
Appendix A

Statistics

A.1 Decision Theory and Loss Functions

In any decision problem [238, 63, 431], one is led to define a loss function (or
equivalently a reward function) to measure the effect of one’s action on a given
state of the environment. The fundamental theorem of decision theory is that
under a small set of sensible axioms used to describe rational behavior, the op-
timal strategy is the one that minimizes the expected loss, where expectation
is defined with respect to a Bayesian probabilistic analysis of the uncertain
environment, given the available knowledge. Note that several of the tasks
undertaken in purely scientific data analysis endeavors—such as data com-
pression, reconstruction, or clustering—are decision-theoretic in nature and
therefore require the definition of a loss function. Even prediction falls into
this category, and this is why in regression, E(y|x) is the best predictor of y
given x, when the loss is quadratic (see below).

When one of the goals is to pick the “best” model, as is often the case
throughout this book, the expected loss function is equal to the negative log-
likelihood (or log-prior). But in general the two functions are distinct. In prin-
ciple, for instance, one could even have Gaussian data with quadratic negative
log-likelihood, but use a quartic loss function.

Two loss functions f1 and f2 can be equivalent in terms of minimization
properties. This is the case if there is an order-preserving transformation g
(if u ≤ v, then g(u) ≤ g(v)) such that f2 = gf1. Then f1 and f2 have the
same minima. This of course does not imply that minimization (i.e., learning)
algorithms applied to f1 or f2 behave in the same way, nor that f1 and f2 have
the same curvature around their minima. As briefly mentioned in chapter 5, a
good example is provided by the quadratic function f1(y) =

∑K
1 (pi − yi)2/2

and the cross-entropic function f2(y) = −
∑K

1 pi logyi, when
∑
pi = 1. Both
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functions are convex in y , and have a unique global minimum at yi = pi,
provided f2 is restricted to

∑
yi = 1. In fact, by Taylor-expanding f2 around

pi, we have

f2(y) = −
K∑
1

pi log(pi + εi) ≈H (p) +
K∑
1

ε2
i

2pi
(A.1)

with yi = pi + εi and
∑
εi = 0. Therefore, when pi = 1/K is uniform, one has

the even stronger result that f2 ≈ H (p)+Kf1. Therefore, apart from constant
terms, the quadratic and cross-entropy loss f1 and f2 coincide around the
same optimum and have the same curvature. In the rest of this appendix,
we concentrate on the most common quadratic loss functions (or Gaussian
likelihoods), but many of the results can be extended to other loss functions,
using the remarks above.

A.2 Quadratic Loss Functions

A.2.1 Fundamental Decomposition

To begin, consider a sequence of numbers y1, . . . , yK and the quadratic form
f(y) = ∑K

1 (y − yi)2/K, that is the average square loss. Then f has a unique
minimum at the average y∗ = E(y) = ∑K

1 yi/K. This is easily seen by using
Jensen’s inequality (appendix B), or more directly by writing

f(y) = 1
K

K∑
1

(y − y∗ +y∗ −yi)2

= (y −y∗)2 + 1
K

K∑
1

(y∗ −yi)2 + 2
K

K∑
1

(y −y∗)(y∗ −yi)

= (y −y∗)2 + 1
K

K∑
1

(y∗ −yi)2 ≥ f(y∗). (A.2)

Thus f can be decomposed into the sum of the bias (y−y∗)2 and the variance∑K
1 (y∗ − yi)2. The bias measures the distance from y to the optimum aver-

age, and the variance measures the dispersion of the yis around the average.
This decomposition of quadratic loss functions into the sum of two quadratic
terms (Pythagoras’ theorem) with the cancellation of any cross-product terms
is essential, and will be used repeatedly below in slightly different forms.
The above result remains true if the yi occur with different frequencies or
strengths pi ≥ 0, with

∑
pi = 1. The expected quadratic loss is again mini-

mized by the the weighted average y∗ = E(y) = ∑piyi with the decomposi-
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tion

E
[
(y −yi)2

]
=

K∑
1

pi(y −yi)2 = (y −y∗)2 +
K∑
1

pi(y∗ − yi)2. (A.3)

We now show how this simple decomposition can be applied to regression
problems, and in several directions, by using slightly different expectation op-
erators, including averaging over different training sets or different estimators.

A.2.2 Application to Regression

Consider a regression problem in which we are trying to estimate a target
function f(x) and in which the x,y data are characterized by a distribution
P(x,y). For simplicity, as in chapter 5, we shall assume that as a result of
“noise,” different possible values ofy can be observed for any single x. For any
x, the expected error or loss E[(y−f(x))2|x] is minimized by the conditional
expectations y∗ = E(y|x), where now all expectations are taken with respect
to the distribution P , or approximated from corresponding samples. Again
this is easily seen by writing

E
[
(y − f(x))2|x

]
= E

[
(y − E(y|x)+ E(y|x)− f(x))2|x

]
(A.4)

and expanding the square. The cross-product term disappears, leaving the
bias/variance decomposition

E
[
(y − f(x))2|x

]
= [E(y|x)− f(x)]2 + E

[
(y − E(y|x))2|x

]
. (A.5)

A.3 The Bias/Variance Trade-off

Consider the same regression framework as above, but where different training
sets D are available. For each training set D, the learning algorithm produces
a different estimate f(x,D). The performance of such an estimator can be
measured by the expected loss E[(y − f(x,D))2|x,D], the expectation again
being with respect to the distribution P . The usual calculation shows that

E
[
(y − f(x,D))2|x,D

]
=

[
f(x,D)− E(y|x)]2 + E

[
(y − E(y|x))2|x,D

]
. (A.6)

The variance term does not depend on the training sample D. Thus, for any x,
the effectiveness of the estimator f(x,D) is measured by the bias [f(x,D) −
E(y|x)]2, that is, by how it deviates from the optimal predictor E(y|x). We
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can now look at the average of such error over all training sets D of a given
size. Again writing

ED
[
(f(x,D)− E(y|x))2

]
=

ED
[
(f(x,D) − ED(f(x,D))+ ED(f(x,D))− E(y|x))2

]
, (A.7)

cancellation of the cross-product term leaves the bias-variance decomposition

ED
[
(f(x,D)− E(y|x))2

]
=

[
ED(f(x,D))− E(y|x)]2 + ED

[
(f(x,D) − ED(f(x,D)))2

]
. (A.8)

The bias/variance decomposition corresponds to a sort of uncertainty prin-
ciple in machine learning: it is always difficult to try to decrease one of the
terms without increasing the other. This is also the basic trade-off between
underfitting and overfitting the data. A flexible machine with a large num-
ber of parameters that can cover a large functional space typically achieves a
small bias. The machine, however, must be sensitive to the data and therefore
the variance associated with overfitting the data tends to be large. A simple
machine has typically a smaller variance, but the price to pay is a larger under-
fitting bias.

A.4 Combining Estimators

As mentioned in chapter 4, it can be useful at times to combine different es-
timators f(x,w), using a discrete (or even continuous) distribution pw ≥ 0,
(
∑
w pw = 1) over parameters w associated with each estimator. As in (A.8),

the different estimators could, for example, correspond to different training
sets. By taking expectations with respect to w, (A.8) can be generalized imme-
diately to

Ew
[
(f(x,w)− E(y|x))2

]
=

[
Ew(f(x,w) − E(y|x))]2 + Ew

[
(f(x,w)− Ew(f(x,w)))2

]
. (A.9)

Thus the loss for the weighted average predictor f∗(x) = Ew(f(x,w)), some-
times also called ensemble average, is always less than the average loss:

Ew
[
(f(x,w)− E(y|x))2

]
≥ [f∗(x)− E(y|x)]2 . (A.10)
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In fact, we can average (A.9) over all possible xs, using the distribution P to
obtain “generalization” errors:

EX
[
f∗(x)− E(y|x)]2 =

EXEw
[
(f(x,w)− E(y|x))2

]
− EXEw

[
(f(x,w) − f∗(x))2

]
. (A.11)

This is the relation used in [340, 339]. The left-hand term is the expected
loss of the ensemble. The first term on the right-hand side is the expected
loss across estimators, and the second term is called the ambiguity. Clearly,
combining identical estimators is useless. Thus a necessary condition for the
ensemble approach to be useful is that the individual estimators have a sub-
stantial level of disagreement. All else equal, the ambiguity should be large.
One way to achieve this is to use different training sets for each estimator (see
[340], where algorithms for obtaining optimal weighting schemes pw—for in-
stance, by quadratic programming—are also discussed). One important point
is that all the correlations between estimators are contained in the ambiguity
term. The ambiguity term does not depend on any target values, and therefore
can be estimated from unlabeled data.

A.5 Error Bars

For illustration, consider a modeling situation with one parameter w, and a
uniform prior. Let f(w) = − log P(D|w) be the negative log-likelihood of the
data. Under mild differentiability conditions, a maximum likelihood estima-
tor w∗ satisfies f ′(w∗) = 0. Therefore, in the neighborhood of w∗, we can
expand f(w∗) in a Taylor series:

f(w) ≈ f(w∗)+ 1
2
f ′′(w∗)(w −w∗)2 (A.12)

or

P(D|w) = e−f(w) ≈ Ce− 1
2f

′′(w∗)(w−w∗)2 , (A.13)

where C = e−f(w∗). Thus the likelihood and the posterior P(w|M) locally

behave like a Gaussian, with a standard deviation 1/
√
f ′′(w∗), associated with

the curvature of f . In the multidimensional case, the matrix of second-order
partial derivatives is called the Hessian. Thus the Hessian of the log-likelihood
has a geometric interpretation and plays an important role in a number of
different questions. It is also called the Fisher information matrix (see also
[5, 16, 373]).
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A.6 Sufficient Statistics

Many statistical problems can be simplified through the use of sufficient statis-
tics. A sufficient statistic for a parameter w is a function of the data that
summarize all the available information about w. More formally, consider a
random variable X with a distribution parameterized by w. A function S of X
is a sufficient statistic forw if the conditional distribution P(X = x|S(X) = s)
is independent of w with probability 1. Thus P(X = x|S(X) = s) does not vary
with w, or

P(X = x|S = s,w) = P(X = x|S = s). (A.14)

This equality remains true if we replace X by any statistics H = h(X). Equiva-
lently, this equality yields P(w|X,S) = P(w|S). All information aboutw is con-
veyed by S, and any other statistic is redundant. In particular, sufficient statis-
tics preserve the mutual information I (see appendix B): I(w,X) = I(w, S(X)).

As an example, consider a sample X = (X1, . . . , XN) drawn from a random
variable N (µ,σ2), so that w = (µ,σ). Then (m, s) is a sufficient statistic for
w, with m = ∑i Xi/N and s2 = ∑i(Xi −m)2/(N − 1). In other words, all the
information about µ contained in the sample is contained in the sample mean
m, and similarly for the variance.

A.7 Exponential Family

The exponential family [94] is the most important family of probability distri-
butions. It has a wide range of applications and unique computational prop-
erties: many fast algorithms for data analysis have some version of the expo-
nential family at their core. Many general theorems in statistics can be proved
for this particular family of parameterized distributions. The density in the
one-parameter exponential family has the form

P(x|w) = c(w)h(x)eq(w)S(x). (A.15)

Most common distributions belong to the exponential family, including the
normal (with either mean or variance fixed), chi square, binomial and multino-
mial, geometric and negative binomial, exponential and gamma, beta, Poisson,
and Dirichlet distributions. All the distributions used in this book are in the
exponential family. Among the important general properties of the exponen-
tial family is the fact that a random sample from a distribution in the one-
parameter exponential family always has a sufficient statistic S. Furthermore,
the sufficient statistic itself has a distribution that belongs to the exponential
family.



Additional Useful Distributions 353

A.8 Additional Useful Distributions

Here we briefly review three additional continuous distributions used in chap-
ter 12.

