
Chapter 5

Neural Networks: The Theory

5.1 Introduction

Artificial neural networks (NNs) [456, 252, 70] were originally developed with
the goal of modeling information processing and learning in the brain. While
the brain metaphor remains a useful source of inspiration, it is clear today that
the artificial neurons used in most NNs are quite remote from biological neu-
rons [85]. The development of NNs, however, has led to a number of practical
applications in various fields, including computational molecular biology. NNs
have become an important tool in the arsenal of machine-learning techniques
that can be applied to sequence analysis and pattern recognition problems.

At the most basic level, NNs can be viewed as a broad class of param-
eterized graphical models consisting of networks with interconnected units
evolving in time. In this book we use only pairwise connections but, if desir-
able, one can use more elaborate connections associated with the interaction
of more than two units, leading to the “higher-order” or “sigma-pi” networks
[456]. The connection from unit j to unit i usually comes with a weight de-
noted by wij . Thus we can represent an NN with a weight-directed graph or
“architecture.” For simplicity, we do not use any self-interactions, so that we
can assume that wii = 0 for all the units.

It is customary to distinguish a number of important architectures, such as
recurrent, feed-forward, and layered. A recurrent architecture is an architec-
ture that contains directed loops. An architecture devoid of directed loops is
said to be feed-forward. Recurrent architectures are more complex with richer
dynamics and will be considered in chapter 9. An architecture is layered if
the units are partitioned into classes, also called layers, and the connectivity
patterns are defined between the classes. A feed-forward architecture is not
necessarily layered.
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Figure 5.1: Layered Feed-Forward Architecture or Multilayer Perceptron (MLP). Layers may con-
tain different numbers of units. Connectivity patterns between layers also may vary.

In most of this chapter and in many current applications of NNs to molecu-
lar biology, the architectures used are layered feed-forward architectures, as in
figure 5.1. The units are often partitioned into visible units and hidden units.
The visible units are those in contact with the external world, such as input
and output units. Most of the time, in simple architectures the input units
and the output units are grouped in layers, forming the input layer and the
output layer. A layer containing only hidden units is called a hidden layer. The
number of layers is often referred to as the “depth” of a network. Naturally
NNs can be assembled in modular and hierarchical fashion to create complex
overall architectures. The design of the visible part of an NN depends on the
input representation chosen to encode the sequence data and the output that
may typically represent structural or functional features.

The behavior of each unit in time can be described using either differen-
tial equations or discrete update equations (see [26] for a summary). Only the
discrete formalism will be used in this book. In a layered feed-forward ar-
chitecture, all the units in a layer are updated simultaneously, and layers are
updated sequentially in the obvious order. Sometimes it is also advantageous
to use stochastic units (see appendix C on graphical models and Bayesian net-
works). In the rest of this chapter, however, we focus on deterministic units.
Typically a unit i receives a total input xi from the units connected to it, and
then produces an output yi = fi(xi), where fi is the transfer function of the
unit. In general, all the units in the same layer have the same transfer function,
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and the total input is a weighted sum of incoming outputs from the previous
layer, so that

xi =
∑

j∈N−(i)
wijyj +wi, (5.1)

yi = fi(xi) = fi

 ∑
j∈N−(i)

wijyj +wi

 , (5.2)

where wi is called the bias, or threshold, of the unit. It can also be viewed as a
connection with weightwi to an additional unit, with constant activity clamped
to 1. The weights wij and wi are the parameters of the NNs. In more general
NNs other parameters are possible, such as time constants, gains, and delays.
In the architectures to be considered here, the total number of parameters
is determined by the number of layers, the number of units per layer, and
the connectivity between layers. A standard form for the connectivity between
layers is the “fully connected” one, where each unit in one layer is connected to
every unit in the following layer. More local connectivity patterns are obviously
more economical. Note, however, that even full connectivity between layers is
sparse, compared with complete connectivity among all units. In situations
characterized by some kind of translation invariance, it can be useful for each
unit in a given layer to perform the same operation on the activity of translated
groups of units in the preceding layer. Thus a single pattern of connections
can be shared across units in a given layer. In NN jargon this is called “weight
sharing.” It is routinely used in image-processing problems and has also been
used with some success in sequence analysis situations where distinct features
are separated by variable distances. The shared pattern of weights defines a
filter or a convolution kernel that is used to uniformly process the incoming
activity. With weight sharing, the number of free parameters associated with
two layers can be small, even if the layers are very large. An example of this
technique is given below in section 6.3 on secondary structure prediction.

There are a number of transfer functions that are widely used. Sometimes
the transfer function is linear—like the identity function, as in regression prob-
lems, in which case the unit is called a linear unit. Most of the time, however,
the transfer functions are nonlinear. Bounded activation functions are often
called squashing functions. When f is a threshold function,

f(x) =
{

1 if x > 0
0 otherwise,

(5.3)

the unit is also called a threshold gate. A threshold gate simulates a binary
decision based on the weighted “opinion” of the relevant units. Obviously,
the bias can be used to offset the location of the threshold. In this book we
use a (0,+1) formalism that is equivalent to any other scale or range, such
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as (−1,+1). Threshold gates are discontinuous. Thus they are often replaced
with sigmoidal transfer functions, which have the advantage of being continu-
ous and differentiable. In this book, we use the logistic transfer function

f(x) = σ(x) = 1
1+ e−x (5.4)

especially to estimate the probability of binary events. But other possible
sigmoidal transfer functions lead to essentially equivalent results, such as
f(x) = tanh(x) and f(x) = arctan(x). It is also possible to introduce a gain
λi for each unit by writing yi = fi(λixi). Another important type of unit in
what follows is the normalized exponential unit, also called softmax, which is
used to compute the probability of an event with n possible outcomes, such as
classification into one of n possible classes. Let the index j run over a group
of n output units, computing the n membership probabilities, and xj denote
the total input provided by the rest of the NN into each output unit. Then the
final activity yi of each output unit is given by

yi = e−xi∑n
k=1 e−xk

. (5.5)

Obviously, in this case
∑n
i=1yi = 1. When n = 2, the normalized exponential

is equivalent to a logistic function via a simple transformation

y1 = e−x1

e−x1 + e−x2
= 1

1+ e−(x2−x1)
. (5.6)

It is important to note that any probability distribution P = (pi) (1 ≤ i ≤ n)
can be represented in normalized exponential form from a set of variables xj
(1 ≤ j ≤m),

Pi = e−xi∑m
k=1 e−xk

, (5.7)

as long asm ≥ n. This can be done in infinitely many ways, by fixing a positive
constant K and letting xi = logpi + K for i = 1, . . . , n (and xj = −∞ for j > n
if needed). If m < n there is no exact solution, unless the pi assume only m
distinct values at most.

Another type of widely used functions is the radial basis functions (RBFs),
where typically f is a bell-shaped function like a Gaussian. Each RBF unit i
has a “reference” input x∗i , and f operates on the distance d(x∗i , xi) mea-
sured with respect to some metric yi = f(d(x∗i , xi)). In spatial problems, d is
usually the Euclidean distance.

Clearly a modeler should be able to choose the type of units, connectiv-
ity, and transfer functions as needed in relation to the task to be solved. As
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a result, the reader may be under the impression that the concept of NN is
somewhat fuzzy, and rightly so! According to our loose definition, one can
take the position that polynomials are NNs. Alternatively, one could of course
put further restrictions on the definition of NNs. Historically, the term NN
has been used mostly to refer to networks where the inputs satisfy (5.1) and
the transfer functions are threshold functions or sigmoids. We do not think
that much is to be gained by adopting such a dogmatic position. The current
nomenclature of model classes is in part the product of historical accidents.
The reality is that there is a continuous spectrum of possible parameterized
models without precise boundaries. A modeler should be as free as possible
in designing a model and proceeding with Bayesian inference.

In NN applications, it has been customary to distinguish between regression
and classification or recognition problems. In regression problems, the goal is
to approximate or fit a given surface. In classification or recognition problems,
the goal is to be able to classify a given input into a relatively small number of
classes. While useful, this distinction is also somewhat arbitrary since in the
limit, classification—for example, into two classes—can be viewed as fitting a
usually discontinuous binary function. The problem of learning the genetic
code (see chapter 6) is a good example of a problem at the boundary of the
two classes of problems. Classification problems have perhaps been slightly
more frequent in past applications of NNs to molecular biology, due to the
discrete nature of the sequence data and the standard problem of recognizing
particular patterns such as alpha helices, fold classes, splice sites, or exons.
But continuous data, such as hydrophobicity scales or stacking energies, can
also be important. We shall examine both regression and classification NNs
more closely in the coming sections.

One of the most important aspects of NNs is that they can learn from exam-
ples. Obviously, in the general Bayesian statistical framework this is nothing
else than model fitting and parameter estimation. Very often the data D con-
sist of input–output sample pairs D = (D1, . . . ,DK), with Di = (di, ti) (d for
data, t for target) from the regression or classification function to be approx-
imated. In practice, the data are often split into training data and validation
data in some way. The training data are used for model fitting, and the val-
idation data in model validation. The validation data can also be split into
validation and test data, where the validation set is used for early stopping
and the test data for assessing the overall performance of the model. These
model-fitting tasks, where the target values of the outputs in the fitted data are
known, are usually described in the literature as supervised learning. When the
target values are not known, the terms unsupervised or self-organization are
often used. Again, this historical distinction has its usefulness but should not
be taken too dogmatically. As for supervised learning algorithms, one of the
main practices in the past has been, starting from a random set of parameters,
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to define an “error function” by comparing the outputs produced by the net-
work against the target outputs. Then the network parameters are optimized
by gradient descent with respect to the error function. As pointed out in chap-
ter 2, such practice is best analyzed in the general Bayesian statistical frame-
work by explicitly stating the underlying probabilistic models and assump-
tions, and proceeding with the proper Bayesian inductions. Many forms of
supervised and unsupervised learning for NNs in the literature can be viewed
as ML or MAP estimation.

In the rest of the chapter we shall focus on layered feed-forward NN ar-
chitectures, the multilayer perceptrons with inputs given by (5.1) and lin-
ear/threshold/sigmoidal/normalized exponential transfer functions, and their
application within sequence analysis. In the next section, we briefly cover the
universal approximation properties of NNs. In particular, we prove that any
reasonable function can be approximated to any precision by a shallow, and
possibly very large, NN. In section 5.3, we apply the general framework of
chapter 2 to NNs. We examine priors and likelihood functions, how to design
NN architectures, and how to carry out the first level of Bayesian inference.
In section 5.4, we apply the general framework of chapter 4 to learning al-
gorithms and derive the well-known backpropagation algorithm. Many other
theoretical results on NNs, beyond the scope of this book, can be found in
the references. Computational complexity issues for NNs and machine learn-
ing in general are reviewed in [314]. A more complete Bayesian treatment of
NNs, including higher levels of Bayesian inference, is given in [373, 398, 517].
In addition to NNs, there are a number of other flexible parameterized mod-
els for regression and classification, such as splines [546], Gaussian processes
[559, 206, 399] (appendix A), and support vector machines [533, 475].

5.2 Universal Approximation Properties

Perhaps one reassuring property of NNs is that they can approximate any rea-
sonable function to any degree of required precision. The result is trivial1 for
Boolean functions, in the sense that any Boolean function can be built using a
combination of threshold gates. This is because any Boolean function can be
synthesized using NOT and AND gates, and it is easy to see that AND and NOT
gates can be synthetized using threshold gates. For the general regression
case, it can be shown that any reasonable real function f(x) can be approxi-
mated to any degree of precision by a three-layer network with x in the input
layer, a hidden layer of sigmoidal units, and one layer of linear output units,

1This section concentrates primarily on threshold/sigmoidal units. Obviously the result is
also well known if polynomials are included among NNs.
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as long as the hidden layer can be arbitrarily large. There are a number of dif-
ferent mathematical variations and proofs of this result (see, e.g., [264, 265]).

Here we give a simple constructive proof of a special case, which can easily
be generalized, to illustrate some of the basic ideas. For simplicity, consider
a continuous function y = f(x) where both x and y are one-dimensional.
Assume without loss of generality that x varies in the interval [0,1], and that
we want to compute the value of f(x) for any x within a precision ε. Since f
is continuous over the compact interval [0,1], f is uniformly continuous and
there exists an integer n such that

|x2 − x1| ≤ 1
n
�⇒ |f(x2)− f(x1)| ≤ ε. (5.8)

Therefore it is sufficient to approximate f with a function g such that g(0) =
f(0), and g(x) = f(k/n) for any x in the interval ((k − 1)/n, k/n] and any
k = 1, . . . , n. The function g can be realized exactly by a NN with one input
unit representing x, n+1 hidden threshold gate units all receiving connections
from the input unit, and one output unit receiving a connection from each
hidden unit. The hidden units are numbered from 0 to n. The output has a
linear transfer function in order to cover the range of ys (figure 5.2). All the
weights from the input unit to the n hidden units are set to 1, and the kth
hidden unit has a threshold (bias) of (k− 1)/n. Thus, for any x in the interval
((k−1)/n, k/n], all the hidden unit activations are set to 0 except for the first
k+ 1, which take the value 1. Thus the value of the input is directly coded in
the number of hidden units that are turned on. The weight of the connection
from the kth hidden unit to the output unit is ∆kf = f(k/n)−f(k−1/n), with
∆0f = f(0). The output unit is just the identity function, with 0 bias. Thus if
x = 0, g(x) = 0. For any k = 1,2, . . . , n, if x is in the interval [(k− 1)/n, k/n],
then g(x) = f(0)+∑k

j=1 f(j/n)− f(j − 1/n) = f(k/n), as desired.
It should be clear that it is not too difficult to generalize the previous result

in several directions, to encompass the following:

1. Multidimensional inputs and outputs

2. Sigmoidal transfer functions and other types

3. Inputs on any compact set

4. Functions f that may have a finite number of discontinuities and more

While it is useful to know that any function can be approximated by an NN,
the key point is that the previous proof does not yield very economical archi-
tectures. In fact, one can show that for essentially random functions, compact
architectures do not exist. It is only for “structured” functions that compact
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Figure 5.2: Universal Approximation Architecture with One Input Unit, n+1 Hidden Threshold
Gate Units, and One Linear Output Unit Computing the Approximation g(x) to f(x).

architectures exist, and in this case the architecture constructed in the uni-
versal approximation theorems are far from optimal. Better architectures may
exist, with a better allocation of hidden units, and possibly with more than
a single hidden layer. It is for these cases that learning approaches become
important.

5.3 Priors and Likelihoods

We now apply the general theory of chapter 2. In particular, we show how
the theory can be used to determine the choice of an objective function and
of the transfer functions of the output units. In this section we shall assume
that the data consist of a set of independent input–output pairs Di = (di, ti).
The data are noisy in the sense that for a given di, different outputs ti could
be observed. Noise at the level of the input d could also be modeled, but will
not be considered here. The operation of the NN itself is considered to be
deterministic. We have

P((di, ti)|w) = P(di|w)P(ti|di,w) = P(di)P(ti|di,w), (5.9)

the last equality resulting from the fact that in general we can assume that the
inputs d are independent of the parameters w. Thus, for a given architecture
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parameterized by w, we have, using (2.9),

− log P(w|D) = −
K∑
i=1

log P(ti|di,w)−
K∑
i=1

log P(di)−log P(w)+log P(D), (5.10)

where we have used the fact that P((di, ti)|w) = P(di)P(ti|di,w), and have
taken into account the independence of the different data points. In the first
level of Bayesian inference (MAP), we want to minimize the left-hand side. We
can ignore P(D) as well as P(di), since these terms do not depend on w, and
concentrate on the prior term and the likelihood.

In order to calculate the likelihood, we shall have to distinguish different
cases, such as regression and classification, and further specify the probabilis-
tic model. In doing so, we follow the analysis in [455]. But the basic idea is to
consider that, for a given input di, the network produces an estimated output
y(di). The model is entirely defined when we specify how the observed data
ti = t(di) can statistically deviate from the network output yi = y(di). If the
output layer has many units, we need to write yij for the output of the jth
unit on the ith example. For notational convenience, in what follows we will
drop the index that refers to the input. Thus we derive online equations for
a generic input–output pair (d, t). Offline equations can easily be derived by
summing over inputs, in accordance with (5.10).

