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1 Introduction
The amount of available biomolecular data is exploding: the number of known
protein sequences is increasing rapidly while the number of known structures is
also increasing, though not as rapidly. A very useful observation in this situation
is that common features among proteins can be used to group them into
families, and then study the proteins on a family level. By a family we mean a
set of proteins sharing some definite biological properties in terms of common
function and/or structure, often implying that the proteins have evolved from a
common ancestor, i.e. that they are homologous.

When studying a family, one can compare the sequences and structures (if
known) of the proteins in the family in order to find what sequence or structure
properties are shared by the family members and how these could explain the
biological properties shared by the proteins in the family. A description of
sequence properties is called a sequence pattern, and a description of structure
properties is called a structure pattern. If a pattern is common to a family of
proteins, it is called a motif for the family.

An example protein family is the set of proteins containing the classical zinc-
finger DNA-binding domain. Most of the sequences in this family match the
pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H, thus this is a sequence motif
for this protein family. A sequence matches this pattern if it contains a C
followed by 2-4 arbitrary letters followed by C and 3 arbitrary letters and one of
L, I, V, M, F, Y, W, or C, and so on (this pattern notation is described in detail
below). This particular pattern describes two cysteines and two histidines that
are needed for coordinating the zinc ion in the classical zinc-finger domain,
which means that this particular pattern has a direct biological interpretation.
Additionally, the pattern can be used for classification, since not only do most
sequences in the family match the pattern, but also very few sequences outside
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the family match the pattern. So, if one finds a match to this pattern in a new
sequence, the chances are good that this new protein contains a zinc finger
domain and binds to DNA.

A large number of patterns have been compiled and collected in different
protein family databases. An example is the PROSITE database (1) which con-
tains more than 1000 protein families and for most of these it gives a pattern
which occurs in most of the sequences in the family. The patterns are regular
expressions (like the zinc finger pattern given above) or profiles (position specific
scoring matrices). Other databases also use local alignments, profiles, and
Hidden Markov models (HMMs). We describe briefly some of these databases
and how they can be used later in the chapter.

When one knows the structures of some of the proteins in the protein family
under study, the structures can be compared and similarities described as
patterns or motifs. In the same way that protein structures can be described at
different levels (e.g. atom, residue, secondary structure, element level), structure
patterns can describe structure properties at different levels. For example, one
pattern could describe the packing of four alpha-helices and another pattern
could describe the relative position of the cysteines and histidines in the
classical zinc finger.

In this chapter we will use a very broad definition of patterns including both
sequence and structure patterns and all the ways in which these can be defined.
When going into more detail we will focus on sequence patterns which are of
the regular expression type and on one particular type of structure patterns
which describes packing of individual residues. In the following we discuss how
existing databases of patterns can be used for analysing a new protein query
sequence and how to assess the output of such a search. Later we describe
different approaches to finding respectively sequence and structure patterns for
a family.

2 Pattern descriptions
A very simple type of patterns is substring patterns—a sequence matches a
substring pattern if it contains the substring (contiguous word in the sequence).
For example, the substring pattern CDEC is matched by all sequences contain-
ing CDEC as a substring. This very simple type of patterns can sometimes be
useful in the analysis of protein or nucleotide sequences. We will first define the
concept of approximate pattern matching and then describe different general-
izations of substring patterns.

2.1 Exact or approximate matching
When matching a sequence against a substring pattern one may allow for
approximate matching. In this case, a sequence matches the pattern if it con-
tains a substring approximately equal to the pattern. In practice, one defines a
measure of distance between a pattern and a substring and sets an upper limit
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on the distance to be allowed. One simple way to measure the distance between
two strings (or a pattern and a string) is to count the number of character
changes needed to transform one into the other. This is called the number of
mismatches or Hamming distance and can measure the distance between two
strings only if they have equal length. For example, the sequence AGCDFCALKW
approximately matches the substring pattern CDEC since the substring CDFC
can be transformed into CDED by substituting the F with an E.

More general distance measures allow for insertion and deletion of characters
in addition to substitutions. The edit distance between two strings (sequences) is
the minimum number of single character insertions/deletions and substitutions
needed to transform one into the other. For example, the sequence AGCDDALKW
approximately matches the pattern CDED when one allows for an edit distance
of more than one, but it does not match if one allows only for one mismatch.
When comparing protein sequences, one may also penalize different substitu-
tions differently since some amino acid replacements are found more often in
equivalent positions in homologous (evolutionarily related) proteins. For example
substitutions can be penalized using a substitution matrix, e.g. PAM-matrices (2)
or BLOSUM matrices (3).

In order to find the edit distance between two sequences, one can use the
dynamic programming algorithm (4) which can also be used when substitution
matrices are used. For substring patterns, the matching problem is very similar
to local pairwise alignment and database searching where speed-ups can be
used, e.g. BLAST (5), Fasta (6).

2.2 PROSITE patterns
Using substring patterns and approximate matching one cannot specify that some
pattern positions are compulsory (for instance, that there must be cysteines or
histidines for binding zinc) while other positions are allowed to vary more
freely. Figure 1 illustrates this by showing four segments (substrings) containing
the zinc finger motif and a consensus sequence (substring pattern) for the four.
If this substring pattern is to match the four segments shown, one needs to
allow up to 17 mismatches. A better way would be to allow no mismatches in
the conserved positions, including the cysteines and histidines, and allow the
remaining positions to be filled by any amino acid.

Some pattern languages allow a description of which amino acids are allowed
at each position. For instance, in the PROSITE database (1) one uses a pattern
language which is a subtype of regular expressions. Each pattern consists of a
sequence of pattern elements that are of the following types:

(a) Single residue: matches one letter identical to the residue in the sequence,
e.g. R matches an R in the sequence.

(b) Set of residues given in square brackets: matches any one sequence
letter contained in the set, e.g. [KER] matches any one of K, E, or R in the
sequence.
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Rgure 1 Example of a local alignment of sequence segments containing the classical zinc-
finger motif. The consensus sequence below shows for each position which amino acid is
the most frequent, and to the right it is shown for each segment the number of mismatches
between the segment and the consensus. Grey shading marks the positions conserved in all
four segments. The positions of the conserved cysteines and histidines of the zinc-finger
motif are underlined in the consensus sequence.

