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1 Introduction
Protein structure is intrinsically hierarchic in its internal organization. The
highest level in this hierarchy is constituted by complete proteins or assemblies of
such proteins, which become subdivided through domains via super-secondary
structure to secondary structure at the lowest hierarchical level.

At higher levels within in this hierarchy, especially from the domain level
upwards, the connectivity of the polypeptide backbone between substructures
becomes less important. A protein thus can retain a stable structure irrespective
of the sequential arrangement of domains and presence of fragments linking
them together. Such linker regions often constitute exposed surface loops that
do not disrupt the folds of the domains they connect (1).

At the level of protein secondary structure, however, the elements are not
only crucially dependent on their amino acid compositions, but, unlike domain
and higher-order structures, are also very much context dependent; i.e. they rely
critically on the substructures in their environment. It is because of this context
dependency, that predicting protein secondary structure is a very difficult task,
which after three decades of research has not attained the accuracy on which
further prediction of tertiary structure can be based. It must be stressed,
however, that some successful predictions of higher-order structure, based on a
knowledge of the secondary structure, have been achieved (e.g. ref. 2).

This chapter covers some background aspects of secondary structure pre-
diction and describes recent and successful prediction methods, most of which
are available through the World Wide Web and so can be used by virtually every
biologist who likes to find out about the secondary structure associated with a
particular protein query sequence.

1.1 What is secondary structure?
Perhaps a suitable definition in the context of this chapter for a secondary
structure is that it is a consecutive fragment in a protein sequence, which
corresponds to a local region in the associated protein structure showing
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Figure 1 Ribbon diagram of the flavodoxin
fold [PDB code 5null belonging to the
Q/B doubly-wound fold family.

distinct geometrical features. The two basic secondary structures are the a-helix
and the B-strand. Both show distinct structural features and are easily recogniz-
able in a protein structure (Figure 1). Other secondary structure types occurring
in protein structures are more difficult to classify as they are less regular than
a-helices or B-strands. Such structures are defined in the context of" most
prediction methods as coil; i.e. leftover secondary structures that cannot be
considered in the a-helical or pi-stranded conformation,

In general, about 50% of the amino acids fold into a-helices or B-stands, so
that roughly half the protein structures are irregularly shaped. The primary
reason for the regularity observed for helices and strands is the inherent polar
nature of the protein backbone, which contributes a polar nitrogen and oxygen
atom for each amino acid. To satisfy energetical constraints, the parts of the
main-chain buried in the internal protein core need to form hydrogen-bonds
between those polar atoms. The a-helix and B-strand conformations are optimal
as each main-chain nitrogen atom can associate with an oxygen partner (and via1

versa) whenever they adopt one of these two secondary structure types. It must
be stressed that, in order to satisfy their hydrogen-bonding constraints, p-strands
need to interact with other B-strands, which they can do in a parallel and anti-
parallel fashion, thus forming a B-pleated sheet. p-strands thus depend on crucial
long-range interactions between residues remote in sequence. They therefore
are more context dependent than a-helices, which would be more able to fold
'on their own'. The fact that the vast majority of prediction methods have
greatest difficulty in delineating B-strands correctly is believed to be due to their
pronounced context dependency,

1.2 Where could knowledge about secondary structure help?
Experimental evidence on early protein folding intermediates has shown that
secondary structural elements form at early stages during the folding process
(for a review, sec rcf. 3). These results support the significance of the so-called
'framework' model of protein folding (4, 5), where two or more secondary stnic-
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tural elements would associate early during folding to provide a structural frame
to which subsequently other substructures could attach. Therefore, knowledge
of protein secondary structural regions along the sequence is a prerequisite to
model the folding process or kinetics associated with it. Also for tertiary model
building, the ability to predict the secondary structure from the sequence alone
is crucial, as it allows for docking experiments to be carried out on the predicted
a-helices and B-strands.

On the architectural side of protein structure, it is possible to recognize the
three-dimensional topology by comparing the successfully predicted secondary
structural elements of a query protein with a database of known topologies.
Successful prediction here means parts of those helices and strands essential for
the topology would have been predicted, without necessarily accurate predict-
ion of the edges of those structures or the detection of non-essential secondary
structures. An example of topologically essential secondary structures for the
flavodoxin fold is given in Figure 2. The figure shows a schematic representation

Figure 2 TOPS diagrams for four flavodoxin structures and their basic topology. The
essential secondary structures are given in the basic topology diagram.

115



JAAP HERINGA

of the secondary structures as provided by the TOPS server (http://tops.ebi.ac.uk).
In a TOPS diagram (6), a a-helix is represented by a circle and a B-strand by a
triangle. The flavodoxin fold belongs to the class of a/B-folds with the essential
secondary structures distributed over the sequence as [Ba]5. The five strands fold
into a single p-pleated sheet ordered topologically as B2-B1-B3-B4-B5, where the
numbers indicate their relative position in the sequence and hyphens the
hydrogen bonded and spatial interactions between the strands. The five a-
helices, each following a p-strand, shield the B-sheet from the solvent and
therefore are of an amphipathic nature (see below). From the topologies of a few
different flavodoxin structures (Figure 2) can be seen that varying substructures
can be added on to the basic structure, albeit they do not disrupt the fold of the
topologically essential secondary structures. Therefore, proper prediction of the
sequential order of the topologically essential helices and sheets often allows
the recognition of the fold type associated with the protein sequence con-
sidered, thereby conferring the information pertaining to that fold. Further-
more, active sites of enzymes typically comprise amino acids positioned in
loops, so that, for example, identically conserved residues at multiple alignment
sites predicted to be in loop regions (i.e. not predicted as a-helix or B-strand),
could be functional and together elucidate the function of the protein (or
protein family) under scrutiny.

1.3 What signals are there to be recognized?
A number of observations on secondary structures as found in the large collec-
tion of protein structures deposited in the Protein Data Bank (PDB) (7), could be
summed up for each of the secondary structures a-helix, B-strand, and loop as
follows.

a-helix:
(a) As the number of residues per turn is 3.6 in the ideal case and helices are often

positioned against a buried core, they have one phase contacting hydro-
phobic amino acids, while the other phase interacts with the solvent. Such
amphipathic helices (8) thus show a periodicity of three to four residues in
hydrophobicity of the associated sequence stretch (Figure 3).

(b) Proline residues do not occur in middle segments as they disrupt the a-helical
turn. However, they are seen in the first two positions of a-helices.

B-strand:
(a) B-Strands mostly fold into so-called B-pleated sheets which have two strands

forming either edge. Therefore the hydrophobic nature of edge strands is dif-
ferent from that of strands internal to a B-sheet. As side-chains of constituent
residues along a p-strand alternate the direction in which they protrude,
edge strands of p-sheets can show an alternating pattern of hydrophobic-
hydrophilic residues, while buried strands tend to contain merely hydro-
phobic residues (Figure 3).
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(b) As B-strand is the most extended conformation (i.e. consecutive Ca atoms are
farthest apart), it takes relatively few residues to cross the protein core with a
strand. Therefore, the number of residues in a B-strand is usually limited and
can be anything from two or three amino acids, whereas helices shielding
such strands from solvent comprise more residues.

