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1 Introduction
During the last three decades a considerable effort has been made to develop
algorithms that compare sequences of biological macromolecules (proteins, DNA).
The purpose of such algorithms is to detect evolutionary, and thus structural
and functional, relations among sequences. Successful sequence comparison
would allow us to infer the biological properties of new sequences from data
accumulated on related genes. For example, a similarity between a translated
nucleotide sequence and a known protein sequence suggests a homologous
coding region in the corresponding nucleotide sequence. Significant sequence
similarity among proteins may imply that the proteins share the same second-
ary and tertiary structures, and have close biological functions. The prediction of
unknown protein structures is often based on the study of known structures of
homologous proteins.

Today, the routine procedure for analysis of a new protein sequence almost
always starts with a comparison of the sequence to hand with the sequences in
one or more of the main sequence databases. A new sequence is analysed by
extrapolating the properties of its 'Neighbours' in a database search. Such
methods have been applied during the last three decades with much success and
have helped to identify the biological function of many protein sequences, as
well as to reveal many distant and interesting relationships between protein
families. Actually, more sequences have been putatively characterized by data-
base searches than by any other single technology.

Detecting homology may often help in determining the function of new pro-
teins. By definition, homologous proteins have evolved from the same ancestor
protein. The degree of sequence conservation varies among protein families.
Yet, homologous proteins almost always have the same fold (1-3). Although the
common evolutionary origin of two proteins is almost never directly observed,
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we can deduce homology, with a high statistical confidence, given that the
sequence similarity is significant.

In principle, similarity does not necessarily imply homology (similarity may
be quantified whereas homology is a relation that either holds or does not hold).
Therefore, similarity should be used carefully in attempting to deduce homology.
The deduction of biological function out of sequence similarity is not straight-
forward, and sequence comparison procedures may lead to false conclusions
when applied simple-mindedly. Today sequence comparison algorithms are
accompanied with statistical estimates which provide a measure of statistical
significance of the observed sequence similarities. These estimates can further
help in assessing the significance of the similarity, and in many cases can lead to
deduction of homology. The confidence in the deduction clearly depends on the
level of statistical significance. In this view, database searches should be treated
as experiments analogous to wet-lab characterization. Their use deserves the
same care both in the design of the experiment and in the interpretation of
results.

Planning a good experiment requires understanding of the methods being
applied. Fundamentally, database searches are a simple operation: a query
sequence is aligned with each of the sequences (called targets) in a database. A
score is computed from each alignment, and the query/target pairs with the best
scores are then reported to the user. Statistics are used to help improve the
ability to interpret these scores and distinguish true relations between proteins
from chance similarities. A more detailed description of this process, the
sequence-comparison algorithms, the scoring schemes, and the statistics of
sequence alignments is given next.

2 Alignment of sequences
During evolution, sequences have changed by insertions, deletions, and muta-
tions. These evolutionary events may be traced today by applying algorithms for
sequence alignment. Suppose that a DNA sequence a has evolved to the
sequence b through substitutions, insertions and deletions. This transformation
can be represented by an alignment where a is written above b with the com-
mon (conserved) bases aligned appropriately. For example, say that a = ACTTGA
and b is obtained by substituting the second base from C to G, inserting an A
between the second and the third bases, and by deleting the fifth base (G). The
corresponding alignment will be:

a = A C - T T G A
b = A G A T T - A

score =1 0- 1 1 1-1 1

We usually do not actually know which sequence evolved from the other.
Therefore the events are not directional and insertion of A in b might have been
a deletion of A in a.

In a typical application we are given two related sequences and we wish to
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recover the evolutionary events that transformed one to the other. The goal of
sequence alignment is to find the correct alignment that encodes the true series
of evolutionary events that have occurred. The alignment can be assigned a
score which accounts for the number of identities (a match of two identical
letters), the number of substitutions (a match of two different letters), and the
number of gaps (insertions/deletions). For example, in the alignment above, a
score of 1 was given for each identity, a score of 0 was given for each sub-
stitution, and a negative score of -1 was given for each gap. Overall, the align-
ment scored 2, which is the sum of all pair scores and gap scores. In general, the
scores for identities and substitutions which are used to score the alignment are
called the scoring matrix, and the scores for gaps are called gap penalties.
Altogether they are called the scoring scheme (see Section 4.5 for details). With
high (positive) scores for identities, and low (or negative) scores for substitutions
and gaps, the basic strategy towards tracing the correct alignment seeks the
alignment which scores best. In the following sections we describe in detail the
common algorithms for sequence comparison. The discussion focuses on the
comparison of protein sequences, but it holds for DNA sequences as well.

2.1 Rigorous alignment algorithms
There are several different alignment algorithms which have become a standard
tool for biologists. The rigorous algorithms use dynamic programming to find
the optimal alignment.

2.1.1 Global alignment
The first to propose a dynamic programming algorithm for comparison of
macromolecules, were Needleman and Wunsch (4). Their algorithm performs a
global alignment of the sequences; i.e. an alignment where all letters of a and
b are accounted for. This type of alignment is appropriate when similarity is
expected along the whole or most of the sequence.

Formally, let s(ai,bj) be the similarity score of ai,bj (the scoring matrix) and let
a > 0 be the penalty for deleting/inserting of one amino acid. The score of an
alignment with Nij matches of ai and bj and Ngap insertions/deletions is defined as:

In sequence evolution, an insertion or deletion of a segment (several adjacent
amino acids) usually occurs as a single event. That is, the opening of the gap is
the significant event. Therefore, most computational models assign a penalty
for a gap of length k that is smaller than the sum of k independent gaps of length
I, by charging large penalty for opening a gap, and a smaller penalty for each
extension (affine or linear gap penalty). If the penalty for gap of length k is a(k),
and Nk-gap, is the number of gaps of length k in a given alignment, then the score
of this alignment is defined in this case as:
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The global similarity of sequences a and b is defined as the largest score of
any alignment of sequences a and b, i.e.

