
Chapter 3

Probabilistic Modeling and
Inference: Examples

What are the implications of a Bayesian approach for modeling? For any type
of model class, it is clear that the first step must be to make the likelihood
P(D|M) and the prior P(M) explicit. In this chapter, we look at a few simple
applications of the general probabilistic framework. The first is a very simple
sequence model based on die tosses. All other examples in the chapter, includ-
ing the basic derivation of statistical mechanics, are variations obtained either
by increasing the number of dice or by varying the observed data.

3.1 The Simplest Sequence Models

The simplest, but not entirely trivial, modeling situation is that of a single
coin flip. This model has a single parameter p and the data consist of a string,
containing a single letter, over the alphabet A = {H,T}, H for head and T for tail.
Since we are interested in DNA sequences, we shall move directly to a slightly
more complex version with four letters, rather than two, and the possibility of
observing longer strings.

3.1.1 The Single-Die Model with Sequence Data

The data D then consist of DNA strings over the four-letter alphabet A =
{A,C,G,T}. The simple model we want to use is to assume that the strings
have been obtained by independent tosses of the same four-sided die (figure
3.1).

67

68 Probabilistic Modeling and Inference: Examples

A
C

G

T

Figure 3.1: Two Views of the Four-Sided DNA Die Used to Generate of DNA Strings.

Because the tosses are independent and there is a unique underlying die,
for likelihood considerations it does not really matter whether we have many
strings or a single long string. So we assume that the data consist of a single
observation sequence of length N: D = {O}, with O = X1 . . .XN and Xi ∈ A. Our
model M has four parameters pA, pC, pG, pT satisfying pA + pC + pG + pT = 1.
The likelihood is then given by

P(D|M) =
∏
X∈A

pnXX = pnAA pnCC pnGG pnTT , (3.1)

where nX is the number of times the letter X appears in the sequence O. The
negative log-posterior is then

− log P(M|D) = −
∑
X∈A

nX logpX − log P(M)+ log P(D). (3.2)

If we assume a uniform prior distribution over the parameters, then the MAP
parameter estimation problem is identical to the ML parameter estimation
problem and can be solved by optimizing the Lagrangian

L = −
∑
X∈A

nX logpX − λ(1−
∑
X∈A

pX) (3.3)

associated with the negative log-likelihood and augmented by the normalizing
constraint. Here, and in the rest of the book, positivity constraints are checked
directly in the results. Setting the partial derivatives ∂L/∂pX to zero immedi-
ately yields pX = nX/λ. Using the normalization constraint gives λ = N so that
finally, as expected, we get the estimates

p∗X =
nX
N

for all X ∈ A. (3.4)

The Simplest Sequence Models 69

Note that the value of the negative log-likelihood per letter, for the optimal
parameter set P∗, approaches the entropy (see appendix B) H (P∗) of P∗ as
N →∞:

lim
N→∞

− 1
N

∑
X∈A

nX log
nX

N
= −

∑
X∈A

p∗X logp∗X =H (P∗). (3.5)

Another way of looking at these results is to say that except for a constant
entropy term, the negative log-likelihood is essentially the relative entropy
between the fixed die probabilities pX and the observed frequencies nX/N. In
the section on statistical mechanics below, we will see how this is also related
to the concept of free energy.

The observed frequency estimate pX = nX/N is of course natural when N is
large. The strong law of large numbers tells us that for large enough values of
N, the observed frequency will almost surely be very close to the true value of
pX. But what happens if N is small, say N = 4? Suppose that in a sequence of
length 4 we do not observe the letter A at all? Do we want to set the probability
pA to zero? Probably not, especially if we do not have any reason to suspect
that the die is highly biased. In other words, our prior beliefs do not favor
model parameters with value 0. As described in chapter 2, the corresponding
natural prior in this case is not a uniform prior but rather a Dirichlet prior on
the parameter vector P . Indeed, with a Dirichlet prior DαQ(P) the negative
log-posterior becomes

− log P(M|D) = −
∑
X∈A

[nX +αqX − 1] logpX + logZ + log P(D). (3.6)

Z is the normalization constant of the Dirichlet distribution that does not
depend on the probabilities pX. Thus the MAP optimization problem is very
similar to the one previously solved, except that the counts nX are replaced by
nX +αqX − 1. We immediately get the estimates

p∗X =
nX + αqX − 1
N +α − |A| for all X ∈ A (3.7)

provided this estimate is positive. In particular, the effect of the Dirichlet prior
is equivalent to adding pseudocounts to the observed counts. With the proper
choice of average distribution Q (for instance, Q uniform) and α, the estimates
p∗X can never be negative or 0. When Q is uniform, we say that the Dirichlet
prior is symmetric. Notice that the uniform distribution over P is a special
case of symmetric Dirichlet prior, with qX = 1/α = 1/|A|. It is also clear from
(3.6) that the posterior distribution P(M|D) is a Dirichlet distributionDβR with
β = N +α and rX = (nX +αqX)/(N +α).

The expectation of the posterior is the vector rX which is slightly different
from the MAP estimate (3.1). This suggests using an alternative estimate for

70 Probabilistic Modeling and Inference: Examples

pX, the predictive distribution or MP (mean posterior) estimate

p∗X =
nX +αqX
N +α . (3.8)

This is in general a better choice. Here in particular the MP estimate mini-
mizes the expected relative entropy distance f(P∗) = E(H (P , P∗)), where the
expectation is taken with respect to the posterior P(P |D).

The die model with a single Dirichlet prior is simple enough such that one
can proceed analytically with higher levels of Bayesian inference. For instance,
we can compute the evidence P(D):

P(D) =
∫

P(D|w)P(w)dw =
∫
∑
pX=1

∏
X∈A

pnX+αqX−1
X

Γ(α)
Γ(αqX))

dpX. (3.9)

This integral is very similar to the integral of a Dirichlet distribution and there-
fore can be easily calculated, yielding

P(D) = Γ(α)∏
X∈A Γ(αqX)

∏
X∈A Γ(βrX)
Γ(β)

, (3.10)

This evidence is the ratio of the normalizing constants of the prior and poste-
rior distributions.

We leave it as an exercise for the reader to continue playing with the
Bayesian machinery. Useful exercises would be to find the values of α and
qX that maximize the evidence, to define a prior on α and qX using hyperpa-
rameters, and to study MAP and MP estimates when the prior distribution is a
mixture of Dirichlet distributions

P(P) =
∑
i
λiDαiQi(P) (3.11)

(see also appendix D and [489]). In the latter case, the posterior is also a
mixture of Dirichlet distributions. This is a general result: whenever the prior
distribution is a mixture of conjugate distributions, the posterior is also a
mixture of conjugate distributions.

3.1.2 The Single-Die Model with Counts Data

With the same die model, we now assume that available data consists of the
counts themselves, D = {nX}, rather than the actual sequence. A simple com-
binatorial calculation shows that the likelihood now has the form

P(D|M) = P(nX|pX) = N!∏
X∈A nX!

∏
X∈A

pnXX (3.12)

The Simplest Sequence Models 71

with
∑

XnX = N. This is similar to (3.1), except for the factorial term that
counts the number of ways the set of numbers (nX) can be realized in a se-
quence of length N. This distribution on the counts nX generated by a simple
die model is also called a multinomial distribution, generalizing the notion of
binomial distribution associated with coin (that is, two-sided die) flips. With a
little abuse, the die model itself will sometimes be called a multinomial model.

With a Dirichlet prior DαQ(P) on the parameter vector P , a calculation
similar to the one above shows that the posterior distribution on P is also a
Dirichlet distribution DβR(P) with β = N + α and rX = (nX + αqX)/β. Not
surprisingly, the MAP and MP estimates P∗ are identical to (3.7) and (3.8).

