
Chapter 7

Hidden Markov Models: The
Theory

7.1 Introduction

In the 1990s, only roughly a third of the newly predicted protein sequences
show convincing similarity to other known sequences [80, 224, 155], using
pairwise comparisons [11, 418]. This situation is even more unfortunate in
the case of new, incomplete sequences or fragments. Large databases of frag-
ments are becoming available as a result of various genome, cDNA, and other
sequencing projects, especially those producing ESTs (expressed sequences
tags) [200]. At the beginning of 1997, approximately half of GenBank con-
sisted of fragment data. Such data cover a substantial fraction, if not all, of
the expressed human genome. It is of course of great interest to recognize and
classify such fragments, and recover any additional useful information.

A promising approach to improve the sensitivity and speed of current
database-searching techniques has been to use consensus models built from
multiple alignments of protein families [23, 52, 250, 334, 41, 38]. Unlike con-
ventional pairwise comparisons, a consensus model can in principle exploit
additional information, such as the position and identity of residues that are
more or less conserved throughout the family, as well as variable insertion and
deletion probabilities. All descriptions of sequence consensus, such as profiles
[226], flexible patterns [52], and blocks [250], can be seen as special cases of
the hidden Markov model (HMM) approach.

HMMs form another useful class of probabilistic graphical models used,
over the past few decades, to model a variety of time series, especially in
speech recognition [359, 439] but also in a number of other areas, such as
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166 Hidden Markov Models: The Theory

ion channel recordings [48] and optical character recognition [357]. HMMs
have also earlier been applied to problems in computational biology, including
the modeling of coding/noncoding regions in DNA [130], of protein binding
sites in DNA [352], and of protein superfamilies [553] (see also [351]). Only
since the mid-1990s [334, 41], though, have HMMs been applied systemati-
cally to model, align, and analyze entire protein families and DNA regions, in
combination with machine-learning techniques.

HMMs are closely related to, or special cases of, neural networks, stochastic
grammars, and Bayesian networks. In this chapter we introduce HMMs directly
and show how they can be viewed as a generalization of the multiple dice
model of chapter 3. We develop the theory of HMMs—in particular the main
propagation and machine-learning algorithms—along the lines of chapter 4.
The algorithms are used in the following sections where we outline how to ap-
ply HMMs to biological sequences. Specific applications are treated in chapter
8, while relationships to other model classes are left for later chapters.

7.1.1 HMM Definition

A first-order discrete HMM is a stochastic generative model for time series de-
fined by a finite set S of states, a discrete alphabet A of symbols, a probability
transition matrix T = (tji), and a probability emission matrix E = (eiX). The
system randomly evolves from state to state while emitting symbols from the
alphabet. When the system is in a given state i, it has a probability tji of mov-
ing to state j and a probability eiX of emitting symbol X. Thus an HMM can be
visualized by imagining that two different dice are associated with each state:
an emission die and a transition die. The essential first-order Markov assump-
tion of course is that the emissions and transitions depend on the current
state only, and not on the past. Only the symbols emitted by the system are
observable, not the underlying random walk between states; hence the qualifi-
cation “hidden.” The hidden random walks can be viewed as hidden or latent
variables underlying the observations.

As in the case of neural networks, the directed graph associated with
nonzero tji connections is also called the architecture of the HMM. Although
this is not necessary, we will always consider that there are two special states,
the start state and the end state. At time 0, the system is always in the start
state. Alternatively, one can use a distribution over all states at time 0. The
transition and emission probabilities are the parameters of the model. An
equivalent theory can be developed by associating emissions with transitions,
rather than with states. HMMs with continuous alphabets are also possible,
but will not be considered here because of our focus on the discrete aspects
of biological sequences.
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A very simple example of an HMM is given in figure 7.1. In this example, we
can imagine that there are two “DNA dice.” The first die has an emission prob-
ability vector of (e1A = 0.25, e1C = 0.25, e1G = 0.25, e1T = 0.25). The second die
has an emission probability vector of (e2A = 0.1, e2C = 0.1, e2G = 0.1, e2T = 0.7).
The transition probabilities are given in the figure. Suppose that we now ob-
serve a sequence such as ATCCTTTTTTTCA. There are at least three questions
that one can ask immediately: How likely is this sequence for this particular
HMM? (This is the likelihood question.) What is the most probable sequence
of transitions and emissions through the HMM underlying the production of
this particular sequence? (This is the decoding question.) And finally, assum-
ing that the transition and emission parameters are not known with certainty,
how should their values be revised in light of the observed sequence? (This
is the learning question.) We recommend that the reader try to answer these
questions on the simple example above. Precise algorithmic answers for all
three problems in the general case will be given in the following sections. We
now consider different types of HMM architectures for biological applications.

7.1.2 HMMs for Biological Sequences

In biological sequence applications, the main HMM alphabets are of course
the 20-letter amino acid alphabet for proteins and the four-letter nucleotide
alphabet for DNA/RNA problems. Depending on the task, however, a number
of other alphabets can be used, such as a 64-letter alphabet of triplets, a three-
letter alphabet (α, β, coil) for secondary structure, and Cartesian products of
alphabets (see table 6.1). If necessary, a space symbol can be added to any of
these alphabets. In this chapter and chapter 8, we use the protein and DNA
alphabets only.

In the simple HMM example above, there are only two hidden states, with a
fully interconnected architecture between them. In real applications we need
to consider more complex HMM architectures, with many more states and typ-
ically sparser connectivity. The design or selection of an architecture is highly
problem-dependent. In biological sequences, as in speech recognition, the lin-
ear aspects of the sequences are often well captured by the so-called left–right
architectures. An architecture is left–right if it prevents returning to any state
once a transition from that state to any other state has occurred. We first
review the most basic and widely used left–right architecture for biological
sequences, the standard linear architecture (figure 7.2).

To begin with, consider the problem of modeling a family of related se-
quences, such as a family of proteins. As in the application of HMMs to speech
recognition, a family of proteins can be seen as a set of different utterances
of the same word, generated by a common underlying HMM. The standard ar-
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Figure 7.1: A Simple Example of an HMM, with Two States in Addition to the Start and End
States.

chitecture can be seen as a very simple variation of the multiple-die model of
chapter 3. The multiple-die model is in fact a trivial HMM with a linear se-
quence of states, one for each die. Transition probabilities from one state to
the next are all set to 1. The emission probability of each die is associated with
the composition of the family in the corresponding column. The main prob-
lem with such a model, of course, is that there are insertions and deletions:
the sequences in the family in general do not have the same length N. Even
if a gap symbol is added to the die alphabet, a preexisting multiple alignment
is required to determine the emission probabilities of each die. The standard
architecture is a simple but fundamental variation of the simple die model,
where special states for insertions and deletions are added at all possible po-
sitions.

In the standard architecture, in addition to start and end, there are three
other classes of states: the main states, the delete states, and the insert states,
with S = {start,m1, . . . ,mN, i1, . . . , iN+1, d1, . . . , dN, end}. Delete states are
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Figure 7.2: The Standard HMM Architecture. S is the start state, E is the end state, and di,mi,
and ii denote delete, main, and insert states, respectively.

also called gap or skip states. N is the length of the model, typically equal
to the average length of the sequences in the family. The main and insert
states always emit an amino acid symbol, whereas the delete states are mute.
This is of course equivalent to adding a space symbol to the alphabet and forc-
ing the emission of the delete states to be concentrated on this symbol. The
linear sequence of state transitions, start → m1 → m2 . . . → mN → end, is
the backbone of the model. These are the states corresponding to a multiple-
die model. For each main state, corresponding insert and delete states are
needed to model insertions and deletions. More precisely, there is a 1:1 cor-
respondence between main states and delete states, and a 1:1 correspondence
between backbone transitions and insert states. The self-loop on the insert
states allows for multiple insertions at a given site. With an alphabet of size
|A|, the standard architecture has approximately 2N|A| emission parameters
and 9N transition parameters, without taking into account small boundary ef-
fects (the exact numbers are (2N + 1)|A| emissions and 9N + 3 transitions).
Thus, for large N, the number of parameters is of the order of 49N for pro-
tein models and 17N for DNA models. Of course, neglecting boundary effects,
there are also 2N normalization emission constraints and 3N normalization
transition constraints.
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7.2 Prior Information and Initialization

There are a number of ways in which prior information can be incorporated
in the design of an HMM and its parameters. In the following sections we will
give examples of different architectures. Once the architecture is selected, one
can further restrain the freedom of the parameters in some of its portions, if
the corresponding information is available in advance. Examples of such situa-
tions could include highly conserved motifs and hydrophobic regions. Linking
the parameters of different portions is also possible, as in the weight-sharing
procedure of NNs. Because of the multinomial models associated with HMM
emissions and transitions, the natural probabilistic priors on HMM parameters
are Dirichlet distributions (see chapter 2).

7.2.1 Dirichlet Priors on Transitions

In the standard architecture, for the vector of transitions tji out of a state i,
a Dirichlet distribution DαiQi(tji) works well. One can use the same Dirich-
let distribution for all the states of the same type—for instance, for all the
main states, except the last one because of boundary effects. Thus three ba-
sic priors—DαmQm , DαiQi , and DαdQd—can be used for the transitions out of
main, insert, and delete states. The hyperparameters’ αs can be further re-
duced, if desirable, by having αm = αi = αd. Notice that the Dirichlet vectors
Qs are usually not uniform, and are different for each state type. This is be-
cause transitions toward main states are expected to be predominant.

7.2.2 Dirichlet Priors on Emissions

The situation for emissions DαiQi(eiX) is similar. A simple option is to use
the same Dirichlet distribution for all the insert states and all the main states.
The vector Q can be chosen as the uniform vector. Another possibility is to
haveQ equal to the average composition frequency of the training set. In [334]
Dirichlet mixtures are also used.

7.2.3 Initialization

The transition parameters are typically initialized uniformly or at random. In
the standard architecture, uniform initialization without a prior that favors
transitions toward the main states is not, in general, a good idea. Since all
transitions have the same costs, emissions from main states and insert states
also have roughly the same cost. As a result, insert states may end up being
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Figure 7.3: Variation on the Standard HMM Architecture. S is the start state, E is the end state,
and di,mi, and ii denote delete, main, and insert states, respectively.

used very frequently, obviously not a very desirable solution. In [41], this prob-
lem was circumvented by introducing a slightly different architecture (figure
7.3), where main states have a lower fan-out (3) than insert or delete states (4),
and therefore are less costly around the point where transitions out of each
state are uniformly distributed. In a similar way, emissions can be initialized
uniformly, at random, or sometimes even with the average composition. Any
initialization that significantly deviates from uniform can introduce undesir-
able biases if Viterbi learning (see 7.4.3) is used.

Initialization from Multiple Alignments

Finally, it is important to realize that if a multiple alignment of a training set
is available, it can be used to determine the parameters of the correspond-
ing standard architecture, or at least to initialize them prior to learning. In
the latter situation, the hope of course is that by starting closer to the opti-
mal solutions, learning might be faster and/or yield a better solution. From
a multiple alignment, we can assign a main state to any column of the align-
ment that contains less than 50% gaps. A column with more than 50% gaps
is assigned to a corresponding insert state. Delete states are associated with
the gaps in the columns with less than 50% gaps. Emissions of main and in-
sert states can be initialized from the frequency counts of the corresponding
columns, although these need to be regularized (with Dirichlet distributions
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and/or their mixtures) to avoid emission biases associated with 0 counts. A
similar approach can be taken to determine the transition parameters.

7.3 Likelihood and Basic Algorithms

In this section, we study the basic HMM algorithms needed to answer the first
two questions raised above. In particular, we study how to compute the like-
lihood, and the most probable sequence of state transitions and emissions,
associated with an observation sequence. These algorithms are recursive and
can be viewed as forms of dynamic programming or as propagation algorithms
in the directed graph associated with the HMM [439]. All these algorithms are
essential building blocks for the learning algorithms of the following section.
The presence of delete states here slightly complicates the equations.