In principle, the number of possible alignments is exponentially large, what
makes it impossible to perform a direct search. However, a dynamic program-
ming algorithm makes it possible to find the optimal alignment without check-
ing all possible alignments, but only a very small portion of the search space. In
brief, the idea is that every subalignment in the optimal alignment should be
optimal as well (otherwise it would be possible to improve the overall alignment
by improving the subalignments, in contrast with its definition as optimal align-
ment). Since any optimal subalignment (say, of the substring a1, a2 ... ai, with the
substring bi, b 2 . . . bj) can end only in one of following three ways:

every possible subalignment is calculated only once, and in constant time1, out
of its optimal subalignments.

Formally speaking, denote by Sij the score of the best alignment of the sub-
string ai a2... ai with the substring b1 b2 • • • bj

, i.e.

Assume that the gap penalty is constant and equals a. Then, after an initial-
ization step

(where n and m are the lengths of the sequences a and b respectively) define Si,j

recursively

Therefore, the score S(a,b) can be calculated recursively. Since the subalignment
for each i and j has to be calculated, the time complexity of this algorithm is
proportional to the product of the lengths of the sequences compared (a quad-
ratic time complexity). In practice, the scores are stored in a two-dimensional
array of size (n+1). (m+1). The initialization set the values at row zero and
column zero and the computation proceeds row by row so that the value of each
matrix cell is calculated from entries which were already calculated (see Figure 1).

2.1.2 Local alignment
In many cases the similarity of two sequences is limited to a specific motif or
domain, the detection of which may yield valuable structural and functional
insights, while outside of this motif/domain the sequences may be essentially

1 This is true with linear gap functions. With non-linear gap penalties, the calculation of this
optimal subalignment may need up to i+j+1 operations.

170



COMPARISON OF PROTEIN SEQUENCES AND PRACTICAL DATABASE SEARCHING

Figure 1 Calculating the global similarity score. The score of the (i,j) entry in the matrix is
calculated from three matrix cells: the one on the left, the one on the top, and the one
located at the top left corner of the current cell. In case of a non-constant gap penalty we
need also to check all the cells in the same row and all the cells in the same column (along
the dashed lines).

unrelated. In such cases global alignment may not be the appropriate tool. In
the search for an optimal global alignment, local similarities may be masked by
long unrelated regions. Consequently, the score of such an alignment can be as
low as for totally unrelated sequences. Moreover, the algorithm may even mis-
align the common region. Therefore, usually it is better to compare sequences
locally. A local alignment of a and b is defined as an alignment between a
substring of a and a substring of b. The local similarity of sequences a and b is
defined as the maximal score over all possible local alignments.

The algorithm which finds the best local alignment is based on a minor mod-
ification of the dynamic programming algorithm for global alignment. Specific-
ally, whenever the score of the optimal subalignment of two subsequences
becomes negative, the score is set to zero, meaning that the corresponding
subsequences should not be aligned. Following the notations of the previous
section, Si,j is now defined

In the literature, this algorithm is often called the Smith-Waterman (SW)
algorithm, after those who introduced this modification (5).

There is a lot of literature regarding dynamic programming algorithms in
general (6), and for sequence comparison specifically (7-9). The interested reader
is referred to these books for more details on the algorithmic aspects of this
method, as well as its computational aspects.

2,2 Heuristic algorithms for sequence comparison
In a typical application new protein sequence is compared with all sequences in
the database (library sequences), in search of related proteins. Because of its
quadratic time complexity, the dynamic programming algorithms may not be
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suitable for this purpose. For example, the comparison of a sequence, of average
length of 350 amino acids, against a typical database (like SWISSPROT (10), with
more than 80000 sequences), may take few CPU hours on a standard PC of
nowadays (Pentium-Ill).

Several algorithms have been developed to speed up the alignment procedure.
The two main algorithms are FASTA (11) and BLAST (12). These are heuristic
algorithms which are not guaranteed to find the optimal alignment. However,
they proved to be very effective for sequence comparison, and they are signifi-
cantly faster than the rigorous dynamic programming algorithm.2

2.2.1 BLAST (Basic Local Alignment Search Tool)
BLAST compares two sequences and seeks all pairs of similar segments, whose
similarity score exceeds a certain threshold. These pairs of segments are called
'high scoring segment pairs' (HSPs). A segment is always a contiguous sub-
sequence of one of the two sequences. Segment pair is a pair of segments of the
same length, one from each sequence. Hence the alignment of the segments is
without gaps. The score of the match is simply the sum of matches of the amino
acids (defined by a scoring matrix) along the segment pair. The segment pair
with the highest score is called the 'maximum segment pair' (MSP).

To identify the HSPs (and particularly, the MSP), the algorithm starts by
locating 'seeds' of similarity among the query sequence and the database
sequence that score at least T, and then extends them in both directions until
the maximum possible score for the extension is reached. The changes in the
threshold T permit a tradeoff between speed and sensitivity. A higher value of T
yields greater speed, but also an increased probability of missing weak similarities.
Finally, multiple MSP regions are combined. For each consistent combination,
its probability is calculated using the Poisson or sum statistics (14) and the most
significant hits (lowest probability) are reported.

The algorithm is an outgrowth of the statistical theory for local alignments
without gaps (see Section 3). This theory gives a framework for assessing the
probability that a given similarity between two protein sequences (i.e. the MSP)
could have emerged by chance. If the probability is very low, then the similarity
is statistically significant and the algorithm reports the similarity along with
its statistical significance. Though the algorithm may miss complex similari-
ties which include gaps, the statistical theory of alignments without gaps
provided a reliable and efficient way of distinguishing true homologies from

2 In the last few years, biotechnology companies such as Compugen and Paracel, have developed
special purpose hardware that accelerates the dynamic programming algorithm (13). This special-
purpose hardware has again made the dynamic programming algorithm competitive with
FASTA and BLAST, both in speed and in simplicity of use. However, meanwhile, FASTA and
BLAST have become standard in this field and are being used extensively by biologists all over
the world. Both algorithms are fast, effective, and do not require the purchase of additional hard-
ware. BLAST has an additional advantage, as it may reveal similarities which are missed by the
dynamic programming algorithm, for example when two similar regions are separated by a long
dissimilar region.
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chance similarities, thus making this algorithm an important tool for molecular
biologists.