(c) Set of residues given in curly brackets: matches any one sequence letter not
in the set, e.g. {KER} matches any letter except K, E, and R in the sequence.

(d) Wildcard x: matches any one letter in a sequence

Additionally:

(a) Single pattern elements can be followed by parentheses (i, j) which means
that the sequence can contain between i and j (inclusive) letters each match-
ing the preceding pattern element. For example, x(3,5) matches between 3
and 5 arbitrary sequence letters.

(b) The pattern can start with '<' meaning that the pattern should match from
the beginning of a sequence.

(c) The pattern can end with '>' meaning that the pattern should match until
the end of a sequence.

(d) The pattern elements are separated by hyphens '-'.

Consecutive pattern elements should be matched by consecutive sequence
symbols, so for example the pattern C-x(2,3)-[DE] matches any sequence con-
taining a C followed by two or three arbitrary letters followed by a D or an E.

2.3 Alignments, profiles, and hidden Markov models
Alternatives to regular expression type patterns are alignments, profiles, and
HMMs. These can also be seen as generalizations of substring patterns. Effect-
ively, for each position in the pattern, one now assigns a score (or a probability)
to each of the 20 amino acids. Additionally, one assigns penalties (or prob-
abilities) to insertions or deletions in each pattern position. Since alignments,
profiles, and HMMs assign a score (probability) to a match to a sequence, they
can be called probabilistic. Regular expression type patterns can be called deter-
ministic patterns—they are deterministic in the sense that a sequence either
matches or does not match the pattern (7).
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A probabilistic pattern is normally constructed from a local alignment of a set
of sequences from the family. A local alignment contains one (or more) seg-
ments from each sequence put on top of each other so as to align (put on top of
each other) corresponding sequence positions. One may allow for insertion of
special 'gap-characters' if needed to align corresponding positions. An example
of a local sequence alignment (without gaps) is shown in Figure 1 (see also
Chapter 8). Normally, one would make an alignment of the parts of the sequences
that are the most similar; for example in Figure 1 the zinc-finger domains are
aligned. Local alignments without gaps are used for example in the BLOCKS (8)
and the PRINTS (9) databases. A sequence can be matched with (aligned to) an
existing alignment using dynamic programming to optimize a score. A number
of methods exist for scoring the match between an alignment of a single
sequence letter to an alignment column and for penalizing gaps that may be
inserted. Taking one alignment and a scoring scheme, one can make a scoring
matrix giving a position specific scoring for each amino acid and also position
specific gap penalties. Such descriptions are called profiles and were initially
suggested by Gribskov et al. (10). An alternative approach is to use the frame-
work of Hidden Markov Models (HMMs) (11), which, in the way used in sequence
analysis, provides a scoring scheme similar to that of profiles, but based on
probabilities (see Chapter 4).

This means that the information contained in an alignment is often repre-
sented as a weight matrix, a profile, or a HMM which specifies for each column
in the alignment a score for each of the 20 amino acids when it is aligned with
this position. The scores can be calculated from the distribution of amino acids
in the column as well as using external information from substitution matrices
or Dirichlet mixtures (12). Schemes have been developed to weight the sequences
so as to adjust for biases in the input set (13).

PROSITE is also using profiles as a supplement to regular expression type
patterns, since for some families it is not possible to define one single regular
expression type pattern which matches all family sequences while avoiding
matches in unrelated sequences. In such cases it can be possible to define a
profile matching the sequences in the family with a higher score than all
(known) sequences outside the family. This may be possible since profiles have
more expressive power than the deterministic patterns as they can assign
different scores to each amino acid when matched to each pattern position and
also position-specific gap-penalties. On the other hand, profiles and other prob-
abilistic patterns contain many more parameters to be estimated, and to estimate
their values one needs a large number of examples (family members). Also, if
one is to learn patterns from noisy examples (including unrelated sequences),
the large number of parameters makes it easier to adapt the patterns to match
unrelated sequences. In the context of learning patterns from noisy examples,
therefore, the deterministic patterns can be more appropriate. Also, determin-
istic patterns are very simple, mathematically pure, and the human mind finds
them easy to interpret. Whichever patterns one choose to use, an apparent
problem is how to assess the patterns, to decide between alternative patterns
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which is the best one, and to find whether the identified pattern could be the
result of chance.

2.4 Pattern significance
When the quality of a pattern is to be assessed, it depends on what is the
purpose of the pattern. One typical application of patterns is classification; that
is, the patterns are to be used for discriminating between family members and
non-members. Another is to find patterns that describe biologically important
features. Below we discuss some ways of assessing the quality of patterns with
respect to each of the two applications (see also ref. 7).

2.4.1 Characterization
Patterns can be used to describe biologically important features of the proteins,
that is, one wants to describe which features are compulsory in order for the
protein to belong to a particular family and which features are optional. If one
has available a set of sequences (or structures) from the same family, these can
be compared, and it can be determined which residues are conserved through
evolution and therefore likely to be important to the proteins' function and
structure. If the available proteins have undergone little evolution since their
last common ancestor (for example if their sequences are 90% identical), it will
not be easy to find which of the conserved residues are most important for the
biological function of the proteins. Therefore one should try to collect proteins
that are as diverse as possible while avoiding inclusion of unrelated proteins.

Having developed a pattern conserved in a set of sequences, one should find
whether such a pattern is likely to be conserved by chance and therefore not
necessarily biologically important. One common method is to calculate an esti-
mate of the probability that a set of random sequences (equal in number and
lengths to the sequences under analysis) would share a pattern of the same
strength as the identified pattern, as a result of chance. If this probability is very
low, one has a better reason for believing that the identified pattern has some
biological meaning. When evaluating the significance of the discovered pattern,
one should also take into account the number of patterns that have been con-
sidered in the pattern discovery phase (see e.g. ref. 14). For example, a pattern
with probability 10-6 is expected to be found if one million patterns are con-
sidered.

