-
launcher/launcher.html

PIMA II at BMERC http://bmerc-www.bu.edu/protein-seq/pimall-new.html

a Possibility to display and edit alignment with the JALVIEW JAVA applet.
b Coloured alignments.
c In combination with many WWW tools for molecular phylogeny.
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Table 5 Software for multiple alignments

ClustalW (UMPV)a

ClustalX (UMPV)a

(ClustalW + graphical interface)

Multalin

MSA (U)a

blALIGN(U)"

DCA (U)a

RIW/DNR (U)a

MACAW (MP)a

ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/

ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/

http://www.toulouse.inra.fr/multalin.html

http://www.ibc.wustl.edu/ibc/msa.html

http://www.gsf.de/biodv/dialign.html

http://bibiserv.techfak.uni-bielefeld.de/dca/

ftp://ftp.genome.ad.jp/pub/genome/saitama-cc/

ftp://ftp.bio.indiana.edu/molbio/align/macaw/

a Availability: U = UNIX , M = Macintosh, P = PC, V = VMS.

(27) can also be used. For a review of multiple alignment algorithms see refer-
ence (28).

Many of the programs reviewed here can be used directly through the WWW
(see Table 4) or downloaded over the Internet to be installed on a local computer
(see Table 5).

4.1 Optimal methods for global multiple alignments
In this section, we will mention several methods that are said to be optimal,
because they guarantee to find the 'best' multiple alignment among all possible
solutions for a given scoring scheme. It should be stressed that the term
'optimal' is taken here in its mathematical meaning. Whether a mathematically
optimal alignment corresponds or not to the biologically correct alignment (i.e.
the alignment that represent the most likely evolutionary scenario) will depend
on the choice of parameters (weighting of substitutions and of indels, see Section
2.3) and on the way the multiple alignment is scored.

4.1.1 Scoring schemes for multiple alignments
In principle, the score of a multiple alignment should reflect its likelihood
(according to a given evolutionary model). There are different ways to measure
the score (or cost) of a multiple alignment. In the following we consider that a
sequence is an ordered set of letters taken from an alphabet X. An alignment of n
sequences S1, . . . ,Sn can be defined as a matrix a(S1, . . . ,Sn) = A, where each entry
Aij is either a letter from 2 or a null symbol (the gap symbol, usually denoted
by -). The row i from A is the sequence Si, after gaps are removed.

In the simplest model, the cost of an alignment of n sequences is defined as
the sum of the cost of its columns. However, this model is crude because each
column of the alignment is considered independently of its context (i.e. a gap of
length I is considered as corresponding to L independent indels).

In more realistic models, a gap is interpreted as one single mutational event
(a deletion or an insertion of I residues) and associated with a cost that depends
on its length (see Section 2.3.2). With such models, pairwise alignment costs are
defined as the sum of substitution and gap costs. However, the definition of the
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multiple alignment cost is more complex. One possible solution, known as the
Sum of Pairs (SP) alignment cost (29), consists of calculating the multiple
alignment cost from pairwise alignment costs. A multiple alignment a(S1,... ,Sn)
contains n(n-l)/2 pairwise alignments a(Si.,Sj) where 1 < i < j < n. Each projection
a(Si.,Sj) is the pairwise alignment built from a(S1,... ,Snj by removing all the rows
except the rows i and j, and then by removing all the columns that contains two
null letters. The SP multiple alignment cost is defined as the sum of all its
projections costs (29).

Simple SP alignment cost may, however, be inappropriate when some groups
of sequences are heavily over or under-represented in a family. This drawback
may be corrected by introducing a proper weighting system (30, 31) which
assigns a weight to each sequence. This can be used to give less weight to
sequences from overrepresented groups. Another solution consists of using a
cost function based on an evolutionary tree. The tree leaves are the sequences we
want to align, and the internal nodes are their hypothetical ancestral sequences.
For a given tree, the cost of an alignment a(Sl, ... ,Sn) is the sum of all its
projections afSi.,SjJ on adjacent sequences Si and Sjin the tree (32).