First, consider the problem of computing the likelihood P(O|w) of a se-
quence O = X1 . . .Xt . . .XT according to an HMM M = M(w) with parameter w.
We define a path π in M to be a sequence of consecutive states of M starting
with the start state and ending with the end state, together with the choice
of an emission letter for each of the emitting states along the path. If the
sequence of emission letters along the path coincides with O, then

P(O,π|w) =
end∏
start

tji
T∏
t=1

eiXt , (7.1)

where the first product is taken over all transitions along the path π , and the
second product over the corresponding emitting states i in π . If the sequence
of emission letters along the path does not coincide with O, then obviously
P(O,π|w) = 0. The likelihood of a sequence can then be expressed by

P(O|w) =
∑
π

P(O,π|w). (7.2)

This expression, however, does not lead to an efficient computation of the
likelihood or its derivatives, because the number of paths in an architecture is
typically exponential. Luckily, there is a more efficient way of organizing the
computation of the likelihood, known as the forward algorithm. All the other
algorithms in this section are similar and can be seen as ways of organizing
calculations using an iterative propagation mechanism through the architec-
ture, in order to avoid looking at all possible hidden paths.

7.3.1 The Forward Algorithm

Let us define
αi(t) = P(St = i,X1 . . .Xt|w), (7.3)
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the probability of being in state i at time t, having observed the letters X1 . . .Xt
in the model M(w). We can initialize

αstart(0) = 1. (7.4)

Without a start state, we would use an initial probability over all states. What
we want to compute is P(O|w) = αend(T). The αi(t) can be computed recur-
sively by simple propagation:

αi(t + 1) =
∑
j∈S

αj(t)tijeiXt+1 =
∑

j∈N−(i)
αj(t)tijeiXt+1 . (7.5)

The neighborhood notation is used again to stress the advantage of general
sparse connectivity. This equation is true for any emitting state. For delete
states, it must be modified slightly

αi(t + 1) =
∑

j∈N−(i)
αj(t + 1)tij . (7.6)

At first sight, (7.5) and (7.6) do not define a proper propagation mechanism
because in (7.6) the time t+ 1 appears on both sides of the equation. It is easy
to see, however, that iterations of (7.5) and (7.6) must converge to a stable set
of values αi(t + 1). This is obvious when there are no directed loops in the
architecture going through delete states only, as in the case of the standard
architecture. In this case (7.6) must be iterated N times at most. But even when
there are loops through delete states in the architecture, (7.6) is in general
convergent, since the propagation of probabilities through a silent loop gives
rise to a geometric series with ratio equal to the product of the transitions
along the loop. This ratio is typically less than 1 (see appendix D for more
details).

A directed path from j to i in an HMM is said to be silent if the only internal
nodes it contains correspond to delete (silent) states. The probability of such
a path is the product of the probabilities of the transitions it contains. We
denote by tDij the probability of moving from j to i silently. Thus tDij is the
sum of the probabilities of all the silent paths joining j to i. In the standard
architecture, tDij is trivial to compute since there is at most one silent path
from j to i. With this notation, the forward propagation can also be expressed
by first computing αi(t+1) for all the emitting states, using (7.5). The forward
variables for the delete states can then be computed by

αi(t + 1) =
∑
j∈E

αj(t + 1)tDij , (7.7)

where E denotes the set of all emitting states. Note that the propagation in
(7.5) and (7.6) can be seen as the propagation in a linear neural network with
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T layers, one per time step, and M units in each layer, one for each HMM state.
All the units are linear. The unit corresponding to emitting states i in layer
t + 1 has a linear transfer function with slope eiXt+1 . In this sense, the com-
putation of likelihoods in an HMM is equivalent to forward propagation in a
linear network with roughly N layers and |S| units per layer. The presence of
delete states adds connections within a layer. In the case of the standard archi-
tecture, in spite of these intralayer connections, the NN architecture remains
feed-forward: hence the simple convergence of (7.6) during propagation. Be-
cause the algorithm consists essentially in updating T layers of M units each,
the forward algorithm scales as O(MT) operations. In the standard architec-
ture, both M and T are of the same order as N (M ≈ 3N), so the forward
propagation scales as O(N2) operations.

Finally, one should also observe that using the forward variables as HMMs
can be viewed as a dynamic mixture model. This is because the probability of
emitting the letter Xt can be decomposed as

∑
i αi(t)eiXt .

7.3.2 The Backward Algorithm

As in the case of neural networks, during learning we will need to propagate
probabilities backward. The backward algorithm is the reverse of the forward
algorithm. Let us define the backward variables by

βi(t) = P(Xt+1 . . .XT |St = i,w), (7.8)

the probability of being in state i at time t, with a partial observation of the
sequence from Xt+1 until the end. Obviously,

βend(T) = 1. (7.9)

The propagation equation to compute the βs recursively is given by

βi(t) =
∑

j∈N+(i)
βj(t + 1)tjiejXt+1 (7.10)

for the emitting states. For the delete states,

βi(t) =
∑

j∈N+(i)
βj(t)tji. (7.11)

After updating the emitting states, this can be rewritten as

βi(t) =
∑
j∈E

βj(t)tDji. (7.12)
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The remarks made above about the forward algorithm also apply to the back-
ward algorithm. In particular, in the standard architecture, the complexity of
the backward algorithm also scales as O(N2).

Using the forward and backward variables, we can easily compute the prob-
ability of being in state i at time t, given the observation sequence O and the
model w, by

γi(t) = P(St = i|O,w) = αi(t)βi(t)
P(O|w) = αi(t)βi(t)∑

j∈S αj(t)βj(t)
, (7.13)

or the probability γji(t) of using the i→ j transition at time t by

P(St+1 = j, St = i|O,w) =
{αi(t)tjiejXt+1βj(t + 1)/P(O|w) if j ∈ E
αi(t)tjiβj(t)/P(O|w) if j ∈ D (7.14)

where D represents the set of delete states. Obviously, we also have

γi(t) = P(St = i|O,w) =
∑
j∈S

γji(t). (7.15)

By maximizing γi(t) we can find the most likely state at time t. In the decoding
question, however, we are interested in the most likely path. The most likely
path will also be useful for learning and for aligning sequences to the model.
The most probable path can be computed using the so-called Viterbi algorithm,
which is another application of dynamic programming and, in essence, is the
same algorithm one uses for pairwise alignments. It is also very similar to the
forward algorithm.

7.3.3 The Viterbi Algorithm

For the Viterbi algorithm, we need to define the variables

δi(t) =max
πi(t)

P(πi(t)|w), (7.16)

where πi(t) represents a “prefix” path, with emissions X1 . . .Xt ending in state
i. Thus, δi(t) is the probability associated with the most probable path that
accounts for the first t symbols of O and terminates in state i. These vari-
ables can be updated using a propagation mechanism similar to the forward
algorithm, where sums are replaced by maximization operations:

δi(t + 1) = [max
j
δj(t)tij]eiXt+1 (7.17)

for the emitting states, and

δi(t + 1) = [max
j
δj(t + 1)tij] (7.18)
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for the delete states. The convergence is even more obvious than in the case
of the forward algorithm; a cycle of delete states can never belong to an opti-
mal path, because it decreases the overall probability without producing any
letters. In order to recover the optimal path itself one must at each time keep
track of the previous optimal state. The resulting Viterbi path will be used
below both for learning and multiple alignments.

7.3.4 Computing Expectations

For a given set of parameters w and a given sequence O, P(π|O,w) defines
a posterior probability distribution Q(π) on the hidden variables, that is, the
paths’ πs. We have seen in chapters 3 and 4 that Q plays an important role. In
particular, during learning, we will need to compute expectations with respect
to Q, such as the expected number of times the state i is visited, the expected
number of times the letter X is emitted from i, and the expected number of
times the i → j transition is used. Because of the factorial nature of HMMs, Q
is easy to compute and the associated expectations can be obtained from the
forward–backward variables. Let

• n(i,π,O) be the number of times i is visited, given π and O;

• n(i,X, π,O) be the number of times the letter X is emitted from i, given
π and O;

• n(j, i,π,O) be the number of times the i→ j transition is used, given π
and O.

Then the respective expectations are given by

ni =
∑
π
n(i,π,O)P(π|O,w) =

T∑
t=0

γi(t), (7.19)

niX =
∑
π
n(i,X, π,O)P(π|O,w) =

T∑
t=0,Xt=X

γi(t) (7.20)

and, similarly, for the transitions

nji =
∑
π
n(j, i,π,O)P(π|O,w) =

T∑
t=0

γji(t). (7.21)

We now have all the tools in place to tackle the HMM learning problem.
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7.4 Learning Algorithms

Various algorithms are available for HMM training, including the Baum–Welch
or EM (expectation maximization) algorithm, as well as different forms of
gradient-descent and other GEM (generalized EM) [147, 439, 39] algorithms.
Obviously, one could also use simulated annealing, although this remains
impractical for large models. As usual, we concentrate on the first level of
Bayesian inference: finding the optimal parameters by MAP estimation. We
begin with ML estimation, concentrating on emission parameters; the calcula-
tions for transition parameters are similar. We also assume first that the data
consist of a single sequence O. For each learning algorithm, we thus derive
ML online learning equations first. We then briefly indicate how these equa-
tions should be modified for batch learning with multiple sequences and when
priors are included (MAP). In the case of K training sequences, these can be
considered as independent and the overall likelihood is equal to the product
of the individual likelihoods. In the case of HMMs, higher levels of Bayesian in-
ference have been used very little so far, even less than with neural networks.
These will be discussed only very briefly.

Consider again the likelihood P(O|w) = ∑
π P(O,π|w). In ML, we would

like to optimize the Lagrangian

L = − log P(O|w)−
∑
i∈E
λi(1−

∑
X

eiX)−
∑
i∈S
µi(1−

∑
j
tji), (7.22)

where the λs and µs are positive Lagrange multipliers. From (7.1), we have

∂P(O,π|w)
∂eiX

= n(i,X, π,O)
eiX

P(O,π|w). (7.23)

By setting the partial derivatives of the Lagrangian to 0, at the optimum we
must have

λieiX =
∑
π
n(i,X, π,O)Q(π) = niX, (7.24)

and similarly for transition parameters. Recall that Q is the posterior proba-
bility P(π|O,w). By summing over all alphabet letters, we find

λi =
∑
π

∑
X

n(i,X, π,O)Q(π) =
∑
π
n(i,π,O)Q(π) = ni. (7.25)

Thus, at the optimum, we must have

eiX =
∑
π n(i,X, π,O)Q(π)∑
π n(i,π,O)Q(π)

=
∑
π P(π|O,w)n(i,X, π,O)∑
π P(π|O,w)n(i,π,O) . (7.26)
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The ML equations cannot be solved directly because in (7.26) the posterior
distribution Q depends on the values of eiX. However, (7.26) suggests a simple
iterative algorithm whereby Q is first estimated as Q(π) = P(π|O,w), and
then the parameters are updated using (7.26). It turns out that this is exactly
the EM algorithm for HMMs.

