
Chapter 9

Probabilistic Graphical Models
in Bioinformatics

9.1 The Zoo of Graphical Models in Bioinformatics

High-dimensional probability distributions are one of the fist obstacles one en-
counters when applying the Bayesian framework to typical real-life problems.
This is because the data is high-dimensional, and so are the models we use, of-
ten with many thousand parameters and up. High-dimensionality comes also
with other so called hidden variables. In general, the resulting global distribu-
tion P(D,M,H) is mathematically intractable and this is where the theory of
graphical models comes into play. Using the fact that to a large extent the bulk
of the dependencies in the real world are usually local, the high-dimensional
distribution is approximated by a product of distributions over smaller clus-
ters of variables defined over smaller spaces and which are tractable [348, 292].
In standard Markovian models, for instance, phenomena at time t + 1 may be
linked to the past only through what happens in the present at time t. As a
result, the global probability distribution P(X1, . . . , XN) can be factored as a
product of local probability distributions of the form P(Xt+1|Xt).

To be more specific, let us concentrate on a particular class of graphical
models, namely Bayesian networks [416] (a more formal treatment of graphi-
cal models is given in appendix C). A Bayesian network consists of a directed
acyclic graph with N nodes. To each node i is associated a random variable Xi.
The parameters of the model are the local conditional probabilities, or charac-
teristics, of each random variable given the random variables associated with
the parent nodes P(Xi|Xj : j ∈ N−(i)), where N−(i) denotes all the parents
of vertex i. The“Markovian” independence assumptions of a Bayesian network

225

226 Probabilistic Graphical Models in Bioinformatics

Markov 0

Markov 0

Markov 1

Markov 2

one die

dice

multiple

HMM1

Figure 9.1: Bayesian Network Representation of Markov Models of Increasing Complexity.
Markov models of order 0 correspond to a single die or a collection of independent dice. Markov
models of order 1 correspond to the standard notion of first order Markov chain. In Markov
models of order 2, the present depends on the two previous time steps. All HMMs of order 1
have the same Bayesian network representation given here.

are equivalent to the global factorization property

P(X1, . . . , XN) =
∏
i

P(Xi|Xj : j ∈ N−(i)). (9.1)

In other words, the global probability distribution is the product of all the local
characteristics. In practical applications, the directed nature of the edges of a
Bayesian network is used to represent causality or temporal succession. Thus
it should come as no surprise that Bayesian networks are being intensively
used to model biological sequences, in the same way as they have been used
to model speech or other sequential domains, and to construct expert systems.

In fact, the Bayesian framework allows us to build an increasingly complex
suite of Bayesian network models for biological (and other) sequences. This hi-

The Zoo of Graphical Models in Bioinformatics 227

IOHMM

Factorial

HMM

Figure 9.2: Bayesian Network Representation of Factorial HMMs and IOHMMs.

erarchy of models stems from the fact that, at some level, biological sequences
have a sequential primary structure. The simplest probabilistic model for bi-
ological sequences we can think of is the single-die model of chapter 3, with
four (nucleotides for DNA) or 20 (amino acid for proteins) faces, shown in fig-
ure 3.1. Such a model is represented by a Bayesian network with a single node
or better with multiple identical disconnected nodes, one for each position in a
sequence or in a family of sequences. The die model is trivial and remote from
actual biological sequences but it serves as a first step and is often used as a
background model against which to compare more sophisticated approaches.

At the next level, we can imagine a sequence of distinct dice, one for each
position. This is essentially the model used when making profiles, abstracted
for instance from pre-existing multiple alignments. If we connect the nodes
of this model in a left-right chain, we get a standard first-order Markov model.
Second- and higher-order Markov models, where the present may depend on
several steps in the immediate past, are also possible. Their Bayesian network
representation is obvious as well as their main weakness: a combinatorial ex-

228 Probabilistic Graphical Models in Bioinformatics

Markov 1

Reverse

Markov 1

Bi-
directional
Factorial
HMM

Figure 9.3: Bayesian Networks with Backward Markov Chains. All the backward chains in this
figure can be replaced by forward chains via a simple change of variables.

plosion of the parameter space as the degree of the chain increases. For a
small alphabet size such as DNA, however, Markov models of order up to six
are possible and are commonly used in the literature, for instance in gene
finding algorithms (see figure 9.1).

Simple left-right Markov models, however, do not directly capture inser-
tions and deletions. We have seen that such events can be taken into account
by using hidden Markov models (HMMs). HMMs can easily be represented as
Bayesian networks. As such, their representation is similar to that of other
models, such as Kalman filters. The Bayesian network representation of HMMs
clarifies their probabilistic structures and the corresponding evidence prop-
agation and learning algorithms, such as the well-known forward-backward
algorithms and several other EM/gradient-descent variants [493].

More complex Markovian models have been used in artificial intelligence,
for instance, factorial HMMs where the output depends on two or more for-
ward Markov chains. In the speech domain, for instance, one chain can repre-
sent audio information and the other video information about lip configuration
[203, 205]. Another set of models described in [40, 58] and discussed in a later
section are the IOHMMs (input-output HMMs) (see figure 9.2). These models
can be used to translate a given input sequence into an output sequence over

The Zoo of Graphical Models in Bioinformatics 229

BIOHMM

Figure 9.4: Bayesian Network Representation of a BIOHMM. Note the presence of numerous
undirected cycles.

a possibly different alphabet.

One important observation about biological sequences is that in reality
they have a spatial rather than temporal structure. In particular, informa-
tion from the “future” could be used to interpret the present without breaking
any causality constraint. As a minimum, this suggests introducing backward
Markovian chains in the previous models. Yet one must be careful, for it is easy
to show that a simple backward Markov chain is entirely equivalent to a for-
ward chain by a change of variables. The parameters of the two corresponding
Bayesian network models are related by Bayes’s rule. Likewise, if we reverse
the direction of one of the chains of a factorial HMM, we obtain another facto-
rial HMM that is entirely identical to the first one, and hence there is little to
be gained (see figure 9.3). If we introduce a backward chain in an IOHMM, how-
ever, we obtain a new class of models we call BIOHMM (bi-directional IOHMM)
[36] (see figure 9.4).

In the last section of this chapter, we will look at the applications of
BIOHMMs and related models to the prediction of protein secondary struc-
ture. But first, we turn to other applications of probabilistic graphical models
to sequence analysis problems, and in particular to DNA symmetries, gene
finding, and gene parsing, and to general techniques for combining artificial
NNs with graphical models.

230 Probabilistic Graphical Models in Bioinformatics

9.2 Markov Models and DNA Symmetries

In a piece of double-helical DNA, the number of As is equal to the number of
Ts, and the number of Cs is equal to the number of Gs. What appears today
as a trivial property in fact was essential in guiding Watson and Crick towards
the discovery of the double-helix model in the early 1950s. This property is
also known as Chargaff’s first parity rule [119]. Chargaff’s second parity rule,
however, is less known and states that the same thing is approximately true
for a piece of single-stranded DNA of reasonable size. This rule, first stated
in the 1960s [303, 120], has received some recognition in the recent years
[430, 185, 231].

The validity of Chargaff’s second parity rule can be studied across different
organisms, across different kinds of DNA such as coding versus non-coding,
and across different length scales. For simplicity, here we look only at genomic
DNA in yeast. If we measure the DNA composition of the W and C strands of
each chromosome of yeast we find that this composition is remarkably stable
and follows Chargaff’s second parity rule with approximately 30% for A and T,
and 20% for C and G (table 9.1). Notably, the same symmetry is observed in
yeast mitochondrial DNA but with a different composition. Likewise, single-
stranded genomic DNA in other organisms has a different but still symmetric
average composition.

To study the symmetries of double-stranded DNA we count how often each
nucleotide occurs on each strand over a given length. These frequencies corre-
spond to a probabilistic Markov model of order 1. It is then natural also to look
at Markov models of higher orders (order N) by looking at the statistics of the
corresponding N-mers. In particular, we can ask whether Chargaff’s second
parity rule holds for orders beyond the first, for instance for dinucleotides,
equivalent to second-order Markov models.

A DNA Markov model of order N has 4N parameters associated with the
transition probabilities P(XN|X1, . . . , XN−1), also denoted P(X1, . . . , XN−1 →
XN), for all possible X1, . . . , XN in the alphabet together with a starting distri-
bution of the form π(X1, . . . , XN−1). Because the number of parameters grows
exponentially, only models up to a certain order can be determined from a
finite data set. A DNA Markov model of order 5, for instance, has 1,024 pa-
rameters and a DNA Markov model of order 10 has slightly over one million
parameters. Conversely, the higher the order, the larger the data set needed
to properly fit the model.

Because of the complementarity between the strands, a Markov model of
order N of one strand immediately defines a Markov model of order N on the
reverse complement. We say that a Markov model of order N is symmetric
if it is identical to the Markov model of order N of the reverse complement.
Thus a Markov model is symmetric if and only if P(X1 . . . XN) = P(XN . . . X1).

Markov Models and DNA Symmetries 231

A C G T Total bp
Chr. 1 69,830 44,641 45,763 69,969 230,203

30.33% 19.39% 19.88% 30.39%
Chr. 2 249,640 157,415 154,385 251,700 813,140

30.70% 19.36% 18.99% 30.95%
Chr. 3 98,210 62,129 59,441 95,559 315,339

31.14% 19.70% 18.85% 30.30%
Chr. 4 476,752 289,343 291,354 474,480 1,531,929

31.12% 18.89% 19.02% 30.97%
Chr. 5 176,531 109,828 112,314 178,197 576,870

30.60% 19.04% 19.47% 30.89%
Chr. 6 82,928 52,201 52,435 82,584 270,148

30.70% 19.32% 19.41% 30.57%
Chr. 7 338,319 207,764 207,450 337,403 1,090,936

31.01% 19.04% 19.02% 30.93%
Chr. 8 174,022 109,094 107,486 172,036 562,638

30.93% 19.39% 19.10% 30.58%
Chr. 9 134,340 85,461 85,661 134,423 439,885

30.54% 19.43% 19.47% 30.56%
Chr. 10 231,097 142,211 143,803 228,329 745440

31.00% 19.08% 19.29% 30.63%
Chr. 11 206,055 127,713 126,005 206,672 666,445

30.92% 19.16% 18.91% 31.01%
Chr. 12 330,586 207,777 207,064 332,745 1,078,172

30.66% 19.27% 19.21% 30.86%
Chr. 13 286,296 176,735 176,433 284,966 924,430

30.97% 19.12% 19.09% 30.83%
Chr. 14 241,561 151,651 151,388 239,728 784,328

30.80% 19.34% 19.30% 30.56%
Chr. 15 339,396 209,022 207,416 335,449 1,091,283

31.10% 19.15% 19.01% 30.74%
Chr. 16 293,947 180,364 180,507 293,243 948,061

31.01% 19.02% 19.04% 30.93%
Chr. mt 36,169 6,863 7,813 34,934 85,779

42.17% 8.00% 9.11% 40.73%
16 nuclear Chr. 3,729,510 2,313,349 2,308,905 3,717,483 12,069,247

30.90% 19.17% 19.13% 30.80%
All Chr. 3,765,679 2,320,212 2,316,718 3,752,417 12,155,026

30.98% 19.09% 19.06% 30.87%

Table 9.1: First-order Distribution of Yeast Genomic and Mitochondrial DNA per Chromosome.

232 Probabilistic Graphical Models in Bioinformatics

A → A 0.3643 AA 0.1154
A → T 0.2806 AT 0.0889
A → G 0.1858 AG 0.0589
A → C 0.1684 AC 0.0533
T → A 0.2602 TA 0.0814
T → T 0.3662 TT 0.1146
T → G 0.1858 TG 0.0581
T → C 0.1882 TC 0.0589
G → A 0.3166 GA 0.0581
G → T 0.2784 GT 0.0511
G → G 0.1945 GG 0.0357
G → C 0.2106 GC 0.0387
C → A 0.3304 CA 0.0619
C → T 0.3116 CT 0.0583
C → G 0.1639 CG 0.0307
C → C 0.1941 CC 0.0364

Table 9.2: Second-order Transition Parameters and Dinucleotide Distribution of Yeast 500 bp
Upstream Regions.