4.1.2 Algorithmic complexity of optimal multiple alignment
methods
The optimal alignment is the one with the maximal score (or the minimal cost).
Needleman and Wunsh (33) proposed an efficient algorithm, based on dynamic
programming, to compute this minimal cost for pairwise alignments. This
dynamic programming approach can be easily generalized to more than two
sequences. However, computing the minimal alignment cost of n sequences, each
of length 1 requires o(2n I") time and o(Fj space (i.e. time proportional to 2" 1" and
computer memory proportional to 1") and the complexity is even higher if gap
cost are not linear (see Section 2.3.2). Such an algorithm cannot be used, in practice,
for much more than three sequences. For example, to align ten sequences of
length 100, on a very fast computer that would need 10~9 sec to compute the score
for one column of a multiple alignment, it would take approximately three
million years (210 1001010~9 = 1014 sec) to compute the alignment. This assumes
we have approximately ten billion giga-bytes of memory.

Carrillo and Lipman (29) proposed a branch and bound algorithm to compute
a minimal SP cost alignment. This algorithm uses an upper bound of the
alignment SP cost to limit the space and time used by dynamic programming.
This approach is implemented in the program MSA (34). A new version of MSA
with substantial improvements in time and space usage is available (35). Despite
these improvements, MSA cannot easily be used for more than about 10 short
sequences.

As stated previously, cost functions based on an evolutionary tree are, in
principle, better than SP alignment costs to measure the likelihood of an align-
ment. However, the alignment problem under an evolutionary tree is even harder
than the SP alignment problem, as the algorithm has to find the alignment, the
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tree, and the ancestral sequences such that the alignment cost is minimal. The
problem remains hard even if the tree is given (36).

4.2 Progressive global alignment
Progressive alignment is the most commonly used method to align biological
sequences. This heuristic approach is very rapid, requires low memory space and
offers good performance on relatively well-conserved, homologous sequences
(37, 38).

4.2.1 Description of progressive alignment methods
Progressive alignment consists of building a multiple alignment using pairwise
alignments in three steps:

(a) Compute the alignment scores (or distances) between all pairs of sequences.
(b) Build a guide tree that reflects the similarities between sequences, using the

pairwise alignment distances.
(c) Align the sequences following the guide tree. Corresponding to each node in

the tree, the algorithm aligns the two sequences or alignments that are
associated with its two daughter nodes. The process is repeated beginning
from the tree leaves (the sequences) and ending with the tree root.

Depending on the algorithms, steps (b) and (c) are done separately, or merged in
one step where the tree topology is deduced from the progressive alignment
process.

figure 2 illustrates the progressive alignment process. SI is first aligned
with S2 following the given tree, S3 is then aligned with S4, then the two
alignments a(Sl,S2) and a(S3,S4) are aligned together, and finally S5 is aligned with
a(Sl,S2,S3,S4). Notice that even if a(Sl,S2) and ot(S3,S4j are optimal alignments
computed by dynamic programming, the progressive alignment approach does
not guarantee that a(Sl,S2,S3,S4) is optimal for a multiple alignment cost func-
tion (SP cost or the tree cost for example).

A great number of tools that use a progressive alignment approach have been
proposed, they differ by the methods used in at least one of the three steps.

In the first step (a) the pairwise alignment cost can be computed by dynamic
programming, or by heuristic algorithms. The multiple alignment program
CLUSTAL W (9) for example allows one to choose either dynamic programming
or a heuristic method. Dynamic programming gives more accurate scores but is
slower than heuristic methods.

Different algorithms can be used to build a tree (step b) given a distance
matrix between sequences. Following Feng and Doolittle (37), early versions of
CLUSTAL (39) used the UPGMA algorithm (40). However, UPGMA is notorious for
giving incorrect branching orders when rates of substitution vary in different
lineages. Therefore, CLUSTAL W (9) now uses the Neighbor-Joining (41) algorithm
to build the guide tree.