5.3.1 Priors

Unless additional information is available, the most natural and widely used
priors for NN parameters are zero-mean Gaussian priors. Hyperparameters,
such as the standard deviation of the Gaussians, can be chosen differently for
connection weights and biases and for units in different layers. If a weight w
has a Gaussian prior with standard deviation σ , the corresponding contribu-
tion to the negative log-posterior, up to constant factors, is given by w2/2σ2.
This can also be viewed as a regularization factor that penalizes large weights
often associated with overfitting. In gradient-descent learning, this adds a fac-
tor −w/σ2 to the update of w. This factor is also called weight decay. Weight
sharing is a different kind of prior obtained when different groups of units
in a given layer are assumed to have identical incoming connection weights.
Weight sharing is easily enforced during gradient-descent learning. It is use-
ful in problems characterized by some form of translational invariance where
the same operation, such as the extraction of characteristic features, needs
to be applied to different regions of the input. The pattern of shared units
essentially implements a convolution kernel, whence the name convolutional
networks.
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Gaussian and other priors for NN parameters and hyperparameters are
studied in detail in [373, 398, 517]. In [373] Laplace approximation techniques
are used to determine optimal hyperparameters. In [398] Monte Carlo meth-
ods are derived for the integration of priors and Bayesian learning in MLPs.
The advantages of Bayesian learning include the automatic determination of
regularization parameters without the need for a validation set, the avoidance
of overfitting when using large networks, and the quantification of prediction
uncertainty. In [398] it is shown that in the limit of a single hidden layer with
an infinite number of hidden units, an NN with Gaussian weight priors defines
a Gaussian process on the space of input–output functions. Hence the idea
of using Gaussian processes directly [559, 399, 206], bypassing any NN im-
plementation. While Gaussian processes provide a very flexible tool for both
regression and classification problems, they are computationally demanding
and can be applied only to moderate-size problems with currently available
technology.

5.3.2 Gaussian Regression

In the case of regression, the range of y can be arbitrary, and therefore the
simplest transfer functions in the output layer are linear (actually the identity)
functions. It is also natural to assume a Gaussian probabilistic model, that is,
P(t|d,w) = P(t|y(d),w) = P(t|y) is Gaussian, with mean vector y = y(d).
Assuming further that the covariance matrix is diagonal and that there are n
output units indexed by j, we have

P(t|d,w) =
n∏
j=1

1√
2πσj

exp(−(tj −yj)
2

2σ2
j

). (5.11)

The standard deviations σj are additional parameters of this statistical model.
If we further assume that they are constant σj = σ , then the negative log-
likelihood for the current input boils down to

E =
∑
j

(
(tj −yj)2

2σ2 − 1
2

log 2π − logσ
)
. (5.12)

Again the last two terms are independent of w, and can be ignored while
trying to estimate the optimal set of parameters w. The first term of course is
the usual least-mean-square (LMS) error, routinely used in many applications,
sometimes without explicating the underlying statistical model. The derivative
of the negative log-likelihood E with respect to an output yj is

∂E
∂yj

= ∂E
∂xj

= −tj −yj
σj

= −tj −yj
σ

, (5.13)



Priors and Likelihoods 109

the first equality resulting from the assumption that the output transfer func-
tion is the identity.

In summary, we see that in the regression case with Gaussian noise, the
output transfer function should be linear, the likelihood error function is the
LMS error function (possibly scaled by σj along each component j), and the
derivative of E with respect to the total input activity into the output layer, for
each example, has the simple expression −(tj − yj)/σj = −(tj −yj)/σ .

5.3.3 Binomial Classification

Consider now a classification problem with only two classes, A and Ā. For a
given input d, the target output t is 0 or 1. The natural probabilistic model is
a binomial model. The single output of the network then represents the prob-
ability that the input is a member of the class A or Ā, that is the expectation
of the corresponding indicator function. This can be computed by a sigmoidal
transfer function. Thus,

y = y(d) = P(d ∈ A) = P(t|d,w) = yt(1−y)(1−t) (5.14)

and
E = − log P(t|d,w) = −t logy − (1− t) log(1−y). (5.15)

This is the relative entropy between the output distribution and the observed
distribution, and

∂E
∂y

= − t −y
y(1−y). (5.16)

In particular, if the output transfer function is the logistic function, then

∂E
∂x

= −(t −y). (5.17)

Therefore, in the case of binomial classification, the output transfer func-
tion should be logistic; the likelihood error function is essentially the relative
entropy between the predicted distribution and the target distribution. The
derivative of E with respect to the total input activity into the output unit, for
each example, has the simple expression −(t −y).

5.3.4 Multinomial Classification

More generally, consider a classification task with n possible classes
A1, . . . , An. For a given input d, the target output t is a vector with a sin-
gle 1 and n− 1 zeros. The most simple probabilistic model is a multinomial
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model. The corresponding NN has n output units, each one giving the
probability of the membership of the input in the corresponding class. Thus

P(t|d,w) =
n∏
j=1

ytjj , (5.18)

with, as usual, tj = tj(d) and yj = yj(d). For each example,

E = − log P(t|d,w) = −
n∑
j=1

tj logyj. (5.19)

Again, this is the relative entropy between the output distribution and the
observed distribution, and

∂E
∂yj

= − tj
yj
. (5.20)

In particular, if the output layer consists of a set of normalized exponentials,
then for each input di,

∂E
∂xj

= −(tj −yj), (5.21)

where xj is the total input into the jth normalized exponential.
Thus, in multinomial classification, the output transfer function should

be normalized exponentials. The likelihood error function is essentially the
relative entropy between the predicted distribution and the target distribution.
The derivative of E with respect to the total input activity into the output layer,
for each example and each component, has the simple expression −(tj −yj).

5.3.5 The General Exponential Family Case

In fact, results similar to the previous cases can be derived every time the likeli-
hood function belongs to the exponential family of distributions (see appendix
A and [384, 94]). The exponential family contains many of the most common
distributions such as Gaussian, gamma, binomial, multinomial, exponential,
beta, Poisson, and negative binomial. For each member of the family, there
is an appropriate choice of output transfer function y = f(x) such that the
derivative ∂E/∂xj of E with respect to the total input activity into the jth out-
put unit has a simple expression, proportional for each example to (tj − yj),
the difference between the target output tj and the actual output yj .

We have just seen that the proper statistical framework allows one to con-
struct suitable transfer functions for the output layer, as well as suitable error
functions to measure network performance. The design of the hidden lay-
ers, however, is more problem-dependent, and cannot be dealt with in much
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Figure 5.3: Comparison of the One-Dimensional Quadratic and Cross-Entropy Error Functions,
with Respect to the Target Value of 0.5. Note the difference in ranges: the cross-entropy is
infinite for x = 0 and x = 1.

generality. The framework described above has emerged only in recent years,
and has not always been followed by NN practitioners, including many of the
examples to be examined in the next sections. Many authors have used an
LMS error function even in binomial classification problems, where a relative
entropy error is more appropriate.

The question, then, is: “How have reasonably good results been derived,
even when using a somewhat improper framework?” The answer to this ques-
tion is best understood in the simple example above. Suppose that in a binary
classification problem, the probability we wish to learn is, for the sake of ar-
gument, p = 0.5. For each x in [0,1] the LMS error is (0.5 − x)2, whereas the
relative entropy is −0.5 logx − 0.5 log(1−x). These two functions are plotted
in figure 5.3. Both functions are convex (∪), with a a minimum at p = 0.5,
as desired. The main difference, however, is in the dynamic range: unlike the
relative entropy, the LMS error is bounded. The dynamic range difference can
be important when the errors of many examples are superimposed, and also
during learning.

5.4 Learning Algorithms: Backpropagation

In the majority of applications to be reviewed, MAP or ML estimation of NN
parameters is done by gradient descent (see [26] for a general review). The
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calculations required to obtain the gradient can be organized in a nice fashion
that leverages the graphical structure of NN. Using the chain rule, weights are
updated sequentially, from the output layer back to the input layer, by prop-
agating an error signal backward along the NN connections (hence the name
“backpropagation”). More precisely, in the online version of the algorithm, and
for each training pattern, we have for any weight parameter wij

∂E
∂wij

= ∂E
∂yi

∂yi
∂wij

= ∂E
∂yi

f ′i (xi)yj. (5.22)

Thus the gradient-descent learning equation is the product of three terms,

∆wij = −η ∂E
∂wij

= −ηεiyj, (5.23)

where η is the learning rate, yj is the output of the unit from which the connec-
tion originates (also called the presynaptic activity), and εi = (∂E/∂yi)f ′i (xi)
is a postsynaptic term called the backpropagated error. The backpropagated
error can be computed recursively by

∂E
∂yi

=
∑

k∈N+(i)

∂E
∂yk

f ′k(xk)wki. (5.24)

The propagation from the children of a node to the node itself is the signature
of backpropagation. While backpropagation is the most widely used algorithm
for MAP estimation of MLPs, EM and simulated annealing have also been used.
Algorithms for learning the architecture itself can also be envisioned, but they
remain inefficient on large problems.

We can now review some of the main applications of NNs to molecular
biology. Other general surveys of the topics can be found in [432, 571, 572].



Chapter 6

Neural Networks: Applications

The application of neural network algorithms to problems within the field of
biological sequence analysis has a fairly long history, taking the age of the
whole field into consideration. In 1982 the perceptron was applied to the pre-
diction of ribosome binding sites based on amino acid sequence input [506].
Stormo and coworkers found that the perceptron algorithm was more success-
ful at finding E. coli translational initiation sites than a previously developed
set of rules [507]. A perceptron without hidden units was able to generalize
and could find translational initiation sites within sequences that were not
included in the training set.

This linear architecture is clearly insufficient for many sequence recogni-
tion tasks. The real boost in the application of neural network techniques first
came after the backpropagation training algorithm for the multilayer percep-
tron was brought into common use in 1986 [456], and especially after Qian and
Sejnowski published their seminal paper on prediction of protein secondary
structure in 1988 [437]. This and other papers that quickly followed [78, 262]
were based on an adaptation of the NetTalk multilayer perceptron architecture
[480], which from its input of letters in English text predicted the associated
phonemes needed for speech synthesis and for reading the text aloud. This
approach could immediately be adapted to tasks within the field of sequence
analysis just by changing the input alphabet into alphabets of the amino acids
or nucleotides. Likewise, the encoding of the phonemes could easily be trans-
formed into structural classes, like those commonly used for the assignment
of protein secondary structure (helices, sheets, and coil), or functional cate-
gories representing binding sites, cleavage sites, or residues being posttrans-
lationally modified.

In this chapter we review some of the early work within the application
areas of nucleic acids and proteins. We go into detail with some examples of
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more recent work where the methodologies are advanced in terms of either
the training principles applied or the network architectures, especially when
networks are combined to produce more powerful prediction schemes. We do
not aim to mention and describe the complete spectrum of applications. For
recent reviews see, for example, [432, 61, 77, 320, 571, 572].

6.1 Sequence Encoding and Output Interpretation

One important issue, before we can proceed with NN applications to molecu-
lar biology, is the encoding of the sequence input. In any type of prediction
approach, the input representation is of cardinal importance. If a very clever
input representation is chosen, one that reveals exactly the essentials for a
particular task, the problem may be more or less solved, or at least can be
solved by simple linear methods. In an MLP the activity patterns in the last
hidden layer preceding the output unit(s) should represent the transformed
input information in linearly separable form. This clearly is much easier if
the input representation has not been selected so as further to increase the
nonlinearity of the problem.

One would think that a very “realistic” encoding of the monomers in a se-
quence, using a set of physical-chemical features of potential relevance, should
always outperform a more abstract encoding taken from the principles and
practice of information theory [137]. However, in line with the contractive na-
ture of most prediction problems (see section 1.4), it does not always help just
to add extra information because the network has to discard most of it before
it reaches the output level.

During training of an MLP, the network tries to segregate the input space
into decision regions using hyperplanes. The numerical representation of the
monomers therefore has a large impact on the ease with which the hidden
units can position the planes in the space defined by the representation that
has been chosen.

In many sequence analysis problems, the input is often associated with
a window of size W covering the relevant sequence segment or segments.
Typically the window is positioned symmetrically so that the upstream and
downstream contexts are of the same size, but in some cases asymmetric win-
dows perform far better than symmetric ones. When the task is to predict
signal peptide cleavage sites (section 6.4) or intron splice sites in pre-mRNA
(section 6.5.2), asymmetric windows may outperform symmetric ones. Both
these sequence types (N-terminal protein sorting signals and noncoding in-
tronic DNA) are eventually removed, and it makes sense to have most of the
features needed for their processing in the regions themselves, leaving the
mature protein least constrained. Windows with holes where the sequence
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appears nonconsecutively have been used especially for the prediction of pro-
moters and the exact position of transcriptional initiation in DNA, but also for
finding beta-sheet partners in proteins [268, 46] and for the prediction of dis-
tance constraints between two amino acids based on the sequence context of
both residues [368, 174].

For each position in a window W , there are |A| different possible
monomers. The most used representation is the so-called orthogonal (also
called local, as opposed to distributed) encoding, where the letters X1,X2, . . .
are encoded by the orthogonal binary vectors (1,0, . . . ,0), (0,1, . . . ,0), and
so on. Such a representation has the advantage of not introducing any al-
gebraic correlations between the monomers. N- and C-terminal positions in
incomplete windows of amino acid sequences are usually encoded using a
dedicated character. Sometimes this character is also used to encode un-
known monomers in a sequence, but unknown monomers may be handled
better using just a string of zeros so that they have no impact on the input
layer.

The sparse encoding scheme has the disadvantage of being wasteful be-
cause it requires an input layer of size |A| ×W . |A| letters could in principle
be encoded using as few as log2 |A| binary units. Furthermore, using contin-
uous values in the input layer of an MLP, even a single unit could encode all
possible letters. Such a compact encoding would in almost all cases give rise
to drastically increased nonlinearity in the prediction problem at hand. If all
amino acids were encoded using values between, say, 0 and 1, many of the in-
duced correlations between the monomers would have no biological relevance,
almost no matter in what order the monomers were mapped to the interval.

Obviously, there are trade-offs between different encodings that involve the
complexity of the space in which the input windows live, the network architec-
ture size, and ease of learning. In much of the best work done so far in this
field, the orthogonal representation has been the most successful encoding
scheme. With a more complex encoding of the sequence, whether orthogonal
or not, the network must filter this extra information through a representation
as a point in a space with dimensionality according to the number of hidden
units, and then further on to a few, often a single, output unit(s). If one in-
cludes too much extra information related to the physicochemical properties
of the residues in the input layer, possibly information that is not strongly
correlated to the output, one makes the network’s task harder. In this case, it
is best to use more hidden units in order to be able to discard this extra infor-
mation and find the relevant features in a sea of noise. This situation, with the
lack of a better alternative, has contributed to the success of the orthogonal
representation.

If one wants to use real-numbered quantification of residue hydrophobic-
ity, volume, charge, and so on, one should be aware of the harmful impact it
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can have on the input space. Instead of just using a seemingly better represen-
tation of the input residues, it may be much better to use preprocessed ver-
sions of the original sequence segments. When designing such preprocessed
versions, one may exploit the statistics of certain words present in the win-
dow, the average hydrophobicity over the window or separately in the left and
right parts of a symmetric window, and so on. Another interesting possibility,
demonstrated in one of the examples below, is to let an NN learn its own rep-
resentation. In another example a binary word encoding was shown to have a
positive effect on protein secondary structure prediction [313, 548, 17]. In this
case, it was possible, from the optimal encoding scheme generated by a simu-
lated annealing approach, to discover physicochemical properties relevant to
the formation of secondary structure.