We now consider the distribution that a fixed vector P induces on the
counts nX. Taking the logarithm of (3.12) and using Stirling’s approximation
formula for factorials

n! ≈ (n
e
)n
√

2πn, (3.13)

we get
log(P(D|P) ≈ C −H (nX/N,pX), (3.14)

where C is a constant independent of nX andH is the relative entropy between
the empirical distribution and P . When P is uniform except for constant terms,
the relative entropy above reduces to the entropy of the empirical distribution.
Therefore in this case

P(D|P) ≈ e
H (nX/N

Z
. (3.15)

This is called the entropic distribution. In other words, a uniform P induces an
entropic distribution over the counts nX, that is, over the space of all possible
histograms. As we will see in section 3.2, this is one of the standard justifica-
tions for the MaxEnt principle that amounts to using an entropic prior. Notice
the similarities but also the differences between a Dirichlet distribution and an
entropic distribution

exp(−∑X pX logpX)
Z

(3.16)

over P . We leave it as an exercise to show that if P has an entropic prior,
the posterior after observing nX is not entropic, nor Dirichlet. The entropic
distribution is not the conjugate of a multinomial. With an entropic prior, the
MAP estimate is still of the form p∗X = nX/N.

While the simple die model is of course very crude, it is important to note
that this is exactly the model we adopt when we compute first-order statis-
tics, that is, the proportion of each letter in a given family of sequences, such
as exons, introns, or a protein family. This can be viewed as a first step in
an iterative modeling process, and therefore the performance of subsequent
models must be evaluated with respect to the first-order model. The multiple-
die model of the next section and, in chapter 7, hidden Markov models (HMMs)

72 Probabilistic Modeling and Inference: Examples

are just slightly more complex generalizations of the simple die model. The
simple die model can trivially be extended by having strings of letters on each
face. This is equivalent to extending the alphabet. For instance, one can use a
die with 64 faces to model DNA triplets.

3.1.3 The Multiple-Die Model with Sequence Data

Another simple sequence model is the multiple-die model. Here the data con-
sist of K sequences, each of length N. For instance, the reader could think of a
multiple alignment of K sequences in which case the gap symbol “–” could be
considered one of the symbols in the alphabet. In the multiple-die model we
assume that there are N independent dice, one for each position, and that each
sequence is the result of flipping the N dice in a fixed order. Let piX denote the
probability of producing the letter X with die number i, and niX the number of
times the letter X appears in position i. Because the dice and the sequences
are assumed to be independent, the likelihood function is

P(D|M) =
N∏
i=1

∏
X∈A

pn
i
X

X . (3.17)

With uniform prior across all dice, a calculation identical to the single-die case
yields

pi∗X = niX
K

for all X ∈ A. (3.18)

Again we leave it as an exercise for the reader to study the effect of Dirichlet
priors on this model, and to consider possible generalizations (see also [376]).
A well-known class of models used in language modeling is the n-gram models.
In an n-gram model, there are |A|n−1 dice. Each die is associated with a differ-
ent prefix of length n − 1. Each die is a simple die with |A| faces, one letter
per face. Sequences are generated by scanning a window of length n, selecting
the die associated with the current prefix, and flipping it at random. Thus the
choice of the die to be flipped is not independent of the previous flips. These
n-gram models can be viewed as Markov models of order equal to the length
of the prefix, also called the “memory” of the model. The single-die model has
memory of length 0. There exist also variants with variable memory length (see
[448] for an example with application to biological sequences), as well as mix-
tures of higher-order Markov models, also called interpolated Markov models.
Higher-order models are computationally more expensive, with the number of
possible prefixes growing very rapidly with the size of the alphabet and the
memory length. With the small DNA alphabet, however, Markov models of
order 5 or so remain feasible.

Statistical Mechanics 73

3.2 Statistical Mechanics

There are at least five good reasons to understand the rudiments of statistical
mechanics in connection with machine learning and computational biology.
First, statistical mechanics can be viewed as one of the oldest and best exam-
ples of Bayesian reasoning [280, 281], although the presentation often given is
slightly flawed in our opinion because of the confusion between MaxEnt and
Bayes. Second, statistical mechanics has traditionally been concerned with
deriving the statistical macroscopic properties of large ensembles of simple
microscopically interacting units—the equilibrium behavior, the phase tran-
sitions, and so on. The results and techniques of statistical mechanics are
useful in understanding the properties and learning evolution of a number of
graphical models used in machine learning [252, 482, 50]. Statistical mechan-
ical models have also been applied directly to biological macromolecules—
for instance, in the protein-folding problem (see [151] for a review). Finally,
statistical mechanics is useful for understanding several algorithms that are
fundamental for machine learning, such as simulated annealing and the EM
algorithms described in chapter 4.

Here we give a Bayesian derivation of statistical mechanics from first princi-
ples, and develop the basic concepts, especially those of the Boltzmann-Gibbs
distribution and free energy, that will be needed in the next chapters. In the
basic statistical mechanics framework, one considers a stochastic system that
can be in a number of “microscopic” states: S = {s1, . . . , s|S|}, with ps denoting
the probability of being in state s for a distribution P = (ps). This can be
viewed as a die model M(w), with parameters w = ps , although for the time
being it is not necessary to assume that the tosses are independent. The key
difference from the examples above is in the data. The faces of the die, the
microscopic states, are not observable but act as hidden variables. Instead, we
assume that there is a function f(s) of the states and that the only “macro-
scopic” observable quantity, the data, is the expectation or average of f . So,
with a slight abuse of notation, in this section we write D = E(f) = ∑s psf(s).

Very often in statistical mechanics the states have a microscopic structure
so that s = (x1, . . . , xn), where the xi are local variables. For instance, the xi
can be binary spin variables, in which case |S| = 2n. Likewise, f is typically
the energy of the system and can be written as a quadratic function in the
local variables: f(s) = f(x1, . . . , xn) =

∑
ij wijxixj +

∑
i wixi. The interaction

parameters wij can be local, as in the case of spins on a lattice, or long-range,
and are related to the underlying graphical model. While such assumptions are
important in modeling particular systems and developing a detailed theory,
they will not be needed in the following sections. The first question we can
ask is: Given the observation of the average of f , what can we say about the
state distribution P?

74 Probabilistic Modeling and Inference: Examples

3.2.1 The Boltzmann-Gibbs Distribution

Standard Derivation

Most standard treatments at this point are based on the maximum entropy
principle. Without any additional information, one ought to choose the distri-
bution P that satisfies the constraint

∑
s f (s)ps = D and has the highest en-

tropy, because this is the solution that is the most “spread out” and makes the
fewest additional assumptions. This problem can easily be solved by writing
down the Lagrangian L, which consists of a linear combination of the function
being optimized with the relevant constraints:

L = −
∑
s
ps logps − λ(

∑
s
psf(s) −D)− µ(

∑
s
ps − 1). (3.19)

By equating the partial derivatives of L with respect to ps to 0, we immediately
find that the only solution distributions are of the form

p∗s (λ) =
e−λf(s)

Z(λ)
, (3.20)

where the normalizing factor Z(λ) =∑s e−λf(s) is called the partition function.
In statistical mechanics, the Lagrange multiplier is related to the temperature
T of the system by the definition λ = 1/kT , where k is the Boltzmann constant.
For all our purposes here we will not need to consider the temperature and will
work directly with the parameter λ. Note, however, that λ, and therefore the
temperature, are entirely determined by the observation D, since we must have

∑
s

e−λf(s)

Z(λ)
f(s) = D. (3.21)

Often, it will even be sufficient to assume that λ = 1. The optimal distribution
P∗ is called the Boltzmann-Gibbs distribution of the system. It is important
to realize that any distribution P can be represented as a Boltzmann-Gibbs
distribution, at least at a fixed temperature, by using an energy function pro-
portional to − logP . It is also easy to see that a similar formula is derived when
there are multiple linear constraints on the parameters ps .