The main problem in the third step (c) consists of aligning two alignments.
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Figure 2 Progressive alignment process, (a) All sequences are compared to each other S2.
(b) A guide tree is calculated from the pairwise distance matrix, (c) Sequences are
progressively aligned following the guide tree.

The simplest method for this problem reduces each alignment to a consensus
sequence, and uses a pairwise alignment algorithm to do the work. In the con-
sensus sequence, each column of the alignment is represented by its most
frequent letter. Consensus alignment was used in the first version of CLUSTAL.
In most programs, each alignment is considered as a profile (see Chapter 5). hi a
profile, a column is reduced to a distribution giving the frequency of each letter.
Two profiles are aligned as two sequences by dynamic programming without
major modification of the algorithm. The alignment of two profiles of length I
takes ofa2!2), where a is the alphabet size. CLUSTAL W uses profile alignment
with position-specific gap penalties (see Section 2.3.2).
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4.2.2 Problems with progressive alignment methods
An important problem with this progressive alignment approach stems from
the 'greedy' nature of the algorithm: any mistakes that appear during early
alignments cannot be corrected later as new sequence information is added. For
example, suppose that we have to align three sequences (x, y, z). Consider a short
fragment of these sequences for which the optimal alignment is:

X ACTTA

y A-GTA

z ACGTA

Suppose that the guide tree based on pairwise comparison of entire sequences
indicates that we should first align sequence x with sequence y, followed by the
alignment of sequence z with the first two (already aligned together). At the first
step, there are three possible alignments of x and y giving exactly the same
score:

x ACTTA x ACTTA X ACTTA

y A-GTA y AGT-A y AG-TA

At the later step, the gap that was introduced cannot be changed. Thus adding
sequence z could give the following three alignments:

X ACTTA x ACTTA x ACTTA

y A-GTA y AGT-A y AG-TA

z ACGTA z ACGTA z ACGTA

Only the first of these alignments is optimal. At the first step, only one of the
three possibilities will be used. If it is the wrong one, we cannot correct this
later.

To avoid that problem, iterative optimization strategies such as RIW or DNR
(42) have been proposed. These methods are reported to perform better than
CLUSTAL W (42). However, although these methods are much faster than
optimal algorithms, they are still to slow for large dataset.

Another limitation of the progressive approach described above is that it
requires computing pairwise distances between all sequences to calculate the
guide tree. One may sometimes have to align set of homologous sequences that
include some non-overlapping fragments (e.g. partial protein sequences). When
sequences are non-overlapping they are obviously completely unrelated and
thus the guide tree generated may be totally false. The alignment produced in
this case can be unpredictable.

4.3 Block-based global alignment
The sequences to be compared may share conserved blocks, separated by non-
conserved regions containing large indels. In such cases, the result of optimal or
progressive global alignment methods will depend greatly on the choice of gap
penalty parameters. An alternative to these approaches consists of searching for
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Figure 3 (a) Consistent set of blocks, (b) Non-consistent set of blocks.

conserved blocks that will be used as anchors in order to align the sequences.
Blocks are alignments of fragments (segments) of sequences (local alignments).
Most methods consider gap-free blocks. Depending on the programs used, the
blocks allowed can be exact (composed of identical segments) or not exact and
they may be uniform (found in every sequence) or not. The selected set of blocks
must be consistent, i.e. the blocks can occur together in a multiple global
alignment (figure 3). Once blocks have been computed, it is possible to use a
classical approach to align regions between blocks (e.g. ref. 43).