An alternative to calculating pattern probabilities is to measure the patterns'
information content (15). The higher the information content the pattern
possesses, the less likely a random sequence is to match it. The measure was
designed for ranking patterns matching the same number of sequences. Using
the principle of minimum description length (MDL) from machine learning (16),
this has been extended to also take into account the number of sequences
matching each sequence (17).

An alternative approach is to do a series of pattern discovery experiments on
sets of sequences with characteristics similar to the sequences in which the
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patterns were found. The sequences should be chosen so that they share no
significant patterns. The result of the pattern discovery experiments will give
information about what type of patterns can be found by chance. For example,
one can repeat x times: shuffle all the sequences, and check which patterns can
be found to match at least the same number of (the shuffled) sequences as the
pattern under analysis. An advantage of this approach is that in assessing the
'background probability' one can use sequences which have the same character-
istics as the original similar sequences (local sequence composition, etc.) for
example by using special shuffling operations.

When evaluating discovered patterns, it is important to take into consider-
ation whether (some of) the sequences under analysis are very closely related.
When calculating the probabilities, the model normally assumes that the
sequences are independently generated by some probabilistic model and the
shuffling would normally also extinguish any close similarities between the
sequences. If some of the sequences are very similar, they will contain many
common patterns, and any pattern matching one of them will probably match
all, and is therefore likely to be deemed as more significant. A scoring scheme
taking this into account, has been proposed (18).

2.4.2 Classification
When a pattern is to be used for classification, it should ideally match all family
members and no other sequences. Most often, however, the pattern fails to
match some member sequences (called false negatives), and it may match some
sequences outside the family (false positives). For an illustration, see Figure 2. The
fewer false negatives, the more sensitive the pattern is said to be, and the fewer
false positives, the more specific it is. Ideally, a pattern should have zero false
positives and negatives.

An estimate of the number of matches in a sequence database can be found
by multiplying the probability that one random sequence matches the pattern
by the number of sequences in the database. In order to calculate the probability
we assume that random sequences are generated using a specific probabilistic
model. Sternberg (19) did this for all the patterns in the PROSITE database and
showed a clear correlation between the expected number of false positives and

Figure 2 Illustration of the concepts of true positives, true negatives, false positives, and
false negatives. The circles are the family members and the squares are non-family
members. A pattern matches the encircled objects, and the status of each object is shown
by its colour (unfilled means 'true' and filled means 'false').
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the actual number, i.e. the number of unrelated sequences in the SWISS-PROT
database (20) matching the pattern.

Denoting the number of true positives (sequences in the family matching the
pattern) by TP and the number of false negatives by FN, the sensitivity of a pattern
(21) can be defined as

Sensitivity = TP/(TP+FN)

and measures of how big a proportion of the family sequences are 'picked up by'
(matched by) the pattern. Similarly, the specificity of the pattern can be defined as

Specificity = TN/(TN+FP)

(where TN and FP are respectively the number of true negatives and the number
of false positives) which measures of how big a proportion of the sequences
outside the family are not matched by the pattern. Yet another useful number is
the positive predictive value (PPV) which says how big a proportion of the
sequences matching the pattern are actually in the family,

PPV=TP/(TP+FP)

The value range for all three is from zero to one, one being the best possible.
When evaluating patterns to be used for classification, one needs to use more
than one of the measures. This can be illustrated by two degenerate cases, (1) the
empty pattern matching any protein, and (2) a pattern matching one single
protein being member in the family. Pattern (1) has perfect sensitivity, but very
bad specificity and PPV, while pattern (2) has perfect specificity and PPV, but bad
sensitivity. For a concrete example of the use of these equations, see below. In
practice one often needs to make a trade-off between sensitivity and specificity
when choosing which pattern to use for a family. One way to evaluate a prob-
abilistic pattern's ability to discriminate between family members and other
sequences is to find a cut-off on the score that gives the same number of false
positives and false negatives. Tatusov et al. (22) evaluated alternative ways of
finding weight matrices from local ungapped alignments using this approach.

2.4.3 Discussion
Often the patterns that describe biologically important features will also be good
for classification purposes and vice versa. However, it is possible that a pattern
that gives perfect discrimination can be derived and yet lacks any biological
interpretation. Also, it may be that the features described by a pattern are im-
portant in the family, but not unique to the family, so that it is not specific
enough to be used for classification purposes.

2.5 Pattern databases
A number of different databases for storing information about protein families
and motifs have been established during the last ten years. They differ in a
number of ways. Firstly, they differ in how they represent the patterns for each
family. Secondly, some of them are constructed manually (both sequence group-
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Table 1 Summary information about some protein family databases

Database

PROSITE

BLOCKS

Prints

Identify

Pfam

Pattern type

Reg.exp
and profiles

Blocks (ungapped
local alignments)

Blocks

reg. exp

HMMs

URL

Http : //expasy . hcuge . ch/sprot/prosite . html

Http : //www. blocks . there . org/

Http : / /www. biochem . ucl . ac . uk/bsm/dbbrowser /
PRINTS/
Http: //mot if .stanford.edu/identify/
Http : //www. sanger . ac . uk/Pfam/

ing and pattern definition) while others are made (to a varying degree) auto-
matically. For some summary information about a few family databases, see
Table 1.

2.5.1 PROSITE
One of the most widely used databases is PROSITE (1), in which, or each family,
one or several patterns and/or profiles are given in the format described above
(Section 2.2). Profiles are described using the generalised profile syntax (23). Statis-
tics are given which describe the patterns' ability to discriminate between family
members and other sequences given in the SWISS-PROT protein sequence data-
base (20), in the form of the number of false positives and false negatives. Also, a
number of unknowns is given which is the number of sequences in SWISS-PROT
which match the pattern, but for which it is not yet known whether it belongs
to the family or not.