(c) The B-strands can be disrupted by single residues that induce a kink in the
extended structure of the main-chain. Such so-called 3-bulges are often
comprised of relatively hydrophobic residues.

Coil:
(a) Multiple alignments of protein sequences often display gapped and/or highly

variable regions, which would be expected to be associated with loop regions
rather than the two basic secondary structures.

(b) Loop regions contain a high proportion of small polar residues like Ala, Gly,
Ser, and Thr. Glycine residues are seen in loop regions due also to their
inherent flexibility.

(c) Proline residues are often seen in loops as well. They are not observed in
helices and strands as they kink the main-chain, although they can occur in
the N-terminal two positions of a-helices as mentioned above.

In addition to the positional requirements in hydrophobicity, there are also
general compositional differences between helix, strand and coil conformations
and this is the signal used in many of the early prediction methods (see below)
for single sequences. Methods that utilize multiple alignments can also exploit
the fact that the amino acid exchange patterns are different for the three
secondary structure states.

A few additional rules can help in clarifying the structure or function of a
protein sequence, once the secondary structure is predicted:

(a) Hydrophobic and particularly conserved hydrophobic residues are normally
buried in the protein core.

(b) More than 95% of all so-called B-a-B motifs; i.e. a B-strand followed in sequence
by a a-helix and another B-strand, show a right-handed chirality. The afore-
mentioned flavodoxin family (Figure 2) indeed shows only right-handed B-a-B
motifs. This fact can be used to build a topology for the secondary structures
of the sequence(s) considered.

Figure 3 Hydrophobic patterns along secondary structures.
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(c) Helices often cover up a core of B-strands. Therefore, if both a-helices and (3-
strands are predicted, an attempt should be made to distribute the helices
evenly at either phase of a tentative B-sheet in topology modelling.

(d) As mentioned, strictly conserved residues in different regions of a multiple
alignment can be predicted with great confidence to be responsible for the
catalytic functions, particularly if they are polar and predicted to be in loop
structures hence unlikely to be buried. As active site residues are positioned
together in a protein 3-D structure, the coil structures they constitute should
be brought together in a topology model.

2 Assessing prediction accuracy
The most widely used way to assess the quality of an alignment is by calculating
the overall per residue three-state accuracy, called the (Q3:

where N is the total number of residues predicted and PS is the number of
correctly predicted residues in state S (S = H, B, or C). Some researchers use the
so-called Matthews' correlation coefficient as it more stringently estimates the
prediction accuracy for each structural state:

where Ps and Ns are respectively the number of positive and negative cases cor-
rectly predicted for the structural state considered, and ~PS and ~NS the num-
bers of false positives and negatives, respectively. Three-state predictions would
thus yield three Matthews' correlation coefficients. If overprediction or under-
prediction occurs for any of the structural states, this is more dramatically re-
flected in the Matthews' correlations than in the Q3 percentage. A third way to
assess prediction accuracy is by weights of evidence, defined for each secondary
structural type S as:

Although this measure is relatively robust to different sampling frequencies of
the structural states, the interpretation of the resulting values is not as straight-
forward as for the other two measures. Because understanding the Q3 measure
is the easiest and its use leads to just one percentage, it is the measure most
frequently used in the literature to report prediction accuracy.

A very important issue in assessing performance is the notion of sustained
accuracy. Knowledge about the average accuracy of a given method over a set of
predicted proteins is not meaningful if unaccompanied by the variance of those
predictions. It is important to know what worse case predictions can be ex-
pected from a method, even if its mean accuracy is quite high.

A standard scenario to assess prediction accuracy is the jackknife test carried
out over a large set of test proteins (see Protocol 1). This ensures that no infor-
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mation about a query sequence or multiple alignment is used in training the
method. Nonetheless, unnoticed but systematic tuning of the method to the
database might still occur, so that the most rigorous test of any method is the
prediction of test cases that have no homologues in the database and have not
been seen during the development of the method.

Notwithstanding the importance of the measures for accuracy as listed above,
the real success of a secondary structure prediction depends on how the know-
ledge is being used. An example is the aforementioned fold recognition, where
correct prediction of the edges of secondary structural elements is not essential,
but missing structures that are crucial for the basic topology is costly. However,
all above measures, equally penalize, for example, missing two residues at either
side of a seven-ammo acid strand or missing a complete topologically essential
strand of four residues.

Jackknife testing

1 Take out one protein of the complete set of N proteins,

2 Train the method on the remaining N-l proteins (the training set).

3 Predict the secondary structure for the protein taken out.

4 Repeat step 1-3 for all N proteins and assess the average accuracy.

It is possible to test the method by averaging the predictions over all combinations of x
proteins (1<x<N), each time using the method trained on the remaining N-x proteins.
This provides an impression of the influence of different training sets on the sustained
accuracy of a single protein being predicted. As the number of combinations grows
rapidly with x. the training phase of most methods is too slow for extensive testing using
this mode. It can, however, also be used to save computation time if the database is split
evenly in test groups of sequences (e.g. 9), as each sequence within a test group is
associated with a single training set, thus saving training overhead.

An additional problem in secondary structure prediction is the standard of
truth. Most prediction methods are assessed in accuracy by using known tertiary
structures from the protein data bank (7) with their secondary structural ele-
ments assigned using the DSSP method of Kabsch and Sander (10). Colloc'h et al
(11) compared three such secondary structure determination algorithms, among
which was the DSSP method, and found significant differences in their second-
ary structural assignments. This ambiguity in secondary structural assignments
can be dramatic for particular proteins where agreement of the methods can be as
low as 65% (12, 13). Moreover, in structurally equivalenced sets of homologous
proteins with known tertiary structure, the corresponding secondary structural
elements can vary in length or show shifts of one to a tew residues, and hence a
realistic maximum prediction accuracy per residue would be in the range 80-
100% (14). Many researchers have suggested that prediction evaluation should be
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based on the overlap of predicted and observed segments rather than on indi-
vidual positions (15-20). A recent secondary structure assignment program that
combines many of the features of earlier methods, such as checking hydrogen
bonding patterns and stereochemical characteristics, is the knowledge-based
method STRIDE (21), claimed to yield assignments in close agreement to those
made by crystallographic experts.

3 Prediction methods for globular proteins

3.1 The early methods
Attempts to predict protein secondary structure began more than four decades ago
(e.g. 22, 23), while the first computer algorithms appeared a quarter of a century
ago (24-26). The algorithms of Nagano (22) and Chou and Fasman (25) were based
on statistical information, whereas Lim's method (26) was stereochemically
oriented and relied on conserved hydrophobic patterns in secondary structures
such as amphipathicity in helices (8). Secondary structure prediction has gen-
erally been formulated for three states, helix, strand, and coil. This holds also for
recent versions of the early and popular GOR method (27, 28), which considers
the influence and statistics of flanking residues on the conformational state of a
selected amino acid to be predicted. The popular early methods by Lim (26) and
Chou-Fasman (25) as well as the GOR method (27, 28) will be described in more
detail.