A.8.1 The Scaled Inverse Gamma Distribution

The scaled inverse gamma distribution I(x;ν, s2) with ν > 0 degrees of free-
dom and scale s > 0 is given by:

(ν/2)ν/2

Γ(ν/2)
sνx−(ν/2+1)e−νs

2/(2x) (A.16)

for x > 0. The expectation is (ν/ν − 2)s2 when ν > 2, otherwise it is infinite.
The mode is always (ν/ν + 2)s2.

A.8.2 The Student Distribution

The Student-t distribution t(x;ν,m,σ2) with ν > 0 degrees of freedom, loca-
tion m and scale σ > 0 is given by:

Γ((ν + 1)/2)
Γ(ν/2)

√
νπσ

(1+ 1
ν
(
x −m
σ

)2)−(ν+1)/2 . (A.17)

The mean and the mode are equal to m.

A.8.3 The Inverse Wishart Distribution

The inverse Wishart distribution I(W ;ν, S−1), where ν represents the degrees
of freedom and S is a k× k symmetric, positive definite scale matrix, is given
by

(2νk/2πk(k−1)/4
k∏
i=1

Γ(
ν + 1− i

2
))−1|S|ν/2|W|−(ν+k+1)/2

exp(−1
2
tr(SW−1)) (A.18)

where W is also positive definite. The expectation of W is E(W) = (ν − k −
1)−1S.
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A.9 Variational Methods

To understand this section one must be familiar with the notion of relative
entropy (appendix B) . In the Bayesian framework, we are often faced with
high–dimensional probability distributions P(x) = P(x1, ..., xn) that are in-
tractable, in the sense that they are too complex to be estimated exactly. The
basic idea in variational methods is to approximate P(x) by constructing a
tractable family Q(x,θ) of distributions parameterized by the vector θ and
choosing the element in the family closest to P . This requires a way of mea-
suring distances between probability distributions. In variational methods this
is generally done using the relative entropy or KL distance H (Q, P). Thus we
try to minimize

H (Q, P) =
∑
Q log

Q
P
= −H (Q) + EQ(− logP). (A.19)

When P is represented as a Boltzmann–Gibbs distribution P = e−λE/Z(λ), then

H (Q, P) = −H (Q) + λEQ(E)+ logZ(λ) = λF + logZ(λ) (A.20)

where F is the free energy defined in chapter 3. Since the partition function
Z does not depend on θ, minimizing H is equivalent to minimizing F . From
Jensen’s inequality in appendix B, we know that, for any approximating Q,
H ≥ 0 or, equivalently, F ≥ − logZ(λ)/λ. Equality at the optimum can be
achieved only if Q∗ = P .

In modeling situations we often have a family of models parameterized
by w and P is the posterior P(w|D). Using Bayes’ theorem and the equation
above, we then have

H (Q, P) = −H (Q) + EQ[− log P(D|w)− log P(w)] + log P(D) (A.21)

with λ = 1 and E = − log P(D|w) − log P(w). Again, the approximating distri-
butions must satisfy H ≥ 0 or F ≥ − log P(D).

In a sense, variational methods are close to higher levels of Bayesian infer-
ence since they attempt to approximate the entire distribution P(w|D) rather
than focusing on its mode, as in MAP estimation. At an even higher level, we
could look at a distribution over the space Q rather than its optimum Q∗. We
leave as an exercise for the reader to study further the position of variational
methods within the Bayesian framework and to ask, for instance, whether vari-
ational methods themselves can be seen as a form of MAP estimation.

But the fundamental problem in the variational approach is of course the
choice of the approximating family Q(x,θ) or Q(w,θ). The family must sat-
isfy two conflicting requirements: it must be simple enough to be computa-
tionally tractable, but not too simple or else the distance H (Q, P) remains
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too large. By computationally tractable we mean that one ought to be able to
estimate, for instance, F and ∂F/∂θ. A simple case is when the family Q is
factorial. Q is a factorial distribution if and only if it has the functional form
Q(x1, . . . , xn) = Q(x1) . . .Q(xn). Mean field theory in statistical mechanics
is a special case of variational method with factorial approximation (see also
[582]). More generally, the construction of a suitable approximating family Q
is problem–dependent and remains an art more than a science. In constructing
Q, however, it is often useful to use:

• Mixture distributions

• Exponential distributions

• Independence assumptions and the corresponding factorizations (ap-
pendix C).

For instance, Q can be written as a mixture of factorial distributions, where
each factor belongs to the exponential family. The parameters to be optimized
can then be the mixture coefficients and/or the parameters (mean, variance) of
each exponential member.
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Appendix B

Information Theory, Entropy,
and Relative Entropy

Here we briefly review the most basic concepts of information theory used in
this book and in many other machine learning applications. For more in-depth
treatments, the reader should consult [483], [71], [137], and [577]. The three
most basic concepts and measures of information are the entropy, the mutual
information, and the relative entropy. These concepts are essential for the
study of how information is transformed through a variety of operations such
as information coding, transmission, and compression. The relative entropy is
the most general concept, from which the other two can be derived. As in most
presentations of information theory, we begin here with the slightly simpler
concept of entropy.

B.1 Entropy

The entropy H (P) of a probability distribution P = (p1, . . . , pn) is defined by

H (P) = E(− logP) = −
n∑
i=1

pi logpi. (B.1)

The units used to measure entropy depend on the base used for the loga-
rithms. When the base is 2, the entropy is measured in bits. The entropy
measures the prior uncertainty in the outcome of a random experiment de-
scribed by P , or the information gained when the outcome is observed. It is
also the minimum average number of bits (when the logarithms are taken base
2) needed to transmit the outcome in the absence of noise.
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The concept of entropy can be derived axiomatically. Indeed, consider a
random variable X that can assume the values x1, . . . , xn with probabilities
p1, . . . , pn. The goal is to define a quantity H (P) = H (X) = H (p1, . . . , pn)
that measures, in a unique way, the amount of uncertainty represented in
this distribution. It is a remarkable fact that three commonsense axioms, re-
ally amounting to only one composition law, are sufficient to determine H
uniquely, up to a constant factor corresponding to a choice of scale. The three
axioms are as follows:

1. H is a continuous function of the pi.

2. If all pis are equal, then H (P) = H (n) = H (1/n, . . . ,1/n) is a mono-
tonic increasing function of n.

3. Composition law: Group all the events xi into k disjoint classes. Let Ai
represent the indices of the events associated with the ith class, so that
qi =

∑
j∈Ai pj represents the corresponding probability. Then

H (P) = H (Q) +
k∑
i=1

qiH
(
P̄i
qi

)
, (B.2)

where P̄i denotes the set of probabilities pj for j ∈ Ai. Thus, for example,
the composition law states that by grouping the first two events into one,

H (1/3,1/6,1/2) =H (1/2,1/2)+ 1
2
H (2/3,1/3). (B.3)

From the first condition, it is sufficient to determine H for all rational cases
where pi = ni/n, i = 1, . . . , n. But from the second and third conditions,

H (
n∑
i=1

ni) = H (p1, . . . , pn)+
n∑
i=1

piH (ni). (B.4)

For example,

H (9) = H (3/9,4/9,2/9)+ 3
9
H (3)+ 4

9
H (4) + 2

9
H (2). (B.5)

In particular, by setting all ni equal to m, from (B.4) we get

H (m) +H (n) =H (mn). (B.6)

This yields the unique solution

H (n) = C lnn, (B.7)



Relative Entropy 359

with C > 0. By substituting in (B.4), we finally have

H (P) = −C
n∑
i=1

pi logpi. (B.8)

The constant C determines the base of the logarithm. Base-2 logarithms lead
to a measure of entropy and information in bits. For most mathematical cal-
culations, however, we use natural logarithms so that C = 1.

It is not very difficult to verify that the entropy has the following properties:

• H (P) ≥ 0.

• HP |Q) ≤ H (P) with equality if and only if P and Q are independent.

• H (P1, . . . , Pn) ≤
∑n
i=1H (Pi) with equality if and only if P and Q are

independent.

• H (P) is convex (∩) in P .

• H (P1, . . . , Pn) =
∑n
i=1H (Pi|Pi−1, . . . , P1).

• H (P) ≤H (n) with equality if and only if P is uniform.

B.2 Relative Entropy

The relative entropy between two distributions P = (p1, . . . , pn) and Q =
(q1, . . . , qn), or the associated random variables X and Y , is defined by

H (P ,Q) =H (X, Y ) =
n∑
i=1

pi log
pi
qi
. (B.9)

The relative entropy is also called cross-entropy, or Kullback–Liebler distance,
or discrimination (see [486], and references therein, for an axiomatic presenta-
tion of the relative entropy). It is viewed as a measure of the distance between
P and Q. The more dissimilar P and Q are, the larger the relative entropy. The
relative entropy is also the amount of information that a measurement gives
about the truth of a hypothesis compared with an alternative hypothesis. It is
also the expected value of the log-likelihood ratio. Strictly speaking, the rela-
tive entropy is not symmetric and therefore is not a distance. It can be made
symmetric by using the divergence H (P ,Q)+H (Q, P). But in most cases, the
symmetric version is not needed. If U = (1/n, . . . ,1/n) denotes the uniform
density, then H (P ,U) = logn−H (P). In this sense, the entropy is a special
case of cross-entropy.

By using the Jensen inequality (see section B.4), it is easy to verify the fol-
lowing two important properties of relative entropies:
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• H (P ,Q) ≥ 0 with equality if and only if P =Q.

• H (P ,Q) is convex (∩) in P and Q.

These properties are used throughout the sections on free energy in statistical
mechanics and the EM algorithm in chapters 3 and 4.

B.3 Mutual Information

The third concept for measuring information is the mutual information. Con-
sider two distributions P and Q associated with a joint distribution R over the
product space. The mutual information I(P ,Q) is the relative entropy between
the joint distribution R and the product of the marginals P and Q:

I(P ,Q) = H (R, PQ). (B.10)

As such, it is always positive. When R is factorial, i.e. equal to the product
of the marginals, the mutual information is 0. The mutual information is a
special case of relative entropy. Likewise, the entropy (or self-entropy) is a
special case of mutual information because H (P) = I(P , P). Furthermore, the
mutual information satisfies the following properties:

• I(P ,Q) = 0 if and only if P and Q are independent.

• I(P1, . . . , Pn,Q) =
∑n
i=1 I(Pi,Q|P1, . . . , Pi−1).

It is easy to understand mutual information in Bayesian terms: it rep-
resents the reduction in uncertainty of one variable when the other is ob-
served, that is between the prior and posterior distributions. If we denote
two random variables by X and Y , the uncertainty in X is measured by the
entropy of its prior H (X) = ∑

x P(X = x) log P(X = x). Once we observe
Y = y , the uncertainty in X is the entropy of the posterior distribution,
H (X|Y = y) = ∑

x P(X = x|Y = y) logP(X = x|Y = y). This is a ran-
dom variable that depends on the observation y . Its average over the possible
ys is called the conditional entropy:

H (X|Y) =
∑
y
P(y)H (X|Y = y). (B.11)

Therefore the difference between the entropy and the conditional entropy mea-
sures the average information that an observation of Y brings about X. It is
straightforward to check that

I(X, Y ) =H (X) −H (X|Y) =
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H (Y )−H (Y |X) = H (X)+H (Y )−H (Z) = I(Y ,X) (B.12)

where H (Z) is the entropy of the joint variable Z = (X, Y ). or, using the
corresponding distributions,

I(P ,Q) =H (P)−H (P |Q) =

H (Q) −H (Q|P) =H (P)+H (Q) −H (R) = I(Q, P). (B.13)

We leave for the reader to draw the classical Venn diagram associated with
these relations.