7.4.1 EM Algorithm (Baum–Welch)

Recall that in the EM algorithm we define the energy over hidden configu-
rations, f(π) = − log P(O,π|w). The EM algorithm can be defined as an
iterative double minimization process of the function (free energy at tem-
perature 1) F(w,Q) = EQ(f) − H (Q) with respect first to Q and then to
w. The first minimization step yields the posterior Q(π) = P(π|O,w) =
P(π,O|w)/P(O|w), which we know how to calculate. For the second mini-
mization step, we must minimize F , with respect to w, under the probability
normalization constraints. Since the entropy term is independent of w, we
must finally minimize the Lagrangian

L = EQ(f)−
∑
i∈E
λi(1−

∑
X

eiX)+
∑
i∈S
µi(1−

∑
j
tji), (7.27)

with Q(π) = P(π|O,w) fixed. Using (7.23), we get

λieiX =
∑
π
n(i,X, π,O)Q(π) = niX (7.28)

and, by summing over all alphabet letters,

λi =
∑
π

∑
X

n(i,X, π,O)Q(π) =
∑
π
n(i,π,O)Q(π) = ni. (7.29)

These equations are identical to (7.24) and (7.25). It can be checked that they
correspond to a minimum, so that the EM reestimation equations are

e+iX =
∑
π n(i,X, π,O)Q(π)∑
π n(i,π,O)Q(π)

=
∑T
t=0,Xt=X γi(t)∑T
t=0 γi(t)

= niX
ni
. (7.30)

In the case of transition parameters, one similarly obtains

t+ji =
∑
π n(j, i,π,O)Q(π)∑
π n(i,π,O)Q(π)

=
∑T
t=0 γji(t)∑T
t=0 γi(t)

= nji
ni
. (7.31)

Thus the EM equations are implemented using the forward and backward pro-
cedures. In fact, the EM algorithm for HMMs is sometimes called the forward–
backward algorithm. e+iX is the expected number of times in state i observing
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symbol X, divided by the expected number of times in state i, and t+ji is the
expected number of transitions from i to j, divided by the expected number
of transitions from state i. These are exactly the same iteration equations
obtained by setting the derivatives of the Lagrangian associated with the like-
lihood (7.22) to 0. This is a particular property of HMMs and factorial distribu-
tions, and not a general rule.

In the case of K sequences O1, . . . ,OK , a similar calculation shows that we
have

e+iX =
∑K
j=1

∑
π n(i,X, π,Oj)P(π|Oj,w)∑K

j=1
∑
π n(i,π,Oj)P(π|Oj,w)

. (7.32)

It should also be clear how to modify the present equations in the case of
MAP estimation by EM. Each training sequence requires one forward and one
backward propagation. Thus the EM algorithm scales as O(KN2) operations.

The batch EM algorithm is widely used for HMMs. It must be noted, how-
ever, that the online use of the EM algorithm can be problematic. This is be-
cause the EM algorithm, unlike gradient descent, does not have a learning rate.
The EM algorithm can take large steps in the descent direction generated by
each training example in isolation, converging toward poor local minima of E .
This “carpet-jumping” effect can be avoided with gradient-descent learning, as
long as the learning rate is small.

7.4.2 Gradient Descent

The gradient-descent equations on the negative log-likelihood can be derived
by exploiting the relationship between HMMs and NNs, and using the back-
propagation equations. Here we derive them directly. Instead of using the
Lagrangian with the normalization constraints, as above, we use an equiva-
lent useful reparameterization. We reparameterize the HMM using normalized
exponentials, in the form

eiX = ewiX∑
Y ewiY

and tji = ewji∑
k ewki

, (7.33)

with wiX and wij as the new variables. This reparameterization has two ad-
vantages: (1) modification of the ws automatically preserves normalization
constraints on emission and transition distributions; (2) transition and emis-
sion probabilities can never reach the value 0. A simple calculation gives

∂eiX
∂wiX

= eiX(1− eiX) and
∂eiX
∂wiY

= −eiXeiY, (7.34)
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and similarly for the transition parameters. By the chain rule,

∂ log P(O|w)
wiX

=
∑
Y

∂ log P(O|w)
eiY

∂eiY
wiX

. (7.35)

Therefore, applying (7.2), (7.23), and (7.33) to (7.35), the online gradient-
descent equations on the negative log-likelihood are

∆wiX = η(niX −nieiX) and ∆wji = η(nji −nitji), (7.36)

where η is the learning rate. niX and nji are again the expected counts derived
by the forward–backward procedure for each single sequence if the algorithm
is to be used online. Batch gradient-descent equations can easily be derived by
summing over all training sequences. For MAP estimation, one needs to add
the derivative of the log prior, with respect to the ws, to the online gradient-
descent learning equations. For instance, a Gaussian prior on each parameter
would add a weight decay term to (7.36).

Just like EM, the gradient-descent equations require one forward and one
backward propagation. Therefore O(KN2) operations must be performed per
training cycle. Some care must be taken in the implementation, however, to
minimize the overhead introduced by the normalized exponential parameter-
ization. Unlike EM, online gradient descent is a smooth algorithm. A number
of other related smooth algorithms are discussed in [39]. A useful aspect of
smooth algorithms is that unlearning is easy. If a sequence happens to be in
the training set by error (that is, if it does not belong to the family being mod-
eled), it is easy to remove its antagonistic impact from the model by reversing
the effect of the gradient-descent equations.

7.4.3 Viterbi Learning

Both the EM and the gradient-descent update equations are based on the
calculation of expectations over all possible hidden paths. The general Viterbi
learning idea is to replace calculations involving all possible paths with cal-
culations involving only a small number of likely paths, typically only the
most likely one, associated with each sequence. Thus an emission count
such as n(i,X, π,O) averaged over all paths is replaced by a single number
n(i,X, π∗(O)), the number of times X is emitted from i along the most proba-
ble path π∗(O). In the standard architecture, n(i,X, π∗(O)) is always 0 or 1,
except for the insert states, where it can occasionally be higher as a result of
repeated insertions of the same letter. For this reason, a plain online Viterbi
EM makes little sense because parameters would mostly be updated to 0 or 1.
For online Viterbi gradient descent, at each step along a Viterbi path, and for
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any state i on the path, the parameters of the model are updated according to

∆wiX = η(EiX − eiX) and ∆wji = η(Tji − tji). (7.37)

EiX = 1 (resp. Tji = 1) if the emission of X from i (resp. i→ j transition) is used,
and 0 otherwise. The new parameters are therefore updated incrementally,
using the discrepancy between the frequencies induced by the training data
and the probability parameters of the model.

In the literature, Viterbi learning is sometimes presented as a quick ap-
proximation to the corresponding non-Viterbi version. The speed advantage
is only relatively minor, and of the order of a factor of 2, since computing
π∗(O) does not require the backward propagation. As far as approximations
are concerned, Viterbi learning is somewhat crude, since sequence likelihoods
in general are not sharply peaked around a single optimal path. Thus it is not
uncommon to observe significant differences between Viterbi and non-Viterbi
learning both during the training phase and at the end. In our experience, we
have often observed that Viterbi learning yields good results when modeling
protein families, but not when modeling general DNA elements, such as exon
or promoter regions, where non-Viterbi learning performs better. This proba-
bly is partially due to the fact that optimal paths play a particular role in the
case of proteins.

In fact, a complementary view of Viterbi learning is that it constitutes an
algorithm per se, trying to optimize a different objective function. We can
define a new probability measure PV , and hence a new model (hidden Viterbi
model) on the space of sequences, by

PV(O|w) = P(π∗(O)|w)∑
O P(π∗(O)|w). (7.38)

Viterbi learning then is an attempt at minimizing

E =
K∑
k=1

− logPV(Ok|w). (7.39)

It is important to note that as the parameters w evolve, the optimal paths
π∗ can change abruptly, and therefore E can be discontinuous. Obviously,
regularizer terms can be added to (7.39) for a Viterbi version of MAP.

7.4.4 Other Aspects

As usual, many other issues can be raised regarding learning improvements,
such as balancing the training set [157, 337], varying the learning rate, or using
second-order information by estimating the Hessian of the likelihood. These
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issues are discussed in the literature and cannot be covered here in detail
for lack of space. We wish, however, briefly to discuss scaling, architecture
selection or learning, and ambiguous symbols, since these are of particular
practical importance.

Scaling

The probabilities P(π|O,w) are typically very small, since they are equal to
the product of many transition and emission probabilities, each less than 1.
For most models, this will easily exceed the precision of any machine, even
in double precision. Therefore, in the implementation of the learning algo-
rithms, and in particular of the forward and backward procedures, one is faced
with precision issues. These can be addressed by using a scaling procedure,
where forward and backward variables are scaled during the propagation in
order to avoid underflow. The scaling procedure is somewhat technical and
is described in appendix D. In Viterbi learning, the precision problem is easily
addressed by working with the logarithm of the path probabilities.

Learning the architecture

A natural question to raise is whether the HMM architecture itself can be
learned from the data. Algorithms for learning HMM architectures have in-
deed been developed for general HMMs—for instance, in [504]—and even in
the context of biological sequences [193]. The basic idea in [504] is to start
with a very complex model, essentially one state per data letter, and then iter-
atively merge states. The choice of states to merge and the stopping criterion
are guided by an evaluation of the posterior probability. In [193], on the other
hand, the starting point is a small, fully interconnected HMM. The algorithm
in this case proceeds by iteratively deleting transitions with very low probabil-
ity and duplicating the most connected states, until the likelihood or posterior
reaches a sufficient level. In both cases, good results are reported on small test
cases associated with HMMs having fewer than 50 states. While these methods
may be useful in some instances, they are slow and unlikely to be practical,
on current computers, for most of the large HMMs envisioned in chapter 8
without leveraging any available prior knowledge. The number of all possible
architectures with |S| states is of course very large. A much more tractable
special case of architecture learning is whether the length N of the standard
HMM architecture can be learned.
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Adaptable model length

The approach described so far for the standard architecture is to fix N to
the average length of the sequences being modeled. In practice, this simple
approach seems to work quite well. Naturally, after training, if such a value of
N does not seem to be optimal, a new value can be selected and the training
procedure restarted.

In [334] a “surgery” algorithm is presented for the dynamic adjustment of
the HMM length during learning. The idea is to add or remove states wher-
ever needed along the architecture, while respecting the overall connectivity
pattern. If an insert state is used by more than 50% of the family of sequences
being modeled, meaning that the insert state is present in more than 50%
of the corresponding Viterbi paths, then a new main state is created at the
corresponding position, together with corresponding new delete and insert
states. The new state emission and transition probabilities can be initialized
uniformly. Likewise, if a delete state is used by more than 50% of the se-
quences, it can be removed together with the corresponding main and insert
states. The rest of the architecture is left untouched, and the training pro-
ceeds. Although this approach has not been shown to converge always to a
stable length, in practice it seems to do so.

Architectural variations

As already pointed out, a number of other architectures, often related to
the standard architecture, have been used in molecular biology applications.
These include the multiple HMM architecture (figure 8.5) for classification, and
the loop (figure 8.16) and wheel (figure 8.17) architectures for periodic pat-
terns. The standard architecture has also been used to model protein sec-
ondary structure [187] and build libraries of secondary structure consensus
patterns for proteins with similar fold and function. Several other architec-
tures have been developed for gene finding both in prokaryotes [336] and
eukaryotes [107]. Examples of specific applications will be given in chapter
8.

Ambiguous symbols

Because sequencing techniques are not perfect, ambiguous symbols are occa-
sionally present. For instance, X represents A or C or G or T in DNA sequences,
and B represents asparagine or aspartic acid in protein sequences. Such sym-
bols can easily be handled in a number of ways in conjunction with HMMs.
In database searches, it is prudent practice to use the ”benefit of the doubt”
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approach, in which an ambiguous symbol is replaced by its most likely alterna-
tive in the computation of sequence likelihoods and Viterbi paths. Additional
care must be used with sequences having an unusually high proportion of am-
biguous symbols, since these are likely to generate false positive responses.

7.5 Applications of HMMs: General Aspects

Regardless of the design and training method, once an HMM has been suc-
cessfully derived from a family of sequences, it can be used in a number of
different tasks, including

1. Multiple alignments

2. Database mining and classification of sequences and fragments

3. Structural analysis and pattern discovery.

All these tasks are based on the computation, for any given sequence, of its
probability according to the model as well as its most likely associated path,
and on the analysis of the model structure itself. In most cases, HMMs have
performed well on all tasks, yielding, for example, multiple alignments that
are comparable with those derived by human experts. Specific examples and
details on proteins and DNA applications of HMMs will be given in chapter 8.
HMM libraries of models can also be combined in a hierarchical and modular
fashion to yield increasingly refined probabilistic models of sequence space
regions. HMMs could in principle be used in generative mode also to produce
de novo sequences having a high likelihood with respect to a target family,
although this property has not been exploited.