While the Boltzmann-Gibbs distribution is very useful, from a Bayesian
standpoint the standard derivation is not entirely satisfactory for three rea-
sons: (1) The prior distribution is not explicit. As a result, how would one
incorporate additional prior information on the ps , such as knowing that the
first state occurs more frequently than the others? (2) The probabilistic model
is not explicit. In particular, how one would calculate the likelihood P(D|ps);
(3) The justification for the use of MaxEnt is weak. In particular, is there any

Statistical Mechanics 75

connection between MaxEnt and ML or MAP estimation? In all fairness, the
use of MaxEnt is partially justified by the combinatorial argument given above,
which shows that maximizing the entropy is essentially equivalent to max-
imizing the number of possible realizations N!/

∏
s ns ! when the tosses are

independent [282]. In this sense, the MaxEnt solution is the one that can be
realized in the largest number of ways. Such an argument, however, is based
only on the number of realizations and does not take into account their rela-
tive probabilities. We now address these three criticisms.

Bayesian Derivation

The main problem with the standard derivation is that the probabilistic model
is not really explicit. In particular, the likelihood function P(D|ps) is not
clearly defined and little progress can be made in this direction without con-
sidering actual runs of the system. Thus we must enlarge the initial setup by
assuming that there is a fixed number N that is very large and that the sys-
tem is observed over such a period. Variable observation times could also be
considered but would further complicate the analysis. Accordingly, we decide
to parameterize the model using the counts ns . Note also that what is really
observed is D = (∑s nsf(s))/N �=

∑
s psf(s).

Several priors on the counts ns are possible. As we have seen, a natural
prior would be to use a Dirichlet prior on ns/N. A nonsymmetric Dirichlet
prior could easily incorporate any additional information regarding the fre-
quency of occurrence of any particular state. We leave it as an exercise for the
reader to calculate the posterior obtained with a Dirichlet prior, but this is ob-
viously not the Boltzmann-Gibbs solution. For instance, if the prior is uniform
and f(s1) = D, then the vector (N,0, . . . ,0), with the lowest possible entropy,
maximizes the probability of the data by rendering it certain! Here we rather
decide to use the entropic prior, which is the distribution on ns obtained when
P is uniform. Again, such a prior is best justified when the runs are indepen-
dent, that is, the underlying probabilistic model is a simple die with |S| faces.
Although in what follows we confine ourselves to this zeroth-order Markov
model, one could consider higher-order Markov models. A Markov model of
order 1, for instance, would include a different set of parameters associated
with the transition probabilities from state to state, equivalent to |S| dice. Cer-
tain aspects of Markov models of order 1 and Boltzmann-Gibbs distributions
are treated in chapter 4.

The likelihood function is then trivial and has value 1 or 0, depending on
whether or not D =∑s f (s)ns/N. We can finally proceed with the first step of
Bayesian inference, and estimate the parameters ns by MAP estimation. Using

76 Probabilistic Modeling and Inference: Examples

the formalism introduced earlier this leads immediately to the Lagrangian

L = −
∑
s

ns
N

log
ns
N
− λ(

∑
s
(f(s)

ns
N
−D)− µ(

∑
s
ns −N), (3.22)

where the entropy act as a regularizer. This is of course virtually identical
to (3.19) and yields a MAP Boltzmann-Gibbs distribution for ns/N. A similar
result can be derived using the parameters ps instead of ns , but in a more
cumbersome way in terms of both justifying the entropic prior and calculating
the likelihood function, since different values of ns can be consistent with D.

In conclusion, the Boltzmann-Gibbs distribution corresponds to a first step
of Bayesian inference by MAP, with an entropic prior. Therefore MaxEnt is
best viewed not as an universal principle but simply as a shortcut for the first
level of Bayesian inference in a multinomial setting associated with an entropic
prior. Such prior can be challenged and examples can be constructed where
MaxEnt leads to the “wrong” solution. We leave it as an exercise for the reader
to construct such examples and envision how to proceed again with higher
steps of Bayesian inference (hyperparameters, integration over priors).

3.2.2 Thermodynamic Limit and Phase Transitions

The temperature is a good example of an intensive quantity, that is, a quantity
that by definition is independent of system size. On the other hand, extensive
quantities, such as the energy, grow with the size of the system. For large
systems with local interactions, this growth is typically linear with the size of
the system. Thus the value of an extensive quantity per unit of volume tends
to a limiting value as the size of the system goes to infinity, the so-called
thermodynamic limit.

One of the main goals of statistical mechanics is to estimate the thermo-
dynamic limit of macroscopic quantities, that is, to approximate expectations
with respect to the Boltzmann-Gibbs distribution. In particular, one of the
main goals is to approximate the partition function Z(λ), since this function
contains most of the relevant information about the system. In particular, it
is easy to show that all the moments of the function f can be computed from
Z(λ), and more precisely from its logarithm. For instance, for the first two
moments, the mean and the variance, an elementary calculation gives

E(f) = − ∂
∂λ

logZ(λ) (3.23)

Var(f) = − ∂2

∂λ2 logZ(λ). (3.24)

Statistical Mechanics 77

Likewise, the entropy of the Boltzmann-Gibbs distribution P∗ can be expressed
as

H (P∗) = −
∑
s
P∗(s) log P∗(s) = logZ(λ)+ λE(f). (3.25)

Another central topic of statistical mechanics is the study of phase tran-
sitions, that is abrupt changes in the behavior of the system as some of the
parameters, especially the temperature T or equivalently λ, are varied. A first-
order phase transition is said to occur at a critical value λC if E(f) is discontin-
uous at λC . A second-order phase transition occurs at λC if E(f) is continuous
but Var (f) is discontinuous. The study of phase transitions is also important
in learning theory [252, 482], but this is beyond the scope of this book.

3.2.3 The Free Energy

The logarithm of the partition function is called the free energy because of its
important role (see (3.23), (3.24), and (3.25)). More precisely, the free energy
F = F(f , λ) = F(λ) is defined to be

F(λ) = −1
λ

logZ(λ). (3.26)

The above formula can obviously be rewritten in terms of the free energy. For
instance,

H (P∗) = −λF(λ)+ λE(f). (3.27)

This is equivalent to

F(λ) = E(f)− 1
λ
H (P∗), (3.28)

which is sometimes used as an alternative definition of the free energy. In this
definition, the free energy depends on the function f , the parameter λ, and
the distribution P∗ over states. The definition therefore can be extended to
any other distribution Q(s):

F(f ,Q,λ) = F(Q,λ) = EQ(f) − 1
λ
H (Q), (3.29)

where EQ denotes expectations with respect to the distribution Q. Here we
drop the dependency on f , but the choice of f as a negative log-probability
is important in statistical applications, such as the derivation of the EM algo-
rithm, as described below and in chapter 4. By comparing this free energy with
the Lagrangian above, it is also clear that the Boltzmann-Gibbs distribution is
equivalently characterized as the distribution that minimizes the free energy.