B.4 Jensen’s Inequality

The Jensen inequality is used many times throughout this book. If a function
f is convex (∩) and X is a random variable, then

Ef(X) ≤ fE(X). (B.14)

Furthermore, if f is strictly convex, equality implies that X is constant. This
inequality becomes graphically obvious if one thinks in terms of center of
gravity. The center of gravity of f(x1), . . . , f (xn) is below f(x∗), where x∗
is the center of gravity of x1, . . . , xn. As a special important case, E logX ≤
log E(X). This immediately yields the properties of the relative entropy.

B.5 Maximum Entropy

The maximum entropy principle was discussed in chapters 2 and 3 for the
case of discrete distributions. The precise statement of the maximum entropy
principle in the continuous case requires some care [282]. But in any case, if
we define the differential entropy of a random variable X with density P to be

H (X) = −
∫ +∞
−∞

P(x) logP(x)dx, (B.15)

then of all the densities with variance σ2, the Gaussian N (µ,σ) is the one
with the largest differential entropy. The differential entropy of a Gaussian
distribution with any mean and variance σ2 is given by [log 2πeσ2]/2. In
n dimensions, consider a random vector X with vector mean µ, covariance
matrix C , and density P . Then the differential entropy of P satisfies

H (P) ≤ 1
2

log(2πe)n|C| = H (N (µ,C)) (B.16)
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with equality if and only if X is distributed according to N (µ,C) almost ev-
erywhere. Here |C| denotes the determinant of C .

These results have a very simple proof using the derivation of the
Boltzmann–Gibbs distribution in statistical mechanics. For instance, in the
one-dimensional case, a Gaussian distribution can be seen as a Boltzmann–
Gibbs distribution with energy E(x) = (x − µ)2/2σ2 and partition function√

2πσ , at temperature 1. Thus the Gaussian distribution must have maximum
entropy, given that the only constraint is the observation of the expectation
of the energy. The mean of the energy is given by

∫
(x − µ)2/2σ2P(x)dx,

which is constant, equivalent to the statement that the standard deviation is
constant and equal to σ .

This can be generalized to the members of the exponential family of dis-
tributions. In the case of the Dirichlet distributions, consider the space of all
n-dimensional distributions P = (p1, . . . , pn). Suppose that we are given a
fixed distribution R = (r1, . . . , rn), and define the energy of a distributions by
its distance, measured in relative entropy, from R:

E(P) =H (R, P) =
∑
i
ri log ri −

∑
i
ri logpi. (B.17)

If all we observe is the average D of E , then the corresponding maximum
entropy distribution for P is the Boltzmann–Gibbs distribution

P(P) = e
−λE

Z
= e

−λH (R,P)

Z
= eλH (R)∏

i p
λri
i

Z(λ,R)
, (B.18)

where λ is the temperature, which depends on the value D of the average
energy. Now, if we let α = λ+n and qi = (λri+1)/(λ+n), this distribution is
in fact the Dirichlet distribution DαQ(P) with parameters α and Q (note that
α ≥ 0, qi ≥ 0, and

∑
i qi = 1). If ri is uniform, then qi is also uniform. Thus

any Dirichlet distribution can be seen as the result of a MaxEnt calculation.

B.6 Minimum Relative Entropy

The minimum relative entropy principle [486] states that if a prior distribu-
tion Q is given, then one should choose a distribution P that satisfies all the
constraints of the problem and minimizes the relative entropy H (P ,Q). The
MaxEnt principle is obviously a special case of the minimum relative entropy
principle, when Q is uniform. As stated, the minimum relative entropy princi-
ple is a principle for finding posterior distributions, or for selecting a praticu-
lar class of priors. But the proper theory for finding posterior distributions is
the Bayesian theory, and therefore the minimum relative entropy principle (or
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MaxEnt) cannot have any universal value. In fact, there are known examples
where MaxEnt seems to give the “wrong” answer [229]. Thus, in our view, it
is unlikely that a general principle exists for the determination of priors. Or
if such a principle is really desirable, it should be that the most basic prior of
any model should be uniform. In other words, in any modeling effort there is
an underlying hierarchy of priors, and priors at the zero level of the hierarchy
should always be uniform in a canonical way. It is instructive to look in de-
tail at the cases where the minimum relative entropy principle yields the same
result as a Bayesian MAP estimation (see chapter 3).
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Appendix C

Probabilistic Graphical Models

C.1 Notation and Preliminaries

In this appendix, we review the basic theory of probabilistic graphical models
[557, 348] and the corresponding factorization of high-dimensional probabil-
ity distributions. First, a point of notation. If X and Y are two independent
random variables, we write X⊥Y . Conditional independence on Z is denoted
by X⊥Y |Z. This means that P(X, Y |Z) = P(X|Z)P(Y |Z). It is important to note
that conditional independence implies neither marginal independence nor the
converse. By G = (V , E) denote a graph with a set V of vertices and a set E of
edges. The vertices are numbered V = {1,2, ..., n}. If the edges are directed,
we write G = (V , �E). In all the graphs to be considered, there is at most one
edge between any two vertices, and there are no edges from a vertex to itself.
In an undirected graph, N(i) represents the sets of all the neighbors of vertex
i and C(i) represents the set of all the vertices that are connected to i by a
path. So,

N(i) = {j ∈ V : (i, j) ∈ E}. (C.1)

If there is an edge between any pair of vertices, a graph is said to be complete.
The cliques of G are the subgraphs of G that are both complete and maximal.
The clique graph GC of a graph G is the graph consisting of a vertex for each
clique in G, and an edge between two vertices, if and only if the corresponding
cliques have a nonempty intersection.

In a directed graph, the direction of the edges will often represent causality
or time irreversibility. We use the obvious notation N−(i) and N+(i) to denote
all the parents of i and all the children of i, respectively. Likewise, C−(i) and
C+(i) denote the ancestors, or the “past,” and the descendants of i, or the
“future,” of i. All these notations are extended in the obvious way to any set
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of vertices I . So for any I ∈ V ,

N(I) = {j ∈ V : i ∈ I and (i, j) ∈ E} − I. (C.2)

This is also called the boundary of I . In an undirected graph, a set of vertices
I is separated from a set J by a set K if and only if I and J are disjoint and any
path from any vertex in I to any vertex in J contains a vertex in K.

We are interested in high-dimensional probability distributions of the form
P(X1, ..., Xn), where the X variables represent both hidden and observed vari-
ables. In particular, we are interested in the factorization of such distributions
into products of simpler distributions, such as conditionals and marginals.
Obviously, it is possible to describe the joint distribution using the marginals

P(X1, ..., Xn) =
n−1∏
i=0

P(Xi+1|X1, ..., Xi). (C.3)

The set of complete conditional distributions P(Xi|Xj : j �= i) also defines
the joint distribution in a unique way, provided they are consistent (or else
no joint distribution can be defined) [68, 20]. The complete set of marginals
P(Xi) is in general highly insufficent to define the joint distribution, except
in special cases (see factorial distributions below). The problem of determin-
ing a multivariate joint distribution uniquely from an arbitrary set of marginal
and conditional distributions is examined in [198]. As we shall see, graphical
models correspond to joint distributions that can be expressed economically
in terms of local conditionals, or joint distributions over small clusters of vari-
ables. Probabilistic inference in such models allows one to approximate useful
probabilities, such as posteriors. A number of techniques are typically used
to carry inference approximations, including probability propagation, Monte
Carlo methods, statistical mechanics, variational methods, and inverse mod-
els.

For technical reasons [557], we assume that P(X1, ..., Xn) is positive every-
where, which is not restrictive for practical applications because rare events
can be assigned very small but nonzero probabilities. We consider graphs of
the form G = (V , E), or G = (V , �E), where each variable Xi is associated with
the corresponding vertex i. We let XI denote the set of variables Xi : i ∈ I ,
associated with a set I of indices. For a fixed graph G, we will denote by P(G)
a family of probability distributions satisfying a set of independence assump-
tions embodied in the connectivity of G. Roughly speaking, the absence of
an edge signifies the existence of an independence relationship. These inde-
pendence relationships are defined precisely in the next two sections, in the
two main cases of undirected and directed graphs. In modeling situations, the
real probability distribution may not belong to the set P(G), for any G. The
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goal then is to find a G and a member of P(G) as close as possible to the real
distribution—for instance, in terms of relative entropy.

C.2 The Undirected Case: Markov Random Fields

In the undirected case, the family P(G) corresponds to the notion of Markov
random field, or Markov network, or probabilistic independence network, or, in
a slightly different context, Boltzmann machine [272, 2]. Symmetric interaction
models are typically used in statistical mechanics—for example, Ising models
and image processing [199, 392], where associations are considered to be more
correlational than causal.

C.2.1 Markov Properties

A Markov random field on a graph G is characterized by any one of the fol-
lowing three equivalent Markov independence properties. The equivalence of
these properties is remarkable, and its proof is left as an exercise.

1. Pairwise Markov Property. Nonneighboring pairs Xi and Xj are inde-
pendent, conditional on all the other variables. That is, for any (i, j) �∈ E,

Xi⊥Xj|XV−{i,j}. (C.4)

2. Local Markov Property. Conditional on its neighbors, any variable Xi is
independent of all the other variables. That is, for any i in V ,

Xi⊥XV−N(i)∪{i}|XN(i). (C.5)

3. Global Markov Property. If I and J are two disjoint sets of vertices, sepa-
rated by K, the corresponding set of variables is independent conditional
on the variables in the third set:

XI⊥XJ|XK. (C.6)

These independence properties are equivalent to the statement

P(Xi|XV−{i}) = P(Xi|XN(i)). (C.7)

C.2.2 Factorization Properties

The functions P(Xi|Xj : j ∈ N(i)) are called the local characteristics of the
Markov random field. It can be shown that they uniquely determine the global
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distribution P(X1, ..., Xn), although in a complex way. In particular, and unlike
what happens in the directed case, the global distribution is not the product of
all the local characteristics. There is, however, an important theorem that re-
lates Markov random fields to Boltzmann–Gibbs distributions. It can be shown
that, as a result of the local independence property, the global distribution of
a Markov random field has the functional form

P(X1, ..., Xn) = e−f(X1,...,Xn)

Z
= e−

∑
C fC(XC)

Z
, (C.8)

where Z is the usual normalizing factor. C runs over all the cliques of G, and
fC is called the potential or clique function of clique C . It depends only on the
variables XC occurring in the corresponding clique. f is also called the energy.
In fact, P and G determine a Markov random field if and only if (C.8) holds
[500].

It is easy to derive the local characteristics and marginals from the po-
tential clique functions by applying the definition in combination with the
Boltzmann–Gibbs representation. The potential functions, on the other hand,
are not unique. The determination of a set of potential functions in the gen-
eral case is more elaborate. But there are formulas to derive the potential
functions from the local characteristics. There is an important special case
that is particularly simple. This is when the graph G is triangulated. A graph
G is triangulated if any cycle of length greater than or equal to 4 contains at
least one chord. A singly connected graph (i.e. a tree) is an important special
case of a triangulated graph. A graph is triangulated if and only if its clique
graph has a special property called the running intersection property, which
states that if a vertex of G belongs to two cliques C1 and C2 of G, it must also
belong to all the other cliques on a path from C1 to C2 in the clique graph GC .
The intersection of two neighboring cliques C1 and C2 of G—that is, two adja-
cent nodes of GC—is called a separator. In a triangulated graph, a separator
of C1 and C2 separates them in the probabilistic independence sense defined
above.

Another important characterization of triangulated graphs is in terms of
perfect numbering. A numbering of the nodes in V is perfect if for all i, N(i)∩
{1,2, ..., i − 1} is complete. A graph is triangulated if and only if it admits a
perfect numbering (see [512], [350], and references therein).] The key point
here is that for Markov random fields associated with a triangulated graph,
the global distribution has the form

P(X1, ..., Xn) =
∏
C P(XC)∏
S P(XS)

, (C.9)

where C runs over the cliques and S runs over the separators, occurring in a
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junction tree, that is, a maximal spanning tree of GC .
∏
C P(XC) is the marginal

joint distribution of XC . The clique potential functions are then obvious.
A very special case of the Markov random field is when the graph G has

no edges. This is the case when all the variables Xi are independent and
P(X1, ..., Xn) =

∏n
i=1 P(Xi). Such joint distributions or Markov random fields

are called factorial. Given a multivariate joint distribution P , it is easy to see
that among all factorial distributions, the one that is closest to P in relative
entropy is the product of the marginals of P .