The first multiple block alignment program (44) used a sorting algorithm in
order to compute uniform exact blocks. Faster algorithms based on suffix trees
(45), or equivalent data structures, can also be used to compute exact blocks.
However, homologous regions are rarely exactly conserved. ASSEMBLE (46) per-
forms a dot matrix analysis on all pairs of sequences and then compares these
dot matrices to find uniform blocks that are not necessarily exact. In practice, it
often happens that some blocks are not present in all sequences. Thus, a further
improvement has consisted of developing methods that allow blocks that are
not necessarily uniform. DIALIGN (47,48) is based on computing gap-free blocks
between pairs of segments (diagonals).

A set of uniform blocks is consistent when each pair of blocks is ordered (they
do not cross each other). Using this observation, selecting an optimal consistent
set of blocks can be reduced to a classic optimal-path algorithm in a graph (44).
The optimal-path algorithm requires o(M2) time for M blocks. Faster algorithms
(sub-quadratic) have been proposed in order to compute an optimal consistent
uniform set of blocks (49, 50). However, finding an optimal consistent set of non-
uniform blocks is an intractable problem (51). Indeed, the consistency of non-
uniform blocks cannot be reduced to a binary relation between them. A set of
three non-uniform blocks, such that all its three pairs of blocks are consistent, is
not necessarily consistent. To compute a 'good' consistent set of diagonals,
DIALIGN uses a heuristic algorithm in which diagonals are incorporated by de-
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creasing score order into a consistent set of diagonals. Diagonals not consistent
with the set of selected diagonals are rejected In order to check if a new diagonal
is consistent or not with the set of selected diagonals, DIALIGN maintains a data
structure in o(kL2) time, for k sequences of total length I. This makes it slower
than progressive alignment programs. This computation time can however be
reduced to o(k2L + I2) (52) and even, thanks to recent developments, to o(L2).
Thus, faster versions of block-based alignment methods should be available in
the near future.

4.4 Motif-based local multiple alignments
The sequences to compare may share similar regions, without necessarily being
globally related. These homologous modules may occur in different relative
positions and may be duplicated in different sequences. In such cases it is not
possible to compute a global alignment, but one may look for 'good' local align-
ments of segments taken in the sequences. Calculating local alignments consists
of finding approximate repeated patterns in a set of sequences. Dynamic pro-
gramming has been adapted in order to find the maximal diagonal score for
pairwise comparison (53). For more than two sequences the problem is hard and
heuristics are needed as for the global multiple alignment problem.

PRAUGN (54) computes consensus words for a given word length. For each
possible word w of length k one may define the neighbourhood of w as the set of k
length words whose score with w is higher than a given cut-off. The score of w is
then the sum of all the scores with his neighbours that occur in the given
sequences. PRALIGN tries to compute the best score words (consensus words) of
fixed length. The main problem with this program is its space requirement: for
a fixed length k the space used is proportional to 20k (for proteins). This space
requirement could be much reduced using automatons as it is done in BLAST.

The MACAW method (55) combines pairwise comparisons in order to com-
pute multiple local alignments. In a first step, MACAW marks, for each pair of
sequences, all the diagonals with significant scores. The diagonals are then merged
into local alignments. MACAW is generally considered too time-consuming for a
general local alignment method, as it needs o(L2) time for the first step (I is the
sum of the sequence lengths).

Most recent local alignment programs are based on statistical methods.
Statistical methods use computationally efficient heuristics in order to solve
optimization problems. GIBBS (56) uses iterative Gibbs sampling in order to find
blocks. The computation time of this approach grows linearly with the number
of input sequences. GIBBS is available in the programs MACAW and Block Maker
(57). The tool MEME (58) uses an expectation-maximization (EM) algorithm (59,
60) to locate repeated patterns.

4.5 Comparison of different methods
When sequences are similar (say more that 50% pairwise identity for proteins,
70% for DNA) and are homologous over their entire length, all global alignment
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methods give more or less correct results. Moreover, in such cases, any reason-
able set of parameters (substitution matrix, and usually, gap opening and gap
extension penalties) will give similar alignments. However, when at least two
sequences in a given family share less identity, or if homologous regions are
interrupted by large gaps of different sizes, the result of alignment may vary
considerably according to programs and parameters used.