3.1.1 Lim

Lim (26) developed a set of complicated stereochemical prediction rules for a-
helices and B-sheets based on their packing as observed in globular proteins. Apart
from being the most successful early method (see below), Lim's stereochemical
rules are quite important for understanding protein folding. An example is the
set of hydrophobicity rules for a-helices with terminal hydrophobic pairs at
sequence positions i and i + 1, hydrophobic pairs in middle helical segments
positioned at (i, i + 4) and middle hydrophobic triplets positioned at (i, i + 1, i + 4)
or (i, i + 3, i + 4) (see also Figure 3). The Lim method never gained widespread
popularity because a computer implementation has not been available until
recently.

3.1.2 Chou-Fasman
The most widely used pioneering method is the one by Chou and Fasman (25), in
which predictions are based on differences in residue composition for three
states of secondary structure: a-helix, B-strand, and turn (i.e. neither a-helix nor
B-strand). Chou and Fasman performed a statistical analysis over a number of
crystallographically determined protein tertiary structures and determined the
frequency of each amino acid type in the three states. The position of turn
residues was included in the frequency calculations given significant positional
differences in residue type occurrences at turn sites. The frequencies were
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normalized to amino acid type preferences for each of the structural states by
dividing each by that found in all positions of the known structures. For helix
and strand, effects of neighbouring residues in the protein sequence were taken
into account by averaging the preferences over three residues for a-helix pre-
dictions and over two for B-strands. Secondary structures were initiated accord-
ing to the higher preference values and minimum nucleation lengths required
for each structural state. Extensions were effected as long as preferences re-
mained high and certain residues were not encountered (e.g. proline in a -
helix). The Chou-Fasman method has owed its early popularity to the straight-
forward underlying statistics that are easy to understand.

3.1.3 GOR
The GOR method quickly became the standard for a decade after its first
appearance. Although the initial versions GOR I and GOR II predicted four states
by discriminating between coil and turn secondary structures, GOR III (28) and
the most recent version, GOR IV (29) perform the common three-state pre-
diction. The GOR method relies on the frequencies observed for residues in a 17-
residue window (i.e. eight residues N-terminal and eight C-terminal of the
central window position) for each of the three structural states. The amino acid
frequencies are exploited using an information function based on conditional
probabilities defined as:

where S one of the structural states H, E, or C, and R is one of the 20 residue
types. The factor P(S|R) denotes the conditional probability of a secondary
structural state for a sequence position given that it is occupied by residue type
R. Rewriting the formula for frequencies gives:

where fS,R is the frequency of residue type R in state S,fR the general frequency of
residue type R, and fs/n that of structural state S. Significant in this formula is
that the information of a particular residue type in one of the structural states is
not only based on the normalized frequency, but shows an extra weighting
based on the inverse fraction of all residues in that state. In the GOR method,
this formula is used to calculate the information difference between the various
states defined as I(AS; R) = I(S; R)—I(!S; R) with !S denoting all other states (not S).
The information difference formula then becomes:

The above formula is defined for a single sequence position, but can be easily
extended to the GOR 17-residue window by, for example, writing R17 instead of
R. Unfortunately, it is not feasible to sample all possible 17-residue fragments
directly from the PDB (as there are 1720 possibilities). The subsequent versions of



JAAP HERINGA

the GOR method over the years have explored increasingly detailed approxi-
mations of this sampling problem, along with the increase of data in the PDB:

(a) GOR I just treated the 17 positions in the window independently, and so single-
position information could be summed over the 17-residue window.

(b) GOR II did the same but sampled over a larger database.

(c) GOR III (28) refined by including pair frequencies derived from 16 pairs be-
tween each non-central and the central residue in the 17-long window. As
the PDB at the time was not large enough to provide sufficient data, dummy
frequencies were calculated (28).

(d) The current version, GOR IV (29) uses pairwise information over all possible
paired positions in a window (there are 17 X 16/2 possibilities), albeit with a
relatively small weight as compared with the GOR I-type single-position
information (a) which is included as well.

The theoretical principles used in the GOR method are statistically sound and no
ad-hoc rules or artificial variables are invoked, which makes it one of the most
elegant methods with a high accuracy given its single sequences prediction.
However, as in many other methods (vide infra), a post-processing step was intro-
duced for the GOR IV method to refine the predictions. Helices are required to
be at least four residues in length and strands should consist of two or more
residues. If a shorter helix or strand fragment is initially predicted, the method
assesses the probabilities of extending the fragment to the minimum associated
length or deleting it (i.e. changing it to coil).

3.2 Accuracy of early methods
The Chou-Fasman, GOR III, and Lim methods were assessed to show accuracies
of 50%, 53%, and 56% respectively (30). Version IV of the GOR method, however,
raises the single sequence prediction accuracy to 64.4% (29), as assessed through
jackknife testing (see Protocol 1) over a database of 267 proteins with known
structure. Random prediction would yield about 40% correctness given the
observed distribution of the three states in globular proteins (with roughly 30%
helix, 20% strand, and 50% coil). Although they are significantly beyond the
random level, these single-sequence prediction accuracies are not sufficient to
allow the successful prediction of the protein topology.

3.3 Other computational approaches
The Chou-Fasman and GOR methods both exploit compositional biases exhibited
by the three types of secondary structures. Information derived from single
sequences have been explored as well in the form of sequence pattern matching
(16, 31-34).

On the algorithmic side, researchers have integrated novel computational
concepts to optimize the implementation of observed patterns in mapping the
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primary on to the secondary structure and to thus enhance the success rate of
prediction. These include:

(a) Neural network applications (9, 35).
(b) Nearest-neighbour methods (36-39).
(c) Linear discriminant analysis (40).
(d) Inductive logic programming (ILP) (41).

Examples of the first three formalisms will be described in the following section.
The latter computational concept (ILP) is designed for learning structural relation-
ships between objects. Muggleton et al. (41) used the ILP computer program
Golem to automatically describe qualitative rules for residues in the a-helix con-
formation and central in a 9-residue window. The rules made use of the physico-
chemical amino acid characterizations of Taylor (42) and were established during
iterative training steps over a small set of 12 known a/a protein structures. With
the thus obtained set of rules, a-helices in four independent a/a proteins were pre-
dicted with an accuracy of 81% on a per residue basis (Q3). The Golem algorithm
is of limited use because it is only able to predict helices in all-helical proteins.

3.4 Prediction from multiply-aligned sequences
In 1987, Zvelebil et al. (43) for the first time exploited multiple alignments to
predict secondary structure automatically by extending the GOR method and
reported that predictions were improved by 9% compared to single sequence
prediction. Also Levin et al. (44) quantified the effect and observed 8% increased
accuracies when multiple alignments of homologous sequences with sequence
identities of a 25% were used. As a result, the current state-of-the-art methods
all use input information from multiple sequence alignments.

3.4.1 Neural network methods
Neural networks are organized as interconnected layers of input and output
units, and can also contain intermediate (or 'hidden') unit layers (for a review,
see ref. 45). Each unit in a layer receives information from one or more other
connected units and determines its output signal based on the weights of the
input signals. A neural network can be regarded as a black box, which is trained
to optimize the grouping of a set of input patterns into a set of output patterns
by adjusting the weights of the internal connections. Therefore, neural nets are
learning systems based upon complex non-linear statistics.

