
Chapter 11

Stochastic Grammars and
Linguistics

11.1 Introduction to Formal Grammars

In this chapter we explore one final class of probabilistic models for sequences,
stochastic grammars. The basic idea behind stochastic grammars is a direct
extension of the simple dice model of chapter 3 and of HMMs.

As briefly mentioned in chapter 1, formal grammars were originally devel-
oped to model natural languages, around the same time that the double-helical
structure of DNA was elucidated by Watson and Crick. Since then, grammars
have been used extensively in the analysis and design of computer languages
and compilers [3]. Grammars are natural tools for modeling strings of letters
and, more recently, they have been applied to biological sequences. In fact,
many problems in computational molecular biology can be cast in terms of
formal languages [91, 479]. Here, language!formalthe basic goal again is to
produce, by machine learning, the corresponding grammars from the data.

Next, we review the rudiments of the theory of formal grammars, includ-
ing different classes of grammars, their properties, the Chomsky hierarchy,
and the connection to HMMs. In section 11.3, we demonstrate how stochastic
grammars can be applied to biological sequences, and especially the appli-
cation of context-free grammars to RNA molecules. In the subsequent three
sections we consider priors, likelihoods, and learning algorithms. Finally, in
the last two sections we cover the main applications.
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11.2 Formal Grammars and the Chomsky Hierarchy

11.2.1 Formal Languages

We begin with an alphabet A of letters. The set of all finite strings over A is
denoted by A∗. ∅ denotes the empty string. A language is a subset of A∗. In
this trivial sense, we can say that promoters or acceptor sites in intervening
sequences form a language over the DNA alphabet. Such a definition by itself
is not very useful unless we define simple ways of generating, recognizing,
and classifying languages. A grammar can be seen as a compact set of rules
for generating a language. language!formal

11.2.2 Formal Grammars

A formal grammar is a set of rules for producing all the strings that are syn-
tactically correct, and only those strings. A formal grammar G consists of
an alphabet A of letters, called the terminal symbols; a second alphabet V of
variables, also called nonterminal symbols; and a set R of production rules.
Among the nonterminal symbols, there is a special s = start variable. Each
production rule in R consists of a pair (α,β), more commonly denoted α → β,
where α and β are elements of (A ∪ V)∗. The arrow in α → β can be read
as “produces” or “expands into.” We use Greek letters to denote strings that
could be combinations of nonterminal and terminal symbols. Thus, in the
most general case, α and β are strings made up of letters and variables. In
addition, we will assume that α contains at least one nonterminal symbol.
Given G and two strings γ and δ over (A ∪ V), we say that δ can be de-
rived from γ if there is a finite sequence of strings π = α1, . . . , αn such that
γ → α1 → . . . → αn → δ (also denoted γ →π δ), each step corresponding to an
application of a production rule in R. The language L = L(G) generated by the
grammar G is the set of all terminal strings that can be derived from the start
state s.

As an example, let us consider the grammar defined by A = {X,Y}, V = {s},
and R = {s → XsX, s → YsY, s → X, s → Y, s → ∅}. The string XYYX can be de-
rived from the string s: s → XsX → XYsYX → XYYX, by applying the first, second,
and fourth production rules in succession. More generally, it is easy to show
that G generates the set of all palindromes over A. Palindromes are strings
that can be read identically in the forward and backward directions. We can
now define several different types of grammars and the Chomsky hierarchy.
The Chomsky hierarchy is a classification of grammars by increasing degrees
of complexity and expressive power.
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11.2.3 The Chomsky Hierarchy

The Chomsky hierarchy and its properties are summarized in table 11.1.

Regular Grammars

One of the simplest classes of grammars is the regular grammars (RGs). In a
regular grammar, the left-hand side of a production rule is a single variable,
and the right-hand side is typically a single letter of the alphabet followed by
at most a single variable. Thus strings can grow in only one direction. More
precisely, a grammar G is regular (or right-linear) if all the production rules
are of the form u → Xv, or u → X, or u → ∅, where u and v are single
nonterminal symbols. A language is regular if it can be generated by a regular
grammar. language!regularRegular languages can also be described by other
means—for instance, in terms of regular expressions. Regular languages can
be recognized very efficiently, although their expressive power is limited.

Context-free Grammars

Regular grammars are special cases of context-free grammars (CFGs), that is,
grammars where the replacement of a variable by an expression does not de-
pend on the context surrounding the variable being replaced. More precisely, a
grammar G is context-free if all the production rules in R are of the form u→ β,
where u is a single nonterminal symbol. A language is language!context-
freecontext-free if it can be generated by a context-free grammar. Context
free-grammars can be expressed in canonical forms, also called normal forms,
such as the “Chomsky normal form” or the “Greibach normal form.” A context-
free grammar is said to be in Chomsky normal form if each production rule
has one of the following three forms: (1) s → ∅; (2) u → vw, where u, v, and
w are nonterminal symbols; (3) u → X. In addition, if s → ∅ is in R, then v
and w in (2) must be different from s.

The palindrome grammar above is context-free but not regular. Context-
free grammars are often used to specify the syntax of computer languages
and to build compilers. As can be expected, not all languages are context-free.
For example, copy languages are not context-free. A copy language consists
of all the strings where the second half is a copy of the first half. XXYXXY
belongs to a copy language (corresponding to direct repeats in DNA). Although
copy languages may appear similar to palindromes, they really require a more
complex class of grammars. Context-free grammars have also been used to
model natural languages, but with limited success because natural languages
are not context-free.
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Regular Context-free Context-sensitive Recursively enumerable
Production u→ Xv u → vw αXγ → αβγ All
rules u→ X u → X
Closure ∪, ., � ∪, ., � ∪, ., � All
properties ∩,¯ no ∩, no¯
Automata Finite-state Pushdown Bounded tape Turing machine
equivalence automata automata Turing machine
Characteristic Palindromes Copy language All
language
Characteristic No long-range Nested Crossing All
dependencies

Table 11.1: The Zoo of Grammars and Their Associated Production Rules and Equivalence Rela-
tions.

Context-sensitive Grammars

Within the grammars that are not context-free, we can define the subclass
of context-sensitive grammars (CSGs). A grammar G is context-sensitive if all
the production rules are of the form αXγ → αβγ for X in A, β �= ∅. (X can
be replaced by β in the context α − γ .) In addition, the single rule s → ∅
is allowed, provided s does not appear on the right-hand side of any other
production rule. A language is context-sensitive if it can be generated by a
context-sensitive grammar. It can be shown that copy languages are context-
sensitive but not context-free. Context-sensitive languages are characterized
by grammars in which the right-hand side of the production rules is at least as
long as the left-hand side.

Recursively Enumerable Grammars

These are the most general grammars, without any of the restrictions above.
Recursively enumerable refers to the fact that if a word is in the corresponding
language, its derivation can always be obtained on a Turing machine in finite
time, simply by listing all possible (countable) derivations. Recursively enu-
merable is weaker than recursive: in general membership of a word in a lan-
guage cannot be established in finite time, as in the classical halting problem.
The term “Chomsky hierarchy” refers to the theorem that the main classes of
grammars we have seen so far form a strictly increasing sequence. That is,

RGs ⊂ CFGs ⊂ CSGs ⊂ REGs, (11.1)

where all the inclusions are strict and RGs = regular grammars, CFGs = context-
free grammars, CSGs = context-sensitive grammars and REGs = recursively
enumerable grammars. Going up the Chomsky hierarchy allows one to have
more general rules, but also more restrictions on the language by excluding
more strings.
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11.2.4 Ambiguity and Parsing

A derivation can be arranged in a tree structure, called a parse tree, that re-
flects the syntactic structure of a sequence. Parsing can be done top down
or bottom up. A sequence is ambiguous if it admits more than one parse
tree. The notion of ambiguity is important for compilers. Ambiguity intro-
duces complexity in parsing, both in the parsing algorithm and because the
number of parse trees may grow exponentially with the length of the string
being parsed. There are algorithms and complexity results for parsing spe-
cific grammars. A grammar is said to be linear if the right-hand sides of all
the production rules contain at most one nonterminal symbol. Fast parsing
algorithms exist for linear context-free grammars. In general, language recog-
nition and sequence parsing become more computationally demanding as one
ascends the Chomsky hierarchy.

11.2.5 Closure Properties

Each of the grammar classes in the Chomsky hierarchy is closed or stable un-
der a number of language operations, such as union (L1 ∪ L2), concatenation
(L1.L2), and iteration (L∗1 ). Regular languages are also closed under comple-
ment (L̄1) and intersection (L1 ∩ L2). Context-free languages are not closed
under complement or intersection.

11.2.6 Dependencies

Two additional ways of looking at grammars are in terms of the patterns they
can generate and in terms of automata. Regular grammars can generate over-
all patterns, such as alternating strings like XYXYXYXY. Like HMMs, regular
grammars cannot handle long-range dependencies in a string. Context-free
grammars can model certain simple long-range dependencies, that is, nested
dependencies. A pattern of dependencies is nested if it can be drawn without
having two lines cross each other. Nested dependencies are characteristic of
context-free languages such as palindromes, where the first letter must match
the last one, the second must match the second to last, and so on. When depen-
dencies cross, as in a copy language, a context-sensitive language is necessary
because crossing dependencies can be implemented only with the freedom of
movement that nonterminals enjoy during context-sensitive derivation.

11.2.7 Automata

A final way of understanding the Chomsky hierarchy is to look at the automata
associated with each language. Without going into details, regular languages
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correspond to finite state automata (FSA), with typically one state per nonter-
minal symbol in the grammar, as in HMMs. In such automata, there is no stor-
age facility apart from the states themselves: everything must be hardwired.
Context-free languages correspond to pushdown automata (PDA), which are
like finite-state automata but with a memory stack. Only the top of the stack
is accessible at any one time. This one-place memory holder is used for palin-
dromes by pushing in, and popping off, one symbol at a time. Such automata
cannot handle crossing dependencies because they can access only the top
of the stack at any one time. Context-sensitive languages are associated with
Turing machines with a linearly bounded tape, that is, with tape length pro-
portional to the I/O strings. Left and right movements along the tape are
needed for copying and for handling crossing dependencies. Finally, general
languages, that is recursively enumerable languages, correspond to Turing ma-
chines (TMs) with unbounded tape, that is, the standard model of universal
computers.

11.2.8 Stochastic Grammars and HMMs

So far we have considered deterministic grammars. Stochastic grammars are
obtained by superimposing a probability structure on the production rules.
Specifically, each production rule α → β is assigned a probability P(α → β), so
that

∑
β P(α → β) = 1. A stochastic grammar is therefore characterized by a

set of parameters w and can be viewed as a probabilistic generative model for
the corresponding language (i.e., the language associated with the underlying
deterministic grammar).