C.3 The Directed Case: Bayesian Networks

In the directed case, the family P(G) corresponds to the notions of Bayesian
networks, belief networks, directed independence probabilistic networks, di-
rected Markov fields, causal networks, influence diagrams, and even Markov
meshes [416, 557, 121, 106, 286, 246] (see [322] for a simple molecular bi-
ology illustration). As already mentioned, the direction on the edges usually
represents causality or time irreversibility. Such models are common, for in-
stance, in the design of expert systems.

In the directed case, we have a directed graph G = (V , �E). The graph is
also assumed to be acyclic, that is, with no directed cycles. This is because
it is not possible to consistently define the joint probability of the variables
in a cycle from the product of the local conditioning probabilities. That is, in
general the product P(X2|X1)P(X3|X2)P(X1|X3) does not consistently define
a distribution on X1, X2, X3. An acyclic directed graph represents a partial
ordering. In particular, it is possible to number its vertices so that if there is
an edge from i to j, then i < j. In other words, the partial ordering associated
with the edges is consistent with the numbering. This ordering is also called
a topological sort. We will assume that such an ordering has been chosen
whenever necessary, so that, the past of i C−(i) is included in {1,2, ..., i − 1},
and the future C+(i) is included in {i + 1, ..., n}. The moral of G = (V , �E) is
the undirected graph GM = (V , E +M) obtained by removing the direction on
the edges of G and by adding an edge between any two nodes that are parents
of the same child in G (if they are not already connected, of course). The
term “moral” was introduced in [350] and refers to the fact that all parents
are “married.” We can now describe the Markov independence properties of
graphical models with an underlying acyclic directed graph.

C.3.1 Markov Properties

A Bayesian network on a directed acyclic graph G is characterized by any one
of a number of equivalent independence properties. In all cases, the basic
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Markov idea in the directed case is that, conditioned on the present, the future
is independent of the past or, equivalently, that in order to predict the future,
all the relevant information is assumed to be in the present.

Pairwise Markov Property

Nonneighboring pairs Xi and Xj with i < j are independent, conditional on all
the other variables in the past of j. That is, for any (i, j) �∈ �E and i < j,

Xi⊥Xj|XC−(j)−{i}. (C.10)

In fact, one can replace C−(j) with the larger set {1, ..., j − 1}. Another equiv-
alent statement is that, conditional on a set of nodes I , Xi is independent of
Xj if and only if i and j are d-separated, that is, if there is no d-connecting
path from i to j [121]. A d-connecting path from i to j is defined as follows.
Consider a node k on a path from i to j. The node k is called linear, divergent,
or convergent, depending on whether the two edges adjacent to it on the path
are incoming and outgoing, both outgoing, or both incoming. The path from i
to j is d-connecting with respect to I if and only if every interior node k on the
path is either (1) linear or diverging and not a member of I , or (2) converging,
and [k ∪ C+(k)] ∩ I �= ∅. Intuitively, i and j are d-connected if and only if
either (1) there is a causal path between them or (2) there is evidence in I that
renders the two nodes correlated with each other.

Local Markov Property

Conditional on its parents, a variable Xi is independent of all other nodes,
except for its descendants. Thus

Xi⊥Xj |XN−(i), (C.11)

as long as j �∈ C+(i) and j �= i.

Global Markov Property

If I and J are two disjoint sets of vertices, we say that K separates I and J in
the directed graph G if and only if K separates I and J in the moral undirected
graph of the smallest ancestral set containing I , J, and K [349]. With this
notion of separation, the global Markov property is the same—that is, if K
separates I and J,

XI⊥XJ|XK. (C.12)

It can be also be shown [557] that the directed graph G satisfies all the
Markov independence relationships of the associated moral graph GM . The
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converse is not true in general, unless GM is obtained from G by removing
edge orientation only, that is, without any marriages. Finally, any one of the
three Markov independence properties is equivalent to the statement

P(Xi|XC−(i)) = P(Xi|XN−(i)). (C.13)

In fact, C−(i) can be replaced by the larger set {1, ..., i − 1}.

C.3.2 Factorization Properties

It is not difficult to see, as a result, that the unilateral local characteristics
P(Xi|XN−(i)) are consistent with one another, and in fact uniquely determine a
Bayesian network on a given graph. Indeed, we have

P(X1, ..., Xn) =
∏
i

P(Xi|XN−(i)). (C.14)

This property is fundamental. The local conditional probabilities can be speci-
fied in terms of lookup tables, although this is often impractical due to the size
of the tables. A number of more compact but also less general representations
are often used, such as noisy OR- [416] or NN-style representations, such as
sigmoidal belief networks [395] for binary variables, where the characteristics
are defined by local connection weights and sigmoidal functions, or the ob-
vious generalization to multivalued variables using normalized exponentials.
Having a local NN at each vertex to compute the local characteristics is another
example of hybrid model parameterization.

C.3.3 Learning and Propagation

There are several levels of learning in graphical models in general and Bayesian
networks in particular, from learning the graph structure itself to learning the
local conditional distributions from the data. With the exception of section
C.3.6, these will not be discussed here; reviews and pointers to the literature
can be found in [106, 246]. Another fundamental operation with Bayesian
networks is the propagation of evidence, that is, the updating of the probabil-
ities of each Xi conditioned on the observed node variables. Evidence prop-
agation is NP-complete in the general case [135]. But for singly connected
graphs (no more than one path between any two nodes in the underlying undi-
rected graph), propagation can be executed in time linear with n, the number
of nodes, using a simple message-passing approach [416, 4]. In the general
case, all known exact algorithms for multiply connected networks rely on the
construction of an equivalent singly connected network, the junction tree, by
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clustering the original variables, according to the cliques of the corresponding
triangulated moral graph ([416, 350, 467], with refinements in [287]).

A similar algorithm for the estimation of the most probable configuration
of the variables Xi is given in [145]. Schachter et al. [468] show that all the
known exact inference algorithms are equivalent in some sense to the algo-
rithms in [287] and [145]. An important conjecture, supported both by emprir-
ical evidence and results in coding theory, is that the simple message-passing
algorithm of [416] yields reasonably good approximations in the multiply con-
nected case (see [385] for details).

C.3.4 Generality

It is worth noting that the majority of models used in this book can be viewed
as instances of Bayesian networks. Artificial feed-forward NNs are Bayesian
networks in which the local conditional probability functions are delta func-
tions. Likewise, HMMs and Markov systems in general have a very simple
Bayesian network representation. In fact, HMMs are a special case of both
Markov random fields and Bayesian networks. We leave as a useful exercise
for the reader to derive these representations, as well as the Bayesian network
representation of many other concepts such as mixtures, hierarchical priors,
Kalman filters and other state space models, and so on. The generality of the
Bayesian network representation is at the root of many new classes of mod-
els currently under investigation. This is the case for several generalizations
of HMMs, such as input-output HMMs (see chapter 9), tree-structured HMMs
[293], and factorial HMMs [205].

When the general Bayesian network propagation algorithms are applied in
special cases, one “rediscovers” well-known algorithms. For instance, in the
case of HMMs, one obtains the usual forward–backward and Viterbi algorithms
directly from Pearl’s algorithm [493]. The same is true of several algorithms in
coding theory (turbo codes, Gallager–Tanner–Wiberg decoding) and in the the-
ory of Kalman filters (the Rauch–Tung–Streibel smoother), and even of certain
combinatorial algorithms (fast Fourier transform) [4, 204]. We suspect that
the inside–outside algorithm for context-free grammar is also a special case,
although we have not checked carefully. While belief propagation in general re-
mains NP-complete, approximate algorithms can often be derived using Monte
Carlo methods such as Gibbs sampling [210, 578], and variational methods
such as mean field theory (appendix A and [465, 276, 204]), sometimes lever-
aging the particular structure of a network. Gibbs sampling is particularly
attractive for Bayesian networks because of its simplicity and generality.



The Directed Case: Bayesian Networks 373

C.3.5 Gibbs Sampling

Assuming that we observe the values of the variables associated with some of
the visible nodes, we want to sample the value of any other node i according to
its conditional probability, given all the other variables. From the factorization
(C.14), we have

P(Xi|XV−{i}) = P(XV)
P(XV−{i})

=
∏
j P(Xj|XN−(j))∑

xi P(X1, . . . , Xi = xi, . . . , Xn) , (C.15)

which yields, after simplifications of common numerator and denominator
terms,

P(Xi|XV−{i}) =
P(Xi|XN−(i))

∏
j∈N+(i) P(Xj|XN−(j))∑

xi P(Xi = xi|N−(i))
∏
j∈N+(i) P(Xj |XN−(j)) . (C.16)

As expected, the conditional distributions needed for Gibbs sampling are lo-
cal and depend only on i, its parents, and its children. Posterior estimates can
then be obtained by averaging simple counts at each node, which requires very
little memory. Additional precision may be obtained by averaging the probabil-
ities at each node (see [396] for a partial discussion). As in any Gibbs sampling
situation, important issues are the duration of the procedure (or repeated pro-
cedure, if the sampler is used for multiple runs) and the discarding of the
initial samples (“burn-in”), which can be nonrepresentative of the equilibrium
distribution.

C.3.6 Sleep–Wake Algorithm and Helmholtz Machines

A theoretically interesting, but not necessarily practical, learning algorithm
for the conditional distributions of a particular class of Bayesian networks is
described in [255, 146]. These Bayesian networks consist of two inverse mod-
els: the recognition network and the generative network. Starting from the
input layer, the recognition network has a feed-forward layered architecture.
The nodes in all the hidden layers correspond to stochastic binary variables,
but more general versions—for instance, with multivalued units—are possible.
The local conditional distributions are implemented in NN style, using combi-
national weights and sigmoidal logistic functions. The probability that unit i
is on is given by

P(Xi = 1) = 1

1+ e−
∑
k∈N−(i) wikxk+bli

, (C.17)

where xk denotes the states of the nodes in the previous layer. The gener-
ative network mirrors the recognition network. It is a feed-forward layered
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network that begins with the top hidden layer of the recognition network and
ends up with the input layer. It uses the same units but with a reverse set
of connections. These reverse connections introduce local loops so the com-
bined architecture is not acyclic. This is not significant, however, because the
networks are used in alternation rather than simultaneously.

The sleep–wake algorithm, named after its putative biological interpreta-
tion, is an unsupervised learning algorithm for the forward and backward con-
nection weights. The algorithm alternates between two phases. During each
phase, the unit activities in one of the networks are used as local targets to
train the weights in the opposite network, using the delta rule. During the
wake phase, the recognition network is activated and each generative weight
wjk is updated by

∆wjk = ηxk(xj − pj), (C.18)

where xj represents the state of unit j in the recognition network and pj the
corresponding probability calculated as in (C.17), using the generative connec-
tions. A symmetric update rule is used during the sleep phase, where the
fantasies (dreams) produced by the generative network are used to modify the
recognition weights [255, 574].



Appendix D

HMM Technicalities, Scaling,
Periodic Architectures,
State Functions, and Dirichlet
Mixtures

D.1 Scaling

As already pointed out, the probabilities P(π|O,w) are typically very small,
beyond machine precision, and so are the forward variables αi(t), as t in-
creases. A similar observation can be made for the backward variables βi(t),
as t decreases. One solution for this problem is to scale the forward and back-
ward variables at time t by a suitable coefficient that depends only on t. The
scalings on the αs and βs are defined in a complementary way so that the
learning equations remain essentially invariant under scaling. We now give
the exact equations for scaling the forward and backward variables, along the
lines described in [439].1 For simplicity, throughout this section, we consider
an HMM with emitting states only. We leave as an exercise for the reader to
adapt the equations to the general case where delete states are also present.