Current improvements of BLAST allow gapped alignments, by using dynamic
programming to extend a central seed in both directions (15). This is com-
plemented by PSI-BLAST, an iterative version of BLAST, with a position-specific
score matrix (see Section 4.5) that is generated from significant alignments found
in round i and used in round i+1. The latter may better detect weak similarities
that are missed in database searches with a simple sequence query.

2.2.2 FASTA
FASTA is another heuristic that performs a fast sequence comparison. The
algorithm starts by creating a hash table of all k-tuples (a string of length k) in
the query sequence (usually, k = 1 or 2 for protein sequences, where k = 1 gives
higher sensitivity). This table stores the k-tuples in a way which enables fast
accession, and restoration of each k-tuple. Then, when scanning a library
sequence, each k-tuple of the library sequence is looked up in the hash table,
and if it is found (this means k-tuple identity) it is marked. At a second stage, the
ten regions with the highest density of identities are rescanned. Common k-
tuples which are on the same diagonal (same offset in both sequences), and not
very far apart (the exact parameters are set heuristically), are joined to form a
region (a gapless local alignment, or HSP in BLAST terminology). The regions are
scored to account for the matches as well as the mismatches, and the best region
is reported (its score is termed 'initial score' or 'initl'). Then, the algorithm tries
to join nearby high scoring regions, even if they are not on the same diagonal
(the corresponding score being termed 'initn score'). Finally, a bounded dynamic
programming is run in a band around the best region, to obtain the 'optimized
score'. If the sequences are related then the optimized score is usually much
higher than the initial score.

3 Probability and statistics of sequence alignments
In the evolution of protein sequences, not all regions mutate at the same rate.
Regions which are essential for the structure and function of proteins, are more
conserved. Therefore, significant sequence similarity of two proteins may reflect
a close biological function or a common evolutionary origin. The algorithms
that were described in the previous section can be used to identify such simi-
larities. However, on any two input protein sequences, even if totally unrelated,
the algorithms almost always find some similarity. For unrelated sequences this
similarity is essentially random. As the length of the sequences compared in-
crease, this random similarity may increase as well. Therefore, in order to assess
the significance of a similarity score it is important to know what score to
expect simply by chance.

Naturally, we would like to identify those similarities which are genuine, and
biologically meaningful. In the view of the last paragraph, the raw similarity
score may not be appropriate for this purpose. However, when the sequence
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similarity is statistically significant we can deduce, with high confidence level,
that the sequences are related.3 The reverse implication is not always true. We
encounter many examples of low sequence similarity despite functional and
structural similarity (16-18).

Though statistically significant similarity is neither necessary nor sufficient
for a biological relationship, it may give us a good indication of such relation-
ship. When comparing a new sequence against the database, in search of close
relatives, this is extremely important, as we are interested in reporting only sig-
nificant hits, and sorting the results according to statistical significance seems
reasonable.

To estimate the statistical significance of similarity scores, a statistical theory
should be developed. A great effort was made in the last two decades to establish
such statistical theory. Currently, there is no complete theory, though some
important results were obtained. These results have very practical implications
and are very useful for estimating the statistical significance of similarity scores.
The statistical significance of similarity scores for 'real' sequences is defined by the
probability that the same score would have been obtained for random sequences.
The statistical results concern the similarity scores of random sequences, when
the similarity scores are defined by ungapped alignments. However, these results
have created a framework for assessing the statistical significance of various
similarity scores, including gapped sequence alignments, and recently, even
structural alignments (19).

Readers who are primarily interested in practical applications (rather than
the statistical basis) of the methods might like to proceed to Section 4.

3.1 Statistics of global alignment
Though the distribution of global similarity scores of random sequences has not
been characterized yet, some important properties of this distribution were
partly determined. The main characteristic of this distribution is the linear
growth (or decline, depends on the mean of the scoring matrix) with the
sequence length, i.e. the expected global similarity score grows linearly with
the sequence length. However, the growth rate has not been determined.

The statistical significance of a similarity score obtained for 'real' sequences,
which exceeds the expected score by a certain amount, is estimated by the prob-
ability that the similarity score of random sequences would exceed the expected
mean by the same amount. However, since the distribution of scores is un-
known, the available estimates give only a rough bound on that probability. The
variance of the global similarity score has not been determined either, and the
best results give only an upper bound.

In practice, it is possible to approximate the distribution empirically by
shuffling the sequences and comparing the shuffled sequences. By repeating

3 Two exceptions are segments with unusual amino acid composition, and similarity that is due
to convergent evolution.
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this procedure many times it is possible to estimate the mean and the variance
of the distribution, and a reasonable measure of statistical significance (e.g. by
means of the z-score) can be obtained. Formally, denote by S the global simi-
larity score. Let ul and o2 be the mean and the variance of the distribution of
scores. Then, the z-score associated with the score S is defined as

This score measures how many units of standard deviation apart the score S is
from the mean of the distribution. The larger it is, the more significant is the
score S.

3.2 Statistics of local alignment without gaps
The statistics of ungapped similarity scores has been studied extensively since
the early 1990s. The exclusion of gaps allowed a rigorous mathematical treat-
ment, and several important results were obtained. Karlin and Altschul (21) have
shown that for two random sequences of length n and m, the score of the best
ungapped local alignment (the MSP score in BLAST jargon) is centred around

where X is a parameter that depends on the overall background distribution
of amino acids in the database, and the scoring matrix. That is, the local simi-
larity score grows logarithmically with the length of the sequences, and with
the size of the search space (n-m).

This result in itself is still not enough to obtain a measure of statistical signi-
ficance for local similarity scores. This can be done only once a concentration of
measure result is obtained or the distribution of similarity scores is defined.
Indeed, one of the most important results in this field is the characterization of
the distribution of local similarity scores without gaps. This distribution was
shown to follow the extreme value distribution (20-22).