78 Probabilistic Modeling and Inference: Examples

Consider now any two distributions Q(s) and R(s). We want to be able to
compare their free energies. A simple calculation gives

F(Q,λ)−F(R, λ) =
∑
s
[Q(s) −R(s)][f(s) + 1

λ
logR(s)] + 1

λ
H (Q,R), (3.30)

where H (Q,R) = ∑
s Q(s) log(Q(s)/R(s)) is the relative entropy between Q

and R.
It is useful to remark that if we take the energy of s to be the negative

likelihood f(s) = − logR(s), where R is some distribution over the states, then
the Boltzmann-Gibbs distribution is proportional to Rλ(s). In particular, at
λ = 1 the Boltzmann-Gibbs distribution of the system is R itself: P∗(s,1) = R,
and the free energy reduces to 0. Furthermore, for any other distribution Q,
the difference in free energies is then equal to the relative entropy

F(Q,1) −F(R,1) =H (Q,R). (3.31)

Since the relative entropy is always nonnegative, then F(Q,1) ≥ F(R,1),
with equality if and only if Q = R. Again the Boltzmann-Gibbs distribution
minimizes the free energy. It is also important to note that there is noth-
ing special about the λ = 1 temperature. We could, for instance, define
f(s) = − logR(s)/λ, and then obtain F(Q,λ) −F(R, λ) =H (Q,R)/λ.

3.2.4 The Hidden Variables Case

In many modeling situations there are hidden/unobserved/latent variables or
causes denoted by H. If D denotes the data, we assume that there is available
a joint distribution on the hidden and observed variables P(D,H|w), parame-
terized by w. In the case of interest to us, w as usual denotes the parameters
of a model. From a statistical mechanics perspective, we can consider that the
states of the system are the values assumed by the hidden variables. If we
define f by

f(H) = − log P(D,H|w), (3.32)

then at λ = 1 the Boltzmann-Gibbs distribution is given by the posterior

P∗ = P∗(H,1) = P(H|D,w) (3.33)

and the free energy by

F(P∗,1) = − log P(D|w), (3.34)

which is the negative log-likelihood of the data. Furthermore, for any other
distribution Q, the difference in free energies is given by

F(Q,1) −F(P∗,1) =H (Q, P∗) (3.35)

Statistical Mechanics 79

or
log P(D|w) = −F(Q,1) +H (Q, P∗). (3.36)

In order to maximize the data likelihood, when the posterior P(H|D,w) and
the corresponding expectations are difficult to calculate, one can sometimes
use a suboptimal strategy based on a different family of distributions Q for
which calculations are more tractable, without departing too much from the
true posterior. This idea of minimizing the free energy term F(Q,λ) is de-
veloped in [146, 255] and in the section on variational methods in appendix
A.

This page intentionally left blank

Chapter 4

Machine Learning Algorithms

4.1 Introduction

In this chapter we cover the main algorithms for machine-learning applications
that will be used thoughout the rest of the book. We briefly describe each of
the algorithms and provide pointers to the vast literature on this topic.

Once a parameterized model M(w) for the data has been constructed, we
have seen that the next steps are the following:

1. The estimation of the complete distribution P(w,D) and the posterior
P(w|D)

2. The estimation of the optimal set of parameters w by maximizing
P(w|D), the first level of Bayesian inference

3. The estimation of marginals and expectations with respect to the
posterior, that is, for instance, of integrals of the form E(f) =∫
f(w)P(w|D)dw, the higher levels of Bayesian inference

Thus the algorithms can be subdivided into three categories, depending on
whether the goal is to estimate a probability density, one of its modes, or the
corresponding expectations. For practical reasons we shall use this distinction,
although it is somewhat arbitrary. Indeed, any problem can be reformulated
as an optimization problem, and the probability of an event is the expectation
of the corresponding indicator function: P(A) = E(1A). Likewise, dynamic
programming, which is often used to estimate sequence data likelihoods, can
be viewed as an optimization technique.

In section 4.2, we briefly review dynamic programming, one of the key al-
gorithms in sequence analysis, and its application in the estimations of se-
quence likelihoods. In the following two sections we look at algorithms for

81

82 Machine Learning Algorithms

the optimization of P(w|D), including gradient descent and EM (expectation
maximization)/GEM (generalized expectation maximization). The treatment of
simulated annealing is postponed to section 4.6, after the treatment in section
4.5 of Monte Carlo Markov chain methods (MCMC) for the stochastic sampling
of high-dimensional distributions and the computation of the corresponding
expectations. This is because simulated annealing relies heavily on stochastic
sampling. In section 4.7 we take a brief look at evolutionary algorithms, and
conclude in section 4.8 with several complements and practical aspects.

4.2 Dynamic Programming

Dynamic programming [66] is to a very general optimization technique that
can be applied any time a problem can be recursively subdivided into two sim-
ilar subproblems of smaller size, such that the solution to the larger problem
can be obtained by piecing together the solutions to the two subproblems. The
prototypical problem to which dynamic programming can be applied is that of
finding the shortest path between two nodes in a graph. Clearly the shortest
path from node A to node B, going through node C , is the concatenation of
the shortest path from A to C with the shortest path from C to B. This is also
called the “Bellman principle.” A general solution to the original problem is
then constructed by recursively piecing together shorter optimal paths.

Dynamic programming and its many variations are ubiquitous in sequence
analysis. The Needleman–Wunch and Smith–Waterman algorithms [401, 481,
492], as well as all other sequence-alignment algorithms such as the Viterbi
decoding algorithm of electrical engineers, are examples of dynamic program-
ming. Alignment algorithms can be visualized in terms of finding the shortest
path in the appropriate graph with the appropriate metric. Aligning two se-
quences of length of N requires finding a shortest path in a graph with N2

vertices. Since dynamic programming essentially requires visiting all such ver-
tices once, it is easy to see that its time complexity scales as O(N2).

In chapters 7 and 8, dynamic programming and the Viterbi algorithm are
heavily used to compute likelihoods and align sequences to HMMs during the
training and exploitation phases. Accordingly, we give there a detailed deriva-
tion of the corresponding algorithms. Other variations on dynamic program-
ming used in other chapters are sketched or left as an exercise. Because dy-
namic programming is very well known and is at the root of many conventional
algorithms for sequence analysis, we refer the reader to the abundant litera-
ture on the topic (in particular [550] and references therein). Reinforcement-
learning algorithms are also another important class of learning algorithms
that can be viewed as generalizations of dynamic programming ideas [298].

Gradient Descent 83

4.3 Gradient Descent

Often we are interested in parameter estimation, that is, in finding the best
possible model M(w) that minimizes the posterior f(w) = − log P(w|D), or
possibly the likelihood − log P(D|w). Whenever a function f(w) is differen-
tiable, one can try to find its minima by using one of the oldest optimization
algorithms, gradient descent. As its name indicates, gradient descent is an
iterative procedure that can be expressed vectorially as

wt+1 =wt − η ∂f
∂wt , (4.1)

where η is the step size, or learning rate, which can be fixed or adjusted during
the learning process.

While the general gradient-descent principle is simple, in complex param-
eterized models it can give rise to different implementations, depending on
how the gradient is actually computed [26]. In graphical models, this often
requires the propagation of information “backwards.” As we will see in the
next chapters, this is the case for gradient-descent learning applied to neural
networks (the backpropagation algorithm) and to hidden Markov models (the
forward–backward procedure). Obviously the outcome of a gradient-descent
procedure depends on the initial estimate. Furthermore, if the function being
optimized has a complex landscape, gradient descent in general will terminate
in a local minimum rather than a global one. Whenever feasible, therefore, it
is wise to run the procedure several times, with different starting points and
learning rates.

It is well known that there are situations where plain gradient descent can
be slow and inefficient. To overcome such problems, a number of variations
on gradient descent are possible, such as conjugate gradient descent, that use
second-order information or more complex directions of descent constructed
from the current gradient and the history of previous directions. Additional
details and references can be found in [434]. In spite of its relative crudeness,
gradient descent remains useful, easy to implement, and widely used.