An important strategy for decreasing the nonlinearity of a prediction prob-
lem is to switch from a representation based on monomers to one based on
dimers or trimers. In the case of nucleotides, 16- and 64-letter alphabets re-
sult, and in a large number of biological recognition problems, the pair or
triplet correlations are so large that the gain in significant correlations com-
pares favorably with the negative impact of the increased dimensionality of
the input space. In DNA, base pair stacking is the most important thermo-
dynamic contribution to helical stability (more important than base pairing).
Pair correlations in RNA–RNA recognition interactions, for example, have their
physical basis in the stacking energies between adjacent base pairs [112]. In
proteins the dipeptide distribution similarly has a strong bias associated with
steric hindrance, translation kinetics, and other purely biochemical factors.

If RNA and DNA sequences are encoded by dinucleotides or trinucleotides,
there is also the possibility of letting the multimers overlap. The sparse encod-
ing of the multimers ensures that no a priori relationship is imprinted on the
sequence data. The advantage of the encoding of the sequence as overlapping
triplets is that the hidden units directly receive context information for each
single nucleotide that they otherwise would have to deduce from the training
process.

Yet another strategy for decreasing (or in some cases increasing) the non-
linearity of a prediction problem is to group monomers from one alphabet to
form new alphabets in which the pattern that should be detected will have
more contrast to the background [306]. The reduced alphabets can then be
encoded using the orthogonal vector representation, and at the same time re-
duce the dimensionality of the input space and thus the number of adjustable
parameters in the network. Meaningful groupings can be based on physic-
ochemical properties or on estimated mutation rates found in evolutionary
studies of protein families. Table 6.1 lists some of the previously used group-
ings based on ab initio descriptions of the monomers or on their structural or
functional preferences as observed in experimental data.



Sequence Encoding and Output Interpretation 117

Molecule Size Grouping
DNA 2 Purines vs. pyrimidines: R = A, G; Y = C, T
DNA 2 Strong vs. weak hydrogen bonding: S = C, G; W = A, T
DNA 2 Less physiochemical significance:

keto, K = T, G vs. amino, M = A, C

Protein 3 Structural alphabet:
ambivalent (Ala, Cys, Gly, Pro, Ser, Thr, Trp, Tyr)
external (Arg, Asn, Asp, Gln, Glu, His, Lys)
internal (Ile, Leu, Met, Phe, Val)

Protein 8 Chemical alphabet:
acidic (Asp, Glu)
aliphatic (Ala, Gly, Ile, Leu, Val)
amide (Asn, Gln)
aromatic (Phe, Trp, Tyr)
basic (Arg, His, Lys)
hydroxyl (Ser, Thr):
imino (Pro)
sulfur (Cys, Met)

Protein 4 Functional alphabet:
acidic and basic (same as in chemical alphabet)
hydrophobic nonpolar (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val)
polar uncharged (Asn, Cys, Gln, Gly, Ser, Thr, Tyr)

Protein 3 Charge alphabet:
acidic and basic (as in chemical alphabet)
neutral (all the other amino acids)

Protein 2 Hydrophobic alphabet:
hydrophobic (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val)
hydrophilic
(Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Lys, Ser, Thr, Tyr)

Table 6.1: Merged Alphabets of Biomolecular Monomers. Some of these alphabets are based
on ab initio descriptions of the monomers, others are derived from statistical properties of
the monomers as indicated by structural or functional preferences. Random partition of the
amino acids into k classes that maximizes a similarity measure between sequences can also be
constructed. Source: [306]. See also references therein.

In one case, it has been shown recently that a protein can largely main-
tain its folded structure, even if the total number of different amino acids in
its composition is reduced from the conventional twenty down to five [443].
Apart from a few positions close to a binding site, fifteen amino acid types
were replaced by other residues taken from the smaller, representative group
of five (I, K, E, A, and G). Further reduction in the diversity down to three
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different amino acids did not work. This means that proteins in earlier evolu-
tionary time still may have been able to obtain stable, folded structures with
a much smaller repertoire of amino acid monomers. It should be noted that
this reduced alphabet is in no way canonical: many proteins will certainly
not be able to do without cysteines. While the recoding of sequences using
smaller alphabets (table 6.1) at first may seem purely a computational trick,
more experimental work on “essential” amino acids can possibly be exploited
in bioinformatics approaches to construct simpler sequence spaces that can
be better covered by the limited amounts of data available. The simplification
strategy arrived at here was also inspired by the phylogenetic variation in this
protein. This is exactly the type of information that has been used to improve
protein structure prediction methods, as described in the next sections of this
chapter.

In other applications the encoding does not preserve the consecutive order
of the residues in a sequence but seeks to cast the whole sequence, or large
segments of it, into global preprocessed measures that can be used as input
information in a network. For example, this is the case when the aim is to
predict the fold class or family relationship of a protein from the frequencies
of the 400 dipeptides it contains [179, 18]. In the indirect sequence encoding
used in one approach to discriminate between exons and introns, 6-mer statis-
tics, GC composition, sequence vocabulary, and several other indicators are
included as global measures in the input layer [529].

In the NN applications described below, we also show how important it is
to design good strategies for output interpretation or postprocessing. In most
cases, however, intelligent postprocessing may be as important as, or even
more important than, selecting optimal network architectures in terms of the
smallest numerical generalization error as quantified by the activities of the
output neurons. Often the number of output neurons corresponds directly
to the number of output classes, again using sparse encoding by orthogonal
vectors of zeros and ones. The output interpretation and postprocessing will
always be designed individually for each task, based on features known previ-
ously from the biological frame of reference. If it is known a priori that, say,
alpha-helices in proteins have a minimum length of four amino acids, small
“helices” that are predicted can often be removed and lead to a better over-
all predictive performance. In cases where a sequence is known to possess
a single functional site of a given type only—for example, a cleavage site in
the N-terminal signal peptide—a carefully designed principle for the numeri-
cal threshold used for assignment of sites may lead to much better recognition
of true sites and significantly lower rates of false positives. A discussion of the
relation between the analog network error and the discrete classification error
can be found in [90].
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Figure 6.1: English-Reading People Will Normally Interpret the Two Identical Symbols in this
Word Differently: the first as an h and the second as an a. In biological sequences a similar
information processing capability is needed as structural and functional features most often
result from the cooperativity of the sequence rather than from independent contributions from
individual nucleotides or amino acids. The neural network technique has the potential to detect
such short- and long-range sequence correlations, and in this way complement what can be
obtained by conventional alignment and analysis by hidden Markov models.

6.2 Sequence Correlations and Neural Networks

Many structural or functional aspects of sequences are not conserved in terms
of sequence, not even when amino acid similarities are taken into account. It
is well known that protein structures, for example, can be highly conserved
despite a very low sequence similarity when assessed and quantified by the
amino acid identity position by position. What makes up a protein structure,
either locally or globally, is the cooperativity of the sequence, and not just
independent contributions from individual positions in it.

This holds true not only for the protein as a whole but also locally, say for a
phosphorylation site motif, which must be recognized by a given kinase. Even
for linear motifs that are known to interact with the same kinase, sequence pat-
terns can be very different [331]. When the local structures of such sequence
segments are inspected (in proteins for which the structure has been deter-
mined and deposited in the Protein Data Bank), they may indeed be conserved
structurally despite the high compositional diversity [74].

The neural network technique has the potential of sensing this coopera-
tivity through its ability to correlate the different input values to each other.
In fact, the cooperativity in the weights that result from training is supposed
to mirror the relevant correlations between the monomers in the input, which
again are correlated to the prediction task carried out by the network.

The ability of the artificial neural networks to sense correlations between
individual sequence positions is very similar to the ability of the human brain
when interpreting letters in natural language differently based on their lan-
guage!naturalcontext. This is well known from pronunciation where, for ex-
ample, the four a’s in the sentence Mary had a little lamb correspond to three
different phonemes [480]. Another illustration of this kind of ability is shown
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in figure 6.1. Here the identical symbol will be interpreted differently pro-
vided the brain receiving the information that is projected onto the retina has
been trained to read the English language, that is, trained to understand the
sequential pattern in English language!Englishtext.

It is precisely this ability that has made the neural networks successful in
the sequence analysis area, in particular because they complement what one
can obtain by weight matrices and to some degree also by hidden Markov mod-
els. The power of the neural network technique is not limited to the analysis
of local correlations, as the sequence information being encoded in the in-
put layer can come from different parts of a given sequence [368]. However,
most applications have focused on local and linear sequence segments, such
as those presented in the following sections.

6.3 Prediction of Protein Secondary Structure

When one inspects graphical visualizations of protein backbones on a com-
puter screen, local folding regularities in the form of repeated structures are
immediately visible. Two such types of secondary structures, which are main-
tained by backbone hydrogen bonds, were actually suggested by theoretical
considerations before they were found in the first structures to be solved by
X-ray crystallography. There is no canonical definition of classes of secondary
structure, but Ramachandran plots representing pairs of dihedral angles for
each amino acid residue show that certain angular regions tend to be heav-
ily overrepresented in real proteins. One region corresponds to alpha-helices,
where backbone hydrogen bonds link residues i and i + 4; another, to beta-
sheets, where hydrogen bonds link two sequence segments in either a parallel
or antiparallel fashion.

The sequence preferences and correlations involved in these structures
have made secondary structure prediction one of the classic problems in com-
putational molecular biology [362, 128, 129, 196]. Many different neural net-
work architectures have been applied to this task, from early studies [437, 78,
262, 370, 323] to much more advanced approaches [453, 445].

The assignment of the secondary structure categories to the experimen-
tally determined 3D structure is nontrivial, and has in most of the work been
performed by the widely used DSSP program [297]. DSSP works by analysis of
the repetitive pattern of potential hydrogen bonds from the 3D coordinates of
the backbone atoms. An alternative to this assignment scheme is the program
STRIDE, which uses both hydrogen bond energy and backbone dihedral angles
rather than hydrogen bonds alone [192]. Yet another is the program DEFINE,
whose principal procedure uses difference distance matrices for evaluating
the match of interatomic distances in the protein to those from idealized sec-
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ondary structures [442].
None of these programs can be said to be perfect. The ability to assign

what visually appears as a helix or a sheet, in a situation where the coordinate
data have limited precision, is not a trivial algorithmic task. Another factor
contributing to the difficulty is that quantum chemistry does not deliver a nice
analytical expression for the strength of a hydrogen bond. In the prediction
context it would be ideal not to focus solely on the visual, or topological, as-
pects of the assignment problem, but also to try to produce a more predictable
assignment scheme. A reduced assignment scheme, which would leave out
some of the helices and sheets and thereby make it possible to obtain close
to perfect prediction, could be very useful, for example in tertiary structure
prediction, which often uses a predicted secondary structure as starting point.

6.3.1 Secondary Structure Prediction Using MLPs

The basic architecture used in the early work of Qian and Sejnowski is a fully
connected MLP with a single hidden layer [437]. The input window has an odd
length W , with an optimal size typically of 13 amino acids. Orthogonal encod-
ing is used for the input with an alphabet size |A| = 21, corresponding to 20
amino acids and one terminator symbol to encode partial windows at the N- or
C-terminal. Thus, the input layer has 13× 21 = 273 units. The typical size of
the hidden layer consists of 40 sigmoidal units. The total number of parame-
ters of this architecture is then 273×40+40×3+40+3= 11,083. The output
layer has three sigmoidal units, with orthogonal encoding of the alpha-helix,
the beta-sheet, and the coil classes. The output represents the classification,
into one of the three classes, of the residue located at the center of the input
window. The classification is determined by the output unit with the greatest
activity, an interpretation strategy known as the winner-take-all principle. This
principle acts as an extra nonlinear feature in the relation between the input
and the final output classification. Networks without hidden units will there-
fore, when interpreted by the winner-take-all principle, not be entirely linear.
Another way to put it is that the internal representation in the hidden layer of
the sequence input does not need to be perfectly linearly separable. As long
as the distance to the separating hyperplane is smallest for the correct output
unit, it does not matter that the input representation ends up slightly in the
wrong decision region.

The networks are initialized using random uniform weights in the
[−0.3,0.3] interval, and subsequently trained using backpropagation with
the LMS error function (note that a normalized exponential output layer with
the relative entropy as error function would have been more appropriate).
The typical size of a training set is roughly 20,000 residues extracted from



122 Neural Networks: Applications

the Brookhaven Protein Data Bank (PDB). Thus the ratio of parameters to
examples is fairly high, larger than 0.5. Today many more protein structures
have been solved experimentally, so that a similar database of secondary
structure assignments will be much larger.

When training on protein sequences, a random presentation order of in-
put windows across the training set is used to avoid performance oscillations
associated with the use of contiguous windows. With this architecture, per-
formance goes from a 33% chance level to 60%, after which overfitting begins.
More precisely, the overall correct percentage is Q3 = 62.7%, with the cor-
relation coefficients Cα = 0.35, Cβ = 0.29, and Cc = 0.38 [382]. As a con-
sequence of the imbalance in the amount of helix, sheet, and coil in natural
proteins (roughly found in proportions 0.3/0.2/0.5), mere percentages of cor-
rectly predicted window configurations can be bad indicators of the predictive
performance. A much used alternative measure, which takes into account the
relation between correctly predicted positives and negatives as well as false
positives and negatives, is the correlation coefficient [382],

CX = (PXNX)− (NfXPfX )√
(NX +NfX)(NX + PfX )(PX +NfX)(PX + PfX)

, (6.1)

where X can be any of the categories helix, sheet, coil, or two or more of these
categories merged as one. PX and NX are the correctly predicted positives and

negatives, and PfX and NfX are similarly the incorrectly predicted positives and
negatives. A perfect prediction gives C(X) = 1, whereas a fully imperfect one
gives C(X) = −1 (for a more detailed discussion of this and other performance
measures, see section 6.7 below).

The authors conducted a number of experiments to test architectural and
other variations and concluded that increasing the size of the input beyond 13
or adding additional information, such as amino acid hydrophobicities, does
not lead to performance improvement. Likewise, no improvement appears
to result from using finer secondary structure classification schemes, higher-
order or recurrent networks, or pruning methods.

The main improvement is obtained by cascading the previous architecture
with a second network that can take advantage of the analog certainty values
present in the three output units and their correlations over adjacent posi-
tions. The second network also has an input window of length 13, correspond-
ing to 13 successive outputs of the first network. Thus the input layer of the
top network is 13× 3. The top network also has a hidden layer with 40 units,
and the usual 3 output units. With this cascaded architecture, the overall per-
formance reaches Q3 = 64.3%, with the correlations Cα = 0.41, Cβ = 0.31,
and Cc = 0.41. After training, the authors observed that the top network ulti-
mately cleans up the output of the lower network, mostly by removing isolated
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assignments. From these and other results, it was concluded that there ap-
pears to be a theoretical limit of slightly above 70% performance for any “local”
method, where “local” refers to the size of the input window to the prediction
algorithm. In 1988 these overall results appeared to be much better than all
previous methods, including the renowned Chou-Fasman method [129]. The
subsequent growth in the data material has significantly increased the per-
formance of more advanced NN approaches to this problem, but the increase
has not caused a similar improvement in the performance of the Chou-Fasman
method [549]. As can be seen below, several secondary structure prediction
methods have now exceeded the level of 70% with a comfortable margin—some
are even quite close to the level of 80%.

6.3.2 Prediction Based on Evolutionary Information and Amino Acid
Composition

Most of the subsequent work on predicting secondary structure using NNs
[78, 262, 323, 505, 451, 452, 290, 427] has been based on the architecture
described above, sometimes in combination with other methods [582, 377]
such as the Chou-Fasman rules [129].

In one interesting case the Chou-Fasman rules were used to initialize a
network [377]. This knowledge-based network was born with a performance
similar to the one obtained by encoding the rules directly into the weights. Ex-
perimental data from PDB could then be used to train extra free connections
that had been added. All the exceptions in the relation between input sequence
and conformational categories not covered by the rules would then be handled
by the extra parameters adjusted by training. This network structure is also
interesting because it allows for easy inspection of the weights, although it
still performs only slightly better than the Qian–Sejnowski architecture. Com-
pared to the Chou-Fasman rules, the performance was, as expected, greatly
improved.