If we look at genomic DNA in yeast, for instance, we find a very high degree
of symmetry in all the higher-order Markov models with orders up to at least
9, even within various subregions of DNA (table 9.2). Some have suggested
that this symmetry could easily be explained from the first-order symmetry.
Indeed, if P(A) = P(T) and if P(AA) = P(A)P(A) then automatically P(AA) =
P(TT). The question then is precisely whether the higher order Markov models
are factorial, i.e., entirely determined by the products resulting from the lower-
order models.

More formally, a Markov model of order N induces a distribution over
lower-order M-mers called the restriction or projection of the orginal distri-
bution. This projection is easily obtained for instance by generating a long
string with the Markov model of order N and measuring the statistics of the
M-mers. In particular, a Markov model of order N induces a first-order equi-
librium distribution that must satisfy the balance equation

P(X2, . . . , XN) =
∑
Y
P(XN|Y ,X2 . . . , XN−1)

P(Y ,X2, . . . , XN−1) (9.2)

If a Markov model of order N is symmetric, its restrictions or projections
to lower orders are also symmetric. The converse, however is not true. In gen-

Markov Models and DNA Symmetries 233

2 3 4 5 6 7 8 9
0 1.0 .99 .99 .99 .99 .99 .97 .95
1 .98 .97 .97 .97 .95 .90 .77 .55
2 .94 .95 .94 .91 .83 .66 .45
3 .97 .94 .89 .77 .57 .36
4 .82 .73 .58 .39 .24
5 .60 .46 .29 .18
6 .34 .21 .14
7 .12 .10
8 .09

Table 9.3: Counts and Symmetry Effects. Row 0 represents the correlation for the counts C
of N-mers (N = 2, . . . ,9) between the direct upstream strand and its reverse complement. In
rows M = 1 to 9, similar correlations are computed but using the ratio C/E(C), where E(C) is
the expected number of counts produced by a Markov model of order M fitted to the upstream
regions. Horizontal = N-mers, vertical = model order.

eral, a symmetric Markov model of order N can have multiple not necessarily
symmetric extensions to a Markov model of order M, M > N. Thus the fact
that the first-order distribution of yeast, for instance, is symmetric does not
necessarily imply that the second order distribution is also symmetric. But
this is precisely the case. A given Markov model of order N, however, has a
unique factorial extension to Markov models of order M > N. For instance, a
first-order Markov model defined by the parameters pX (pA,pC,pG,pT) has a
second-order factorial extension with parameters pXY = pXpY .

For a given Markov model of order N, we can factor out the symmetry ef-
fects due to any Markov model of lower order M. For each N-mer and its
reverse complement we can get the ratio (or the difference) between the num-
ber of expected counts according to the model of order N and to the model of
order M used factorially. The residual symmetry can be measured by looking
at the correlation of the ratios between N-mers and their respective reverse
complements. If we use this approach in yeast, we find a considerable amount
of residual symmetry in the higher-order models that cannot be entirely ex-
plained, for instance, by the symmetry of the first-order composition (table
9.3).

Thus higher-order Markov models allow us to study Chargaff’s second par-
ity rule in great detail. Chargaff’s second parity rule is of course not true lo-
cally, and it is also violated in some viral genomes. There are also well-known
compositional biases around the origin of replication in prokaryotic genomes.
But by and large it is remarkably valid and probably results from a complex
mixture of influences operating at different scales. It is clear that because of

234 Probabilistic Graphical Models in Bioinformatics

DNA W ORFs C ORFs Total
Chr. 1 56 51 107
Chr. 2 200 226 426
Chr. 3 75 99 174
Chr. 4 400 419 819
Chr. 5 146 141 287
Chr. 6 67 67 134
Chr. 7 298 273 571
Chr. 8 153 131 284
Chr. 9 106 118 224
Chr. 10 201 186 387
Chr. 11 175 161 336
Chr. 12 261 286 547
Chr. 13 246 244 490
Chr. 14 219 201 420
Chr. 15 295 278 573
Chr. 16 256 244 500
Total 3154 3125 6279

Table 9.4: Number of ORFs of Length Greater than 100 per Strand and per Chromosome in
Yeast, Excluding tRNA and rRNA Genes. The total excludes the mitochondrial chromosome.

Chargaff’s first parity rule, any force operating on DNA that does not distin-
guish between the two strands will contribute to Chargaff’s second parity rule.
Mutations induced for instance by radiation are likely to fall in this class. Like-
wise, the replication machinery of the cell must be optimized for producing
the same number of complementary base pairs, and this also should favor the
first-order version of Chargaff’s second parity rule. Other effects under study
may be more long-ranged, such as the approximately symmetric distribution
of genes on each strand (table 9.4). This distribution could also be modeled
using probabilistic Markov models.

9.3 Markov Models and Gene Finders

One the most important applications of Markov and graphical models to se-
quence analysis has been the construction of various gene finders and gene
parsers such as GeneMark and GeneMark.hmm [81, 82, 367], GLIMMER [461],
GRAIL [529], GenScan [107] and now GenomeScan, and Genie [441]. Our goal
here is not to give an exhaustive list of all gene finders, nor to describe each
one of them in detail, nor to compare their respective merits and drawbacks,

Markov Models and Gene Finders 235

Figure 9.5: Graphical Representation of GeneMark for Prokaryotic Genomes. For prokaryotic
genomes, typical high-level modules include modules for coding region and non-coding regions.

but to provide a synthetic overview showing how they can be constructed and
understood in terms of probabilistic graphical models.

Integrated gene finders and gene parsers typically have a modular archi-
tecture and often share the same basic strategies. They comprise two basic
kinds of elementary modules aimed at detecting boundary elements or vari-
able length regions. Examples of boundary modules associated with local-
ized signals include splice sites, start and stop codons, various transcription
factor and other protein binding sites (such as the TATA-box), transcription
start points, branch points, terminators of transcription, polyadenylation sites,
ribosomal binding sites, topoisomerase I cleavage sites, and topoisomerase
II binding sites. Region modules instead are usually associated with exons,
introns, and intergenic regions. Exon models in turn are often subdivided
into initial, internal, and terminal exons due to the well-known statistical dif-

236 Probabilistic Graphical Models in Bioinformatics

Figure 9.6: Graphical Representation of GeneMark.hmm for Prokaryotic Genomes.

ferences among these elements. Ultimately, computational models of entire
genomes must include also other regions, including various kinds of repetitive
regions, such as Alu sequences.

High-level graphical representations of several genefinders are displayed
in figures 9.5, 9.6, 9.7, and 9.8. reprinted here with permission from the au-
thors. The high-level representations and the underlying graphical models
are of course significantly more complex for eukaryotic gene finders than for
prokaryotic ones, due for instance to the presence of exons and introns. It is
important to observe that the graphs in these figures do not directly represent
Bayesian networks but rather transition state diagrams, in the same way the
standard HMM architectures of chapter 7 do not correspond to the Bayesian
network representation of HMMs that we saw in the first section of this chap-
ter. In fact, most genefinders can be viewed as HMMs, or variations of HMMs,
at least at some level.

The high-level nodes in these graphs represent boundary or region mod-
ules. There are some differences between the gene finders in the choice of
modules and in how the modules are implemented and trained. In the case of
boundary modules, early implementations used simple consensus sequences.
These have evolved into profiles or weight matrix schemes, which are spe-
cial cases of first-order Markov models in which scores are interpreted as log-
likelihoods or log ratios, and Markov models. Because the DNA alphabet has
only four letters, higher-order Markov models can be used when sufficient
training data is available. Neural networks, which algebraically can be viewed

Markov Models and Gene Finders 237

Figure 9.7: Graphical Representation of High-level States of GeneMark.hmm for Eukaryotic
Genomes. The model include states corresponding to initial and terminal exons, internal exons,
introns, in all reading frames and for the direct and reverse strand.

238 Probabilistic Graphical Models in Bioinformatics

Figure 9.8: Graphical Representation of Hidden States in GenScan. Similar to figure 9.7. Notice
the additional states, for instance, for poly-A signals.

Hybrid Models and Neural Network Parameterization of Graphical Models 239

as generalization of weight matrices, are also used in some boundary modules.
Variable length regions are usually modeled with Markov models of order

up to 6. In particular, coding regions have well known 3- and 6-periodicities
that can easily be incorporated into Markov models of order 3 or 6. Exon mod-
els must take into account reading frames and knowledge of reading frame
must somehow propagate through the intervening sequence to the next exon.
The state connectivity can be used to model the different reading frames but
also the length distribution of each component, i.e. how long the system ought
to remain in each state. Such durations can also be modeled or adjusted using
empirical distributions extracted from the available data, or by fitting theoret-
ical distributions to the training data (see also [154]). Because genes can occur
on either strand in the 5’ to 3’ orientation, gene finders must be able to model
both situations in mirror fashion. A gene casts a “shadow” on the opposite
strand and therefore a single strand can be scanned to find genes located on
either strand.

The resulting models can be used to “scan” and parse large genomic re-
gions using dynamic programming and Viterbi paths (maximum likelihood,
maximum a posteriori, or even conditional maximum likelihood as in [339]),
which, depending on the size of the regions, can be computationally demand-
ing. The “hits” can be further filtered and improved by leveraging the infor-
mation about coding regions contained in large ESTs and protein databases,
including databases of HMM models such as Pfam, using alignments. The pa-
rameters of the various boundary or region models can be fitted to different
organisms, or even different genomic regions with different compositional bi-
ases or different gene classes, resulting in different specialized gene finders
and gene parsers.

Although the performance of gene finders is not easy to measure and com-
pare, overall it has significantly improved over the past few years. These pro-
grams now play an important role in genome annotation projects. Several
significant challenges remain, however, such as creating better models of reg-
ulatory regions and of alternative splicing.

9.4 Hybrid Models and Neural Network Parameterization of
Graphical Models

9.4.1 The General Framework

In order to overcome the limitations of HMMs, we shall look here at the pos-
sibility of combining HMMs and NNs to form hybrid models that contain the
expressive power of artificial NNs with the sequential time series aspect of
HMMs. In this section we largely follow the derivation in [40]. There are a

240 Probabilistic Graphical Models in Bioinformatics

number of ways in which HMMs and NNs can be combined. Hybrid archi-
tectures have been used in both speech and cursive handwriting recognition
[84, 126]. In many of these applications, NNs are used as front-end proces-
sors to extract features, such as strokes, characters, and phonemes. HMMs
are then used in higher processing stages for word and language modeling1.
The HMM and NN components are often trained separately, although there are
some exceptions [57]. In a different type of hybrid architecture, described in
[126], the NN component is used to classify the pattern of likelihoods pro-
duced by several HMMs. Here, in contrast, we will cover hybrid architectures
[40] where the HMM and NN components are inseparable. In these architec-
tures, the NN component is used to reparameterize and modulate the HMM
component. Both components are trained using unified algorithms in which
the HMM dynamic programming and the NN backpropagation blend together.
But before we proceed with the architectural details, it is useful to view the
hybrid approach from the general probabilistic standpoint of chapter 2 and of
graphical models.

The General Hybrid Framework

From Chapter 2, we know that the fundamental objects we are interested in
are probabilistic models M(θ) of our data, parameterized here by θ. Problems
arise, however, whenever there is a mismatch between the complexity of the
model and the data. Overly complex models result in overfitting, overly simple
models in underfitting.