7.5.1 Multiple Alignments

Computing the Viterbi path of a sequence is also called, for obvious reasons,
“aligning a sequence to the model.” Multiple alignments can be derived, in
an efficient way, by aligning the Viterbi paths to each other [334, 41]. While
training a model may sometimes be lengthy, it can be done offline. Once the
training phase is completed, the multiple alignment of K sequences requires
the computation of K Viterbi paths, and therefore scales only as O(KN2). This
is linear in K, and should be contrasted with the O(NK) scaling of multidi-
mensional dynamic programming alignment, which is exponential in K. The
multiple alignments derived by HMMs are in some sense richer than conven-
tional alignments. Indeed, consider a conventional alignment of two sequences
and assume that, at a given position, the second sequence has a gap with re-
spect to the first sequence. This gap could be the result of a deletion in the
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second sequence or an insertion in the first sequence. These are two distinct
sets of Viterbi paths in an HMM that are not distinguished in a conventional
alignment.

Another way of looking at this issue is to consider that a conventional mul-
tiple alignment could be derived by training an HMM architecture that is sim-
ilar to the standard architecture, but where the length of the model is fixed
to the length of the longest sequence being aligned and all insert states are
removed, leaving only main and delete states. Thus, all the Viterbi paths con-
sist only of main-state emissions or gaps with respect to main states. But in
any case, it should be clear that the multiple alignments derived by an HMM
with both insert and delete states are potentially richer and in fact should be
plotted in three dimensions, rather than the two used by conventional mul-
tiple alignments (the third dimension being reserved for emissions occurring
on HMM insert states). Because this is both graphically difficult and unconven-
tional, HMM alignments are still plotted in two dimensions like conventional
ones. Lowercase letters are then often reserved for letters produced by HMM
insert states.

The insert and delete states of an HMM represent formal operations on se-
quences. One important question is whether and how they can be related to
evolutionary events. This issue is also related, of course, to the construction of
phylogenetic trees, and their relation to HMMs and multiple alignments. The
standard architecture by itself does not provide a good probabilistic model of
the evolutionary process because it lacks the required tree structure as well
as a clear notion of substitution (in addition to insertion and deletion). Proba-
bilistic models of evolution are addressed in chapter 10.

The reader should perhaps be reminded one more time that the treatment
of HMM multiple alignments we have just presented is based on a single HMM,
and therefore corresponds only to the first step of a full Bayesian treatment.
Even for a simple question, such as whether two amino acids in two different
sequences should be aligned to each other, a full Bayesian treatment would
require integration of the answer across all HMMs with respect to the proper
posterior probability measure. To the best of our knowledge, such integrals
have not been computed in the case of HMMs for biological sequences (but see
[583]). It is difficult to guess whether much could be gained through such a
computationally intensive extension of current practice.

Finally, HMMs could also be used in conjunction with substitution matrices
[27]. HMM emission distributions could be used to calculate substitution ma-
trices, and substitution matrices could be used to influence HMMs during or
after training. In the case of large training sets, one might expect that most
substitution information is already present in the data itself, and no major
gains would be derived from an external infusion of such knowledge.
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7.5.2 Database Mining and Classification

Given a trained model, the likelihood of any given sequence (as well as the
likelihood of the associated Viterbi path) can be computed. These scores can
be used in discrimination tests and in database searches [334, 38] to separate
sequences associated with the training family from the rest. This is applicable
to both complete sequences and fragments [42]. One important aspect to be
examined in chapter 8 is that such scores must be calibrated as a function of
sequence length.

HMMs can also be used in classification problems, for instance, across pro-
tein families or across subfamilies of a single protein family. This can be done
by training a model for each class, if class-specific training sets are available.
We have used this approach to build two HMMs that can reliably discriminate
between tyrosine and serine/threonine kinase subfamilies. Otherwise, unsu-
pervised algorithms related to clustering can be used in combination with
HMMs to generate classifications. An example here is the discrimination of
globin subfamilies (see [334] and chapter 8). It is believed that the total num-
ber of protein superfamilies is relatively small, on the order of 1000 [127, 93].
A global protein classification system, with roughly one HMM per family, is be-
coming a feasible goal, from both an algorithmic and a computational stand-
point. Global classification projects of this sort are currently under way, and
should become useful auxiliary tools in a number of tasks, such as gene find-
ing, protein classification, and structure/function prediction (see [497]).

7.5.3 Structural Analysis and Pattern Discovery

Information can also be derived, and new patterns discovered, by examining
the structure of a trained HMM. The parameters of an HMM can be studied in
the same way as the connections of an NN. High emission or transition prob-
abilities are usually associated with conserved regions or consensus patterns
that may have structural/functional significance. One convenient way of de-
tecting such patterns is to plot the entropy of the emission distributions along
the backbone of the model. Any other function of position, such as hydropho-
bicity or bendability, can also be averaged and plotted using the HMM proba-
bilities. Patterns that are characteristic of a given family, such as features of
secondary structure in proteins (hydrophobicity in alpha-helices) and regions
of high bendability in DNA, are often easier to detect in such plots. This is
because the variability of individual sequences is smoothed out by the expec-
tations. There are other patterns, such as periodicities, that can be revealed by
analyzing the structure of a model. The initial weak detection of such a pat-
tern with the standard architecture can guide the design of more specialized
architectures, such as wheel and loop architectures, to enhance the periodic
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signal. The ability to detect weak patterns from raw unaligned data is a very
useful feature of HMMs. Several examples will be given in chapter 8.
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Chapter 8

Hidden Markov Models:
Applications

8.1 Protein Applications

In the case of proteins, HMMs have been successfully applied to many fam-
ilies, such as globins, immunoglobulins, kinases, and G-protein-coupled re-
ceptors (see, e.g., [334, 41, 38]). HMMs have also been used to model sec-
ondary structure elements, such as alpha-helices, as well as secondary struc-
ture consensus patterns of protein superfamilies [187]. In fact, by the end
of 1997, HMM data bases of protein families (Pfam) [497] and protein family
secondary structures (FORESST) [187] became available. Multiple alignments
derived from such HMMs have been reported and discussed in the literature.
Large multiple alignments are typically too bulky to be reproduced here. But
in most cases, HMM alignments are found to be very good, within the limits of
variability found in multiple alignments produced by human experts resulting
from diverse degrees of emphasis on structural or phylogenetic information.
In the rest of this first half of the chapter, we concentrate on the application
of HMMs to a specific protein family, the G-protein-coupled receptors (GCRs
or GPCRs), along the lines of [38, 42]. Additional details can be found in these
references.

8.1.1 G-Protein-Coupled Receptors

G-protein-coupled receptors are a rich family of transmembrane proteins ca-
pable of transducing a variety of extracellular signals carried by hormones,
neurotransmitters, odorants, and light (see [436, 325, 508, 227, 552] for recent
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reviews). Although the detailed biophysical mechanisms underlying the trans-
duction have not been worked out for all members of the family, in most cases
stimulation of the receptor leads to the activation of a guanine nucleotide-
binding (G) protein [402]. All the receptors in the family are believed to have
similar structure, characterized by seven hydrophobic membrane-spanning
alpha-helices. The seven transmembrane regions are connected by three extra-
cellular and three intracellular loops. The amino termini are extracellular and
often glycosylated, whereas the carboxyl termini are cytoplasmic and usually
phosphorylated. The exact three-dimensional packing of the helices, and more
generally the complete tertiary structure, are only partially known [47, 420].

The family is usually divided into subclasses on the basis of transmitter
types, such as muscarinic receptors, catecholamine receptors, odorant recep-
tors, and so forth. From a methodological standpoint, the GPCR family is par-
ticularly challenging. Its members have very variable lengths and, on average,
are fairly long: the length of known GPCRs varies from roughly 200 to 1200
amino acids. The family is highly variable and some of its members have less
than 20% residues in common.

8.1.2 Structural Properties

In [38], 142 GPCR sequences extracted from the PROSITE database [23] were
used to train an HMM architecture of length N = 430, the average length of the
training sequences, using on-line Viterbi learning during 12 cycles of iterations
through the entire training set.

As an example of a structural property, the entropy of the emission dis-
tribution of the main states of the corresponding model is given in figure 8.1.
The amplitude profile of the entropy contains seven major oscillations directly
related to the seven transmembrane domains. To a first approximation, the
hydrophobic domains tend to be less variable, and therefore associated with
regions of lower entropy. This structural feature was discovered by the HMM
without any prior knowledge of alpha-helices or hydrophobicity.

8.1.3 Raw Score Statistics

To test the discrimination abilities of the model, 1600 random sequences were
generated with the same average composition as the GCPRs in the training set,
with lengths 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 1000 (100
sequences at each length), and 1500 and 2000 (200 sequences at each length).
For any sequence, random or not, its raw score according to the model is
calculated. Here, the raw score of a sequence O is the negative log-likelihood
of the corresponding Viterbi path. The raw scores of all the random sequences
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Figure 8.1: Entropy Profile of the Emission Probability Distributions Associated with the Main
States of the HMM After 12 Cycles of Training.

are plotted in figure 8.2, together with the scores of the GPCRs in the training
set and the scores of all the sequences in the SWISS-PROT database.

The model clearly discriminates random sequences with similar average
composition from true GPCRs. Consistent with previous experiments [41, 334],
the scores of the random sequences and of the SWISS-PROT sequences cluster
along two similar lines. The clustering along a line indicates that the cost of
adding one amino acid is roughly constant on average. The linearity is not pre-
served for very short sequences, since these can have more irregular Viterbi
paths. For very long sequences (above model length) the linearity becomes in-
creasingly precise. This is because the Viterbi paths of very long sequences,
with a fixed average composition, must rely heavily on insert states and in fact
are forced to loop many times in a particular insert state that becomes predom-
inant as the length goes to infinity. The predominant insert state is the most
cost-effective one. It is easy to see that the cost-effectiveness of an insert state
k depends equally on two factors: its self-transition probability tkk and the
cross-entropy between its emission probability vector ekX and the fixed prob-
ability distribution associated with the sequences under consideration. More
precisely, if we look at the scores of long random sequences generated using
a fixed source P = (pX) as a function of sequence length, the corresponding
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Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences
consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length
less than or equal to 2000, and 220 randomly generated sequences with same average compo-
sition as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at each
length). The regression line was obtained from the 220 random sequences.

scores cluster along a regression line with slope

min
k
[− log tkk −

∑
X

pX log ekX]. (8.1)

Furthermore, for a large fixed length l, the scores are approximately normally
distributed (Central Limit Theorem) with variance

l [EP(log2 ekX)− EP (log ekX)] = l VarP [log ekX]. (8.2)

In particular, the standard deviation of the scores increases as the square root
of the length l. Proof of these results and additional details can be found in
[38].
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Random Number of Empirical Predicted Empirical Predicted
sequence sequences average AS SD SD
length l score (AS) 3.038l+ 122.11 0.66

√
l

300 100 1041.4 1033.5 13.24 11.43
350 100 1187.1 1185.4 13.12 12.34
400 100 1337.6 1337.3 12.50 13.20
450 100 1487.6 1489.2 16.85 14.00
500 100 1638.5 1641.1 13.74 14.75
550 100 1790.3 1793.0 15.26 15.47
600 100 1944.4 1944.9 16.70 16.16
650 100 2093.3 2096.8 16.54 16.82
700 100 2250.6 2248.7 18.65 17.46
750 100 2397.9 2400.6 16.96 18.07
800 100 2552.5 2552.5 19.66 18.66

1000 100 3160.2 3160.1 21.62 20.87
1500 200 4678.9 4679.1 25.51 25.56
2000 200 6199.1 6198.1 29.59 29.51

Table 8.1: Statistics of the Scores of Randomly Generated Sequences with Similar Average Com-
position as the GPCRs (8.2).