Formally, as the sum of many random variables is distributed normally,
then the maximum of many random variables is distributed as an extreme
value distribution (23). This distribution is characterized by two parameters:
the index value u and the decay constant X. (for u = 0 and A, = 1, the distribution is
plotted in Figure 2). The distribution is not symmetrical. It is positive definite and
unimodal with one peak at u. Practically, the score of the best local alignment
(the MSP score) is the maximum of the scores of many independent alignments,
which explains the observed distribution. Specifically, S, the local similarity
score of two random sequences of length n and m, is distributed as an extreme
value distribution and

where u = (In Kmn)/X, and K is a constant that can be estimated from the back-
ground distribution and the scoring matrix (Karlin & Altschul 1990).
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Figure 2 Probability density function for the extreme value distribution with u = 0 and X = 1.

For a large x we can use the approximate 1 - exp(-e-x) ~ e - x . Therefore, for a
large x,

This result helps to calculate the probability that a given MSP score could have
been obtained by chance. The score will be statistically significant at the 1% level
if S > x0 where x0 is determined by the equation Kmne -x *° = 0.01. In general, a
pairwise alignment with score S has a p-value of p where p = Kmne~*'s. I.e., there
is a probability p that this score could have happened by chance.

The probability p, that a similarity score S could have been obtained simply
by chance from the comparison of two random sequences, should be adjusted
when multiple comparisons are performed. One example of this is when a
sequence is compared with each of the sequences in a database with D
sequences. Denote by p-match a match between two sequences that has a p-
value < o (i.e. its score > S). The probability P of observing at least one p-match
(i.e. at least one 'success'), in a database search follows the Poisson distribution

Since not all library sequences have the same probability of sharing a similar
region with the query sequence, D should be replaced with the effective size of
the database. If the query sequence is of length n, and the (pairwise) alignment
of interest involves a libaiy segment of length m, and the database has a total of
N amino acids, then D should be replaced with N/m. Thus,

so the effective size of the search space is Nn (intuitively, this is the number of
possible starting positions of a match).
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It is very common to use the expectation value (e-value) as a measure of
statistical significance. The expectation value of the Poisson distribution is given
by

and as discussed above, D should be replaced with N/m. Hence

This is the expected number of distinct matches (segment pairs) that would
obtain a score > S by chance in a database search, with a database of size N
(amino acids) and composition P (the background distribution of amino acids).
The higher it is, the match is less significant. For example, if £ = 0.01, then the
expected number of random hits with a score > S is 0.01. In other words, we
may expect a random hit with that score only once in 100 independent searches.
If E = 10, then we should expect 10 hits with a score > S by chance, in a single
database search. This means that such a hit is not significant. (Note that
E = P for P< 0.1.)

Finally, by setting a value for £ and solving the equation above for S, it is
possible to define a threshold score, above which hits are reported. This is the
score above which the number of hits that are expected to occur at random is
< E. Therefore, we can deduce that a match with this score or above reflects true
biological relationship, but we should expect up to £ errors per search. The
specific value of £ affects both the sensitivity of a search (the number of true
relationships detected) and its selectivity (the number of errors). A lower value
of E would decrease the error rate. However, it would decrease the sensitivity as
well. A reasonable choice for E is between 0.1 and 0.001.

3.3 Statistics of local alignment with gaps
Though local alignments without gaps may detect most similarities between
related proteins, and give a good estimation of the similarity of the two
sequences, it is clear that gaps in local alignments are crucial in order to obtain
the correct alignment, and for a more accurate measure of similarity. However,
no precise model has been proposed yet to explain gaps in alignments. Moreover,
introducing gaps in alignments greatly complicates their mathematical tract-
ability. Rigorous results have been obtained only for local alignments without
gaps.

Recent studies suggest that the score of local gapped alignments can be
characterized in the same manner as the score of local ungapped alignments: As
was mentioned in the previous section, the local ungapped similarity score grows
logarithmically with the sequence's length and the size of the search space.
Arratia and Waterman (24) have shown that for a range of substitution matrices
and gap penalties, local gapped similarity scores have the same asymptotic
characteristic. Furthermore, empirical studies (25, 26) strongly suggest that local
gapped similarity scores are distributed according to the extreme value dis-
tribution, though some correction factors may apply (27). Based on empirical
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observations, Pearson (28) has derived statistical estimates for local alignment
with gaps, using the extreme value distribution for scores obtained from a
database search. A database search provides tens of thousands of scores from
sequences which are unrelated to the query sequence, and therefore are effect-
ively random. As discussed above, these scores are thus expected to follow the
extreme-value distribution. This is true as long as the gap penalties are not too
low. Otherwise the alignments shift from local to global and the extreme value
distribution no longer apply.

Since the logarithmic growth in the sequence length holds in this case, scores
are corrected first for the expected effect of sequence length. The correction is
done by calculating the regression line S = a + b .In n for the scores obtained in
a database search, after removing very high scoring sequences (probably related
sequences). The process is repeated as many as five times. The regression line
and the average variance of the normalized scores are used to define the z-
score:

and the distribution of z-scores is approximated by the extreme value distribution

where c1 and c2 are constants, and the expectation value is defined as before by
£(z-score> x) = N • p where N is the number of sequences in the database (the
number of tests).

This empirical approach has the advantage of internal calibration of the
accuracy of the estimates, and has proved to be very accurate in estimating the
statistical significance of gapped similarity scores (28). (See also refs. 18 and 29.)