By now, it should be clear to the reader that HMMs can be viewed exactly
as stochastic regular grammars (SRGs). To see this, it suffices to replace the
transition from a state sj to a state si in an HMM, together with the emission
of the alphabet letter X, with the SRG production rule sj → Xsi with associated
probability tijeiX. Stochastic context-free grammars (SCFGs) then form a more
general class of models. They are used in the following sections to model the
structure of RNA sequences, and can also be viewed as further generalizations
of the dice models of chapter 3. SCFGs include a type of die that has two
letters on each face. In the simplest RNA models, the two letters reflect base
complementarity. Thus some of the RNA dice have four faces, just like a sim-
ple DNA die, but the letters on the faces are AU, UA, CG, and GC (excluding GU,
UG pairs) (see figure 11.1).
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Figure 11.1: Illustration of the Complementarity in the Watson–Crick Base Paring in DNA. In
RNA uracil (U) replaces thymine (T).

11.2.9 Graph Grammars

So far we have considered grammars over alphabets of letters. It is possible,
however, to consider more general alphabets where the “letters” are graphs
or pixel configurations in image processing. In the case of graph grammars
(see [165, 158] and other papers in the same volume), one must carefully spec-
ify how graphs are to be joined to each other during the derivation process.
Graph grammars have considerable expressive power, and could be a natural
candidate for modeling secondary and tertiary structures of biological macro-
molecules. Little work, however, has been done in this direction so far; a
key problem is the lack of efficient learning algorithms for general (or even
restricted) graph grammars.



284 Stochastic Grammars and Linguistics

11.3 Applications of Grammars to Biological Sequences

Ultimately, one would like to derive grammar models all the way up to the
scale of genes, chromosomes, and even genomes. After all, genomes represent
only a very small fraction of all the possible DNA sequences of comparable
length. But to begin with, one must consider simpler examples, associated
with smaller grammars, such as RNA secondary structure and palindromes.

11.3.1 RNA Secondary Structure and Biological Palindromes

RNA Secondary Structure

Many components in biological macromolecules consist of RNA. Important
RNA families include transfer RNA (tRNA), ribosomal RNA (rRNA), small nu-
clear RNA in the spliceosome (snRNA), messenger RNA (mRNA), and various
classes of introns. New phylogenies of small RNA molecules can also be se-
lected in vitro for particular functions, such as protein binding or catalysis
[109, 356, 469, 55].

Although RNA normally is single-stranded, helices formed by complemen-
tary base pairing strongly control how the RNA folds to form a distinctive 3D
structure. The folding of an RNA chain into a functional molecule is largely
determined by the Watson–Crick pairs A–U and G–C, but also to some extent
by G–U and, more rarely, G–A pairs. RNA nucleotides interact to form sec-
ondary structure motifs such as stems, loops, bulges, and pseudoknots where
otherwise unpaired nucleotides far from each other in the sequence interact
[573]. These pairings often have a nested structure and cannot be modeled
efficiently using a regular language or HMMs. We first consider the case of
biological palindromes in RNA and other molecules.

Biological Palindromes

There are many examples of RNA/DNA palindromes associated, for example,
with protein binding sites. Biological palindromes are slightly different from
the ones described above because the letters are not identical when they are
matched pairwise, starting from both ends, but complementary. For example,
AGAUUUCGAAAUCU is an RNA palindrome. In DNA such palindromes are called
inverted repeats.

Because of the complementary double-helix structure of DNA, each half
of the palindrome on one side of the helix has a mirror image on the other
strand. Thus, if a palindrome string is read from left to right on one strand,
the same string can be read from right to left on the opposite strand. RNA
palindromes can have arbitrary lengths, and therefore it is likely that they
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need to be modeled by context-free or more complex grammars (technically,
palindromes with a fixed upper length can be modeled by a regular grammar).
RNA palindromes are typically folded so that they create hairpin (stem-loop)
structures.

A grammar for RNA palindromes is given by

s → AsU | UsA | CsG | GsC | ∅, (11.2)

where we have listed all the alternative production rules in one line separated
by a “|”. A palindrome can be generated by: s → AsU → AGsCU → AGUsACU,
etc. The parse tree produced can be drawn to reflect the base pairing (see
also figure 11.2). Real RNA palindromes are not as perfect, but an occasional
mismatched pair does not destroy the secondary structure. Some alternative
pairings, such as UG, are more tolerated than others; hence also the need to
introduce probabilities. It is also common for the stem of a hairpin to have
bulges of unpaired bases. RNA is usually not flexible enough to make a 180◦
turn at the tip of the hairpin. There is often a loop of at least three to four
unpaired bases, and sometimes the loop is much longer. Likewise, in DNA
palindromes the two halves of the relevant palindrome can be separated by
significant distances. All such features can be incorporated into a grammar
but complicate the rules.

The previous grammar can generate strings corresponding to single palin-
dromes. Both DNA and RNA are rich in compound palindromes, that is, se-
quential and recursive ones. Sequential palindromes occur when two or more
palindromes follow each other side by side. Recursive palindromes occur when
one palindrome is nested within another. The secondary RNA structure associ-
ated with a recursive palindrome is a stem with another stem budding from its
side. Obtaining simple recursive palindromes is surprisingly easy: one needs
only to add the production rule of the form s → ss. Duplicating the vari-
able s allows for the start of a new palindrome anywhere within an existing
one. The corresponding grammar generates structures of branched stems,
known as orthodox secondary structures. The best-known example is perhaps
the cloverleaf structure of transfer RNA. There are many other examples, es-
pecially in ribosomal RNA, of structures consisting of combinations of loops
and nested stems. The grammar of recursive palindromes is context-free but,
unlike the grammar of simple palindromes, it is ambiguous. The double in-
verted repeat UGAUCA–UGAUCA can be parsed as a single hairpin, but also as
two or more side-by-side stems, not necessarily of equal length. The alter-
native parse tree corresponds to alternative secondary structures. There are
known cases where structural ambiguity seems to be used to confer different
roles on the same RNA element. Other examples of ambiguity in DNA linguis-
tics include overlapping genes—in HIV viruses, where some segments of the



286 Stochastic Grammars and Linguistics

genome can encode more than one gene, using ambiguous starting points and
reading frames.

11.3.2 Context-free Grammars for RNA

More generally, the types of rules needed for an SCFG for RNA are the follow-
ing:

1. Pair emission rules, for Watson–Crick pairs

u→ AvU | UvA | CvG | GvC, (11.3)

but also for rarer pairs (in order of rarity)

u→ GvU | GvA. (11.4)

2. Single-letter left emissions (unpaired bases)

u→ Av | Cv | Gv | Uv. (11.5)

3. Single-letter right emissions (unpaired bases)

u→ vA | vC | vG | vU. (11.6)

4. Single-letter emissions (unpaired bases)

u→ A | C | G | U. (11.7)

5. Branching (or bifurcation)
u→ vw. (11.8)

6. Deletions (or skips)
u→ v. (11.9)

The nonterminal variables on the left-hand side of the production rules, such
as u, play the role of HMM states and must be numbered u1, u2, . . .. As
with HMMs, these nonterminal variables can be partitioned into three classes:
match, insert, and delete or skip, each with different distributions. Match cor-
responds to important columns in RNA multiple alignments. The main differ-
ence from HMMs is the possibility for some states to emit two paired symbols.
For a nonterminal u associated with an insert state, a production rule of the
form u → Xu allows multiple insertions. These are needed in loop regions to
adjust the loop length. An example of CFG RNA grammar adapted from [460]
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a. Productions b. Derivation

P = { s → u1, u7 → G u8,
u1 → C u2 G, u8 → G,
u1 → A u2 U, u8 → U,
u2 → A u3 U, u9 → A u10 U,
u3 → u4 u9, u10→ C u10 G,
u4 → U u5 A, u10→ G u11 C,
u5 → C u6 G, u11→ A u12 U,
u6 → A u7, u12→ U u13,
u7 → U u7, u13→ C }

s ⇒ u1 ⇒ Cu2G ⇒ CAu3UG ⇒ CAu4u9UG
⇒ CAUu5Au9UG ⇒ CAUCu6GAu9UG
⇒ CAUCAu7GAu9UG ⇒ CAUCAGu8GAu9UG
⇒ CAUCAGGGAu9UG
⇒ CAUCAGGGAAu10UUG
⇒ CAUCAGGGAAGu11CUUG
⇒ CAUCAGGGAAGAu12UCUUG
⇒ CAUCAGGGAAGAUu13UCUUG
⇒ CAUCAGGGAAGAUCUCUUG

c. Parse tree d. Secondary Structure
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Figure 11.2: The Simple Context-free Grammar and the Derivation of the Particular Sequence
CAUCAGGGAAGAUCUCUUG. A. Set of production rules of the grammar, where s is the start symbol
and u1 to u13 are nonterminals. B. Derivation. C. Parse tree associated with the derivation. D.
Secondary structure reflecting the parse tree. Adapted from [460].

is given in figure 11.2, with the derivation of a sequence, its parse tree, and
secondary structure.

The list of rule types given above is of course redundant, and not all com-
binations of rule types and nonterminal classes are needed to model RNA.
In spite of their different name, the RNA covariance models of [156] are es-
sentially equivalent to the SCFG models. The models in [156] use only the
following:

• Match states with pair, single left, and single right emissions

• Insert states with single left and single right emissions

• Delete and branching states.

There are of course trade-offs among the richness of a grammar, the time it
takes to train it, and whether it underfits or overfits the data.

11.3.3 Beyond Context-free Grammars

So far we have remained in the realm of context-free grammars, pushdown
automata, and nested dependencies. Many of the simple evolutionary oper-
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ations, such as insertions, deletions, and substitutions, can be expressed in
isolation by context-free production rules. There are, however, other genetic
operations on blocks of nucleic acid strings—such as duplications, inversions,
translocations, and transpositions—that lead to the crossing of dependencies
and therefore cannot be accounted for properly in a context-free style. Direct
repeats in DNA are fairly common, and essentially form a copy language. As
such, they can be modeled by context-sensitive grammars. Crossing of de-
pendencies is also seen in the secondary and tertiary structures of biological
molecules. One example here is the pseudoknots occurring in RNA structures.

As already mentioned, pseudoknots occur when a single-stranded loop re-
gion forms Watson–Crick base pairs with a complementary sequence outside
the loop. Pseudoknots can be viewed as palindromes that are interleaved
rather than nested. For instance, AACCGGUU can be regarded as the nest-
ing of two palindromes: AAUU and CCGG. On the other hand, AACCUUGG is a
pseudoknot because the complementary pairings must cross each other. Fea-
tures such as pseudoknots are referred to as non-orthodox secondary struc-
tures. The previous context-free grammars are not sufficient to model pseu-
doknots. Pseudoknots, like direct repeats, can be described using context-
sensitive grammars. Finally, it must be noted that the language of DNA may
be viewed as the superposition or intersection of several other languages—for
instance, for transcription, splicing, and translation. Even if each individual
language were context-free, we have seen that there is no reason for the inter-
section to be context-free.