Figure 3 shows a PROSITE entry giving a signature pattern (motif) for the
actinin-type actin-binding domain. We will explain the most important (for our
purpose) parts of the entry. First, the ID and AC lines give, respectively, the
name and the accession number of the PROSITE entry. The pattern is given on
the PA line (the pattern can continue over several PA lines, then end of the
pattern being marked by a period sign). The NR lines give statistics about the
pattern's discriminatory power with respect to the SWISS-PROT database. The
first NR line says that the statistics are with respect to release 35 of SWISS-PROT,
which has 69113 sequence entries. The next NR line gives the number of
matches of different categories (true positives, false positives, false negatives,
etc.) in the SWISS-PROT database. Each is given as x(y) meaning that there are x
matches to the pattern in y different sequences.

The DR lines give references to the corresponding SWISS-PROT entries both
by their names and accession numbers. Each reference is on the. form 'AC, ID,
Status;' where Status is one of T (true positive), N (false negative), F (false positive),
P (partial), and ? (unknown). Finally, the 3-D line gives names of PDB (Protein
Data Bank) entries containing structures of proteins in the family, and the DO
line gives the accession number of the entry in the PROSITE documentation part
corresponding to this entry.
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Figure 3 Example of a PROSITE entry taken from release 14.0 (November 1997). See text,
for a detailed explanation.

Referring to the pattern quality measures discussed earlier, this particular
pattern has sensitivity 28/(28 + 0) = 1, specificity (69113 - 28-20)/(69113 - 28)
= 0.9997 (69113-28 is the number of sequences in SWISS-PROT outside the
family), and PPV 28/(28 + 18) = 0.608. The last number means that if a sequence
from SWISS-PROT matches the pattern, the probability that it belongs to the
family is 60.8%. For this particular application, the PPV measure seems more
meaningful than specificity since the number of false positives do not affect the
measure of specificity very much as the number of true negatives most often
will be very much bigger than the number of false positives. Each entry in the
PROSITE documentation part gives a description of the family and explains the
biological significance of the signature patterns. It also gives literature refer-
ences and one or several experts that can be contacted for more information
about the family. The PROSITE database is largely maintained manually; new
families, profiles and patterns are carefully scrutinized.

2.5.2 BLOCKS
Another protein family database is BLOCKS (8) which contains the same families
as PROSITE, but instead of giving patterns or profiles, it gives a set of blocks for
each family. A block is an ungapped local multiple alignment. The database is
constructed fully automatically. For each family the member sequences (as given
in PROSITE) are subjected to pattern discovery and local alignment methods. The
blocks can also be linked in chains. It is recommended that a query sequence is
matched against both PROSITE and BLOCKS, because even though they describe
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the same families, the patterns and the blocks in a sense have complementary
strengths when used as classifiers.

2.5.3 PRINTS
The PRINTS database is a collection of fingerprints and is constructed semi-
automatically (9). A fingerprint is defined as a list of motifs, each motif being a
local ungapped alignment. The fingerprints are made by first manually making
an alignment of some family members and then iteratively scanning a database
of protein sequences, adding new members, updating the fingerprint, scanning
again until convergence (no new family members are found). Each entry in
PRINTS, gives the local alignments corresponding to the motif and information
about partial matches etc. On the website of PRINTS, a tool FingerPRINTScan, is
available for scanning a query sequence against the database. The output can be
visualized showing the position of the motif matches in the query sequence.

2.5.4 PFam
Pfam is a database of multiple sequence alignments and HMM-profiles of protein
domains (24). It is partly manually curated. Seed alignments for each family are
made semi-automatically, and these are extended using HMM methods. Version
3.1 (August 1998) contains 1313 families.

On the Web site there are available tools for matching a query sequence
against the database. Also, a special database SWISSPFam is made which shows
the domain organization (according to Pfam) or the sequences in SWISS-PROT
and TrEMBL.

2.5.5 Identify
Identify (25) is a database of patterns of the same form as used in PROSITE but
without flexible length wildcards. It contains patterns for the families in the
BLOCKS and PRINTS databases. The patterns were constructed from the un-
gapped alignments (blocks) in the BLOCKS and PRINTS databases by using a
pattern finding program (EMOTIF). For each block, there can be several patterns
so that each pattern matches a subset of the sequences. The patterns were
generated to have a certain specificity (calculated as the probability that a
random sequence matches the pattern by chance, cf. ref. 19), and patterns were
generated for different specificity levels. The World Wide Web server allows the
user to input a query sequence which then is matched against the pattern
collection and the user is given the list of matching patterns together with links
to the corresponding BLOCKS and PRINTS database entries.

2.6 Using existing pattern collections
Most of the family databases are available on the World Wide Web, and they
also provide on-line tools for (1) matching a sequence against the pattern in the
database, and sometimes (2) matching a new (user-defined) pattern against a
sequence database. For example, on the PROSITE website, the search engine
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ScanProsite that can be used for both (1) and (2) with regular expression type
patterns. For scanning against the profiles in PROSITE, the tool ProfileScan can
be used. The ScanProsite program does not return any information about the
probability that the match between the sequence and the pattern could be by
chance, and it does only allow for exact matching between the pattern and the
sequence.

Another very useful tool is PdbMotif (26), which takes as input a protein
structure and finds all matches between the protein's sequence and patterns in
the PROSITE database. It generates a script that can be input to RasMol (27) to
highlight the pattern matches. PdbMotif also outputs a probability that the
sequence should match the PROSITE pattern by chance, which can help to
identify possible false positives.

3 Finding new patterns
Analysing a set of proteins believed to be related one may want to find a motif
describing the set. The goal may be to find which features are common to the
proteins under study helping to better understand the relationships between
sequence, structure, and function of the proteins. Motifs can also help to identify
new possible family members. We may also want to find motifs to be included
in protein family databases where the motif may later be used for classification.