Several comparative analyses of multiple alignment programs have been
published (42, 48, 61, 62). These comparisons are based on the ability to detect
motif patterns on several protein families or based on reference alignments
derived from three-dimensional protein structures. Comparative analysis can
also be based on the effect of the multiple alignment programs on phylogeny.
Such a study was done on 18S rDNA from 43 protozoan taxa (63). These com-
parisons must be taken only as indications. Indeed, the parameter values (sub-
stitution matrices, gap penalty, etc.) used in these comparisons may not be
optimal for other sequence families (61). In addition these parameters are not
really comparable, even if the programs use the same strategies. For example a
gap opening score of 5 does not have the same meaning in CLUSTAL W (9) as it
does in MULTAL (38), as the value 5 will be modified in the programs (multiplied
by constants for example). For these reasons and because no known method
guarantees to find the correct alignment, it is still necessary to combine different
methods from different families of algorithms and human expertise to obtain
satisfactory alignments.

Figure 4 summarizes indications to guide users in their choice according to
the sequences they have to align. For the alignment of two sequences, one
should use an optimal pairwise alignment method (for example LALIGN or SIM
(64), see Table 6). For more than two sequences, one generally has to use heuristic
approaches. As a first step, the user should try to compute the multiple
alignment with a progressive alignment program. These programs are rapid, do
not demand large memory capacity and may thus be run on large dataset even
on micro-computers. Among programs using this approach, we recommend
CLUSTAL W (or its graphical user interface version: CLUSTAL X) (65, 66). This
includes useful features such as automatic selection of amino-acid substitution
matrix during alignment and lower weighting of gaps in potential protein loops.
If this first alignment shows that all sequences are related to each other over
their entire lengths, it is unlikely that any other method will give a better result
(Figure 4a).

However, if there are some highly divergent sequences, large gaps, or poorly
conserved regions it is -ecommended to compare the results of different methods
and/or sets of parameters. Figure 4b shows homologous sequences sharing con-
served blocks separated by non-conserved regions of varying size. This situation,
which is frequently observed in practice (e.g. in genomic DNA sequences and in
many protein families), is particularly error prone for progressive alignment
methods, notably because the linear weighting of gaps tends to over-penalize
long indels. Block-based global methods (e.g. DIALIGN, ITERALIGN) (47, 48, 67)
are not sensitive to these long gaps and are particularly appropriate for such
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Figure 4 Choice of multiple alignment methods according of the nature of the sequence set.

Comment

Sequences are related over their
entire length.

Sequences share conserved blocks,
separated by non-conserved
regions containing large indels.
Blocks are consistent (i.e. in the
same order) but not necessarily
uniform (i.e. some blocks may be
missing in some sequences).

Sequences contain a non-consistent
set of conserved blocks (i.e. some
blocks are duplicated or occur in a
different order along sequences).

Appropriate approach

Progressive global alignment
method (e.g. CLUSTAL W).

Block-based global alignment
method (e.g. D1ALIGN,
1TERAL1GN). Compare
alignments produced by different
programs (including progressive
methods).

Motif-based local alignment
method (e.g. MEME). Compare
alignments produced by different
programs.
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Table 6 Websites for pairwise alignments

LFASTA at PBILa http://pbil.univ-lyonl.fr/lfasta.html

SIM at ExPASy3 http://wvm.expasy.ch/sprot/sim-prot.html

BLAST two sequences at NCBI http://www.ncbi.nlm.nih.gov/gorf/bl2.html

LALIGN at CRBM http://www2.igh.cnrs.fr/bin/lalign-guess.cgi

SIM, GAP, NAP, LAP http://genome.cs.mtu.edu/align/align.html

a Possibility to visualize pairwise alignments with LAIN VIEW (83).

cases. Moreover, one drawback of progressive methods (but also of optimal
global alignment methods) is that an alignment is produced even if sequences
are not related, possibly of random origin. DIALIGN and ITERALIGN on the con-
trary do not attempt to generate a global alignment if sequences are only locally
related. Another interesting feature of these programs is that they indicate the
significance of the alignment: in DIALIGN for example, regions that are not con-
sidered to be aligned (e.g. a non-conserved region between two aligned blocks)
are printed as lower-case letters whereas aligned residues are in upper-case.