11.4 Prior Information and Initialization

11.4.1 Learning the Grammar Rules and Initialization from Multiple
Alignments

All the rules in an SCFG, as well as their probabilities, can easily be derived
from a multiple alignment when one is available, as in the case of HMMs, and
with the same caveats. In [156], an algorithm is reported by which the produc-
tion rules themselves are derived from a set of unaligned sequences. For large
RNA molecules, the process of constructing the grammar can also be hierar-
chically decomposed, whereby a high-level grammar (called metagrammar in
[460]) is first constructed on the basis of secondary-structure large-scale mo-
tifs [502], such as helices and loops. Each motif is then separately represented
by a set of SCFG rules.
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3’ 3’ 3’ 3’
A C G U

5’ A 0.160097 0.135167 0.192695 1.590683
5’ C 0.176532 0.134879 3.403940 0.162931
5’ G 0.219045 1.718997 0.246768 0.533199
5’ U 2.615720 0.152039 0.249152 0.249152

Table 11.2: Helix Pseudocounts Are Added to Actual Observed Frequencies to Reflect Prior
Information. The 16 parameters in the Dirichlet prior were computed from distributions of
basepaired positions in a large alignment of 16S rRNA sequences [346]. From the alignment a
four-parameter Dirichlet prior for nucleotide distributions in loop regions was made as well: A
(0.26); C (0.21); G (0.18); U (0.20).

11.4.2 Dirichlet Priors

Dirichlet priors are the natural choice for the production rules of stochastic
grammars. In the list in section 11.3.2, there are two main different types of
rules that need to be considered: the pair emission rules u → XvY and the
singlet emission rules of the form u → Xv for loop regions. In the case of
RNA, there are 16 (resp. 4) possible versions of the first (resp. second) type
of rule. Because of Watson–Crick base pairing, the corresponding Dirichlet
vectors are not uniform. They can easily be derived from a database of aligned
RNA structures, such as [346] (table 11.2).

The other rules, such as branch production, can also be Dirichlet-
regularized if necessary.

11.5 Likelihood

First, consider the problem of computing the likelihood P(O|w) of a sequence
O = X1 . . .Xt . . .XT according to a grammar M = M(w) with parameter w.
Recalling that SCFGs are ambiguous, let π = α1, . . . , αn be a derivation of O
from the start state s. Then

P(s →π O|w) = P(s → α1|w)P(α1 → α2|w) . . .P(αn → O|w), (11.10)

P(O|w) =
∑
π

P(s →π O|w). (11.11)

These expressions are of course very similar to the ones obtained in the case
of HMMs, where HMM paths are replaced by grammar derivations. Again, this
expression for the likelihood is not directly practical because the number of
possible parse trees is exponential in the length of the sequence. Again, this
problem can be circumvented by using dynamic programming. In the case of
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nonstochastic context-free grammars in Chomsky normal form, this algorithm
is known as the Cocke–Kasami–Younger algorithm [393]. The derivation of a
slightly more general version for stochastic context-free grammars is similar
to the forward propagation algorithm for HMMs, and is left as an exercise
(it is also called the “inside” algorithm). The most probable parse tree of a
sequence according to an SCFG can be found by a similar version of dynamic
programming that generalizes the Viterbi algorithm of HMMs. By analogy,
we will use the term Viterbi parse tree or Viterbi derivation. One important
point to consider is that the additional complexity of SCFGs with respect to
HMMs results in three-dimensional forms of dynamic programming that scale
as O(N3) rather than O(N2) (see [460, 156] for additional details).

11.6 Learning Algorithms

Learning algorithms for SCFGs of one sort or the other are described in [25,
345, 459, 460, 156]. As in the case of HMMs, the basic idea at the first level
of Bayesian inference is to estimate model parameters by maximizing the like-
lihood or the posterior through some iterative algorithm. In most of the ex-
amples cited above, this is done by some form of the EM algorithm, although
one could also use other methods, such as gradient descent. The derivation
of each learning rule is only sketched because it closely parallels what has
been described in detail in the case of HMMs. For the sake of simplicity, we
begin with ML estimation with a single training sequence O and an SCFG with
known rules and parameters w. Extensions to MAP estimation and/or mul-
tiple training sequences are straightforward. Let us consider a generic pro-
duction rule of the form u → β. For any derivation π of O, we can define
n(β,u,π,O) to be the number of times the rule u→ β is used in π . Similarly,
let n(u,π,O) = ∑β n(β,u,π,O).

11.6.1 The EM Algorithm

For the E step of the algorithm, we let Q(π) = P(π|O,w). If Pu→β denotes
the probability parameter associated with the rule, then the EM reestimation
equations are given by

P+u→β =
∑
π Q(π)n(β,u,π,O)∑
π Q(π)n(u,π,O)

=
∑
π P(π|O,w)n(β,u,π,O)∑
π P(π|O,w)n(u,π,O) = nu→β

nu
.

(11.12)
This reestimation formula is simple: all the complexity is hidden in the cal-
culation of the numerator and the denominator. These can be calculated by a
dynamic programming procedure similar to the one discussed in section 11.5,
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[ ] < D-domain > < Anticodon >< Extra >< T-domain >[ ]
((((((( (((( )))) ((((( === ))))) ((((( ))))))))))))

1 DC0380 -GCCAAGGTGGCAGAGTTCGGCCTAACGCGGCGGCCTGCAGAGCCGCTC----ATCGCCGGTTCAAATCCGGCCCTTGGCT---
2 DA6281 -GGGCGTGTGGCGTAGTC-GGT--AGCGCGCTCCCTTAGCATGGGAGAG----GTCTCCGGTTCGATTCCGGACTCGTCCA---
3 DE2180 --GCCCCATCGTCTAGA--GGCCTAGGACACCTCCCTTTCACGGAGGCG----A-CGGGGATTCGAATTCCCCTGGGGGTA---
4 DC2440 -GGCGGCATAGCCAAGC--GGT--AAGGCCGTGGATTGCAAATCCTCTA----TTCCCCAGTTCAAATCTGGGTGCCGCCT---
5 DK1141 -GTCTGATTAGCGCAACT-GGC--AGAGCAACTGACTCTTAATCAGTGG----GTTGTGGGTTCGATTCCCACATCAGGCACCA
6 DA0260 -GGGCGAATAGTGTCAGC-GGG--AGCACACCAGACTTGCAATCTGGTA----G-GGAGGGTTCGAGTCCCTCTTTGTCCACCA
7 DA3880 -GGGGCTATAGTTTAACT-GGT--AAAACGGCGATTTTGCATATCGTTA----T-TTCAGGATCGAGTCCTGATAACTCCA---
8 DH4640 -AGCTTTGTAGTTTATGTG-----AAAATGCTTGTTTGTGATATGAGTGAAAT--------------------TGGAGCTT---

((((((( (((( )))) ((((( === ))))) ((((( ))))))))))))
1 DC0380 -GCCAAGGUGGCAG.AGUUcGGccUAACGCGGCGGCCUGCAGAGCCGCUC---AUCGCCGGUUCAAAUCCGGCCCUUGGCU---
2 DA6281 -GGGCGUGUGGCGU.AGUC.GG..UAGCGCGCUCCCUUAGCAUGGGAGAGG---UCUCCGGUUCGAUUCCGGACUCGUCCA---
3 DE2180 -GCCCC-AUCGUCU.AGAG.GCc.UAGGACACCUCCCUUUCACGGAGGCG----ACGGGGAUUCGAAUUCCCCU-GGGGGU--A
4 DC2440 -GGCGGCAUAGCCA.AGC-.GG..UAAGGCCGUGGAUUGCAAAUCCUCUA---UUCCCCAGUUCAAAUCUGGGUGCCGCCU---
5 DK1141 -GUCUGAUUAGCGC.AACU.GG..CAGAGCAACUGACUCUUAAUCAGUGGG---UUGUGGGUUCGAUUCCCACAUCAGGCACCA
6 DA0260 -GGGCGAAUAGUGUcAGCG.GG..-AGCACACCAGACUUGCAAUCUGGUA----GGGAGGGUUCGAGUCCCUCUUUGUCCACCA
7 DA3880 -GGGGCUAUAGUUU.AACU.GG..UAAAACGGCGAUUUUGCAUAUCGUUA----UUUCAGGAUCGAGUCCUGAUAACUCCA---
8 DH4640 -AGCUUUGUAGUUU.A--U.GU..GAAAAUGCUUGUUUGUGAUAUGAGUGA--AAU-----------------UGGAGCU

Figure 11.3: Comparison of Multiple Alignments of Several Representative tRNAs in the Data Set
(top) [502] with That Produced by the Trained Grammar RandomTRNA618 (bottom). Parenthe-
ses indicate base paired positions; = = =, the anticodon; ‘[]’, the 5’ and 3’ sides of the acceptor
helix. For RandomTRNA618, capital letters correspond to nucleotides aligned to the match
nonterminals of the grammar; lowercase letters to insertions; -, to deletions by skip produc-
tions; and ., to fill characters required for insertions. The sequences are taken from the seven
groups above and are denoted by their database section codes: 1. ARCHAE (Halobacterium
cutirubrum), 2. CY (Saccharomyces cerevisiae), 3. CYANELCHLORO (Cyanophora paradoxa), 4.
CYANELCHLORO (Chlamydomonas reinhardtii), 5. EUBACT (Mycoplasma capricolum), 6. VIRUS
(Phage T5), 7. MT (Aspergillus nidulans), 8. PART III (Ascaris suum).

and to the forward–backward algorithm of HMMs, which scales as O(N3) in-
stead of O(N2) for HMMs, where N is the average sequence length. When the
grammar is in Chomsky normal form, this is known also as the inside–outside
algorithm [345]. In the case of K training sequences O1, . . . ,OK , the EM reesti-
mation formula becomes

P+u→β =
∑K
j=1

∑
π P(π|Oj,w)n(β,u,π,Oj)∑K

j=1
∑
π P(π|Oj,w)n(u,π,Oj)

. (11.13)

A version of the EM algorithm for SCFGs, called tree-grammar EM, is devel-
oped in [460]. It has the advantage of scaling as O(N2), but requires folded
RNA as training samples. The folding structure provides more information
than the raw sequence but less information than a complete parse. If a com-
plete parse is available, one could just count the number of occurrences of
each production rule. The folding structure, on the other hand, provides a
skeleton tree where the leaves are labeled with the letters of the sequence,
but not the interior nodes. From the skeleton one can tell which nucleotides
are base paired, but one cannot directly tell whether a letter was emitted by
a match or insert nonterminal symbol. The tree-grammar EM estimates the
probabilities associated with the nonterminal symbols.

It is also possible to consider a global iterative training algorithm, as in
[460], where at each step (1) the current grammar is used to fold the train-
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Data set Type of tRNA Total Zero MT10CY10 MT100 Random
ARCHAE archaea 103 0 0 0 50
CY cytoplasm 230 0 10 0 100
CYANELCHLORO cyanelle and chloroplast 184 0 0 0 100
EUBACT eubacteria 201 0 0 0 100
VIRUS viruses 24 0 0 0 10
MT mitochondria 422 0 10 100 200
PART III part III 58 0 0 0 58
Total 1222 0 20 100 618

Table 11.3: Validation Results for SCFG RNA Models of tRNA Families.

ing sequences, then (2) the folded sequences are used to optimize the gram-
mar parameters—for instance, using tree-grammar EM. Production rules can
be added or removed from the grammar, as in the algorithms for adjusting
the length of a standard HMM architecture.