1The scaling equations in [439] contain a few errors. A correction sheet is available from the
author.
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D.1.1 Scaling of Forward Variables

More precisely, we define the scaled variables thus:

α̂i(t) = αi(t)∑
j αj(t)

. (D.1)

At time 0, for any state i, we have αi(0) = α̂i(0). The scaled variables α̂i(t)
can be computed recursively by alternating a propagation step with a scaling
step. Let ˆ̂αi(t) represent the propagated α̂i(t) before scaling. Assuming that
all variables have been computed up to time t − 1, we first propagate α̂i by
(7.5):

ˆ̂αi(t) =
∑

j∈N−(i)
α̂j(t − 1)tijeiXt , (D.2)

with ˆ̂αi(0) = αi(0). The same remarks as for the propagation of the αi(t)
apply here. Therefore, using (D.1),

ˆ̂αi(t) = αi(t)∑
j αj(t − 1)

. (D.3)

We then scale the ˆ̂α(t)s, which by (D.3) is equivalent to scaling the αs:

ˆ̂αi(t)∑
j ˆ̂αj(t)

= αi(t)∑
j αj(t)

= α̂i(t). (D.4)

This requires computing at each time step the scaling coefficient c(t) =∑
i α̂i(t). From (D.3), the relation between c(t) and the scaling coefficent

C(t) =∑i αi(t) of the αs is given by:

C(t) =
t∏

τ=1

c(τ). (D.5)

D.1.2 Scaling of Backward Variables

The scaling of the backward variables is slightly different, in that the scaling
factors are computed from the forward propagation rather than from the βs.
In particular, this implies that the forward propagation must be completed in
order for the backward propagation to begin. Specifically, we define the scaled

β̂i(t) = βi(t)
D(t)

. (D.6)
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The scaling coefficient is defined to be

D(t) =
T∏
τ=t

c(τ). (D.7)

The reason for this choice will become apparent below. Assuming all vari-
ables have been computed backward to time t + 1, the β̂s are first propagated
backward using (7.10) to yield the variables

ˆ̂βi(t) =
∑

j∈N+(i)
β̂j(t + 1)tjiejXt+1 . (D.8)

The ˆ̂βi(t) are then scaled by c(t), to yield

β̂i(t) =
ˆ̂βi(t)
c(t)

= βi(t)
D(t)

(D.9)

as required by (D.6).

D.1.3 Learning

Consider now any learning equation, such as the EM equation for the transition
parameters (7.31):

t+ji =
∑T
t=0 γji(t)∑T
t=0 γi(t)

=
∑T
t=0αi(t)tjiejXt+1βj(t + 1)∑T

t=0
∑
j∈S αi(t)tjiejXt+1βj(t + 1)

. (D.10)

Any product of the form αi(t)βj(t + 1) is equal to Cα̂i(t)β̂j(t + 1), with C =
C(t)D(t+1) =∏T

1 c(t) independent of t. The constant C cancels out from the
numerator and the denominator. Therefore the same learning equation can be
used by simply replacing the αs and βs with the corresponding scaled α̂s and
β̂s. Similar remarks apply to the other learning equations.

D.2 Periodic Architectures

D.2.1 Wheel Architecture

In the wheel architecture of chapter 8, we can consider that there is a start
state connected to all the states in the wheel. Likewise, we can consider that
all the states along the wheel are connected to an end state. The wheel archi-
tecture contains no delete states, and therefore all the algorithms (forward,
backward, Viterbi, and scaling) are simplified, in the sense that there is no
need to distinguish between emitting and delete states.
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D.2.2 Loop Architecture

The loop architecture is more general than the wheel architecture because
it contains delete states, and even the possibility of looping through delete
states. We introduce the following notation:

• h is the anchor state of the loop. The anchor state is a delete (silent)
state, although it is not associated with any main state.

• L denotes the set of states in the loop.

• κ denotes the probability of going once around the loop silently. It is
the product of all the tji associated with consecutive delete states in the
loop.

• tdji is the probability of the shortest direct silent path from i to j in the
architecture.

• tDji is the probability of moving silently from i to j. For any two states

connected by at least one path containing the anchor, we have tDji =
tdji(1+ κ + (κ2) . . .) = tdji/(1− κ).

Forward Propagation Equations

Forward propagation equations are true both for instantaneous propagation
and at equilibrium. For any emitting state i ∈ E,

αi(t + 1) =
∑

j∈N−(i)
αj(t)tijeiXt+1 . (D.11)

For any silent state i, including the anchor state,

αi(t + 1) =
∑

j∈N−(i)
αj(t + 1)tij . (D.12)

For the anchor state, one may separate the contribution from the loop and
from the flanks as

αh(t + 1) =
∑

j∈N−(h)−L
αj(t + 1)thj +

∑
j∈N−(h)∩L

αj(t + 1)thj . (D.13)
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Implementations

There are three possible ways of implementing the propagation. First, iterate
instantaneous propagation equations until equilibrium is reached. Second,
iterate the equilibrium equations only once through the loop, for the anchor
state. That is, write x = αh(t + 1), forward-propagate the above equations
once through the loop as a function of x, and solve for x at the end. Once
the loop is completed, this yields an equation of the form x = ax + b and so
x = b/(1 − a). Then replace x by its newly found value in the expression of
αi(t + 1) for all i ∈ L.

Third, solve analytically for x. That is, directly find the equilibrium value
of x = αh(t + 1) (i.e., a and b above). For this, note that the paths leading to
the expression of αh(t + 1) can be partitioned into two classes depending on
whether Xt+1 is emitted inside or outside the loop:

αh(t + 1) =
∑

j∈N−(h)−L
αj(t + 1)thj(1+κ+κ2+ . . .)+

∑
j∈E∩L

αj(t+1)tDhj. (D.14)

Thus the second term in the right-hand side accounts for the case where the
emission of Xt+1 inside the loop is followed by any number of silent revolu-
tions terminating with the anchor state. This term contains unknown quanti-
ties such as αj(t+1). These are easy to calculate, however, using the values of
αj(t) that are known from the previous epoch of the propagation algorithm.
So finally,

αh(t+1) = 1
1− κ

∑
j∈N−(h)−L

αj(t+1)thj+
∑

j∈E∩L

∑
k∈N−(j)

αk(t)ajkejXt+1tDhj. (D.15)

For the specific calculation of the last sum above, we consider the following
implementation, where we forward-propagate two quantities, αi(t) and αLi (t).
αLi (t) is to be interpreted as the probability of being in state i at time t while
having emitted symbol t in the loop and not having traversed the anchor state
yet again. For any emitting state i in the loop, the propagation equations are

αi(t + 1) = αLi (t + 1) =
∑

j∈N−(i)
αj(t)tij eiXt+1 . (D.16)

For any mute state (delete states and anchor) i in the loop, the propagation
equations are

αLi (t + 1) =
∑

j∈N−(i)∩L
αLj (t + 1)tij . (D.17)

These equations should be initialized with αLh(t + 1) = 0 and propagated all
the way once through the loop to yield, at the end, a new value for αLh(t + 1).
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We then have

αh(t + 1) = 1
1− κ [

∑
j∈N−(h)−L

αj(t + 1)thj +αLh(t + 1)]. (D.18)

At time 0, initialization is as follows:

• αi(0) = 0 for any emitting state

• αLi (0) = 0 for any state, including the anchor

• αh(0) =
∑
j∈N−(h)−L αj(0)thj/(1− κ)

• αi(0) =
∑
j∈N−(i) αj(0)tij for any mute state in the loop exept the anchor

All variables can be computed with one pass through the loop by using
propagating α(t) and αL(t) simultaneously through the loop, in the following
order. At step t, assume that αi(t) is known for the anchor state and all
emitting states. Then:

• Set αLh(t + 1) to 0.

• Forward-propagate simultaneously through the loop the quantities αi(t)
for mute states (D.12), αi(t + 1) = αLi (t + 1) for emitting states (D.16),
and αLi (t + 1) for all mute states (D.17).

• Calculate αh(t + 1) by (D.18).

Backward propagation and scaling equations for the loop architecture can be
derived along the same lines.

D.3 State Functions: Bendability

As discussed in chapters 7 and 8, any function that depends on the local amino
acid or nucleotide composition of a family, such as entropy, hydrophobicity, or
bendability, can be studied with HMMs. In particular, the expectation of such
a function computed from the HMM backbone probabilities enhances patterns
that are not always clearly present in individual members of the family. This
expectation is straightforward to compute when the corresponding function or
scale is defined over single alphabet letters (entropy, hydrophobicity). A little
more care is needed when the function depends on adjacent pair or triplet of
letters, usually DNA dinucleotides or trinucleotides (bendability, nucleosome
positioning, stacking energies, propeller twist). Convolving several functions
with the HMM backbone can help determine structural and functional proper-
ties of the corresponding family. Over 50 different functions are available in



State Functions: Bendability 381

our current HMM simulator. Here we show how to compute such expectations
in the case of bendability, which is a little harder because of its dependence
on triplets rather than single letters.

D.3.1 Motivation

Average bending profiles can be computed directly from a multiple alignment
of the available sequences to avoid the risk of introducing exogenous artifacts.
It is useful, however, to be able to define and compute bending profiles directly
from an HMM, for several reasons.

• The computation is faster because it can be executed as soon as the HMM
is trained, without having to align all the sequences to the model.

• In many of the cases we have tried, the profiles derived from the HMM
and the multiple alignment have very similar characteristics. Consistency
of the two bending profiles can be taken as further evidence that the
HMM is a good model of the data. Discrepant cases may yield additional
insights.

• In certain cases—for example, when few data are available—a well-
regularized HMM may yield better bending profiles.

D.3.2 Definition of HMM Bending Profiles

We assume a standard linear HMM architecture, but similar calculations can be
done with the loop or wheel architectures. In the definition of an HMM bending
profile, it is natural to consider only HMM main states m0, . . . ,mN+1, where
m0 is the start state and mN+1 is the end state (unless there are particularly
strong transitions to insert states or delete states, in which case such states
should be included in the calculation). The bendability B(i,O) of a sequence
O = (X1

O, . . . ,X
N
O) at a position i, away from the boundary, can be defined by

averaging triplet bendabilities over a window of length W = 2l + 1:

B(i,O) = 1
W

i+l−2∑
j=i−l

b(XjO, . . . ,X
j+2
O ), (D.19)

where b(X,Y,Z) denotes the bendability of the XYZ triplet according to some
scale ([96] and references therein). The bendability B(i) of the family at posi-
tion i is then naturally defined by taking the average over all possible backbone
sequences:

B(i) =
∑
O
B(i,O)P(O). (D.20)
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This approach, however, is not efficient because the number of possible se-
quences is exponential in N. Fortunately, there exists a better way of organiz-
ing this calculation.

D.3.3 Efficient Computation of Bendability Profiles

From (D.20), we find

B(i) =
∑
O
B(i,O)

N∏
k=1

ekXkO

N+1∏
k=0

tmkmk+1 . (D.21)

The last product is the product of all HMM backbone transitions and is equal
to some constant C . Substituting (D.19) in (D.21), we have

B(i) = C
W

∑
O

i+l−2∑
j=i−l

b(XjO, . . . ,X
j+2
O )

N∏
k=1

ekXkO . (D.22)

Interchanging the sums yields

B(i) = C
W

i+l−2∑
j=i−l

∑
O
b(XjO, . . . ,X

j+2
O )

N∏
k=1

ekXkO . (D.23)

To sum over all sequences, we can partition the sequences into different
groups according to the letters X,Y, and Z appearing at positions j, j + 1, and
j + 2. After simplifications, this finally yields

B(i) = C
W

i+l−2∑
j=i−l

∑
X,Y,Z

b(X,Y,Z)ejXej+1Yej+2Z. (D.24)

Thus the definition in (D.20) is equivalent to the definition in (D.24), where
summations within a window occur over all possible alphabet triplets weighted
by the product of the corresponding emission probabilities at the correspond-
ing locations. Definition (D.24) is of course the easiest to implement and we
have used it to compute bending profiles from trained HMMs, usually omitting
the constant scaling factor C/W . In general, boundary effects for the first and
last l states are not relevant.