Global methods (optimal, progressive, or block-based) are appropriate only if
all conserved blocks are consistent (see Figure 3). If, as presented in Figure Ac, some
.domains are duplicated, or ordered differently along sequences it is necessary to
use a local multiple alignment method to align all related domains. The WWW
version of the MEME tool (see Table 4) provides a graphical representation of the
motifs found in sequences which proves to be very helpful to analyse the
domain organization of proteins.

4.6 Particular case: aligning protein-coding DNA sequences
It is sometimes necessary to align protein-coding DNA sequences rather than
proteins. Two examples are the design of primers to identify related genes by
PCR or for molecular phytogenies relying on the measure of substitution rates at
synonymous (Ks) or non-synonymous (Ka) sites of codons. Due to the degeneracy
of the genetic code, it is generally more difficult to align coding DNA sequences
than their protein translation. Moreover, some ambiguities in DNA alignments
may be solved when considering the protein translation. For example, the two
DNA alignments below have exactly the same similarity score:

However, the second alignment can be rejected unambiguously taking into
account the protein translation. Thus, the procedure commonly used to align
protein-coding DNA sequences is the following:

(a) Extract coding DNA sequences and the corresponding protein translation.
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(b) Align protein sequences.

(c) Back-translate the protein alignment into a nucleic acid alignment.

The program PROTAL2DNA (C. Letondal, unpublished) has been written for this
purpose, and is available at the Pasteur WWW server:

http://bioweb.pasteur.fr/seqanal/interfaces/protal2dna.html

Note that the WWW-QUERY server (see Table 2) may be used to extract both
coding DNA sequences and their corresponding protein translation (taking into
account species- or organdie-specific genetic codes).

5 Visualizing and editing multiple alignments
Results of multiple alignment programs are generally saved simply as text files.
There is presently no standard format for multiple alignments. However, the
MSF output format (Figure 5) is provided by most of popular alignment programs
and is recognized by many programs that require alignments as an input (e.g.
molecular phylogeny, profile searches). The MASE format presents the advantage
of allowing the inclusion of annotation regarding the whole alignment or specific
to each sequence (Figure 6). Textual representation of multiple alignments is,

Figure 5 Example of alignment In MSF format.

69



Figure 6 MASE format. This format is used to store nucleotide or protein multiple
alignments along with annotations relative to the whole alignment (indicated in the header),
or specific to each sequence. The beginning of the file must contain a header containing at
least one line (but the content of this header may be empty). The header lines begin by ';;'.
The body of the file has the following structure: First, each entry begins with one (or more)
annotation lines. Annotation lines begin by the character';'. Again, this annotation line may
be empty. After the annotations, the name of the sequence is written on a separate line. At
last, the sequence itself is written on the following lines.

however, poorly informative. Therefore, graphical interfaces have been developed
to manipulate and edit multiple alignments. Generally, these interfaces allow
users to colour or shade residues (amino acids or nucleotides) according to
various criteria such as physico-chemical properties, degree of conservation
within the alignment, hydrophobicity or secondary structure. The use of colours
is very helpful to interpret a multiple alignment. It gives a much more com-
prehensive view of the information embedded in a multiple alignment than a
simple textual representation. Besides, these interfaces propose several interest-
ing facilities detailed below. A list of such graphical interfaces is given in Table 7.
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Table 7 Multiple alignment viewers and editors