The formula derived for the slope is true asymptotically and does not nec-
essarily apply for relatively small lengths, although this is the case for the
present model. For the model under consideration, the optimal insert state for
average composition identical to GPCRs is insert state 20. The equation of the
empirical regression line is y = 3.038l+122.11, whereas the approximation in
(8.1) yields a slope prediction of 3.039. From the estimate in (8.2), the standard
deviation should increase as σ ≈ 0.66

√
l. An empirical regression of the stan-

dard deviation on the square root of the length gives σ ≈ 0.63
√
l+1.22. There

is good agreement between the theoretical estimates and the empirical results,
as can be seen in table 8.1. Generally, of course, the quality of the fit improves
with the length of the sequences, and this is most evident for the standard
deviation. In the present case, however, (8.1) and (8.2) are quite accurate even
for relatively short sequences, with length comparable to or even less than the
length of the model. Similar results are obtained if we use a different random
source based on the average composition of the SWISS-PROT sequences.
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8.1.4 Score Normalization, Database Searches, and Discrimination
Tests

Having done this statistical analysis, we can now address the obvious question
of how to conduct discrimination tests, that is, how to decide algorithmically
whether a sequence belongs to the GPCR family or not. Clearly, one would like
to use the scores produced by the model to discriminate between GPCR and
non-GPCR sequences. However, the raw scores cannot be used directly because
(a) the scores tend to grow linearly with the length and (b) the dispersion of
the scores varies with the length and, at least in the case of long, randomly
generated sequences, increases in proportion to the square root of the length.
Therefore the raw scores need to be centered and scaled first.

This normalization procedure can be done in several ways. For centering,
one can use empirical averages calculated at each length, or averages derived
from empirical regression lines, or average estimates derived from (8.1) and
(8.2). Depending on the final goal, the base level can be calculated with re-
spect to random sequences of similar composition or with respect to an actual
database, such as SWISS-PROT. In the present case, the two are similar but not
identical. For scaling, one can use empirical standard deviations or theoreti-
cal estimates and these can be calculated again on different sources such as
SWISS-PROT or random sequences of similar composition. Each method has
its advantages and drawbacks, and in practical situations one may try several
of them. In general, empirical estimates may be more accurate but also more
costly, especially for long sequences, since the calculation of the correspond-
ing scores grows with the square of the length O(l2).

When using an actual database for centering or scaling, problems can arise
if few sequences are present in the database from a given length interval of
interest; it also may not be possible to remove the sequences belonging to
the family being modeled from the database if these are not known a priori.
This is particularly dangerous in the estimation of standard deviations. Here,
it may be necessary to use an iterative algorithm where at each step a new
standard deviation is calculated by ignoring the sequences in the database
that are detected as members of the family at the corresponding step. The
new standard deviation is used to generate a new set of normalized scores, as
well as a new set of putative members of the family. Another general problem
is that of short sequences, which often behave differently from very long ones.
In certain cases, it may be practical to use a different normalization procedure
for short sequences. Finally, in the case of an HMM library, a fixed set of
randomly generated sequences, with the same average composition as SWISS-
PROT, could be used across different models.

In the GPCR example, for any sequence O of length l, we use the normalized
score ES(O) based on the residual with respect to the empirical regression
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line of the random sequences of similar average composition, divided by the
approximate standard deviation derived from (8.2):

ES(O) = [3.038l+ 122.11−E(O)]
0.66

√
l

, (8.3)

where E(O) is the negative log-likelihood of the Viterbi path. One obvious is-
sue is the setting of the detection threshold. Here, the smallest score on the
training set is 16.03 for the sequence labeled UK33_HCMVA. This low score is
isolated because there are no other scores smaller than 18. Thus the thresh-
old can be set at 16 or a little higher. By removing very long sequences ex-
ceeding the maximal GPCR length as well as sequences containing ambiguous
amino acids, the search algorithm presented here yields no false negatives and
two false positives (threshold 16) or one false negative and no false positives
(threshold 18). At short lengths (below the length of the model), (8.2) is not
necessarily a good approximation, so that it may be worthwhile to try a mixed
scheme where a normalization factor is calculated empirically at short lengths
(l < N) and (8.2) is used for larger lengths (l > N). Finally, thresholds may be
set using the fact that the extreme score of a set of random sequences of fixed
length follows an extreme value distribution [550].

8.1.5 Hydropathy Plots

Because of the particular structure of the GPCRs, one may reasonably conclude
that it should be possible to detect easily whether a given sequence belongs to
this class by drawing its hydropathy plot according to one of the well-known
hydropathy scales [166]. If this was the case, it would render the HMM ap-
proach much less attractive for detection experiments, at least for this partic-
ular family. To check this point, hydropathy plots of a number of sequences
were constructed, using a 20-amino-acid window. Examples of plots obtained
for three sequences are given in figure 8.3. As can be seen, these plots can
be very noisy and ambiguous. Therefore it seems very unlikely that one could
achieve good detection rates based on hydropathy plots alone. Consensus pat-
terns, hydropathy plots, and HMMs should rather be viewed as complementary
techniques.

One can also compute a hydropathy plot from the HMM probabilities, as
explained in chapter 7. Such a plot, shown in figure 8.4, displays the expected
hydropathy at each position, rather than the hydropathy observed in any indi-
vidual sequence. As a result, the signal is amplified and the seven transmem-
brane regions are clearly identifiable.
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Figure 8.3: Hydropathy Plots for Three GPCRs of Length Less Than 1000, Using a Window of 20
Amino Acids. The vertical axis represents free energy for transferring a hypothetical alpha-helix
of length 20, at the corresponding location, from the membrane interior to water. A peak of 20
kcal/mol or more usually signals the possible presence of a transmembrane alpha-helix.

8.1.6 Bacteriorhodopsin

Bacteriorhodopsin (see [317] for a brief review and [248] for a structural
model) is a seven-transmembrane-domain protein that functions as a light-
driven proton pump in Halobacterium halobium. Although it is functionally
related to rhodopsin, it is not a GPCR. Structural and evolutionary relation-
ships between bacteriorhodopsin and the GPCRs are not entirely clear at the
moment. The raw score given by the HMM to bacteriorhodopsin is 852.27 for
the primary sequence given in [411], and 851.62 for the slightly different se-
quence in [318]. Since the length of bacteriorhodopsin is l = 248, these scores
are in fact close to the regression line constructed on the random sequences
of similar average composition, and slightly below it. The residual of the first
sequence, for instance, is 23.26 and its normalized score is 2.23, according to
(8.3). This confirms that bacteriorhodopsin is not a GPCR and is consistent
with the lack of a significant degree of homology between bacteriorhodopsin
and GPCRs.

In [414] it is suggested that a higher degree of homology can be obtained
by changing the linear order of the helices, and that the sequences may be evo-
lutionarily related via exon shuffling. We thus constructed a new sequence by
moving the seven helices of bacteriorhodopsin into the order (5,6,7,2,3,4,1), as
suggested by these authors. Intracellular and extracellular domains were left
untouched. The raw HMM score of this artificial sequence is 840.98. Although
it is closer to the GPCR scores, the difference does not appear to be particularly
significant. The HMM scores therefore do not seem to provide much support
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Figure 8.4: Hydropathy Plot for the GPCR HMM.

for the hypothesis presented in [414]. This point, however, requires further
work because of the relatively short length of bacteriorhodopsin and the role
the nonhelical domain may play in the scores.

8.1.7 Classification

By “classification” we mean the organization of a family of sequences into
subclasses. This can be useful, for instance, in phylogenetic reconstruction.
Classification using HMMs can be achieved in at least two different ways: (1)
by training several models in parallel (figure 8.5) and using some form of com-
petitive learning [334], or (2) by looking at how likelihoods and paths cluster
within a single model. The first approach is not suitable here: the total num-
ber of sequences we have, especially for some receptor classes, is too small to
train—for, say, 15 models in parallel. This experiment would require further
algorithmic developments, such as the inclusion of prior information in the
models, as well as new versions of the databases with more sequences.
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Figure 8.5: Classification HMM. Schematic representation of the type of multiple HMM architec-
ture used in [334] for detecting subfamilies within a protein family. Each “box” between the
start and end states corresponds to a single standard HMM.

For the second approach, it is clear from visual inspection of the multiple
alignment that there are clusterings and interesting relationships among the
Viterbi paths corresponding to different receptor subgroups. For instance, all
the thyrotropin receptor precursors (TSHR) have a long initial loop on insert
state 20, the same state that is optimal for (8.1). Interestingly, the same is
true for the lutropin-gonadotropic hormone receptor precursor (LSHR). Here,
we shall not attempt to exploit these relationships systematically to classify
GPCRs from scratch, but rather shall analyze the behavior of the HMM scores
with respect to the preexisting classification into major receptor classes.

For this purpose, we first extract all receptor classes for which we have
at least seven representative sequences in order to avoid major bias effects.
The classes and the number of corresponding sequences are olfactory (11),
adenosine (9), opsin (31), serotonin (18), angiotensin (7), dopamine (12), acetyl-
choline (18), and adrenergic (26), for a total of 132 sequences representing 62%
of the extended database obtained after searching SWISS-PROT. The histogram
of the distances or normalized scores to the random regression line of the se-
quences in the eight classes selected in this way is plotted in figure 8.6. The
normalized scores extend from 20 to 44 and are collected in bins of size 2.

The clustering of all the sequences in a given receptor subclass around a
particular distance is striking. Olfactory receptors are the closest to being ran-
dom. This is perhaps not too surprising, since these receptors must interact
with a very large space of possible odorants. Adrenergic receptors are the most
distant from the random regression line, and hence appear to be the most con-
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Figure 8.6: Histogram of the Distances (Normalized Scores) to the Randomly Generated Se-
quences for Different Classes of GPCRs. Olfactory receptors are closest to being random. Adren-
ergic receptors appear to be the most constrained and the most distant from the line. Different
classes of receptors tend to cluster at different distances. Angiotensin receptors have a particu-
larly narrow distribution of distances.

strained. There are also apparent differences on the standard deviation of each
class. For instance, the angiotensin receptors occupy a narrow band, and only
one angiotensin receptor type is known, whereas the opsin receptors are more
spread out. Most classes seem to have a bell-shaped distribution, but there are
exceptions. The opsins appear to have a bimodal distribution. This could be
the result of the existence of subclasses within the opsins. The second peak
corresponds mostly to rhodopsin (OPSD) sequences and a few red-sensitive
opsins (OPSR). The presence of two peaks does not seem to result from dif-
ferences between vertebrate and invertebrate opsins. With future database
releases, it may be possible to improve the resolution and reduce sampling
effects. But even so, these results suggest a strong relationship between the
score assigned to a sequence by the HMM model and the sequence’s member-
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ship in a given receptor class. On the other hand, it must also be noted that
it would be very difficult to recover the underlying class structure from the
histogram of scores alone, without any a priori knowledge of receptor types.
A detailed classification of the entire GPCR family together with a complete
phylogenetic reconstruction is beyond our scope here.

8.1.8 Fragment Detection from ESTs and cDNA

As a result of EST and cDNA sequencing efforts over the past few years, there
are several databases of DNA sequences corresponding to protein fragments.
It is naturally of interest to be able to recognize and classify such fragments,
and to be able to recover any new useful information. HMMs could be tailored
to such tasks in several ways. One obvious possibility is, for a given protein
family, to train different HMMs to recognize different portions of the protein.
Here we conducted a number of preliminary tests using the GPCR family and
artificially generated fragments. While the typical length of interest to us was
around l = 150, we also investigated what happens at smaller lengths, and
when sequencing noise is taken into account. Sequencing noise was approx-
imated by converting amino acid sequences to DNA and introducing random
independent changes in the DNA with a fixed noise probability p. We concen-
trated on three length levels: l = 150, 100, and 50, and three noise percentage
levels: p = 0, 5, and 10.

We first constructed five data sets, all containing fragments of fixed length
150. In the first set the fragments were extracted at random locations from
the training data set of 142 GPCRs. In the second set, 200 fragments were
extracted randomly from a larger database of GPCRs [325]. In the third set, we
generated 200 random sequences of fixed length 150 with average composi-
tion identical to the GPCRs. In the fourth set, we randomly extracted segments
of length 150 from a database of kinase sequences. Finally, in the fifth set we
did the same but using the SWISS-PROT database.