D.4 Dirichlet Mixtures

First recall from chapters 2 and 3 that the mean of a Dirichlet distribution
DαQ(P) is Q, and the maximum is reached for pX = (αqX − 1)/(α − |A|)
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provided pX ≥ 0 for all X. A mixture of Dirichlet distributions is defined by
P(P) =∑n

1 λiDαiQi(P), where the mixture coefficients must satisfy λi ≥ 0 and∑
i λi = 1. The expectation of the mixture is

∑
i λiQi, by linearity of the expec-

tation. For a Dirichlet mixture, the maximum in general cannot be determined
analytically.

D.4.1 Dirichlet Mixture Prior

Now consider the problem of choosing a prior for the emission distribution
P = (pX) associated with an HMM emitting state or, equivalently, the dice
model associated with a column of an alignment. Thus here pX are the param-
eters of the model. The data D consists of the letters observed in the column
with the corresponding counts D = (nX), with

∑
XnX = N. The likelihood

function for the data is given by

P(D|M) = P(nX|pX) =
∏
X

pnXX . (D.25)

We have seen that a natural prior is to use a single Dirichlet distribution. The
flexibility of such a prior may sometimes be too limited, especially if the same
Dirichlet is used for all columns or all emitting states. A more flexible prior is
a Dirichlet mixture

P(P) =
n∑
i=1

λiDαiQi(P) (D.26)

as in [489], where again the same mixture is used for all possible columns, to
reflect the general distribution of amino acid in proteins. The mixture com-
ponents DαiQi , their number, and the mixture coefficients can be found by
clustering methods. An alternative for protein models is to use the vectors
Qi associated with the columns of a PAM matrix (see chapter 10 and [497]).
Note that the present mixture model is different from having a different set
of mixing coefficients for each column prior. It is also different from parame-
terizing each P as a mixture in order to reduce the number of HMM emission
parameters, provided n < |A| (n = 9 is considered optimal in [489]), in a way
similar to the hybrid HMM/NN models of chapter 9. We leave it as an exercise
for the reader to explore such alternatives.

Now, from the single Dirichlet mixture prior and the likelihood, the poste-
rior is easily computed using Bayes’ theorem as usual

P(P |D) = 1
P(D)

n∑
i=1

λi
B(βi, Ri)
B(αi,Qi)

DβiRi(P). (D.27)
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The new mixture components are given by

βi = N +αi and riX = nX +αiqiX
N +αi . (D.28)

The beta function B is defined as

B(α,Q) =
∏

X Γ(αqX)
Γ(α)

, (D.29)

as usual with α ≥ 0, qX ≥ 0, and
∑

X qX = 1. The posterior of a mixture of
conjugate distributions is also a mixture of conjugate distributions. In this
case, the posterior is also a Dirchlet mixture, but with different mixture com-
ponents and mixture coefficients. Since the integral of the posterior over P
must be equal to one, we immediately have the evidence

P(D) =
n∑
i=1

λi
B(βi, Ri)
B(αi,Qi)

. (D.30)

As pointed out above, the MAP estimate cannot be determined analytically,
although it could be approximated by some iterative procedure. The MP esti-
mate, however, is trivial since it corresponds to the average of the posterior

p∗X =
1

P(D)

n∑
i=1

λi
B(βi, Ri)
B(αi,Qi)

riX. (D.31)

This provides a formula for the estimation of optimal model parameters in
this framework. Numerical implementation issues are discussed in [489].

D.4.2 Hierarchical Dirichlet Model

In hierarchical modeling, we introduce a higher level of priors, for in-
stance with a Dirichlet prior on the mixture coefficients of the previous
model. This two-level model is also a mixture model in the sense that
P(P |λ)= ∑λiDαiQi(P) but with

P(λ) =DβQ(λ) = Γ(β)∏
i Γ(βqi)

n∏
i=1

λβqi−1
i . (D.32)

We then have

P(P) =
∫
λ

P(P |λ)P(λ)dλ. (D.33)
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Interchanging sums and integrals yields

P(P) =
n∑
i=1

DαiQi(P)[
∫
λ
λiDβQ(λ)dλ] =

n∑
i=1

qiDαiQi(P), (D.34)

the second equality resulting from the Dirichlet expectation formula. Thus
this two-level hierarchical model is in fact equivalent to a one-level Dirichlet
mixture model, where the mixture coefficients qi are the expectation of the
second-level Dirichlet prior in the hierarchical model.
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Appendix E

Gaussian Processes, Kernel
Methods, and Support
Vector Machines

In this appendix we briefly review several important classes of machine learn-
ing methods: Gaussian processes, kernel methods, and support vector ma-
chines [533, 141].

E.1 Gaussian Process Models

Consider a regression problem consisting of K input-output training pairs
(x1, y1),..., (xK,yK) drawn from some unknown distribution. The inputs x are
n-dimensional vectors. For simplicity, we assume that y is one-dimensional,
but the extension to the multidimensional case is straightforward. The goal
in regression is to learn the functional relationship between x and y from the
given examples. The Gaussian process modeling approach [559, 206, 399], also
known as “kriging,” provides a flexible probabilistic framework for regression
and classification problems. A number of nonparametric regression models,
including neural networks with a single infinite hidden layer and Gaussian
weight priors, are equivalent to Gaussian processes [398]. Gaussian processes
can be used to define probability distributions over spaces of functions di-
rectly, without any need for an underlying neural architecture.

A Gaussian process is a collection of variables Y = (y(x1),y(x2), ...), with

387
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a joint Gaussian distribution of the form

P(Y |C, {xi}) = 1
Z

exp(−1
2
(Y − µ)TC−1(Y − µ)) (E.1)

for any sequence {xi}, where µ is the mean vector and Cij = C(xi, xj) is the
covariance of xi and xj . For simplicity, we shall assume in what follows that
µ = 0. Priors on the noise and the modeling function are combined into the
covariance matrix C . Different sensible parameterizations for C are described
below. From (E.1), the predictive distribution for the variable y associated with
a test case x is obtained by conditioning on the observed training examples.
In other words, a simple calculation shows that y has a Gaussian distribution

P(y|{y1, ..., yK}, C(xi, xj), {x1, ..., xK ,x} = 1√
2πσ

exp(−(y −y
∗)2

2σ2 ) (E.2)

with

y∗ = k(x)TC−1
K (y1, ..., yK) and σ = C(x,x)− k(x)TC−1

K k(x) (E.3)

where k(x) = (C(x1, x), ..., C(xK,x)) and CK denotes the covariance matrix
based on the K training samples.

E.1.1 Covariance Parameterization

A Gaussian process model is defined by its covariance function. The only
constraint on the covariance function C(xi, xj) is that it should yield positive
semidefinite matrices for any input sample. In the stationary case, the Bochner
theorem in harmonic analysis ([177] and given below for completeness) pro-
vides a complete characterization of such functions in terms of Fourier trans-
forms. It is well known that the sum of two positive matrices (resp. positive
definite) is positive (resp. positive definite). Therefore the covariance can be
conveniently parameterized as a sum of different positive components. Useful
components have the following forms:

• Noise variance: δijθ2
1 or, more generally, δijf(xi) for an input-dependent

noise model

• Smooth covariance: C(xi, xj) = θ2
2 exp(−∑n

u=1 ρ2
u(xiu − xju)2)

• And more generally: C(xi, xj) = θ2
2 exp(−∑n

u=1 ρ2
u|xiu − xju|r

• Periodic covariance: C(xi, xj) = θ2
3 exp(−∑n

u=1 ρ2
u sin2[π(xiu−xju)/γu]
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Notice that a small value of ρu characterizes components u that are largely
irrelevant for the output in a way closely related to the automatic relevance de-
termination framework [398]. For simplicity, we write θ to denote the vector of
hyperparameters of the model. Short of conducting lengthy Monte Carlo inte-
grations over the space of hyperparameters, a single value θ can be estimated
by minimizing the negative log-likelihood

E(θ) = 1
2

log detCK + 1
2
YTKC

−1
K YK + K2 log 2π. (E.4)

Without any specific shortcuts, this requires inverting the covariance matrix
and is likely to require O(N3) computations. Prediction or classification can
then be carried based on (E.3). A binary classification model, for instance is
readily obtained by defining a Gaussian process on a latent variable Z as above
and letting

P(yi = 1) = 1
1+ e−zi . (E.5)

More generally, when there are more than two classes, one can use normalized
exponentials instead of sigmoidal functions.

E.2 Kernel Methods and Support Vector Machines

Kernel methods and support vector machines (SVMs) are related to Gaussian
processes and can be applied to both classification and regression problems.
For simplicity, we consider here a binary classification problem characterized
by a set of labeled training example pairs of the form (xi,yi) where xi is an
input vector and yi = ±1 is the corresponding classification in one of two
classes H+ and H−. A a (0,1) formalism is equivalent but leads to more cum-
bersome notation. As an example, consider the problem of deciding whether a
given protein (resp. a given gene) belongs to a certain family, given the amino
acid sequences (resp. expression levels) of members within (positive examples)
and outside (negative examples) the family [275, 95]. In particular, the length
of xi can vary with i. The label y for a new example x is determined by a dis-
criminant function D(x; {xi,yi}), which depends on the training examples, in
the form y = sign(D(x; {xi,yi})). In a proper probabilistic setting,

y = sign(D(x; {xi,yi})) = sign(log
P(H+|x)
P(H−|x)) (E.6)

In kernel methods, the discriminant function is expanded in the form

D(x) =
∑
i
yiλiK(xi, x) =

∑
H+
λiK(xi, x)−

∑
H−
λiK(xi, x) (E.7)
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so that, up to trivial constants, log P(H+|x) = ∑
H+ λiK(xi, x) and similarly

for the negative examples. K is called the kernel function. The intuitive idea
is to base our classification of the new example on all the previous examples
weighted by two factors: a coefficient λi ≥ 0 measuring the importance of ex-
ample i, and the kernel K(xi, x) measuring how similar x is to example xi.
Therefore the expression for the discrimination depends directly on the train-
ing examples. This is different from the case of neural networks, for instance,
where the decision depends indirectly on the training examples via the trained
neural network parameters. Thus in an application of kernel methods two fun-
damental choices must be made regarding (a) the kernel K; and (b) the weights
λi. Variations on these choices lead to a spectrum of different methods, in-
cluding generalized linear models and SVMs.

E.2.1 Kernel Selection

To a first approximation, from the mathematical theory of kernels, a kernel
must be positive definite. By Mercer’s theorem of functional analysis (given
later in the section E.3.2 for completeness), K can be represented as an inner
product of the form

Kij = K(xi, xj) = φ(xi)φ(xj). (E.8)

Thus another way of looking at kernel methods is to consider that the original
x vectors are mapped to a “feature” space via the function φ(x). Note that
the feature space can have very high (even infinite) dimension and that the
vectors φ(x) have the same length even when the input vectors x do not. The
similiarity of two vectors is assessed by taking their inner product in feature
space. In fact we can compute the euclidean distance ||φ(xi) − φ(xj)||2 =
Kii − 2Kij +Kjj which also defines a pseudodistance on the original vectors.

The fundamental idea in kernel methods is to define a linear or nonlinear
decision surface in feature space rather than the original space. The feature
space does not need to be constructed explicitly since all decisions can be
made through the kernel and the training examples. In addition, as we are
about to see, the decision surface depends directly on a subset of the training
examples, the support vectors.