One may develop motifs semi-manually using knowledge about the proteins
under study and for example alignments generated either manually or auto-
matically using a multiple (local or global) sequence alignment program. If
the alignment programs were guaranteed to find the correct alignments, this
approach would be all you needed. However, multiple alignments are often diffi-
cult to obtain and interpret. Therefore, in many cases, direct methods for find-
ing motifs directly from the sequences or structures can lead to better results. In
such cases, the motifs found can also be used to guide the alignment of the
sequences or structures in the family.

3.1 A general approach
There exist a large number of methods for the discovery of patterns from pro-
tein (and DNA) sequences. A survey of these is given by Brazma et al. (7) who
propose a general three-step approach to pattern discovery:

(a) Choose a solution space, i.e. set of patterns that the method potentially can
discover.

(b) Define a fitness function reflecting how well a pattern fits the input
sequences.

(c) Develop an algorithm, which given a set of input sequences, returns the
pattern(s) from the solution space with high (highest) fitness.

The different methods can be classified according to their approach to each of
the three steps. This three-step approach can be used for the discovery of all
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types of sequence patterns (including regular expression type patterns, profiles,
and Hidden Markov models) and also for the discovery of motifs in protein
structures. An additional criterion is whether a method is guaranteed, for any
input set, to find the best (as measured by the fitness function) pattern in the
solution space. In the following sections we will illustrate the three steps
approach by describing in some detail some representative methods, especially
focusing on the Pratt and SPratt methods.

3.2 Discovery algorithms
Previous sections have discussed in some detail different solution spaces and
principles of fitness functions. Here we discuss in some more detail the third step,
namely that of finding the patterns in the solution space that have high, and
possibly the highest, fitness. Brazma et. al. (7) identified two main algorithmic
approaches to this problem:

(a) Pattern Driven (PD) methods.

(b) Sequence Driven (SD) methods.

3.2.1 Pattern driven methods
In the simplest form, PD methods enumerate all patterns in the solution space
calculating each pattern's fitness so that the best ones can be output. For ex-
ample, one step of the algorithm by Smith et al. (28) works by enumerating all
patterns of the form Al-x(dl)-A2-x(d2)-A3 having single amino acid symbols and d
values up to some maximum (e.g. 10). For each pattern, the number of matching
input sequences were counted, and the patterns matching the most sequences
were subjected to further analysis.

Some methods have mechanisms for avoiding looking at all patterns in the
solution space, for example by not searching parts of the solution space that
cannot possibly contain patterns scoring higher than already analysed patterns.
Often heuristics are used to discard parts of the solution space that are unlikely
to contain high scoring patterns. Examples of this will be seen when the Pratt
method is described in some more detail below (see Figure 4).

3.2.2 Sequence driven methods
These methods work by comparing (normally pairs of) the input sequences and
expressing local similarities as patterns. By repeating this for different pairs of
sequences, or by subjecting the patterns themselves to pairwise comparison,
patterns are gradually built up that match many or all of the input sequences.
Some of these methods are very closely related to methods for sequence
alignment.

For example, the pattern discovery method proposed by Smith and Smith (29)
first computes the similarity between all pairs of input sequences. The most
similar pair is input to a local pairwise alignment method that is based on
dynamic programming (30). Instead of producing a pairwise alignment, this
algorithm outputs a pattern common to the two sequences. The pattern is basic-
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Figure 4 Example of a pattern-driven discovery method applied to a set of four sequences:
ACGTT, TACGTA, GCACGT, and TTACGTAA, The solution space consists of all words over the
DNA alphabet (no wildcards or group characters), and patterns are sought that match all four
sequences. Patterns matching all four are boxed, and only these are extended. The longest
pattern found to match all four sequences is ACGT, The 'e' at the top is the empty pattern
which matches any sequence.

ally of the PROSITE type, but the set of possible amino acid groups is limited and
given by an Amino Acid Class Covering (AACC) hierarchy. The two sequences
aligned are now replaced by their common pattern, and the procedure is repeated
until there remains only one pattern matching all of the input sequences. For an
example, see Figure 4. Note that this approach is very analogous to the pro-
gressive multiple alignment methods used for example by Thompson et al. (31)
and Taylor (32).

4 The Pratt programs
The Pratt programs take as input a set of (un-aligned) sequences and finds pat-
terns matching at least a (user-defined) minimum number of the sequences. The
patterns are of the type used in PROSITE and can include both character groups
and flexible length wildcards. For instance, Pratt is able to automatically
rediscover the pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H from the set of
over 300 classical zinc-finger-containing protein sequences in SWISS-PROT in
less than a minute on a modern workstation. No prior information about the
pattern is given to Pratt and the sequences are input unaligned.

The user can input constraints on the patterns to be considered, effectively
defining the solution space to be used (cf. three-step approach). The user also
chooses how many of the input sequences a pattern should match, in order to
be output. We will call any pattern matching at least this number of sequences,
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a conserved pattern. Pratt uses a two-step search for finding conserved patterns
from the chosen solution space having maximum fitness. The fitness is norm-
ally defined as the information content of the pattern (see below).

In the following sections we give a practical guide to how Pratt should be
used and then some details about the algorithms used in Pratt. For more detailed
technical descriptions, see the original papers (15, 33) and the Pratt home page
on the World Wide Web: http://www.ii.uib.no/~inge/Pratt.html.

4.1 Using Pratt
When using Pratt from a command line environment, it is started using the
command

pratt <format> file [options]

where format is one of fasta or swissprot and file is a file containing the
sequences in the indicated format. Optionally, one can specify options on the
command-line. If no options are given, a menu appears. Figure 5 shows the menu
of Pratt when run on a file MUTT containing 26 unaligned sequences. The menu
can be used to choose values for a number of parameters and also to obtain help.
The parameters fall within a few main classes:

(a) Pattern conservation. Using options CM (respectively, C%) one can set the
minimum number (respectively, percentage of the input sequences) of
sequences a pattern should match.