4 Practical database searching

4.1 Types of comparison
To formulate the database search 'experiment', it is first necessary to decide
what types of sequences will be compared: DNA, Protein, or DNA as Protein. The
algorithms described above may be applied to the comparison of protein
sequences as well as to DNA sequences (coding or non-coding regions). However,
the comparison of protein sequences has proven to be a much more effective
tool (3). Though the evolutionary events occur at the DNA level, the main
genetic pressure is on the protein sequence. Moreover, mutations at the DNA
level do not necessarily change the encoded amino acid due to the redundancy
of the genetic code. Mutations often result in conservative substitutions at the
protein level, namely, replacement of an amino acid by another amino acid with
similar biochemical properties. Such changes tend to have only a minor effect
on the protein's functionality. Therefore, if the sequence under consideration
either is a protein or codes for a protein, then it is almost always the case that
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Table 1 Comparison programs and types of comparison

Programs

blastn, fasta, ssearch

blastp, fasta, ssearch

blastx, fastx

tblastn, tfasta, tfastx

tblastx

Query

DNA

Protein

DNA

Protein

DNA

DB

DNA

Protein

Protein

DNA

DNA

Comparison

DNA-level

Protein-level

Protein-level

Protein-level

Protein-level

Common Use

Seek identical DNA sequences,
and splicing patterns

Seek homologous proteins

Query new DNA to find genes and seek
homologous proteins

Search for genes in un-annotated DNA

Discover gene structure

the search should take place at the protein level, as proteins allow one to detect
far more distant homologies than DNA. Another aspect is that in DNA com-
parisons, there is noise from comparisons of non-coding frames (though this
latter issue still arises in DNA as Protein searches). DNA versus DNA comparison
is typically only used to find identical regions of sequence in a database. One
would do such a search to discover whether another group has sequenced or
studied a gene, and to learn where it is expressed or where splice junctions occur.
In short, protein-level searches are valuable for detecting evolutionarily related
genes, while DNA searches are best for locating nearly identical regions of
sequence (see Table 1 for available comparison programs and the corresponding
types of comparison).

4.2 Databases
Next, it is necessary to select a database to search against. There are several
commonly used databases (e.g. GenBank, SwissProt, ESTs, etc.). For homology
searches, it is best to use a comprehensive collection of all known proteins. Two
such databases are available. One is the nr database at the NCBI website
(http://www.ncbi.nlm.nih.gov/). The nr (which stands for non-redundant) protein
database combines data from several sources (GenPept, SwissProt, PIR, RPF, and
PDB) removes the redundant identical sequences, and yields a collection with
nearly all known proteins. The second nr database is available at the ExPASy
website in Switzerland (http://www.expasy.ch/). Both databases are frequently
updated, to incorporate as many sequences as possible. Obviously, a search will
not identify a sequence that has not been included in the database, and since
databases are growing so rapidly, it is essential to use a current database.

The main sources of these non-redundant databases are the SwissProt database
and the TrEMBL database (10), the PIR database (30), and the GenPept database
(31). The SwissProt database is maintained at the ExPASy centre in Switzerland.
This is a non-redundant highly annotated database which offers a lot of valuable
biological information on almost all of its entries (more than 86000 in the latest
release, June 2000). Such information may include for example the description
of the function of a protein, its domain structure, post-translational modifica-
tions, etc. This database is supplemented by TrEMBL, which is a collection of
all the translations of EMBL nucleotide sequence entries not yet integrated in
SwissProt. For most of these entries some biological information is available,
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Table 2 Sequence databases. Number of entries is updated to June 2000.

Protein
Database

nr (ExPasy

nr(NCBI)

SwissProt

TrEmbl

PIR

GenPept

PDB

Genomes

DNA
Database

GenBank

EMBL

DDBJ

Number
Entries

385002

508388

86337

298665

180605

544510

12426

Number
Entries

5691170

5865742

5962608

Availability

ftp://www.expasy.ch/databases/
sp_tr_nrdb/

ftp://ncbi.nlm.nih.gov/blast/db/

http://www.expasy.ch/sprot/
sprot-top.html

http://www.expasy.ch/sprot/
sprot-top.html

http://www-nbrf.georgetown.edu/
pirwww/pirhome.shtml

http://www.ncbi.nlm.nih.gov/
Entrez/protein.html

http://www.rcsb.org/pdb/index.
html

http://www.ncbi.nlm.nih.gov/
Entrez/Genome/org.html

Availability

http://www.ncbi.nlm.nih.gov/
Entrez/nucleotide.html
http://www.ebi.ac.uk.embl/

http://www.ddbj.nig.ac.jp/

Description

consists of SwissProt, TrEMBL

consists of GenPept, SwissProt,
PIR, RPF, PDB

non-redundant, high level of
annotation

non-redundant, computer
annotated

non-redundant, annotated, family
classification

translation of DNA sequences in
GenBank

repository of all known 3D
structures

protein sequences sorted by
organism

Description

DNA sequence

DNA sequence

DNA sequence

usually based on sequence analysis carried by the ExPASy team. PIR is another
database that offers a lot of biological information on entries through an exten-
sive annotation as well as classification to families and superfamilies and links
to alignments with other family members. GenPept is a database that contains
all translations of DNA sequences in the GenBank database.

Several specialized databases are also available, all of which overlap with the
composite non-redundant databases. For example, if one is interested in search-
ing for proteins of known structure, it is best to just search the smaller PDB
database. Other specialized databases are available for each of the fully sequenced
genomes, as well as for subsets of protein families (such as protein kinases
or immunoglobulins), etc. See Table 2 for a list of the main databases (see also
Chapters 9 and 10).

One may also wish to search DNA databases at the protein level. Programs
can do so automatically by first translating the DNA in all six reading frames and
then making comparisons with each of these conceptual translations. The nr
DNA database (containing most known DNA sequence except GSS, EST, STS, or
HTGS sequences) is useful to search when hunting new genes; the identified
genes in this database would already be in the protein nr database. Searches
against the GSS, EST, STS, and HTGS databases can find new homologous genes,
and are especially useful to learn about expression data or genome map location.
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Table 3 Availability of sequence comparison programs

4.3 Algorithms
The choice of the comparison algorithm should be based on the desired com-
parison type, the available computational resources, and the goals of the search.
All standard comparison algorithms can be run over the Web and can be down-
loaded from the FTP site to run locally (see Table 3). The rigorous Smith-
Waterman algorithm is available, as well as the FASTA program, within the
FASTA package. This algorithm is more sensitive than the others, but it is also
much slower. The FASTA program is faster, and with the parameter ktup set to 1,
is almost as sensitive as the Smith-Waterman algorithm (32, 18). The fastest
algorithm is BLAST, the newest versions of which support gapped alignments
(15) and provide a reliable, sensitive and fast option (the older versions are slower,
detect fewer homologs, and have problems with some statistics). Iterative pro-
grams like PSI-BLAST require extreme care in their operation, as they can provide
very misleading results; however, they have the potential to find more homologs
than purely pairwise methods.