Notice that a dot product kernel provides a way of comparing vectors in fea-
ture space. When used directly in the discrimination function, it corresponds
to looking for linear separating hyperplanes in feature space. However more
complex decision boundaries in feature spaces (quadratic or higher order) can
easily be implemented using more complex kernels K′ derived from the inner
product kernel K, such as:

• Polynomial kernels: K′(xi, xj) = (1+K(xi, xj))m
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• Radial basis kernels: K′(xi, xj) = exp− 1
2σ2 (φ(xi) − φ(xj))t(φ(xi) −

φ(xj))

• Neural network kernels: K′(xi, xj) = tanh(µxtixj + κ)

E.2.2 Fisher Kernels

In [275] a general technique is presented for combining kernel methods with
probabilistic generative models. The basic idea is that a generative model, such
as an HMM, is typically trained from positive examples only and therefore may
not be always optimal for discrimination tasks. A discriminative model, how-
ever, can be built from a generative model using both positive and negative
examples and a kernel of the form K(xi, xj) = Ut(xi)F−1U(xj), where the vec-
tor U is the gradient of the log-likelihood of the generative model with respect
to the model parameters U(x) = ∂ log P(x|w)/∂w. This gradient describes
how a given value of w contributes to the generation of example x. For the
exponential family of distributions, the gradient forms essentially a sufficient
statistics. Notice again that U(x) has fixed length even when x has variable
length. For instance, in the case of an HMM trained on a protein family, U(x)
is the vector of derivatives that was computed in chapter 7. F is the Fisher in-
formation matrix F = E(U(x)Ut(x)) with respect to P(x|w), and this type of
kernel is called a Fisher kernel. The Fisher matrix consists of the second-order
derivatives of the log-likelihood and is therefore associated with the local cur-
vature of the corresponding manifold (see, for instance, [15]). F defines the
Riemannian metric of the underlying manifold. In particular, the local dis-
tance between two nearby models parameterized by w and w + ε is εtFε/2.
This distance also approximates the relative entropy between the two models.
In many cases, at least asymptotically with many examples, the Fisher ker-
nel can be approximated by the simpler dot product K(xi, xj) = UtxiUxj . The
Fisher kernel can also be modified using the transformations described above,
for example in the form K(xi, xj) = exp− 1

2σ2 (U(xi)−U(xj))t(U(xi)−U(xj).
It can be shown that, at least asymptotically, the Fisher kernel classifier is

never inferior to the MAP decision rule associated with the generative prob-
abilistic model. An application of Fisher kernel methods to the detection of
remote protein homologies is described in [275].

E.2.3 Weight Selection

The weights λ are typically obtained through an iterative optimization proce-
dure on an objective function (classification loss). In general, this corresponds
to a quadratic optimization problem. Often the weights can be viewed as La-
grange multipliers, or dual weights with respect to the original parameters of
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the problem (see section E.2.4 below). With large training sets, at the optimum
many of the weights are equal to 0. The only training vectors that matter in a
given decision are those with nonzero weights and these are called the support
vectors.

To see this, consider an example xi with target classification yi. Since our
decision is based on the sign of D(xi), ideally we would like yiD(xi), the
margin for example i, to be as large as possible. Because the margin can be
rescaled by rescaling the λs, it is natural to introduce additional constraints
such as 0 ≤ λi ≤ 1 for every λi. In the case where an exact separating mani-
fold exists in feature space, a reasonable criterion is to maximize the margin
in the worst case. This is also called risk minimization and corresponds to
maxλ mini yiD(xi). SVMs can be defined as a class of kernel methods based
on structural risk minimization (see section E.2.4 below). Substituting the ex-
pression for D in terms of the kernel yields maxλmini

∑
j λjyiyjKij. This can

be rewritten as maxλ mini
∑
j Aijλj , with Aij = yiyjKij and 0 ≤ λi ≤ 1. It

is clear that in each minimization procedure all weights λj associated with a
nonzero coefficient Aij will either be 0 or 1. With a large training set, many of
them will be zero for each i and this will remain true at the optimum. When
the margins are violated, as in most real-life examples, we can use a similar
strategy (an alternative also is to use slack variables as in the example given
in section E.2.5 below). For instance, we can try to maximize the average mar-
gin, the average being taken with respect to the weights λi themselves, which
are intended to reflect the relevance of each example. Thus in general we
want to maximize a quadratic expression of the form

∑
i λiyiD(xi) under a

set of linear constraints on the λi. Standard techniques exist to carry out such
optimizations. For example, a typical function used for minimization in the
literature is:

E(λi) = −
∑
i
[yiλiD(xi)+ 2λi]. (E.9)

The solution to this constrained optimization problem is unique provided that
for any finite set of examples the corresponding kernel matrix Kij is positive
definite. The solution can be found with standard iterative methods, although
the convergence can sometimes be slow. To accommodate training errors or
biases in the training set, the kernel matrix K can be replaced by K + µD,
where D is a diagonal matrix whose entries are either d+ or d− in locations
corresponding to positive and negative examples [533, 108, 141]. An example
of application of SVMs to gene expression data can be found in [95].

In summary, kernel methods and SVMs have several attractive features. As
presented, these are supervised learning methods that can leverage labeled
data. These methods can build flexible decision surfaces in high-dimensional
feature spaces. The flexibility is related to the flexibility in the choice of the
kernel function. Overfitting can be controlled through some form of margin
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maximization. These methods can handle inputs of variable lengths, such
as biological sequences, as well as large feature spaces. Feature spaces need
not be constructed explicitly since the decision surface is entirely defined in
terms of the kernel function and typically a sparse subset of relevant training
examples, the support vectors. Learning is typically achieved through iterative
solution of a linearly constrained quadratic optimization problem.

E.2.4 Structural Risk Minimization and VC Dimension

There are general bounds in statistical learning theory [533] that can provide
guidance in the design of learning systems in general and SVMs in particular.
Consider a family of classification functions f(x;w) indexed by a parameter
vector w. If the data points (x,y) are drawn from some joint distribution
P(x,y), then we would like to find the function with the smallest error or risk

R(w) =
∫

1
2
|y − f(x;w)|dP(x,y). (E.10)

This risk, however, is in general not known. What is known is the empirical
risk measured on the training examples:

RK(w) = 1
2K

K∑
1

|yi − f(xi;w)|. (E.11)

A fundamental bound of statistical learning theory is that for any 0 ≤ η ≤ 1,
with probability 1− η, we have

R(w) ≤ RK(w)+
√
h(log 2K/h)+ 1)− log(η/4)

K
(E.12)

where h is a non-negative integer called the Vapnik-Chervonenkis (VC) dimen-
sion [533].

The VC dimension is a property of a set of functions f(x;w). If a given set
of M points can be labeled in all possible 2M ways using functions in the set,
we say that the set of points is shattered. For instance, if f(x,w) is the set of
all lines in the planes, then every set of two points can easily be shattered, and
most set of three points (except those that are collinear) can also be shattered.
No set of four points, however, can be shattered. The VC dimension of the
set of functions f(x;w) is the maximum number of points for which at least
one instance can be shattered. Thus, for instance, the VC dimension of all the
lines in the plane is three and more generally, it can be shown that the VC
dimension of hyperplanes in the usual n-dimensional Euclidean space is n+1.
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The fundamental inequality of (E.12) embodies in some way the bias/vari-
ance or fitting/underfitting trade-off. It shows that we can control risk through
two buttons: the empirical error (how well we fit the data) and the VC dimen-
sion or capacity of the set of functions used in learning. The structural risk
minimization aims at optimizing both simultaneously by minimizing the right-
hand side of (E.12).

E.2.5 Simple Examples: Linear and Generalized Linear Model

Consider first the family of linear models of the form D(x;w) = wt
1x +w2

with w = (w1,w2), where w1 is a vector and w2 is a scalar, scaled in such a
way that mini |D(xi;w)| = 1. If R is the radius of the smallest ball containing
the training examples and if ||w1|| < A, then it can be shown that the VC
dimension h of this family of hyperplanes is bounded: h < R2A2. This bound
can be much tighter than the n+1 bound above. Thus we can use A to control
the capacity of the hyperplanes.

If a separating hyperplane exists, then the scaling above implies that
yiD(x;w) ≥ 1 for every example i. In the more general case where the con-
straints can be violated, we can introduce slack variables ξi ≥ 0 and require
yiD(x;w) ≥ 1− ξi. The support vector approach to minimize the risk bound
in (E.12) is to minimize

E(w) =wtw + µ
∑
i
ξi subject to ξi ≥ 0 and yiD(x;w) ≥ 1− ξi. (E.13)

The first term in (E.13) favors small VC dimension and the second term small
global error (empirical risk). Introducing Lagrange multipliers λi and using
the Kuhn-Tucker theorem of optimization theory, one can show that the solu-
tion has the form w = ∑i yiλixi. Intuitively, this is also clear from geometric
considerations since the vector w is orthogonal to the hyperplane. This re-
sults in the decision function D(x;w) = ∑i yiλixtix +w2 associated with a
plain dot product kernel. The coefficients λi are nonzero only for the sup-
port vectors corresponding to the cases where the slack constraints are satu-
rated: yiD(xi;w) = 1− ξi. The coefficient λi can be found by minimizing the
quadratic objective function

E(λ)= −
∑
i
λi+1

2

∑
ij
yiyjλiλjxtixj subject to 0 ≤ λi ≤ µ and

∑
i
λiyi = 0.

(E.14)
In a logistic linear model, P(y) = D(x) = σ(ywtx) where w is a vector

of parameters and σ is the logistic sigmoidal function σ(u) = 1/(1+ e−u). A
standard prior for w is a Gaussian prior with mean 0 and covariance C . Up to
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additive constants, the negative log-posterior of the training set is

E(w) = −
∑
i

logσ(yiwtxi)+ 1
2
wtC−1w. (E.15)

It is easy to check that at the optimum the solution must satisfy

w∗ = −
∑
i
yiλiCxi (E.16)

with λi = ∂ logσ(z)/∂z taken at z = yiw∗txi. Thus we obtain a solution with
the general form of (E.7) with the kernel K(xi, xj) = xtiCxj .

E.3 Theorems for Gaussian Processes and SVMs

For completeness, here we state two useful theorems underlying the theory of
kernel methods, SVMs, and Gaussian processes: Bochner’s theorem in proba-
bility and harmonic analysis and Mercer’s theorem in functional analysis.

E.3.1 Bochner’s Theorem

Bochner’s theorem provides a complete characterization of characteristic func-
tions in terms of Fourier transforms, and as a byproduct establishes the equiv-
alence between characteristic functions and covariance functions of continu-
ous stationary processes.

Consider a complex process, that is, a family of complex random variables
{Xt = Ut + iVt}, with −∞ < t < +∞. For simplicity, assume that E(Xt) = 0
and define the covariance by Cov(Xu,Xv) = E(Xu, X̄v). We will assume that
the process Xt is stationary and continuous, which means that the covariance
function is continuous and satisfies

Cov(Xs,Xs+t) = f(t). (E.17)

Thus it depends only on the distance between variables. Under these assump-
tions, Bochner’s theorem asserts that f satisfies

f(t) =
∫+∞
−∞

eiλtµ(dλ) (E.18)

where µ is a measure on the real line with total mass f(0). That is, f is positive
definite and is the Fourier transform of a finite measure. If the variables Xt are
real, then the measure µ is symmetric and

f(t) =
∫+∞
−∞

cosλtµ(dλ). (E.19)
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The measure µ is called the spectral measure of the process. Conversely, given
any finite measure µ on the real line, it can be shown that there exists a sta-
tionary process Xt with spectral measure µ. The measure µ/f(0) is a proba-
bility measure and therefore the function f in (E.18) is a characteristic func-
tion. In other words, an equivalent theorem is that a continuous function g(t)
is the characteristic function of a probability distribution if and only if it is
positive definite (i.e., it satisfies a relation similar to (E.18)) and also satisfies
the normalization g(0) = 1. Thus up to a normalisation factor, a continuous
characteristic function is equivalent to the covariance function of a stationary
process. Additional details can be found in [177].