The general hybrid modeling approach attempts to address both problems.
When the model is too complex, it is reparameterized as a function of a simpler
parameter vector w, so that θ = f(w). This is the single-model case. When
the data are too complex, the only solution, short of resorting to a different
model class, is to model the data with several M(θ)s, with θ varying discretely
or continuously as M(θ) covers different regions of data space. Thus the pa-
rameters must be modulated as a function of the input, or context, in the
form θ = f(I). This is the multiple-model case. In the general case, both may
be desirable, so that θ = f(w, I). This approach is hybrid in the sense that
the function f can belong to a different model class. Since neural networks
have well-known universal approximation properties (see chapter 5), a natural
approach is to compute f with an NN, but other representations are possible.
This approach is hierarchical because model reparameterizations can easily be
nested at several levels. Here, for simplicity, we confine ourselves to a single
level of reparameterization.

1In molecular biology applications, NNs could conceivably be used to interpret the analog
output of various sequencing machines, although this is not our focus here.

The Single-Model Case 241

Input: HMM states

Output emission distributions

Output emission distribution

Input: HMM states

Hidden layer

(B)

(A)

Figure 9.9: From HMM to hybrid HMM/NN. A: Schematic representation of simple HMM/NN
hybrid architecture used in [41]. Each HMM state has its own NN. Here, the NNs are extremely
simple, with no hidden layer and an output layer of softmax units computing the state emission
or transition parameters. For simplicity only output emissions are represented. B: Schematic
representation of an HMM/NN architecture where the NNs associated with different states (or
different groups of states) are connected via one or several hidden layers.

9.5 The Single-Model Case

Basic Idea

In a general HMM, an emission or transition vector θ is a function of the state
i only: θ = f(i). The first basic idea is to have a NN on top of the HMM for the
computation of the HMM parameters, that is, for the computation of the func-
tion f . NNs are universal approximators, and therefore can represent any f .
More important perhaps, NN representations of the parameters make possible
the flexible introduction of many possible constraints. For simplicity, we dis-
cuss emission parameters only in a protein context, but the approach extends
immediately to transition parameters as well, and to all other alphabets.

In the reparameterization of (7.33), we can consider that each of the HMM
emission parameters is calculated by a small NN, with one input set to 1 (bias),
no hidden layers, and 20 softmax output units (figure 9.9A). The connections

242 Probabilistic Graphical Models in Bioinformatics

between the input and the outputs are the wiX parameters. This can be gen-
eralized immediately by having arbitrarily complex NNs for the computation
of the HMM parameters. The NNs associated with different states can also
be linked with one or several common hidden layers, the overall architecture
being dictated by the problem at hand (figure 9.9B). In the case of a discrete
alphabet, however, such as for proteins, the emission of each state is a multi-
nomial distribution, and therefore the output of the corresponding network
should consist of |A| normalized exponential units.

Example

As a simple example, consider the hybrid HMM/NN architecture of figure 9.10,
consisting of the following

1. Input layer: one unit for each state i. At each time, all units are set to 0,
except one that is set to 1. If unit i is set to 1, the network computes eiX,
the emission distribution of state i.

2. Hidden layer: |H| hidden units indexed by h, each with transfer function
fh (logistic by default) and bias bh (|H| < |A|).

3. Output layer: |A| softmax units or normalized exponentials, indexed by
X, with bias bX.

4. Connections: α = (αhi connects input position i to hidden unit h). β =
(βXh connects hidden unit h to output unit X). No confusion with the
HMM forward or backward variable should be possible.

For input i, the activity in the hth unit in the hidden layer is given by

fh(αhi + bh). (9.3)

The corresponding activity in the output layer is

eiX = e−[
∑
h βXhfh(αhi+bh)+bX]∑

Y e−[
∑
h βYhfh(αhi+bh)+bY] . (9.4)

Remarks

For hybrid HMM/NN architectures, a number of points are worth noting:

• The HMM states can be partitioned into groups, with different networks
for different groups. In protein applications one can use different NNs for
insert states and for main states, or for different groups of states along
the protein sequence corresponding to different regions (hydrophobic,
hydrophilic, alpha-helical, etc.).

The Single-Model Case 243

S E

X

Figure 9.10: Simple Hybrid Architecture. Schematic representation of HMM states. Each state is
fully interconnected to the common hidden layer. Each unit in the hidden layer is fully intercon-
nected to each normalized exponential output unit. Each output unit calculates the emission
probability eiX.

• HMM parameter reduction can easily be achieved using small hidden lay-
ers with |H| hidden units and |H| small compared with N or |A|. In figure
9.10, with |H| hidden units and considering only main states, the num-
ber of parameters is |H|(N + |A|) in the HMM/NN architecture, versus
N|A| in the corresponding simple HMM. For protein models, this yields
roughly |H|N parameters for the HMM/NN architecture, versus 20N for
the simple HMM. |H| = |A| is roughly equivalent to (7.33).

• The number of parameters can be adaptively adjusted to variable training
set sizes by changing the number of hidden units. This is useful in envi-
ronments with large variations in database sizes, as in current molecular
biology applications.

• The entire bag of NN techniques—such as radial basis functions, multiple
hidden layers, sparse connectivity, weight sharing, Gaussian priors, and
hyperparameters—can be brought to bear on these architectures. Sev-
eral initializations and structures can be implemented in a flexible way.
By allocating different numbers of hidden units to different subsets of
emissions or transitions, it is easy to favor certain classes of paths in
the models when necessary. In the HMM of figure 7.2 one must in gen-
eral introduce a bias favoring main states over insert states prior to any
learning. It is easy also to link different regions of a protein that may

244 Probabilistic Graphical Models in Bioinformatics

have similar properties by weight sharing and other types of long-range
correlations. By setting the output bias to the proper values, the model
can be initialized to the average composition of the training sequences
or any other useful distribution.

• Classical prior information in the form of substitution matrices is eas-
ily incorporated. Substitution matrices ([8]; see also chapters 1 and 10)
can be computed from databases, and essentially produce a background
probability matrix P = (pXY), where pXY is the probability that X will be
changed into Y over a certain evolutionary time. P can be implemented
as a linear transformation in the emission NN.

• Although HMMs with continuous emission distributions are outside the
scope of this book, they can also be incorporated in the HMM/NN frame-
work. The output emission distributions can be represented in the form
of samples, moments, and/or mixture coefficients. In the classical mix-
ture of Gaussians case, means, covariances, and mixture coefficients can
be computed by the NN. Likewise, additional HMM parameters, such as
exponential parameters to model the duration of stay in any given state,
can be calculated by an NN.

Representation in Simple HMM/NN Architectures

Consider the particular HMM/NN described above (figure 9.10), where a subset
of the HMM states is fully connected to |H| hidden units, and the hidden units
are fully connected to |A| softmax output units. The hidden unit bias is not
really necessary in the sense that for any HMM state i, any vector of biases
bh, and any vector of connections αhi, there is a new vector of connections
α′hi that produces the same vector of hidden unit activations with 0 bias. This
is not true in the general case—for example, as soon as there are multiple
hidden layers, or if the input units are not fully interconnected to the hidden
layer. We have retained the biases for the sake of generality, and also because
even if they do not enlarge the space of possible representations, they may
still facilitate the learning procedure. Similar remarks hold more generally
for the transfer functions. With an input layer fully connected to a single
hidden layer, the same hidden layer activation can be achieved with different
activation functions by modifying the weights.

A natural question to ask is “What is the representation used in the hid-
den layer, and what is the space of emission distributions achievable in this
fashion?” Each HMM state in the network can be represented by a point in the
[−1,1]|H| hypercube. The coordinates of a point are the activities of the |H|
hidden units. By changing its connections to the hidden units, an HMM state

The Single-Model Case 245

can occupy any position in the hypercube. Thus, the space of emission distri-
butions that can be achieved is entirely determined by the connections from
the hidden layer to the output layer. If these connections are held fixed, then
each HMM state can select a corresponding optimal position in the hypercube
where its emission distribution, generated by the NN weights, is as close as
possible to the truly optimal distribution—for instance, in cross-entropy dis-
tance. During on-line learning, all parameters are learned at the same time, so
this may introduce additional effects.

Further to understand the space of achievable distributions, consider the
transformation from hidden to output units. For notational convenience, we
introduce one additional hidden unit numbered 0, always set to 1, to express
the output biases in the form bX = βX0. If, in this extended hidden layer, we
turn single hidden units to 1, one at a time, we obtain |H|+1 different emission
distributions in the output layer Ph = (phX) (0 ≤ h ≤ |H|), with

phX =
e−βXh∑
Y∈A e−βYh

. (9.5)

Consider now a general pattern of activity in the hidden layer of the form
(1, µ1, . . . , µ|H|). By using (9.4) and (9.5), the emission distribution in the output
layer is then

eiX = e−
∑
h=0 |H|βXhµh∑

Y∈A e−
∑
h=0 |H|βYhµh =

∏
h∈H[phX]µh[

∑
Y∈A e−βYh]µh∑

Y∈A
∏
h∈H[phY]µh[

∑
Z∈A e−βZh]µh

. (9.6)

After simplification, this yields

eiX =
∏
h∈H[phX]µh∑

Y∈A
∏
h∈H[phY]µh

. (9.7)

Therefore, all the emission distributions achievable by the NN have the form
of (9.7), and can be viewed as “combinations” of |H|+1 fundamental distribu-
tions Ph associated with each single hidden unit. In general, this combination
is different from a convex linear combination of the Phs. It consists of three
operations: (1) raising each component of Ph to the power µh, the activity of
the hth hidden unit; (2) multiplying all the corresponding vectors component-
wise; (3) normalizing. In this form, the hybrid HMM/NN approach is different
from a mixture of Dirichlet distributions approach.

Learning

HMM/NN architectures can be optimized according to ML or MAP estimation.
Unlike HMMs, for hybrid HMM/NN architectures the M step of the EM algorithm

246 Probabilistic Graphical Models in Bioinformatics

cannot, in general, be carried out analytically. However, one can still use some
form of gradient descent using the chain rule, by computing the derivatives
of the likelihood function with respect to the HMM parameters, and then the
derivatives of the HMM parameters with respect to the NN parameters. The
derivatives of the prior term, when present, can easily be incorporated. It is
also possible to use a Viterbi learning approach by using only the most likely
paths. The derivation of the learning equations is left as an exercise and can
also be found in [40]. In the resulting learning equations the HMM dynamic
programming and the NN backpropagation components are intimately fused.
These algorithms can also be seen as GEM (generalized EM) algorithms [147].

9.5.1 The Multiple-Model Case

The hybrid HMM/NN architectures described above address the first limita-
tion of HMMs: the control of model structure and complexity. No matter how
complex the NN component, however, the final model so far remains a single
HMM. Therefore the second limitation of HMMs, long-range dependencies, re-
mains. This obstacle cannot be overcome simply by resorting to higher-order
HMMs. Most often these are computationally intractable. A possible approach
is to try to build Markov models with variable memory length by introducing
a new state for each relevant context. This requires a systematic method for
determining relevant contexts of variable lengths directly from the data. Fur-
thermore, one must hope the number of relevant contexts remains small. An
interesting approach along these lines can be found in [448], where English is
modeled as a Markov process with variable memory length of up to ten letters
or so.

To address the second limitation without resorting to a different model
class, one must consider more general HMM/NN hybrid architectures, where
the underlying statistical model is a set of HMMs. To see this, consider again
the X−Y/X′−Y′ problem mentioned at the end of chapter 8. Capturing such de-
pendencies requires variable emission vectors at the corresponding locations,
together with a linking mechanism. In this simple case, four different emission
vectors are needed: ei, ej, e′i and e′j . Each one of these vectors must assign a
high probability to the letters X,Y,X′, and Y′, respectively. More important,
there must be some kind of memory, that is, a mechanism to link the distribu-
tions at i and j, so that ei and ej are used for sequence O and e′i and e′j are
used for sequence O′. The combination of ei and e′j (or e′i and ej) should be
rare or not allowed, unless required by the data. Thus ei and ej must belong
to a first HMM and e′i and e′j to a second HMM, with the possibility of switch-
ing from one HMM to the other as a function of input sequence. Alternatively,
there must be a single HMM but with variable emission distributions, again

The Single-Model Case 247

modulated by some input.
In both cases, then, we consider that the emission distribution of a given

state depends not only on the state itself but also on an additional stream of
information I . That is now θ = f(i, I). Again, in a multiple-HMM/NN hybrid
architecture this more complex function f can be computed by an NN. De-
pending on the problem, the input I can assume different forms, and may be
called a “context” or “latent” variable. When feasible, I may even be equal to
the currently observed sequence O. Other inputs are possible, however, over
different alphabets. An obvious candidate in protein modeling tasks would be
the secondary structure of the protein (alpha-helices, beta-sheets and coils). In
general, I could also be any other array of numbers representing latent vari-
ables for the HMM modulation [374]. We briefly consider two examples.