(b) Pattern restrictions. A number of parameters are used to constrain the
patterns to be considered. For example PL can be used to set the maximum
length of a pattern, PN to set the maximum number of non-wildcard sym-
bols, PX to set the maximum length of a wildcard region. For constraining
the flexibility to be allowed in wildcard regions, FN is used to set the maxi-
mum number of flexible wildcards and FL to set the maximum flexibility of a

Figure 5 Pratt menu. The options are explained in the text.
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wildcard. Note that the PX constraint also applies to patterns to be found
during the initial search. For some examples, see Table 2. Also, one can choose
which pattern symbols should be used during initial pattern search and
during pattern refinement using options BI (BF) and BN.

(c) Pattern scoring. By default patterns are scored by their information con-
tent. Optionally one can use a scoring function derived from the Minimum
Description Length (MDL) principle. Patterns can also be ranked by their
positive predictive value (PPV)—in this case the name of a file containing a
sequence database in flat file format must be given using option SF.

(d) Search parameters. By default, the shortest sequences will be used for
deriving a pattern graph (see below). Optionally this can be generated instead
from a special query sequence or from an alignment, in which case only
patterns that match the query sequence respectively are consistent with the
alignment, will be considered in the search.

(e) Output format. Filename for output can be chosen using option OF, format
of patterns using option OP, if pattern matches should be shown (option OA),
etc.

(f) Help and control. Help can be obtained by typing in option H, the search
started by using option X, or abandoned using option Q.

All parameters that can be set using the menu can alternatively be set from the
command line by adding '-<menu option> <value>' to the command. For
instance

pratt fasta seqs -cm 20

tells Pratt to analyse the sequences in the file seqs (fasta format) to find
patterns matching at least 20 of the sequences. When command line options are
used, the menu will not appear unless the option -menu is used.

For example, if the file c2h2 contains the sequences (in fasta format) of the
proteins in the classical c2h2 zinc finger family, these can be analysed using the
command:

pratt fasta c2h2 -px 15

Table 2 The table shows some example patterns, and for each example, the minimum
values to be used for some Pratt parameters if the pattern is to be discovered. For example,
in order to discover the bottom-most pattern, one needs to increase the value of the PX
parameter to at least 12

Pattern

C-x(3)-C

C-x(2,5)-C

C-C-D-E-x(7)-C

C-x(2,4)-C-x(12)-H-x(3,5)-H

Default values

Minimum parameter values

PL

5

7

12

25

50

PN

2

2

5

4

50

PX

3

5

7

12

5

FL

0

3

0

2

2

FN

0

1

0

2

2
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using the option -px 15 to allow long wildcards (if we want to re-discover the
known motif, we need to set PX to at least 12 since during the initial pattern
search, a spacing of 12 is needed between the last conserved cysteine and the
first histidine). Also, if one wants to find all patterns matching a minimum 90%
of these sequences, one can use the command

pratt fasta c2h2 -px 15 -c% 90

4.2 Pratt: Internal search methods
The search for conserved patterns is done in two phases:

(a) Initial pattern search. Search for patterns having only single character
elements and wildcards (possibly of flexible length). For example, in this
phase the pattern Pratt can discover that the pattern A-x(4) -D-X-E is con-
served. Optionally, group characters can be allowed also in this step, at the
cost of increased computing time.

(b) Pattern refinement. Take each of the best patterns from phase 1, collect
the matching sequence segments and check if wildcard positions can be
replaced by group characters so that the pattern remains conserved. Also, the
pattern may be extended to the right (but not to the left) in this phase. For
example, the pattern above can now be refined to

A-x-[KER]-x(2)-D-[ILV]-E-x(4)-[KR].

4.2.1 Initial pattern search
In the first version of Pratt (15), in the first phase a search tree containing all
patterns to be considered, is explored. The label of the root node is the empty
pattern. A node having the pattern P as label has children with labels P-x(i,j)-A,
that is P extended with a wildcard region (empty if i=j=0) and a single character
A, for all allowable values of i, j, and A.

The search starts at the root of the tree. At each step of the search a node in
the tree having label P is considered. It is assumed that P is conserved. Then, all
children of P are generated, and for each of these it is checked whether the
corresponding pattern is conserved (whether it matches the minimum number
of sequences). If a pattern is conserved, this is recursively analysed using the
same procedure. If no extension of P is conserved, then, depending on the score
of P, it is included in the list of the best patterns that are subsequently input to
the refinement algorithm.

In the second version of Pratt (33), instead of considering the full tree of all
patterns in the solution space, a pattern graph is used to define the set of
patterns to be considered. The pattern graph is a node- and edge-labelled directed
acyclic graph. The nodes are labelled with non-wildcard pattern elements and
the edges have as labels wildcard lengths. A path in the graph defines a pattern
and from this pattern, more generalized versions will be generated. An example
of a pattern graph is shown in Figure 6.
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Figure 6 Example of a pattern graph. The paths in the graph define the patterns A-B-x(0,2)-
x(3,3)-D, A-B-x(0,2)-C, A-B, B-x(0,2)-C-x(3,3)-D, B-x(0,2)-C, C-x(3,3)-D, A-x(l,3)-C-x(3,3)-D, A-
x(l,3)-C.

The initial search explores all patterns that can be derived from paths in the
pattern graph and that are contained in the class of patterns defined by the user.
The search is focused on finding only the highest scoring patterns. Branch-and-
bound techniques are used to avoid considering parts of the search space that
cannot possibly contain patterns with higher scores than already identified
patterns.

Also, heuristics have been implemented that effectively avoids exploring
search paths unlikely to produce patterns scoring higher than patterns already
found. The user can adjust the greediness of the search. Setting the E parameter
to zero gives non-heuristic search (guaranteed to find highest-scoring patterns),
setting E to 1 gives the same guarantee in cases where no flexibility is allowed in
wildcard regions, and E values above 1 gives increasingly greedy search. The
default value is 3. The more greedy the search, the faster it will be, and the more
likely Pratt is to not find the highest scoring patterns. Experiments have shown
that E = 3 gives a good compromise between speed and accuracy for protein
sequences, while for DNA a lower value should be used (for instance, E = 1.5).

