


Bioinformatics:
Sequence, structure, and
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'Atomics is a very intricate theorem and can be worked out with algebra
but you would want to take it by degrees because you might spend the
whole night proving a bit of it with rulers and cosines and similar other
instruments and then at the wind-up not believe what you had proved at
all.

'Now take a sheep', the Sergeant said. 'What is a sheep only millions of
little bits of sheepness whirling around and doing intricate convolutions
inside the sheep? What else is it but that?'

(from The Third Policeman, Flann O'Brien)
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Preface

Bioinformatics an emerging field
In the early eighties, the word 'bioinformatics' was not widely used and what we
now know as bioinformatics, was carried out as something of a cottage industry.
Groups of researchers who otherwise worked on protein structures or molecular
evolution or who were heavily involved in DNA sequencing were forced,
through necessity, to devote some effort to computational aspects of their
subject. In some cases this effort was applied in a haphazard manner, but in
others people realized the immense potential of using computers to model and
analyse their data. This small band of biologists along with a handful of
interested computer scientists, mathematicians, crystallographers, and physical
scientists (in no particular order of priority or importance), formed the fledgling
bioinformatics community. It has been a unique feature of the field that the
most useful and exciting work has been carried out as collaborations between
researchers from these different disciplines.

By 1985, there was the first journal devoted (largely or partly) to the subject:
Computer Applications in the Biosciences. Bioinformatics articles tended to
dominate it and the name was changed to reflect this, a few years ago when it
was re-christened, simply, as Bioinformatics. By then, the EMBL sequence data
library in Heidelberg had been running for four years, followed closely by the US
based, GenBank. The first releases of the DNA sequence databases were sent out
as printed booklets as well as on computer tapes. It was routine to simply dump
the tape contents to a printer anyway as computer disk space in those days was
expensive. This practice became pointless and impossible by 1985, due to the
speed with which DNA sequence data were accumulating.

During the 1990s, the entire field of bioinformatics was transformed, almost
beyond recognition by a series of developments. Firstly, the internet became the
standard computer network world wide. Now, all new analyses, services, data
sets, etc. could be made available to researchers across the world by a simple
annoucement to a bulletin board/newsgroup and the setting up of a few pages
on the World Wide Web (WWW). Secondly, advances in sequencing technology
have made it almost routine to think in terms of sequencing the entire genome
of organisms of interest. The generation of genome data is a completely
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PREFACE

computer-dependent task; the interpretation is impossible without computers
and to access the data you need to use a computer. Bioinformatics has come of
age.

Sequence analysis and searching
Since the first efforts of Gilbert and Sanger, the DNA sequence databases have
been doubling in size (numbers of nucleotides or sequences) every 18 months or
so. This trend continues unabated. This forced the development of systems of
software and mathematical techniques for managing and searching these
collections. Earlier, the main labs generating the sequence data in the first place
had been forced to develop software to help assemble and manage their own
data. The famous Staden package came from work by Roger Staden in the LMB in
Cambridge (UK) to assemble and analyse data from the early DNA sequencing
work in the laboratory of Fred Sanger.

The sheer volume of data made it hard to find sequences of interest in each
release of the sequence databases. The data were distributed as collections of
flat files, each of which contained some textual information (the annotation)
such as organism name and keywords, as well as the DNA sequence. The main
way of searching for sequences of interest was to use a string-matching program
or to browse a printout of some annotation by hand. This forced the develop-
ment of relational database management systems in the main database centres
but the databases continued to be delivered as flat files. One important early
system, that is still in use, for browsing and searching the databases, was ACNUC,
from Manolo Gouy and colleagues in Lyon, France. This was developed in the
mid-eighties and allowed fully relational searching and browsing of the data
base annotation. SRS is a more recent development and is described fully in
Chapter 10 of this volume.

A second problem with data base size was the time and computational effort
required to search the sequences themselves for similarity with a search
sequence. The mathematical background to this problem had been worked on
over the 1970s by a small group of mathematicians and the gold standard
method was the well-known Smith and Waterman algorithm, developed by
Michael Waterman (a mathematician) and Temple Smith (a physicist). The snag
was that computer time was scarce and expensive and it could take hours on a
large mainframe to carry out a typical search. In 1985, the situation changed
dramatically with the advent of the FASTA program. FASTA was developed by
David Lipman and Bill Pearson (both biologists in the US). It was based on an
earlier method by John Wilbur and Lipman which was in turn based on an
earlier paper by two Frenchmen (Dumas and Ninio) who showed how to use
standard techniques from computer science (linked lists and hashing) to quickly
compare chunks of sequences. FASTA caused a revolution. It was cheap (basically
free), fast (typical searches took just a few minutes), and ran on the newly
available PCs (personal computers). Now, biologists everywhere could do their
own searches and do them as often as they liked. It became standard practice, in
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laboratories all over the word, to discover the function of newly sequenced
genes by carrying out FASTA searches of databases of characterized proteins.
Fortunately, by this time the databases were just big enough to give some chance
of finding a similar sequence in a search with a randomly chose gene. Sadly, the
chances were small initially, but by the early nineties they had risen to 1 in 3 and
now are well over 50%.