Mixtures of HMM Experts

A first possible approach is to consider a model M that is a mixture distribu-
tion (2.23) of n simpler HMMs’ M1, . . . ,Mn. For any sequence O, then,

P(O|M) =
n∑
i=1

λiP(O|Mi), (9.8)

where the mixture coefficients λi satisfy λi ≥ 0 and
∑
i λi = 1. In generative

mode, sequences are produced at random by each individual HMM, and Mi
is selected with probability λi. Such a system can be viewed as a larger sin-
gle HMM, with a starting state connected to each one of the HMMs’ Mi, with
transition probability λi (figure 8.5). As we have seen in chapter 8, this type
of model is used in [334] for unsupervised classification of globin protein se-
quences. Note that the parameters of each submodel can be computed by an
NN to create an HMM/NN hybrid architecture. Since the HMM experts form a
larger single HMM, the corresponding hybrid architecture is identical to what
we saw in section 9.2. The only peculiarity is that states have been replicated,
or grouped, to form different submodels. One further step is to have variable
mixture coefficients that depend on the input sequence or some other relevant
information. These mixture coefficients can be computed as softmax outputs
of an NN, as in the mixture-of-experts architecture of [277].

Mixtures of Emission Experts

A different approach is to modulate a single HMM by considering that the
emission parameters eiX should also be a function of the additional input I .
Thus eiX = P(i,X, I). Without any loss of generality, we can assume that P is a

248 Probabilistic Graphical Models in Bioinformatics

Input: HMM states

Output emission distribution

Emission
experts

Hidden layer

Input: external or context

Control network

Figure 9.11: Schematic Representation of a General HMM/NN Architecture in Which the HMM Pa-
rameters Are Computed by an NN of Arbitrary Complexity That Operates on State Information,
but Also on Input or Context. The input or context is used to modulate the HMM parameters,
for instance, by switching or mixing different parameter experts. For simplicity, only emission
parameters are represented, with three emission experts and a single hidden layer. Connections
from the HMM states to the control network, and from the input to the hidden layer, are also
possible.

mixture of n emission experts Pj

P(i,X, I)=
n∑
j=1

λj(i,X, I)Pj(i,X, I). (9.9)

In many interesting cases, λj is independent of X, resulting in the probability
vector equation over the alphabet

P(i, I) =
n∑
j=1

λj(i, I)Pj(i, I). (9.10)

If n = 1 and P(i, I) = P(i), we are back to a single HMM. An important special
case is derived by further assuming that λj does not depend on i, and Pj(i,X, I)
does not depend on I explicitly. Then

P(i, I)=
n∑
j=1

λj(I)Pj(i). (9.11)

This provides a principled way to design the top layers of general hybrid
HMM/NN architectures, such as the one depicted in figure 9.11.

The Single-Model Case 249

The components Pj are computed by an NN, and the mixture coefficients
by another gating NN. Naturally, many variations are possible and, in the most
general case, the switching network can depend on the state i, and the dis-
tributions Pj on the input I . In the case of protein modeling, if the switch-
ing depends on position i, the emission experts could correspond to different
types of regions, such as hydrophobic and hydrophilic, rather than different
subclasses within a protein family.

Learning

For a given setting of all the parameters, a given observation sequence, and
a given input vector I , the general HMM/NN hybrid architectures reduce to a
single HMM. The likelihood of a sequence, or some other measure of its fitness,
with respect to such an HMM can be computed by dynamic programming. As
long as it is differentiable in the model parameters, we can then backpropagate
the gradient through the NN, including the portion of the network depending
on I , such as the control network of figure 9.11. With minor modifications,
this leads to learning algorithms similar to those described above. This form
of learning encourages cooperation between the emission experts of figure
9.11. As in the usual mixture-of-experts architecture [277], it may be useful
to introduce some degree of competition among the experts, so that each of
them specializes on a different subclass of sequences.

When the input space has been selected but the value of the relevant input
I is not known, it is possible to learn its values together with the model pa-
rameters using Bayesian inversion. Consider the case where there is an input
I associated with each observation sequence O, and a hybrid model with pa-
rameters w, so that we can compute P(O|I,w). Let P(I) and P(w) denote our
priors on I and w. Then

P(I|O,w) = P(O|I,w)P(I)
P(O|w) , (9.12)

with

P(O|w) =
∫
I
P(O|I,w)P(I)dI. (9.13)

The probability of the model parameters, given the data, can then be calcu-
lated, again using Bayes’s theorem:

P(w|D) = P(D|w)P(w)
P(D)

= [
∏
O P(O|w)]P(w)

P(D)
, (9.14)

assuming the observations are independent. These parameters can be opti-
mized by gradient descent on − log P(w|D). The main step is the evaluation

250 Probabilistic Graphical Models in Bioinformatics

S

S

S

S

S

S

VH

VL

CL

CH

S

S

S

S

S

S

S

S

VH

VL

CL

CH

CH CH

Antigen binding domains

Heavy chain

Light chain

Constant region

Variable region

S
SS

S
S S
S S

S

S
S

S

S

S

S

S

S

S

CHCH

Figure 9.12: A Schematic Model of the Structure of a Typical Human Antibody Molecule Com-
posed of Two Light (L) and Two Heavy (H) Polypeptide Chains. Interchain and intrachain disul-
fide bonds are indicated (S). Cysteine residues are associated with the bonds. two identical active
sites for antigen binding, corresponding to the variable regions, are located in the arms of the
molecule.

of the likelihood P(O|w) and its derivatives with respect to w, which can be
done by Monte Carlo sampling. The distribution on the latent variables I is cal-
culated by (9.12). The work in [374] is an example of such a learning approach.
The density network used for protein modeling can be viewed essentially as a
special case of HMM/NN hybrid architecture where each emission vector acts
as a softmax transformation on a low-dimensional, real “hidden” input I , with
independent Gaussian priors on I and w. The input I modulates the emission
vectors, and therefore the underlying HMM, as a function of sequence.

9.5.2 Simulation Results

We now review a simple application of the principles behind HMM/NN single-
model hybrid architectures, demonstrated in [40], on the immunoglobulin pro-

The Single-Model Case 251

tein family. Immunoglobulins, or antibodies, are proteins produced by B cells
that bind with specificity to foreign antigens in order to neutralize them or
target their destruction by other effector cells. The various classes of im-
munoglobulins are defined by pairs of light and heavy chains that are held
together principally by disulfide bonds. Each light and heavy chain molecule
contains one variable (V) region and one (light) or several (heavy) constant (C)
regions (figure 9.12). The V regions differ among immunoglobulins, and pro-
vide the specificity of the antigen recognition. About one third of the amino
acids of the V regions form the hypervariable sites, responsible for the diver-
sity of the vertebrate immune response. The database is the same as that used
in [41], and consists of human and mouse heavy chain immunoglobulin V re-
gion sequences from the Protein Identification Resources (PIR) database. It cor-
responds to 224 sequences with minimum length 90, average length N = 117,
and maximum length 254.

The immunoglobulin V regions were first modeled using a single HMM [41],
similar to the one in figure 7.3, containing a total of 52N + 23 = 6107 ad-
justable parameters. Here we consider a hybrid HMM/NN architecture with
the following characteristics. The basic model is an HMM with the architecture
of figure 7.3. All the main-state emissions are calculated by a common NN with
two hidden units. Likewise, all the insert-state emissions are calculated by a
common NN with one hidden unit. Each state transition distribution is calcu-
lated by a different softmax network. Neglecting edge effects, the total number
of parameters of this HMM/NN architecture is 1507: (117 × 3 × 3) = 1053 for
the transitions and (117 × 3 + 3 + 3 × 20 + 40) = 454 for the emissions, in-
cluding biases. This architecture is used for demonstration purposes and is
not optimized. We suspect that the number of parameters could be further
reduced.

The hybrid architecture is then trained online, using both gradient descent
and the corresponding Viterbi version. The training set consists of a random
subset of 150 sequences identical to the training set used in the experiments
with a simple HMM. All weights from the input to the hidden layer are initial-
ized with independent Gaussians, with mean 0 and standard deviation 1. All
the weights from the hidden layer to the output layer are initialized to 1. This
yields a uniform emission probability distribution on all the emitting states.2

Note that if all the weights are initialized to 1, including those from input layer
to hidden layer, then the hidden units cannot differentiate from one another.
The transition probabilities out of insert or delete states are initialized uni-
formly to 1/3. We introduce, however, a small bias along the backbone that

2With Viterbi learning, this is probably better than a nonuniform initialization, such as the
average composition, since a nonuniform initialization may introduce distortions in the Viterbi
paths.

252 Probabilistic Graphical Models in Bioinformatics

1 24
F37262 ---------------------------AELM--KPGASVKISCKATG--YKFSS----Y--------WIEWVKQRPGHGLEWIGENL-
B27563 ----------------------LQQPGAELV--KPGASVKLSCKASG--YTFTN----Y--------WIHWVKQRPGRGLEWIGRID-
C30560 -------------------QVHLQQSGAELV--KPGASVKISCKASG--YTFTS----Y--------WMNWVKQRPGQGLEWIGEID-
G1HUDW -------------------QVTLRESGPALV--RPTQTLTLTCTFSG--FSLSGetmc----------VAWIRQPPGEALEWLAWDI-
S09711 mkhlwfflllvraprwclsQVQLQESGPGLV--KPSETLSVTCTVSG------------gsvsssglYWSWIRQPPGKGPEWIGYIY-
B36006 ---------------------------------------KISCKGSG--YSFTS----Y--------WIGWVRQMPGKGLEWMGIIY-
F36005 -------------------QVQLVESGGGVV--QPGRSLRLSCAASG--FTFSS----Y--------AMHWVRQAPGKGLEWVAVIS-
A36194 mgwsfiflfllsvtagvhsEVQLQQSGAELV--RAGSSVKMSCKASG--YTFTN----Y--------GINWVKQRPGQGLEWIGYQS-
A31485 -------------------EVKLDETGGGLV--QPGRPMKLSCVASG--FTFSD----Y--------WMNWVRQSPEKGLEWVAQIRN
D33548 -------------------QVQLVQSGAEVK--KPGASVKVSCEASG--YTFTG----H--------YMHWVRQAPGQGLEWMGWIN-
AVMSJ5 -------------------EVKLLESGGGLV--QPGGSLKLSCAASG--FDFSK----Y--------WMSWVRQAPGKGLEWIGEIH-
D30560 -------------------QVQLKQSGPSLV--QPSQSLSITCTVSD--FSLTN----F--------GVHWVRQSPGKGLEWLGVIW-
S11239 melglswifllailkgvqcEVQLVESGGGLV--QPGRSLRLSCAASG--FTFND----Y--------AMHWVRQAPGKGLEWVSGIS-
G1MSAA -------------------EVQLQQSGAELV--KAGSSVKMSCKATG--YTFSS----Y--------ELYWVRQAPGQGLEDLGYIS-
I27888 -------------------EVQLVESGGGLV--KPGGSLRLSCAASG--FTFSS----Y--------AMSWVRQSPEKRLEWVADIS-
PL0118 ---------------------QLQESGSGLV--KPSQTLSLTCAVSGgsISSGG----Y--------SWSWIRQPPGKGLEWIGYIY-
PL0122 -------------------EVQLVESGGGLV--QPGGSLKLSCAASG--FTFSG----S--------AMHWVRQASGKGLEWVGRIRS
A33989 -------------------DVQLDQSESVVI--KPGGSLKLSCTASG--FTFSS----Y--------WMSWVRQAPGKGLQWVSRISS
A30502 -------------------EVQLQQSGPELV--KPGASVKMSCKASG--DTFTS----S--------VMHWVKQKPGQGLEWIGYIN-
PH0097 -------------------DVKLVESGGGLV--KPGGSLKLSCAASG--FTFSS----Y--------IMSWVRQTPEKRLEWVATIS-