4.2.2 Pattern refinement
During refinement, each position in the fixed-length wildcard regions (exclud-
ing regions x(i, j) where j > i) is analysed and it is checked whether replacing the
wildcard with an allowed group character (the allowed groups are given as a list)
so that the resulting pattern remains conserved. It might be that there are several
wildcard positions that can be replaced by group characters, so that replacing
any one of these gives a conserved pattern, but if all are replaced simultane-
ously, the resulting pattern will not be conserved. As there are exponentially
many (in the number of positions that can be replaced) subsets of replacements
that could be done, it is computationally expensive to consider all. Therefore, in
the second version of Pratt (33), a heuristic refinement algorithm is used. The
degree of greediness is adjusted using the same E-parameter as for the initial
search.

4.2.3 Block data structure
To find all matches to each pattern quickly, a special data structure initially
proposed by Neuwald and Green (14) is used. Assume that the input sequences
are S = { SI, S2,..., Sn}. For some fixed parameter w (typically 50), let B be the set
of all w-segments (consecutive substrings of length w) from all of the sequences
in S. Also construct w-segments in the end of the sequences by appending to
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Figure 7 Example of the set B of w-segments made for a set of sequences. The B segments
are used in the block data structure.

each sequence w-1 dummy symbols '-'. For an example of the w-segments made
for a set of sequences, see Figure 7.

Now, for each amino acid symbol a, and for each i between 1 and w, construct
the set bi,a that is the set of all w-segments having character a in position i. These
sets can be used to quickly find the set of w-segments matching any pattern
considered by Pratt not having length exceeding w. For instance, the set of
segments matching A-x(2) -B is b1,A nb4,B. In the recursive search, the set of
segments matching P is used together with the block data structure to find
the segments matching each extension P-x(i,j)-A of P. For a more detailed
description, see Jonassen et al. (15).

4.3 Scoring patterns
Pratt can score discovered patterns using different fitness functions. By default
the patterns are evaluated by their information content (15). This measure de-
pends only on the pattern itself and is only appropriate for ranking patterns
matching the same number of sequences. The information content of a pattern
is a measure of the information gained about an unknown sequence when one
is told that the sequence matches the pattern. It increases with the number of
single character elements (any one single character contributing the same) and
with the number of group character elements (more ambiguous contributing
less). A penalty is subtracted for flexible wildcard regions, more specifically x(i,j)
is penalized by c(j-i) where c is a parameter whose default value is 0.5.

As an alternative, Pratt can score the discovered patterns using the minimum
description length (MDL) principle based fitness measure described by Brazma
et al. (17). This assigns a score to a pattern that depends on the pattern's infor-
mation content and on how many sequences it matches. The fitness measure
definition contains some parameters that can be used to slant the optimum
towards strong patterns matching few sequences or towards weaker patterns
matching many sequences. Brazma et al (17) used the measure in a method for
simultaneously finding subfamilies and patterns in a set of unaligned (and un-
labelled) sequences. It was required that each pattern matches all sequences in
one of the subfamilies. The method uses Pratt to find patterns matching differ-
ent sized subsets of sequences. Next it selects in a greedy fashion a collection of
the patterns that cover the input sequence and has a high fitness value.
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If the aim is to find patterns to be used for classification, Pratt can evaluate
the discovered patterns by their positive predictive value (PPV, see Section 2.4.2,
Classification). It is assumed that the sequences under analysis are all in the
SWISS-PROT database (20). The number of false positives for each pattern is
found by matching the patterns against the SWISS-PROT database that must be
locally available in flat file format.

5 Structure motifs
Finding recurring patterns (motifs) in protein structures help to better under-
stand the rules underlying the formation of protein structures. Since structure is
better conserved during evolution than sequence, structural similarities can also
help to identify remote evolutionary relationships. Structure motifs can help in
approaching the structure prediction problem and in assigning function to pro-
teins. Structure motifs can represent common structural features at different
levels. For example, they can represent packing of secondary structure elements,
local packing of residues, and atom coordinates of binding atoms in active site
(or ligand binding) residues. Structure motifs describing functional sites in
proteins, have been developed by, for example, Wallace et al. (34). They call their
motifs 'templates' and suggest that they can be used for finding functional
sites in proteins. They have also developed a database PROCAT of such templates
(35) which allows the user to search for 3-D enzyme active sites in a protein
structure.

In order to find recurring patterns in protein structures one can use methods
for the comparison of protein structures. A number of such methods have been
developed, most of them for comparing pairs of structures, but also some for
multiple structure comparison. The methods differ in what similarities they are
able to find. Some represent the structures as composed of secondary structure
elements (alpha helices, beta strands, and loops) and have provided methods for
finding patterns of conserved patterns at this level. Other methods find patterns
of residues (or atoms) that have similar configurations in space. Brown et al. (36)
gives a survey of a large number of different methods focusing on their way of
representing similarities. An important difference between methods is whether
they require matched elements to be in the same order along the proteins'
primary structure. A number of different methods have been used, including
extensions of the dynamic programming algorithms used for pairwise sequence
(37), use of graph-theoretic methods (38), and methods from computer vision
(39).

Also, some more direct methods for structure motif discovery have been sug-
gested. Here we will describe the SPratt program, a more detailed description of
which can be found in (40).

5.1 The SPratt program
The idea behind the SPratt program was to use the Pratt method developed for
sequence motif discovery, to discover structure motifs. This can be done by
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encoding structural features in the form of strings and input these to Pratt
producing patterns common to the strings. Next one needs to check if the
patterns found in the structure description strings correspond to similarities
between the structures. The encoding of structural properties that we adopted
was one described by Karlin and Zhu (41). In their method, they make one string
per residue in each structure. The strings contain information about the spatial
neighbourhood of each residue. Karlin and Zhu describe alternative methods for
making these strings, and we chose one of them to be used in SPratt.

Overview of the method:
1. For each residue a, we make two neighbour strings Ca and Na. The string Ca

starts with a followed by all the residues C-terminal to a, whose spatial
distance to a is below a user-chosen threshold dmax. The residues are ordered
in N-to-C chain order. Analogously, the string Na starts with a and contains
in C-to-N order the residues preceding a in the chain which are spatially
close to a (distance below dmax).