As with pairwise sequence alignments, HMMs can be used to produce both
local or global alignments. Here we analyze the scores associated with global
alignments to the model, that is with the negative log-likelihoods of the com-
plete Viterbi paths. The histograms of the corresponding scores are plotted
in figure 8.7. These results show in particular that with a raw score threshold
of about 625, such a search can eliminate a lot of the false positives while
producing only a reasonable number of false negatives. The same results are
plotted in figure 8.8, but with a length l = 50 and a noise p = 10%. As can be
seen, the overlap between the distributions is now more significant. This of
course requires a more careful analysis of how performance deteriorates as a
function of fragment length and noise across the entire SWISS-PROT database.
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Figure 8.7: Histogram of Scores of Different Fragment Sequences of Length 150. The first
histogram is constructed from 142 random fragments taken from the training set. All other
histograms are based on 200 fragment sequences taken, in a random fashion, from a larger
database of GPCRs, from randomly generated sequences with similar average composition, from
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Figure 8.9: Summary of Scores on Entire SWISS-PROT Database. Segment lengths are shown
on the horizontal axis, segment scores on the vertical axis. The figure depicts the standard
deviations (striped columns), and the ranges (thin lines) of the scores, for both target (GPCR)
sequences and non-target sequences, for all three segment lengths (50, 100, and 150) and noise
levels (0, 5, and 10).

Summary of Results

The overall results are summarized in figure 8.9. Segment lengths are shown
on the horizontal axis. Segment scores are shown on the vertical axis. The
figure depicts the standard deviations (striped columns) and the ranges (thin
lines) of the scores, for both target (GPCR) sequences and nontarget sequences,
for all three fragment lengths (50, 100, and 150) and noise levels (0, 5, and
10). For each fragment length, the lines represent the ranges for all noise
levels for target (GPCR) and nontarget sequences. To make all possible ranges
for all noise levels visible, the lines representing the score ranges are slightly
displaced with respect to the real fragment length.
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At a given fragment length (e.g., 50), six lines represent, from left to right,
noise level 0 for targets, noise level 0 for nontargets, noise level 5 for targets,
noise level 5 for nontargets, noise level 10 for targets and noise level 10 for
nontargets. Regression lines can be computed for all scores for all target and
all nontarget fragments and each noise level:

• Target sequences

Noise level 0: y = 387.4 + 1.199 l

Noise level 5: y = 384.0 + 1.314 l

Noise level 10: y = 382.3 + 1.401 l

• Non-target sequences

Noise level 0: y = 364.7 + 1.909 l

Noise level 5: y = 364.8 + 1.910 l

Noise level 10: y = 364.8 + 1.911 l

These regression lines are obtained from only three fragment lengths. There-
fore they constitute only an approximation to the scores at all intermediary
lengths. The lines intercept for a fragment length of about 35. This means
that 35 is the approximate length limit for nonzero discrimination based on
scores alone.

As expected, for the target sequences the slopes of the regression lines
substantially increase with noise. Intercepts do not vary much. The slopes
and intercepts for the nontarget sequences are stable; the noise level does not
have a strong influence on nontarget sequences. The approximate regression
line for all nontarget sequences is y ≈ 364.8 + 1.91l. Consistent with the
results in [38], this slope is inferior to the slope of the similar line that can
be derived at greater lengths. The standard deviations of the scores can be
studied similarly, as a function of length and noise level.

ROC results

After scoring the entire database, one can compute, for each length and each
noise level, the number of true and false positives and the number of true
and false negatives, for a given score threshold. These sensitivity/selectivity
results can be summarized by drawing the corresponding ROCs (receiver op-
erating characteristics), as in figure 8.10.

ROC curves are obtained by computing, for threshold values scanned
within a given range, the sensitivity or hit rate (proportion of true positives)
and the selectivity or false alarm rate (proportion of false positives) from the
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Figure 8.10: ROCs for All Scores of All SWISS-PROT Fragments at Lengths 50, 100, and 150 and
Noise Levels 0, 5, and 10. Sequences with ambiguous symbols are filtered out.

number of true/false positives and negatives. Threshold range is a function
of fragment length. For each segment length, the minimum threshold is a
(rounded) value where no non-GPCR fragment is classified as positive across
noise levels; the maximum threshold is a (rounded) value where no known
GPCR (from PROSITE) is classified negative across noise levels. These curves
provide a convenient means for setting thresholds as a function of desirable
goals. As can be seen, there is a nice progressive ordering of the curves as
a function of noise and length. The curves tend to “stick” to the vertical
axes. This clearly shows that very low false alarm rates are obtained even
for high hit rates: there is very good detection of a large number of target
sequences. However, the curves do not “stick” to the horizontal axes. This
shows that to detect the higher percentage of target sequences, the number
of false positives must increase substantially. This is certainly due to the fact
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0 5 10
50 1.16 1.18 1.03

100 1.63 1.49 1.50
150 2.41 2.14 1.96

Table 8.2: Imperfect “Summary” of All Results that Make Possible Estimation of the Performance
of Intermediate Length Fragments and Noise Levels.

that GPCRs comprise both relatively conserved and highly variable regions. It
is virtually impossible to distinguish a short fragment, extracted from a highly
variable region, from the general SWISS-PROT background. Likewise, longer
fragments that include more conserved regions are easier to separate from the
background. For short fragment lengths and high noise levels, these curves
suggest that additional filters should be constructed to improve performance.

Detection analysis with the d′ measure

Given the scores of two populations to be discriminated, and assuming that
these two distributions are Gaussians with the same standard deviation equal
to 1, the d′ measure gives the distance between the centers of the two Gaus-
sians for a certain level of false positives and negatives.

A preliminary detection analysis of the SWISS-PROT scores with a d′ mea-
sure shows that d′ varies widely with the classification threshold. This indi-
cates that the score distribution curves are not Gaussian (as can observed from
the histograms). Because it would be interesting to give a single measure of
performance for each noise level and fragment length, the following method
is used. A linear interpolation measure of false alarm rates is computed for a
hit rate of 0.9 at each noise level and fragment length. The d′ measure is then
computed for the resulting pair (0.9, x), where x is the linearly interpolated
false alarm value. Table 8.2 gives the results for each noise level and fragment
length.

Improving Detection Rates

So far we have examined only the raw scores produced by the HMM, that is, the
negative likelihood of the Viterbi paths. HMMs, however, contain considerable
additional information that could be used in principle to improve database
mining performance. In fact, for each fragment, a number of additional in-
dicators can be built and combined—for instance, in a Bayesian network—to
improve performance. Most notably, the structure of the paths themselves can
be used. As one might expect, there is a clear difference between the paths of
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Figure 8.11: The HMM Used for Signal Peptide Discrimination. The model [406] is designed so
that it implements an explicit modeling of the length distribution in the various regions.The
states in a shaded box are tied to one another.

true and false positives. The path of a false positive is on average more dis-
continuous and contains a larger number of gaps. Several measures of path
discontinuity can be constructed. One can use (1) the number of transitions
out of delete states in a path; (2) the length of the longest contiguous block
of emitting states in a path; or (3) the logarithm of the probability of the path
itself (transitions only/no emissions). In one test, the combination of such
measures with raw scores improves the detection of true positives by 15–20%.
Other directions for improving detection rates are explored in [42].

8.1.9 Signal Peptide and Signal Anchor Prediction by HMMs

In section 6.4.1 the problem of finding signal peptides in the N-terminal part
of prokaryotic and eukaryotic sequences was introduced. The window-based
neural network approach [404] can exploit the correlations among the amino
acids, in particular around the cleavage site, but without extra input units, it
cannot benefit from the pattern in the entire sequence and the different length
distributions that characterize signal peptides.

The length properties of signal peptides are in fact known to differ be-
tween various types of organisms: bacterial signal peptides are longer than
their eukaryotic counterparts, and those of Gram-positive bacteria are longer
than those of Gram-negative bacteria. In addition, there are compositional dif-
ferences that correlate with the position in the signal peptide and also in the
first few residues of the mature protein.
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Figure 8.12: The HMM Designed to Discriminate Between Signal Peptides and Signal Anchors.
The block diagram (top) shows how the combined model [406] is put together from the signal
peptide model and the anchor model. The final states shown in the shaded box are tied to
one another, and model all residues not in a signal peptide or an anchor. The model of signal
anchors (bottom) has only two types of states (grouped by the shaded boxes) apart from the Met
state.

Another important and difficult problem is that some proteins have N-
terminal sequences that initiate translocation in the same way as signal pep-
tides do, but are not cleaved by signal peptidase [541, 406]. The uncleaved
signal peptide is known as a signal anchor, a special type of membrane pro-
tein. Signal anchors typically have hydrophobic regions longer than those of
cleaved signal peptides, and other regions differ also in their compositional
features.

Nielsen and Krogh [406] constructed a hidden Markov model designed both
to discriminate between signal peptides and nonsignal peptides and to locate
the cleavage site. The HMM was designed so that it took known signal peptide
features into account, in particular the different regions described in section
6.4.1. In their scheme a signal peptide model was combined with a model of
signal anchors, in order to obtain a prediction tool that was able to discrimi-
nate between signal peptides and anchors.

The signal peptide model is shown in figure 8.11. It implements an explicit
modeling of the length distribution in the various regions using tied states that
have the same amino acid distribution in the emission and transition proba-
bilities associated with them.

To discriminate among signal peptides, signal anchors, and soluble non-
secretory proteins, the model was augmented by a model of anchors as shown
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in figure 8.12. The whole model was trained using all types of sequences
(known signal peptides and known anchor sequences, as well as cytoplasmic
and nuclear sequences). The most likely path through the combined model
yields a prediction of which of the three classes the protein belongs to.

In terms of predictive performance in relation to discrimination between
signal peptide sequences and nonsignal peptide sequences, the combination
of C-score and S-score neural networks (see section 6.4.1) had a discrimination
level comparable to that of the HMM. For eukaryotes the networks were slightly
better, while for Gram-negative bacteria the HMM was slightly better [406]. For
discrimination between cleaved signal peptides and uncleaved signal anchors,
the HMM had a correlation coefficient of 0.74, corresponding to a sensitivity
of 71% and a specificity of 81%—while the S-score from the neural network
could be used to obtain a performance on this task not exceeding 0.4 for the
correlation coefficient. The HMM is much better at recognizing signal anchor
and therefore at detecting this type of membrane-associated protein.

However, these results should not be taken as a claim that the neural net-
work method is unable to solve the signal anchor problem, since the signal
anchors were not included as training data in the neural network model, as
was the case for the HMM [406].

A similar approach in the form of a structured HMM has been used to model
and predict transmembrane protein toplogy in the TMHMM method [335].
TMHMM can discriminate between soluble and membrane proteins with both
specificity and sensitivity better than 99%, although the accuracy drops when
signal peptides are present. Due to the high degree of accuracy the method
is excellent for scanning entire genomes for detection of integral membrane
proteins [335].

8.2 DNA and RNA Applications

Multiple alignments of nucleotide sequences are harder to make than align-
ments of protein sequences. One reason is that parameters in amino acid
substitution matrices can be estimated by means of evolutionary and biochem-
ical analysis, while it is hard to obtain good measures of general mutation and
deletion costs of individual nucleotides in nucleic acids. The “twilight zone” of
dubious alignment significance is reached faster for sequences from a shorter
alphabet, and fewer evolutionary events are therefore needed to get into the
twilight zone when aligning DNA.

HMMs do not a priori require an explicit definition of the substitution costs.
The HMM approach avoids the computationally hard many-to-many multiple-
sequence alignment problem by recasting it as a many-to-one sequence-to-
HMM alignment problem [155]. The different positions in a model can in prac-
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tice have individual implicit substitution costs associated with them. These
features have contributed to the fact that in several cases HMMs applied to
nucleic acids have led to the discovery of new patterns not previously revealed
by other methods. In protein-related applications, HMMs have more often led
to improvements of earlier methods.