60 70 80 90 100
F37262 -P-G-SDSTKYNEKFKGKATFTADTSSNTAYMQLSSLTSEDSAVYYCARnyygssnlfay---------------------------
B27563 -P-N-SGGTKYNEKFKNKATLTINKPSNTAYMQLSSLTSDDSAVYYCARgydysyya-------------MDYWGQGTsvtvss---
C30560 -P-S-NSYTNNNQKFKNKATLTVDKSSNTAYMQLSSLTSEDSAVYYCARwgtgsswg------------WFAYWGQGTlvtvsa---
G1HUDW ----lNDDKYYGASLETRLAVSKDTSKNQVVLSMNTVGPGDTATYYCARscgsq---------------YFDYWGQGIlvtvss---
S09711 ---Y-SGSTNYNPSLRSRVTISVDTSKNQFSLKLGSVTAADTAVYYCARvlvsrtsisqysy-------YMDVWGKGTtvtvss---
B36006 -P-G-DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARrrymgygdqa-----------FDIWGQGTmvtvss---
F36005 -Y-D-GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR--------------DRKASDAFDIWGQGTmvtvss---
A36194 -T-G-SFYSTYNEKVKGKTTLTVDKSSSTAYMQLRGLTSEDSAVYFCARsnyyggsys------------FDYWGQGTtltvss---
A31485 KP-Y-NYETYYSDSVKGRFTISRDDSKSSVYLQMNNLRVEDMGIYYCTGsyyg-----------------MDYWGQGTsvtvss---
D33548 -P-N-SGGTNYAEKFQGRVTITRDTSINTAYMELSRLRSDDTAVYYCARasycgydcyy----------FFDYWGQGTlvtvss---
AVMSJ5 -P-D-SGTINYTPSLKDKFIISRDNAKNSLYLQMSKVRSEDTALYYCARlhyygyn---------------AYWGQGTlvtvsae--
D30560 -P-R-GGNTDYNAAFMSRLSITKDNSKSQVFFKMNSLQADDTAIYYCTKegyfgnydya-----------MDYWGQGTsvtvss---
S11239 --wD-SSSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDMALYYCVKgrdyydsggyftva-------FDIWGQGTmvtvss---
G1MSAA -S-S-SAYPNYAQKFQGRVTITADESTNTAYMELSSLRSEDTAVYFCAVrvisryfdg---------------WGQGTlv-------
I27888 -S-G-GSFTYYPDTVTGRFTISRDDAQNTLYLEMNSLRSEDTAIYYCTRdeedpttlvapfa--------MDYWGQGTsvtvs----
PL0118 ---H-SGSTYYNPSLKSRVTISVDRSKNQFSLKLSSVTAADTAVYYCAR--------------------------------------
PL0122 KA-N-SYATAYAASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCTR--------------------------------------
A33989 KA-D-GGSTYYADSVKGRFTISRDNNNNKLYLQMNNLQTEDTAVYYCTRearwggw-------------YFEHWGQGTmvtvts---
A30502 -P-Y-NDGTKYNEKFKGKATLTSDKSSSTAYMELSSLTSEDSAVYYCARgg-------------------FAYWGQGTlvtv-----
PH0097 -S-G-GRYTYYSDSVKGRFTISRDNAKNTLYLQMSSLRSEDTAMYYSTAsgds-----------------FDYWGQGTtltvssak-

Figure 9.13: Multiple Alignment of 20 Immunoglobulin Sequences, Randomly Extracted from
the Training and Validation Data Sets. Validation sequences: F37262, G1HUDW, A36194,
A31485, D33548, S11239, I27888, A33989, A30502. Alignment is obtained with a hybrid
HMM/NN architecture trained for 10 cycles, with two hidden units for the main-state emissions
and one hidden unit for the insert-state emissions. Lowercase letters correspond to emissions
from insert states. Note that the signal peptide on some of the sequences is captured as repeated
transitions through the first insert state in the model.

favors main-to-main transitions, in the form of a nonsymmetric Dirichlet prior.
This prior is equivalent to introducing a regularization term in the objective
function that is equal to the logarithm of the backbone transition path. The
regularization constant is set to 0.01 and the learning rate to 0.1. Typically, 10
training cycles are more than sufficient to reach equilibrium.

In figure 9.13, we display the multiple alignment of 20 immunoglobulin
sequences, selected randomly from both the training and the validation sets.
The validation set consists of the remaining 74 sequences. This alignment
is very stable between 5 and 10 epochs. It corresponds to a model trained
using Viterbi learning for 10 epochs. This alignment is similar to the multiple
alignment previously derived with a simple HMM, having more than four times

The Single-Model Case 253

as many parameters. The algorithm has been able to detect most of the salient
features of the family. Most important, the cysteine residues (C) toward the
beginning and the end of the region (positions 24 and 100 in this multiple
alignment), which are responsible for the disulfide bonds that hold the chains,
are perfectly aligned. The only exception is the last sequence (PH0097), which
has a serine (S) residue in its terminal portion. This is a rare but recognized
exception to the conservation of this position. A fraction of the sequences
in the data set came with a signal peptide sequence in the N-terminal (see
section 6.4). We did not remove them prior to training. The model is capable
of detecting and accommodating these signal peptides by treating them as
initial repeated inserts, as can be seen from the alignment of three of the
sequences (S09711, A36194, S11239). This multiple alignment also contains a
few isolated problems, related in part to the overuse of gaps and insert sates.
Interestingly, this is most evident in the hypervariable regions, for instance, at
positions 30–35 and 50–55. These problems should be eliminated with a more
careful selection of hybrid architecture and/or regularization. Alignments in
this case did not seem to improve with use of gradient descent and/or a larger
number of hidden units, up to four.

In figure 9.14, we display the activity of the two hidden units associated
with each main state. For most states, at least one of the activities is sat-
urated. The activities associated with the cysteine residues responsible for
the disulfide bridges (main states 24 and 100) are all saturated and are in the
same corner (−1,+1). Points close to the center (0,0) correspond to emission
distributions determined by the bias only.

9.5.3 Summary

A large class of hybrid HMM/NN architectures has been described. These archi-
tectures improve on single HMMs in two complementary directions. First, the
NN reparameterization provides a flexible tool for the control of model com-
plexity, the introduction of priors, and the construction of an input-dependent
mechanism for the modulation of the final model. Second, modeling a data set
with multiple HMMs allows the coverage of a larger set of distributions and the
expression of nonstationarity and correlations inaccessible to single HMMs.
Similar ideas have been introduced in [58] using the notion of input/output
HMMs (IOHMMs). The HMM/NN approach is meant to complement rather than
replace many of the existing techniques for incorporating prior information in
sequence models.

Two important issues for the success of a hybrid HMM/NN architecture on
a real problem are the design of the NN architecture and the selection of the
external input or context. These issues are problem-dependent and cannot

254 Probabilistic Graphical Models in Bioinformatics

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

•

•••

•

•

• •

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

••

•

•• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

• •••
•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

h1

h2

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 9.14: Activity of the Two Hidden Units Associated with the Emission of the Main States.
The two activities associated with the cysteines (C) are in the upper left corner, almost overlap-
ping, with coordinates (−1,+1).

be handled with generality. We have described some examples of architec-
tures, using mixture ideas for the design of the NN component. Different
input choices are possible, such as contextual information, sequences over a
different alphabet, or continuous parameterization variables [374].

The methods described in this section are not limited to HMMs, but can
be applied to any class of probabilistic models. The basic idea is to calculate
and possibly modulate the parameters of the models using NNs (or any other
flexible reparameterization). Several implicit examples of hybrid architectures
can be found in the literature (for example [395]). In fact, the NN architectures
of chapter 5 can be viewed as hybrid architectures. In the standard regression
case, a Gaussian model is used for each point in input space. Each Gaussian
model is parameterized by its mean. The standard NN architecture simply
computes the mean at each point. Although the principle of hybrid modeling is
not new, by exploiting it systematically in the case of HMMs, we have generated
new classes of models. In other classes the principle has not yet been applied
systematically, for example, probabilistic models of evolution (chapter 10) and
stochastic grammars (chapter 11). In the next section, we closely follow [37]

Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 255

and apply similar techniques to a larger class of probabilistic models, namely
to BIOHMMs and the problem of predicting protein secondary structure.

9.6 Bidirectional Recurrent Neural Networks for Protein Sec-
ondary Structure Prediction

Protein secondary structure prediction (see also section 6.3) can be formulated
as the problem of learning a synchronous sequential translation from strings
in the amino acid alphabet to strings written in the alphabet of structural cate-
gories. Because biological sequences are spatial rather than temporal, we have
seen that BIOHMMs are an interesting new class of graphical models for this
problem. In particular, they offer a sensible alternative to methods based on a
fixed-width input window. The expressive power of these models enables them
to capture distant information in the form of contextual knowledge stored into
hidden state variables. In this way, they can potentially overcome the main dis-
advantage of feedforward networks, namely the linear growth of the number
of parameters with the window size. Intuitively, these models are parsimo-
nious because of the implicit weight sharing resulting from their stationarity;
i.e., parameters do not vary over time.

We have used BIOHMMs directly to predict protein secondary structure
with some success [36]. As graphical models, however, BIOHMMs contain
undirected loops and therefore require a computationally intensive evidence-
propagation algorithm (the junction tree algorithm [287]), rather than the sim-
pler Pearl’s algorithm for loopless graphs such as HMMs (see also appendix
C). Thus to speed up the algorithm, we can use the technique of the previous
section and use neural networks, both feedforward and recurrent, to reparam-
eterize the graphical model.

9.6.1 Bidirectional Recurrent Neural Nets

Letting t denote position within a protein sequence, the overall model can
be viewed as a probabilistic model that outputs, for each t, a vector Ot =
(o1,t , o2,t , o3,t) with oi,t ≥ 0 and

∑
i oi,t = 1. The oi,ts are the secondary struc-

ture class membership probabilities. The output prediction has the functional
form

Ot = η(Ft, Bt, It) (9.15)

and depends on the forward (upstream) context Ft , the backward (downstream
context) Bt , and the input It at time t. The vector It ∈ IRk encodes the external
input at time t. In the most simple case, where the input is limited to a single
amino acid, k = 20, by using the orthogonal binary encoding (see section 6.1).
In this case, it is not necessary to include an extra input symbol to represent

256 Probabilistic Graphical Models in Bioinformatics

the terminal portions of the protein. Larger input windows extending over
several amino acids are of course also possible. The function η is realized by
a neural network Nη (see center and top connections in figure 9.15). Thus to
guarantee a consistent probabilistic interpretation, the three output units of
network Nη are obtained as normalized exponentials (or softmax)

oi,t = exp(neti,t)∑3
l=1 exp(netl,t)

i = 1,2,3; (9.16)

where neti,t is the activation of the ith output unit at position t. The perfor-
mance of the model can be assessed using the usual relative entropy between
the estimated and the target distribution.