4.3.1 Random-Direction Descent

There are a number of other descent procedures that do not necessarily fol-
low the line of steepest descent. These can be useful when the gradient is
difficult to compute, when the physics of the hardware directly supports such
approaches, or when escaping from local minima is important. For instance,
one could generate a random perturbation of the current estimate and accept
it only if it lies below the current level. If it does not, the opposite pertur-
bation is accepted, or alternatively a new perturbation is tried. In line search

84 Machine Learning Algorithms

A

B

C

ww t t+1

Figure 4.1: Three Consecutive Points of the EM Algorithm. Starting from wt , in order to mini-
mize the likelihood surface F(w) = − log P(D|w), the EM algorithm minimizes a surface G(w),
with G(wt) = F(wt) = A. The surface G dominates the surface F , and the two surfaces have
the same gradient at w = wt. wt+1 corresponds to point B, the minimum of G. Point C is
determined by calculating the new posterior on the hidden variables P(H|D,wt+1).

algorithms, once a direction of descent has been determined, the lowest point
along that direction is searched before generating a new direction. Ideas re-
lated to line search and random descent are also found in the EM algorithm in
the next section, and in evolutionary algorithms toward the end of the chapter.

4.4 EM/GEM Algorithms

Another important class of optimization algorithms is the expectation max-
imization (EM) and generalized expectation maximization (GEM) algorithms
[147, 387]. Such algorithms have been used in many different applications and
also in sequence analysis [352, 113]. In the case of HMMs, the EM algorithm
is also called the Baum–Welch algorithm [54]. Since the usefulness of these
algorithms goes beyond HMMs, we give here a general treatment of EM/GEM
algorithms, using the concept of free energy of chapter 3, along the lines sug-
gested in [400].

The EM algorithm is useful in models and situations with hidden variables.
Typical examples of hidden variables are missing or unobservable data, mix-
ture parameters in a mixture model, and hidden node states in graphical mod-
els (hidden units in NNs, hidden states in HMMs). If D denotes the data, we

EM/GEM Algorithms 85

assume that there is available a parameterized joint distribution on the hidden
and observed variables P(D,H|w), parameterized by w. In the case of main
interest to us, w denotes, as usual, the parameters of a model. Let us assume
that the objective is to maximize the likelihood log P(D|w). The same ideas
can easily be extended to the case of MAP estimation. Since in general it is
difficult to optimize log P(D|w) directly, the basic idea is to try to optimize
the expectation E(log P(D|w)):

E(log P(D|w)) = E(log P(D,H|w) − log P(H|D,w)). (4.2)

The EM algorithm is an iterative algorithm that proceeds in two alternating
steps, the E (expectation) step and the M (maximization) step. During the E
step, the distribution of the hidden variables is computed, given the observed
data and the current estimate of w. During the M step, the parameters are
updated to their best possible value, given the presumed distribution on the
hidden variables. Starting with an estimate w0 at time 0, the EM algorithm can
be written more precisely at time t as follows:

1. E step: Compute the distribution Q∗(H) over H such that Q∗(H) =
P(H|D,wt−1).

2. M step: Set wt = argw max EQ∗[log P(D,H|w)].

As seen in chapter 3, if we define the energy of a hidden configuration H
to be f(H) = − log P(D,H|w), then the Boltzmann–Gibbs distribution at λ = 1
is given by the posterior P(H|D,w). In other words, the first step of the EM
algorithm is the minimization, with respect to Q, of the free energy

F(f ,Q,1) = F(w,Q,1) = F(w,Q) = EQ(f)−H (Q). (4.3)

The second step is a minimization with respect to f , that is, with respect to
w. Thus, omitting the constant parameter λ = 1, the EM algorithm can be
rephrased in the following form:

1. E step: Compute the Boltzmann–Gibbs distribution Q∗(H) that mini-
mizes F(wt−1,Q).

2. M step: Set wt to minimize F(wt−1,Q∗).

It is important to note that although Q∗ depends on w, Q∗ is held fixed dur-
ing the M step. Also from chapter 3, the value of the free energy for the
Boltzmann–Gibbs distribution is equal to the negative log-likelihood of the
data, F(w,Q∗,1) = − log P(D|w).

86 Machine Learning Algorithms

In summary, the EM algorithm is an optimization procedure on the free
energy F that proceeds by alternate optimization in the Q and w directions.
Hence it produces a sequence of estimates of the form

(wt,Qt)→ (wt,Qt+1)→ (wt+1,Qt+1)→ (wt+1,Qt+2) . . . , (4.4)

satisfying, for every t

1. F(wt,Qt) ≥ F(wt,Qt+1) ≥ F(wt+1,Qt+1) ≥ F(wt+1,Qt+2) ≥ . . .
2. F(wt,Qt+1) = − log P(D|wt)

3. Qt+1 = P(H|D,wt) and F(wt,Qt)−F(wt,Qt+1) =H (Qt ,Qt+1)

It is then clear that, except for rare saddle points, the EM algorithm converges
to a local minimum of F(w,Q) which is also a local minimum of− log P(D|M),
as desired.

It is instructive to look at the EM algorithm from the point of view ofw only.
Suppose we have an estimate wt at time t, with the corresponding likelihood
− log P(D|wt). Then

wt+1 = argw min[−EQt+1 log P(H,D|w)] (4.5)

with Qt+1 = P(H|D,wt). By writing P(H,D|w) = P(H|D,w)P(D|w) and col-
lecting terms, this is equivalent to

wt+1 = argw min[− log P(D|w)+H (Qt+1,P(H|D,w))]. (4.6)

Thus, starting from wt , the EM algorithm finds the minimum of the sur-
face G(w) = − log P(D|w) +H (Qt+1,P(H|D,w)) that dominates the surface
F(w) = − log P(D|w) that one really wants to optimize. Thus the optimiza-
tion procedure tends to maximize the likelihood, without going too far from
the current value of P(H|D,wt), to keep the cross-entropy term small. Taking
derivatives vectorially yields

∂G
∂w

= −∂ log P(D|w)
∂w

−
∑
H
Qt+1(H)

∂P(H|D,w)/∂w
P(H|D,w) . (4.7)

The second term in the right-hand side cancels when w =wt . Therefore,

∂G
∂w

|w=wt = −∂ log P(D|w)
w

|w=wt . (4.8)

The tangent to the new surface G is identical to the tangent to the original
surface F(w) = − log P(D|w). Thus gradient descents on the negative log-
likelihood and the EM algorithm are descending in the same directions (figure

Markov-Chain Monte-Carlo Methods 87

4.1). The EM algorithm is further simplified when the distribution P(D,H|w)
belongs to the exponential family. In particular, in this case, the function G
is always convex. The particularization of the EM algorithm to exponential
distributions is left as an exercise.

Finally, any algorithm that descends the function G (without necessarily
finding its minimum), and hence improves the likelihood, is called a GEM (gen-
eralized EM) algorithm [147]. The geometric picture above shows that gradient
descent on the likelihood can be viewed as a GEM algorithm (see also [400] for
a discussion of how the E and M steps can be executed partially, for instance,
online).