PHD
The PHD method (Profile network from HeiDelberg) (9) combines the added
information from multiple sequence information with the optimization strength
of the neural network formalism. The method makes use of three consecutive
complete neural networks:

(a) The first network produces the first raw 3-state prediction for each alignment
position. It takes as input the fractions of the 20 amino acids at each multiple
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alignment position together with the two 6-residue flanking regions; i.e. a 13-
residue window (w = 13) is used to predict each alignment position with the
central residue in the middle position. The output of the first network for
each alignment position is three probabilities for three the states (helix,
strand, and coil).

(b) A second network refines the raw predictions of the first level by filtering the
3-state probabilities for each alignment position based on the probabilities of
the flanking positions. It takes as input the output of the first network and
processes the information using a 17-residue window. The output of the
second network comprises for each alignment position the three adjusted
state probabilities. This post-processing step for the raw predictions of the
first network is aimed at correcting unfeasible predictions and would, for
example, change (HHHEEHH) into (HHHHHHH).

(c) The first two networks perform the basic prediction of the secondary struc-
ture associated with a query multiple alignment. However, as the networks
can be trained in various ways, PHD employs a number of separately trained
consecutive network pairs ((a) and (b)) and feeds their predictions (3-state
probabilities) into a third network for a so-called jury decision.

The predictions obtained by the jury network undergo a final filtering to delete
predicted helices of one or two residues and changing those into coil. The method
was trained on a non-redundant set of 130 alignments from the HSSP database
(46), each containing one sequence with a known structure. The method showed
an overall prediction accuracy of 70.8% in a jackknife test over 126 alignments
(4 of 130 alignments were transmembrane protein families), which for computa-
tional reasons were divided in 7 groups (see Protocol 1). Although this count is not
the highest accuracy reported, the PHD method to date shows the most sustained
performance as compared with all other methods available on the Web.

If the PHD webserver is given a single sequence for prediction, it performs a
BLAST-search to find a set of homologous sequences and aligns those using the
MAXHOM alignment program (46). The resulting alignment is then fed into the
actual PHD neural net algorithm.

Pred2ary
Another accurate profile and neural net-based prediction method is Pred2ary
(35) which was assessed with an accuracy of 74.8% and balanced prediction over
the three structural states. The method employs a second neural net to filter the
raw predictions of the first net, as does the PHD method (9). A recent extended
version, which combines in a jury decision the outputs of a massive number of
120 networks individually trained, is claimed to predict 75.9% ± 7.9% accurately.
This is achieved by constructing a priori probabilities of correctly predicting the
structural state at each query sequence position for all combinations of network
output weighs for helix and strand These probabilities are then used for a final
state prediction corresponding to the highest of the a priori probabilities for each
of the three states.
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3.4.2 k-nearest neighbour methods
As with neural network methods, the application of a k-nearest neighbour
method requires an initial training phase in which a large pool of so-called
exemplars is established. In the context of secondary structure prediction, this
pool typically consists of sequence fragments of a certain length derived from a
database of known structures, so that the central residue of such fragments
(exemplars) can be assigned the true secondary structural state as a label. Then,
a window of the same length is slid over the query sequence and for each
window the k most similar fragments from the pool of exemplars are deter-
mined using a similarity criterion. The distribution of the k secondary structure
labels is then used to derive propensities for the three states. In the methods
covered below, k is in the range 25-100.

Yi and Lander
Yi and Lander (36) were the first to use nearest-neighbour classifiers for pre-
diction of secondary structure. A database of 110 proteins with known tertiary
structure was used to derive a large collection of 19-residue exemplars for which
only the environmental states were noted; i.e. the residue type information was
discarded. As a label for each exemplar the secondary structural state of the
central residue was taken. For each 19-residue window of the query protein, 50
nearest neighbour exemplars were identified using the amino acid environ-
mental scoring system of Bowie et al. (47), which includes as parameters the
secondary structure state, accessible surface area and polarity; and scores the
likelihood of a residue type to be in a particular state (or range) over these three
parameters. As a score, the average was taken of 19 residues within a query
window matched with the 19-position exemplar considered. During training, for
each exemplar a cut-off score was determined, which should be met by the
query fragment compared to it in order to count the exemplar as a neighbour:
The cut-off score can be viewed as a reliability check for the predictive value of
the exemplars. The 50 thus obtained nearest neighbours showed a distribution
of the associated secondary structure labels, from which probability estimates
for the three structural states were derived for the query fragment considered.
Yi and Lander explored various scoring systems and found that the best performer
included 15 environmental classes (3 secondary structures times 5 different
accessibility/polarity classes) combined with an amino acid exchange score from
the Gonnet et al. matrix (48). Note that for this final scoring system, the amino
acid types of the exemplars were taken into account. This scenario resulted in a
prediction accuracy of 67.1%. Using a neural network for a jury decision over six
different scoring systems led to the final accuracy of 68%, as assessed through
jackknife testing (Protocol 1).

NNSSP
The NNSSP (Nearest Neighbour Secondary Structure Prediction) (37) method
adopts the nearest neighbour approach of Yi and Lander (36) for single sequence
prediction. Differences with the Yi and Lander method are:
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(a) Predictions are made for multiple alignments.

(b) N- and C-terminal positions of helices and strands; and B-turns are explicitly
taken as additional secondary structure types.

(c) When predicting, the database of exemplars (see above) is restricted to
sequences similar to the query sequence. This reduces computation and leads
to more biologically related nearest neighbours.

(d) Alignment regions with insertions/deletions are explicitly taken into account.

Salamov and Solovyev (37) explored various window lengths and finally choose
predictors combining window sizes of 11,17, or 23; nearest neighbour numbers
of 50 or 100, and balanced or non-balanced training (i.e. 3 X 2 x 2 = 12 pre-
dictors). A simple majority rule over the 12 predictors increased the accuracy by
0.9%. A few simple filters were effected to refine the thus obtained predictions as
follows:

(a) Helices predicted to consist of 1 or 2 residues are deleted (changed to coil),
but (EHE) becomes (EEE).

(b) Strands of length 1 or 2 are deleted, but (HEEH) becomes (HHHH).

(c) Helices of length 4 or less are deleted. This rule is applied after a full cycle of
rule (a) and (b).

The overall accuracy of the method is 72.2%, which results from a jackknife test
over the database of 126 proteins by Rost and Sander (9).