11.6.2 Gradient Descent and Viterbi Learning

While to the best of our knowledge only the EM algorithm has been used in
the SCFG literature, it is clear that one could use other learning algorithms,
such as gradient descent and Viterbi learning (simulated annealing remains
too expensive for complex SCFGs).

As with HMMs, we can reparameterize a SCFG by

Pu→β = ewu→β∑
γ ewu→γ

. (11.14)

The online gradient-descent learning equation is then

∆wu→β = η(nu→β −nuPu→β), (11.15)

where η is the learning rate. In the case of Viterbi learning for SCFGs, all
counts of the form n(β,u,π,O), which are averaged over all derivations π , are
replaced by the counts n(β,u,π∗,O) associated with the most likely deriva-
tion only. Most of the other remarks on gradient descent and Viterbi learning
made in the case of HMMs apply to SCFGs, with the proper modifications.
Viterbi learning from folded sequences is essentially equivalent to initializing
an SCFG from a preexisting multiple alignment.

11.7 Applications of SCFGs

A trained SCFG can be used in much the same way as we used HMMs in chap-
ters 7 and 8. For each example sequence, we can compute its Viterbi parse
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Data set ZeroTrain MT10CY10 MT100 RandomTRNA618
ARCHAE 94.87 100.00 100.00 100.00
CY 98.28 99.76 99.89 99.87
CYANELCHLORO 96.22 99.64 99.64 99.79
EUBACT 99.69 99.86 99.86 99.86
VIRUS 96.83 100.00 100.00 100.00
MT 89.19 98.33 98.91 98.93
PART III 55.98 81.10 83.21 83.00

Table 11.4: Percentages of Base Pairs in the Original Alignment That Are Also Present in the
Secondary Structure Predicted by Each of the Four Grammars.

tree. For RNA sequences, the syntactic structure or the equivalent parse tree
provide a candidate for optimal folding that can be used to predict secondary
structure. This approach complements previous methods for RNA secondary
structure prediction based on phylogenetic analysis or thermodynamic con-
siderations. The parse trees can also be used to derive multiple alignments
where aligned columns or pairs of columns are associated with nonterminal
main states. Gaps must be added in the obvious way. This is useful to deter-
mine common consensus patterns. Negative log-likelihood (or log-posterior)
scores can be computed for any sequence. As in the case of HMMs, the score
of a sequence depends on its length and must be normalized, as discussed in
chapter 8. These scores in turn can be used to discriminate members of the
family from non-members, to search databases, and possibly to discover new
members of the family. In generative mode, SCFG could be used to generate
new putative members of a given family, although this has not been tested. Fi-
nally, SCFGs can also be combined in modular ways. An example is discussed
in [156] in which a tRNA SCFG grammar is combined with an intron grammar
to search for tRNA genes.

11.8 Experiments

Here we report the validation results in [460] for SCFG RNA models of tRNA
families. Similar results are described in [156]. The original data set consists
of the sequences and alignments of 1222 unique tRNAs extracted from the
database described in [502]. The length varies between 51 and 93 bases, and
the sequences are subdivided into seven disjoint sets corresponding to differ-
ent tRNA types (table 11.3).

For discrimination experiments, 2016 non-tRNA test sequences are gener-
ated from the non-tRNA features (including mRNA, rRNA, and protein coding
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Above 5 σ Between 4 and 5 σ Below 4 σ
Data Set ZT MT10 MT100 R618 ZT MT10 MT100 R618 ZT MT10 MT100 R618
ARCHAE 66 103 103 103 19 0 0 0 18 0 0 0
CY 135 230 230 230 53 0 0 0 42 0 0 0
CYANELCH 61 184 184 184 52 0 0 0 71 0 0 0
EUBACT 160 201 201 201 30 0 0 0 11 0 0 0
VIRUS 16 24 24 24 4 0 0 0 4 0 0 0
MT (train) N/A 10 99 193 N/A 0 1 6 N/A 0 0 1
MT (test) 64 389 313 218 89 10 7 3 269 13 2 1
PART III 0 9 7 29 1 15 14 8 57 34 37 21
NON-TRNA 0 0 0 0 0 0 1 1 2016 2016 2015 2015
Totals 502 1150 1161 1182 248 25 23 18 2488 2063 2054 2038

Table 11.5: Number of tRNAs in Each Family That Are Successfully Discriminated from the
Non-tRNAs Using a Threshold on the Discrimination Score.

regions) in GenBank. Roughly 20 non-tRNA sequences are created for each
length in the interval between 20 and 120. Four different grammars are then
created. The first grammar (ZeroTrain) is a control that is not trained on any
sequence and contains only prior information on tRNA. The other three gram-
mars (MT10CY10, MT100, and RandomTRNA618) are trained from different
sets as shown in table 11.3, using the tree-grammar EM algorithm. The four
grammars are compared on three tasks: multiple alignments, secondary struc-
ture prediction, and discrimination.

11.8.1 Multiple Alignments

All 1222 tRNA sequences in the data set are aligned using each of the four
grammars. The best multiple alignment is obtained with RandomTRNA618.
The predicted alignment agrees substantially with the original data set align-
ment (figure 11.3). Boundaries of helices and loops are the same. The major
difference is the extra arm, which is highly variable in both length and se-
quence. There are also cases [460] where the grammar alignments suggest
small improvements over the original alignment.

11.8.2 RNA Secondary Structure Prediction

As for secondary structure, in most cases the Viterbi parse tree gives the cor-
rect secondary structure. Table 11.4 gives the percentages of base pairs in the
original alignment that are also present in the secondary structure predicted
by each grammar. For ARCHAE and VIRUS, all three trained grammars achieve
100% recognition. For CY, CYANELCHLORO, and EUBACT the agreement is also
very good. In the case of PART III, it is substantially weaker.
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11.8.3 Discrimination

Discrimination for each of the four grammars is tested by computing the nor-
malized scores of all 2016 non-tRNA sequences and comparing them against
the scores of the 1222 tRNA sequences in the data set. Non-tRNA rarely have a
normalized score above 4, so that a discrimination threshold is set at 5. Table
11.5 summarizes the results by displaying the number of tRNAs in each family
that are successfully discriminated from the non-tRNAs in this way. Some of
the respective histograms are given in figure 11.4.

Training with as few as 20 sequences significantly improves the detec-
tion rates, as seen by comparing the results of MT10CY10 and ZeroTrain.
MT10CY10 perfectly discriminates tRNAs from non-tRNA sequences, ex-
cept for the subsets MT and PART III, where the ZeroTrain grammar fails.
MT10CY10 discriminates reasonably well on the MT subset but not on PART
III. Setting aside PART III sequences, MT10CY10 discriminates 399 out of
422 mitochondrial sequences, performing almost as well as the grammars
trained on many more tRNA sequences. None of the grammars achieves good
discrimination on PART III sequences, not even RandomTRNA618, which is
trained in part on such sequences. Training on PART III sequences improves
performance on some of these sequences, but half of them remain with a
normalized score below the threshold of 5.

11.9 Future Directions

We have reviewed the basic theory of formal languages and grammars. We
have seen how stochastic grammars can be applied to biological sequences
by generalizing the dice model and the HMM ideas. SCFGs, in particular,
and the corresponding learning algorithms have been used to derive statis-
tical models of tRNA. The trained grammars have been used to align, fold,
and discriminate tRNA sequences with good results. The SCFG approach is
a viable method for determining tRNA secondary structure. It complements
the two preexisting methods, one based on phylogenetic analysis of homolo-
gous sequences [186, 565, 278] and the other on thermodynamic considera-
tions [521, 222, 527, 585]. SCFGs for RNA, however, have been less thoroughly
tested than HMMs for protein families and additional work is required to es-
tablish this approach further. Whereas the SCFGs are capable of finding global
structural alignments of RNA, a new dynamical programming algorithm for
obtaining local structural alignments has recently been giving good results
[220, 221]. This local method is an extension of the Smith–Waterman align-
ment scheme combined with another dynamical programming technique for
finding the maximal number of complementary nucleotide pairs.
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Figure 11.4: Some of the Normalized Score Histograms Showing Results of Discrimination Tests
with Various Grammars.
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The grammar methods described in this chapter have some limitations.
First, they are computationally intensive, so that, in their present form, they
become somewhat impractical for long sequences, typically above N = 200 or
so. Second, not all RNA structures can be captured by an SCFG. The associated
parse trees cannot capture tertiary interactions such as pseudoknots and non-
pairwise interactions, which so far have been ignored. Third, the method as
described in this chapter does not include a model for introns that are present
in some tRNA genes. Such limitations point to a few obvious directions for
future work, including the following:

• Algorithmic and perhaps hardware speed improvements

• Development of grammars, perhaps graph grammars, or other models,
and the corresponding training algorithms to incorporate RNA tertiary
structures, and possibly the tertiary structure of other molecules

• Combination of SCFGs in modular ways, as for HMMs, to model more
complex RNA sequences, including the corresponding introns—work in
this direction is reported in [156]

• Modeling larger and more challenging RNA sequences, such as rRNA

• Finally, along the lines of chapter 9, developing hybrid SCFG/NN archi-
tectures (or SG/NN), where an NN is used to compute the parameters of
a SCFG and/or to modulate or mix different SCFGs.
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Chapter 12

Microarrays and Gene
Expression

12.1 Introduction to Microarray Data

A number of new microarray-based technologies have been developed over
the last few years, and technological development in this area is likely to con-
tinue at a brisk pace. These technologies include DNA hybridization arrays
(gene expression arrays, oligonucleotide arrays for sequencing and polymor-
phism), protein arrays, tissue arrays, and combinatorial chemistry arrays. By
making possible the combinatorial interaction of a large number of molecules
with a large library, these high-throughput approaches are rapidly generating
terabytes of information that are overwhelming conventional methods of bio-
logical analysis. In this chapter, we focus primarily on DNA gene expression
microarrays. We closely follow the derivation in [44] and show how the general
probabilistic framework can be applied systematically to array data. A more
complete treatment of DNA microarrays can be found in [43].

DNA gene expression microarrays allow biologists to study genome-wide
patterns of gene expression [148, 160, 263] in any given cell type, at any given
time, and under any given set of conditions. In these arrays, total RNA is
reverse-transcribed to create either radioactive- or fluorescent-labeled cDNA
that is hybridized with a large DNA library of gene fragments attached to a
glass or membrane support. Phosphorimaging or other imaging techniques
are used to produce expression measurements for thousands of genes un-
der various experimental conditions. Use of these arrays is producing large
amounts of data, potentially capable of providing fundamental insights into
biological processes ranging from gene function to development, cancer, and

299
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aging, and pharmacology [498, 567, 7, 217, 354, 511, 7, 554, 369, 169, 171].
Even partial understanding of the available information can provide valuable
clues. For instance, co-expression of novel genes may provide leads to the
functions of many genes for which information is not available currently. Data
analysis techniques for microarray data, however, are still at an early stage of
development [581].