An evaluation of the MLP architecture in comparison with Bayesian meth-
ods has also been made [505]. In this work the Bayesian method makes the
unphysical assumption that the probability of an amino acid occurring in each
position in the protein is independent of the amino acids occurring elsewhere.
Still, the predictive accuracy of the Bayesian method was found to be only min-
imally less than the accuracy of the neural networks previously constructed.
A neural formalism in which the output neurons directly represent the con-
ditional probabilities of structural classes was developed. The probabilistic
formalism allows introduction of a new objective function, the mutual infor-
mation, that translates the notion of correlation as a measure of predictive
accuracy into a useful training measure. Although an accuracy similar to other
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approaches (utilizing a mean-square error) is achieved using this new mea-
sure, the accuracy on the training set is significantly higher, even though the
number of adjustable parameters remains the same. The mutual information
measure predicts a greater fraction of helix and sheet structures correctly than
the mean-square-error measure, at the expense of coil accuracy.

Although tests made on different data sets can be hard to compare, the
most significant performance improvement as compared to previous meth-
ods has been achieved by the work of Rost and Sander, which resulted in
the PHD prediction server [451, 452, 453]. In the 1996 Asilomar competition
CASP2 (Critical Assessment of Techniques for Protein Structure Prediction),
this method performed much better than virtually all other methods for mak-
ing predictions of secondary structure [161]. This unique experiment attempts
to gauge the current state of the art in protein structure prediction by means
of blind prediction. Sequences of a number of target proteins that are in the
process of being solved are made available to predictors before the experimen-
tal structures are available. The PHD method reached a performance level of
74% on the unknown test set in the ab initio section of the competition, which
contains contact, secondary structure, and molecular simulation predictions.
This category is the most prestigious and inherently the most difficult predic-
tion category, where the only prior knowledge is the primary structure in the
amino acid sequence.

Prediction of secondary structure in a three-state classification based on
single sequences seems to be limited to < 65–68% accuracy. In the mid-1980s,
prediction accuracy reached 50–55% three-state accuracy, but more advanced
neural network algorithms and increased data sets pushed the accuracy to the
65% level, a mark long taken as insurmountable. The key feature in the PHD
approach, as well as in other even more powerful methods that have been
constructed recently, has been to go beyond the local information contained
in stretches of 13–21 consecutive residues by realizing that sequence families
contain much more useful information than single sequences. Previously, this
conclusion had also been reached in many studies using alignment of multiple
sequences; see for example [587, 139, 60].

The use of evolutionary information improved the prediction accuracy to
> 72%, with correlation coefficients Cα = 0.64 and Cβ = 0.53. The way to use
evolutionary information for prediction was the following. First, a database of
known sequences was scanned by alignment methods for similar sequences.
Second, the list of sequences found was filtered by a length-dependent thresh-
old for significant sequence identity. Third, based on all probable 3D homo-
logues, a profile of amino acid exchanges was compiled. Fourth, this profile
was used for prediction.

The first method been proven in a cross-validation experiment based on
250 unique protein chains to predict secondary structure at a sustained level
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DSSP E   L   L   L   L   L   E   E   E   E   E   E   E   E   E   E   E   E   E   E   H   H   H

SH3  N   S   T   N   K   D   W   W   K   V   E   V   N   D   R   Q   G   F   V   P   A   A   Y

a1   N   K   S   N   P   D   W   W   E   G   E   L   N   G   Q   R   G   V   F   P   A   S   Y
a2   E   E   H   .   G   E   W   W   K   A   K   s   s   K   R   E   G   F   I   P   S   N   Y
a3   R   S   T   .   G   D   W   W   L   A   r   v   T   G   R   E   G   Y   V   P   S   N   F
a4   F   S   .   .   .   .   F   F   G   V   e   v   D   D   L   Q   V   F   V   P   P   A   Y

V    0   0   0   0   0   0   0   0   0  40   0  60   0   0   0   0  20  20  60   0   0   0   0
L    0   0   0   0   0   0   0   0  20   0   0  20   0   0  20   0   0   0   0   0   0   0   0
I    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  20   0   0   0   0
M    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
F   20   0   0   0   0   0  20  20   0   0   0   0   0   0   0   0   0  60  20   0   0   0  20
W    0   0   0   0   0   0  80  80   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
Y    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  20   0   0   0   0  80
G    0   0   0   0  50   0   0   0  20  20   0   0   0  40   0   0  80   0   0   0   0   0   0
A    0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0  40  40   0
P    0   0   0   0  25   0   0   0   0   0   0   0   0   0   0   0   0   0   0 100  20   0   0
S    0  60  25   0   0   0   0   0   0   0   0  20  20   0   0   0   0   0   0   0  40  20   0
T    0   0  50   0   0   0   0   0   0   0   0   0  20   0   0   0   0   0   0   0   0   0   0
C    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
H    0   0  25   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
R   20   0   0   0   0   0   0   0   0   0  20   0   0   0  60  20   0   0   0   0   0   0   0
K    0  20   0   0  25   0   0   0  40   0  20   0   0  20   0   0   0   0   0   0   0   0   0
Q    0   0   0   0   0   0   0   0   0   0   0   0   0   0  20  40   0   0   0   0   0   0   0
E   20  20   0   0   0  25   0   0  20   0  60   0   0   0   0  40   0   0   0   0   0   0   0
N   40   0   0 100   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0  40   0
D    0   0   0   0   0  75   0   0   0   0   0   0  20  40   0   0   0   0   0   0   0   0   0

Ndel 0   0   1   3   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Nins 0   0   0   0   0   0   0   0   0   0   2   3   1   0   0   0   0   0   0   0   0   0   0
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Figure 6.2: The PHD Architecture for Secondary Structure Prediction Developed by Rost and
Sander. The input is based not on a conventional orthogonal encoding of the query sequence,
but on a profile made from amino acid occurrences in columns of a multiple alignment of
sequences with high similarity to the query sequence.
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of > 72% three-state accuracy was the PHD neural network scheme [451, 452,
453]. For this method the profiles, along with additional information derived
from the multiple sequence alignments and the amino acid content of the pro-
tein, were fed as input into a neural network system, as shown in figure 6.2.
The input was based not on a conventional orthogonal encoding of a single
sequence, but on a profile made from amino acid occurrences in columns of a
multiple alignment of sequences with high similarity to the query sequence. In
the example shown in figure 6.2 five sequences are included in the profile. The
lowercase letters indicate deletions in the aligned sequence. To the resulting
20 values at one particular position in the protein (one column), three values
are added: the number of deletions, the number of insertions, and a conser-
vation weight. Thirteen adjacent columns are used as input. The “L” (loop)
category is equivalent to the coil category in most other work. The whole net-
work system for secondary structure prediction consists of three layers: two
network layers and one layer averaging over independently trained networks.

In this work the profiles were taken from the HSSP database [471]. HSSP
is a derived database merging structural and sequence information. For each
protein of known 3D structure from PDB, the database has a multiple sequence
alignment of all available homologues and a sequence profile characteristic of
the family.

The backpropagation training of the networks was either unbalanced or
balanced. In a large, low-similarity database of proteins the distribution over
the conformational categories helix, sheet, and coil is, as indicated above,
roughly 30%, 20%, and 50%, respectively. In unbalanced training the 13 amino
acid-wide profile vectors were presented randomly with the same frequency.
In the balanced version, the different categories were presented equally often.
This means that the helix and sheet examples were presented about twice as
often as the coil. In the final network system a mixture of networks trained by
these two approaches was used. Networks trained by the balanced approach
allow a much more reliable prediction of the sheet category.

Many other details of the architectures are important in yielding a predic-
tion with a high overall accuracy, a much more accurate prediction of sheets
than previously obtained, and a much better prediction of secondary structure
segments rather than single residues. For 40% of all residues predicted with
high reliability, the method reached a value of close to 90%, that is, was as
accurate as homology modeling would be, if applicable. Almost 10 percentage
points of the improvement in overall accuracy stemmed from using evolution-
ary information.

Clearly, one of the main dangers of the Qian-Sejnowski architecture is the
overfitting problem. Rost and Sander started with the same basic architec-
ture, but used two methods to address the overfitting problem. First, they
used early stopping. Second, they used ensemble averages [237, 340] by train-
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Figure 6.3: Riis and Krogh Network for Predicting Helices. The network uses the local encoding
scheme and has a built-in period of three residues. Dark circles symbolize three hidden units,
and heavy lines, three weights. In the lower part of the figure, shaded triangles symbolize 20
shared weights, and shaded rectangles, 20 input units. The network has a window size of 13
residues and has one output neuron.

ing different networks independently, using different input information and
learning procedures. But the most significant new aspect of their work is the
use of multiple alignments, in the sense that profiles (i.e. position-dependent
frequency vectors derived from multiple alignments), rather than raw amino
acid sequences, are used in the network input. The reasoning behind this is
that multiple alignments contain more information about secondary structure
than do single sequences, the secondary structure being considerably more
conserved than the primary sequence.

6.3.3 Network Ensembles and Adaptive Encoding

Another interesting NN approach to the secondary structure prediction prob-
lem is the work of Riis and Krogh [338, 445], who address the overfitting prob-
lem by careful design of the NN architecture. Their approach has four main
components. First, the main reason underlying the large number of parame-
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ters of the previous architectures is the large input layer (13×21). This number
is greatly reduced by using an adaptive encoding of amino acids, that is, by
letting the NN find an optimal and compressed representation of the input
letters. This is achieved by encoding each amino acid using the analog values
of M units, that is, with a local or distributed encoding. More precisely, the
authors first use an orthogonal encoding with 20 units, the zero vector being
used to represent the N- and C-terminal spacer symbols. Thus the input layer
has size W ×20. This input layer is connected to a first hidden layer of M ×W
units, but with a particular connectivity pattern. Each sequence position in
the input layer is connected to a set of M sigmoidal units, and such connec-
tions are forced to be translation-invariant, that is, identical across sequence
positions. This technique is also called weight-sharing in the NN literature.
In an image-processing problem, the fixed set of connections would equiva-
lently define the kernel of a convolution filter. The weight-sharing property is
easily enforced during training by an obvious modification of the backpropa-
gation algorithm, where weight updates are summed for weights sharing the
same value. Thus each letter of the alphabet is encoded into the analog values
of M units. In pattern-recognition problems, it is also common to think of
the M units as feature detectors. Note that the features useful in solving the
problems are discovered and optimized during learning, and not hardwired in
advance. The number of free connections, including biases, between the full
input layer and this representation layer is only 21×M, regardless of the win-
dow size W . This leads to a great reduction from the over 10,000 parameters
typically used in the first layer of the previous architectures. In their work, the
authors use the values M = 3 and W = 15.

Second, Riis and Krogh design a different network for each of the three
classes. In the case of alpha-helices, they exploit the helix periodicity by build-
ing a three-residue periodicity between the first and second hidden layers (see
figure 6.3). The second hidden layer is fully interconnected to the output layer.
In the case of beta-sheets and coils, the first hidden layer is fully intercon-
nected to the second hidden layer, which has a typical size of 5–10 units. The
second hidden layer is fully connected to the corresponding output unit. Thus
a typical alpha-helix network has a total of 160 adjustable parameters, and
a typical beta-sheet or coil network contains 300–500 adjustable parameters.
The authors used balanced training sets, with the same number of positive
and negative examples, when training these architectures in isolation.

Third, Riis and Krogh use ensembles of networks and filtering to improve
the prediction. Specifically, they use five different networks for each type of
structure at each position. The networks in each ensemble differ, for instance,
in the number of hidden units used. The combining network takes a window
of 15 consecutive single predictions. Thus the input layer to the combining
network has size 15× 3× 5 = 225 (figure 6.4). In order to keep the number of
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parameters within a reasonable range, the connectivity is restricted by having
one hidden unit per position and per ensemble class (α, β, or coil). Thus the
input is locally connected to a hidden layer with 3 × 15 = 45 units. Finally,
the hidden layer is fully connected to three softmax (normalized exponentials)
output units, computing the probability of membership in each class for the
central residue. Consistent with the theory presented above, the error measure
used is the negative log-likelihood, which in this case is the relative entropy
between the true assignments and the predicted probabilities.

Finally, Riis and Krogh use multiple alignments together with a weighting
scheme. Instead of profiles, for which the correlations between amino acids in
the window are lost, predictions are made first from single sequences and are
then combined using multiple alignments. This strategy is also used elsewhere
[587, 457, 358], and can be applied to any method for secondary structure pre-
diction from primary sequences, in combination with any alignment method.
The final prediction is made by combining all the single-sequence predictions
in a given column of the multiple alignment, using a weighting scheme. The
weighting scheme used to compensate for database biases is the maximum-
entropy weighting scheme [337]. The individual score in a given column can
be combined by weighted average or weighted majority, depending on whether
the averaging operates on the soft probability values produced by the single-
sequence prediction algorithm, or on the corresponding hard decisions. One
may expect soft averaging to perform better, since information is preserved
until the very last decision; this is confirmed by the authors’ observations, al-
though the results of weighted average and weighted majority are similar. A
small network with a single hidden layer of five units is then applied to fil-
ter the consensus secondary structure prediction derived, using the multiple
alignment (see [445] for more detail). The small network also uses the fact that
coil regions are less conserved and therefore have higher per-column entropy
in a multiple alignment.

A number of experiments and tests are presented showing that (1) the ar-
chitecture, with its local encoding, avoids the overfitting problem; (2) the per-
formance is not improved by using a number of additional inputs, such as the
normalized length of the protein or its average amino acid composition; (3)
the improvement resulting from each algorithmic component is quantified—
for instance, multiple alignments lead to roughly a 5% overall improvement,
mostly associated with improvement in the prediction of the more conserved
α and β structures; (4) the network outputs can be interpreted as classifica-
tion probabilities. Most important, perhaps, the basic accuracy achieved is
Q3 = 66.3% when using sevenfold cross-validation on the same database of
126 nonhomologous proteins used by Rost and Sander. In combination with
multiple alignments, the method reaches an overall accuracy of Q3 = 71.3%,
with correlation coefficients Cα = 0.59, Cβ = 0.50, and Cc = 0.41. Thus, in
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Figure 6.4: The Ensemble Method in the Riis and Krogh Prediction Scheme for Combining and
Filtering Ensembles of Networks. The combining network (top of figure) takes a window of 3 ×
5× 15 predictions from the ensembles of the dedicated secondary structures. In the combining
network, the ensembles for each of the three structures are weighted separately by position-
specific weights for each window position.

spite of a considerable amount of architectural design, the final performance
is practically identical to [453]. This of course adds evidence to the consensus
of an accuracy upper bound slightly above 70-75% on any prediction method
based on local information only.
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6.3.4 Secondary Structure Prediction Based on Profiles Made by
Position-Specific Scoring Matrices

The key contribution of the PHD method was the use of sequence profiles
that contain more structural information for extraction by the neural network.
Profiles are based on sequences identified by alignment, and the profile quality
obviously depends on the alignment approach used to select the sequences
behind the profile.

The PSI-BLAST method [12] is an iterative approach where the sequences
found in an initial scan of a database (typically Swiss-Prot) based on a single
sequence are used to generate a new search profile, which in turn is used to
pick up additional sequences. This type of “sequence walking” will normally
reach more family members, even if it is also associated with risk of picking
up unrelated sequences, weakening the structurally conserved, family-specific
bias in the profile.

In the PSIPRED method [290, 386] Jones used this iterative approach as a
clever way of generating profiles for use as improved input to the network
scheme. These profiles were based on so-called position-specific scoring matri-
ces and did significantly increase the predictive power of the neural network.
When obtaining the profiles, the initial database scan was performed using the
Blosum62 substitution matrix, while in subsequent scans substitution scores
were calculated from the multiple alignment position by position.