The novelty of the model is in the contextual information contained in the
vectors Ft ∈ IRn and especially in Bt ∈ IRm. These satisfy the recurrent bidi-
rectional equations

Ft = φ(Ft−1, It)
Bt = β(Bt+1, It)

(9.17)

Hereφ(·) and β(·) are learnable nonlinear state transition functions. They can
be implemented in different forms, but here we assume that they are realized
by two NNs, Nφ and Nβ (left and right subnetworks in figure 9.15), with n
and m logistic output units, respectively. Thus, Nφ and Nβ are fed by n+ k
and m + k inputs, respectively. Here also larger input windows are possible,
especially in combination with the weight-sharing approach described in [445],
and different inputs could be used for the computation of Ft , Bt , and Ot . The
forward chain Ft stores contextual information contained to the left of time t
and plays the same role as the internal state in standard RNNs. The novel part
of the model is the presence of an additional backward chain Bt , in charge
of storing contextual information contained to the right of time t, i.e. in the
future. The actual form of the bidirectional dynamics is controlled by the
connection weights in the subnetworks Nφ and Nβ. As we shall see, these
weights can be adjusted using a maximum-likelihood approach. Since (9.17)
involves two recurrences, two corresponding boundary conditions must be
specified, at the beginning and the end of the sequence. For simplicity, here
we use F0 = BN+1 = 0, but it is also possible to adapt the boundaries to the
data, extending the technique suggested in [184] for standard RNNs.

The discrete time index t ranges from 1 to N, the total length of the protein
sequence being examined. Hence the probabilistic output Ot is parameterized
by a RNN and depends on the input It and on the contextual information, from
the entire protein, summarized into the pair (Ft , Bt). In contrast, in a conven-
tional NN approach this probability distribution depends only on a relatively
short subsequence of amino acids. Intuitively, we can think of Ft and Bt as
“wheels” that can be “rolled” along the protein. To predict the class at posi-
tion t, we roll the wheels in opposite directions from the N and C terminus up

Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 257

t-th amino acid

ϕ(.) β(.)

copycopy

η(.)
F Bt

Ot

q-1

t

q+1

I
Bt+1Ft-1

t

Figure 9.15: Bidirectional Recursive Neural Network Architecture. Inputs correspond to amino
acid letters in a given protein sequence. Outputs correspond to secondary structure classifica-
tion into alpha-helices, beta-sheets, and coils.

to position t and then combine what is read on the wheels with It to calculate
the proper output using η.

The global mapping from the input amino acid sequence to the sequence
of output categories can be described by the graphical model shown in figure
9.16. The network represents the direct dependencies among the variables
It, Ft, Bt ,Ot, unrolled over time for t = 1, . . . ,N. Each node is labeled by one
of the variables and arcs represent direct functional dependencies. This graph
represents the underlying Bayesian network BIOHMMs except that the inter-
nal relationships amongst It, Ft, Bt,Ot here are deterministic((9.15) and (9.17)),
rather than probabilistic. The overall BRNN model, however, is a probabilistic
model. As we have seen, inference in the BIOHMMs is tractable but requires
time complexity of O(n3) for each time step (here n is the typical number
of states in the chains), limiting their practical applicability to the secondary
structure prediction task [36].

An architecture resulting from (9.15) and (9.17) is shown in figure 9.15
where, for simplicity, all the NNs have a single hidden layer. The hidden state
Ft is copied back to the input. This is graphically represented in figure 9.15
using the causal shift operator q−1 that operates on a generic temporal variable
Xt and is symbolically defined as Xt−1 = q−1Xt . Similarly, q, the inverse (or
noncausal) shift operator is defined Xt+1 = qXt and q−1q = 1. As shown in
Figure 9.15, a noncausal copy is performed on the hidden state Bt . Clearly,
removal of {Bt} would result in a standard causal RNN.

258 Probabilistic Graphical Models in Bioinformatics

The number of degrees of freedom of the model depends on two factors:
(1) the dimensions n andm of the forward and backward state vectors; (2) the
number of hidden units in the three feedforward networks realizing the state
transition and the output functions (see figure 9.15). It is important to remark
that the BRNN has been defined as a stationary model; that is, the connection
weights in the networks realizing β(·), φ(·) and η(·) do not change over time,
i.e. with respect to position along the protein. This is a form of weight sharing
that reduces the number of free parameters and the risk of overfitting, without
necessarily sacrificing the capability to capture distant information.

9.6.2 Inference and Learning

Since the graph shown in figure 9.16 is acyclic, nodes can be topologically
sorted, defining unambiguously the global processing scheme. Using the net-
work unrolled through time, the BRNN prediction algorithm updates all the
states Ft from left to right, starting from F0 = 0. Similarly, states Bt are up-
dated from right to left. After forward and backward propagations have taken
place, the predictions Ot can be computed. The forward and backward propa-
gations need to be computed from end to end only once per protein sequence.
As a result, the time complexity of the algorithm is O(NW), where W is the
number of weights and N the protein length. This is the same complexity as
feedforward networks fed by a fixed-size window. In the case of BRNNs, W
typically grows as O(n2) and the actual number of weights can be reduced
by limiting the number of hidden units in the subnetworks for φ(·) and β(·).
Thus, inference in BRNNs is more efficient than in bidirectional IOHMMs, where
the complexity is O(Nn3) [36].

Learning can be formulated as a maximum likelihood estimation problem,
where the log-likelihood is essentially the relative entropy function between
the predicted and the true conditional distribution of the secondary structure
sequence given the input amino acid sequence

� =
∑

sequences

N∑
t=1

zi,t log oi,t , (9.18)

with zi,t = 1 if the secondary structure at position t is i and zi,t = 0 otherwise.
The optimization problem can be solved by gradient ascent. The only differ-
ence with respect to standard RNNs is that gradients must be computed by
taking into account noncausal temporal dependencies. Because the unrolled
network is acyclic, the generalized backpropagation algorithm can be derived
as a special case of the backpropagation through structure algorithm [188].
Intuitively, the error signal is first injected into the leaf nodes, corresponding
to the output variables Ot . The error is then propagated through time in both

Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 259

Input: whole protein sequence

output: sequence of secondary structure symbols

H

t

Bt

A S P L E

t

Ot

I

E E H H

F

Figure 9.16: Direct Dependencies Among the Variables Involved in a Bidirectional BRNN. The
boundary conditions are provided by F0 = BN+1 = 0 and by the inputs associated with the
current protein sequence.

directions, by following any reverse topological sort of the unrolled network
(see figure 9.16). Obviously, this step also involves backpropagation through
the hidden layers of the NNs. Since the model is stationary, weights are shared
among the different replicas of the NNs at different time steps. Hence, the
total gradient is simply obtained by summing all the contributions associated
with different time steps.

To speedup convergence, it was found convenient to adopt an online
weight-updating strategy. Once gradients relative to a single protein have
been computed, weights are immediately updated. This scheme was enriched
also with a heuristic adaptive learning rate algorithm that progressively re-
duces the learning rate if the average error reduction within a fixed number of
epochs falls below a given threshold.

9.6.3 Long-range Dependencies

One of the principal difficulties in training standard RNNs is the problem of
vanishing gradients [57]. Intuitively, in order to contribute to the output at
position or time t, the input signal at time t−τ must be propagated in the for-
ward chain through τ replicas of the NN that implements the state transition
function. However, during gradient computation, error signals must be prop-
agated backward along the same path. Each propagation can be interpreted as
the product between the error vector and the Jacobian matrix associated with

260 Probabilistic Graphical Models in Bioinformatics

the transition function. Unfortunately, when the dynamics develop attractors
that allow the system to store past information reliably, the norm of the Ja-
cobian is < 1. Hence, when τ is large, gradients of the error at time t with
respect to inputs at time t − τ tend to vanish exponentially. Similarly, in the
case of BRNNs, error propagation in both the forward and the backward chains
is subject to exponential decay. Thus, although the model has in principle the
capability of storing remote information, such information cannot be learnt ef-
fectively. Clearly, this is a theoretical argument and its practical impact needs
to be evaluated on a per-case basis.

In practice, in the case of proteins, the BRNN can reliably utilize input infor-
mation located within about ±15 amino acids (i.e., the total effective window
size is about 31). This was empirically evaluated by feeding the model with
increasingly long protein fragments. We observed that the average predictions
at the central residues did not significantly change if fragments were extended
beyond 41 amino acids. This is an improvement over standard NNs with input
window sizes ranging from 11 to 17 amino acids [453, 445, 290]. Yet there is
presumably relevant information located at longer distances that these models
have not been able to discover so far.

To limit this problem, a remedy was proposed motivated by recent stud-
ies [364] suggesting that the vanishing-gradients problem can be mitigated by
the use of an explicit delay line applied to the output, which provides shorter
paths for the effective propagation of error signals. Unfortunately, this idea
cannot be applied directly to BRNNs since output feedback, combined with
bidirectional propagation, would generate cycles in the unrolled network. A
similar mechanism, however, can be implemented using the following modi-
fied dynamics:

Ft = φ(Ft−1, Ft−2, . . . , Ft−s, It)
Bt = β(Bt+1, Bt+2, . . . , Bt+s, It).

(9.19)

The explicit dependence on forward or backward states introduces short-
cut connections in the graphical model, forming shorter paths along which
gradients can be propagated. This is akin to introducing higher-order Markov
chains in the probabilistic version. However, unlike Markov chains where the
number of parameters would grow exponentially with s, in the present case
the number of parameters grows only linearly with s. To reduce the number
of parameters, a simplified version of (9.19) limits the dependencies to state
vectors located s residues away from t:

Ft = φ(Ft−1, Ft−s, It)
Bt = β(Bt+1, Bt+s , It).

(9.20)

Another variant of the basic architecture that also lets us increase the effective
window size consists in feeding the output networks with a window in the

Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 261

00 11 22 33 44 55 66 77 88 99 10 11 12 13 14 15 16 17 18 19 20 21 22 23
00

0.2

0.4

0.6

0.8

11

H−>H
H−>E
H−>C

Alpha helices

00 11 22 33 44 55 66 77 88 99 10 11 12 13 14 15 16 17 18 19 20 21 22 23
00

0.2

0.4

0.6

0.8

11

E−>H
E−>E

E−>C

Beta sheets

00 11 22 33 44 55 66 77 88 99 10 11 12 13 14 15 16 17 18 19 20 21 22 23
00

0.2

0.4

0.6

0.8

11

C−>H
C−>E
C−>C

Coils

Figure 9.17: Distant Information Exploited by the BRNN. The horizontal axis represents τ,
the distance from a given position beyond which all entries are set to null values. Each curve
represents a normalized row of the test-set confusion matrix.

forward and backward state chains. In this case, the prediction is computed
as

Ot = η(Ft−s, . . . , Ft+s, Bt−s, . . . , Bt+s , It). (9.21)

Notice that the window can extend in the past and the future of t on both
vectors Ft and Bt .

262 Probabilistic Graphical Models in Bioinformatics

9.6.4 Implementation and Results

BRNNs have been used to implement SSpro, a secondary structure prediction
server available through the Internet3. In addition to BRNNs, SSpro uses other
features that over the years have proved to be useful for secondary structure
prediction, such as ensembles and profiles (see section 6.3). Profiles, in partic-
ular, are most useful when used at the input level. Details of experiments and
performance analysis of the first version of SSpro which used BLAST-generated
profiles are given in [37]. The most recent version of SSpro uses PSIBLAST pro-
files and achieves a performance of about 80% correct prediction. SSpro has
been ranked among the top predictors both at the 2000 CASP blind prediction
competition and through the independent automatic evaluation server EVA of
Rost (http://dodo.bioc.columbia.edu/∼eva/), based on the new sequences that
are deposited each week in the PDB.

Beyond the performance results, to study the capabilities of BRNNs models
to capture long-ranged information a number of experiments were performed.
For each protein and for each amino acid position t, we fed the BRNN mixture
described above with a sequence obtained by replacing all inputs outside the
range [t−τ, t+τ] with null values. The experiment was repeated for different
values of τ from 0 to 23. Figure 9.17 shows the results. Each diagram is
a normalized row of the test set confusion table, for the semi-window size
τ ranging from 0 to 23. So for example the line labeled H → C in the first
diagram is the percentage of helices classified as coils, as a function of τ. The
curves are almost stable for τ > 15. Although the model is not sensitive to
very distant information, it should be remarked that typical feedforward nets
reported in the literature do not exploit information beyond τ = 8.