E.3.2 Mercer’s Theorem

Mercer’s theorem provides the connection between symmetric positive defi-
nite kernels and dot products in “feature space”. Consider an integral oper-
ator κ : L2 → L2, between two L2 (square-integrable) spaces, with continuous
symmetric kernel K, so that

(κf)y =
∫
K(x,y)f(x)dx. (E.20)

Assume that K is also positive definite, i.e.∫
f(x)K(x,y)f(y)dxdy > 0 (E.21)

if f �= 0. Then there exists an orthonormal set of basis of functions ξi(x) such
that K can be expanded in the form

K(x,y) =
∞∑
i=1

λiξi(x)ξi(y) (E.22)

with λi ≥ 0, and the scalar product product (ξiξj)L2 = δij (orthonormality),
for any pair of integers i and j. From (E.20) and the orthonormality condition,
we have

(κξi)y =
∫ ∞∑
j=1

λjξj(x)ξj(y)ξi(x)dx = λiξi(y). (E.23)

In other words, κ is a compact operator with an eigenvector decomposition
with eigenvectors ξi and nonnegative eigenvalues λi. If we define the function
φ(x) by

φ(x) =
∞∑
i=1

√
λiξi(x), (E.24)
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then using the orthonormality conditions again yields

K(x,y) = φ(x)φ(y), (E.25)

which is the decomposition required in (E.8). Conversely, if we start with a
continuous embedding φ(x) of x into a feature space of dimension M, we
can then define a continuous kernel K(x,y) using (E.25). The corresponding
operator is positive definite since∫

f(x)K(x,y)f(y)dxdy =
∫
f(x)(φ(x)φ(y))f(y)dxdy =

M∑
i=1

∫
f(x)φi(x)φi(y)f(y)dxdy =

M∑
i=1

(
∫
f(x)φi(x)dx)2 ≥ 0.

(E.26)
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Appendix F

Symbols and Abbreviations

Probabilities

• π : Unscaled degree of confidence or belief

• P(P ,Q,R . . .): Probability (actual probability distributions)

• E (EQ): Expectation (expectation with respect to Q)

• Var: Variance

• Cov: Covariance

• Xi, Yi (xi,yi): Propositions or random variables (xi actual value of Xi)

• X̄: Complement or negation of X

• X⊥Y (X⊥Y |Z): X and Y are independent (independent conditionally on
Z)

• P(x1, . . . , xn): Probability that X1 = x1, . . . , Xn = xn. When the context is
clear, this is also written as P(X1, . . . , Xn). Likewise, for a specific density
Q, we write Q(x1, . . . , xn) or Q(X1, . . . , Xn)

• P(X|Y)(E(X|Y)): Conditional probability (conditional expectation)

• N (µ,σ),N (µ,C),N (µ,σ2),N (x;µ,σ2): Normal (or Gaussian) density
with mean µ and variance σ2, or covariance matrix C

• Γ(w|α,λ): Gamma density with parameters α and λ

• DαQ: Dirichlet distribution with parameters α and Q

399
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• t(x;ν,m,σ2), t(ν,m,σ2): Student distribution with ν degrees of free-
dom, location m, and scale σ

• I(x;ν,σ2), I(ν,σ2): scaled inverse gamma distribution with ν degrees
of freedom and scale σ

Functions

• E : Energy, error, negative log-likelihood or log-posterior (depending on
context)

• ET , EG, EC : Training error, generalization error, classification error

• EP : Parsimony error

• F : Free energy

• L: Lagrangian

• D: Decision function

• R: Risk function

• RK : Empirical risk function

• H (P), H (X): Entropy of the distribution P , or the random variable
X/differential entropy in continuous case

• H (P ,Q), H (X, Y ): Relative entropy between the distributions P and Q
or between the random variables X and Y

• I(P ,Q), I(X, Y ): Mutual information between the distributions P and Q,
or the random variables X and Y

• Z: Partition function or normalizing factor (sometimes also C)

• C : Constant or normalizing factor

• δ(x,y): Kronecker function equal to 1 if x = y and 0 otherwise

• f , f ′: Generic function and derivative of f

• Γ(x): Gamma function

• B(α,Q): Beta function (appendix D)
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• We also use convex (∪) to denote upward convexity (positive second
derivative), and convex (∩) to denote downward convexity (negative sec-
ond derivative), rather than the more confusing “convex” and “concave”
expressions

Models, Alphabets, and Sequences

• M (M =M(w)): Model (model with parameters w)

• D: Data

• I : Background information

• H: Hidden or latent variables or causes

• S = {s1 , s2, . . . , s|S|}: Set of states of a system

• s: Generic state

• A (X): Alphabet (generic letter)

• A = {A,C,G,T}: DNA alphabet

• A = {A,C,G,U}: RNA alphabet

• A = {A,C,D, . . .}: Amino acid alphabet

• A∗: Set of finite strings over A

• O = (X1 . . .Xt . . .): Generic sequence (“O” stands for “observation” or “or-
dered”)

• ∅: Empty sequence

• O1, . . . ,OK : Set of training sequences

• Ojk: jth letter of kth sequence

Graphs and Sets

• G = (V , E): Undirected graph with vertex set V and edge set E

• G = (V , �E): Directed graph with vertex set V and edge set E

• T : Tree

• N(i): Neighbors of vertex i

Symbols and Abbreviations
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• N+(i): Children of vertex i in a directed graph

• N−(i): Parents of vertex i in a directed graph

• C+(i): The future, or descendants, of vertex i in a directed graph

• C−(i): The past, or ancestors, of vertex i in a directed graph

• N(I): Neighbors or boundary of a set I of vertices

• P(G): Family of probability distributions satisfying the conditional inde-
pendence assumptions described by G

• GC : Clique graph of G

• GM : Moral graph of G

• ∪, ∩, :̄ Union, intersection, complement of sets

• ∅: Empty set

Dimensions

• |A|: Number of alphabet symbols

• |S|: Number of states

• |H|: Number of hidden units in HMM/NN hybrid models

• N: Length of sequences (average length)

• K: Number of sequences or examples (e.g., in a training set)

• T : Time horizon (sometimes also temperature when no confusion is pos-
sible)

General Parameters

• w : Generic vector of parameters

• tji: Transition probability from i to j, for instance in a Markov chain

• t (wt
ij , X

t): Time index, in algorithmic iterations or in sequences

• +, − (w+
ij ): Relative time index, in algorithmic iterations

• ∗ (w∗
ij ): Optimal solutions
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• η: Learning rate

Neural Networks

• wij : Connection weight from unit j to unit i

• wi, λi: Bias of unit i, gain of unit i

• Dj = (dj, tj): Training example; dj is the input vector and tj is the cor-
responding target ouput vector

• yi = fi(xi): Input-output relation for unit i: xi is the total input into the
unit, fi is the transfer function, and yi is the output

• y(di): Output activity of NN with input vector di

• yj(di): Activity of the jth ouput unit of NN with input vector di

• tj(di): Target value for the jth ouput unit of NN with input vector di

Hidden Markov Models

• m,d, i, h: Main, delete, insert, and anchor states. Most of the time, i is
just an index

• start, end: Start state and end state of an HMM (also denoted S and E in
figures)

• E: Set of emitting states of a model

• D: Set of delete (silent) states of a model

• L: In appendix D only, L denotes the set of states in the loop of an HMM
loop architecture

• tij (wij ): Transition probability from state j to state i (normalized expo-
nential representation)

• eiX (wiX): Emission probability for letter X from state i (normalized expo-
nential representation)

• tDij : Silent transition probability from state j to state i

• π : Path variables

• n(i,X, π,O): Number of times the letter X is produced from state i along
a path π for a sequence O in a given HMM

Symbols and Abbreviations
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• αi(t): Forward variables

• αLi (t): Forward variables in the HMM loop architecture

• βi(t): Backward variables

• α̂i(t): Scaled forward variables

• β̂i(t): Scaled backward variables

• γi(t): Probability of being in state i at time t in an HMM for a given
observation sequence

• γji(t): Probability of using the i to j transition at time t in an HMM for a
given observation sequence

• δi(t): Variables used in the recursion of the Viterbi algorithms

• κ: Probability of going around an HMM loop silently

• b(X,Y,Z): Bendability of triplet XYZ

• B(i,O): Bendability of sequence O at position i

• B(i): Bendability of a family of sequences at position i

• W : Length of averaging window in bendability calculations

Bidirectional Architectures

• W : Total number of parameters

• Ot : Output probability vector

• Bt : Backward context vector

• Ft : Forward context vector

• It : Input vector

• η(.): Output function

• β(.): Backward transition function

• φ(.): Forward transition function

• n: Typical number of states in the chains

• q: Shift operator
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Grammars

• L: Language

• G: Grammar

• L(G): Language generated by grammar G

• R: Production rules of a grammar

• V : Alphabet of variables

• s = start: Start variable

• α → β: Grammar production rule: α “produces” or “expands to” β

• πi(t): Derivation variable in grammars

• n(β,u,π,O): Number of times the rule u → β is used in the derivation
π of a sequence O in a given grammar

• Pα→β (wα→β): Probability of the production rule α → β in a stochastic
grammar (normalized exponential representation)

Phylogenetic Trees

• r : Root node

• Xi: Letter assigned to vertex i

• dji: Time distance from node i to node j

• pXjXi (dji): Probability that Xi is substituted by Xj over a time dji

• χi(t): Random variable associated with letter at position i in a sequence
at time t

• piYX(t): Probability that X is substituted by Y over a time t at position i in
a sequence

• P(t) = (pYX(t)): Matrix of substitution probabilities for time t

• Q = (qYX): Derivative matrix of P at time 0 (Q = P ′(0))
• p = (pX): Stationary distribution

• χi: Random variable associated with letter at node i in a tree

Symbols and Abbreviations
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• I : Set of internal nodes of a tree

• O+(i): Evidence contained in subtree rooted at note i

Microarrays

• n (nc , nt): Number of expression measurements of a gene (in the control
and treatment cases)

• xc1 , . . . , xcnc (xt1, . . . , xtnt ): Expression measurements of a gene in the con-
trol case (and treatment case)

• m (mc , mt): Empirical means of measurements of a gene (in the control
and treatment cases)

• s2 (s2
c , s2

t ): Empirical variances of measurements of a gene (in the control
and treatment cases)

• d1, . . . , dN : N data points to be clustered

• K: Number of clusters

Kernel Methods and Support Vector Machines

• w: Vector of model parameters

• λi: Weights

• ξi: Slack variables

• Kij = K(xi, xj): Kernel function

• F : Fisher information matrix

• φ(x): Feature vector

• U(x): Gradient vector of the log-likelihood with respect to model param-
eters

• h: VC dimension

Abbreviations

• CFG: Context-free grammar

• CSG: Context-sensitive grammar
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• BIOHMM: Bidirectional IOHMM

• BRNN: Bidirectional RNN

• EM: Expectation maximization

• HMM: Hidden Markov model

• IOHMM: Input-output HMM

• LMS: Least mean square

• MAP: Maximum a posteriori

• MaxEnt: Maximum entropy

• MCMC: Markov chain Monte Carlo

• ML: Maximum likelihood

• MLP: Multilayer perceptron

• MP: Mean posterior

• NN: Neural network

• RNN: Recursive NN

• RG: Regular grammar

• REG: Recursively enumerable grammar

• SG: Stochastic grammar

• SCFG: Stochastic context-free grammar

• SS: Secondary structure

• SVM: Support vector machine

• VC: Vapnik-Chervonenkis

Symbols and Abbreviations
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