4.5 Markov-Chain Monte-Carlo Methods

Markov-chain Monte-Carlo (MCMC) methods belong to an important class of
stochastic methods that are related to statistical physics and are increasingly
used in Bayesian inference and machine learning [578, 202, 396, 520, 69]. Re-
call that one of the basic goals derived from the general Bayesian framework
is to compute expectations with respect to a high-dimensional probability dis-
tribution P(x1, . . . , xn), where the xi can be the values of model parameters or
hidden variables, as well as observed data. The two basic ideas behind MCMC
are very simple. The first idea (Monte Carlo) is to approximate such expecta-
tions by

E(f) =
∑

x1,...,xn
f(x1, . . . , xn)P(x1, . . . , xn) ≈ 1

T

T∑
t=0

f(xt1, . . . , x
t
n) (4.9)

for large T , provided (xt1, . . . , xtn) are sampled according to their distribution
P(x1, . . . , xn). In order to sample from P , the second basic idea is to construct
a Markov chain having P as its equilibrium distribution, then simulate the
chain and try to sample from its equilibrium distribution.

Before we proceed with the rudiments of Markov chains, it is worth noting
a few points. The mean of the estimator on the right-hand side of (4.9) is E(f).
If the samples are independent, its variance is Var(f)/T . In this case, the
precision of the estimate does not depend on the dimension of the space be-
ing sampled. Importance sampling and rejection sampling are two well-known
Monte-Carlo algorithms for generating independent samples that will not be
reviewed here. Both algorithms tend to be inefficient in high-dimensional state
spaces. The samples created using Markov-chain methods are not indepen-
dent. But at equilibrium they are still representative of P . The dependence of
one sample on the previous one is the key to the better efficiency of MCMC
methods with higher-dimensional spaces. After all, if P is differentiable or

88 Machine Learning Algorithms

even just continuous, the probability P(x1, . . . , xn) of a sample provides in-
formation about its neighborhood. This remains true even in cases where P
can be computed efficiently only up to a constant normalizing factor. Finally,
MCMC methods, like any other method based on a single estimator, are at best
an approximation to the ideal Bayesian inference process that would rely on
the calculation of P(E(f)|D) given any sample D.

4.5.1 Markov Chains

The theory of Markov chains is well established [176]. Here we review only the
most basic concepts and refer the reader to the textbook literature for more
information. As in statistical mechanics, consider a system S = {s1 , s2, . . . , s|S|}
with |S| states. Let S0, S1, . . . , St, . . . be the sequence of variables representing
the state of the system at each time. Thus each integer from 1 to |S| is associ-
ated with one state of the chain, and at any time the chain is in one particular
state. The variables St form a Markov chain if and only if for any t

P(St+1|S0, .., St) = P(St+1|St). (4.10)

Intuitively, this can be rephrased by saying that the future depends on the
past only through the present. St is called the state of the chain at time t.
A Markov chain is entirely defined by the initial distribution P(S0) and the
transition probabilities Pt = P(St+1|St). Here we will be concerned only with
stationary Markov chains, where the transition probabilities are constant, that
is, independent of time. The transition matrix of the chain is then the matrix
T = (tij), where tij is the probability of moving from state sj to state si.
Note that, in relation to (4.9), the state space of the chain is defined by the
coordinates x1, . . . , xn; that is, each St is an n-dimensional variable.

A distribution over the state space of the chain is said to be stable if, once
reached, it persists forever. Thus a stable distribution Q must satisfy the
balance equation

Q(si) =
|S|∑
k=1

tikQ(sk) = (1−
∑
j �=i
tji)Q(si)+

∑
j �=i
tijQ(sj) (4.11)

or equivalently
−
∑
j �=i
tjiQ(si)+

∑
j �=i
tijQ(sj) = 0. (4.12)

Thus, a sufficient condition for stability is the pairwise balance equation

tjiQ(si) = tijQ(sj) (4.13)

Markov-Chain Monte-Carlo Methods 89

for every i and j. This expresses the fact that the average number of transi-
tions from si to sj is equal to the average number of transitions from sj to si,
and therefore the overall distribution over states is preserved.

A Markov chain can in general have several stable distributions. Markov
chains with finite state space always have at least one stable distribution. Ob-
viously, in MCMC sampling procedures, we will be interested in stable distri-
butions, in fact in the even stronger conditions of ergodic distributions. Here,
a distribution is defined to be ergodic if and only if the chain always converges
to it, regardless of the choice of the initial distribution at time 0. In the case
of an ergodic Markov chain, there is only one stable distribution, called the
equilibrium distribution. Conditions for the ergodicity of a Markov chain, and
bounds on the rate of convergence to the equilibrium distribution, are well
known [150, 180].

In order to achieve our goal of sampling from P(x1, . . . , xn), we now turn to
the two main MCMC algorithms: Gibbs sampling and the Metropolis algorithm.

4.5.2 Gibbs Sampling

Gibbs sampling, also known as the heatbath method, is the simplest MCMC
algorithm [199]. It can be applied to a wide range of situations, especially
when the conditional distributions P(xi|xj : j �= i) can be computed easily, or
when the variables Xi take on values from a small set. In Gibbs sampling, one
iteratively samples each single variable, conditioned on the most recent value
of all the other variables. Starting from (xt1, . . . , xtn),

1. Select xt+1
1 according to P(X1|xt2, xt3, . . . , xtn).

2. Select xt+1
2 according to P(X2|xt+1

1 , xt2, . . . , xtn).

3.

n. Select xt+1
n according to P(Xn|xt+1

1 , xt+1
2 , . . . , xt+1

n−1).

In this version, we cycle through the variables sequentially. It is also possible
to cycle through the variables in any order, or to uniformly select the vari-
ables at each step. One can even use any other fixed distribution, as long as
each variable has a nonzero probability of being visited. It is also possible to
sample variables by groups rather than one by one. By applying the defini-
tion, it is trivial to check that the Gibbs sampling algorithm leads to a stable
distribution. Proofs of ergodicity and further information can be found in the
general references on MCMC methods given above and in [209, 191, 490]. An
example of specific Gibbs sampling equations for Bayesian networks is given in
appendix C. We now turn to another MCMC method, the Metropolis algorithm,
of which Gibbs sampling is a special case.

90 Machine Learning Algorithms

4.5.3 Metropolis Algorithm

Again let us suppose that the goal is to sample from a given distribution
P(s) = P(x1, . . . , xn). The Metropolis algorithm [388] randomly generates per-
turbations of the current state, and accepts or rejects them depending on how
the probability of the state is affected.

More precisely, the Metropolis algorithm is defined using two auxiliary fam-
ilies of distributions Q and R. Q = (qij) is the selection distribution; qij is the
probability of selecting state si while being in state sj . R = (rij) is the ac-
ceptance distribution; rij is the probability of accepting state si while being in
state sj and having selected si as a possible next state. Obviously, we must
have qij ≥ 0 and rij ≥ 0, and

∑
i qij = 1. For the time being, and in most prac-

tical cases, one can assume that Q is symmetric, qij = qji, but this hypothesis
can also be relaxed. Starting from a state sj at time t (St = sj), the algorithm
proceeds as follows:

1. Randomly select a state si according to the distribution qij .

2. Accept si with probability rij . That is, St+1 = si with probability rij and
St+1 = sj with probability 1− rij .

In the most common version of the Metropolis algorithm, the acceptance dis-
tribution is defined by

rij =min

(
1,
P(si)
P(sj)

)
. (4.14)

We leave it as an exercise to show that Gibbs sampling can be rewritten as
a Metropolis algorithm. When P is expressed in terms of an energy function
P(s) = e−E(s)/kT /Z, this can be rewritten as

rij =min(1, e−[E(si)−E(sj)]/kT) =min(1, e−∆ijE/kT). (4.15)

Note that only the ratio of the probabilities is needed, not the partition func-
tion. As a result, the algorithm can be expressed in its most familiar form:

1. Randomly select a state si according to the distribution qij .

2. If E(si) ≤ E(sj) accept si. If E(si) > E(sj), accept si only with probability
e−∆ijE/kT . If si is rejected, stay in sj .