PREDATOR

The PREDATOR method of Frishman and Argos (38, 39) owes its accuracy mostly
to the incorporation of long-range interactions for B-strand prediction and attains
68% prediction accuracy for single sequence prediction which was assessed
using a one-at-a time jackknife test (see Protocol 1) over the protein set of Rost
and Sander (RS) (9). Using a k-nearest neighbour approach (with k = 25 and 13-
residue windows), propensities for the general three states (PH, PE, and Pc) were
determined for each residue. Using pairwise potentials involving long-range
interactions, two more propensities for B-strand were determined. This was
done by assessing the likelihood for all pairwise 5-residue fragments (separated
by more than six amino acids) to form parallel or anti-parallel B-bridges, based
on summing residue hydrogen bonding propensities obtained from known
structures (two sets of propensities for anti-parallel and one for parallel bridges).
As the final parallel and anti-parallel B-strand propensity for each residue (Ppar

and pAntipar), the maximum scoring window pair was taken with the residue con-
sidered at the N-terminal position in one of the windows. Pairwise hydrogen
bonding potentials were also determined for a-helical residues at a sequence
separation of four residues. Their sum was calculated over a 7-residue window to
arrive at an extra helix propensity for the residue N-terminal in the window
(PHelix). The last additional propensity concerned p-turns (pTurn) and was obtained
by summing single-residue propensities in classic p-turn positions 1-4 (49) using
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a four-residue window. For each of the thus obtained seven independent
propensities, threshold values (T) were calculated and used in the following
five rules applied consecutively to arrive at a three-state prediction for each
residue:

1. If (PPar > Tpar or pAntipar > TAntipar) and PHelix < Thelix, then predict B-strand; other-
wise, if PHelix > Thelix, then predict a-helix, otherwise predict coil.

2. If Pc > Tc, then predict coil.

3. If PE > TE, then predict B-strand.

4. If PH > TH, then predict a-helix.

5. If PTurn > TTurn, then predict coil.

Apart from the novel scheme to employ long-range interaction to aid strand
prediction, the PREDATOR method can also use information from multiple
sequences to enhance predictions. However, PREDATOR does not use or con-
struct a multiple alignment, but rather compares the sequences using pairwise
local alignments (50). The current method is not able to extract local alignments
from a multiple alignment provided by the user, while leaving the multiple
alignment intact, but it is planned to realize this option in a future release
(Frishman, personal communication). As predictions by PREDATOR are carried
out for a single base sequence, a set of highest scoring local alignments is com-
piled through matching the base sequence with each of the other sequences. A
weight is then compiled for each matched local fragment based on the
alignment score and length of the local alignment. For each residue in the base
sequence, the weighted sum over all stacked fragments (see Figure 4) is compiled
independently for the seven propensities and subjected to the above five rules to
arrive at a three-state prediction. The extra information conferred by the multiple
sequences resulted in a Q3 of 74.8% (39), as assessed using one-at-a-time jackknife
testing over the RS protein set. As for the Pred2ary method showing identical
accuracy, this Q3 is the highest reported in the literature.

3.4.3 Linear discriminant analysis: the DSC method
The DSC method combines the compositional propensities from multiple
alignments with a set of concepts important for secondary structure prediction

Figure 4 Usage of local alignments in the PREDATOR algorithm. For details, see text.
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(see Section 1.3). This information is processed using linear statistics. Apart from
the conformational propensities, the following concepts are used:

• N-terminal and C-terminal sequence fragments are normally coil.

• Moments of hydrophobicity (see Figure 3).

• Alignment positions comprising gaps are indicative for coil regions.

• Moments of conservation.

• Autocorrelation.

• Residue ratios in the alignment.

• Feedback of predicted secondary structure information.

• Simple filtering.

The relative importance of these concepts was determined in five runs, which
successively relied on increased information as follows:

(a) Run 1: The GOR method was used on each of the aligned sequences and the
average GOR score for each of the three states was compiled for each align-
ment position.

(b) Run 2: For each position in the query multiple alignment, a so-called attribute
vector was compiled, consisting of 10 attributes: three averaged GOR scores
for H, E, and C; distance to alignment edge; hydrophobic moment assuming
helix; hydrophobic moment assuming strand; number of insertions; number
of deletions; conservation moment assuming helix and that assuming strand.

(c) Run 3: Positional 20-attribute vectors were determined consisting of the
above 10 attributes and those in a smoothed fashion.

(d) Run 4: Positional 27-attribute vectors were compiled comprising the 20
attributes of the preceding round, combined with fractions of predicted ot-
helix and B-strand, and fractions of the five most discriminating residue
types; His, Glu, Gln, Asp, and Arg.

(e) Run 5: A set of 11 filter rules were employed for a final prediction, such as,
for example, ([E/C]CE[H/E/C][H/C]) -> C. These filter rules were found auto-
matically using machine learning.

For run (b) to (d), a linear discrimination function was determined for each of
the three secondary structural states. A linear discrimination function is effect-
ively a set of weights for the attributes in the positional vector, so that the
secondary structure associated with the highest scoring discrimination function
is assigned to the alignment position considered.

The DSC predictions are based on the information arising from the five above
runs. The Q3 was assessed for successively increasing numbers of runs (run 1,
runs 1 and 2, runs 1-3, 1-4, 1-5) for the five runs based on the Rost-Sander
protein set and comprised 63.5%, 67.8%, 68.3%, 69.4%, and 70.1% (DSC), respect-
ively. The DSC method performs especially well for moderately sized proteins in
the range 90-170 residues. A special feature of the DSC technique is that it
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accepts predictions by the PHD algorithm as input and attempts to refine those
using the above concepts. The Q3 of this PHD-DSC combinatorial procedure was
evaluated at 72.4% (40).

3.4.4 SSPRED: a secondary structure specific exchange method

The SSPRED method (51) exploits an alternative aspect of the positional infor-
mation provided by multiple alignment, in that it uses the amino acid pairwise
exchanges observed for each multiple-alignment positions. Using the 3D-ALI
database (52) of combined structural and sequence alignments of distantly
homologous proteins, three amino acid exchange matrices were compiled for
helix, strand, and coil, respectively. Each matrix contains preference values for
amino acid exchanges associated with its structural state as observed in the 3D-
ALI database. They are used to predict the secondary structure of a query align-
ment through listing the unique observed residue exchanges for each alignment
position and adding the corresponding preference values over each of the three
exchange matrices. The fact that each exchange type is counted only once for
each alignment position provides implicit weighting of the sequences, thus
avoiding predominance of related sequences. The secondary structure associated
with the matrix showing the highest sum is then assigned to the alignment
position. Following these raw predictions, three simple cleaning rules are applied
and completed in three successive cycles:

(a) Single position interruptions: if a sequence site is predicted in one struc-
tural state and the two flanking positions in another, the position is changes
into that of the consistent flanking sites, for example (H[E/C]H) becomes
(HHH) where [E/C] indicates E or C.

(b) Double position interruptions: if in five consecutive positions two middle
sites are of another type than the three flanking sites, the middle positions are
changed to the flanking types. For instance, (HH[E/C][E/C]H) or (H[E/C][E/C]HH)
becomes (HHHHH).

(c) Short fragments: helices predicted less than or equal to 4 and strands less
than or equal to 2 in length are changed into coil predictions.

The accuracy of the method was assessed over one-at-a-time jackknife testing and
amounted to 72%, albeit over a relatively small test set of 38 protein families.