Gene expression array data can be analyzed on at least three levels of in-
creasing complexity. The first level is that of single genes, where one seeks
to establish whether each gene in isolation behaves differently in a control
versus a treatment situation. The second level is multiple genes, where clus-
ters of genes are analyzed in terms of common functionalities, interactions,
co-regulation, etc. The third level attempts to infer the underlying gene and
protein networks that ultimately are responsible for the patterns observed.

To begin with, we assume for simplicity that for each gene X the data con-
sists of a set of measurements xc1 , . . . , xcnc and xt1, . . . , xtnt representing expres-
sion levels, or rather their logarithms, in both a control and treatment situ-
ation. Treatment is of course taken in a broad sense to mean any condition
different from the control. For each gene, the fundamental question we wish
to address is whether the level of expression is significantly different in the
two situations. While it might seem that standard statistical techniques could
easily address such a problem, this is in fact not the case.

One approach commonly used in the literature is a simple-minded fold ap-
proach, in which a gene is declared to have significantly changed if its average
expression level varies by more than a constant factor, typically 2, between
the treatment and control conditions. Inspection of gene expression data sug-
gests, however, that such a simple “2-fold rule” is unlikely to yield optimal
results, since a factor of 2 can have quite different significance in different
regions of the spectrum of expression levels.

A related approach to the same question is the use of a t-test, for instance
on the logarithm of the expression levels. This is similar to the fold approach
because the difference between two logarithms is the logarithm of their ratio.
This approach is not necessarily identical to the first because the logarithm
of the mean is not equal to the mean of the logarithms; in fact, it is always
strictly greater by convexity of the logarithm function. But with a reasonable
degree of approximation, a test of the significance of the difference between
the log expression levels of two genes is equivalent to a test of whether or not
their fold change is significantly different from 1.

In a t-test, the empirical means mc and mt and variances s2
c and s2

t are
used to compute a normalized distance between the two populations in the
form

t = (mc −mt)/

√√√ s2
c

nc
+ s2

t
nt

(12.1)
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where, for each population, m =∑i xi/n and s2 =∑i(xi−m)2/(n−1) are the
well-known estimates for the mean and standard deviation. It is well known
from the statistics literature that t follows approximately a Student distribu-
tion (appendix A), with

f = [(s
2
c /nc)+ (s2

t /nt)]2

(s2
c /nc)2
nc−1 + (s2

t /nt)2
nt−1

(12.2)

degrees of freedom. When t exceeds a certain threshold depending on the con-
fidence level selected, the two populations are considered to be different. Be-
cause in the t-test the distance between the population means is normalized by
the empirical standard deviations, this has the potential for addressing some
of the shortcomings of the fixed fold-threshold approach. The fundamental
problem with the t-test for microarray data, however, is that the repetition
numbers nc and/or nt are often small because experiments remain costly or
tedious to repeat, even with current technology. Small populations of size
n = 1,2, or 3 are still very common and lead, for instance, to significant un-
derestimates of the variances. Thus a better framework is needed to address
these shortcomings.

12.2 Probabilistic Modeling of Array Data

12.2.1 Gaussian Model

Array data requires a probabilistic approach because it is highly noisy and vari-
able, and many relevant variables remain unobserved behind the massive data
sets. In order to develop a probabilistic approach for array data, the lessons
learnt with sequence data are worth remembering. In sequence data, we saw in
chapter 3 that the simplest probabilistic model is that of a die associated with
the average composition of the family of DNA, RNA, or protein sequences un-
der study. The next level of modeling complexity is a first-order Markov model
with one die per position or per column in a multiple alignment. We have seen
how, in spite of their simplicity, these models are still useful as a background,
for instance, against which the performances of more sophisticated models
are assessed.

In array data, the simplest model would assume that all data points are
independent from one another and extracted from a single continuous distri-
bution, for instance a Gaussian distribution. While trivial, this “Gaussian die”
model still requires the computation of interesting quantities, such as the av-
erage level of activity and its standard deviation, that can be useful to calibrate
or assess global properties of the data. The next equivalent level of modeling
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is a set of independent distributions, one for each dimension, for instance each
gene. While it is obvious that genes interact with one another in complex ways
and therefore are not independent, the independence approximation is still
useful and underlies any attempt, probabilistic or other, to determine whether
expression-level differences are significant on a gene-by-gene basis.

Here we first assume that the expression-level measurements of a gene in
a given situation have a roughly Gaussian distribution. In our experience, with
common technologies this assumption is reasonable, especially for the loga-
rithm of the expression levels, corresponding to lognormal raw expression lev-
els. To the best of our knowledge, large-scale replicate experiments have not
yet been carried out to make more precise assessments. It is clear, however,
that other distributions, such as gammas or mixtures of Gaussians/gammas,
could be introduced at this stage. These would impact the details of the analy-
sis (see also [558, 403]), but not the general Bayesian probabilistic framework.

Thus, in what follows we assume that the data has been pre-processed—
including taking logarithms if needed—to the point that we can model the cor-
responding measurements of each gene in each situation (treatment or control)
with a normal distribution N (x;µ,σ2). For each gene and each condition, we
have a two-parameter model w = (µ,σ2), and by focusing on one such model
we can omit indices identifying the gene or the condition. Assuming that the
observations are independent, the likelihood is given by

P(D|µ,σ2) ≈
∏
i
N (xi;µ,σ2)

= C(σ2)−n/2 exp(−
∑
i
(xi − µ)2/2σ2)

= C(σ2)−n/2 exp(−(n(m− µ)2 + (n− 1)s2)/2σ2) (12.3)

where i ranges over replicate measurements. In this chapter, we write C to
denote the normalizing constant of any distribution (C = 1/Z). The likelihood
depends only on the sufficient statistics n, m, and s2. In other words, all the
information about the sample that is relevant for the likelihood is summarized
in these three numbers. The case in which either the mean or the variance of
the Gaussian model is supposed to be known is of course easier and is well
studied in the literature [86, 431].

A full Bayesian treatment requires introducing a prior P(µ,σ2). The choice
of a prior is part of the modeling process, and several alternatives [86, 431]
are possible, a sign of the flexibility of the Bayesian approach rather than its
arbitrariness. Here a conjugate prior is convenient and adequately captures
several properties of DNA microarray data including, as we shall see, the fact
that µ and σ2 are generally not independent.
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12.2.2 The Conjugate Prior

Recall that when both the prior and the posterior have the same functional
form, the prior is said to be a conjugate prior. When estimating the mean
alone for a normal model of known variance, the obvious conjugate prior is
also a normal distribution. In the case of dice models for biological sequences,
we have seen that the standard conjugate prior is a Dirichlet distribution. The
form of the likelihood in (12.3) shows that the conjugate prior density must
also have the form P(µ|σ2)P(σ2), where the marginal P(σ2) correponds to a
scaled inverse gamma distribution (equivalent to 1/σ2 having a gamma distri-
bution, see appendix A), and the conditional distribution P(µ|σ2) is normal.

This leads to a hierarchical model with a vector of four hyperparameters
for the prior α = (µ0, λ0, ν0 and σ2

0 ) with the densities

P(µ|σ2) =N (µ;µ0, σ2/λ0) (12.4)

and
P(σ2) = I(σ2;ν0, σ2

0 ). (12.5)

The expectation of the prior is finite if and only if ν0 > 2. The prior P(µ,σ2) =
P(µ,σ2|α) is given by

Cσ−1(σ2)−(ν0/2+1) exp
[
− ν0

2σ2σ
2
0 −

λ0

2σ2 (µ0 − µ)2
]
. (12.6)

Notice that it makes perfect sense with array data to assume a priori that µ
and σ2 are dependent, as suggested immediately by visual inspection of typical
microarray data sets (figure 12.1). The hyperparameters µ0 and σ2/λ0 can be
interpreted as the location and scale of µ, and the hyperparameters ν0 and σ2

0
as the degrees of freedom and scale of σ2. After some algebra, the posterior
has the same functional form as the prior:

P(µ,σ2|D,α) =N (µ;µn,σ2/λn)I(σ2;νn,σ2
n) (12.7)

with

µn = λ0

λ0 +nµ0 + n
λ0 +nm (12.8)

λn = λ0 +n (12.9)

νn = ν0 +n (12.10)

νnσ2
n = ν0σ2

0 + (n− 1)s2 + λ0n
λ0 +n(m− µ0)2. (12.11)

The parameters of the posterior combine information from the prior and the
data in a sensible way. The mean µn is a convex weighted average of the
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prior mean and the sample mean. The posterior degree of freedom νn is the
prior degree of freedom plus the sample size. The posterior sum of squares
νnσ2

n is the sum of the prior sum of squares ν0σ2
0 , the sample sum of squares

(n− 1)s2, and the residual uncertainty provided by the discrepancy between
the prior mean and the sample mean.

While it is possible to use a prior mean µ0 for gene expression data, in
many situations it is sufficient to use µ0 =m. The posterior sum of squares is
then obtained precisely as if one had ν0 additional observations all associated
with deviation σ2

0 . While superficially this may seem like setting the prior after
having observed the data [372], a similar effect is obtained using a preset value
µ0 with λ0 → 0, i.e., with a very broad standard deviation so that the prior belief
about the location of the mean is essentially uniform and vanishingly small.
The selection of the hyperparameters for the prior is discussed in more detail
below.

It is not difficult to check that the conditional posterior distribution
P(µ|σ2,D,α) of the mean is normal N (µn,σ2/λn). The marginal posterior
P(µ|D,α) of the mean is Student t(νn, µn,σ2

n/λn), and the marginal posterior
P(σ2|D,α) of the variance is scaled inverse gamma I(νn,σ2

n).
In the literature, semi-conjugate prior distributions also are used where

the functional form of the prior distributions on µ and σ2 are the same as
in the conjugate case (normal and scaled inverse gamma, respectively) but in-
dependent of each other, i.e. P(µ,σ2) = P(µ)P(σ2). However, as previously
discussed, this assumption of independence is unlikely to be suitable for DNA
microarray data. More complex priors also could be constructed using mix-
tures, mixture of conjugate priors leading to mixtures of conjugate posteriors.