4.4 Filtering
The statistics for database searches assumes that unrelated sequences look
essentially random with respect to each other. Specifically, the theoretical re-
sults that were obtained for the statistics of local alignments without gaps (see
Section 3.2) are subject to the restriction that the amino acid composition of the
two sequences that are compared are not too dissimilar (20). Assuming that both
sequences are drawn from the background distribution, the amino acid
composition of both should resemble the background distribution. Without this
restriction the statistical estimates overestimates the probability of similarity
scores, and indeed, this is observed in protein sequences with unusual com-
positions (18, 29). The most common exceptions are long runs of a small number of
different residues (such as a poly-alanine tract). Such regions of a sequence may
spuriously obtain extremely high match scores. For this reason, it is recom-
mended to filter out these regions using programs such as SEG (33). The NCBI
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Program FTP site

ssearch ftp://ftp.virginia.edu/pub/fasta/

fasta ftp://ftp.virginia.edu/pub/fasta/

blastp ftp://ncbi.nlm.nih.gov/blast/

Run over the Web

http://www2.ebi.ac.uk/bic_sw/

http://genome.dkfz-heidelberg.de/genweb/

http://sgbcd.weizmann.ac.il/genweb/

http://www.ch.embnet.org/software/FDF_form.
html

http://www2.ebi.ac.uk/fasta3/

http://www.ncbi.nlm.nih.gov/BLAST/

http://www2.ebi.ac.uk/blastall/

http://www.ch.embnet.org/software/
BottomBLAST.html
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BLAST server will automatically remove such sections in proteins, replacing
them with X, if default filtering is selected. DNA sequences will be similarly
masked by DUST. Though these programs automatically remove the majority of
problematic matches, some problems invariably slip through; moreover, valid
hits may be missed due to masking of part of the sequence. Therefore, it may be
helpful to try using different masking parameters.

Other sorts of filtering are also often desirable; for example, iterative searches
are prone to contamination by regions of proteins that resemble coiled-coils or
transmembrane helices. Here, one protein that is similar only because it has the
general characteristics may match initially. The profile then emphasizes these
inappropriate characteristics, eventually causing many spurious hits. Heavily
cysteine rich proteins can also obtain anomalous high scores. If these charac-
teristics are not filtered, then it is necessary to carefully review the alignment
results to ensure that they have not led to incorrect matches.

4.5 Scoring matrices and gap penalties
The next step is to choose the set of parameters for the sequence comparison
algorithm. Namely, the scoring matrix and the gap parameters. The default
matrices offered with the comparison algorithm (e.g. BLOSUM62 with BLAST,
BLOSUM50 with FASTA) are a safe choice. However, it may be fruitful to check
other matrices as well. Several different approaches were taken to derive re-
liable and effective scoring matrices. The most effective matrices are those that
are based on actual frequencies of mutations that are observed in closely related
proteins. These matrices reflect the biochemical properties of the amino acids,
which influence the probability of mutual substitution (exchange occur more
frequently among amino acids that share certain properties), and amino acids
with similar properties have high pairwise score. Matrices which are based on
sequence alignments include the family of PAM matrices (34) (and their im-
provement by ref. 35), the BLOSUM matrices (36), and Gonnet matrix (37). Other
matrices, which proved to be very effective for protein sequence comparison,
are those that are based on structural principles and aligned structures (38, 39).

The two most extensively used families of scoring matrices are the PAM
matrices and the BLOSUM matrices. A detailed description of these matrices is
given in the next two sections.

4.5.1 The PAM family of scoring matrices
PAM matrices were proposed by Dayhoff et al. in 1978 based on observations of
hundreds of alignments of closely related proteins. The frequencies of sub-
stitution of each pair of amino acids were extracted from alignments of proteins
of small evolutionary distance, below 1% divergence, i.e. at most one mutation
per 100 amino acids, on average. These frequencies, normalized to account for
the frequencies of random occurrences of single amino acids, resulted in the
PAM-1 probability transition matrix. The PAM-1 matrix reflects an amount of
evolutionary change that yields on average one mutation per 100 amino acids.
Accordingly, it is suitable for comparison of proteins which have diverged by 1%
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or less. The acronym PAM stands for Percent of Accepted Mutations (and hence
the distance is in percentages) or for Point Accepted Mutations (and hence the
distance in number of mutations per 100 amino acids).

The PAM-1 matrix is then extrapolated to yield the family of PAM-k matrices.
Each PAM-k matrix is obtained from PAM-1 by k consecutive multiplication, and
is suitable for comparison of sequences which have diverged k%, or are k
evolutionary units apart. For example, PAM-250 = (PAM-1)250 reflects the fre-
quencies of mutations for proteins which have diverged 250% (250 mutations
per 100 amino acids). The actual scoring matrices that are used by search pro-
grams are derived from the transition probability matrices and the background
probabilities. The score of each pair s(a,b) is defined as the logarithm of the
likelihood ratio of the transition probability Mab (mutation) versus the prob-
ability of a random occurrence of the amino acid b in the second sequence, i.e.,
s(a,b) = logMab/pb.

The PAM matrices were later refined by Jones et al. (35) based on much larger
data set. The significant differences were detected for substitions that were
hardly observed in the original data set of (34).

The PAM-250 matrix. The PAM-250 matrix is one of the most extensively
used matrices in this field. This matrix corresponds to a divergence of 250
mutations per 100 amino acids. Naturally one may ask whether it makes sense
to compare sequences which have diverged this much. Surprising as it may
seem, when calculating the probability that a sequence remains unchanged
after 250 PAMs (this is given by the sum Eapa

Maa where pa is the probability of a
random occurrence of amino acid s and Maa is the diagonal entry in the PAM-250
matrix that corrresponds to the amino acid a) the outcome is that such
sequences are expected to share about 20% of their amino acids. For reference,
note that the expected percentage of identity in a random match is 100Eap2a,
and for a typical distribution of amino acids (in a large ensemble of protein
sequences), we should expect less than 6% identies.