Given the large number of protein sequences available through genome and
other sequencing projects, even small percentage improvements in secondary
structure prediction are significant for structural genomics. Machine learning
algorithms combined with graphical models and their NN parameterizations
are one of the best approaches so far in this area. BRNNs and the related ideas
presented here begin to address problems of long-ranged dependencies. As a
result, BRNNs have now been developed to predict a number of other struc-
tural features including amino acid partners in beta sheets, number of residue
contacts, and solvent accessibility [45, 429]. These structural modules are part
of a broader strategy towards 3D prediction based on the intermediary predic-
tion of contact maps, with both low (secondary structure) and high (amino
acid) resolution, starting from the primary sequence and the predicted struc-
tural features. Indeed, prediction of the arrangement of secondary structure
elements with respect to each other in three-dimensions would go a long way

3SSpro is accessible through http://promoter.ics.uci.edu/BRNN-PRED/.

Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 263

towards the prediction of protein topology and three-dimensional structure.
There are several directions in which this work could be extended including

many architectural variations. In addition to the use of larger input windows
for It , one may consider non-symmetrical chains for the past and the future,
and the use of priors on the parameters and/or the architecture together with
a maximum a posteriori learning approach. It may also be advantageous to
use an array of “wheels,” instead of just two wheels, of various memory capac-
ity, rolling in different directions along the protein and possibly over shorter
distances. It is also worth noting that using multi-layered perceptrons for
implementing β(.) and φ(.) is just one of the available options. For exam-
ple, recurrent radial basis functions or a generalization of second-order RNN
[208] are easily conceivable alternative parameterization. Finally, the ideas de-
scribed in this section can be applied to other problems in bioinformatics, as
well as other domains, where non-causal dynamical approaches are suitable.
Obvious candidates for further tests of the general method include the predic-
tion of protein functional features, such as signal peptides.

This page intentionally left blank

Chapter 10

Probabilistic Models of
Evolution: Phylogenetic Trees

10.1 Introduction to Probabilistic Models of Evolution

This chapter deals with evolution and the inference of phylogenetic trees from
sequence data. It is included of course because sequence evolution is a cen-
tral topic in computational molecular biology, but also because the ideas and
algorithms used are again a perfect illustration of the general probabilistic
inference framework of chapter 2.

Evolutionary relationships between organisms—existing or extinct—have
been inferred using morphological and/or biochemical characteristics since
the time of Darwin. Today, phylogenetic trees are commonly derived from
DNA and protein sequences [182]. Due to the extreme stability of the DNA
molecule, it can be extracted in large intact pieces even from organisms that
have been dead for many years [251]. The extinct elephant-like mammoth has
been phylogenetically mapped by its DNA, and for deceased humans precise
family relationships can also be established. Among the most recent examples
are the proof of the identity of the last Russian tsar, Nicholas II [211, 274], and
the disproof of the story of Anna Anderson, who claimed she was the tsar’s
missing daughter Anastasia [212, 477]. The bones (and the DNA) of the tsar
had been lying in the soil since 1918.

The literature contains a number of methods for inferring phylogenetic
trees from sequence data. Most of the approaches are variations on two major
methods: parsimony methods [181] and likelihood methods [178, 519, 269].
Not surprisingly, likelihood methods are based on a probabilistic model of the
evolutionary process (see also [295]). Actually, the term “likelihood methods”

265

266 Probabilistic Models of Evolution

is typically used in this field in connection with a particular class of probabilis-
tic models. Although parsimony methods are often described independently
of any underlying model of evolution, we will show that they can be viewed as
approximations to likelihood methods.

From the general Bayesian framework and the Cox–Jaynes axioms, we know
that in order to infer a phylogenetic tree from a set of sequences, we must be-
gin with a probabilistic model of evolution. Maximum likelihood (ML) is then
the most basic inference step we can perform with respect to such a model.
ML encompasses all the other approaches currently found in the literature,
including the ML approach in [178] with respect to a particular model class.
As we have seen, HMMs are not a complete model of the evolutionary pro-
cess. Evolution can proceed at the molecular level not only by insertions and
deletions but also by substitutions, inversions, and transpositions. Therefore
different models must be used. But first we need some elementary background
and notation for trees.

10.1.1 Trees

A tree T is a connected acyclic graph. In a tree every two points are joined
by a unique path, and the number of vertices always exceeds the number of
edges by exactly 1. A tree is binary if each vertex has either one or three
neighbors. A tree is rooted if a node r has been selected and termed the root.
In phylogenetic trees, the root is intended to represent an ancestral sequence
from which all the others descend. Two important aspects of phylogenetic
trees, both rooted and unrooted, are the topology and the branch length. The
topology refers to the branching pattern of the tree associated with the times
of divergence. The branch length is often used to represent in some way the
time distance between events (figure 10.1).

10.1.2 Probabilistic Models

The most basic but still useful probabilistic model of evolution is again a vari-
ation of the simple dice model. We can imagine that starting from an ancestral
sequence, evolution proceeds randomly, using position-independent substitu-
tions only. If we look at a given fixed position i in the sequences, and if we let
χi(t) denote the letter at position i at time t, we can make the usual Markov
process assumption that the probability

piYX(t) = P(χi(t + s) = Y|χi(s) = X) (10.1)

is independent of s ≥ 0 for t > 0. Thus, for each position i, there is a prob-
ability piYX(t) that X is substituted into Y over an evolutionary period of time

Substitution Probabilities and Evolutionary Rates 267

i

j

d ij
X

X j

 i

r

Figure 10.1: A Simple Binary Phylogenetic Tree. r is the root; dji is the time distance between
i and j; Xi is the letter assigned to the hidden vertex i. The observed letters are at the leaves at
the bottom. The probability of the substitution from vertex i to vertex j is pXjXi (dji).

t. Thus for each t and each position i we have a collection of |A| dice. To
simplify the model further, we shall, for now, make the additional approxi-
mation that the substitution probabilities are identical at all positions, so that
piYX(t) = pYX(t). Obviously, we must have pYX(t) ≥ 0 for any X,Y and any t,
and furthermore

∑
Y pYX(t) = 1. From (10.1), one must also have the Chapman–

Kolmogorov relation,

pYX(t + s) =
∑
Z∈A

pYZ(t)pZX(s), (10.2)

due to the independence of the events at time t and time s.

10.2 Substitution Probabilities and Evolutionary Rates

All that remains to specify the model entirely is to determine the substitu-
tion probabilities pYX(t). These are related to the substitution matrices, such
as PAM matrices, discussed in chapter 1. It is sensible to make the further
assumption that

lim
t→0+

pYX(t) = δ(Y,X) =
{

1 if Y = X
0 otherwise

. (10.3)

If we let P(t) denote the matrix P(t) = (pYX(t)), from (10.3) we can define
P(0) = Id, where Id is the |A| × |A| identity matrix. One can then show that

268 Probabilistic Models of Evolution

each component of P(t) is differentiable, so that we can write P ′(t) = (p′YX(t)).
The process is now entirely specified by its right derivative at 0,

Q = P ′(0) = lim
t→0+

P(t)− Id
t

. (10.4)

This is because (10.4) implies that

P ′(t) =QP(t) = P(t)Q. (10.5)

To see this rapidly, just write P(t + dt) = P(t)P(dt) = P(t)(P(0) +Qdt) =
P(t)(Id+Qdt), the first equality resulting from (10.2) and the second from
(10.4), so that P(t + dt)− P(t) = P(t)Qdt. If we let Q = (qYX), from (10.5) the
final solution is given by

P(t) = eQ(t) = Id+
∞∑
n=1

Qntn

n!
. (10.6)

Note that if Q is symmetric, so is P , and vice versa. Such an assumption may
simplify calculations, but it is not biologically realistic and will not be used
here. Finally, a distribution column vector p = (pX) is stationary if P(t)p = p
for all times t. Thus, once in a stationary distribution, the process remains
in it forever. From (10.4), this implies that p is in the kernel of Q: Qp = 0.
And from (10.6) the two statements are in fact equivalent. If we assume that
the observed sequences have been produced with the system in its stationary
distribution, then p is easily estimated from the average composition of the
observed sequences.

To summarize, we have defined a class of probabilistic models for the evo-
lution of sequences. Such models are characterized by four assumptions:

1. At each site, evolution operates by substitution only, and therefore with-
out indels (insertions and deletions). All observed sequences must have
the same length.

2. Substitutions at each position are independent of one another.

3. Substitution probabilities depend only on the current state, and not on
the past history (Markov property).

4. The Markov process is the same for all positions.

None of these assumptions are satisfied by real DNA, where the sequence
length can change as a result of indels; evolution of different positions is not
independent; evolution rates are not uniform both in time and as a function

Rates of Evolution 269

of position; and, last, real DNA is subjected to recombination. But this consti-
tutes a useful first approximation. Many current research efforts concentrate
on relaxing some of these assumptions. The first two assumptions are prob-
ably the most difficult to relax. For indels, one can easily add a gap symbol
to the alphabet A within the present framework, although this is not entirely
satisfactory. In any case, to specify a model further within the class described
above, one must provide the matrix of rates Q.

10.3 Rates of Evolution

First note that the rate matrix Q is defined up to a multiplicative factor because
P(t) = exp(Qt) = exp[(λQ)(t/λ)] for any λ �= 0. In one simple subclass of
models, we assume that λdt is the probability that a substitution occurs at a
given position over a small time interval dt. Thus λ is the rate of substitution
per unit time. Furthermore, when a substitution occurs, a letter is chosen with
probability p = (pX). Thus we have

pYX(dt) = (1− λdt)δ(Y,X)+ λdtpY. (10.7)

This is equivalent to specifying the matrix Q by

qXX = λ(pX − 1) and qYX = λpY (10.8)

for any X and Y. From (10.8) and (10.6), or directly from (10.7) by noting that
e−λt is the probability of not having any substitutions at all over a period of
length t, we have

pYX(t) = e−λtδ(Y,X)+ (1− e−λt)pY. (10.9)

It is useful to note that the distribution p used in (10.7) can be chosen arbitrar-
ily. However, once chosen, it can be shown that it is the stationary distribution
of (10.9); hence the common notation used above. As above, p can be obtained
directly from the data if we assume that the data are at equilibrium.

Again, pYX(t) depends on t via the product λt only. In the absence of any
other evidence, we can choose λ = 1 and thus measure t in units of expected
numbers of substitutions. If λ is allowed to vary along each branch of the tree,
this is equivalent to measuring time with clocks running at different rates on
different branches. Thus the total length from the root to the leaves of the tree
need not be constant along all possible paths.

Another useful property of the process defined by (10.9) is that it is re-
versible in the sense that the substitution process looks the same forward and
backward in time. This is easily seen from the fact that (10.9) yields the bal-
ance equations

pYX(t)pX = pXY(t)pY. (10.10)

Reversibility is also satisfied by other probabilistic models of evolution [302].

270 Probabilistic Models of Evolution

10.4 Data Likelihood

Given a set of sequences and an evolutionary probabilistic model, we can try
to find the most likely tree topology as well as the most likely lengths for the
branches [178, 519]. This explains the use of the expression “ML methods for
phylogeny.”