12.2.3 Parameter Point Estimates

The posterior distribution P(µ,σ2|D,α) is the fundamental object of Bayesian
analysis and contains the relevant information about all possible values of µ
and σ2. However, in order to perform the t-test described above, for instance,
we need to collapse this information-rich distribution into single point esti-
mates of the mean and variance of the expression level of a gene in a given
situation. This can be done in a number of ways. In general, the most robust
answer is obtained using the mean of the posterior (MP) estimate. An alter-
native is to use the mode of the posterior, or MAP (maximum a posteriori)
estimate. For completeness, we derive both kinds of estimates.
By integration, the MP estimate is given by

µ = µn and σ2 = νn
νn − 2

σ2
n (12.12)
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provided νn > 2. If we take µ0 =m, we then get the following MP estimate

µ =m and σ2 = νnσ2
n

νn − 2
= ν0σ2

0 + (n− 1)s2

ν0 +n− 2
(12.13)

provided ν0 +n > 2. This is the default estimate implemented in the Cyber-T
software described below. From (12.7), the MAP estimates are

µ = µn and σ2 = νnσ2
n

νn − 1
(12.14)

If we use µ0 =m, these reduce to

µ =m and σ2 = νnσ2
n

νn − 1
= ν0σ2

0 + (n− 1)s2

ν0 +n− 1
. (12.15)

Here the modes of the marginal posterior are given by

µ = µn and σ2 = νnσ2
n

νn + 2
. (12.16)

In practice, (12.13) and (12.15) give similar results and can be used with
gene expression arrays. The slight differences between the two closely parallel
what is seen with Dirichlet priors on sequence data in chapter 3, (12.13) being
generally a slightly better choice. The Dirichlet prior is equivalent to the intro-
duction of pseudo-counts to avoid setting the probability of any amino acid or
nucleotide to zero. In array data, few observation points are likely to result in a
poor estimate of the variance. With a single point (n = 1), for instance, we cer-
tainly want to refrain from setting the corresponding variance to zero; hence
the need for regularization, which is achieved by the conjugate prior. In the
MP estimate, the empirical variance is modulated by ν0 “pseudo-observations”
associated with a background variance σ2

0 .

12.2.4 Full Bayesian Treatment and Hyperparameter Point Estimates

At this stage of modeling, each gene is associated with two models wc =
(µc,σ2

c ) and wt = (µt, σ2
t ), two sets of hyperparameters αc and αt , and

two posterior distributions P(wc |D,αc) and P(wt|D,αt). A full probabilistic
treatment would require introducing prior distributions over the hyperparam-
eters. These could be integrated out to obtain the true posterior probabilities
P(wc|D) and P(wt|D), which then could be integrated over all values of wt
and wc to determine whether or not the two models are different. Notice that
this approach is significantly more general than the plain t-test and could in
principle detect interesting changes that are beyond the scope of the t-test.
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For instance, a gene with the same mean but a very different variance between
the control and treatment situations goes undetected by a t-test, although the
change in variance might be biologically relevant. Even if we restrict ourselves
to only the means µc and µt and these have a Gaussian posterior distribution,
the probability P(|µc − µt| < ε) must be estimated numerically. While the lat-
ter is not difficult to perform with today’s computers, it is also possible to use
simpler and more approximate strategies to the full Bayesian treatment that
rely solely on point estimates.

Point estimates, however, entail hyperparameters that can be addressed in
a number of ways [372, 375]. Here, again, one possibility is to define a prior
on the hyperparameters and try to integrate them out in order to compute
the true posterior P(w|D) and determine the location of its mode, leading to
true MAP estimates of w. More precisely, this requires integrating P(w|α)
and P(w|α|D) with respect to the hyperparameter vector α. An alternative
that avoids the integration of the hyperparameters is the evidence framework
described in [372]. In the evidence framework, we compute point estimates of
the hyperparameters by MAP estimation (MP would again require integrating
over hyperparameters) over the posterior

P(α|D) = P(D|α)P(α)
P(D)

. (12.17)

If we take a uniform prior P(α), then this is equivalent to maximizing the
evidence P(D|α)

P(D|α) = P(D|w,α)P(w|α)/P(w|D,α)
= P(D|w)P(w|α)/P(w|D,α). (12.18)

In principle, computing the evidence requires integrating out the parameters
w of the model. Using the expression for the likelihood and the conjugate
prior and posterior, however, we can obtain the evidence without integration,
directly from (12.18):

P(D|α) = (2π)−n/2
√
λ0√
λn

(ν0/2)ν0/2

(νn/2)νn/2
σν0

0

σνnn
Γ(νn/2)
Γ(ν0/2)

. (12.19)

The partial derivatives and critical points of the evidence are discussed in [44]
where it is shown, for instance, that the mode is achieved for µ0 =m.

12.2.5 Bayesian Hypothesis Testing

In essence so far we have modeled the log-expression level of each gene in
each situation using a Gaussian model. If all we care about is whether a given
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gene has changed or not, we could model directly the difference between the
log-expression levels in the control and treatment cases. These differences
can be considered pairwise or in paired fashion, as is more likely the case with
current microarray technology where the logarithm of the ratio between the
expression levels in the treatment and control situations is measured along
two different channels (red and green).

We can model again the differences xt − xc with a Gaussian N (µ,σ2).
Then the null hypothesis H, given the data, is that µ = 0 (no change). To avoid
assigning a probability of 0 to the null hypothesis, a Bayesian approach here
must begin by giving a non-zero prior probability for µ = 0, which may appear
a little contrived. In any case, following the lines of the previous derivation for
the conjugate prior, we can set P(σ2) = I(σ2;ν0, σ2

0 ). For the mean µ, we use
the mixture

µ =
{

0 : with probability p
N (0, σ2/λ) : with probability 1− p (12.20)

The parameter p could be fixed from previous experiments, or treated as an
hyperparameter with, for instance, a Dirichlet prior. We leave as an exercise
for the reader to compute the relevant statistics log[P(H̄)/P(H)].

12.2.6 Implementation

For efficiency, an intermediate solution has been implemented in a Web server
called Cyber-T1 [44, 366]. In this approach, we use the t-test with the regu-
larized standard deviation of (12.13) and the number of degrees of freedom
associated with the corresponding augmented populations of points, which
incidentally can be fractional. In Cyber-T, plain and Bayesian versions of the
t-test can be performed on both the raw data and the log-transformed data.

In the simplest case, where we use µ0 = m, one must select the values of
the background standard deviation σ2

0 , and its strength ν0. The parameter ν0

represents the degree of confidence in the background variance σ2
0 versus the

empirical variance. The value of ν0 can be set by the user. The smaller n, the
larger ν0 ought to be. A simple rule of thumb is to assume that l > 2 points are
needed to estimate the standard deviation properly and keep n+ ν0 = l. This
allows a flexible treatment of situations in which the number n of available
data points varies from gene to gene. A reasonable default is to use l = 10.
A special case can be made for genes with activity levels close to the minimal
detection level of the technology being used. The measurements for these
genes being particularly unreliable, it may be wise to use a stronger prior for
them with a higher value of ν0.

1Accessible at: http://128.200.5.223/CyberT/.
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For σ0, one could use the standard deviation of the entire set of observa-
tions or, depending on the situation, of particular categories of genes. In a
flexible implementation, the background standard deviation is estimated by
pooling together all the neighboring genes contained in a window of size ws.
Cyber-T automatically ranks the expression levels of all the genes and lets the
user choose this window size. The default is ws = 101, corresponding to 50
genes immediately above and below the gene under consideration. Adaptive
window sizes and regression estimates for σ2

0 can also be considered.

12.2.7 Simulations

We have used the Bayesian approach and Cyber-T to analyze a number of pub-
lished and unpublished data sets. In every high density array experiments we
have analyzed, we have observed a strong scaling of the expression variance
over replicated experiments with the average expression level (on both a log-
transformed and raw scale). As a result, a threshold for significance based
solely on fold changes is likely to be too liberal for genes expressed at low
levels and too conservative for highly expressed genes. While several biologi-
cally relevant results are reported elsewhere, we have found that the Bayesian
approach compares favorably to a simple fold approach or a straight t-test
and partially overcomes deficiencies related to low replication in a statistically
consistent way [366].

One particularly informative data set for comparing the Bayesian approach
to simple t-test or fold change is the high density array experiment reported
in [19] comparing wild type Escherichia coli cells to mutant cells for the global
regulatory protein IHF (integration host factor). The main advantage of this
data set is its four-fold replication for both wild type and mutant alleles. The
regularizing effect of the prior based on the background standard deviation is
shown for this data in Figure 12.1 and in the simulation described below. The
figure clearly shows that standard deviations vary substantially over the range
of expression levels, in this case roughly in a monotonic decreasing fashion,
although other behaviors also have been observed. Interestingly, in these plots
the variance in log-transformed expression levels is higher for genes expressed
at lower levels rather than at higher ones. These plots confirm that genes
expressed at low or near background levels may require a stronger value of ν0,
or alternatively could be ignored in expression analyses. The variance in the
measurement of genes expressed at a low level is large enough that in many
cases it will be difficult to detect significant changes in expression for this
class of loci.

In analyzing the data we found that large fold changes in expression
were often associated with p-values not indicative of statistical change in
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the Bayesian analysis, and conversely subtle fold changes were often highly
significant as judged by the Bayesian analysis. In these two situations, the
conclusions drawn using the Bayesian approach appear robust relative to
those drawn from fold change alone, as large non-statistically significant fold
changes were often associated with large measurement errors, and statistically
significant genes showing less than two fold changes were often measured
very accurately. As a result of the level of experimental replication seen in
[19], we were able to look at the consistency of the Bayesian estimator relative
to the t-test. We found that in independent samples of size 2 drawn from the
IHF data set (i.e., two experiments versus two controls) the set of 120 most
significant genes identified using the Bayesian approach had approximately
50% of their members in common, whereas the set of 120 most significant
genes identified using the t-test had only approximately 25% of their members
in common. This suggests that for two fold replication the Bayesian approach
is approximately twice as consistent as a simple t-test at identifying genes as
up- or down-regulated, although with only two fold replication there is a great
deal of uncertainty associated with high density array experiments.

To further assess the Bayesian approach, an artificial data set can be gen-
erated assuming Gaussian distribution of log expressions, with means and
variances in ranges similar to those encountered in the data set of [19], with
1000 replicates for each parameter combination. Selected means for the log
data and associated standard deviations (in brackets) are as follows: −6 (0.1),
−8 (0.2), −10 (0.4), −11 (0.7), −12 (1.0). On this artificially generated data, we
can compare the behavior of a simple ratio (2-fold and 5-fold) approach, with
a simple t-test, with the Bayesian t-test using the default settings of Cyber-T.
The main results, reported in Table 12.1, can be summarized as follows:

• By 5 replications (5 control and 5 treatment) the Bayesian approach and
t-test give similar results.

• When the number of replicates is “low” (2 or 3), the Bayesian approach
performs better than the t-test.

• The false positive rate for the Bayesian and t-test approach are as ex-
pected (0.05 and 0.01 respectively) except for the Bayesian with very
small replication (i.e., 2) where it appears elevated.

• The false positive rate on the ratios is a function of expression level and
is much higher at lower expression levels. At low expression levels the
false positive rate on the ratios is unacceptably high.

• For a given level of replication the Bayesian approach at p < 0.01 de-
tects more differences than a 2-fold change except for the case of low
expression levels (where the false positive rate from ratios is elevated).
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Figure 12.1: DNA Microarray Experiment on Escherichia coli. Data obtained from reverse tran-
scribed P33 labeled RNA hybridized to commercially available nylon arrays (Sigma Genosys)
containing each of the 4,290 predicted E. coli genes. The sample included a wild-type strain
(control) and an otherwise isogenic strain lacking the gene for the global regulatory gene, inte-
gration host factor (IHF) (treatment). n = 4 for both control and experimental situations. The
horizontal axis represents the mean µ of the logarithm of the expression levels, and the vertical
axis shows the corresponding standard deviations (std=σ ). The left column corresponds to raw
data, the right column to regularized standard deviations using Equation (12.13). Window size
isws = 101 and l = 10 (see main text). Data are from [19].