Replacing the HSSP profiles used in the PHD method by this more sophis-
ticated approach led to an increase in predictive performance of several per-
centage points, up to 76.5% for the prediction based on three categories, helix
(DSSP H/G/I), sheet (DSSP E/B) and coil. If the G and I helix categories are in-
cluded in the coil category, the percentage increases further to 78.3%. Thus,
depending on the precise definition of observed secondary structure, the over-
all percent correct varies 1-2%. This variation is essentially the same for most
of the neural network methods, and is in fact observed also for other meth-
ods as well. In the 1998 Asilomar CASP3 competition (Critical Assessment of
Techniques for Protein Structure Prediction), the PSIPRED method was indeed
the best for secondary structure, reaching a performance of 77% on one set of
sequences and 73% on a subset of diffucult targets [324], which is comparable
to the level reported for a larger set of test sequences consisting of 187 unique
folds.

6.3.5 Prediction by Averaging over 800 Different Networks

Although helices and sheets have preferred lengths, as observed in wildtype
proteins, the length distributions for both types of structure are quite broad. If
only a single neural network is used to provide the prediction, the window size
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will have to be selected as a compromise that can best find the transition from
coil to noncoil and from noncoil to coil as measured on a large data set. How-
ever, larger windows can benefit from the additional signal in long secondary
structures, while short windows often will perform better on structures of
minimal length that do not overlap with the previous or next secondary struc-
tures, and so on. As single networks, the large and small windows will perform
worse, but in individual cases they will typically be more confident, i.e., output
values are closer to the saturated values of zero and one.

When combining many different networks, the critical issue is therefore
how to benefit from those networks that overall are suboptimal, but in fact
are more reliable on a smaller part of the data. When the number of networks
becomes large, simple averaging will make the noise from the suboptimal net-
works become very destructive—in one case an upper limit for the productive
number of networks to be combined has been suggested to be around eight
[118]. In this work, approximate performance values for the networks were
at the level of 73.63% (one network), 74.70% (two), 74.73% (four), and 74.76%
(eight) for a three-category prediction scheme.

However, Petersen and coworkers showed recently [427] that it is possible
to benefit from as many as 800 networks in an ensemble with strong archi-
tectural diversity: different window sizes, different numbers of hidden units,
etc. The key element in the procedure is to identify, from the 800 networks,
those predictions that are likely to be of high confidence for a given amino
acid residue in the test data. By averaging over the highly confident predic-
tions only, it becomes possible to exploit many networks and prevent the noise
from the suboptimal networks from eradicating the signal from the confident
true positive (and true negative) predictions.

Using this scheme, it was possible to increase the prediction level above
what could be obtained with the PSIPRED method. When measured on the two
different ways of merging the DSSP categories into categories of helix, sheet,
and coil, the improvement ranged from 77.2% (standard merging) to 80.2% as
measured as the mean at the per-amino acid level. The percentages are slightly
higher when reported as mean per-chain (77.9%-80.6%).

Output Expansion

In this study the performance was improved by introducing another new fea-
ture in the output layer. The Petersen scheme was designed to incorporate
so-called output expansion where the networks provide a prediction not only
for the secondary structure category corresponding to a single (central) amino
acid in the input window, but simultaneous predictions for the neighboring
residues as well.
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This idea is related to earlier ideas of constructing networks by training us-
ing hints that essentially further constrain the network weights, thereby lead-
ing to improved generalization.

Networks that are trained to predict currency exchange rates, e.g. dollar
versus yen, may be improved if they also are forced to predict the American
budget deficit, or similar features that are somehow related to the original
output [1]. This idea must also be formulated as the learning-of-many-related-
tasks-at-the-same-time approach, or multitask learning [115]. A network learn-
ing many related tasks at the same time can use these tasks as inductive bias
for one another and thus learn better.

In protein secondary structure, it is certainly true that the conformational
categories for the adjacent residues represent information that is correlated
to the category one wants to predict. Other hints could be, for example, the
surface exposure of the residue (as calculated from the structure in PDB), or
the hydrophobicity as taken from a particular hydrophobicity scale.

6.4 Prediction of Signal Peptides and Their Cleavage Sites

Signal peptides control the entry of virtually all proteins to the secretory path-
way in both eukaryotes and prokaryotes [542, 207, 440]. They comprise the
N–terminal part of the amino acid chain, and are cleaved off while the protein
is translocated through the membrane.

Strong interest in automated identification of signal peptides and predic-
tion of their cleavage sites has been evoked not only by the huge amount of
unprocessed data available but also by the commercial need for more effective
vehicles for production of proteins in recombinant systems. The mechanism
for targeting a protein to the secretory pathway is believed to be similar in
all organisms and for many different kinds of proteins [296]. But the iden-
tification problem is to some extent organism-specific, and NN-based predic-
tion methods have therefore been most successful when Gram-positive and
Gram-negative bacteria, and eukaryotes have been treated separately [404,
131]. Signal peptides from different proteins do not share a strict consen-
sus sequence—in fact, the sequence similarity between them is rather low.
However, they do share a common structure with a central stretch of 7–15
hydrophobic amino acids (the hydrophobic core), an often positively charged
region in the N-terminal of the preprotein, and three to seven polar, but mostly
uncharged, amino acids just before the cleavage site.

This (and many other sequence analysis problems involving “sites”) can be
tackled from two independent angles: either by prediction of the site itself or
by classifying the amino acids in the two types of regions into two different
categories. Here this would mean classifying all amino acids in the sequence
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as cleavage sites or noncleavage sites; since most signal peptides are below 40
amino acids in length, it makes sense to include only the first 60–80 amino
acids in the analysis. Alternatively, the amino acids could be classified as
belonging to the signal sequence or the mature protein. In the approach de-
scribed below, the two strategies have been combined and found to contribute
complementary information. While the prediction of functional sites often is
fairly local and therefore works best using small windows, larger windows are
often needed to obtain good prediction of regional functional assignment.

6.4.1 SignalP

In the SignalP prediction scheme [404], two types of networks provide different
scores between 0 and 1 for each amino acid in a sequence. The output from the
signal peptide/nonsignal peptide networks, the S-score, can be interpreted as
an estimate of the probability of the position’s belonging to the signal peptide,
while the output from the cleavage site/noncleavage site networks, the C-score,
can be interpreted as an estimate of the probability of the position’s being the
first in the mature protein (position +1 relative to the cleavage site).

In figure 6.5, two examples of the values of C- and S-scores for signal pep-
tides are shown. A typical signal peptide with a typical cleavage site will yield
curves like those shown in figure 6.5A, where the C-score has one sharp peak
that corresponds to an abrupt change in S-score. In other words, the example
has 100% correctly predicted positions, according to both C-score and S-score.
Less typical examples may look like figure 6.5B, where the C-score has several
peaks.

In this work the data were divided into five subsets, and five independent
networks were selected based on cross-validation for each task (and for each
organism class). The individual C- and S-scores were therefore obtained by
averaging over these five networks. In the final implementation for the three
classes of organisms, 15 networks are included for each score. The work on
signal peptide prediction provides another example of the importance of post-
processing of the network outputs, and of how “intelligent” interpretation can
significantly improve the overall performance.

The C-score problem was best solved by networks with asymmetric win-
dows, that is, windows including more positions upstream than downstream
of the cleavage site: 15 and 2–4 amino acids, respectively. This corresponds
well with the location of the cleavage site pattern information when viewed
as a signal peptide sequence logo [404]. The S-score problem, on the other
hand, was overall best solved by symmetric windows, which not surprisingly
are better at identifying the contrast between the compositional differences of
signal peptides and of mature protein. For human and E. coli sequences, these
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Figure 6.5: Examples of Predictions for Sequences with Verified Cleavable Signal Peptides. The
values of the C-score (output from cleavage site networks), S-score (output from signal peptide
networks), and Y-score (combined cleavage site score, Yi =

√
Ci∆dSi) are shown for each position

in the sequences. The C- and S-scores are averages over five networks trained on different parts
of the data. The C-score is trained to be high for the position immediately after the cleavage site,
that is, the first position in the mature protein. The true cleavage sites are marked with arrows.
A is a sequence with all positions correctly predicted according to both C-score and S-score.
B has two positions with C-score higher than 0.5—the true cleavage site would be incorrectly
predicted when relying on the maximal value of the C-score alone, but the combined Y-score is
able to predict it correctly.

windows were larger: 27 and 39 amino acids, respectively.
Since the sequences in most cases have only one cleavage site, it is not

necessary to use as assignment criterion a fixed cutoff of, say, 0.5 when in-
terpreting the C-score for single positions. The C-score networks may also be
evaluated at the sequence level by assigning the cleavage site of each signal
peptide to the position in the sequence with the maximal C-score and calcu-
lating the percentage of sequences with the cleavage site correctly predicted
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by this assignment. This is how the performance of the earlier weight matrix
method [539] was calculated. Evaluating the network output at the sequence
level improved the performance; even when the C-score had no peaks or sev-
eral peaks above the cutoff value, the true cleavage site was often found at the
position where the C-score was highest.

If there are several C-score peaks of comparable strength, the true cleavage
site may often be found by inspecting the S-score curve in order to see which
of the C-score peaks coincides best with the transition from the signal peptide
to the nonsignal peptide region. The best way of combining the scores turned
out to be a simple geometric average of the C-score and a smoothed derivative
of the S-score. This combined measure has been termed the Y-score:

Yi =
√
Ci∆dSi, (6.2)

where ∆dSi is the difference between the average S-score of d positions before
and d positions after position i:

∆dSi = 1
d


 d∑
j=1

Si−j −
d−1∑
j=0

Si+j


 . (6.3)

The Y-score gives a certain improvement in sequence level performance (per-
cent correct) relative to the C-score, but the single-position performance (CC ) is
not improved. An example in which the C-score alone gives a wrong prediction
while the Y-score is correct is shown in figure 6.5B.

It is interesting that this method also can be used for detection of seemingly
wrong assignments of the initiation methionine. Inspection of a number of
long signal peptides deposited in SWISS-PROT has shown that such sequences
often contain a second methionine 5–15 amino acids from the annotated N-
terminus [422]. Figure 6.6 shows a SignalP prediction for the sequence of
human angiotensinogen. In the N-terminal, this sequence has a surprisingly
low S-score, but after the second methionine in the sequence it increases to a
more reasonable level. The prediction strongly indicates that the translation
initiation has been wrongly assigned for this sequence.

6.5 Applications for DNA and RNA Nucleotide Sequences

6.5.1 The Structure and Origin of the Genetic Code

Since the genetic code was first elucidated [407], numerous attempts have been
made to unravel its potential underlying symmetries [216, 6, 509, 514, 125]
and evolutionary history [168, 563, 294, 569]. The properties of the 20 amino
acids and the similarities among them have played a key role in this type of
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Figure 6.6: SignalP Prediction of the Sequence of ANGT_HUMAN, human angiotensinogen. The
S-score (signal peptide score) has a high value for residues within signal peptides, while the C-
and Y-scores (cleavage site scores) are high at position +1 immediately after possible cleavage
sites. Note that the S-score is comparatively low for the region between the first Met and the
second Met.

analysis. The codon assignments are correlated to the physical properties of
the amino acids in a systematic and error-correcting manner. The three posi-
tions in the triplets associate to widely different features of the amino acids.
The first codon position is correlated to amino acid biosynthetic pathways
[569, 514], and to their evolution evaluated by synthetic “primordial soup” ex-
periments [159, 478]. The second position is correlated to the hydrophatic
properties of the amino acids [140, 566], and the degeneracy of the third po-
sition is related to the molecular weight or size of the amino acids [240, 514].
These features are used for error correction in two ways. First, the degen-
eration is correlated to the abundance of the amino acids in proteins, which
lowers the chance that a mutation changes the amino acid [371]. Second, sim-
ilar amino acids have similar codons, which lowers the chance that a mutation
has a hazardous effect on the resulting protein structure [140, 216, 6].

In the neural network approach to studying the structure of the genetic
code, the analysis is new and special in that it is unbiased and completely
data-driven [524]. The neural network infers the structure directly from the
mapping between codons and amino acids as it is given in the standard genetic
code (figure 6.7). Hence, no a priori relationships are introduced between the



138 Neural Networks: Applications

UUU
UUC
UUA
UUG

AAU
AAC
AAA
AAG

GGU
GGC
GGA
GGG

GAU
GAC
GAA
GAG

AGU
AGC
AGA
AGG

CAU
CAC
CAA
CAG

CGU
CGC
CGA
CGG

UGU
UGC
UGA
UGG

UAU
UAC
UAA
UAG

GCU
GCC
GCA
GCG

ACU
ACC
ACA
ACG

CCU
CCC
CCA
CCG

UCU
UCC
UCA
UCG

GUU
GUC
GUA
GUG

AUU
AUC
AUA
AUG

CUU
CUC
CUA
CUG

STOP STOPPhenylalanine

Valine

Methionine

Tyrosine

Arginine

Serine

Glycine

Threonine

Alanine

Asparatic acid

Asparagine

Glutamic acid

Glutamine
Proline

Histidine

Lysine

Isoleucine

Leucine

Serine

Cysteine

Tryptophan

Arginine

Figure 6.7: The Standard Genetic Code. Triplets encoding the same amino acid are shown in the
same shade of gray.

nucleotides or amino acids.
In the network that learns the genetic code, the input layer receives a nu-

cleotide triplet and outputs the corresponding amino acid. Thus the 64 dif-
ferent triplets are possible as input, and in the output layer the 20 different
amino acids appear (see figure 6.8). Inputs and outputs are sparsely encoded;
12 units encode the input and 20 units encode the output.

Networks with three and four intermediate units were relatively easy to
train; it was harder to obtain perfect networks with two intermediate units.
The only way minimal networks (with two intermediates) could be found was
by an adaptive training procedure [524]. For this task, at least, it was observed
that the conventional backpropagation training scheme treating all training
examples equally fails to find a minimal network, which is known to exist.

The standard technique for training feed-forward architectures is back-
propagation; the aim is to get a low analog network error E but not necessarily
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Figure 6.8: Architecture of the Neural Network Trained to Learn the Standard Genetic Code. The
network had 12 input units, two (or more) intermediate units, and 20 output units. The in-
put layer encoded the nucleotide triplets as a binary string comprising three blocks of four
bits, with adenine as 0001, cytosine as 0010, guanine as 0100, and uracil as 1000. The
output layer encoded the amino acids with alanine as 10000000000000000000, cysteine as
01000000000000000000, . . .. Intermediate and output units had real-valued activities in the
range between 0.0 and 1.0. The network parameters (12 ·2+2 ·20= 64 weights and 2+20= 22
thresholds) were adjusted using the backpropagation algorithm [456] in a balanced form, where
for each codon the training cycle was repeated in inverse proportion to the number of codons
associated with the amino acid. Thus each of the leucine codons received on the average six
times less training than the single methionine codon. During training, the criterion for suc-
cessful learning was that the activity of the corresponding output unit should be larger than all
others (the winner-take-all principle). In each training epoch the codons were presented to the
network in random order.

a low classification error EC . This often makes it difficult to train networks
down to EC = 0.0. In the literature, several training strategies have been pur-
sued in order to obtain low classification errors. First, a simple but effective
modification is to use a high learning rate for wrongly classified examples and
a low learning rate for correctly classified examples. In the first phase of train-
ing, most examples are wrongly classified. This results in a high learning rate
and therefore a fast decrease in network error E . Later in training only the
hard cases have a high learning rate. Thereby noise is introduced and jumps
in the network error level to lower plateaus are favored.

Second, another effective procedure is to modify the presentation frequen-
cies for the different categories so that a more balanced situation results. In
the case of the genetic code this means that the same number of codons should
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be presented for each amino acid, no matter how many appear in the original
code. Thus the single methionine codon should be included in the set six times
and each cysteine codon should appear three times. The training set is then
enlarged from 61 to 186 codons, tripling the training time for each epoch.