8.2.1 Gene Finding in Prokaryotes and Eukaryotes

Gene finding requires the integration of many different signals: promoter re-
gions, translation start and stop context sequences, reading frame periodici-
ties, polyadenylation signals, and, for eukaryotes, intron splicing signals, com-
positional contrast between exons and introns, potential differences in nucleo-
some positioning signals, and sequence determinants of topological domains.
The last involves the matrix (or scaffold) attachment regions (MARs or SARs),
which are associated with higher-order chromosomal organization. The at-
tachment signals may be involved in promoting transcriptional activity in vivo,
and have recently been reported to be present between genes. For prokaryotes
the DNA sequence also needs to allow strong compaction in a chromatin-like
structure. The length of the extended DNA from a single operon corresponds
to the diameter of the cell. Since all these signals to a large extent comple-
ment each other, in the sense that some may be weak when others are strong,
a probabilistic approach for their integration is the natural way to handle the
complexity of the problem.

In prokaryotes, gene finding is made simpler by the fact that coding regions
are not interrupted by intervening sequences. Still, especially for relatively
short open reading frames, it is nontrivial to distinguish between sequences
that represent true genes and those that do not. In the highly successful gene
finder GeneMark [81, 83, 82], which in its first version was based on frame
dependent nonhomogeneous Markov models, a key feature strongly improving
the performance is a clever detection of the “shadow” of a true coding region
on the non-coding strand (for further detail see chapter 9).

A hidden Markov model has also been developed to find protein-coding
genes in E. coli DNA [336] (work done before the complete E. coli genome be-
came available). This HMM includes states that model the codons and their fre-
quencies in E. coli genes, as well as the patterns found in the intergenic region,
including repetitive extragenic palindromic sequences and the Shine–Dalgarno
motif. To take into account potential sequencing errors and/or frameshifts in
a raw genomic DNA sequence, it allows for the (very unlikely) possibility of
insertions and deletions of individual nucleotides within a codon. The param-
eters of the HMM are estimated using approximately 1 million nucleotides of
annotated DNA, and the model is tested on a disjoint set of contigs containing
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about 325,000 nucleotides. The HMM finds the exact locations of about 80%
of the known E. coli genes, and approximate locations for about 10%. It also
finds several potentially new genes and locates several places where insertion
or deletion errors and/or frameshifts may be present in the contigs.

A number of powerful HMMs and other probabilistic models for gene find-
ing in eukaryotes had been developed (see chapter 9 and [343, 107] and ref-
erences therein). Eukaryotic gene models are typically built by assembling a
number of components, such as submodels for splice sites, exons, and introns
to take advantage of the corresponding weak consensus signals and compo-
sitional differences. The individual submodels must remain relatively small
if the goal is to scan entire genomes in reasonable time. Other key elements
include the use of three exon submodels in parallel in order to take into ac-
count the three possible ways introns may interrupt the reading frame, as well
as features to incorporate exon and intron length distributions, promoters,
poly-adenylation signals, intergenic sequences, and strand asymmetry. It is
often better to train the entire recognition system at once, rather than each
of its components separately. In particular, the standard HMM algorithms can
be modified in order to optimize the global gene parse produced by the sys-
tem rather than the sequence likelihoods [333]. The best gene recognition is
achieved by some of these models [107], with complete exon recognition rates
in the 75 to 80% range (with exact splice sites). Additional work is required to
improve the detection rates further. Such improvements may come from the
incorporation of new, better submodels of promoters or initial and terminal
exons, as well as other physical properties and signals present in the DNA,
such as bendability or nucleosome positioning. Such compactification signals,
which have been completely neglected so far, are likely to play an important
role in the biological gene-finding machinery as well. In the rest of this chap-
ter, we build relatively large models of gene components and describe such
possible signals.

8.2.2 HMMs of Human Splice Sites, Exons, and Introns

Strong research efforts have been directed toward the understanding of the
molecular mechanism responsible for intron splicing ever since it was dis-
covered that eukaryotic genes contain intervening sequences that are removed
from the mRNA molecules before they leave the nucleus to be translated. Since
the necessary and sufficient sequence determinants for proper splicing are still
largely unknown, probabilistic models in the form of HMMs have been used to
characterize the splicing signals found experimentally.

Unlike the case of protein families, it is essential to remark that all exons
and their associated splice site junctions are neither directly nor closely related
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by evolution. However, they still form a “family” in the sense of sharing certain
general characteristics. For example, in a multiple alignment of a set of flanked
exons, the consensus sequences of the splice sites should stand out as highly
conserved regions in the model, exactly like a protein motif in the case of
a protein family. As a result, one should be particularly careful to regard
insertions and deletions in the HMM model as formal string operations rather
than evolutionary events.

To see whether an HMM would pick up easily known features of hu-
man acceptor and donor sites, a model with the standard architecture as
shown in figure 7.2 was trained on 1000 randomly selected flanked donor
and acceptor sites [32, 33, 35]. By close inspection of the parameters
of the HMM trained specifically on the flanked acceptor sites, it was ob-
served that the model learns the acceptor consensus sequence perfectly:
([TC]...[TC][N][CT][A][G][G]). The pyrimidine tract is clearly visible, as
are a number of other known weak signals, such as a branching (lariat) signal
with a high A in the 3’ end of the intron. (See figure 8.13.)

Similarly, the donor sites are clearly visible in a model trained on flanked
donor sites but are harder to learn than the acceptor sites. The consen-
sus sequence of the donor site is learned perfectly: ([CA][A][G][G][T][AG]
[A][G]). The same is true for the G-rich region [164], extending roughly 75
bases downstream from the human donor sites (figure 8.13). The fact that
the acceptor site is easier to learn is most likely explained by the more ex-
tended nature of acceptor site regions as opposed to donor sites. However,
it could also result from the fact that exons in the training sequences are al-
ways flanked by exactly 100 nucleotides upstream. To test this hypothesis, a
similar model using the same sequences, but in reverse order, is trained. Sur-
prisingly, the model still learns the acceptor site much better than the donor
site (which is now downstream from the acceptor site). The random order of
the nucleotides in the polypyrimidine tract region downstream from the ac-
ceptor site presumably contributes to this situation. In contrast, the G-rich
region in the 5’ intron end has some global structure that can be identified by
the HMM.

8.2.3 Discovering Periodic Patterns in Exons and Introns by Means
of New HMM Architectures

In another set of experiments a standard HMM was trained on human exons
flanked by intron sequence. A set of 500 randomly selected flanked internal
exons, with the length of the exons restricted to between 100 and 200 nu-
cleotides, was used (internal human exons have an average length of ≈ 150
nucleotides).
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Figure 8.13: Emission Distribution from Main States of an HMM Model Trained on 1000 Ac-
ceptor (top) and 1000 Donor Sites (bottom). The flanking sequence is kept constant with 100
nucleotides on each side; the model, however, has length 175. For the acceptor sites, the charac-
teristic consensus sequence is easily recognizable ([TC]. . . [TC][N][CT][A][G][G]). Note the high A
probability associated with the branch point downstream from the acceptor site. The character-
istic consensus sequence of the donor site is also easily recognizable ([CA][A][G][G][T][AG][A][G]).
Learning is achieved using the standard architecture (figure 7.2) initialized uniformly, and by
adding a regularizer term to the objective function that favors the backbone transition path.
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Figure 8.14: Emission Distribution from Main States of an HMM Model Trained on 500 Flanked
Internal Exons. The length of the exons was constrained to the interval between 100 and 200
nucleotides, with average of 142, and fixed intron flanking of 100 on each side. The number of
main states in the model was 342. Note the oscillatory pattern in the exon region and outside.

The probability of emitting each of the four nucleotides, across the main
states of the trained model, is plotted in figure 8.14. We see striking periodic
patterns, especially in the exon region, characterized by a minimal period of
10 nucleotides with A and G in phase, and C and T in antiphase. A periodic
pattern in the parameters of the models of the form [AT][CG] (or [AT]G), with a
periodicity of roughly 10 base pairs, can be seen at positions 10, 19, 28, 37,
46, 55, 72, 81, 90, 99, 105, 114, 123, 132 and 141. The emission profile of
the backbone was also compared for two nucleotides jointly. The plots of A+G
and C+T are considerably smoother than those of A+T and C+G on both the
intron side and the exon side. The 10 periodicity is visible both in the smooth
phase/antiphase pattern of A+G and C+T and in the sharp contrast of high
A+T followed by high C+G. There is also a rough three-base pair periodicity,
especially visible in C+G, where every third emission corresponds to a local
minimum. This is consistent with the reading frame features of human genes
[525], which are especially strong on the third codon position (≈30% C and
≈26% G; see figure 6.11).
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Figure 8.15: The Repeated Segment of the Tied Model. Rectangles represent main states and
circles represent delete states. Histograms represent emission distributions from main and
insert states. Thickness of connections is proportional to corresponding transition distribution.
Position 15 is identical to position 5.

In order further to characterize the periodicity, a wide range of different
HMM architectures were trained on nonflanked internal exons, in order to sep-
arate features from the special gradients in the nucleotide composition known
to be present in initial and terminal exons [164]. When training on the bulk of
the internal exons in the length interval between 100 and 200 nucleotides, a
clear and consistent pattern emerged in the emission probabilities, no matter
which architecture was applied. The architectural variation included conven-
tional left–right HMM models, left–right models with identical segments “tied”
together, and loop or “wheel” models with better ability to reveal periodic pat-
terns in the presence of noise. Although the conventional type of left–right
architecture is not the ideal model of an exon, due to the large length varia-
tions, it still identifies the periodic pattern quite well.

To test the periodicity yet further, a “tied” exon model with a hardwired
periodicity of 10 was trained [33]. The tied model consists of 14 identical
segments of length 10 and five additional positions in the beginning and the
end of the model, making a total length of 150. During training the segments
are kept identical by tying the parameters—that is, the parameters are con-
strained to be exactly the same throughout learning, as in the weight-sharing
procedure for neural networks. The model was trained on 800 internal exon
sequences of length between 100 and 200, and it was tested on 262 different
sequences. The parameters of the repeated segment after training are shown
in figure 8.15. Emission probabilities are represented by horizontal bars of
corresponding proportional length. There is a lot of structure in this segment.
The most prominent feature is the regular expression [ˆT][AT]G at positions
12–14. The same pattern was often found at positions with very low entropy in
the standard models described above. In order to test the significance, the tied
model was compared with a standard model of the same length. By comparing
the average negative log-likelihood they both assign to the exon sequences and
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Loop states A C G T

I1 0.1957 0.4808 0.1986 0.1249
M1 0.3207 0.0615 0.0619 0.5559
I2 0.0062 0.0381 0.5079 0.4478
M2 0.1246 0.2982 0.5150 0.0622
I3 0.4412 0.1474 0.2377 0.1737
M3 0.2208 0.6519 0.1159 0.0114
I4 0.2743 0.5893 0.0676 0.0689
M4 0.3709 0.0113 0.0603 0.5575
I5 0.1389 0.2946 0.0378 0.5287
M5 0.0219 0.0121 0.9179 0.0481
I6 0.0153 0.9519 0.0052 0.0277
M6 0.0905 0.1492 0.7017 0.0586
I7 0.1862 0.3703 0.3037 0.1399
M7 0.3992 0.2835 0.3119 0.0055
I8 0.2500 0.4381 0.2968 0.0151
M8 0.4665 0.0043 0.1400 0.3891
I9 0.6892 0.0156 0.2912 0.0040
M9 0.0121 0.2000 0.7759 0.0120
I10 0.2028 0.3701 0.0117 0.4155
M10 0.3503 0.3459 0.2701 0.0787
I11 0.1446 0.6859 0.0861 0.0834

Table 8.3: Emission Distributions for the Main and Insert States of a Loop Model (Figure 8.16)
After Training on 500 Exon Sequences of Length 100–200.

to random sequences of similar composition, it was clear that the tied model
achieves a level of performance comparable with the standard model, but with
significantly fewer free parameters. Therefore a period of around 10 in the
exons seems to be a strong hypothesis.