4.5.2 The BLOSUM family of scoring matrices
Unlike PAM matrices, which are extrapolated from a single matrix PAM-1, the
BLOSUM series of matrices was constructed by direct observation of sequence
alignments of related proteins, at different levels of sequence divergence. The
matrices are based on 'blocks'—a collection of multiple alignments of similar
segments without gaps (40), each block representing a conserved region of a
protein family. These blocks provide a list of (accepted) substitutions, and a log-
odds scoring matrix can be defined based on the observed relative frequency
of aligned pairs of amino acids qab, and the expected probability of pairs eab

estimated from the population of all observed pairs

To reduce the bias in the amino acid pair frequencies caused by multiple counts
from closely related sequences, segments in a block with at least x% identity are
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clustered and pairs are counted between clusters, i.e., pairs are counted only be-
tween segments less than x% identical. When counting pairs frequencies between
clusters, the contributions of all segments within a cluster are averaged, so that
each cluster is weighted as a single sequence. Varying the percentage of identity
x within clusters results in a family of matrices BLOSUM-x, where x ranges from
30 to 100. For example, BLOSUM-62 is based on pairs that were counted only
between segments less than 62% identical.

4.5.3 Choosing the scoring matrix
When comparing two sequences, the most effective matrix to use is the one
which corresponds to the evolutionary distance between them (41). However,
we usually do not know this distance. Therefore, it is recommended to use
several scoring matrices which cover a range of evolutionary distances, for
example PAM-40, PAM-120, and PAM-250. In general, low PAM matrices are well
suited to finding short but strong similarities, while high PAM matrices are best
for finding long regions of weak similarity.

Exhaustive evaluations have been carried out to compare the performance of
different scoring matrices (42, 32). These studies show that log-odds matrices
derived directly from alignments of highly conserved regions of proteins (such as
BLOSUM matrices or the Overington matrix, which is based on structural align-
ment (39)) outperform extrapolated log-odds matrices based on an evolutionary
model, such as PAM matrices. Moreover, the accuracy of alignments based on
extrapolated matrices decreases as the evolutionary distance increases. This sug-
gests that extrapolation cannot accurately model distant relationships, and that
the PAM evolutionary model is inadequate. BLOSUM matrices were shown to be
more effective in detecting homologous proteins. Specifically, BLOSUM-62 and
BLOSUM-50 gave superior performance in detecting weak homologies. These
matrices offer good overall performance in searching the databases. The best
hybrid of matrices for searching in different evolutionary ranges is either
BLOSUM 45/62/100 or BLOSUM 45/100 plus the Overington matrix.

4.5.4 Gap penalties
There is no mathematical model to explain the evolution of gaps. Practical
considerations (the need for a simple mathematical model, time complexity)
have led to the broad use of linear gap functions, where the penalty for a gap of
length k is given by a(k) = a0 + k, a1. Usually a large penalty is charged for
opening a gap (a0), and a smaller penalty is charged for each extension (o1).

Gonnet et al. (37) have proposed a model for gaps that is based on gaps
occurring in pairwise alignments of related proteins. The model suggests an
exponentially decreasing gap penalty function. However, a linear penalty func-
tion has the advantage of better time complexity, and in most cases the results
are satisfactory. Therefore the use of linear gap functions is very common.

The gap parameters that are used as default in the standard comparison pro-
grams are usually optimized based on extensive evaluations (32), and it is rarely
beneficial to change these from their defaults.
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4.5.5 Position dependent scores
In many proteins, mutations are not equally probable along the sequence. Some
regions are functionally/structurally important and consequently, the effect of
mutation in these regions can be drastic. They may create a non-functional pro-
tein or even prevent the molecule from folding into its native structure. Such
mutations are unlikely to survive, and therefore these regions tend to be more
evolutionary conserved than other, less constrained regions (e.g. loops) which
can significantly diverge.

Accordingly, it may be appropriate to use position-dependent scores for mis-
matches and gaps. The incorporation of information about structural preferences
can lead to alignments that are more accurate biologically. If a protein's structure
is known, the secondary structure should be taken into account. In the absence
of such data, general structural criteria, such as the propensities of amino acid
for occurring in secondary structures versus loops can be taken into account. For
example, the probability of opening a gap in existing secondary structure can be
decreased, while the probability for opening/inserting a gap in loop regions can
be increased.

Usually position-specific scoring matrices, or profiles, are not tailored to a
specific sequence. Rather, they are built to utilize the information in a group of
related sequences, and provide representations of protein families and domains.
These representations are capable of detecting subtle similarities between dis-
tantly related proteins. Without going into detail, profiles are usually obtained
by applying algorithms for multiple alignment (i.e. a combined alignment of
several proteins) to align a group of related sequences. The frequency of each
amino acid at each position along the multiple alignment is then calculated.
These counts are normalized and transformed to probabilities, so that a prob-
ability distribution over amino acids is associated with each position. Finally, the
scoring matrix is defined based on these probability distributions as well as on
the similarities of pairs of amino acids (taken from a standard scoring matrix).
For example, the score for aligning the amino acid a at position i of the profile is
given by

where s(a,b) is the similarity of amino acids a and b according to some scoring
matrix. For a review on algorithms for multiple alignment and profile techniques,
see refs 7-9, 43, 44.