By 1990, even FASTA was too slow for some types of search to be carried out
routinely, but this was alleviated by the development of faster and faster
workstations. A parallel development was the use of specialist hardware such as
super-computers or massively parallel computers. These allowed Smith and
Waterman searches to be carried out in seconds and one very successful service
was provided by John Collins and Andrew Coulson in Edinburgh, UK. The snag
with these developments was the sheet cost of these specialist computers and
the great skill required to write the computer code so networks were important.
If you could not afford a big fast box of specialized chips, you might know
someone who would allow you to use theirs and you could log on to it using a
computer network.

In 1990, a new program called BLAST appeared. It was written by a collection
of biologists, mathematicians and computer scientists, mainly at the new NCBI,
in Washington DC, USA. It filled a similar niche to the FASTA program but was
an order of magnitude faster for many types of search. It also featured the use of
a probability calculation in order to help rank the importance of the sequences
that were hit in the search (see Chapter 8 for some details). Probability calcula-
tions are now very important in many areas of bioinformatics (such as hidden
Markov models; see chapter 4).

Protein structure analysis and prediction
Protein structure plays a central role in our understanding and use of sequence
data. A knowledge of the protein structure behind the sequences often makes
clear what mutational constraints are imposed on each position in the sequence
and can therefore aid in the multiple alignment of sequences (Chapters 1, 3, and
6) and the interpretaion of sequence patterns (Chapter 7). While computational
methods have been developed for comparing sequences with sequences (which,
as we have already seen, are critical in databank searching), methods have also
been developed for comparing sequences with structures (something called
'threading') and structures with structures (Covered in Chapters 1 and 2,
respectively). All these methods support each other and roughly following the
progression: (1) DB-search -» (2) multiple alignment —> (3) threading -> (4)
modelling. However, this is often far from a linear progression: the alignment
can reveal new constraints that can be imposed on the databank search, while at
the same time also helping the threading application. Similarly, the threading
can cast new (structural) light on the alignment and all are carried out under
(and also affect) the prediction of secondary structure.
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Before the advent of multiple genome data, this favoured route often came to
a halt before it started: when no similar sequence could be found even to make an
alignment. However, with the genomes of phylogentically widespread organisms
either completed or promised soon (bacteria, yeast, plasmodium, worm, fly, fish,
man) there is now a good chance of finding proteins from each that can compile
a useful multiple-sequencing alignment. At the threading stage (2) in the above
progression, the current problem and worry is that there may not be a protein
structure on which the alignment can be fitted. Failiure at this stage generally
compromises any success in the final modelling stage (unless sufficient struc-
tural constraints are available from other experimental sources). This problem
will be eased by structural genomics programmes (often associated with a
genome program) for the large-scale determination of protein structures. As
with the genome, these data will greatly increase the chance of finding at least
one structure onto which the protein can be modelled.

The future of a mature field
With several complete genomes and a reasonably complete set of protein struc-
tures, the problems facing Bioinformatics shifts from its past challenge of
finding weak similarities among sparse data, to one of finding closer similarities
in a wealth of data. However, concentrating on protein sequence data (as distinct
from the rawgenomic DNA) eases the data processing problem considerably and
the increased computation demands can be met by the equally rapid increase in
the power of computers. In this new situation, perhaps all that will be needed is
a good multiple sequence alignment program (such as CLUSTAL or MULTAL)
with which to reveal all necessary functional and structural information on any
particular gene.

The most fundamental impact of the 'New Data' is the realization that the
biological world is finite and, at least in the world of sequences, that we have the
end in sight. We have already, in the many bacterial genomes and in yeast, seen
the minimal complement of proteins required to maintain independent life—
and at only several thousand proteins, it does not seem unworkably large. This
will expand by an order-or-magnitude in the higher organisms but it is already
clear that much of this expansion can be accounted for by the proliferation of
sequences within tissue or functionally specific families (such as the G-protein
coupled receptors). Removing this 'redundancy' might still result in a set of
proteins that, if not by eye, can be easily analysed by computer.

The end-of-the-line in protein structures may take a little longer to arrive, but,
by implication from the sequences, it too is finite—and indeed, may be much
more finite than the sequence world. This can be inferred from current data by
the number of protein families that have the same overall structure (or fold), but
otherwise exhibit no signs of functional or sequence similarity. Besides com-
paring and classifying the different structures, an interesting aspect is to develop
models of protein structure evolution, perhaps allowing very distant relation-
ships between these different folds to be inferred. It might be hoped that this
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will shed light on the most ancient origins of protein structure and on the distant
relationships between biological systems.

The ultimate aim of Bioinformatics must surely be the complete understand-
ing of an organism—given its genome. This will require the characterization and
modelling of extremely complex systems: not only within the cell but also
including the fantastic network of cell-cell interactions that go to make-up an
organism (and how the whole system boot-straps itself). However, as Sergeant
Pluck has told us: what is an organism but only millions of little bits of itself
whirling around and doing intricate convolutions. If a genome can tell us all
these bits (and sure it will be no time till we have the genome for a sheep) then
all we have to do is figure out how it all whirls around. For this, without a doubt,
the Sergeant would have recommended the careful application of algebra—and,
had he known about them, I'm sure he would have used a computer.

D.H. and W.T., 2000
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