3.5 A consensus approach: JPRED
The JPRED server at the EMBL-European Bioinformatics Institute (Hinxton, UK)
conveniently runs state-of-the-art prediction methods such as PHD (9), PREDATOR
(38, 39), DSC (40), and NNSSP (37), while also ZPRED (43) and MULPRED (Barton,
unpublished) are included. The NNSSP method has to be activated explicitly, as
it is the slowest of the ensemble. The server accepts a multiple alignment and
predicts the secondary structure of the sequence on top of the alignment: Align-
ment positions showing a gap for the top sequence are deleted. A single sequence
can also be given to the server. In the latter case, a BLAST-search is performed to
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Figure 5 Secondary structure prediction for chemotaxis protein cheY (3chy). The top
alignment block represents the multiple alignment of the 3chy sequence with 13 distant
flavodoxin sequences by the method PRALINE. The middle block is the same sequence set
aligned by CLUSTALX. Under each of the alignments are given the alignments by five
secondary structure prediction methods. The bottom block depicts consensus secondary
structures determined by Jpred over the five methods used, respectively for the PRALINE and
CLUSTALX alignments, as well as for a set of 32 homologous sequences aligned by
CLUSTALX (cons HOMOLOGS). Vertical bars (|') under each of the consensus predictions
indicate correct predictions. The bottom line identifies the standard of truth as obtained from
the 3chy tertiary structure by the DSSP program. (10) The secondary structure states
assigned by DSSP other than 'H' and 'E' were set to ' '(coil) for clarity.

find homologous sequences, which are subsequently multiply aligned using
CLUSTALX and then processed with the user-provided single sequence on top in
the alignment. If sufficient methods predict an identical secondary structure for
a given alignment position, that structure is taken as the consensus prediction
for the position. In case no sufficient agreement would be reached, the PHD
prediction is taken. This consensus prediction is somewhat less accurate when
the NNSSP method is not invoked or completed in the computer time slot
allocated to the user. An example of output by the JPRED server for the signal
transduction protein cheY (PDB code 3chy) is given in Figure 5 (vide infra).

3.6 Multiple-alignment quality and secondary-structure
prediction
Multiple-alignment protocols use heuristics to overcome the combinatorial ex-
plosion that arises when all possible alignments would be tested exhaustively.
Most global alignment methods therefore establish an order in which the
sequences are aligned progressively based on the alignment scores of all possible
pairwise alignments (the number is N x (N - l)/2 with N the number of
sequences). Although most methods show a comparable overall quality in align-
ment construction for sequences showing residue identities of 30% or higher,
significant differences can arise in individual cases, particularly when evolution-
ary distant sequences are included. As the currently most successful secondary
structure prediction methods all employ positional information from multiple
alignments, it is clear that alignment quality is crucial for accurate prediction.
As an example, the popular multiple alignment program CLUSTALX and the
recently developed method PRALINE (53) (see below) were used to automatically
construct a multiple alignment for the signal transduction protein cheY (PDB
code 3chy) and 13 distant flavodoxin sequences. The 3chy structure adopts a
flavodoxin fold (see Figure 2) despite very low sequence similarities with genuine
flavodoxins. Figure 5 shows both alignments with secondary structure predictions
by the JPred server as well as JPred consensus predictions for the two alignments.
The difference in accuracy of the two consensus predictions amounts to more
than 30%, an order of magnitude more than the increase in prediction accuracy
obtained over the last five years. It must be stressed that the flavodoxin sequences
are evolutionary distant from the cheY sequence, such that the alignments were
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only included to illustrate their crucial importance for secondary structure
prediction rather than to argue in favour of any of the two used alignment
programs based on this single example. The Jpred server was also given the single
3chy sequence, after which the Jpred server constructed an evolutionary related
set of homologs through a BLAST search and aligned the 32 resulting sequences
using CLUSTALX. The accuracy of the consensus secondary structure prediction
by Jpred was 3% higher than that obtained for the PRALINE alignment of the
cheY-flavodoxin set (Figure 5). Moreover, it successfully delineated the second B-
strand of the 3chy structure, which was missed by the predictions based on both
the CLUSTALX and PRALINE alignments.

3.7 Iterated multiple-alignment and secondary structure
prediction
As mentioned, most reliable secondary structure prediction methods utilize
sequence information in multiple alignments and their prediction accuracy is
crucially dependent on the quality of a multiple alignment used. If in turn a
multiple alignment would be guided by the predicted secondary structure, an
iterative scheme would be possible that optimizes both the multiple-alignment
quality and secondary structure prediction. This procedure is implemented in
the PRALINE multiple alignment method (53). A multiple alignment is con-
structed initially without information about the secondary structure (Figure 6a).
Then, the secondary structure is predicted (for which any of the aforementioned
methods could be used) and iteratively a new alignment is constructed, now
using the predicted secondary structure. PRALINE employs dynamic program-
ming to progressively construct a multiple alignment for a query set of
sequences and therefore relies on an ammo acid exchange weights matrix and a
pair of gap penalties (for a review, see ref. 54). The initial alignment is con-
structed using a default residue exchange matrix (e.g. the BLOSUM62 matrix)
and gap penalties. After secondary structure prediction, resulting in a tentative
secondary structure for each sequence if a single sequence-based method is used
or in a single secondary structure if a method reliant on a multiple alignment is
effected (Figure 6a), PRALINE utilizes the thus obtained secondary structure infor-
mation as illustrated in Figure 6b. At each alignment step during the progressive
alignment, pairs of sequences (and/or profiles representing already aligned
sequence blocks) are matched using three secondary structure-specific residue
exchange matrices (55) and associated gap penalties. As shown in Figure 6b, the
residue exchange weights for matched sequence positions with identical second-
ary structure states is taken from the corresponding residue exchange matrix.
Sequence positions with inconsistent secondary structure states are treated with
the default exchange matrix. The secondary structure information is thus used
in a conservative manner based upon the assumption that consistent secondary
structure predictions are indicative for their reliability when performed for each
individual sequence (Figure 6a). In this way, the multiple alignments guide the
secondary structure predictions, which in turn guide the alignment.
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Figure 6 Iterative multiple-alignment and secondary-structure prediction by the PRALINE method.

4 Prediction of transmembrane segments
Membrane proteins (MP) form a distinct topological class due to the presence of
one or more transmembrane (TM) sequence segments. In contrast to globular
proteins where all possible mutual orientations of individual structural elements
are in principle possible, MP transmembrane segments are subjected to severe
restrictions imposed by the lipid bilayer of the cell membrane.

There is a considerable lag in structures available for MPs relative to the large
and vastly growing numbers of soluble proteins, as little X-ray or NMR data
regarding the tertiary structure of MPs have been available until recently (56).
The most frequently observed secondary structure in transmembrane segments
is the a-helix, but also transmembrane structures based on B-strands that
constitute a p-barrel have been encountered. The initial idea that TM segments
are either completely a-helical or consist of B-strands exclusively, was disrupted
by electron microscopy data for the nicotinic acetylcholine receptor (57), which
was interpreted as a central five-helix bundle surrounded by B-strands, albeit
based on preliminary data with low resolution.
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Fortunately, the location of the transmembrane segments in primary
structure of the MP is relatively easy to predict due to the rather strong tendency
of certain hydrophobic amino acid types with their special physico-chemical
properties to occur in membrane spanning regions. Thus, efforts concerning the
theoretical analysis of MPs over the past two decades have been focused on the
determination of the membrane sequence segment boundaries and their
tentative orientation with respect to the membrane, although mostly assuming
a-helical structures.