Third, an even more powerful strategy for obtaining a low classification er-
ror will be to have an adaptive training set, where the training examples are
included or excluded after determining whether they are classified correctly by
the current network. Such a scheme may introduce more noise in the learning
process, which helps to avoid local minima. Introducing noise in the training
is usually done by updating the network after each example rather than after
each epoch. The next step is to shuffle the examples within each epoch prior
to presentation. Using the adaptive procedure makes the epoch concept dis-
appear, and each example is chosen at random from a pool with subsequent
updating of the network. To increase the frequency of a hard-to-learn example,
each example misclassified is put into the pool of examples, replacing one in
the pool. To ensure that no examples are lost, only part of the pool is open for
exchange. In the long run this procedure ensures that every example is shown
and hard-to-learn examples are shown more often. In summary, the procedure
is as follows:

1. Initialize the first and second parts of the pool with the training exam-
ples.

2. Choose an example randomly from the pool and present it to the net-
work.

3. Train the network by backpropagation.

4. If the example is classified correctly, then go to 2.

5. If the example is misclassified, put it in the second part of the pool, thus
replacing a randomly chosen example.

6. Repeat until EC = 0.

A network with two hidden units was successfully trained using this adap-
tive training scheme. During training, the network develops an internal rep-
resentation of the genetic code mapping. The internal representation of the
structure of the code is given by the activities of the two intermediate units,
which may easily be visualized in the plane. The network transforms the 61
12-component vectors representing the amino acid encoding codons into 61
points in the plane, which, provided the network has learned the code, may be
separated linearly by the 20 output units.

Figure 6.9 shows how the network arrives at the internal representation by
adaptive backpropagation training. Each codon is mapped into a point (x,y)
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in the plane indicated by the one-letter abbreviation for the matching amino
acid. During training, the 61 points follow trajectories emerging from their
prelearning positions close to the center (x ≈ 0.5, y ≈ 0.5) and ending at their
final locations on the edge of a slightly distorted circular region.

The network identifies three groups of codons corresponding to three parts
of the circular region (figure 6.9). Subsequently it was discovered that these
groups divide the GES scale of transfer free energies [166] into three energy
intervals, [−3.7 : −2.6], [−2.0 : 0.2], and [0.7 : 12.3] (kcal/mol), respectively
(see table 6.2). The only case that does not conform to the network group-
ing is the extremely hydrophilic amino acid arginine, which is known to be an
exception in the context of the genetic code [319, 509, 514]. The number of
arginine codons is in conflict with its abundance in naturally occurring pro-
teins [470]. Arginine has been suggested as a late addition to the genetic code
[294]. In alpha-helices it has a surprising tendency to be at the same side as
hydrophobic residues [136]. The network locates arginine in the intermediate
group. The trained network maps the three stop codons to (x,y) positions
in the vicinity of adjacent codons in the code: UAA, UAG close to Tyr (Y), and
UGA close to Trp (W) (points not shown).

The fact that the network needs at least two intermediate units to learn
the genetic code mapping means that the code is inherently nonlinear. In
classification terms this means that the genetic code is nonlinearly separable.
This holds true for the (otherwise sensible) sparse encoding of the nucleotides
used by most workers. Computerized analysis of DNA or pre-mRNA striving
to relate patterns in the nucleotides to amino acids [100, 102] will therefore
be a nonlinear problem regardless of the algorithm applied. It is quite easy to
prove that the genetic code is indeed nonlinear, since all serine codons cannot
be separated linearly from the other codons.

The weights of the trained network have, unlike many other neural net-
works, a fairly comprehensible structure (figure 6.10). The size of the weights
connecting the input units to the intermediates reflects the importance of par-
ticular nucleotides at specific codon positions. Interestingly, the second codon
position has by far the largest weights, followed by the first and third po-
sitions, in agreement with earlier observations [424]. The two intermediate
units to a large extent share the discrimination tasks between them; the unit
to the left is strongly influenced by A or G at the second codon position, and
the unit to the right, by C or U. At the first codon position A and C, and G
and U, influence the two units, respectively. In the genetic code C and U are
equivalent at the third codon position for all amino acids, and similarly for A
and G with the exception of three amino acids (Ile, Met, and Trp). The network
handles this equivalence by having positive and negative weights at the third
codon position for the two pairs.

The rationale behind the correlation between the second position and the
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Figure 6.9: Hidden Unit Activities in the Genetic Code Neural Network. Each plot shows the
two real-valued activities for all 61 amino acid encoding triplets in the code. In the untrained
network with randomly assigned weights, all 61 points are located near the center of the square;
after seven epochs the points have moved into a transient local minimum, where the activities
of the intermediate units are close to 1 and the activities of all the output units are close to 0;
at 30 epochs the groups have started to segregate but are still mixed; finally, at 13,000 epochs
the network positions the 61 codons in groups on the edge of the circular region. After the four
epochs shown, the number of correctly classified codons was 2, 6, 26, and 61, respectively.
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Amino acid Water-oil Codons

Phe −3.7 UUU UUC
Met −3.4 AUG
Ile −3.1 AUU AUC AUA
Leu −2.8 UUA UUG CUU CUC CUA CUG
Val −2.6 GUU GUC GUA GUG

Cys −2.0 UGU UGC
Trp −1.9 UGG
Ala −1.6 GCU GCC GCA GCG
Thr −1.2 ACU ACC ACA ACG
Gly −1.0 GGU GGC GGA GGG
Ser −0.6 UCU UCC UCA UCG AGU AGC
Pro 0.2 CCU CCC CCA CCG

Tyr 0.7 UAU UAC
His 3.0 CAU CAC
Gln 4.1 CAA CAG
Asn 4.8 AAU AAC
Glu 8.2 GAA GAG
Lys 8.8 AAA AAG
Asp 9.2 GAU GAC

Arg 12.3 CGU CGC CGA CGG AGA AGG

Table 6.2: The amino acids and their transfer free energies in kcal/mol as given by the GES scale
[166]. The GES scale separates codons with uracil and adenine at the second codon position from
each other, leaving as an intermediate class amino acids with cytosine and guanine. The transfer
free energy values are computed by considering a hydrophobic term based on the surface area
of the groups involved, and two hydrophilic terms accounting for polar contributions arising
from hydrogen bond interactions and the energy required to convert the charged side chains to
neutral species at pH 7.

hydrophobicity of the amino acids may, in addition to the obvious advantage
of minimizing the likelihood of mutation or mistranslation events changing a
hydrophobic amino acid into a hydrophilic one [538, 409, 87], be more fun-
damental. In the early version of the genetic code, classes of codons coded
for classes of amino acids [562]. Mostly these classes were purely related
to the problem of folding a polypeptide chain in an aqueous environment.
Lipid membranes, which may be phylogenetically older than the cytoplasm
[316, 73, 117, 76], have not played a major role in the literature on the early
protein synthesis apparatus. The problem of understanding the origin of cells
is often dismissed by stating that “somehow” primitive ribosomes and genes
became enclosed by a lipid membrane [117]. In scenarios described by Blobel
and Cavalier-Smith [73, 117], genes and ribosomes associated with the sur-
face of liposome-like vesicles where a mechanism for the cotranslational in-
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Figure 6.10: A Graphical Representation of the Input Unit Weights in the Trained Genetic Code
Network. For each of the three codon positions the height of the letters indicates the size of the
sum of the two weights connecting an input unit to the two intermediate units. If the sum is
negative, the letters are upside down.

sertion of membrane proteins evolved. A segregation into genetic code classes
founded on the amino acid properties in their relation to lipid environments
may therefore also have been a basic necessity.
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6.5.2 Eukaryotic Gene Finding and Intron Splice Site Prediction

Since the beginning of the 1980s a highly diverse set of methods has been
developed for the problem of identifying protein-coding regions in newly se-
quenced eukaryotic DNA. Correct exon assignments may in principle be ob-
tained by two independent approaches: prediction of the location of the alter-
nating sequence of donor and acceptor sites, or classification of nucleotides—
or continuous segments of nucleotides—as belonging to either the coding or
the noncoding category.

Intron splice sites have a relatively confined local pattern spanning the
range of 15–60 nucleotides; protein-coding regions (exons) are often much
larger, having typical lengths of 100–150 nucleotides, an interval that is quite
stable across a wide range of eukaryotic species. For both types of objects,
the pattern strength or regularity is the major factor influencing the potential
accuracy of their detection.

Some intron splice site sequences are very close to the “center of gravity”
in a sequence space [344], while others deviate considerably from the consen-
sus pattern normally described in textbooks on the subject (see Figure 1.10
for a sequence logo of donor sites from the plant Arabidopsis thaliana). Like-
wise, exon sequence may conform strongly or weakly to the prevailing reading
frame pattern in a particular organism. The strength of the coding region pat-
tern may be correlated, for example, to the gene expression level or the amino
acid composition of the protein. The codon usage specific to a given organism
and a given gene in most cases creates a fairly strong 3-periodicity with biased
frequencies at the three codon positions [525, 305]. In some organisms, such
as bacteria, the bias is largest on the first position, while in mammals the bias
is strongest on the third position (see figure 6.11). Proteins rich in proline,
serine, and arginine residues will often be associated with bad reading frames
because they have codons that deviate from the prevailing choices on the first
and second codon positions. However, in the context of the mRNA transla-
tion by the ribosome, the strength of a reading frame should be quantified by
inspecting the three different possibilities, not just the average codon usage
statistics [525]. Figure 6.11 shows the overall bias in the nucleotide distribu-
tion on the three codon positions in triplets from coding regions in genes from
Enterobacteria, mammals, Caenorhabditis elegans, and the plant A. thaliana,
respectively.

In a study using neural networks for the prediction of intron splice sites, it
was observed [102] that there is a kind of compensating relationship between
the strength of the donor and acceptor site pattern and the strength of the
pattern present in the associated coding region. Easily detectable exons may
allow weaker splice sites, and vice versa. In particular, very short exons, which
usually carry a weak signal as coding regions, are associated with strong splice
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Figure 6.11: Sequence Logos of Codons from Four Different Types of Organisms: (top) Enter-
obacteria and Mammals; (bottom) C. elegans and A. thaliana. While bacterial genes have a strong
bias on the first codon position, the bias is strongest on the third codon position in mammals.

sites. This relation is also moderated by the distribution for the intron length,
which varies considerably from organism to organism.

The correlation between splice site strength and “exonness” has been ex-
ploited in the artificial neural network-based prediction scheme known as Net-
Gene [102], where two local splice site networks are used jointly with an exon
prediction network equipped with a large window of 301 nucleotides. This
scheme considerably reduces the number of false positive predictions and, at
the same time, enhances the detection of weak splice sites by lowering the pre-
diction threshold when the signal from the exon prediction network is sharp in
the transition region between coding and noncoding sequence segments (see
section 6.5.4).
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6.5.3 Examples of Gene Structure Prediction by Sensor Integration

The use of a combination of sensors for detection of various signals related
to a complex object has a long history in the theory of pattern recognition.
Several schemes have been developed in which NN components play a major
role, earliest the GRAIL and GeneParser systems.

The GRAIL system is an NN-based example of sensor integration used for
coding-region recognition. The first network, from 1991, combined into a
joint prediction seven measures known to provide a nontrivial indication of
the presence of a coding region [528]. The later GRAIL II coding system con-
siders discrete coding-region candidates, rather than using a fixed-size sliding
window for evaluation of the coding potential, as in the earlier system [529].
As one of the input features, the network is provided with a measure of the
length of the coding-region candidate, and can therefore correlate the other
measures specifically to known differences between short and long exons.

The performance of the GRAIL system has evolved over the years primar-
ily by the development of more complex sensor indicators, and not by more
sophisticated neural networks. The MLP with one hidden layer trained by back-
propagation remains the same. Among the most advanced indicators is a fifth-
order nonhomogeneous Markov chain for 6-mer based evaluation of the coding
potential in DNA [529]. The GRAIL system not only performs recognition of
coding-region candidates, but also gene modeling (exon assembly), detection
of indel errors and suggestion of likely corrections, detection of CpG islands,
and recognition of PolII promoters and polyadenylation sites.

In the GeneParser scheme [494] intron/exon and splice site indicators are
weighted by a neural network to approximate the log-likelihood that a se-
quence segment exactly represents an intron or exon (first, internal, or last). A
dynamic programming algorithm is then applied to this data to find the com-
bination of introns and exons that maximizes the likelihood function. Using
this method, suboptimal solutions can be generated rapidly, each of them the
optimum solution containing a given intron–exon junction. The authors also
quantified the robustness of the method to substitution and frame-shift errors
and showed how the system can be optimized for performance on sequences
with known levels of sequencing errors.

Dynamic programming (DP) is applied to the problem of precisely identi-
fying internal exons and introns in genomic DNA sequences. The GeneParser
program first scores the sequence of interest for splice sites and for the fol-
lowing intron- and exon-specific content measures: codon usage, local compo-
sitional complexity, 6-tuple frequency, length distribution, and periodic asym-
metry. This information is then organized for interpretation by DP. GeneParser
employs the DP algorithm to enforce the constraints that introns and exons
must be adjacent and nonoverlapping, and finds the highest-scoring combi-
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nation of introns and exons subject to these constraints. Weights for the
various classification procedures are determined by training a simple feed-
forward neural network to maximize the number of correct predictions. In a
pilot study, the system has been trained on a set of 56 human gene fragments
containing 150 internal exons in a total of 158,691 bps of genomic sequence.
When tested against the training data, GeneParser precisely identifies 75% of
the exons and correctly predicts 86% of coding nucleotides as coding, while
only 13% of non-exon bps were predicted to be coding. This corresponds to a
correlation coefficient for exon prediction of 0.85. Because of the simplicity of
the network weighting scheme, generalized performance is nearly as good as
with the training set.

6.5.4 Prediction of Intron Splice Sites by Combining Local and Global
Sequence Information

The complementarity of the splice site strength and coding region intensity
was discovered in an NN study where prediction of sites was combined with
a coding/noncoding prediction in the NetGene method [102]. The first Net-
Gene program from 1991 was trained exclusively on human sequences, and
has been available on the Internet since 1992 (netgene@cbs.dtu.dk). In this
method three separate networks work together: the assignment thresholds of
two local donor and acceptor sites’ networks are regulated by a global network
performing a coding/noncoding prediction. The three networks use windows
of 15, 41, and 301 bp, respectively. Instead of a fixed threshold for splice site
assignment in the local networks, the sharpness of the transition of the global
exon-to-intron signal regulates the actual threshold. The aim was to improve
the ratio between true and false donor and acceptor sites assigned. In regions
with abruptly decreasing exon activity, donor sites should be “promoted” and
acceptor sites suppressed, and vice versa in regions with abruptly increasing
exon activity. In regions with only small changes in exon activity—that is,
where the level was constantly high (inside exons) and where it was constantly
low (inside introns, in untranslated exons and in the intergenic DNA)—a rather
high confidence level in the splice site assignment should be demanded in or-
der to suppress false positives.

To detect edges in the coding/noncoding output neuron levels, essentially
the first derivative of the coding output neuron activity was computed by sum-
ming activities to the right of a given point and subtracting the corresponding
sum for the left side, then dividing this difference by the number of addends.
In order to reduce the number of cases where the individual sums covered
both intron and exon regions, half the average length of the internal exons in
the training set, 75 bp, was used as the scope when summing, giving deriva-
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tives close to +1 in the 3’ end of introns and close to −1 in the 5’ end for
perfect coding/noncoding assignments.

In figure 6.12 an average-quality example of the coding/noncoding signal,
the derivative ∆, and the forest of donor and acceptor site signals exceeding
an activity of 0.25 are given for the GenBank entry HUMOPS, taken from the
test set used in the study [102]. Note that some regions inside introns and in
the nontranscribed part of the sequences show exonlike behavior.

In compiling algorithms that regulate the splice site assignment levels, the
following expressions were used to assess possible weightings between the
strength of the exon signal and the output, O, from the separate splice site
networks: if

Odonor > eD∆+ cD (6.4)

assign splicing donor site, and if

Oacceptor > eA∆+ cA (6.5)

assign splicing acceptor site, where ∆ was computed as described above. The
constants cD and cA are equivalent to the ordinary cutoff assignment param-
eters, whereas eD and eA control the impact of the exon signal. Together the
four constants control the relative strengths between the donor site and the
coding/noncoding network on one side, and between the acceptor site and the
coding/noncoding network on the other.