• The Bayesian approach with 2 replicates outperforms the t-test with 3
replicates (or 2 versus 4 replicates).

• The Bayesian approach has a similar level of performance when compar-
ing 3 treatments to 3 controls, or 2 treatments to 4 controls. This sug-
gests an experimental strategy where the controls are highly replicated
and a number of treatments less highly replicated.



Probabilistic Modeling of Array Data 311

Log expression Ratio Plain t-test Bayes
n from to 2-fold 5-fold p < 0.05 p < 0.01 p < 0.05 p < 0.01
2 −8 −8 1 0 38 7 73 9
2 −10 −10 13 0 39 11 60 11
2 −12 −12 509 108 65 10 74 16
2 −6 −6.1 0 0 91 20 185 45
2 −8 −8.5 167 0 276 71 730 419
2 −10 −11 680 129 202 47 441 195
3 −8 −8 0 0 42 9 39 4
3 −10 −10 36 0 51 11 39 6
3 −12 −12 406 88 44 5 45 4
3 −6 −6.1 0 0 172 36 224 60
3 −8 −8.5 127 0 640 248 831 587
3 −10 −11 674 62 296 139 550 261
5 −8 −8 0 0 53 13 39 8
5 −10 −10 9 0 35 6 31 3
5 −12 −12 354 36 65 11 54 4
5 −6 −6.1 0 0 300 102 321 109
5 −8 −8.5 70 0 936 708 966 866
5 −10 −11 695 24 688 357 752 441

2v4 −8 −8 0 0 35 4 39 6
2v4 −10 −10 38 0 36 9 40 3
2v4 −12 −12 446 85 46 17 43 5
2v4 −6 −6.1 0 0 126 32 213 56
2v4 −8 −8.5 123 0 475 184 788 509
2v4 −10 −11 635 53 233 60 339 74

Table 12.1: Number of Positives Detected out of 1000 Genes. Data was generated using normal
distribution on a log scale in the range of Arfin et al. 2000 [19], with 1000 replicates for each
parameter combination. Means of the log data and associated standard deviations (in brackets)
are as follows: −6 (0.1), −8 (0.2), −10 (0.4), −11 (0.7), −12 (1.0). For each value of n, the first
three experiments correspond to the case of no change and therefore yield false positive rates.
Analysis was carried out using Cyber-T with default settings (ws = 101, l = 10) and degrees of
freedom n+ ν0 − 2.

12.2.8 More Complex Probabilistic Models

We have developed a probabilistic framework for array data analysis to ad-
dress a number of current approach shortcomings related to small sample
bias and the fact that fold differences have different significance at different
expression levels. The framework is a form of hierarchical Bayesian modeling
with Gausssian gene-independent models. Although the Gaussian represen-
tation requires further testing, other distributions can easily be incorporated
in a similar framework. While there can be no perfect substitute for exper-
imental replication (see also [355]), in simulations and controlled replicated
experiments [366] it has been shown that the approach has a regularizing ef-
fect on the data, that it compares favorably to a conventional t-test, or simple
fold-approach and that it can partially compensate for the absence of replica-
tion.

Depending on goals and implementation constraints, the method can be
extended in a number of directions. For instance, regression functions could
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be computed off-line to establish the relationship between standard deviation
and expression levels and used to produce background standard deviations.
Another possibility is to use adaptive window sizes to compute the local back-
ground variance, where the size of the window could depend, for instance,
on the derivative of the regression function. In an expression range in which
the standard deviation is relatively flat (i.e. between −8 and −4 in figure 12.1),
the size of the window is less relevant than in a region where the standard
deviation varies rapidly (i.e., between −12 and −10 in figure 12.1). A more
complete Bayesian approach could also be implemented, for instance integrat-
ing the marginal posterior distributions, which in the case considered here are
Student distributions, to estimate the probability P(µc ≈ µt|D,αt,αc).

The approach also can be extended to more complex designs and/or de-
signs involving gradients of an experimental variable and/or time series de-
signs. Examples would include a design in which cells are grown in the pres-
ence of different stressors (urea, ammonia, oxygen peroxide), or when the
molarity of a single stressor is varied (0, 5, 10 mM). Generalized linear and
nonlinear models can be used in this context. The most challenging problem,
however, is to extend the probabilistic framework towards the second level of
analysis, taking into account possible interactions and correlations amongst
genes. If two or more genes have similar behavior in a given treatment sit-
uation, decisions regarding their expression changes can be made more ro-
bustly at the level of the corresponding cluster. Multivariate normal models
and Gaussian processes (appendix E) could provide the starting probabilistic
models for this level of analysis.

With a multivariate normal model, for instance, µ is a vector of means and
Σ is a symmetric positive definite covariance matrix with determinant |Σ|. The
likelihood has the form

C|Σ|−n/2 exp[−1
2

n∑
i=1

(Xi − µ)tΣ−1(Xi − µ)]. (12.21)

The conjugate prior, generalizing the normal-scaled-inverse-gamma distribu-
tion, is based on the inverse Wishart distribution (appendix A), which general-
izes the scaled inverse gamma distribution and provides a prior on Σ. In anal-
ogy with the one-dimensional case, the conjugate prior is parameterized by
(µ0,Λ0/λ0, ν0,Λ0). Σ has an inverse Wishart distribution with parameters ν0

and Λ−1
0 . Conditioned on Σ, µ has a multivariate normal prior N (µ;µ0,Σ/λ0).

The posterior then has the same form, a product of a multivariate normal with
an inverse Wishart, parameterized by (µn,Λn/λn, νn,Λn). The parameters sat-
isfy

µn = λ0

λ0 +nµ0 + n
λ0 +nm
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λn = λ0 +n
νn = ν0 +n

Λn = Λ0 +
n∑
1

(Xi −m)(Xi −m)t

+ λ0n
λ0 +n(m− µ0)(m− µ0)t. (12.22)

Estimates similar to (12.13) can be derived for the multidimensional case.
While multivariate normal and other related models may provide a good

starting point, good probabilistic models for higher-order effects influencing
array data are still at an early stage of development. Most approaches so far
have concentrated on more or less ad hoc applications of clustering methods.

12.3 Clustering

12.3.1 Overview

At the next level of complexity, we want to remove the simplistic assumption
that, for instance, all the genes are independent. This is where we want to
begin to look at the covariance matrix of the genes, whether there exist par-
ticular clusters of related genes, and so forth. Besides array data, clustering
can be applied to many other problems in bioinformatics, including several
sequence-analysis problems. Therefore here we also try to provide a brief but
broad perspective on clustering that extends somewhat beyond the analysis of
array data.

Clustering is a fundamental technique in exploratory data analysis and pat-
tern discovery, aimed at extracting underlying cluster structures. Clustering,
however, is a “fuzzy” notion without a single precise definition. Dozens of
clustering algorithms exist in the literature and a number of ad hoc cluster-
ing procedures, ranging from hierarchical clustering to k-means, have been
applied to DNA microarray data [160, 7, 253, 511, 484, 124, 194], without any
clear emerging consensus. Because of the variety and “open” nature of cluster-
ing problems, it is unlikely that a systematic exhaustive treatment of clustering
can be given. There are a number of important issues to consider in clustering
and clustering algorithms, especially in the context of gene expression.

Data Types

At the highest level, clustering algorithms can be distinguished depending on
the nature of the data being clustered. The standard case is when the data
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points are vectors in Euclidean space. But this is by no means the only pos-
sibility. In addition to vectorial data, or numerical data expressed in absolute
coordinates, there is the case of relational data, where data is represented in
relative coordinates by giving the pairwise distance between any two points.
In many cases the data is expressed in terms of a pairwise similarity (or dis-
similarity) measure that often does not satisfy the three axioms of a distance
(positivity, symmetry, and triangle inequality). There exist situations where
data configurations are expressed in terms of ternary or higher-order relation-
ships or where only a subset of all the possible pairwise similarities is given.
More importantly, there are cases where the data is not vectorial or relational
in nature, but essentially qualitative, as in the case of answers to a multiple-
choice questionnaire. This is sometimes also called nominal data. While at
the present time gene expression array data is predominantly numerical, this
is bound to change in the future. Indeed, the dimension “orthogonal to the
genes” covering different experiments, different patients, different tissues, dif-
ferent times, and so forth is at least in part non-numerical. As databases of
array data grow, in many cases the data will be mixed with both vectorial and
nominal components.

Supervised/Unsupervised

One important distinction amongst clustering algorithms is supervised versus
unsupervised. In supervised clustering, clustering is based on a set of given
reference vectors or classes. In unsupervised clustering, no predefined set of
vectors or classes is used. Hybrid methods are also possible in which an unsu-
pervised approach is followed by a supervised one. At the current early stage
of gene expression array experiments, unsupervised methods such as k-means
and self-organizing maps [511] are most commonly used. However supervised
methods have also been tried [194], in which clusters are predetermined us-
ing functional information or unsupervised clustering methods, and then new
genes are classified in the various clusters using a classifier, such as a neural
network or a support vector machines (appendix E), that can learn the decision
boundaries between the data classes.

Similarity

The starting point of several clustering algorithms, including several forms of
hierarchical clustering, is a matrix of pairwise similarities between the objects
to be clustered. The precise definition of similarity is crucial and can of course
greatly impact the output of the clustering algorithm. In sequence analysis,
for instance, similarity can be defined using a score matrix for gaps and sub-
stitutions and an alignment algorithm. In gene expression analysis, different
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measures of similarity can be used. Two obvious examples are Euclidean dis-
tance (or more generally Lp distances) and correlation between the vectors of
expression levels. The Pearson correlation coefficient is just the dot product
of two normalized vectors, or the cosine of their angle. It can be measured
on each pair of genes across, for instance, different experiments or different
time steps. Each measure of similarity comes with its own advantages and
drawbacks depending on the situation, and may be more or less suitable to a
given analysis. The correlation, for instance, captures similarity in shape but
places no emphasis on the magnitude of the two series of measurements and
is quite sensitive to outliers. Consider, for instance, measuring the activity of
two unrelated genes that are fluctuating close to the background level. Such
genes are very similar in Euclidean distance (distance close to 0), but dissimi-
lar in terms of correlation (correlation close to 0). Likewise, consider the two
vectors 1000000000 and 0000000001. In a sense they are similar since they
are almost always identical and equal to 0. On the other hand, their correlation
is close to 0 because of the two “outliers” in the first and last position.

The Number of Clusters

The choice of the number K of clusters is a particularly thorny issue that de-
pends, among other things, on the scale at which one looks at the data. While
there have been attempts to develop methods for the automatic determination
of the number of clusters [484], it is safe to say that an educated semi-manual
trial-and-error approach still remains one of the most efficient techniques, and
this is particularly true at the present stage for array data.