It is easy to see that the distribution P is stable under the Metropolis algo-
rithm. We have tij = qijP(si)/P(sj) and tji = qji. Since Q is symmetric, this
immediately gives

P(sj)tij = P(si)tji. (4.16)

In other words, since the pairwise balance equations are satisfied, P is stable.

Simulated Annealing 91

To ensure ergodicity, it is necessary and sufficient to ensure that there are
no absorbing states in the chain, or equivalently that there is always a path
of transitions with nonzero probability from any si to any sj . This of course
depends on the structure of qij . Several general remarks can be made. We
can construct a graph G by connecting two points i and j with an edge if and
only if qij > 0. If the resulting graph is complete (or even just very dense),
the chain is clearly ergodic. This type of Metropolis algorithm can be termed
“global” because there is a nonzero probability of moving from any state i to
any state j in one step, or at most very few steps, if the graph is dense but not
complete. When the graph is more sparse, one obtains more “local” versions of
the Metropolis algorithm. Ergodicity is still preserved, provided any two points
are connected by at least one path. An example of this situation is when the
algorithm is applied componentwise, perturbing one component at a time. In
most practical applications, the selection probability qji is chosen uniformly
over the neighbors j of vertex i. Usually, qii is also chosen to be 0, although
this does not really impact any of the results just described.

Finally, there are several variations and generalizations of the Metropolis
algorithm using, for instance, the derivatives of the energy function, other ac-
ceptance functions [242, 396], and cluster Monte Carlo algorithms [510, 547].
In particular, it is even possible to remove the condition that Q be symmetric,
as long as the balance is preserved by modifying the acceptance function R
accordingly:

rij = min

(
1,
P(si)qij
P(sj)qji

)
. (4.17)

4.6 Simulated Annealing

Simulated annealing [321] (see also [67] for a review) is a general-purpose opti-
mization algorithm inspired by statistical mechanics. It combines MCMC ideas
such as the Metropolis algorithm with a schedule for lowering the temperature.
The name has its origin in metallurgy, where metals that have been annealed
(cooled slowly) exhibit strength properties superior to metals that have been
quenched (cooled rapidly). The greater macroscopic strength is associated
with internal molecular states of lower energy.

Consider the problem of minimizing a function f(x1, . . . , xn). Without
any loss of generality, we can assume that f ≥ 0 everywhere. As usual,
we can regard f as representing the energy of a statistical mechanical sys-
tem with states s = (x1, . . . , xn). We have seen that the probability of be-
ing in state s at temperature T is given by the Boltzmann–Gibbs distribution
P(s) = P(x1, . . . , xn) = e−f(s)/kT /Z. The first key observation in order to
understand simulated annealing is that at low temperatures, the Boltzmann–

92 Machine Learning Algorithms

Gibbs distribution is dominated by the states of lowest energy, which become
the most probable. In fact, if there are m states where the minimum of the
function f is achieved, we have

lim
T→0

P(s) =
{

1/m if s is a ground state
0 otherwise.

(4.18)

If we could simulate the system at temperatures near 0, we would immediately
have the ground states, that is, the minima of f . The catch is that any MCMC
method fails in general to reach the Boltzmann–Gibbs equilibrium distribution
in a reasonable time, because movement in state space is inhibited by regions
of very low probability, that is, by high energy barriers. Simulated annealing
attempts to overcome this problem by starting with a high temperature, where
the Boltzmann–Gibbs distribution is close to uniform, and progressively low-
ering it according to some annealing schedule. While simulated annealing is
usually used in combination with the Metropolis algorithm, it is in fact appli-
cable to any MCMC method, and in particular to Gibbs sampling.

The annealing schedule of course plays a crucial role. There are a number
of theoretical results [199] showing that for a logarithmic annealing schedule
of the form

T t = K
log t

(4.19)

(t ≥ 1), the algorithm converges almost surely to one of the ground states, for
some value of the constant K (see [230] for a lower bound on K). (From the
context, no confusion should arise between T the temperature and T the time
horizon.) Intuitively, this is easy to see [396]. If we let smax and smin denote
two states with maximal and minimal energy, then from the Boltzmann–Gibbs
distribution we have,

Pt(smax)
P t(smin)

=
(

1
t

)∆E/kK
, (4.20)

where ∆E = E(smax)−E(smin). If we take K = ∆E/k, we then have Pt(smax) =
Pt(smin)/t. Therefore, for any state s,

Pt(s) ≥ Pt(smax) = 1
t
P t(smin) ≥ 1

t
P1(smin). (4.21)

In particular, the number of times any state s is visited during the annealing
is lower-bounded by P1(smin)

∑
t 1/t, which is divergent. Thus, with K scaled

with respect to the highest energy barrier, it is impossible for the algorithm to
remain trapped in a bad local minimum.

It must be noted, however, that a logarithmic annealing schedule is very
slow and generally impractical. A logarithmic schedule suggests that a signifi-
cant fraction of all possible states is visited, and therefore is essentially equiv-
alent to an exhaustive search. Thus it is not surprising that it is guaranteed

Evolutionary and Genetic Algorithms 93

to find the global optimum. On the other hand, if an exhaustive search had
been an alternative, it would have been used in the first place. Most problems
of interest are typically NP complete, with an exponential number of possible
states ruling out any possibility of conducting exhaustive searches. In practice,
simulated annealing must be used with faster schedules, such as geometric an-
nealing schedules of the form

T t = µT t−1 (4.22)

for some 0 < µ < 1. Naturally, the best one can then hope for is to converge in
general to approximate solutions corresponding to points of low energy, but
not to the global minima.

Other interesting algorithms related to simulated annealing [547, 381] and
MCMC basic ideas, such as dynamical and hybrid Monte Carlo methods [152,
396], are discussed in the references.

4.7 Evolutionary and Genetic Algorithms

In the present context, evolutionary algorithms [261, 476] perhaps have a spe-
cial flavor since their source of inspiration, evolution, is at the heart of our
domain. Evolutionary algorithms are a broad class of optimization algorithms
that attempt to simulate in some way the inner workings of evolution, as we
(think we) understand it. One component common to all these algorithms is
the generation of random perturbations, or mutations, and the presence of a
fitness function that is used to assess the quality of a given point and filter
out mutations that are not useful. In this sense, random descent methods
and even simulated annealing can be viewed as special cases of evolutionary
algorithms. One of the broadest subclasses of evolutionary algorithms is the
genetic algorithms.

Genetic algorithms [328, 330] and the related field of artificial life push the
evolutionary analogy one step further by simulating the evolution of popula-
tions of points in fitness space. Furthermore, in addition to mutations, new
points are generated by a number of other operations mimicking genetic op-
erators and sexual reproduction, such as crossover. While genetic algorithms
are particularly flexible and make possible the evolution of complex objects,
such as computer programs, they remain quite slow even on current com-
puters, although this is of course subject to yearly improvements. Applica-
tions of genetic algorithms to problems in molecular biology can be found in
[329, 233, 415]. Other evolutionary algorithms are described in [53] and ref-
erences therein. Evolutionary algorithms will not be considered any further in
this book.

94 Machine Learning Algorithms

4.8 Learning Algorithms: Miscellaneous Aspects

In connection with learning algorithms, there is a wide range of implementa-
tion details, heuristics, and tricks that have significant practical importance.
Abundant material on such tricks can be found, for instance, in the annual pro-
ceedings of NIPS (Neural Information Processing Conference). Here we cover
only a small subset of them from a general standpoint. A few model-specific
tricks are presented in the relevant chapters.