Jalview (J)ab

CINEMA 2.1 (J)M

SEAVIEW (U)a

MPSA (UM)a

Se-AI (M)a

ClustalX (UMPV)a

(ClustalW + graphical interface)

DCSE (U)a

http://www2.ebi.ac.uk/~michele/jalview/contents.html

http://www.biochem.ucl.ac.Uk/bsm/dbbrowser/CINEMA2.l/

http://pbil.univ-lyonl.fr/software/seaview.html

http://www.ibcp.fr/mpsa/

http://evolve.zps.ox.ac.uk/Se-AI/Se-AI.html

ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/

http://indigo2.uia.ac.be:80/~peter/dcse/

a Availability: U = UNIX , M = Macintosh, P = PC, V = VMS, J = JAVA applet.

" Links to sequence databases.
c Possibility to download alignments from the PRINTS database.

5.1 Manual expertise to check or refine alignments
Whatever the quality of the software, it is necessary to examine the alignment
to check that there are no obvious errors. Alignments of sequences with large
length differences, or with duplicated domains are particularly error prone,
even if the sequences are not very divergent. A good control consists in verifying
that local similarities detected by pairwise sequence comparisons are preserved
in the multiple alignment. For such purposes, one may use the results of simi-
larity searches (BLAST, FASTA, etc.), or run pairwise local alignment software
(see Table 6) or use a dot-plot representation. Pairwise alignments can be
computed directly from JALVIEW. SEAVIEW (68) includes a dot-plot utility that
can be used to drive the alignment, semi-automatically. CINEMA (69) allows user
to run a BLAST search or a dot-plot on selected sequences.

In some cases, it may be necessary to refine part of the alignment. Experi-
enced users are often able to recognize residues that have been misaligned. In
some cases, external information (e.g. known interactions or 3-D structures)
may also reveal alignment errors. SEAVIEW and CLUSTALX allow users to run
CLUSTALW on a specified region and/or a specified set of sequences, without
changing the rest of the alignment.

Alignment editors (except CLUSTALX) also allow users to manually add or
remove gaps in the alignment. In some interfaces (e.g. JALVIEW or SEAVIEW), it
is possible to define groups in order to edit a subset of sequences. In the absence
of objective criteria, manual alignment editing should, however, be used with
caution.

5.2 Annotating alignments, extracting sub-alignments
The SEAVIEW software allows users to annotate alignments (e.g. to indicate the
location of relevant features such as enzyme active sites or RNA splicing signals).
The locations of annotations are correctly preserved after indels are inserted or
moved. This software also allows one to define groups of sequences and blocks
in the alignment and thus to extract sub-alignments. This feature is particularly
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useful when building phylogenetic trees where one needs to exclude unreliable
parts of alignments (i.e. regions for which the alignment is ambiguous). It is also
useful to select particular domains for profile searches. Definitions of groups
and blocks can be saved along with the alignment in MASE format (Figure 6).

5.3 Comparison of alignment editors
Each of the editors presented in Table 7 has some specific useful features, some
of which have been mentioned above. Programs written in JAVA (JALVIEW,
CINEMA) present two advantages. First, they can be used from any computer
and run directly from a WWW browser (although, depending on the network
load, the time necessary to download the JAVA applet through the internet
sometimes limits considerably their usefulness). Secondly, thanks to the network
communication facilities provided by JAVA, these programs allow users to directly
access information stored in sequence databases available on the internet.
CLUSTALX is a graphical interface to the CLUSTALW program and not simply an
alignment viewer. However, it does not allow manual editing of alignments.
MPSA is dedicated to protein secondary structure prediction. SEAVIEW is par-
ticularly suited for phylogenetic analyses and can notably be used in combina-
tion with the PHYLOWIN graphical interface dedicated to molecular phylogeny
(68).