4.1 Prediction of a-helical TM segments
The following considerations form the basis of transmembrane subsequence
prediction.

(a) Amino acids immersed in the lipid phase are likely to be hydrophobic.
Therefore, any physical measure of amino acid hydrophobicity derived from
physical calculations and/or experimental data can serve as a measure of
likeliness for a residue type to occur in a membrane-spanning segment.

(b) The propensities of amino acids to reside in the lipid bilayer can be inferred
from abundant but not very precise experimental data on the boundaries of
the transmembrane segments acquired from site-directed mutagenesis, en-
zymatic cleavage, immunological methods and the like. This contrasts with
the standard secondary structure prediction methods for soluble proteins
where statistical propensities of different amino acids to form one of the
major secondary structure elements are derived from more accurate protein
tertiary structural data from X-ray crystallography and NMR spectroscopy.

(c) Transmembrane segments are believed to adopt in most cases a-helical con-
formation. An a-helix is the most suitable local arrangement because, in the
absence of water molecules inside the membrane, all main-chain polypeptide
donors and acceptors must mutually satisfy each other through formation of
hydrogen bonds as occur in an a-helix. This energetic argument is supported
by experimental evidence where polypeptide chain tends to adopt helical
conformation in a non-polar medium (58). Therefore, a-helical propensities
of amino acids derived from the analysis of globular proteins can be con-
sidered in MP structure prediction.

Although the globular protein interior is less apolar than the lipid bilayer, ex-
tensive usage of these data has been made for MP structure prediction, particu-
larly with the classical hydrophobicity scale of Kyte and Doolittle (59). Other
techniques are more specifically aimed at searching MP transmembrane regions
(60-63). Hydrophobic scales can be used to build a smoothed curve, often called
a hydropathic profile, by averaging over a sliding window of given length along
the protein sequence to predict transmembrane regions. Stretches of hydro-
phobic amino acids likely to reside in the lipid bilayer appear as peaks with
lengths corresponding to that expected for a transmembrane segment, typically
16-25 residues. The choice of window length should correspond to the expected
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length of a transmembrane segment. Given that the average membrane thick-
ness is about 30 A, approximately 20 residues form a helix reaching from one
lipid bilayer surface to another. A further threshold is also required to deter-
mine the exact boundaries of a membrane spanning segment. Kyte and Doolitle
(59) early on set their limit by examining the hydropathic character of just a few
membrane proteins. Later, a much larger learning set was used by Klein et al.
(64) through discriminant analysis. Rao and Argos (65) suggested a minimum
value for the peak hydrophobicity and a cut-off value at either end of the peak to
terminate the helix.

Although many of the above techniques constitute an essential part of all
major sequence analysis packages, the relatively simple physical considerations
forming the basis of these methods do not exhaust the whole variety of possible
situations.

If a membrane protein has more than one transmembrane helix, the relative
orientation of the helices and the interaction of the corresponding sidechains
are also important for structure prediction. The structure of the membrane
proteins determined to date and also some theoretical evidence (66) support the
view that a-helices in membranes form compact clusters. While the residues
facing the lipid environment conform to the preferences described above, the
interface residues between different helices do not necessarily have contact
with the membrane, and, can therefore, behave differently. It is possible that
charged residues occur in the helices in a coordinated fashion such that
positively charged sidegroups on one helix will have their negatively charged
counterparts on another helix. These charges could, for instance, constitute a
membrane channel. Intra-membrane a-helices can thus have an amphipathic
character (see above). In such cases hydropathic profiles can work poorly in
detecting transmembrane segments. In certain cases where the number of
transmembrane segments is large (more than 20 as in some channel proteins),
the inner helices of the transmembrane helical bundle can completely avoid
contact with the lipid bilayer and, therefore, any restrictions on their amino
acid content—or even length—could be artificial.

Eisenberg et al. (67) introduced a quantitative measure of helix amphipathicity
called the 'hydrophobic moment', and defined as a vector sum of the individual
amino acid hydrophobicities radially directed from the helix axis. The hydro-
phobic moment provides sufficient sensitivity to distinguish amphipathic ex-
helices of globular, surface, and membrane proteins. Many methods for
amphipathic analysis were developed based on Fourier analysis of the residue
hydrophobicities (68, 69) and the average hydrophobicity on one helix face (70).

Several prediction methods have emerged which utilize multiple factors,
complex decision rules, and large learning sets. Von Heijne (63) proposed a syn-
thetic technique in which a standard hydrophobicity analysis is supplemented
by charge bias analysis (see Section 4.2). Other methods include the joint usage
of several selected hydrophobicity scales (71) or the application of optimization
techniques with membrane segments as defined by X-ray analysis serving as
reference examples (72).
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Persson and Argos (73) incorporated sequence information from multiple
alignments to aid TM prediction. The propensities of amino acids to reside in
either the central or the flanking regions of a transmembrane segment were
calculated using more then 7500 individual helical assignments contained in the
SWISS-PROT sequence databank. These values were then used to build a pre-
diction algorithm wherein, for each segment of a multiple sequence alignment,
and for each sequence, average values of the central and flanking propensities
are calculated over windows of respectively 15 and 4 residues long. If the peak
values for central transmembrane regions exceed a certain threshold, this region
is considered as a possible candidate to be membrane spanning. The algorithm
then attempts to expand this region in both sequence directions until a flanking
peak is reached or the central propensity averages fall below a certain value.
Additional restraints are imposed on the possible length of the tentative trans-
membrane segments. The optimal window length was found to be about 15
residues. Due to the increased amount of information utilized by the technique,
more accurate prediction results were achieved as compared with earlier
methods. The gain in sensitivity is due to the usage of multiple alignments as
well as the introduction of a second propensity for flanking regions.

Neural networks (see Section 3.4.1) have also been applied to the TM prediction
problem. Early attempts involved training on secondary structural elements of
globular proteins (74). Rost et al. (75) trained the PHD method on multiple
alignments for 69 protein families with known transmembrane helices and
achieved 95% prediction accuracy using the jackknife test.

4.2 Orientation of transmembrane helices
Another aspect of transmembrane segment prediction is prediction of mem-
brane sidedness, or orientation. For bacterial membrane proteins it was found
that intracellular loops in between transmembrane helices contain arginine and
lysine residues much more frequently than the extracellular exposed loops (76,
77). This pattern has been shown to apply also to eukaryotic membrane pro-
teins, but to a lesser extent (78). An additional observation, made for eukaryotic
proteins, is that the difference in the total charge of the approximately 15
residues flanking the transmembrane region on both sides of the membrane
also coincides with the orientation of the protein (79). If the C-terminal portion
of the protein adjacent to this segment is more positive in charge then the N-
terminal portion, the C-terminus will reside in the cytosol, and vice versa. Non-
random charge distribution may also play an important role in membrane
insertion of the protein. These findings, collectively known as the 'positive
inside rule', aid prediction schemes for MP topology. However, the positive
inside rule is only applicable to a-helical TM regions.