4.8.1 Control of Model Complexity

In one form or another, modelers are constantly confronted with the problem
of striking a balance between underfitting and overfitting the data, between
models that have too few and too many degrees of freedom. One approach
to this problem is to regularize the objective likelihood function with a term
that takes model complexity into account. The most principled versions of
this approach are based on equalities or bounds relating the training error ET
to the generalization error EG. These bounds typically state that with high
probability EG ≤ ET + C, where C is a term reflecting the complexity of the
model. Examples of such a formula can be found in [533], using the concept
of VC dimension, and in [5, 16], using statistical asymptotic theory. The gener-
alization error is then minimized by minimizing the regularized training error
ET +C. The term ET measures the data fit and the term C can often be viewed
as a prior favoring simpler models. Such practices can yield good results and
have heuristic value. But, as pointed out in chapter 2, from a Bayesian point
of view they also have some weaknesses. With complex data, a prior expect-
ing the data to be generated by a simple model does not make much sense.
In general, we would recommend instead using powerful flexible models, with
many degrees of freedom and strong priors on their parameters and structure,
rather than their overall complexity, to control overfitting.

4.8.2 Online/Batch Learning

Training is said to be online when some degree of model fitting or parameter
adjustment occurs as the data come in, or after the presentation of each ex-
ample. In batch or offline learning, on the other hand, parameter values are
adjusted only after the presentation of a large number of examples, if not the
entire training set. Obviously there is a spectrum of possibilities in between.
Online learning can have some advantages in that it does not require hold-
ing many training examples in memory, and it is more flexible and easier to
implement. It is also closer to the Bayesian spirit of updating one’s belief as

Learning Algorithms: Miscellaneous Aspects 95

data become available, and to the way biological systems seem to learn. More
important, perhaps, learning after the presentation of each example may in-
troduce a degree of stochasticity that may be useful to explore the space of
solutions and avoid certain local minima. It can also be shown, of course,
that with sufficiently small learning rates, online learning approximates batch
learning (see also [49]). Accordingly, in this book we usually provide online
learning equations.

4.8.3 Training/Test/Validation

One of the most widely used practices consists in using only a subset of the
data for model fitting and the remaining data, or portions of it, for the valida-
tion of the model. It is important to note that such a practice is not entirely
Bayesian, since in the general framework of chapter 2 all the data are used for
model fitting, without any reference or need for validation. In practice, cross-
validation techniques remain very useful because they are generally easy to
implement and yield good results, especially when data are abundant. A sec-
ond remark, of course, is that there are many ways of splitting the data into
different subsets and allocating such subsets to training or validation experi-
ments. For instance, different data sets can be used to train different experts
that are subsequently combined, or validation sets can be used to determine
the values of hyperparameters. Such matters become even more important
when data are relatively scarce. Whenever feasible, it is good to have at least
three distinct data sets: one for training, one for validation and training ad-
justments, and one for testing overall performance.

Special additional care is often required in bioinformatics because se-
quences have a high probability of being related through a common ancestor.
In chapter 1 the problem of constructing low-similarity test sets, which may be
essential to assess reliably the predictive performance of a method obtained
by machine learning, was addressed in detail.

4.8.4 Early Stopping

When a model is too flexible with respect to the available data—because it
contains too many parameters—overfitting is observed during training. This
means that while the error on the training set decreases monotonically as a
function of training epochs, the error on a validation set also decreases at
first, then reaches a minimum and begins to increase again. Overfitting is then
associated with the model’s memorizing the training data or fitting noise in
the data to a point that is deleterious for generalization. The correct approach
in such a situation of course would be to modify the model. Another widely

96 Machine Learning Algorithms

used but less sound alternative is early stopping, whereby training is stopped
as soon as the error rate on the training set reaches a certain threshold, or
after a fixed number of training cycles. The threshold itself, or the number of
cycles, is not easy to determine. One possibility is to stop training as soon as
the error rate begins to increase on a validation set different from the training
set. The drawback of such an approach is that data must be sacrificed from the
training set for validation. Furthermore, this type of early stopping can still
lead to a partial overfitting of the validation data with respect to the test data.
In other words, the performance of the model on the validation set used to de-
cide when to stop is typically somewhat better than the overall generalization
performance on new data. Early stopping, like other validation methods, is,
however, easy to implement and useful in practice, especially with abundant
data.

4.8.5 Ensembles

When a complex model is fitted to the data by ML or MAP optimization, dif-
ferent model parameters are derived by varying a number of factors dur-
ing the learning procedure, such as the initial parameter values, the learn-
ing rate, the order of presentation of the examples, the training set, and so
on. Furthermore, different classes of models may be tried. It is natural to
suspect that better prediction or classification may be achieved by averag-
ing the opinion of different models or experts in some way (appendix A and
[223, 237, 277, 568, 426, 340, 339]). A pool of models for a given task is also
called an ensemble, in analogy to statistical mechanics (see also the notion
of the committee machine in the literature). Mathematically, this intuition is
based on the fact that for convex error functions, the error of the ensemble
is less than the average error of its members (Jensen’s inequality in appendix
B). Thus the ensemble performs better than a typical single expert. There are
different ways of combining the predictions produced by several models. Uni-
form averages are widely used, but other schemes are possible, with variable
weights, including the possibility of learning the weights during training. Note
that in the case of a well-defined class of models within the Bayesian frame-
work of chapter 2, the optimal prediction is obtained by integrating over all
possible models (see (2.18)). Thus averaging models can be construed as an
approximation to such an integral.

4.8.6 Balancing and Weighting Schemes

An important issue to consider is whether or not training sets are balanced.
In binomial classification problems, the number of available positive exam-

Learning Algorithms: Miscellaneous Aspects 97

ples can differ significantly from the number of negative examples. Likewise,
in multinomial classification problems, significant variations can exist in the
proportions in which each class is represented in the data. This situation can
be particularly severe with biological databases where, for instance, certain
organisms or certain types of sequences are overrepresented due to a large
number of different factors, as described in chapter 1.

Ideally, for the purpose of correct classification, all relevant classes should
be equally represented in the training set. In chapter 6 such balanced train-
ing strategies will be described. In some cases, underrepresentation of a cer-
tain class in the training data has led to a low test prediction performance on
that particular class. Such behavior has often been interpreted as evidence
for missing information, for example that beta-sheet prediction requires more
long-range sequence information than does helix prediction. While any protein
structure prediction method will gain from the proper addition of long-range
information, beta-sheet performance has been substantially improved just by
applying a balanced training scheme [452].

Another possibility is to use weighting schemes to artificially balance train-
ing sets, equivalent to effectively duplicating rare exemplars several times
over. A number of weighting schemes have been developed for DNA and pro-
tein sequences, especially in the context of multiple alignments [10, 536, 487,
201, 249, 337]. The weighting scheme in [337] is particularly interesting, and
optimal in a maximum entropy sense.

There is a number of other techniques that we do not cover for lack of
space. Again these can easily be found in the literature (NIPS Proceedings) and
other standard references on neural network techniques. They include:

• Active sampling.

• Pruning methods. These are methods that perform simplification of
models during or after learning. Typically, they consist of finding ways
to determine which parameters in a model have little impact on its per-
formance, and then removing them. Redundant parameters will often be
equivalent not just to those with small numerical values, but also large
weights that inhibit each other may contribute little to the quality of a
model.

• Second-order methods. These methods take advantage of second-
order information by computing or approximating the Hessian of the
likelihood—for instance, to adjust learning rates or compute error bars.
The efficient approximation of the Hessian is an interesting problem that
must be considered in the context of each model.

This page intentionally left blank