5.4 Alignment shading software, pretty printing, logos, etc.
To publish the results of such analyses, it is generally useful to prepare a high
quality colour figure of the multiple alignment. Some of the above editors (e.g.
JALVIEW, CINEMA) can be used to save or print coloured alignments in a format
suitable for publication. Other programs, some of which are available on the
WWW, have been developed specifically for that purpose (see Table 8). The
program LOGO (70) is intended to give a visual representation of a consensus
sequence, along with possible variants.

6 Databases of multiple alignments
Databases of precompiled multiple alignments have been developed, essentially
for protein sequences (71-79) but also for rRNA (80-82) and some other nucleic
acid sequences (see Table 9). The approach used to cluster together homologous
protein sequences varies according to databases. Some intend to classify to-
gether proteins homologous over their entire length (protein families), whereas
others focus on the classification of protein domains (see Table 9). For example,

Table 8 Pretty printing, shading, logos, etc.

BOXSHADE

WebLogo

Mview

AMAS

http://ulrec3.unil.ch/software/BOX_form.html

http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi

http://mathbio.nimr.mrc.ac.uk/nbrown/mview/

http://barton.ebi. ac.uk/servers/amas_se rver.html
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Table 9 Databases of multiple alignments

• Protein families
PIRALN

HOVERGEN

PROTOMAP

Megaclass

• Protein domains
ProDom

PRINTS

DOMO

PFAM

BLOCKS

•RNA/DNA
Ribosomal Database Project

The rRNA WWW server

ACUTS3

http://www-nbrf.georgetown.edu/nbrf/getaln.html

http://pbil.univ-lyonl.fr/databases/hovergen.html

http://www.protomap.cs.huji.ac.il/

http://www.ibc.wustl.edu/megaclass/

http://protein.toulouse.inra.fr/prodom.html

http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/
PRINTS.html

http://www.infobiogen.fr/~gracy/domo/

http://genome.wust! .edu/Pfam/

http://blocks.fhcrc.org/

http://www.cme.msu.edu/RDP/

http://rrna.uia.ac.be/

http://pbil.univ-lyonl.fr/acuts/ACUTS.html

' Ancient Conserved UnTranslated Sequences.

the HOVERGEN database compiles multiple alignments and phylogenetic trees
for all families of vertebrate protein-coding genes along with the corresponding
GenBank annotations (79). This database provides all the data necessary to
decipher the orthology/paralogy relationships among vertebrate multigenic
families and is thus particularly useful for phylogenetic studies or for
comparative analysis of vertebrate genes. However, this approach is limited to
relatively well-conserved sequences alignable over their entire length. Conversely,
databases of protein domains may achieve to cluster very distantly related
sequences and are useful to analyse the structure, function, and evolution of
modular proteins. For some complex families, it may be useful to consult
specialized databases such as those available for immunoglobulins or HOX
proteins (for a complete list, see the WWW page maintained by Amos Bairoch:
http://www.expasy.ch/alinks.html).

7 Summary
In this chapter, we describe methods commonly used to align homologous
sequences. Searching for the best alignment consists of finding the one that
represents the most likely evolutionary scenario (substitutions, insertion, and
deletion). Different alignment algorithms have been developed, but none of
them is ideal. Because of time and memory requirements, algorithms that
guarantee to find the best alignment for a given evolutionary model can be used
in practice only with a very limited number of short sequences. Therefore, non-
optimal algorithms based on heuristics have been proposed to gain speed and
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limit memory requirements. We discuss the choice between these different
methods (progressive global alignment, block-based global alignment, motif-
based local multiple alignment) according to the nature of the sequences to
align. We also describe graphical tools that have been developed to visualize and
edit multiple alignments. Finally, we mention several databases that compile
multiple alignments of homologous protein or nucleotide sequences. All inter-
net addresses where the tools and resources described here are available are
listed in the following WWW page:

http://pbil.univ-lyonl.fr/alignment.html
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