4.6 Command line parameters
The command line parameters of the search programs are generally divided into
three groups. The first group is the set of parameters which specify the input
and output filenames, and the database name. These are the only mandatory
parameters. All other parameters are optional and are set default values other-
wise. For example, the basic command line for SSEARCH, FASTA, BLAST, and
gapped BLAST are:
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ssearch -Q, query-file -O out-file database
fasta -Q, query-file -O out-file database
blastp database query-file
blastpgp -i query-file -o out-file -d database

The second set of parameters affects the comparison algorithm. This set in-
cludes the scoring matrix and the gap penalties and the parameters used to
control the sensitivity of the search. By altering the later, it is possible to make
the program run slower and be more sensitive, or to run faster at the cost of
missing more homologs. BLAST has few such parameters. Currently, it is very
rare for users to alter these options from the defaults. The FASTA program has
one such parameter that a user will often want to set, called letup. Searches with
ktup = 1 are slower, but are more sensitive than BLAST;ktup = 2 is faster but less
effective.

Table 4 Parameters for sequence comparison programs. PSI-BLAST and gapped BLAST are
executed by the same program (blastpgp). The default mode is a simple gapped BLAST (i.e.,
the parameter j is set to 1).

Program Parameter Use

search

fasta

blastp

blastpgp

-Q filename
-0 filename
-E evalue

-d number
-H

-Q filename
-0 filename
-E evalue

-d number
-H
ktup number

E=evalue

V=number
B=number
H=1

-d database
-i filename
-o filename
-e evalue

-v number
-b number
-j number
-C filename
-R filename
-h evalue

query file
output file
evalue threshold (only hits with evalue below this threshold are
reported)
maximal number of alignments displayed
suppresses histogram of scores

query file
output file
evalue threshold (only hits with evalue below this threshold are
reported)
maximal number of alignments displayed
suppresses histogram of scores
controls sensitivity (can be either 1 or 2 for proteins and up to 4 for
DNA)

evalue threshold (only hits with evalue below this threshold are
reported)
maximal number of hits reported
maximal number of alignments displayed
display histogram of scores

the database searched
query file
out file
evalue threshold (only hits with evalue below this threshold are
reported)
maximal number of hits reported
maximal number of alignments displayed
maximal number of iterations (PSI-BLAST)
saves a checkpoint profile in a file after each iteration (PSI-BLAST)
reads the initial profile from a file (PSI-BLAST)
evalue threshold for inclusion in a profile (PSI-BLAST)
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Finally, there is a third set of parameters which controls the output of the
program, e.g. how many results are reported, and how many alignments are
displayed. The number of hits reported is often controlled by the e-value
parameter (see Section 3.2). For example, by default, the BLAST programs will
report only matches with an e-value up to 10 (this parameter also affects the
sensitivity of the method, in an indirect manner). The total number of matches
is limited to the best 500, and detailed information with the alignment is
provided for up to 100 pairs. To retrieve more matches, these numbers can be
altered (see Table 4).

5 Interpretation of results
Interpretation of the results of a sequence database search involves first eval-
uating the matches, to determine whether they are significant and therefore
imply homology. The most effective way of doing so is through use of the
statistical scores (the e-values). The e-values are more useful than the raw or bit
scores, and they are far more powerful than percentage identity (which is best
not even considered unless the identity is very high) (18). Fortunately, the e-
values from FASTA, SSEARCH, and gapped BLAST seem to be accurate and are
therefore easy to interpret (18, 29).

The e-value (or expectation-value) of a match should measure the expected
number of sequences in the database which would achieve a given score. There-
fore, in the average database search, one expects to find ten random matches
with e-value score of 10; obviously, such matches are not significant. However,
lacking better matches, sequences with these scores may provide hints of func-
tion or suggest new experiments. Scores below 0.01 would occur by chance only
very rarely, and are therefore likely to indicate homology, unless biased in some
way. Scores of near le-50 are now seen frequently, and these offer extremely
high confidence that the query protein is evolutionarily related to the matched
target in the database.

Inferring function from the homologous matched sequences is a process still
fraught with difficulty. If the score is extremely good and the alignment covers
the whole of both proteins, then there is a good chance that they will share the
same or a related function. However, is dangerous to place too much trust in the
query having the same function as the matched protein: functions do diverge,
and organismal or cellular roles may alter even when biochemical function is
unchanged. Moreover, a significant fraction of functional annotations in data-
bases are wrong (45), so one needs to be suspicious. There are other complexi-
ties; for example, if only a portion of the proteins align, they may share a
domain which only contributes an aspect of the overall function. It is often the
case that all of the highest-scoring hits align to one region of the query, and
matches to other regions need to be sought much lower in the score ranking.
For this reason, it is necessary to consider carefully the overlap between the
query and each of the targets.

Database search methods are also limited because most homologous sequences
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have diverged too far to be detected by pairwise sequence comparison methods
(16-18). Thus, failure to find a significant match does not necessarily indicate
that no homologs exists in the database. In such cases more sophisticated
methods must be applied. For example, iterative search programs such as the
profile based PSI-BLAST program (15) or the HMM based SAM-T98 (46) are ad-
vanced and sensitive search tools. However, these programs should be carefully
used as they can lead to false positives by diverging from the original query
sequence, and creating a profile that represents unrelated sequences.

The most powerful tools today are those that incorporate information from a
group of related sequences. This strategy has led to the compilation of databases
of protein families and domains. These databases have become an important
tool in the analysis of newly discovered protein sequences. They usually offer
biologically valuable information about domains and the domain structure of
proteins, through multiple alignments and schematic representations of
proteins, and can help to detect weak relationships between remote homologs.
Such methods are described in chapters 3, 4, and 5. However, family databases
are limited because they typically contain less than half of the proteins in
sequence databases. Moreover, many families have not yet been characterized,
while others are currently too sparse to yield reliable models. For this reason,
database searches are crucial in the analysis of newly sequenced genes that have
no clear homologs with known families, and by integrating the information
obtained from a database search one may discover clues about the function of
the new gene.

6 Conclusion
One should neither have excessive faith in the results of a database search, nor
should they be blithely disregarded. The standard search programs such as
FASTA, gapped BLAST and SSEARCH are well-tested and reliable indicators of
sequence similarity, and their underlying principles are straightforward. These
programs and their parameters have been optimized for the hundreds of
thousands of runs every day. If one is careful about posing the database search
experiment and interprets the results with care, sequence comparison methods
can be trusted to rapidly and easily provide an incomparable wealth of bio-
logical information.
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