4.3 Prediction of B-strand transmembrane regions
As the methods described above all predict TM segments assuming the a-helical
conformation, transmembrane segments constituted by B-strands are not likely
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to be predicted successfully. Four different families of B-barrel membrane
proteins are known to date (porins, OmpA, FhuA, and FepA). For example,
porins form voltage-dependent membrane channels and have a B-barrel fold
constituted by 16 B-strands (80). Hydrogen bonds are formed only between
adjacent p-strands. Most of the outer surface of the barrel faces the lipid en-
vironment whereas the internal part serves as an aqueous pore. Each individual
B-strand could therefore be expected to be amphipathic with a period of two
residues. However, while every second residue facing the lipid bilayer is hydro-
phobic, those side chains protruding towards the interior of the barrel display
no definitive tendency, thus lowering the amphipathic signal. Another compli-
cation is the fact that the number of amino acid residues in extended confor-
mation needed to span the membrane is much smaller than that for the helical
conformation, typically about 10. Consequently, smoothed hydropathic profiles
are likely to miss such short stretches.

5 Coiled-coil structures
If a protein is predicted to contain a-helices, higher-order information as well as
increased confidence in predictions made could be gained from testing the
possibility that a pair of helices adopts a superhelical twist resulting in a coiled-
coil conformation. The left-handed coiled-coil interaction involves a repeated
motif of seven helical residues (abcdefg). The a and d positions are normally
occupied by non-polar residues constituting the hydrophobic core of the
helix-helix interface, whereas the other positions display a high likelihood to
comprise hydrophilic residues. The e and g positions in addition are often charged
and can form salt-bridges to each other. The program COILS2 (81, 82) exploits
this information and compares a query sequence with a database of known
parallel two-stranded coiled-coils. A similarity score is derived and compared to
two score distributions, one for globular proteins (without coiled-coils) and one
for known coiled-coil structures, and a probability is then calculated for the
query sequence to adopt a coiled-coil conformation. As the program assumes the
presence of heptad repeats, the probabilities are derived using windows of 14,
21, and 28 amino acids. However, the program offers the option to include user-
defined window lengths two allow the handling of cases with extreme coiled-
coil lengths. A recently updated scoring matrix which includes new structures
with known coiled-coils and contains amino acid type propensities at the various
positions in the heptad repeats, led to increased recognition of coiled-coils
elements. The COILS2 method accurately recognises left-handed two-stranded
coiled coils but loses sensitivity for coiled-coil structures composed of more than
two strands. It is not able to recognize right-handed or buried coiled-coil helices
and therefore is not applicable to transmembrane coiled-coil structures known
to basically show the similar coiled-coil conformations as soluble proteins,
albeit with dramatically different and more hydrophobic constituent amino
acids (56).
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6 Threading
If a homologous protein with known structure is available for a query sequence,
this structure can then be aligned to the query sequence using the threading
technique (83). Treading methods test the feasibility for a given sequences to
adopt a particular fold, based on assessing the likelihood for the amino acids in
the query sequence to occur in the local residue environments within the known
tertiary structure. The optimal fit of the query sequence through the tertiary
structure effectively leads to an alignment, which can be used to copy the
secondary structure of the known fold to the query sequence. Although the
incorporation of tertiary structure information should lead to better alignment
and recognition of related sequences, the increased sensitivity of available
threading methods as compared with conventional sequence alignments is not
always clear. Jones et al. (84) discuss various threading methods available and
also how their results should be interpreted.

7 Recommendations and conclusions
Table 1 lists WWW addresses of some of the available prediction methods dis-
cussed in this chapter and in Protocol 2 some recommendations are given to
maximize the chances of an accurate prediction of the secondary structure
associated with a protein query sequence. In cases where a multiple alignment
is used, it is generally important to test the consistency and quality of the align-
ment constructed, as this can have dramatic consequences for the prediction
accuracy of multiple-alignment-based methods. In testing the consistency of the
currently most accurate prediction methods and determining a consensus pre-
diction, the positional reliability indices offered by some of prediction methods
should be included. Furthermore, the general accuracies for predicting each of
the three secondary structural states that are published for a number of the
methods can be used to weight the contribution of their positional predictions

Table 1 Websites of various secondary structure prediction methods and related services

Service

GOR4

PHDa

Pred2ary

NNSSPa

PREDATOR3

DSCa

Zpreda

Jpred

COILS2

Reference

27, 28, 29

9

"35

37

38, 39

40

43

81,82

URL

http://absalpha.dcrt.nih.gov:8008/gor.html

http://dodo.cpmc.columbia.edu/predictprotein/b

http://yuri.harvard.edu/~jmc/2ary.html

http://dot.imgen.bcm.tmc. edu:9331/pssprediction/pssp.html

http://www.embl-heidelberg.de/cgi/predator_serv. pl

http://bonsai.lif.icnet.uk/bmm/dsc/dsc_read_align.html

http://kestrel.ludwig.ucl.ac.uk/zpred.html

http://barton.ebi. ac.uk/servers/jpred.html

http://www.isrec.isb-sib.ch/coils/COILS_doc.html

a Method can also be run using the Jpred server.
b Mirror websites for PHD can be found here as well.
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in a consensus. Specifically, the PREDATOR method should be included in the
trials as it is the only method relying on multiple local rather than global
alignment of the query sequences. It is important to realize that there is no
single best prediction method so that the degree of consistency over a variety of
methods is crucial for getting an idea about the prediction accuracy. Attempts to
recognize higher-order structure, such as the fold the protein might adopt or
the likelihood for coiled-coil structures, could enhance the confidence in pre-
dictions made or help correcting possible mispredictions. Easily recognizable
errors might be disruptions in alternating a-helix/B-strand predictions in a likely
a/p protein fold or the occurrence of a single B-strand within a tentative a-
helical protein. In general, it is likely that the accuracy of computerized pre-
diction methods can be enhanced further if such reasoning with higher order
structure is formalized and incorporated in the prediction mechanisms. Some
easy benefits will come from the steadily increasing structural protein data that
can be used to better train and tune the statistical methods. The current
availability of the prediction methods optimizes the chance for development of
sensitive consensus methods. It is clear from the ongoing interest and activity in
both the application and development of secondary structure prediction
methods that the end of the three decades of research efforts is not in sight.

Predicting secondary structure

1 Get a balanced and non-redundant set of homologous sequences for a given protein
query sequence.

2 Try a number of multiple alignment routines to obtain a consistent multiple
alignment.

3 Check the alignment carefully by eye using any additional information (e.g. active
site residues, disulfide bridges, etc,).

4 Use as many good secondary structure prediction methods as possible and con-
struct a consensus prediction (a convenient aid is the Jpred server).

5 Try to recognize super-secondary or higher-order structural features from the
predicted secondary structure elements and try to interpret and correct prediction
results (e.g. the missed second B-strand in the flavodoxin example) (see Section 3.6),
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