As the left–right architectures are not the ideal model of exons, it would be
desirable to have a model with a loop structure, possibly such that the segment
can be entered as many times as necessary for any given exon. See [336] for a
loop structure used for E. coli DNA. One example of such a true loop model is
shown schematically in figure 8.16. In the actual exon experiment the loop had
length 10, with two flanks of length 4. This model was trained using gradient
descent and the Dirichlet regularization for the backbone transitions to favor
main states. Additional regularization must be used for the anchor state as a
result of its particular role and connectivity. The Dirichlet vector used for the
anchor state is (0.1689 0.1656 0.1656 0.1689 0.1656 0.1656). The emission
distribution of the main and insert states inside the loop is shown in table 8.3.
Again the results are remarkably consistent with those obtained with the tied
model. The pattern [ˆT][AT]G is clearly visible, starting at main state 3 (M3).

Table 8.4 compares the temporal evolution of the cumulative negative log-
likelihood of the training set in an experiment involving three models: a free
model, a tied model, and a loop model. Although, as can be expected, the free
model achieves the best scores after 12 cycles, this seems to be the result of
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Cycle NLL free model NLL tied model NLL loop model

1 1.013e+05 1.001e+05 9.993e+04
2 1.008e+05 9.902e+04 9.886e+04
3 9.965e+04 9.884e+04 9.873e+04
4 9.886e+04 9.875e+04 9.859e+04
5 9.868e+04 9.869e+04 9.855e+04
6 9.854e+04 9.865e+04 9.849e+04
7 9.842e+04 9.862e+04 9.848e+04
8 9.830e+04 9.861e+04 9.852e+04
9 9.821e+04 9.860e+04 9.845e+04
10 9.810e+04 9.859e+04 9.842e+04
11 9.803e+04 9.859e+04 9.844e+04
12 9.799e+04 9.859e+04 9.843e+04

Table 8.4: Evolution of the NLL Scores over 12 Cycles of Gradient Descent, with η = 0.01, for a
Free Model (Figure 7.2), a Tied Model (Figure 8.15), and a Loop Model (Figure 8.16). All models
are trained on 500 exons of length between 100 and 200 in all reading frames.

some degree of overfitting. The loop model, and to a lesser extent the tied
model, outperform the free model during the first learning cycles. The loop
model performs better than the tied models at all cycles. The free model has a
better score than the loop model only after cycle 7. This is also an indication
that the loop model is a better model for the data.

Finally, a different sort of loop model was trained on both exon and in-
tron sequences. This HMM architecture has the form of a “wheel” with a given
number of main states, without flanking states arranged linearly or any dis-
tinction between main and insert states, and without delete states. Thus there
are no problems associated with potential silent loops. Sequences can enter
the wheel at any point. The point of entry can of course be determined by
dynamic programming. By using wheels with different numbers of states and
comparing the cumulative negative log-likelihood of the training set, the most
likely periodicity can be revealed. If wheels of nine states perform better than
wheels of 10 states, the periodicity can be assumed to be related to the triplet
reading frame rather than to structural aspects of the DNA (see below).

Figure 8.17 displays wheel model architectures (in this case of length 10 nu-
cleotides) where sequences can enter the wheel at any point. The thickness of
the arrows from “outside” represents the probability of starting from the cor-
responding state. After training, the emission parameters in the wheel model
showed a periodic pattern [ˆT][AT]G in a clearly recognizable form in states 8,
9, and 10 of the exon model (top), and in states 7, 8, and 9 in the intron model
(bottom). By training wheels of many different lengths, it was found that mod-
els of length 10 yielded the best fit. Implicitly, this is also confirmed by the
fact that the skip probabilities are not strong in these models. In other words,
if the data were nine-periodic, a wheel model with a loop of length 10 should
be able to fit the data, by heavy use of the possibility of skipping a state in the
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Figure 8.16: A Loop HMM Model Comprising Two Flanks and a Loop Anchored on a Silent State.
The flanks and the loop are similar to the standard architecture.

wheel. State repeating in a nine-state wheel is nonequivalent to state skipping
in a 10-state wheel. These wheel models do not contain independent insert
states (as the linear left–right HMM architectures do). A repeat of the same
state does not give the same freedom in terms of likelihood as if independent
inserts were allowed. Moreover, in analogy to gap penalties in conventional
multiple alignments, the HMM training procedure uses a regularization term
favoring main states over skip states.

All the experiments were repeated using several subsets of exons starting
in the one of the three codon positions in the reading frame, without any sig-
nificant change in the observed patterns of the emission probabilities. For
comparison, figure 8.18 shows the emission probabilities from a nine-state
wheel model trained on the coding part of complete mRNA sequences of con-
catenated exons. This model clearly recognizes the triplet reading frame (com-
pare to figure 6.11). The fact that the pattern is present in intron sequences
provides additional evidence against a reading-frame-associated origin for the
pattern in the exons.

The experiments indicate that the periodicity is strongest in exons, and
possibly also in the immediate flanking intron sequence, but on the average
somewhat weaker in arbitrarily selected deep intron segments. In none of
the experiments using simple linear left–right HMM architectures was a clear
regular oscillation pattern detected in the noncoding sequence. By using the
wheel model to estimate the average negative log-likelihood per nucleotide for
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various types of sequence—different types of exons, introns, and intragenic
regions—it was found that the periodic pattern is strongest in exons. The
period in the alignments (average distance between state 9 nucleotides) is on
the order of 10.1–10.2 nucleotides.

It is well known that “bent DNA” requires a number of small individual
bends that are in phase [488]. Only when bends are phased at ≈ 10.5 bp (cor-
responding to one full turn of the double helix) can stable long-range curva-
ture be obtained. Using the wheel model to perform alignments of introns and
exons, it was found that the sequence periodicity has a potential structural im-
plication because the ≈ 10-periodic bending potential of the aligned sequences
displays the same periodicity. The bendability of the sequences was assessed
using parameters for trinucleotide sequence-dependent bendability deduced
from DNaseI digestion data [96]. DNaseI interacts with the surface of the mi-
nor groove, and bends the DNA molecule away from the enzyme. The exper-
iments [96] therefore quantitatively reveal bendability parameters on a scale
where low values indicate no bending potential and high values correspond
to large bending or bendability toward the major groove, for the 32 double-
stranded triplets: AAA/ATT, AAA/TTT, CCA/TGG, and so on. The profiles of
the bending potentials of exons and introns have been related to nucleosome
positioning [34]. These differences in the strength of the signals in coding and
noncoding regions have possible implications for the recognition of genes by
the transcriptional machinery.

8.2.4 HMMs of Human Promoter Regions

We have also trained a number of HMMs using DNA sequences from human
promoter regions. In one experiment, promoter data were extracted from the
GenBank [62]. Specifically, all human sequences that contained at least 250 nu-
cleotides upstream and downstream from an experimentally determined tran-
scriptional start point were extracted. Sequences containing non-nucleotide
symbols were excluded. The redundancy was carefully reduced using the sec-
ond Hobohm algorithm [259] and a novel method for finding a similarity cut-
off, described in [422]. Briefly, this method is based on performing all pairwise
alignments for a data set, fitting the resulting Smith-Waterman scores to an
extreme value distribution [9, 550], and choosing a value above which there
are more observations than expected from the distribution. A standard linear
architecture with length N = 500 was trained using the remaining 625 se-
quences, all with length 501 (see [421] for details). The training was facilitated
by initializing the main state emissions associated with the TATA-box using
consensus probabilities from promoters with experimentally verified TATA-
boxes.
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Figure 8.17: Wheel HMMs Used for Identifying Periodic Patterns. A. 10-state wheel trained on
500 internal exons of length between 100 and 200 nucleotides. Nonperfect alignment and in-
terference with the reading frame cause features of the pattern to appear in states 2, 3, and 4
as well as 8, 9, and 10. B. 10-state wheel trained on 2000 human introns. 25 nucleotides were
removed at the 5’ and 3’ ends in order to avoid effects of the conserved sequence patterns at
the splice sites.
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Figure 8.18: The Emission Probabilities from a Nine-State Wheel Model Trained on Complete
mRNA Sequences Without the Skip and Loop Arrows. The three-periodic reading frame pattern
is clearly visible, with higher frequencies of A and G, A and T, and C and G on the first, second,
and third codon positions, respectively.

A bendability profile can be computed directly from the trained HMM (see
Appendix D), or from the HMM-derived multiple alignment. A profile derived
from a multiple alignment is shown in figure 8.19. The most striking feature
is a significant increase in bendability in the region immediately downstream
of the transcriptional start point. As promoters most often have been char-
acterized by a number of upstream patterns and compositional tendencies, it
is interesting that the HMM alignment corresponds to structurally similarity
in the downstream region of these otherwise unrelated promoter sequences.
They are not biased towards genes related to a specific function, etc. From a
careful analysis of the sequence periodicities, we conjecture that the increase
in downstream bendability is related to nucleosome positioning and/or facil-
itation of interaction with other factors involved in transcriptional initiation.
We have also computed similar profiles from the HMM backbone probabilities
using different physical scales such as stacking energies [410], nucleosome po-
sitioning [218], and propeller twist [241]. All profiles consistently show a large
signal around the transcriptional start point with differences between the up-
stream and downstream regions. Additional results, including the periodic
patterns, are discussed in [421] (see also [30] for a general treatment on how
to apply additive, structural, or other scales to sequence analysis problems).
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Figure 8.19: The Bendability Profile of Human Promoter Regions. The initiation site is roughly
in the middle. The overall bendability is significantly increased downstream from the initiation
site. This average profile was made from a multiple sequence alignment. A profile computed
from the emission probabilities, instead of the actual triplet frequencies, produced a very similar
pattern for the bendability.

8.3 Advantages and Limitations of HMMs

8.3.1 Advantages of HMMs

The numerous advantages of HMMs in computational molecular biology
should be obvious by now. HMMs come with a solid statistical foundation
and with efficient learning algorithms. They allow a consistent treatment of
insertions and deletion penalties, in the form of locally learnable probabilities.
Learning can take place directly from raw sequence data. Unlike conventional
supervised NNs, HMMs can accommodate inputs of variable length and they
do not require a teacher. They are the most flexible generalization of sequence
profiles. They can be used efficiently in a number of tasks ranging from
multiple alignments, to data mining and classification, to structural analysis
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and pattern discovery. HMMs are also easy to combine into libraries and in
modular and hierarchical ways.

8.3.2 Limitations of HMMs

In spite of their success, HMMs can suffer in particular from two weaknesses.
First, they often have a large number of unstructured parameters. In the case
of protein models, the architecture of figure 7.2 has a total of approximately
49N parameters (40N emission parameters and 9N transition parameters). For
a typical protein family, N is on the order of a few hundred, resulting imme-
diately in models with over 10,000 free parameters. This can be a problem
when only a few sequences are available in a family, not an uncommon situ-
ation in early stages of genome projects. It should be noted, however, that a
typical sequence provides on the order of 2N constraints, and 25 sequences
or so provide a number of examples in the same range as the number of HMM
parameters.

Second, first-order HMMs are limited by their first-order Markov property:
they cannot express dependencies between hidden states. Proteins fold into
complex 3D shapes determining their function. Subtle long-range correlations
in their polypeptide chains may exist that are not accessible to a single HMM.
For instance, assume that whenever X is found at position i, it is generally
followed by Y at position j, and whenever X′ is found at position i, it tends
to be followed by Y′ at j. A single HMM typically has two fixed emission vec-
tors associated with the i and j positions. Therefore, it cannot capture such
correlations. Only a small fraction of distributions over the space of possible
sequences can be represented by a reasonably constrained HMM.1 It must be
noted, however, that HMMs can easily capture long-range correlations that are
expressed in a constant way across a family of sequences, even when such
correlations are the result of 3D interactions. This is the case, for example,
for two linearly distant regions in a protein family that must share the same
hydropathy as a result of 3D closeness. The same hydropathy pattern will be
present in all the members of the family and is likely to be reflected in the
corresponding HMM emission parameters after training.

Chapters 9 to 11 can be viewed as attempts to go beyond HMMs by com-
bining them with NNs to form hybrid models (chapter 9), by modeling the evo-
lutionary process (chapter 10), and by enlarging the set of HMM production
rules (chapter 11).

1Any distribution can be represented by a single exponential-size HMM, with a start state con-
nected to different sequences of deterministic states, one for each possible alphabet sequence,
with a transition probability equal to the probability of the sequence itself.
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