Cost Function and Probabilistic Interpretation

Any rigorous discussion of clustering on a given data set presupposes a prin-
cipled way of comparing different ways of clustering the same data, hence the
need for some kind of global cost/error function that can easily be computed.
The goal of clustering then is to try to minimize such a function. This is also
called parametric clustering in the literature, as opposed to nonparametric
clustering, where only local functions are available [72].

In general, at least for numerical data, this function will depend on quan-
tities such as the centers of the clusters, the distance from each point in a
cluster to the corresponding center, the average degree of similarity of the
points in a given cluster, and so forth. Such a function is often discontinuous
with respect to the underlying clustering of the data. Here again there are no
universally accepted functions and the cost function must be tailored to the
problem, since different cost functions can lead to different answers.
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Because of the advantages of probabilistic methods and modeling, it is
tempting to associate the clustering cost function with the negative log-
likelihood of an underlying probabilistic model. While this is formally always
possible, it is of most interest when the structure of the underlying proba-
bilistic model and the associated independence assumptions are clear. This
is when the additive terms of the cost function reflect the factorial structure
of the underlying probabilities and variables. As we shall see, this is the case
with mixture models, where the k-means clustering algorithm can be viewed
as a form of EM.

In the rest of this section, we describe in more detail two basic clustering al-
gorithms that can be applied to DNA microarray data, hierarchical clustering,
and k-means. Many other related approaches, including vector quantization
[104, 484], principal component analysis, factorial analysis, self-organizing
maps, NNs, and SVMs, can be found in the references.

12.3.2 Hierarchical Clustering

Clusters can result from a hierarchical branching process. Thus there exist
methods for automatically building a tree from data given in the form of pair-
wise similarities. In the case of gene expression, this is the approach used
in [160]. The output of such a method is a tree and not a set of clusters. In
particular, it is usually not obvious how to define clusters from the tree since
clusters are derived by cutting the branches of the tree at more or less arbi-
trary points.

The standard algorithm used in [160] recursively computes a dendrogram
that assembles all the elements into a tree, starting from the correlation (pr
distance or similarity) matrix C . At each step of the algorithm,

• The two most similar elements of the current matrix (highest correlation)
are computed and a node joining these two elements is created.

• An expression profile (or vector) is created for the node by averaging
the two expression profiles (or vectors) associated with the two points
(missing data can be ignored and the average can be weighted by the
number of elements in the vectors). Alternatively, a weighted average
of the distances is used to estimate the new distance between centers
without actually computing the profile.

• A new, smaller correlation matrix is computed using the newly computed
expression profile or vector and replacing the two joined elements with
the new node.

• With N starting points, the process is repeated at most N −1 times, until
a single node remains.
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This algorithm is familiar to biologists and has been used in sequence
analysis, phylogenetic trees, and average-linkage cluster analysis. As already
pointed out, after the construction of such a dendogram there is still a prob-
lem in how to display the result and which clusters to choose. At each node,
either of the two elements joined by the node can be ordered to the left or the
right of the other. Since there are N − 1 joining steps, the number of linear
orderings consistent with the structure of the tree is 2N−1. An optimal linear
ordering maximizing the combined similarity of all neighboring pairs in the
ordering cannot general be computed efficiently. A heuristic approximation is
used in [160] by weighting genes using average expression level, chromosome
position, and time of maximal induction. The main clusters obtained on a set
of gene expression data are shown indeed to have biological relevance.

12.3.3 K-Means, Mixture Models, and EM

K-Means

Of all clustering algorithms, k-means [153] has probably the cleanest proba-
bilistic interpretation as a form of EM (expectation maximization) on the un-
derlying mixture model. In a typical implementation of the k-means algorithm,
the number of clusters is fixed to some value K. K representative points or
centers are initially chosen for each cluster more or less arbitrarily. These are
also called centroids or prototypes. Then at each step,

• Each point in the data is assigned to the cluster associated with the clos-
est representative.

• After the assignment, new representative points are computed, for in-
stance by averaging or taking the center of gravity of each computed
cluster.

• The two procedures above are repeated until the system converges or
fluctuations remain small.

Hence notice that k-means requires choosing the number of clusters and also
being able to compute a distance or similarity between points and compute a
representative for each cluster given its members.

When the cost function corresponds to an underlying probabilistic mixture
model [172, 522], k-means is an online approximation to the classical EM al-
gorithm, and as such in general is bound to converge towards a solution that
is at least a local ML or MAP solution. A classical case is when Euclidean dis-
tances are used in conjunction with a mixture of Gaussian models. A related
application to a sequence clustering algorithm is described in [28].
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Mixtures Models and EM

To see this in more detail, imagine a data set D = (d1, . . . , dN) and an underly-
ing mixture model with K components of the form

P(d) =
K∑
k=1

P(Mk)P(d|Mk) =
K∑
k=1

λkP(d|Mk), (12.23)

where λk ≥ 0 and
∑
k λk = 1 and Mk is the model for cluster k. The Lagrangian

associated with the log-likelihood and the normalization constraints on the
mixing coefficients is given by

L =
N∑
i=1

log(
K∑
k=1

λkP(di|Mk))− µ(
K∑
k=1

λk − 1) (12.24)

with the corresponding critical equation

∂L
∂λk

=
N∑
i=1

P(di|Mk)
P(di)

− µ = 0. (12.25)

Multiplying each critical equation by λk and summing over k immediately
yields the value of the Lagrange multiplier µ = N. Multiplying again the critical
equation across by P(Mk) = λk, and using Bayes’s theorem in the form

P(Mk|di) = P(di|Mk)P(Mk)/P(di) (12.26)

yields

λ∗k =
1
N

N∑
i=1

P(Mk|di). (12.27)

Thus the ML estimate of the mixing coefficients for class k is the sample mean
of the conditional probabilities that di comes from model k. Consider now
that each model Mk has its own vector of parameters (wkj). Differentiating
the Lagrangian with respect to wkj gives

∂L
∂wkj

=
N∑
i=1

λk
P(di)

∂P(di|Mk)
∂wkj

. (12.28)

Substituting (12.26) in (12.28) finally provides the critical equation

N∑
i=1

P(Mk|di)∂ log P(di|Mk)
∂wkj

= 0 (12.29)
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for each k and j. The ML equations for estimating the parameters are weighted
averages of the ML equations ∂ log P(di|Mk))/∂wkj = 0 arising from each point
separately. As in (12.27), the weights are the probabilities of membership of
the di in each class.

As was precisely the case for HMMs, the ML equations (12.27) and (12.29)
can be used iteratively to search for ML estimates, yielding also another in-
stance of the EM algorithm. In the E step, the membership probabilities (hid-
den variables) of each data point are estimated for each mixture component.
The M step is equivalent to K separate estimation problems with each data
point contributing to the log-likelihood associated with each of the K com-
ponents with a weight given by the estimated membership probabilities. Dif-
ferent flavors of the same algorithm are possible depending on whether the
membership probabilities P(M|d) are estimated in hard or soft fashion during
the E step. The description of k-means given above correspond to the hard
version where these membership probabilities are either 0 or 1, each point be-
ing assigned to only one cluster. This is analogous to the use of the Viterbi
version of the EM algorithm for HMMs, where only the optimal path associated
with a sequence is used, rather than the family of all possible paths. Different
variations are also possible during the M step of the algorithms depending, for
instance, on whether the parameters wkj are estimated by gradient descent or
by solving (12.29) exactly. It is well known that the center of gravity of a set of
points minimizes its average quadratic distance to any fixed point. Therefore
in the case of a mixture of spherical Gaussians, the M step of the k-means algo-
rithm described above maximizes the corresponding quadratic log-likelihood
and provides an ML estimate for the center of each Gaussian component.

It is also possible to introduce priors on the parameters of each cluster in
the form

P(d) =
K∑
k=1

P(d|Mk,wk)P(wk|Mk)P(Mk) (12.30)

and/or on the mixture coefficients. This leads to more complex hierarchi-
cal probabilistic models that may prove useful for DNA array data, or even
sequence data. In sequence data, for instance, this could amount to having se-
quences produced by different dice, the dice coming from different factories,
the factories coming from different countries, and so forth, with probabilistic
distributions at each level of the hierarchy and on the corresponding proper-
ties. To the best of our knowledge, these hierarchical mixture models have not
yet been explored systematically in this context.



320 Microarrays and Gene Expression

12.4 Gene Regulation

Finally, at the third level of analysis DNA microarray expression data naturally
leads to many questions of gene regulation. Understanding gene regulation at
the system level is one of the most interesting and challenging problems in
biology, but one where most of the principles remain to be discovered. Here,
we mention only some of the main directions of research and provide a few
pointers to the literature.

One direction of analysis consists in mining regulatory regions, searching,
for instance, for transcription factor DNA binding sites and other regulatory
motifs. To some extent, such searches can be done on a genomic scale using
purely computational tools [530, 531, 232]. The basic idea is to compute the
number of occurrences of each N-mer, typically for values of N in the range
of 3 to 10, within an entire genome or within a particular subset of a genome,
such as all gene-upstream regions. N-mers that are overrepresented are of
particular interest and have been shown to comprise a number of known regu-
latory motifs. Distribution patterns of overreprsented N-mers can also be very
informative [232]. In any case, overrepresentation of course must be assessed
with respect to a good statistical background model, which can be a Markov
model of some order derived from the actual counts. When in addition gene-
expression data becomes available, further tuning of these mining procedures
becomes possible by looking, for instance, at overrepresentation in upstream
regions of genes that appear to be up-regulated (or down-regulated) under a
given condition [89, 231, 535, 111, 270]. Probabilistic algorithms such as EM
and Gibbs sampling naturally play an essential role in motif finding, due to
both the structural and positional variability of motifs (see programs such as
MEME and CONSENSUS). In any case, only a small subset of the motifs found
nowadays by these techniques are typically found also in the TRANSFAC [560]
database or in the current literature, and most must await future experimental
verification.

A second, more ambitious direction is to attempt to model and infer reg-
ulatory networks on a global scale, or along more specific subcomponents
[532, 190, 584] such as a pathway or a set of coregulated genes. One of
the major obstacles here is that we do not yet understand all the details of
transcription at the molecular level. For instance, we do not entirely under-
stand the role that noise plays in gene regulation [383, 243]. Furthermore,
there are very few examples of regulatory circuits for which detailed infor-
mation is available, and they all appear to be very complex [579]. On the
theoretical side, several mathematical formalisms have been applied to model
genetic networks. These range from discrete models, such as Boolean net-
works, as in the pioneering work of Kauffman [310, 311, 312] to continuous
models based on differential equations, such as continuous recurrent neural
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networks [391] or power-law formalism [537, 466, 258], probabilistic graphi-
cal models, and Bayesian networks [190]. None of these formalisms appear to
capture all the dimensions of gene regulation, and most of the work in this
area remains to be done. Additional references in this active area of research
can be found in the proceedings of the ISMB, PSB, and RECOMB conferences
of the last few years. Understanding biology at the system level (for instance
[88, 309, 239, 289, 576]), not only gene networks, but also protein networks,
signaling networks, metabolic networks, and specific systems, such as the im-
mune system or neuronal networks, is likely to remain at the center of the
bioinformatics efforts of the next few decades.
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