The four constants were optimized in terms of correlation coefficients and
the percentage of true splice sites detected [102]. Compared with other meth-
ods, the number of false positives assigned was much lower—by a factor be-
tween 2 and 30, depending on the required level of detection of true sites—
when the cutoff assignment level was controlled by the exon signal.

The general picture concerning the confidence levels on the splice site pre-
diction and the coding/noncoding classification (as measured by the output
neuron activities) was that exons smaller than 75 bp had rather weak exon
output neuron levels (0.3–0.6) but relatively strong donor and acceptor site
output neuron levels (0.7–1.0). Conversely, longer internal exons in general
had rather sharp edges in the output neuron activities, with donor and accep-
tor site activities being somewhat weaker.

A similar method has been developed for prediction of splice sites in the
plant Arabidopsis thaliana, NetPlantGene [245]. This plant model organism
was the first for which the complete genome was sequenced, as the size of
its genome (400Mbp) is very moderate compared with many other plants (see
figure 1.2).
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Figure 6.12: The Steps in the Operation of the NetGene Method for Prediction of Splice Sites on
the Test Gene with GenBank Locus HUMOPS. A. (Top) Analog output from the output neuron
in the coding/noncoding network, showing strong exon signals from the correct exons. Inside
the introns and in the terminal nontranscribed part of the sequence, a number of regions show
exonlike behavior. The boxes correspond to correct exons and the joining lines to introns,
whereas the top line gives the extension of the transcript. B. The derivative of the analog cod-
ing/noncoding output. C. The donor site activities (≥ 0.25) from the donor site assignment
network. D. (Bottom) The acceptor site activities (≥ 0.25) from the acceptor site assignment
network. The variable cutoff assignment level for a 90% detection of true splice sites is shown
as a dashed curve on the pin diagrams (3 and 4).
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6.5.5 Doing Sequence Analysis by Inspecting the Order in Which
Neural Networks Learn

Neural networks are well known for their ability to generalize from a set of
examples to new cases. Recently another ability of the method has been recog-
nized: important information on the internal structure of the training material
can be obtained if the learning process is monitored carefully. A network does
not learn the examples in random order; depending on the number of ad-
justable parameters, it will learn the linearly separable part of the data first
and outliers that deviate from the prevailing patterns later. This was clear
from the early work of Qian and Sejnowski [437] and from other work on
alpha-helix prediction in proteins [244]. The training proceeds in two phases:
a linearly separable part of the data is learned fast, while other examples are
correctly classified by the network more slowly. In this later phase the net-
work will often unlearn some of the examples learned in the first phase. It is
obvious from the work on the genetic code described above that a similar, but
more complex, picture emerges here.

The order in which a set of examples is learned first by a network reveals
information on the relative nonlinearity of each single example, and hence on
the pattern of regularity present in the complete set [97, 98]. This in turn can
be used to identify abnormal examples that deviate strongly from the prevail-
ing patterns, either due to the application of unnatural classification strategies
or simply due to classification errors introduced randomly, without systemat-
ics. The neural network method provides a means for obtaining a high-quality
feedback on low-quality data with a sound balance between abilities to model
complex systematics and to detect deviations from ill-defined rules.

The ability to find errors has been exploited in many different projects, not
only in the area of sequence analysis but also in other cases where input data
may be assigned to an incorrect category. In the work using networks to pre-
dict intron splice sites, it was described in detail how to find errors produced
by very different sources [100, 101]. During a training session the success
of the learning was monitored in two different ways, one taking the training
set as a whole and the other inspecting each window configuration separately.
The performance on the training set as a whole is quantified by monitoring
the decrease in the total network error E. If E remains constant for a large
number of presentations of the training set, it indicates that no improvement
can be gained from further training. The network has learned a single window
configuration if the real–numbered activity of the output neuron fell on the
same side of a cutoff value as the training target of the window configuration
in question. The cutoff value separating the two output category assignments
was mostly chosen to be 0.5. Thus, at any moment during training, an objec-
tive criterion for successful learning points uniquely to those inputs not being
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Epoch GenBank Locus Sequence

1 HUMA1ATP TACATCTTCTTTAAAGGTAAGGTTGCTCAACCA
1 HUMA1ATP CCTGAAGCTCTCCAAGGTGAGATCACCCTGACG
1 HUMACCYBA CCACACCCGCCGCCAGGTAAGCCCGGCCAGCCG
1 HUMACCYBA CGAGAAGATGACCCAGGTGAGTGGCCCGCTACC
1 HUMACTGA GCGCCCCAGACACCAGGTGAGTGGATGGCGCCG
1 HUMACTGA AGAGAAGATGACTCAGGTGAGGCTCGGCCGACG
1 HUMACTGA CACCATGAAGATCAAGGTGAGTCGAGGGGTTGG
1 HUMADAG TCTTATACTATGGCAGGTAAGTCCATACAGAAG
1 HUMALPHA CGTGGCTCTGTCCAAGGTAAGTGCTGGGCTACC
1 HUMALPI CCTGGCTCTGTCCAAGGTAAGGGCTGGGCCACC
1 HUMALPPD TGTGGCTCTGTCCAAGGTAAGTGCTGGGCTACC
1 HUMAPRTA CCTGGAGTACGGGAAGGTAAGAGGGCTGGGGTG
1 HUMCAPG GAAGGCTGCCTTCAAGGTAAGGCATGGGCATTG
1 HUMCFVII GGAGTGTCCATGGCAGGTAAGGCTTCCCCTGGC
1 HUMCP21OH CACCTTGGGCTGCAAGGTGAGAGGCTGATCTCG
1 HUMCP21OHC CACCTTGGGCTGCAAGGTGAGAGGCTGATCTCG
1 HUMCS1 GTGGCAATGGCTCCAGGTAAGCGCCCCTAAAAT
1 HUMCSFGMA AATGTTTGACCTCCAGGTAAGATGCTTCTCTCT
1 HUMCSPB AAAGACTTCCTTTAAGGTAAGACTATGCACCTG
1 HUMCYC1A GCTACGGACACCTCAGGTGAGCGCTGGGCCGGG
. . . . . . . . .
2 HUMA1ATP CCTGGGACAGTGAATCGTAAGTATGCCTTTCAC
2 HUMA1ATP AAAATGAAGACAGAAGGTGATTCCCCAACCTGA
2 HUMA1GLY2 CGCCACCCTGGACCGGGTGAGTGCCTGGGCTAG
2 HUMA1GLY2 GAGAGTACCAGACCCGGTGAGAGCCCCCATTCC
2 HUMA1GLY2 ACCGTCTCCAGATACGGTGAGGGCCAGCCCTCA
2 HUMA1GLY2 GGGCTGTCTTTCTATGGTAGGCATGCTTAGCAG
2 HUMA1GLY2 CACCGACTGGAAAAAGGTAAACGCAAGGGATTG
2 HUMACCYBA GCGCCCCAGGCACCAGGTAGGGGAGCTGGCTGG
2 HUMACCYBA CAGCCTTCCTTCCTGGGTGAGTGGAGACTGTCT
2 HUMACCYBA CACAATGAAGATCAAGGTGGGTGTCTTTCCTGC
2 HUMACTGA TCGCGTTTCTCTGCCGGTGAGCGCCCCGCCCCG
2 HUMADAG CTTCGACAAGCCCAAAGTGAGCGCGCGCGGGGG
2 HUMADAG TGTCCAGGCCTACCAGGTGGGTCCTGTGAGAAG
2 HUMADAG CGAAGTAGTAAAAGAGGTGAGGGCCTGGGCTGG
. . . . . . . . .
11 HUMCS1 AACGCAACAGAAATCCGTGAGTGGATGCCGTCT
11 HUMGHN AACACAACAGAAATCCGTGAGTGGATGCCTTCT
52 HUMHSP90B CTCTAATGCTTCTGATGTAGGTGCTCTGGTTTC
80 HUMMETIF1 ACCTCCTGCAAGAAGAGTGAGTGTGAGGCCATC

112 HUMHSP90B ATACCAGAGTATCTCAGTGAGTATCTCCTTGGC
113 HUMHST GCGGACACCCGCGACAGTGAGTGGCGCGGCCAG
113 HUMLACTA GACATCTCCTGTGACAGTGAGTAGCCCCTATAA
151 HUMKAL2 ATCGAACCAGAGGAGTGTACGCCTGGGCCAGAT
157 HUMCS1 CACCTACCAGGAGTTTGTAAGTTCTTGGGGAAT
157 HUMGHN CACCTACCAGGAGTTTGTAAGCTCTTGGGGAAT
164 HUMALPHA CAACATGGACATTGATGTGCGACCCCCGGGCCA
622 HUMCFVII CTGATCGCGGTGCTGGGTGGGTACCACTCTCCC
636 HUMADAG CCTGGAACCAGGCTGAGTGAGTGATGGGCCTGG
895 HUMAPOCIB TCCAGCAAGGATTCAGGTTGTTGAGTGCTTGGG
970 HUMALPHA CGGGCCAAGAAAGCAGGTGGAGCTGGGGCCCGG

2114 HUMAPRTA ATCGACTACATCGCAGGCGAGTGCCAGTGGCCG

Table 6.3: Donor Site Window Configurations Learned Early and Late in the Course of Training.
The applied network was small (nine nucleotides in the window, two hidden units, and one
output unit), and it was trained on small 33bp segments surrounding the 331 splice sites in part
I of the data set. Shown is the training epoch at which a configuration was assigned that spliced
donor correctly by the network, its GenBank locus, and the nucleotide context surrounding the
central G. Segments with large deviations from the standard donor site consensus sequence,
C
A AG/GTGAAGT, were learned only after a relatively large number of presentations.
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classified correctly.
Table 6.3 shows how a small network with limited resources learns the

donor sites. Many of them are learned quickly, while others require a con-
siderable number of epochs. By examining the unlearnable window configu-
rations, it was shown that a surprisingly large number of wrongly assigned
donor sites could be detected. They appear in the public databases due to
insufficient proofreading of the entries, but also due to experimental errors
and erroneous interpretation of experiments. Information about the degree
of regularity of, for example, donor site window configurations could be ob-
tained by monitoring the course of the training. For the donor site assignment
problem, window configurations learned early in the training process showed
stronger conformity to the standard 5’ consensus sequence C

AAG/GTG
AAGT than

those learned late.

6.6 Prediction Performance Evaluation

Over the years different means for evaluating the accuracy of a particular pre-
diction algorithm have been developed [31]. Some prediction methods are
optimized so as to produce very few false positives, others to produce very
few false negatives, and so on. Normally it is of prime interest to ensure, for
any type of prediction algorithm, that the method will be able to perform well
on novel data that have not been used in the process of constructing the algo-
rithm. That is, the method should be able to generalize to new examples from
the same data domain.

It is often relevant to measure accuracy of prediction at different levels. In
signal peptide prediction, for example, accuracy may be measured by count-
ing how many sequences are correctly classified as signal peptides or non-
secretory proteins, instead of counting how many residues are correctly pre-
dicted to belong to a signal peptide. Similarly, protein secondary structure
may be evaluated at the mean per-chain level, or at the per-amino acid level.

At higher levels, however, the measures tend to be more complicated and
problem-specific. In the signal peptide example, it is also relevant to ask how
many signal peptide sequences have the position of the cleavage site correctly
predicted. In gene finding, a predicted exon can have have both ends correct,
or only overlap to some extent. Burset and Guigo [110] have defined four
simple measures of gene-finding accuracy at the exon level—sensitivity, speci-
ficity, “missing exons”, and “wrong exons”—counting only predictions that are
completely correct or completely wrong. For secondary structure prediction,
this approach would be too crude, since the borders of structure elements (he-
lices and sheets) are not precisely defined. Instead, the segment overlap mea-
sure (SOV) can be applied [454, 580]. This is a set of segment-based heuristic
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evaluation measures in which a correctly predicted segment position can give
maximal score even though the prediction is not identical to the assigned seg-
ment. The score punishes broken predictions strongly, such as two predicted
helices where only one is observed compared to one too small unbroken helix.
In this manner the uncertainty of the assignment’s exact borders is reflected
in the evaluation measure. As this example illustrates, a high-level accuracy
measure can become rather ad hoc when the precise nature of the prediction
problem is taken into consideration.

For the sake of generality, we will therefore focus our attention on sin-
gle residue/nucleotide assessment measures. For the secondary structure
problem, consider an amino acid sequence of length N. The structural data
D available for the comparison is the secondary structure assignments D =
d1, . . . , dN . For simplicity, we will first consider the dichotomy problem of
two alternative classes, for instance α-helix versus non-α-helix. In this case,
the dis are in general equal to 0 or 1. We can also consider the case where
di has a value between 0 and 1, for example representing the surface expo-
sure of amino acids, or the probability or degree of confidence, reflecting the
uncertainty of our knowledge of the correct assignment at the corresponding
position. The analysis for the multiple-class case, corresponding for exam-
ple to three states, α-helices, β-sheets, and coil, is very similar. We now as-
sume that our prediction algorithm or model, outputs a prediction of the form
M =m1, . . . ,mN . In general, mi is a probability between 0 and 1 reflecting our
degree of confidence in the prediction. Discrete 0/1 outputs, obtained for in-
stance by thresholding or “winner-take-all” approaches, are also possible and
fall within the theory considered here. The fundamental and general question
we address is: How do we assess the accuracy of M, or how do we compare M
to D?

A variety of approaches have been suggested in different contexts and at
different times and this may have created some confusion. The issue of predic-
tion accuracy is strongly related to the frequency of occurrence of each class.
In protein secondary structure prediction the non-helix class covers roughly
70% of the cases in natural proteins, while only 30% belong to the helix class.
Thus a constant prediction of “non-helix” is bound to be correct 70% of the
time, although it is highly non-informative and useless.

Below we review different approaches and clarify the connections among
them and their respective advantages and disadvantages.

A fundamental simplifying assumption underlying all these approaches is
that the amino acid positions are weighted and treated equally (the indepen-
dence and equivalence assumption). Thus, we assume e.g. that there is no
weighting scheme reducing the influence of positions near the N- or C-termini,
or no built-in mechanism that takes into account the fact that particular pre-
dictions must vary somewhat “smoothly” (for instance, if a residue belongs to
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the α-helix category, its neighbors have a slightly higher chance of also be-
ing in the α-helix category). Conversely, when predicting functional sites such
as intron splice sites, translation start sites, glycosylation, or phosphorylation
sites, we assume the prediction of a site is either true or false, so that there is
no reward for almost correctly placed sites.

Under the independence and equivalence assumption, if both D and M are
binary, it is clear that their comparison can be entirely summarized by four
numbers

• TP = number of times di is helix, mi is helix (true positive)

• TN = the number of times di is non-helix, mi is non-helix (true negative)

• FP = the number of times di is non-helix, mi is helix (false positive)

• FN = the number of times di is helix, mi is non-helix (false negative)

satisfying TP + TN + FP + FN = N. When D and/or M are not binary, then
of course the situation is more complex and four numbers do not suffice to
summarize the situation. When M is not binary, binary predictions can still be
obtained by using cutoff thresholds. The numbers TP , TN, FP , and FN will
then vary with the threshold choice. The numbers TP , TN, FP , and FN are
often arranged into a 2× 2 contingency matrix,

M M̄
D TP FN
D̄ FP TN

Even with four numbers alone, it is not immediately clear how a given pre-
diction method fares. This is why many of the comparison methods aim at
constructing a single number measuring the “distance” between D and M. But
it must be clear from the outset that information is always lost in such a pro-
cess, even in the binary case, i.e. when going from the four numbers above to
a single one. In general, several different vectors (TP , TN, FP , FN) will yield
the same distance. We now review several ways of measuring the performance
of M and their merits and pitfalls.