We first assume that we have K sequences over the alphabet A, all with the
same length N, and a corresponding given phylogenetic tree T with root r and
time lengths dji between adjacent vertices i and j. The first goal is to compute
the likelihood P(O1, . . . ,OK|T) according to the evolutionary Markovian mod-
els described above. Because of the independence assumption across column
positions, we have

P(O1, . . . ,OK|T) =
N∏
k=1

P(Ok1 , . . . ,O
k
K|T), (10.11)

where Okj represents the kth letter observed in the jth sequence. Therefore

we need to study only the term P(Ok1 , . . . ,O
k
K|T) associated with the column

k and with the letters Okj at the K leaves of the tree. In what follows, we
will use the generic notation O to denote the set of observed letters at a fixed
position. We can consider that at each vertex i of the tree there is a hidden
random variable χi representing the letter associated with vertex i. Thus a
phylogenetic tree can be viewed as a simple Bayesian network (appendix C)
with a tree structure in which the conditional probability of a node j, given its
parent i, is parameterized by the time distance dji in the form

P(χj = Y|χi = X) = pYX(dji). (10.12)

Thus all the well-known algorithms for Bayesian networks can be applied in
this simple case. In particular, the likelihood P(O|T) = P(Ok1 , . . . ,O

k
K|T) can be

computed in two ways: starting from the root or starting from the leaves.
Starting from the root, let (Xi) denote an assignment of letters to the in-

ternal nodes I other than the leaves, and including the root r . The letters
assigned to the internal nodes play of course the role of hidden variables, sim-
ilar to the HMM paths in chapter 7. In this notation, Xi is assigned to vertex i
and the notation is extended to include the letters observed at the leaves. The
probability of such a global assignment is easily computed:

P(O, (Xi)|T) = P((Xi)|T) = pr(Xr)
∏
i∈I

∏
j∈N+(i)

pYjXi(dji), (10.13)

where pr is the prior probability distribution for the letters at the root node.
N+(i) denotes the set of children of vertex i, the edges being oriented from

Data Likelihood 271

the root to the leaves. Assuming that the process is at equilibrium, pr is the
stationary distribution p = pr and thus can be estimated from the average
composition. The observation likelihood is computed by summing over all
possible assignments:

P(O|T) =
∑
(Xi)
pr (Xr)

∏
I−{r}

∏
j∈N+(i)

pYjXi (dji). (10.14)

The sum above contains |A||T |−K terms and is computationally not efficient.
|T | is the number of trees.

The likelihood is computed more efficiently by recursively propagating the
evidence from the observed leaves to the root. Let O+(i) denote the portion
of evidence contained in the subtree rooted at vertex i, that is, the letters
observed on the leaves that are descendants of i. Then if i is a leaf of the tree,

P(O+(i)|χi = X, T) =
{

1 if X is observed at i
0 otherwise

. (10.15)

A different distribution can be used when the letter associated with a leaf is
known only with some ambiguity. If i is any internal node,

P(O+(i)|χi = X, T) =
∑
Y∈A

∑
j∈N+(i)

pYX(dji)P((O+(j)|χj = Y, T). (10.16)

The evidence O can be propagated in this way all the way to the root r . The
complete likelihood is then easily shown to be

P(O|T) =
∑
X∈A

pr (X)P(O+(r)|χr = X, T) =
∑
X∈A

pr (X)P(O|χr = X, T). (10.17)

This algorithm, which again is a propagation algorithm for Bayesian networks,
is sometimes called the “peeling” or “pruning” algorithm. Note that the aver-
age composition for pr and the pkYX(dji) probabilities can be chosen differently
for each column position without changing the structure of the previous cal-
culations. Thus the evolutionary models on each site are similar but need not
be identical. It is also worth noting that, instead of integrating over all pos-
sible assignments of the internal nodes, one could compute an optimal (most
probable) assignment of letters for the internal node. This is the equivalent of
the Viterbi path computations we have seen for HMMs.

One useful observation is that if the evolutionary model is reversible and if
there are no external constraints on the position of the root (e.g., a requirement
that all the leaves be contemporaneous), then the likelihood is independent of
the position of the root. The process being the same forward or backward, the
root can be moved arbitrarily along any edge of the tree and therefore over the

272 Probabilistic Models of Evolution

r

i j

X X j i

s

Figure 10.2: Tree Rooted at r with Possible Alternative Root s on the r -to-j Branch.

entire tree. More formally, consider a tree starting with a root r , two children
i and j, and an alternative root s on the branch from r to j (figure 10.2). From
(10.16) and (10.17), we have

P(O|T) =
∑

X,Y,Z∈A
pr (X)pYX(dir)P(O+(i)|χi = Y, T)pZX(dsr)P(O+(s)|χs = Z, T).

(10.18)
Taking into account the reversibility and assuming the system at equilibrium:
p = pr = ps and pr(X)pZX(dsr) = ps(Z)pXZ(drs). Now

∑
Y∈A

pYX(dir)P(O+(i)|χi = Y, T) = P(O++(r)|χr = X, T), (10.19)

where the ++ notation denotes evidence of a tree rooted at s rather than r .
Likewise,

P(O+(s)|χs = Z, T) =
∑
W∈A

P(O++(j)|χj = W, T)pWZ(djs). (10.20)

Collecting terms, we finally have

P(O|T) =
∑
X∈A

ps(X)P(O++(s)|χs = X, T). (10.21)

Thus we are free to position the root anywhere on the tree without altering the
likelihood, or we can speak of the likelihood of the equivalence class associated
with the unrooted tree.

Optimal Trees and Learning 273

10.5 Optimal Trees and Learning

Little work has been done so far to define prior distributions on the space of
phylogenetic trees, in terms of both the branching process and the branching
lengths. We thus omit the topic of priors and proceed with the first Bayesian
inferential step: estimating ML trees. Section 10.4 computed the likelihood for
a given tree topology and branching length. For a given topology, the lengths
dji can be viewed as the parameters of the models and therefore can be opti-
mized by ML. As for HMMs, in general the ML estimate cannot be determined
analytically but can be approximated using, for example, gradient descent, EM,
or perhaps some form of Viterbi learning. We leave it as an exercise for the
reader to find EM or gradient-descent equations for the optimization of the
branch length [178].

10.5.1 Optimal Topologies

The optimization of the topology is a second problem that requires approxi-
mations. The number of possible trees, even unrooted, is exponentially large
and the space of topologies cannot be searched exhaustively. Heuristic algo-
rithms for navigating in this space toward good topologies are described in
the literature [178] and will not be reviewed here in detail. One widely used
heuristic algorithm consists of progressively adding species (i.e., observation
sequences) one by one, starting with a two-species tree. At each step, a new
species is selected and all its possible positions with respect to the current tree
are considered. The most likely is selected before proceeding to the next step.
One serious caveat with a search algorithm of this sort is that the final tree
topology depends on the order of presentation of the observation sequences.

In any case, it is clear that the ML approach to phylogenetic trees is rather
computationally intensive. A complete Bayesian treatment of phylogeny is
even more intensive since, in addition to priors, it requires integrating across
trees in order, for instance, to estimate the probability that a given substitution
has or has not occurred in the past. Parsimony methods can be viewed as fast
approximations to ML.

10.6 Parsimony

The basic idea behind parsimony is that the optimal tree is the one requir-
ing the smallest number of substitutions along its branches. In this sense, it
is somewhat related to MDL (minimum description length) ideas. More for-
mally, consider again an assignment (Xi) to the internal nodes of the tree,
the notation being extended to the leaves. The letters at the leaves are fixed

274 Probabilistic Models of Evolution

and determined by the observations. Then the parsimony cost (error) of the
assignment is defined to be

EP((Xi)|T) =
∑
i∈I

∑
j∈N+(i)

δ(Xi,Xj). (10.22)

In other words, a fixed cost is introduced for any nonidentical substitution,
and the goal is to find an assignment and then a tree with minimal cost. For a
given tree, a minimal assignment is also called a minimum mutation fit.

To see the connection with ML methods, recall that for a given tree, the
probability of an assignment (Xi) is given by

P((Xi)|T) = pr (Xr)
∏
i∈I

∏
j∈N+(i)

pXjXi(dji), (10.23)

and the negative log-probability by

E((Xi)|T) = − logpr(Xr)−
∑
i∈I

∑
j∈N+(i)

logpXjXi (dji). (10.24)

If we let

pXjXi (dji) =
{
a if Xj = Xi
(1− a)/(|A| − 1) if Xj �= Xi

, (10.25)

with 1/|A| < a < 1, then it is easy to check that there exist two constants
α > 0 and β such that

E = αEP + β. (10.26)

In fact, α = log[a(|A| − 1)/(1 − a)] and β = −|E| loga + log |A|, where |E|
is the number of edges in the tree T . In other words, a minimum mutation
fit for a given tree is equivalent to a Viterbi (most likely) assignment in an ML
phylogeny model defined by (10.25) on the same tree topology. Thus parsi-
mony can be viewed as an approximation to an ML approach to phylogeny.
It implicitly assumes that changes are rare, uniform across the alphabet and
across time. Thus, if the amount of change is small over the evolutionary times
being considered, parsimony methods are statistically justified. Recursive al-
gorithms for parsimony are well known [181]. In weighted parsimony [464],
one can relax the assumption of uniform substitutions across the alphabet by
introducing different weights w(Y,X) for each type of substitution. Again, it is
easy to see that this can be viewed in a special ML context by letting, for any Y
in A,

pYX(dji) = e−αw(Y,X)∑
Z∈A e−αw(Z,X)

. (10.27)

Parsimony methods are computationally faster than ML methods, and prob-
ably this is one of the reasons for their wider use. Parsimony methods, how-
ever, can lead to wrong answers when evolution is rapid. Comparison tests

Extensions 275

between ML and parsimony can be conducted on artificial data generated by
a probabilistic evolutionary model. For small samples, obviously both ML and
parsimony methods can lead to the wrong phylogeny. In the case of large
samples, however, phylogenetic trees are usually correctly reconstructed by
ML, but not always by parsimony.

10.7 Extensions

In summary, we have reviewed the basic methodology for constructing phylo-
genies. The key point is that phylogenetic reconstruction is another applica-
tion of Bayesian inference methods. The first step required is the construction
of tractable probabilistic models of the evolutionary process. Markov substi-
tution models form such a class. We have shown that the main algorithms
for phylogenetic reconstruction currently in use, including parsimony meth-
ods, are special cases or approximations to ML inference within such a class.
Algorithms for phylogenetic reconstruction are computationally intensive, es-
pecially when exploration of a large number of possible trees is required.

HMMs and probabilistic tree models of evolution have some complemen-
tary strengths and weaknesses. HMMs are needed to produce multiple align-
ments that are the starting point of evolutionary reconstruction algorithms.
Evolutionary models are needed to regularize HMMs, that is to post-process
the raw counts of multiple alignment columns to produce emission probabil-
ities that are finely tuned for homology searches in large data bases. It is
clear that one direction of research is to try to combine them, that is, to com-
bine trees and alignments, phylogeny, and structure [247, 519], and come up
with probabilistic models of the evolutionary process that allow insertions and
deletions while remaining computationally tractable (see also tree-structured
HMMs in appendix C).

A single Markovian substitution process is a bad model of evolution for all
the reasons discussed in this chapter, and also because over large evolution-
ary times it produces a single equilibrium distribution. This is inconsistent
with what we observe and, for instance, with the use of a mixture of Dirichlet
distributions (Appendix D) as a prior for HMM emission probabilities. Past its
relaxation time, a simple Markov model cannot give rise to clusters of distri-
butions and to the different components of a Dirichlet mixture. To account for
possible clusters, we must use the simple model over relatively short transient
periods, or move to a higher class of evolutionary models.

What would a higher-level model of evolution look like? Imagine that we
could observe multiple alignments produced at different times in the course
of evolution, say every hundred million years. At each observation epoch,
the alignment columns would represent a sample from a complex distribution

276 Probabilistic Models of Evolution

over possible columns. It is this distribution that evolves over time. Thus in
this class of higher-level models, evolution takes place on the distribution over
distributions. A simple example of a model in this class can be constructed
as follows. We can imagine that the original (t = 0) distribution on emission
distributions is a Dirichlet mixture P(P) = ∑

i λiDαiQi(P) and that we have
a simple Markovian substitution process operating on the Qs (and possibly
additional processes operating on the αs and λs). At time t, the distribution
becomes P(P) = ∑i λtiDαtiQ

t
i
(P). For instance, with a PAM matrix substitution

model, ifQi is chosen equal to the binary unit vector with a single 1 in position
i (representing the letter X), then Qti at time t is associated with the ith column
of the corresponding PAM matrix (representing p.X(t)). Such a model is con-
sistent with regularizing HMM emissions using Dirichlet mixtures associated
with PAM matrix columns [497].