2. Run Pratt twice, once on the complete set of C and once on the N strings.
Search for patterns whose matches start from the beginning of the matched
residue strings and that match residue strings from at least the minimum
number of structures chosen by the user.

3. For each pattern, consider the neighbourhood string matches and retrieve
the substructures (list of residues) corresponding to each such match. Com-
pare the spatial geometry of the substructures by calculating the root mean
square deviation (RMSD) when superposing each pair of substructures.

4. Output the patterns for which all pairwise RMSD values are below some
upper limit, and rank them by I/R where I is the information content of the
neighbourhood string pattern and R is the maximum RMSD for any pair of
matching substructures.

The method differs from other structure comparison methods in that it con-
siders information from all structures simultaneously in step 2. Other methods
perform a number of pairwise structure comparisons and combine the results to
find motifs shared by all or most of the structures under study. By utilizing in-
formation from all structures simultaneously, SPratt avoids considering patterns
common to pairs of structures but not shared by the others. On the other hand,
when Pratt is used to analyse the neighbourhood strings, many patterns can be
found which later prove not to reflect similar substructures (i.e. they do not
superpose very well). It might be advantageous to use additional structural in-
formation in this step to avoid considering such patterns. We explore extending
the encoding of the neighbourhoods to include information about secondary
structure and restrict Pratt to match only residues from the same sort of
secondary structure (alpha-helix, beta-strand, or loop).

The patterns found by SPratt are evaluated using a very simple function, which
basically rewards patterns containing more residues and imposing stricter re-
strictions on the amino acids allowed for each residue, and penalizes patterns
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for which the occurrences do not superpose very well using a measure of RMSD.
However, the RMSD value for superposing the coordinates of a small number of
residues, for example 4 is not very informative. The significance of the patterns
found by Pratt, can be further assessed using the structure alignment program
SAP (42). We have done this by rewarding alignment of residues in agreement
with the motif, and in this Way checking whether the matching of the few
residues described by the motif can be extended to an alignment of larger parts
of the structures.

6 Examples
In (15) we described the application of the first version of Pratt to the analysis of
some protein families in PROSITE. For example, we analysed the Snake toxin
family (PS00272 in PROSITE) containing 164 sequences of average length 64. We
retrieved the sequences from the SWISS-PROT database and input them (un-
aligned) to the Pratt program. Using default parameters (which requires patterns
to match all the sequences), no patterns were found. However, using Pratt to
discover patterns matching at least 155 out of the 164 sequences, we got the
pattern G-C-x(l,3)-C-P-x(8,10)-C-C-x(2)-[PDEN]. This pattern turned out not to
match any sequences in SWISS-PROT apart from the family members and was
since included in the PROSITE database as the pattern for this family.

Using the SPratt program we analysed a set of cupredoxin protein structures
(40). The proteins were selected from the cupredoxins super-family in SCOP (43)
so that all pairwise sequence similarities were 30% or less. The 10 structures
were input to the SPratt program and it was instructed to search for patterns
containing single residue elements and also allowing the match-set [MLQ] (since
the methionine ligand-binding residue is known to be substituted by L or Q. in
some proteins). SPratt used two minutes and identified three patterns all match-
ing around the copper binding sites. The substructure occurrences of the
pattern superpose with very low RMSD values (0.7 A or less). We also used the
motif identified by SPratt to guide the structure alignment program SAP using
the pairs of equivalenced residues as extra constraints on the alignment. This
resulted in a greatly improved alignment with RMSD of 1.56 A over 63 pairs of
residues (as compared to the alignment with RMSD of 5.1 A over 26 residues
when no SAP was run without any motif information).

7 Conclusions
Patterns and pattern discovery tools can help in the analysis of protein families,
i.e. sets of proteins believed to share structural and/or functional properties. The
most well conserved parts of the sequences or structures can be identified and it
can be analysed whether the conserved patterns are statistically significant and
therefore likely to have biological importance. Furthermore, the patterns can be
used to identify additional related proteins. Patterns can describe protein prop-
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erties at sequence level (sequence patterns) or at structure level (structure
patterns). There exist a number of databases of protein families that give for
each family one or several sequence patterns that can be used to identify more
family members. We described in some detail the PROSITE, BLOCKS, Identify,
PRINTS, and the Pfam databases. Structure pattern databases are starting to appear,
for instance PROCAT is a database of 3-D enzyme active site templates (35).

For sequence patterns we made a distinction between deterministic and prob-
abilistic pattern. Regular expression type patterns fall into the first class and
profiles and HMMs fall into the second class. The different types of patterns used
each have their strengths and weaknesses. For example, regular expression
patterns are easily interpreted, but provide less expressive power than profiles
or HMMs.

A number of methods have been developed for the automatic discovery of
conserved patterns in protein sequences. We summarized a framework com-
prising a three-step approach that can be used to better understand the myriad
of different methods. One sequence motif discovery program, Pratt, was de-
scribed in some more detail, focusing on the more practical aspects of how it
can be used to find conserved regular expression type patterns in unaligned
protein sequences.

Structure motifs can describe properties at different levels, e.g. at atom group
or residue level or at secondary structure level. Most structure comparison
methods are for comparing pairs of structures, but some of these have been ex-
tended to the comparison of several by combining the results of a set of pairwise
comparisons. We described in some detail a tool SPratt (Structure Pratt) which is
able to find patterns of locally packed residues whose spatial positions are
similar in a set of protein structures. This method utilizes information from all
structures simultaneously in the search for conserved motifs.

Motifs provide a powerful classification tool for determining structure and
function of proteins coming out of the numerous genome projects. Also,
methods for finding conserved patterns in structures and sequences can be used
to extract information from the large amounts of biomolecular data. In this
chapter we have only considered patterns and motifs in proteins, but pattern
discovery methods can also be used in other applications. For example, recently,
a pattern discovery method was used to find putative regulatory elements in sets
of gene upstream regions from the Yeast genome (44).
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