6.7 Different Performance Measures

6.7.1 Percentages

The first obvious approach is to use percentages derived from TP , TN, FP ,
and FN. For instance, Chou and Fasman [128, 129] used the percentage of
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correctly predicted helices

PCP(D,M) = 100
TP

TP + FN , (6.6)

which is the same as the sensitivity (see section 6.7.9) expressed as a per-
centage. This number alone provides no information whatsoever about false
positives. It can be complemented by the percentage of correctly predicted
non-helices

PCN(D,M) = 100
TN

TN + FP . (6.7)

The average of the previous two numbers has been used in the literature
[128, 129] and is often called Qα. While Qα is a useful indicator, it can be
misleading [549] and can be computed only if both D and M are binary. Intu-
itively, any single number that is constructed using only two numbers out of
the four (TP, TN, FP , FN) is bound to be highly biased in some trivial way.
If the two numbers are TP and FP , for instance, then any two situations
(TP , TN, FP , FN) and (TP , TN′, FP , FN′) lead to the same score regardless of
how different they may be.

6.7.2 Hamming Distance

In the binary case, the Hamming distance between D and M is defined by

HD(D,M) =
∑
i
|di −mi|. (6.8)

This sum is obviously equal to the total number of errors FP + FN. Thus it
is equivalent to a single percentage measure. This distance does not take into
account the proportion of examples that belong to a given class. It becomes
less and less useful as this proportion moves away from 50%. In the non purely
binary case, the Hamming distance is called the L1 distance.

6.7.3 Quadratic “Distance”

The quadratic or Euclidean or LMS (least mean square) “distance” is defined by

Q(D,M) = (D−M)2 =
∑
i
(di −mi)2. (6.9)

Strictly speaking, a proper distance is defined by taking the square root of
the above quantity (see the L2 distance in the next section). In the purely
binary case, the quadratic distance reduces to the Hamming distance and is
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again equal to FP + FN. This quantity has the advantage of being defined for
non-binary variables, and it is often associated with a negative log-likelihood
approach for a Gaussian model of the form

P(di|mi) = 1
σ
√

2π
exp(−(di −mi)2/2σ2) (6.10)

where σ acts as a scaling factor with respect to Q(D,M). For binary variables,
the quadratic distance is identical to the Hamming distance. The main draw-
back is that the Gaussian model is often not relevant for prediction problems
and the value of the quadratic distance again poorly reflects the proportion of
positions that belongs to a given class. Another problem is that the LMS dis-
tance has a limited dynamic range due to the fact that mi and di are between
0 and 1. This is not ideal for learning algorithms where large error signals can
be used to accelerate the learning process. A logarithmic variation on the LMS
distance that obviates this problem is given by

LQ(D,M) = −
∑
i

log[1− (di −mi)2]. (6.11)

This modified error function has been used in several neural network imple-
mentations; see for example [99, 245, 236].

6.7.4 Lp Distances

More generally, the LP distance is defined by

LP(D,M) = [
∑
i
|di −mi|p]1/p. (6.12)

Such a distance applies of course to any numerical values. When p = 1 we
find the Hamming distance, and when p = 2 we find the proper Euclidean
distance. When p → ∞, the L∞ distance is the sup distance: maxi |di −mi|.
This distance provides an upper bound associated with the worst case, but is
not very useful in assessing the performance of a protein secondary structure
prediction algorithm. Other values of p are rarely used in practice, and are of
little help for assessing prediction performance in this context. In the binary
case, the Lp distance reduces to (FP + FN)1/p . For p = 1, this reduces again
to the Hamming distance.
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6.7.5 Correlation

One of the standard measures used by statisticians is the correlation coeffi-
cient, also called the Pearson correlation coefficient:

C(D,M) =
∑
i

(di − d̄)(mi − m̄)
σDσM

, (6.13)

where d̄ = ∑di/N and m̄ = ∑mi/N are the averages and σD, σM the corre-
sponding standard deviations. In the context of secondary structure predic-
tion, this is also known as the Matthews correlation coefficient in the literature
since it was first used in [382]. The correlation coefficient is always between
−1 and +1 and can be used with non-binary variables. It is a measure of how
strongly the normalized variables (di − d̄)/σD and (mi − m̄)/σM tend to have
the same sign and magnitude. A value of −1 indicates total disagreement and
+1 total agreement. The correlation coefficient is 0 for completely random
predictions. Therefore it yields easy comparison with respect to a random
baseline. If two variables are independent, then their correlation coefficient is
0. The converse in general is not true.

In vector form, the correlation coefficient can be rewritten as a dot product
between normalized vectors

C(D,M) = (D− d̄1)(M− m̄1)√
(D− d̄1)2

√
(M− m̄1)2

= DM−Nd̄m̄√
(D2 −Nd̄2)(M2 −Nm̄2)

, (6.14)

where 1 denotes the N-dimensional vector of all ones. As such, C(D,M) is
related to the L2 distance, but is not a distance itself since it can assume
negative values. If the vectors D and M are normalized, then clearly Q(D,M) =
(D −M)2 = 2 − 2DM = 2 − 2C(D,M). Unlike some of the previous measures,
the correlation coefficient has a global form rather than being a sum of local
terms.

In the case where D and M consist of binary 0/1 vectors, we have D2 =
TP + FN, M2 = TP + FP , DM = TP , etc. With some algebra the sum above can
be written as

C(D,M) = TP −Nd̄m̄
N
√
d̄m̄(1− d̄)(1− m̄)

. (6.15)

Here the average number of residues in the helix class satisfies d̄ = (TP +
FN)/N, and similarly for the predictions m̄ = (TP + FP)/N. Therefore

C(D,M) = N × TP − (TP + FN)(TP + FP)√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

= TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN) . (6.16)
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The correlation coefficient uses all four numbers (TP , TN, FP , FN) and may
often provide a much more balanced evaluation of the prediction than for
instance the percentages. There are situations, however, where even the cor-
relation coefficient is unable to provide a completely fair assessment. The
correlation coefficient will, for example, be relatively high in cases where a
prediction algorithm gives very few or no false positives, but at the same time
very few true positives. One simple observation that will be useful in a later
section is that C is symmetric with respect to FP and FN.

One interesting property of the correlation coefficient is that there is a sim-
ple approximate statistical test for deciding whether it is significantly better
than zero, i.e. whether the prediction is significantly more correlated with the
data than a random guess with the same m̄ would be. If the chi-squared test
is applied to the 2 × 2 contingency matrix containing TP , TN, FP , and FN, it
is easy to show that the test statistic is χ2 = N × C2(D,M).

6.7.6 Approximate Correlation

Burset and Guigo [110] defined an “approximate correlation” measure to com-
pensate for an alleged problem with the Matthews correlation coefficient: that
it is not defined when any of the sums TP+FN, TP+FP , TN+FP , or TN+FN
reaches zero, e.g. if there are no positive predictions. Instead, they use the Av-
erage Conditional Probability (ACP ), which is defined as

ACP = 1
4

[
TP

TP + FN + TP
TP + FP +

TN
TN + FP +

TN
TN + FN

]
(6.17)

if all the sums are nonzero; otherwise, it is the average over only those con-
ditional probabilities that are defined. The Approximate Correlation (AC) is a
simple transformation of the ACP :

AC = 2× (ACP − 0.5). (6.18)

Like C , AC gives 1, 0, and −1 for perfect, random, and all-false predictions, re-
spectively, and Burset and Guigó observe that it is close to the real correlation
value.

However, the problem they intend to solve does not exist, since it is easy to
show that C approaches 0 if any of the sums approaches 0. This also makes
intuitive sense, since a prediction containing only one category is meaningless
and does not convey any information about the data. On the contrary, it can be
shown that the AC approach introduces an unfortunate discontinuity in this
limit because of the deletion of undefined probabilities from the expression
for ACP , so it does not give 0 for meaningless predictions. Since there is
furthermore no simple geometrical interpretation for AC , it is an unnecessary
approximation and we see no reason to encourage its use.
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6.7.7 Relative Entropy

The relative entropy, or cross entropy, or KL (Kullback-Leibler) contrast be-
tween two probability vectors X = (x1, . . . , xM) and Y = (y1, . . . , yM) with
xi,yi ≥ 0 and

∑
xi =

∑
yi = 1 is defined as

H(X,Y) =
M∑
i=1

xi log
xi
yi
= −H(X)−

∑
i
xi logyi (6.19)

where H(X) = −∑xi logxi is the usual entropy. It has its roots in information
theory [342, 341]. It is well known that H(X,Y) is always positive, convex in
both its variables, and equal to 0 if and only if X = Y. Strictly speaking, it is
not a distance, for instance because it is not symmetric. It is easy to construct
a distance using a symmetrized version. In practice, however, this is rarely
necessary and the form above is sufficient. If Y = X + ε is close to X, then a
simple Taylor expansion shows that

H(X,X+ ε) = −
∑
i
xi
[
log(1+ εi

xi
)
]
≈
∑
i

ε2
i
xi
. (6.20)

In particular, if X is uniform, then in its neighborhood the relative entropy
behaves like the LMS error.

Returning to the secondary structure prediction problem, we can then as-
sess the performance of the prediction M by the quantity:

H(D,M) =
N∑
i=1

[
di log

di
mi

+ (1− di) log
(1− di)
(1−mi)

]
. (6.21)

This is just the sum of the relative entropies at each position i. This form of
course works perfectly well on non-binary data (for example, binding affini-
ties), or when D alone is binary. When M is also binary, then the relative
entropy has FP + FN components that are infinite (it behaves like H(D,M) ≈
(FP + FN)∞) and cannot really be used.

6.7.8 Mutual Information

Consider two random variables X and Y with probability vectors X =
(x1, . . . , xM) and Y = (y1, . . . , yK). Let Z be the joint random variable
Z = (X,Y) over the cartesian product with probability vector Z. The mutual
information I(X,Y) or I(X,Y) between X and Y is defined as the relative
entropy between Z and the product XY:

I(X,Y) = H(Z,XY). (6.22)



Different Performance Measures 161

As such it is always positive. It is easy to understand the mutual information in
Bayesian terms: it represents the reduction in uncertainty of one variable when
the other is observed, that is between the prior and posterior distributions. The
uncertainty in X is measured by the entropy of its prior H(X) = ∑xi logxi.
Once we observe Y = y , the uncertainty in X is the entropy of the posterior
distribution, H(X|Y = y) = ∑x P(X = x|Y = y) logP(X = x|Y = y). This
is a random variable that depends on the observation y . Its average over the
possible ys is called the conditional entropy:

H(X|Y) =
∑
y
P(y)H(X|Y = y). (6.23)

Therefore the difference between the entropy and the conditional entropy mea-
sures the average information that an observation of Y brings about X. It is
straightforward to check that

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) = H(X)+H(Y)−H(Z) = I(Y,X)
(6.24)

or, using the corresponding distributions,

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) = H(X)+H(Y)−H(Z) = I(Y,X).
(6.25)

Going back to the secondary structure problem, when D and M are both
binary, the mutual information is measured by

I(D,M) = −H
(
TP
N
,
TN
N
,
FP
N
,
FN
N

)

−TP
N

log
[TP + FP

N
TP + FN

N

]
− FN
N

log
[TP + FN

N
TN + FN

N

]

−FP
N

log
[TP + FP

N
TN + FP

N

]
− TN
N

log
[TN + FN

N
TN + FP

N

]
(6.26)

or

I(D,M) = −H
(
TP
N
,
TN
N
,
FP
N
,
FN
N

)

−TP
N

log[d̄m̄]− FN
N

log[d̄(1− m̄)]

−FP
N

log[(1− d̄)m̄]− TN
N

log[(1− d̄)(1− m̄)] (6.27)

(see also [549]), where d̄ = (TP + FN)/N and m̄ = (TP + FP)/N (as before),



162 Neural Networks: Applications

and

H(
TP
N
,
TN
N
,
FP
N
,
FN
N
) = −TP

N
log

TP
N
− TN
N

log
TN
N

− FP
N

log
FP
N
− FN
N

log
FN
N

(6.28)
is the usual entropy. Like the correlation, the mutual information is a global
measure rather than a sum of local terms. It is clear that the mutual informa-
tion always satisfies 0 ≤ I(D,M) ≤ H(D). Thus in the assessment of predic-
tion performance, it is customary to use the normalized mutual information
[452, 454] coefficient

IC(D,M) = I(D,M)
H(D)

(6.29)

with

H(D) = −TP + FN
N

log
[TP + FN

N

]
− TN + FP

N
log

[TN + FP
N

]
(6.30)

or, more briefly expressed, H(D) = −m̄ logm̄ − (1− m̄) log(1− m̄). The nor-
malized mutual information satisfies 0 ≤ IC(D,M) ≤ 1. When IC(D,M) = 0,
then I(D,M) = 0 and the prediction is totally random (D and M are indepen-
dent). When IC(D,M) = 1, then I(D,M) = H(D) = H(M) and the prediction
is perfect. Like the correlation coefficient, the mutual information coefficient
is a global measure rather than a sum of local terms. The mutual informa-
tion is symmetric in FP and FN, but the mutual information coefficient is not
symmetric because of its denominator.

6.7.9 Sensitivity and Specificity

In a two-class prediction case where the output of the prediction algorithm is
continuous, the numbers TP, TN, FP , and FN depend on how the threshold is
selected. Generally, there is a tradeoff between the number of false positives
and the number of false negatives produced by the algorithm.

In a ROC curve (receiver operating characteristics) one may summarize
such results by displaying for threshold values within a certain range the “hit
rate” (sensitivity, TP/(TP + FN)) versus the “false alarm rate” (also known as
false positive rate, FP/(FP + TN). Typically the hit rate increases with the
false alarm rate (see figure 8.10). Alternatively, one can also display the sen-
sitivity (TP/(TP + FN)) versus the specificity (TP/(TP + FP)) in a similar plot
or separately as a function of threshold in two different plots.

While the sensitivity is the probability of correctly predicting a positive
example, the specificity as defined above is the probability that a positive pre-
diction is correct. In medical statistics, the word “specificity” is sometimes
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used in a different sense, meaning the chance of correctly predicting a nega-
tive example: TN/(FP + TN), or 1 minus the false positive rate. We prefer to
refer to this as the sensitivity of the negative category.

If we write x = TP/(TP + FN) for the sensitivity and y = TP/(TP + FP)
for the specificity, then

TP + FP = TP
y

TP + FN = TP
x

TN + FP = N − (TP + FN) = Nx − TP
x

TN + FN = N − (TP + FP) = Ny − TP
y

(6.31)

provided x �= 0 and y �= 0, which is equivalent to TP �= 0, a rather trivial case.
In other words, we just reparameterize (TP , TN, FP , FN) using (TP ,x,y,N).
In this form, it is clear that we can substitute these values in (6.16) to derive,
after some algebra, an expression for the correlation coefficient as a function
of the specificity and the sensitivity:

C(D,M) = Nxy − TP√
(Nx − TP)(Ny − TP). (6.32)

Notice that this expression is entirely symmetric in x and y , i.e. in the speci-
ficity and sensitivity, or equivalently also in FP and FN, the number of false
positives and false negatives. In fact, for a given TP , exchanging FP and FN
is equivalent to exchanging x and y . A similar calculation can be done in or-
der to re-express the mutual information of (6.27) or the mutual information
coefficient of (6.29) in terms of TP , x, y , and N. The mutual information is
entirely symmetric in x and y , or FP and FN (this is not true of the mutual
information coefficient).

6.7.10 Summary

In summary, under the equivalence and independence assumption, if both D
and M are binary, then all the performance information is contained in the
numbers TP , TN, FP , and FN. Any measure of performance using a single
number discards some information. The Hamming distance and the quadratic
distance are identical. These distances, as well as the percentages and the Lp
distances, are based on only two out of the four numbers TP , TN, FP , and FN.
The correlation coefficient and the mutual information coefficient are based
on all four parameters and provide a better summary of performance in this
case. In the continuous case, the recommended measures are the correlation
coefficient and the relative entropy.
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